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0199.

• (07/03/2017-actualidad) Grupo de Investigación de la Junta de Andalućıa FQM-
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Agradecimientos
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Introduction

Motivation

It is fair to say that one of the most studied properties of Banach spaces is the Radon-
Nikodym property (RNP) because, due to the big amount of characterisations, the RNP
has shown to be very useful in several fields of Banach spaces such as representation
of bounded linear operators, representation of dual spaces or representation of certain
tensor product spaces (see [Bou, DU]). In spite of being a property which is invariant
under equivalent renorming, there is a very interesting characterisation of the RNP with
a geometric spirit. It is known that a Banach space X has the RNP if, and only if, every
bounded subset C of X is dentable, i.e. C contains slices of arbitrarily small diameter (we
again refer to [Bou, DU] for a proof). Note that, despite the dentability is, at a first glance,
a property which depends on the norm of the space, the fact that the characterisation
runs over all the bounded subsets of the space makes of the previous characterisation a
property which is invariant under equivalent renorming.

In view of the previous characterisation, given a Banach space X failing the RNP, we
can find a bounded subset C of X and a positive ε ≤ diam(C) such that every slice of C
has diameter, at least, ε. In order to push further this characterisation of the failure of
the RNP, two natural questions arise:

i) Can ε be taken close to diam(C)?

ii) In case that the answer is yes, can C be used to get an equivalent renorming of X
such that the diameter of the slices of the new unit ball is (close to) 2?

Both questions were analysed in [SSW]. Making use of the so-called moduli of non-
dentability, it is shown in [SSW, Theorem 1.1] that if a Banach space X fails the RNP
then, for every ε > 0, there exists a bounded, closed, convex and separable subset C of X
with diam(C) = 1 and such that the diameter of every slice of C is greater than or equal to
1− ε. Concerning ii), it is proved in [SSW, Corollary 3.2] that every Banach space failing
the RNP admits, for every ε > 0, an equivalent renorming such that every slice of the new
unit ball has diameter, at least, 1 − ε, and it is posed as an open question whether one
can get 2 − ε in some equivalent renorming. Concerning the above problem, it is known
that the answer is affirmative in the context of Banach lattices [E.Wer]. Furthermore, a
positive answer to this problem would yield a more ambitious problem.

Question 1. Let X be a Banach space failing the RNP. Can X be equivalently renormed
with the property that every slice of the new unit ball has diameter exactly 2?
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This question motivates the definition of the slice diameter two property (slice-D2P)
on a Banach space X as the property that every slice of the unit ball BX has diameter 2.

Other isomorphic properties of Banach spaces, strongly related to the RNP, are the
point of continuity properties and the strong regularity. A Banach space X:

• has the point of continuity property (PCP) if every bounded, closed and non-empty
subset A has a point x ∈ A which is of weak-to-norm continuity, that is, so that
the identity mapping i : (A,w) → (A, τn) is continuous at x, where (A,w) denotes
the set A with the restricted weak topology and (A, τn) denotes the set A with the
restricted norm topology.

• has the convex point of continuity property (CPCP) if every bounded, convex, closed
and non-empty subset A has a point x ∈ A which is of weak-to-norm continuity.

• is strongly regular (SR) if every closed, convex and bounded subset of X contains
convex combinations of slices of arbitrarily small diameter.

We refer to [GMS] for background on the (C)PCP and to [GGMS] for background on
the strong regularity. It is not difficult to prove that a Banach space has the PCP
(respectively the CPCP) if every non-empty, closed and bounded subset (respectively non-
empty, closed, bounded and convex subset) of X contains non-empty relatively weakly
open subsets of arbitrarily small diameter. Thus

RNP ⇒ PCP ⇒ CPCP ⇒ SR

and no reverse implication holds (see [Bo-Ro],[GMS] and [GMS2] respectively for counter-
examples). Note that the reason why CPCP implies SR is a result of J. Bourgain which
asserts that, given a non-empty, closed, convex and bounded subset C of a Banach space
X, then every non-empty relatively weakly open subset of C contains a convex combina-
tion of slices of C [GGMS, Lemma II.1].

In the lines of Question 1 we can pose the following question.

Question 2. Let X be a Banach space.

1. If X fails the CPCP, is there any equivalent renorming such that every non-empty
relatively weakly open subset of the unit ball has diameter exactly 2?

2. If X fails to be SR, is there any equivalent renorming on X such that all the convex
combination of slices of the unit ball has diameter exactly 2?

This motivates the definition of the diameter two property (D2P) (respectively the
strong diameter two property (SD2P)) as the fact that every non-empty relatively weakly
open subset (respectively convex combination of slices) of the unit ball of a Banach space
has diameter 2. Note that the slice-D2P (respectively D2P, SD2P) is a natural candidate
for a geometric property of Banach spaces to characterise, under an equivalent renorming,
the failure of the RNP (respectively CPCP, SR) in connection with Question 1 (respect-
ively Question 2).

Notice also that, taking into account that the dual of a Banach space X is SR if,
and only if, X does not contain any isomorphic copy of ℓ1 [GGMS, Theorem VI. 18],
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then Question 2.2 can be written in the following way for dual Banach spaces: can every
Banach space containing an isomorphic copy of ℓ1 be equivalently renormed so that the
dual has the SD2P? Note that an afirmative answer to this question implies that the
SD2P should have a reformulation in terms of a geometric property P verifying

1. A Banach space X admits an equivalent renorming with the property P if, and only
if, X contains an isomorphic copy of ℓ1; and

2. such a property P should imply (or be equivalent to) having big convex combination
of slices in the dual unit ball.

A natural candidate for such a property P is, in view of the works [Dev] and [God2],
the octahedral norms. According to [God2], the norm of a Banach space is said to be
octahedral if, for every finite-dimensional subspace Y of X and every ε > 0, there exists
an element x ∈ SX such that

‖y + λx‖ > (1− ε)(‖y‖+ |λ|)

holds for every y ∈ Y and every λ ∈ R. The connection of octahedral norms with 1 is
[God2, Theorem II.4 and Remark II.5], where it is proved that a Banach space X admits
an equivalent octahedral norm if, and only if, X contains an isomorphic copy of ℓ1. The
connection with 2 is the paper [Dev] where, by making use of the property of average
rough norms (see Definition 1.11), R. Deville proves that if the norm of a Banach space
is octahedral then every convex combination of weak-star slices of the dual unit ball has
diameter exactly 2.

This puts in relation the theory of octahedral norms with the one of the diameter two
properties, which will be the central topic of this memory.

Summary of the thesis

The aim of this dissertation is to analyse and solve several problems in the theory of
diameter two properties, octahedrality, and to take advantage of the strong connection
between the diameter two properties and the octahedrality of the norm to study new
examples of Banach spaces whose norm is octahedral. Let us give a detailed description
of the content of the thesis:

Chapter 1: Background on the diameter two properties

In this chapter we will exhibit several results about diameter two properties which appeared
in the literature before the results exposed in this dissertation.

We will begin in Section 1.1 with preliminaries and basic facts about diameter two
properties. In Section 1.2 we point out the relation between the diameter two properties
and other geometric properties of Banach spaces which appeared before the starting point
of the study of the diameter two properties. Section 1.3 is devoted to exhibiting additional
examples of Banach spaces which were studied under the point of view of the diameter
two properties. Finally, in Section 1.4 it is analysed the problem of how the diameter two
properties are preserved by ℓp-sums or by tensor product spaces.
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Chapter 2: Diameter two properties

In this chapter we will study several problems related to the diameter two properties and
to the octahedrality of the norm.

Section 2.1

In this section we analyse whether the slice-D2P and the D2P are really different or not.
Notice that if the answer to Question 1 were affirmative this would imply the existence of
an example of a Banach space with the slice-D2P and the PCP (in particular, its unit ball
would have all the slices of diameter 2 but it would contain non-empty relatively weakly
open subsets of arbitrarily small diameter). In spite of the fact that we do not know
the answer to Question 1, we construct an example of Banach space with the slice-D2P
and whose unit ball contains non-empty relatively weakly open subsets of arbitrarily small
diameter. In fact, we consider a non-empty, bounded, convex and closed subsetK of c, the
space of all convergent scalar sequences, such that every slice of K has diameter exactly
diam(K) but which contains non-empty relatively weakly open subsets of arbitrarily small
diameter (Propositions 2.1 and 2.2). Then, by making use of a renorming technique of
those Banach spaces containing an isomorphic copy of c0 (Lemma 2.3), we get the following
result.

Theorem 1 (with Julio Becerra Guerrero and Ginés López-Pérez). Let X be a Banach
space containing an isomorphic copy of c0. Then there is an equivalent norm on X such
that:

1. Every slice of the new unit ball of X has diameter 2 for the new equivalent norm.

2. There are non-empty relatively weakly open subsets of the new unit ball of X with
arbitrarily small diameter.

The content of the section is based on [BLR1].

Section 2.2

It is known that D2P and the SD2P are actually different properties (an example is c0⊕2c0
[ABL]). However, in view of Theorem 1 is it a natural question whether or not the D2P
and the SD2P are actually extremely different in the sense that there are Banach spaces
with the D2P but whose unit ball contains convex combinations of slices of arbitrarily
small diameter. After noticing that the natural example c0 ⊕2 c0 does not produce the
desired extreme example since every convex combination of slices of the unit ball of c0⊕2c0
has diameter, at least, 1, we will follow the underlying ideas of Theorem 1. Namely, we
will consider a non-empty, bounded, closed and convex subset K of c0 where every non-
empty relatively weakly open subset has diameter 2 = diam(K) but containing convex
combinations of slices of arbitrarily small diameter (Proposition 2.7). After that, making
use again of Lemma 2.3, we prove the following theorem.

Theorem 2 (with Julio Becerra Guerrero and Ginés López-Pérez). Let X be a Banach
space containing an isomorphic copy of c0. Then there is an equivalent norm ||| · ||| on X
such that every non-empty relatively weakly open subset of B(X,|||·|||) has diameter 2 and
that B(X,|||·|||) contains convex combinations of slices of arbitrarily small diameter.
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The content of this section is based on [BLR3].

Section 2.3

In this section we consider a strengthening of the SD2P, the so-called almost squareness
(ASQ). According to [ALL], a Banach space X is said to be almost square if, for every
x1, . . . , xn ∈ SX and every ε > 0, there exists y ∈ SX such that

‖xi ± y‖ ≤ 1 + ε

holds for every i ∈ {1, . . . , n}.
It is proved in [ALL] that every ASQ Banach space contains an isomorphic copy of

c0. Conversely, in [ALL] it is proved that every Banach space containing a complemented
copy of c0 can be equivalently renormed to be ASQ. However, the authors of [ALL] ask
whether the complementability assumption can be removed. In order to give a positive
answer to this question, we prove that ℓ∞ can be equivalently renormed to be ASQ. Then,
making use of the injectivity of ℓ∞ and of the ASQ renorming on ℓ∞, we prove the main
theorem of the section.

Theorem 3 (with Julio Becerra Guerrero and Ginés López-Pérez). Let X be a Banach
space containing an isomorphic copy of c0. Then there exists an equivalent norm on X
such that X is an ASQ space under the new norm.

The content of this section is based on [BLR7, Section 2].

Section 2.4

As we have pointed out before, in [Dev] it is proved that, given a Banach space X, if the
norm of X is octahedral then the dual space X∗ has the w∗-SD2P. However, R. Deville
posed in [Dev, Remark (c)] as an open question whether the converse is true or not. The
main theorem of the section is the establishment of the converse, namely:

Theorem 4 (with Julio Becerra Guerrero and Ginés López-Pérez). Let X be a Banach
space. Then the following assertions are equivalent:

1. The norm of X is octahedral.

2. Every convex combination of w∗-slices of BX∗ has diameter 2.

As an application of this result, notice that [God2, Theorem II.4] has the following
interpretation in terms of the diameter two properties: A Banach space contains an
isomorphic copy of ℓ1 if, and only if, there exists an equivalent norm on X such that X∗

has the w∗-SD2P. A natural question, which is equivalent to question [God2, Remark II.5,
3)], is whether every Banach space containing an isomorphic copy of ℓ1 can be equivalently
renormed such that X∗ has the SD2P. The following partial answer is obtained.

Proposition 5 (with Julio Becerra Guerrero and Ginés López-Pérez). Let X be a separable
Banach space containing a subspace isomorphic to ℓ1. Then, for every ε > 0, there is an
equivalent norm on X such that every convex combination of slices of the new unit ball of
X∗ has diameter, at least, 2− ε.
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Notice that, since a dual Banach space fails to be SR if, and only if, the predual space
contains any isomorphic copy of ℓ1, the previous Proposition can be read as follows: every
dual Banach space which fails to be SR and whose predual is separable admits, for every
ε > 0, an equivalent dual renorming such that every convex combination of slices of the
unit ball has diameter, at least, 2 − ε. Thus the previous proposition can be seen as a
partial answer to the second question in Question 2 too.

The content of this section is based on [BLR4].

Section 2.5

This section is devoted to pointing out further research, remarks and open questions
related to the content of Chapter 2.

Chapter 3: Examples of Banach spaces with an octahedral norm

In this chapter we obtain examples of Banach spaces whose norm is octahedral making
use of the characterisation of the octahedrality in terms of the w∗-SD2P in the dual space.

Section 3.1

In this section we analyse the problem of whether the operator norm on a space H such
that X∗ ⊗Y ⊆ H ⊆ L(X, Y ) can or not be octahedral. This problem is closely related to
the problem of how the diameter two properties are preserved by taking projective tensor
product, a problem which has been analysed in the literature (see [ABR, ALN2]) and
explicitly posed as an open question in [ALN2, Question (b)].

In the first half of the section we obtain several sufficient conditions about octahedrality
in spaces of operators, being particularly interesting the following stability result.

Theorem 6 (with Julio Becerra Guerrero and Ginés López-Pérez). Let X and Y be two
Banach spaces. If the norm of X∗ and Y are octahedral and H is a subspace of L(X, Y )
containing X∗ ⊗ Y , then the operator norm on H is octahedral.

As a consequence, if two Banach spaces X and Y have the SD2P then so does its
projective tensor product X⊗̂πY .

The previous theorem provides an incomplete answer to [ALN2, Question (b)], where
it is asked how the diameter two properties are preserved by taking projective tensor
product. In order to give a complete answer, we want to know whether or not the SD2P
is actually preserved from just one factor by taking projective tensor product. The answer
to this question is given in the following theorem.

Theorem 7 (with Johann Langemets and Vegard Lima). Let X and Y be Banach spaces
and assume that Y ∗ is uniformly convex. Assume also that there exists a closed subspace
H of L(Y ∗, X) such that X ⊗ Y ⊆ H and that the norm of H is octahedral. Then Y ∗ is
finitely representable in X.

In particular, given 2 < p < ∞ and n ≥ 3, then neither ℓ∞⊗̂πℓ
n
p nor L∞⊗̂πℓ

n
p enjoy

the SD2P.
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Now we do have a complete answer to [ALN2, Question (b)] for the SD2P in the
projective case: the SD2P is preserved from both factors but not from just one of them
by taking projective tensor product. Furthermore we point out that finite-representability
is not only a necessary condition for getting octahedrality in certain spaces of operators
under uniform convexity assumptions but it is also a sufficient condition in the following
special case.

Theorem 8 (with Johann Langemets and Vegard Lima). Let X be a Banach space.
Then:

1. If, for all ε > 0, X is (1+ε) isometric to a subspace of ℓ1, then the norm of L(X, ℓ1)
is octahedral.

2. If, for all ε > 0, X is (1 + ε) isometric to a subspace of L1, then the norm of
L(X,L1) is octahedral.

The results of this section are based on [BLR5] (from Proposition 3.1 to Corollary
3.12) and on [LLR2, Section 3] (from Lemma 3.17 until the end).

Section 3.2

In this section we consider the vector-valued version of Lipschitz-free spaces and we give
sufficient conditions for a vector-valued Lipschitz-free space to have an octahedral norm.
In order to do so, we make use of the dual characterisation of octahedrality in terms of the
w∗-SD2P and then we study when a space of Lipschitz functions Lip0(M,X∗) can have the
w∗-SD2P. We will need the assumption that all the Lipschitz functions can be extended
without increasing its Lipschitz norm (for details, see the definition of the contraction-
extension property (CEP) given in Definition 3.31). Now the main theorem of the section
is the following:

Theorem 9 (with Julio Becerra Guerrero and Ginés López-Pérez). Let M be an infinite
pointed metric space and let X be a Banach space. Assume that the pair (M,X∗) has
the CEP. If M is unbounded or is not uniformly discrete then the norm of F(M,X) is
octahedral. Consequently, the unit ball of F(M,X) does not have any point of Fréchet
differentiability.

Furthermore, we present an example of metric space M such that, depending on the
target Banach space X, the range of possibilities for the space F(M,X) goes from having
points of Fréchet differentiability to being octahedral for its natural norm. This has two
important consequences. First, for a Lipschitz-free space it is possible to have points of
Fréchet differentiability. Second, the octahedrality of a Lipschitz-free space may depend
on the target Banach space.

The results of this section are based on [BLR6].

Section 3.3

In this section we will focus on analysing the octahedrality of a real Lipschitz-free space.
Our aim is to find a geometric property of metric spaces which characterises the fact
that the norm of corresponding Lipschitz-free space is octahedral. This would make of
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octahedrality part of the small group of properties of the geometry of Banach spaces which
can be checked on a Lipschitz-free space F(M) looking only at the underlying metric space
M . That is what is done in the following theorem, which is the main theorem of Section
3.3.

Theorem 10 (with Antońın Procházka). For a metric space M it is equivalent:

1. The norm of F(M) is octahedral.

2. For each ε > 0 and each finite subset N ⊂ M there are points u, v ∈ M , u 6= v,
such that every 1-Lipschitz function f : N → R admits an extension f̃ : M → R

which is (1 + ε)-Lipschitz and satisfies f̃(u)− f̃(v) ≥ d(u, v).

3. For each finite subset N ⊆M and ε > 0, there exist u, v ∈M,u 6= v, such that

(1− ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v)

holds for all x, y ∈ N .

The property 3. in above theorem, which is a property of metric spaces, is what we
define as the long trapezoid property (LTP) (see Definition 3.38). The rest of the section
is devoted to making use of the previous characterisation to get results about the LTP
from octahedrality theory and, vice versa, getting new examples of Lipschitz-free spaces
F(M) whose norm is octahedral. Particularly interesting, among all the consequences of
the previous theorem, is the following proposition.

Proposition 11 (with Antońın Procházka). Let X be a AUC Banach space such that
δX(t) = t holds for all t ≥ 0. Then every infinite subset of X has the LTP.

In particular, for every infinite subset M of X it follows that the norm of F(M) is
octahedral.

The content of this section is based on [PR].

Section 3.4

This section is devoted to pointing out further research, remarks and open questions
related to the content of Chapter 3.



Introducción

Motivación

Es justo decir que una de las propiedades más estudiadas en el contexto de la teoŕıa
de los espacios de Banach es la propiedad de Radon-Nikodym (RNP) ya que, debido a
su gran cantidad de caracterizaciones, la RNP ha demostrado ser muy útil en diversos
marcos de los espacios de Banach tales como la representación de operadores lineales y
continuos, la representación de espacios duales o la identificación de ciertos productos
tensoriales de espacios de Banach (véase por ejemplo [Bou, DU]). A pesar de que se trata
de una propiedad que es invariante bajo renormación equivalente, existe una interesante
caracterización con un fuerte esṕıritu geométrico. Más concretamente, es conocido que un
espacio de Banach X tiene la RNP si, y solamente si, todo subconjunto acotado C de X es
dentable, es decir, C contiene rebanadas de diámetro arbitrariamente pequeño (de nuevo
referimos a [Bou, DU] para una demostración). Nótese que, a pesar de que la dentabilidad
es, en principio, una propiedad que depende de la norma concreta que consideremos en el
espacio, el hecho de que la caracterización anterior verse sobre la dentabilidad de todos
los subconjuntos acotados del espacio hace de dicha caracterización una propiedad que es
invariante bajo renormación equivalente.

En vista de la caracterización anterior, dado un espacio de Banach X fallando la RNP,
podemos encontrar un subconjunto acotado C de X y un positivo ε ≤ diam(C) de manera
que cada rebanada de C tiene diámetro, al menos, ε. Con el objetivo de tratar de llevar
más lejos el fallo de la RNP, las dos preguntas siguientes parecen naturales:

i) ¿Puede ε ser tomado próximo a diam(C)?

ii) En caso de que la respuesta anterior sea afirmativa, ¿puede usarse dicho conjunto
C para obtener una renormación equivalente de X de manera que el diámetro de
toda rebanada de la bola unidad sea (próximo a) 2?

Ambas preguntas fueron analizadas en [SSW]. Haciendo uso de los módulos de no-
dentabilidad introducidos en dicho trabajo, se demostró en [SSW, Theorem 1.1] que si
un espacio de Banach X falla la RNP entonces, para cada ε > 0, existe un subconjunto
acotado, cerrado, convexo y separable C de X de manera que diam(C) = 1 y de manera
que el diámetro de toda rebanada de C es mayor o igual que 1 − ε. Respecto a ii), se
demostró en [SSW, Corollary 3.2] que todo espacio de Banach que falla la RNP admite,
para cada ε > 0, una renormación equivalente de manera que el diámetro de todas las
rebanadas de la nueva bola unidad es mayor o igual que 1− ε, planteando como problema
abierto si se podŕıa obtener el valor 2− ε. Con respecto a esta pregunta, notemos que la
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respuesta es afirmativa en el contexto de los ret́ıculos de Banach [E.Wer]. Además, una
respuesta afirmativa en el caso general planteaŕıa el siguiente problema.

Pregunta 1. Sea X un espacio de Banach que falla la RNP. ¿Puede ser X renormado
con la propiedad de que todas las rebanadas de la nueva bola unidad tengan diámetro 2?

Esta pregunta motiva la definición de la propiedad de diámetro dos para rebanadas
(slice-D2P) en un espacio de Banach X como la propiedad de que toda rebanada de la
bola unidad tenga diámetro 2.

Otras propiedades de la teoŕıa de espacios de Banach estrechamente relacionadas con
la RNP son la propiedad del punto de continuidad, propiedad del punto de continuidad
convexa y la regularidad fuerte. Dado un espacio de Banach X, diremos que X:

• tiene la propiedad del punto de continuidad (PCP) si todo subconjunto no vaćıo,
acotado y cerrado A de X tiene un punto x ∈ A que es de débil-norma continuidad,
es decir, de manera que la función identidad i : (A,w) −→ (A, τn) es continua en
x, donde (A,w) denota al conjunto A con la topoloǵıa débil restringida y (A, τn)
denota a A con la topoloǵıa de la norma restringida.

• tiene la propiedad del punto de continuidad convexa (CPCP) si cada subconjunto
no vaćıo, cerrado, acotado y convexo A de X tiene un punto de débil-norma con-
tinuidad.

• es fuertemente regular (SR) si todo subconjunto no vaćıo, cerrado, acotado y convexo
de X contiene combinaciones convexas de rebanadas de diámetro arbitrariamente
pequeño.

Referimos al lector a [GMS] para más información sobre la (C)PCP y a [GGMS]
sobre la SR. No es dif́ıcil demostrar que un espacio de Banach tiene la (C)PCP si, y
solamente si, todo subconjunto no vaćıo, cerrado y acotado (respectivamente no vaćıo,
cerrado, acotado y convexo) del espacio contiene abiertos débiles no vaćıos de diámetro
arbitrariamente pequeño. En consecuencia

RNP ⇒ PCP ⇒ CPCP ⇒ SR,

y ninguna de las implicaciones rećıprocas son ciertas (véase [Bo-Ro], [GMS] y [GGMS]
para respectivos contraejemplos). Notemos que la razón por la que CPCP implica SR es
un resultado de J. Bourgain que afirma que, dado un conjunto no vaćıo, cerrado, acotado
y convexo C de X, entonces todo abierto débil no vaćıo de C contiene una combinación
convexa de rebanadas de C [GGMS, Lemma II.1].

Siguiendo la ĺınea de la Pregunta 1, es natural preguntarse lo siguiente.

Pregunta 2. Sea X un espacio de Banach.

1. Si X falla la CPCP, ¿puede ser X renormado para que todos los abiertos débiles no
vaćıos de la bola unidad tengan diámetro 2?

2. Si X falla la SR, ¿puede ser X renormado para que todas las combinaciones convexas
de rebanadas de la bola unidad tengan diámetro 2?
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Esto motiva la definición de la propiedad de diámetro dos (D2P) (respectivamente la
propiedad fuerte de diámetro dos (SD2P)) como el hecho de que todo abierto débil no vaćıo
de la bola unidad (respectivamente toda combinación convexa de rebanadas de la bola
unidad) tenga diámetro 2. Notemos que la slice-D2P (respectivamente la D2P, SD2P) es
una candidata natural a propiedad geométrica de espacios de Banach para caracterizar,
bajo renormación equivalente, la negaci’on de la RNP (respectivamente CPCP, SR) en
conexión con las preguntas anteriores.

Notemos también que, teniendo en cuenta que el dual de un espacio de Banach X falla
ser SR si, y solamente si, X contiene una copia isomorfa de ℓ1 [GGMS, Theorem VI. 18],
entonces la Pregunta 2.2. puede reformularse de la siguiente manera: ¿puede renormarse
todo espacio de Banach que contenga una copia isomorfa de ℓ1 para que el dual tenga
la SD2P? Notemos que una respuesta afirmativa a esta pregunta implica que la SD2P
debeŕıa tener una reformulación en términos de una propiedad geométrica, digamos P,
satisfaciendo las dos siguientes condiciones:

1. Dado un espacio de Banach X, entonces X admite una renormación equivalente con
la propiedad P si, y solamente si, X contiene una copia isomorfa de ℓ1.

2. Tal propiedad P debeŕıa implicar (o ser equivalente a) que las combinaciones con-
vexas de rebanadas de la bola dual tengan diámetro grande.

Un candidato natural para tal propiedad P es, en vista de los trabajos [Dev] y [God2],
la octaedralidad de la norma. Dado un espacio de Banach X, diremos que su norma es
octaedral si, para cada subespacio finito dimensional Y de X y cada ε > 0, existe un
elemento x ∈ SX de manera que

‖y + λx‖ > (1− ε)(‖y‖+ |λ|)

se cumple para cada y ∈ Y y cada λ ∈ R. La conexión entre las normas octaedrales y
el punto 1. anterior es [God2, Theorem II.4 y Remark II. 5], donde se demostró que un
espacio de Banach X admite una renormación equivalente octaedral si, y solamente si, X
contiene una copia isomorfa de ℓ1. Por otro lado, la conexión con el punto 2. viene del
trabajo de Deville [Dev] donde, haciendo uso de las normas rudas en media, se demuestra
que si la norma de un espacio de Banach X es octaedral entonces todas las combinaciones
convexas de w∗-rebanadas de la bola unidad dual tienen diámetro 2.

Este hecho pone en relación la teoŕıa de los espacios de Banach con norma octaedral
con los espacios de Banach con propiedades de diámetro dos, el cual será uno de los
principales ejes de esta memoria.

Resumen de la tesis

El principal objetivo de esta tesis es analizar y resolver diversos problemas enmarcados en
el estudio de los espacios de Banach con las propiedades de diámetro dos y de los espacios
con norma octaedral, y aprovechar la estrecha relación existente entre las propiedades
de diámetro dos y las normas octaedrales para estudiar nuevos ejemplos de espacios de
Banach cuya norma es octaedral. A continuación detallamos el contenido de la tesis.
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Caṕıtulo 1: Bagaje sobre propiedades de diámetro dos

En este caṕıtulo exhibiremos varios resultados sobre propiedades de diámetro dos que
aparecieron en la literatura anteriormente a los expuestos en esta memoria.

Comenzaremos en la Sección 1.1 con preliminares y propiedades básicas sobre las
propiedades de diámetro dos. En la Sección 1.2 analizaremos las relaciones entre las
propiedades de diámetro dos y otras propiedades de la geometŕıa de los espacios de
Banach. La Sección 1.3 está dedicada a proporcionar nuevos ejemplos de espacios de
Banach con propiedades de diámetro dos que se obtuvieron cuando dichas propiedades
se establecieron como objeto propio de estudio dentro de la geometŕıa de los espacios de
Banach. Por último, en la Sección 1.4 se exhibe un análisis sobre cómo se preservan las
propiedades de diámetro dos por ℓp-sumas o por productos tensoriales de espacios.

Caṕıtulo 2: Propiedades de diámetro dos

En este caṕıtulo estudiaremos varios problemas relativos a las propiedades de diámetro
dos y a las normas octaedrales.

Sección 2.1

En esta sección analizamos si la slice-D2P y la D2P son propiedades diferentes o no.
Notemos que si la respuesta a la Pregunta 1 fuese afirmativa entonces existiŕıa un ejemplo
de espacio de Banach con la slice-D2P y la PCP (en particular, su bola unidad tendŕıa
todas las rebanadas de diámetro 2 pero contendŕıa abiertos débiles no vaćıos de diámetro
arbitrariamente pequeño). A pesar de que no sabemos la respuesta a la Pregunta 1,
construimos un ejemplo de espacio de Banach con la slice-D2P pero de manera que su
bola unidad contiene abiertos débiles no vaćıos de diámetro arbitrariamente pequeño. De
hecho, consideramos un conjunto no vaćıo, cerrado, acotado y convexo K en c, el espacio
de las sucesiones convergentes con la norma del supremo, de manera que cada rebanada de
K tiene diámetro igual a diam(K) pero conteniendo abiertos débiles no vaćıos de diámetro
arbitrariamente pequeño (Propositions 2.1 y 2.2). Después, haciendo uso de una técnica
de renormación de los espacios de Banach que contienen una copia isomorfa de c0 (Lemma
2.3), obtenemos el siguiente resultado.

Teorema 1 (Junto a Julio Becerra Guerrero y Ginés López-Pérez). Sea X un espacio de
Banach que contiene una copia isomorfa de c0. Entonces existe una norma equivalente
en X de manera que:

1. Toda rebanada de la nueva bola unidad tiene diámetro 2.

2. Su bola unidad contiene abiertos débiles no vaćıos de diámetro arbitrariamente
pequeño.

El contenido de esta sección está basado en [BLR1].

Sección 2.2

Es conocido que la D2P y la SD2P son propiedades diferentes (y un contraejemplo es
c0 ⊕2 c0 [ABL]). Sin embargo, en vista del Teorema 1, una pregunta natural es si la D2P



Introducción xiii

y la SD2P son propiedades diferentes en el mismo sentido en que lo son la slice-D2P y
la D2P, es decir, si existe un espacio de Banach con la D2P con la propiedad de que su
bola unidad contenga combinaciones convexas de rebanadas de diámetro arbitrariamente
pequeño. Después de comprobar que c0⊕2 c0 no produce dicho contraejemplo extremo, ya
que el diámetro de todas las combinaciones convexas de rebanadas es mayor o igual que 1,
seguiremos las técnicas del Teorema 1. Más estrictamente, consideramos un subconjunto
no vaćıo, cerrado, acotado y convexoK de c0 con la propiedad de que todo abierto débil no
vaćıo de K tiene diámetro exactamente 2 = diam(K) y de que K contiene combinaciones
convexas de rebanadas de diámetro arbitrariamente pequeño (Proposition 2.7). Después,
haciendo uso de nuevo del Lemma 2.3, demostramos el siguiente teorema.

Teorema 2 (Junto a Julio Becerra Guerrero y Ginés López-Pérez). Sea X un espacio de
Banach que contiene una copia isomorfa de c0. Entonces existe una norma equivalente
||| · ||| sobre X de manera que todo abierto débil no vaćıo de B(X,|||·|||) tiene diámetro
2 y de manera que B(X,‖|·|‖) contiene combinaciones convexas de rebanadas de diámetro
arbitrariamente pequeño.

El contenido de esta sección está basado en [BLR3].

Sección 2.3

En esta sección consideramos un reforzamiento de la SD2P, conocido como ASQ. De
acuerdo con [ALL], un espacio de Banach X es casi cuadrado (ASQ) si, para cada
x1, . . . , xn ∈ SX y cada ε > 0, existe y ∈ SX de manera que

‖xi ± y‖ ≤ 1 + ε

se cumple para cada i ∈ {1, . . . , n}.
Se demostró en [ALL] que cada espacio ASQ contiene una copia isomorfa de c0.

Rećıprocamente, en [ALL] se demostró también que todo espacio de Banach que contiene
una copia complementada de c0 admite una renormación equivalente ASQ. Sin embargo,
los autores de [ALL] plantearon como problema abierto si la complementación pod́ıa ser
eliminada. Para dar una respuesta afirmativa a esta pregunta, demostramos que ℓ∞ ad-
mite una renormación equivalente para ser ASQ. Después, haciendo uso de la inyectividad
del espacio ℓ∞, demostramos el teorema principal de la sección.

Teorema 3 (Junto a Julio Becerra Guerrero y Ginés López-Pérez). Sea X un espacio
de Banach que contiene una copia isomorfa de c0. Entonces X admite una renormación
equivalente para ser ASQ.

El contenido de esta sección está basado en [BLR7, Section 2].

Sección 2.4

Tal y como hemos señalado anteriormente, en [Dev] se demuestra que, dado un espacio
de Banach X, si la norma de X es octaedral entonces el espacio dual X∗ tiene la w∗-
SD2P. Sin embargo, R. Deville planteó en [Dev, Remark (c)] como problema abierto si el
rećıproco es cierto o no. El teorema principal de esta sección da la respuesta afirmativa a
esta pregunta:
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Teorema 4 (Junto a Julio Becerra Guerrero y Ginés López-Pérez). Sea X un espacio de
Banach. Las siguientes afirmaciones son equivalentes:

1. La norma de X es octaedral.

2. Toda combinación convexa de w∗-rebanadas de BX∗ tiene diámetro 2.

Como aplicación de este resultado, notemos que [God2, Theorem II.4] tiene la siguiente
reformulación en términos de propiedades de diámetro dos: un espacio de Banach X
contiene una copia isomorfa de ℓ1 si, y solamente si, existe una norma equivalente en X
de manera que X∗ tiene la w∗-SD2P. Una pregunta natural, equivalente a la pregunta
[God2, Remark II.5], es si todo espacio de Banach que contiene una copia isomorfa de
ℓ1 admite una renormación equivalente para que X∗ tenga la SD2P. En este sentido, una
respuesta parcial es la siguiente:

Proposición 1 (Junto a Julio Becerra Guerrero y Ginés López-Pérez). Sea X un espacio
de Banach separable conteniendo una copia isomorfa de ℓ1. Entonces, para cada ε > 0,
existe una norma equivalente en X de manera que todas las combinaciones convexas de
rebanadas de la bola unidad de X∗ tienen diámetro, al menos, 2− ε.

Notemos de nuevo que, dado que un espacio dual falla ser SR si, y solamente si, el
predual no contiene ninguna copia isomorfa de ℓ1, la proposición anterior puede reformu-
larse como sigue: todo espacio de Banach dual que falla ser SR cuyo predual es separable
admite, para cada ε > 0, una renormación (dual) equivalente de manera que todas las
combinaciones convexas de rebanadas de la bola unidad tiene diámetro mayor o igual que
2− ε. En consecuencia, la proposición anterior también puede verse como una respuesta
parcial a la segunda cuestión de la Pregunta 2.

El contenido de esta sección está basado en [BLR4].

Sección 2.5

Esta sección está dedicada a mostrar ĺıneas de investigación futuras y derivadas del con-
tenido del Caṕıtulo 2, aśı como a mostrar comentarios relevantes y a plantear problemas
abiertos relacionados.

Caṕıtulo 3: Ejemplos de espacios de Banach con norma octaedral

En este caṕıtulo obtendremos ejemplos de espacios de Banach cuya norma es octaedral
haciendo un fuerte uso de la caracterización de la octaedralidad en términos de la w∗-SD2P
en el espacio dual.

Sección 3.1

En esta sección analizaremos el problema de si la norma de operadores es o no octaedral en
un espacio H de manera que X∗ ⊗ Y ⊆ H ⊆ L(X, Y ). Este problema está estrechamente
relacionado con el problema de cómo se preservan, en general, las propiedades de diámetro
dos por productos tensoriales, un problema ya considerado en la literatura (véase por
ejemplo [ABR, ALN2]) y expĺıcitamente propuesto como problema abierto en [ALN2,
Question (b)].
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En la primera mitad de la sección trataremos de obtener diversas condiciones sufi-
cientes sobre octaedralidad en espacios de operadores, siendo particularmente interesante
el siguiente resultado de estabilidad.

Teorema 5 (Junto a Julio Becerra Guerrero y Ginés López-Pérez). Sean X e Y dos
espacios de Banach. Si la norma de X∗ e Y son octaedrales y H es un subespacio de
L(X, Y ) que contiene a X∗ ⊗ Y , entonces la norma de operadores sobre H es octaedral.

Como consecuencia, si X e Y tienen la SD2P, entonces X⊗̂πY tiene la SD2P.

El teorema anterior proporciona una respuesta incompleta a [ALN2, Question (b)],
donde se pregunta cómo se preservan las propiedades de diámetro dos por producto tensor
proyectivo. Para tratar de completar la respuesta, nos preguntamos si la SD2P en realidad
se preserva desde sólo uno de los dos factores. La respuesta se obtiene como consecuencia
del siguiente teorema.

Teorema 6 (Junto a Johann Langemets y Vegard Lima). Sean X e Y dos espacios
de Banach de manera que Y ∗ es uniformemente convexo. Supongamos que existe un
subespacio H de L(Y ∗, X) que contiene a X⊗Y y de manera que la norma de operadores
sobre H es octaedral. Entonces, Y ∗ es finitamente representable en X.

Con el teorema anterior ya tenemos una respuesta completa para [ALN2, Question (b)]
en el caso de la SD2P y la norma proyectiva: la SD2P se preserva desde los dos factores
por producto tensor proyectivo pero no desde uno solo de ellos. Además, notemos que
la representabilidad finita no es solamente una condición necesaria para octaedralidad en
ciertos espacios de operadores en presencia de la convexidad uniforme, sino que también
es una condición suficiente en el siguiente caso particular.

Teorema 7 (Junto a Johann Langemets y Vegard Lima). Sea X un espacio de Banach.
Entonces:

1. Si, para cada ε > 0, X es (1 + ε)-isométrico a un subespacio de ℓ1, entonces la
norma de L(X, ℓ1) es octaedral.

2. Si, para cada ε > 0, X es (1 + ε)-isométrico a un subespacio de L1, entonces la
norma de L(X,L1) es octaedral.

Los resultados de esta sección están basados en [BLR5] (desde Proposition 3.1 hasta
Corollary 3.12) y en [LLR2, Section 3] (desde Lemma 3.17 hasta el final).

Sección 3.2

En esta sección consideramos los espacios Lipschitz libres vector valuados y damos condi-
ciones suficientes para que su norma sea octaedral. Para ello, usaremos la caracterización
de octaedralidad en términos de la w∗-SD2P en el dual. En consecuencia, nos centramos
en analizar cuándo un espacio de funciones Lipschitzianas Lip0(M,X∗) puede tener la
w∗-SD2P. Para ello será esencial la hipótesis de que todas las funciones Lipschitzianas
pueden extenderse sin incrementar su norma Lipschitz (para más detalles referimos a la
definición de contraction-extension property (CEP) dada en la Definition 3.31). En estos
términos, el teorema principal de la sección reza como sigue:
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Teorema 8 (Junto a Julio Becerra Guerrero y Ginés López-Pérez). Sea M un espacio
métrico infinito y sea X un espacio de Banach. Supongamos que el par (M,X∗) tiene
la CEP. Si M no está acotado o si M no es uniformemente discreto, entonces la norma
de F(M,X) es octaedral. En consecuencia, la bola unidad de F(M,X) no tiene ningún
punto de diferenciabilidad Fréchet.

Además, presentamos un ejemplo de espacio métrico infinito M de manera que, de-
pendiendo del espacio de llegada X, el rango de posibilidades para el espacio F(M,X)
vaŕıa desde tener puntos de diferenciabilidad Fréchet hasta que su norma sea octaedral.
Esto tiene dos consecuencias importantes. La primera es que para un espacio de Banach
Lipschitz libre, es posible que su bola unidad tenga puntos de diferenciabilidad Fréchet.
Segundo, este ejemplo prueba que la octaedralidad de la norma de F(M,X) depende
tanto del espacio métrico subyacente M como del espacio de Banach de llegada X.

Los resultados de esta sección están basados en [BLR6].

Section 3.3

En esta sección nos centraremos en analizar la octaedralidad de un espacio Lipschitz
libre real. Nuestro objetivo es encontrar una propiedad (geométrica) de espacios métricos
que caracterice el hecho de que el espacio Lipschitz libre correspondiente tenga norma
octaedral, lo cual haŕıa de la octaedralidad de la norma parte del pequeño grupo de
propiedades de espacios de Banach que podŕıa comprobarse en un espacio Lipschitz
libre F(M) analizando solo el espacio métrico subyacente M . Esto es justamente lo
que hacemos en el siguiente teorema, el cual es el resultado principal de la sección.

Teorema 9 (Junto a Antońın Procházka). Sea M un espacio métrico. Son equivalentes:

1. La norma de F(M) es octaedral.

2. Para cada ε > 0 y cada subconjunto finito N ⊂ M existen puntos u, v ∈ M , u 6= v,
de manera que cada función Lipschitziana f : N → R de norma 1 admite una
extensión f̃ : M → R cuya norma Lipschitziana es menor o igual que 1 + ε y
satisface que f̃(u)− f̃(v) ≥ d(u, v).

3. Para cada subconjunto finito N ⊆ M y cada ε > 0, existen u, v ∈ M,u 6= v, de
manera que

(1− ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v)

se cumple para cada x, y ∈ N .

La propiedad 3. en el teorema anterior, que es una propiedad de espacios métricos,
es lo que se define como propiedad de trapecios largos (LTP) (véase Definition 3.38).
El resto de la sección se dedica a hacer uso de la caracterización anterior para obtener
resultados sobre LTP a partir de resultados de octaedralidad en espacios Lipschitz libres y,
rećıprocamente, para obtener nuevos resultados de espacios Lipschitz libres cuya norma
es octaedral. Particularmente interesante, sobre todas las consecuencias obtenidas del
teorema anterior, es la siguiente proposición.
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Proposición 2 (Junto a Antońın Procházka). Sea X un espacio de Banach AUC de
manera que δX(t) = t se verifica para cada t ≥ 0. Entonces, todo subconjunto infinito de
X tiene la LTP.

En particular, para todo subconjunto infinito M de X se sigue que la norma de F(M)
es octaedral.

El contenido de esta sección está basado en [PR].

Sección 3.4

Esta sección está dedicada a mostrar ĺıneas de investigación futuras y derivadas del con-
tenido del Caṕıtulo 3, aśı como a mostrar comentarios relevantes y a plantear problemas
abiertos relacionados.
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Notation

We will follow standard notation and will usually follow the books [AK] and [FHHMPZ].
We will consider real Banach spaces. Given a Banach space X then BX (respectively SX)
stands for the closed unit ball (respectively the unit sphere) of X. We will denote by X∗

the topological dual of X. Given a Banach space Y , L(X, Y ) denotes the space of all
bounded linear operators from X to Y . Given a convex subset D of X we will denote
by ext(D) the set of all extreme points of D. Given a subset C of X, we will denote by
conv(C) the convex hull of C and by span(C) the linear hull of C. If C is bounded then
by a slice of C we will mean a set of the following form

S(C, f, α) := {x ∈ C : f(x) > sup f(C)− α}

where f ∈ X∗ and α > 0. Notice that a slice is nothing but the intersection of a half-space
with the bounded (and not necessarily convex) set C. Furthermore, if X is itself a dual
Banach space (say X is dual of X∗), the previous set will be a w∗-slice when f ∈ X∗. If
C is assumed to be convex we will mean by a convex combination of slices a set of the
following form

n∑

i=1

λiSi,

where λ1, . . . , λn ∈]0, 1] are such that
∑n

i=1 λi = 1 and Si is a slice of C for every i ∈
{1, . . . , n}. Again, in the particular case that X is a dual space, the previous set will be
a convex combination of w∗-slices whenever each slice Si is actually a w∗-slice.

Given a non-empty set I and a ultrafilter U on I, we say that U is a principal ultrafilter
if there exists i ∈ I such that U = {Y ⊆ I : i ∈ Y }. Otherwise, we will say that U is
non-principal. We refer to [Wil] for background on ultrafilters. If I is an infinite set, it
is known that there are non-principal ultrafilter on I. Given a ultrafilter U on I and a
bounded function f : I −→ R we will denote by limU f the limit of f by the ultrafilter U ,
which is the unique real number α with the property that

{i ∈ I : |f(i)− α| < ε} ⊆ U

holds for every ε > 0. It is known that, given a ultrafilter U on N, then U is a non-principal
ultrafilter if, and only if,

lim
U
x = lim

n→∞
x(n)

holds for every convergent sequence x.
Let X and Y be two infinite-dimensional Banach spaces. We recall that X is finitely

representable in Y if, given any finite-dimensional subspace E of X and ε > 0, then there

xix
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exists a bounded linear isomorphism T : E −→ T (E) ⊆ Y such that

‖T‖‖T−1‖ ≤ 1 + ε.

It is known that, given 1 < p <∞ then ℓp is finitely representable in ℓ1 if, and only if, ℓp
is isometric to a subspace of L1 if, and only if, 1 ≤ p ≤ 2 (see [AK, Section 11.1]). We
will freely use this fact without any explicit reference in Section 3.1.

Given a metric space M , a point x ∈ M and a positive r, we will denote by B(x, r)
the open ball of center x and radius r, that is, the open set {y ∈M : d(x, y) < r}.
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Chapter 1

Background on diameter two

properties

In this chapter we will introduce basic results about the dimeter two properties. Though
the starting point of the diameter two property is probably the paper [NW], they actually
appeared earlier in relation to other geometric properties of Banach spaces such as the
roughness of the norm or the Daugavet property. Consequently, after the introduction of
definitions and very basic facts about the diameter two properties in Section 1.1, we will
devote Section 1.2 to exhibit some of such properties which will give us the first examples
of Banach spaces enjoying the diameter two properties. We will exhibit in Section 1.3
further classical examples of Banach spaces with the diameter two properties. Finally,
in Section 1.4, we will introduce an exhaustive study of how the diameter two properties
are preserved by considering ℓp-sums and by considering spaces of Bochner integrable
functions.

1.1 Preliminaries

We will begin with one of the main definitions of this dissertation.

Definition 1.1. Let X be a Banach space.

1. X has the slice diameter two property (slice-D2P) if every slice of BX has diameter
two.

2. X has the diameter two property (D2P) if every non-empty relatively weakly open
subset of BX has diameter two.

3. X has the strong diameter two property (SD2P) if every convex combination of slices
of BX has diameter two.

Remark 1.2. The slice-D2P is also known as the local diameter two property (see, e.g.
[ALN2]). We prefer the term of slice diameter two property (c.f. [ABL, BLR1]) since we
think it is more descriptive.

It is clear that D2P implies the slice-D2P. Furthermore, the SD2P implies the D2P
since every non-empty relatively weakly open subset of BX contains a convex combination

1
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of slices of BX [GGMS, Lemma II.1]. Furthermore, notice that in dual Banach spaces
it does make sense to replace the concept of slice (respectively weakly open set, convex
combination of slices) with the one of weak-star slice (respectively weakly-star open set,
convex combination of weak-star slices). Thus, we will consider the following definition.

Definition 1.3. Let X be a dual Banach space.

1. X has the weak-star slice diameter two property (w∗-slice-D2P) if every w∗-slice of
BX has diameter two.

2. X has the weak-star diameter two property (w∗-D2P) if every non-empty relatively
weakly-star open subset of BX has diameter two.

3. X has the weak-star strong diameter two property (w∗-SD2P) if every convex com-
bination of w∗-slices of BX has diameter two.

Let us consider the following diagram

SD2P
(1)
=⇒ D2P

(2)
=⇒ DLD2P

⇓ (3) ⇓ (4) ⇓ (5)

w∗-SD2P
(6)
=⇒ w∗-D2P

(7)
=⇒ w∗slice-D2P

(1.1)

where the last row only makes sense in dual Banach spaces. We will see in Sections 2.1
and 2.2 that none of the reverse implications hold. For all the vertical arrows we have the
following example.

Example 1.4. C([0, 1])∗ has the w∗-SD2P since C([0, 1]) has the Daugavet property (see
Proposition 1.18). However, BC([0,1])∗ contains slices of arbitrarily small diameter. To see
this, consider ϕ : C([0, 1])∗ −→ R given by

ϕ(µ) := µ({0}).

It follows that the family of slices {S(BC([0,1])∗ , ϕ, α) : α > 0} produces slices of arbitrarily
small diameter.

Let us finish the section with the following relation between the diameter two proper-
ties and their corresponding weak-star version in the bidual space, which is a consequence
of the weak-star denseness of a Banach space into the bidual and the weak-star lower
semicontinuity of dual norms (see e.g. [Lan, Proposition 2.14] for details).

Proposition 1.5. Let X be a Banach space. Then X has the slice-D2P (respectively
D2P, SD2P) if, and only if, X∗∗ has the w∗-slice-D2P (respectively w∗-D2P, w∗-SD2P).

Remark 1.6. As a consequence of Proposition 1.5 we get that, given a Banach space
X, then the diameter two properties are inherited from X∗∗ to X, and an easy proof
follows from the Principle of Local Reflexivity. A generalisation of this fact can be found
in [ALN], where it is studied how the diameter two properties are inherited by almost
isometric ideals (see [ALN] for formal definitions and background).
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1.2 Geometric properties implying the diameter two

properties

The relations between the diameter two properties and different geometric properties of
Banach space probably appeared first in connection with the following property.

Definition 1.7. Let X be a Banach space and let ε > 0. It is said that the norm of X
is ε-rough if

lim sup
‖h‖→0

‖x+ h‖+ ‖x− h‖ − 2‖x‖
‖h‖ ≥ ε

holds for every x ∈ X. It is said that the norm of X is rough if there exists a positive ε
such that the norm of X is ε-rough.

On the one hand, notice that the property of a norm of being rough is a condition of
uniform non Fréchet differentiability (see [DGZ, Lemma I.1.3]). On the other hand, it is
obvious from the triangle inequality that if the norm of a Banach space is ε-rough then
ε ≤ 2. This restriction on ε is also clear from the following dual characterisation of the
roughness of a norm, proved in [JZ].

Theorem 1.8. Let X be a Banach space and let ε > 0. The following assertions are
equivalent:

1. The norm of X is ε-rough.

2. The diameter of every weak-star slice of BX∗ is greater than or equal to ε.

As a consequence of the previous Theorem 1.8 and Proposition 1.5 we have a charac-
terisation of the slice-D2P.

Corollary 1.9. A Banach space X has the slice-D2P if, and only if, the norm of X∗ is
2-rough.

Example 1.10. Given an infinite set Γ then the norm of ℓ1(Γ) is 2-rough. Indeed, given
x ∈ Sℓ1(Γ) and t > 0, we can find a finite set F ⊆ Γ such that

∑
γ∈F |x(γ)| > 1− t2. Now,

for any γ ∈ Γ \ F , it follows that
‖x+ teγ‖+ ‖x− teγ‖ − 2

‖teγ‖
≥ (2 + 2t)(1− t2)− 2

t
= 2(1− t2)− 2t,

which tends to 2 when t → 0. Consequently, the norm of ℓ1 is 2-rough, so c0 has the
slice-D2P by Corollary 1.9.

A strengthening of the concept of roughness was introduced in [Dev].

Definition 1.11. Let X be a Banach space and ε > 0. It is said that the norm of X is
ε-average rough if, for every n ∈ N and every x1, . . . , xn ∈ SX , it follows

lim sup
‖h‖→0

1

n

n∑

i=1

‖xi + h‖+ ‖xi − h‖ − 2

‖h‖ ≥ ε.

It is said that the norm of X is average rough if there exists a positive ε such that the
norm of X is ε-average rough.
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We have considered the previous reformulation of average roughness [Dev, Theorem 1]
to make clear that average roughness implies roughness. Furthermore, a characterisation
of average roughness in connection with the diameter two properties is given in [Dev,
Theorem 1].

Theorem 1.12. Let X be a Banach space and ε > 0. Then the following assertions are
equivalent:

1. The norm of X is ε-average rough.

2. Every convex combination of weak-star slices of BX∗ has diameter greater than or
equal to ε.

Again, the previous theorem joint with Proposition 1.5 yields the following dual
characterisation of the SD2P.

Corollary 1.13. A Banach space X has the SD2P if, and only if, the norm of X∗ is
average 2-rough.

A class of Banach spaces having 2-average rough norm considered in [Dev] connects
with another central concept in this dissertation: the one of octahedral norm.

Definition 1.14. Let X be a Banach space. We say that the norm of X is octahedral
if, for every finite-dimensional subspace Y of X and every ε > 0, there exists an element
x ∈ SX such that

‖y + λx‖ ≥ (1− ε)(‖y‖+ |λ|)
holds for every y ∈ Y and every λ ∈ R.

The concept of octahedral norm was introduced by G. Godefroy and B. Maurey in
the unpublished work [GM], where the authors proved that a separable Banach space X
admits an equivalent octahedral norm if, and only if, X contains an isomorphic copy of
ℓ1. Later, G. Godefroy proved in [God2] that separability can be removed in the previous
statement, that is, a Banach space X can be equivalently renormed to have an octahedral
norm if, and only if, X contains an isomorphic copy of ℓ1.

The connection between octahedral norms and 2-average roughness is the following
proposition coming from [Dev, Proposition 3]

Proposition 1.15. Every octahedral norm is 2-average rough.

In the language of the diameter two properties, the previous proposition reads as
follows: the dual space of a Banach space with an octahedral norm has the w∗-SD2P.
At this point, a very natural question is whether the converse is true or not. In fact, R.
Deville posed as an open question [Dev, Remark c)] whether every 2-average rough norm
is octahedral. An explicit positive answer will be given in Section 2.4.

We will end with another geometric property of Banach spaces, which is due to I.
Daugavet.

Definition 1.16. Let X be a Banach space. We say that X has the Daugavet property
if every rank-one linear and bounded operator T : X −→ X satisfies

‖T + Id ‖ = 1 + ‖T‖ (DE)
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(DE) is known as the Daugavet equation since I. Daugavet proved that C([0, 1]) has the
Daugavet property [Dau]. More examples of Banach spaces with the Daugavet property
are L1(µ) and L∞(µ) when µ is a non-atomic measure or C(K) when K is a compact,
Hausdorff and perfect (i.e. does not have any isolated point) topological space. We refer
the reader to [AA, KSSW, D.Wer] for background on the Daugavet property and further
examples.

The relation between the diameter two properties and the Daugavet property comes
from the following geometric characterisation, appearing in [KSSW, Lemma 2.1].

Theorem 1.17. Let X be a Banach space. The following assertions are equivalent:

1. X has the Daugavet property.

2. For every y0 ∈ SX and every slice S(BX , f, α0) there is another slice S(BX , g, α1) ⊆
S(BX , f, α0) such that

‖y0 + x‖ > 2− α0

holds for all x ∈ S(BX , g, α1).

3. For every f0 ∈ SX∗ and every w∗-slice S(BX∗ , y0, α0) there is another w∗-slice
S(BX∗ , x0, α1) ⊆ S(BX∗ , y0, α0) such that

‖f0 + f‖ > 2− α0

holds for all f ∈ S(BX∗ , x0, α1).

An analysis in the proof of [Shv, Lemma 2.2] yields that slices in (2) (respectively
w∗-slices in (3)) can be replaced with convex combinations of slices (respectively convex
combinations of w∗-slices). This fact was exploited in [ALN2] to get the following result.

Proposition 1.18. If a Banach space X has the Daugavet property then X has the SD2P.
Furthermore, X∗ has the w∗-SD2P.

1.3 Examples

In this section we will exhibit further examples of Banach spaces enjoying the diameter
two property, which probably established the diameter two properties as a researchline in
the geometry of Banach spaces.

1.3.1 Uniform algebras

We begin with the uniform algebras because they were the starting point of the diameter
two properties (though they were defined more than ten years later in [ALN2]). Recall
that a uniform algebra is a closed subalgebra of some C(K) space which separates the
points of K and that contain the constant functions. We refer the reader to [Gam] for
background on uniform algebras.

Motivated by a study of non-dentability on infinite-dimensional uniform algebras, O.
Nygaard and D. Werner proved in [NW, Theorem 2] that every infinite-dimensional uni-
form algebra has the D2P. However, having a closer look to the proof, it is actually proved
that every convex combination of slices of the unit ball has diameter two, a fact which
was pointed out in [ALN2, Theorem 4.2]. Consequently, the following result follows.
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Proposition 1.19. Every infinite-dimensional uniform algebra has the SD2P.

1.3.2 C∗-algebras and JB∗-triples

After the paper of [NW], new examples of Banach spaces with the diameter two properties
appeared in [BLRo] and [BLPR], where extra algebraic assumptions on the spaces were
assumed. In order to exhibit such examples we need to introduce notation. We recall
that a complex JB∗-triple is a complex Banach space X with a continuous triple product
{...} : X × X × X → X which is linear and symmetric in the outer variables, and
conjugate-linear in the middle variable, and satisfies:

1. For all x in X, the mapping y → {xxy} from X to X is a Hermitian operator on X
and has nonnegative spectrum.

2. The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

holds for all a, b, x, y, z in X.

3. ‖{xxx}‖ = ‖x‖3 for every x in X.

Concerning the condition (1) above, we also recall that a bounded linear operator T on
a complex Banach space X is said to be Hermitian if ‖ exp(irT )‖ = 1 for every r in R.
Examples of complex JB∗-triples are all C∗-algebras under the triple product

{xyz} :=
1

2
(xy∗z + zy∗x).

Following [IKR], we define real JB∗-triples as norm-closed real subtriples of complex JB∗-
triples. Here, by a subtriple we mean a subspace which is closed under triple products of
its elements. Real JBW ∗-triples where first introduced as those real JB∗-triples which
are dual Banach spaces in such a way that the triple product becomes separately w∗-
continuous (see [IKR, Definition 4.1 and Theorem 4.4]). Later, it has been shown in [MP]
that the requirement of separate w∗-continuity of the triple product is superabundant.
The bidual of every real (respectively, complex) JB∗-triple X is a JBW ∗-triple under a
suitable triple product which extends the one of X [IKR, Lemma 4.2] (respectively, [Din]).

Now we can state the following result coming from [BLRo, Proposition 2.4] and [BLPR,
Theorem 3.3].

Proposition 1.20. Let X be a real or complex JB∗-triple. Then X fails the D2P if, and
only if, X is reflexive.

By making use of the results of Subsection 1.3.4 one can get the SD2P in Proposition
1.20 (see Example 1.27).

The previous proposition shows that, for a given real or complex JB∗-triple X, then
the (extremely opposite) possibilities for X are either having the RNP or the SD2P.
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1.3.3 M-ideals and L-embedded Banach spaces

In [Lop] new examples of spaces with the diameter two properties appeared in connection
with the theory of M -ideals and L-embedded spaces. Let us begin with considering
necessary definitions.

Definition 1.21. Let X be a Banach space.

(1) An L-projection on X is a linear projection p : X −→ X such that

‖x‖ = ‖p(x)‖+ ‖x− p(x)‖

holds for every x ∈ X. A subspace M ⊆ X is said to be an L-summand if M
is the rank of an L-projection. We say that X is an L-embedded space if X is an
L-summand in X∗∗.

(2) An M-projection on X is a linear projection p : X −→ X such that

‖x‖ = max{‖p(x)‖, ‖x− p(x)‖}

holds for every x ∈ X. A subspaceM ⊆ X is said to be anM-summand ifM is the
rank of an M -projection. M is said to be an M-ideal in X if M⊥, the annihilator
of M , is an L-summand in X∗. It is said that X is an M-embedded space if X is an
M -ideal in X∗∗.

For a detailed treatment of M -embedded and L-embedded spaces we refer the reader
to [HWW].

The main results of [Lop] are the following.

Proposition 1.22. 1. If X is an M-embedded space then both X and X∗∗ have the
D2P.

2. Let X be an L-embedded space, say X∗∗ = X ⊕1 Z. If BZ is weak-star dense in
BX∗∗ then X has the D2P.

Remark 1.23. On the one hand, (1) in Proposition 1.22 was improved in [ALN2, The-
orem 4.10] where, making use of the same techniques as those of [Lop, Theorem 2.4],
the authors obtained the SD2P under the same assumptions. On the other hand, (2) in
Proposition 1.22 was improved in [BM, Theorem 2.2], where it is obtained the Daugavet
property under the same assumptions.

As a consequence of Proposition 1.22, the following renorming result was proved in
[Lop, Proposition 2.6] (see also [Iva2, Theorem 6]).

Proposition 1.24. Every Banach space containing an isomorphic copy of c0 can be equi-
valently renormed to have the D2P.

Later, in [ALN2, Proposition 4.7], the authors proved that D2P can be replaced with
SD2P in the above proposition.
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1.3.4 Banach spaces with infinite-dimensional centralizer

In this section we will get new examples of Banach spaces with the diameter two properties
in presence of extra algebraic assumptions. In order to present the results of [BR2] we
need to introduce notation. Following the notation of [BR2], given a Banach space X
over K = R or C, a multiplier on X is a bounded linear operator T : X −→ X satisfying
that every extreme point of BX∗ is an eigenvector of T ∗. Given a multiplier T on X, then
for every p ∈ ext(BX∗) there exists a scalar aT (p) such that

p ◦ T = T ∗(p) = aT (p)p.

We define the centralizer of X, denoted by Z(X), as the set of those multipliers T for
which there exists another multiplier S such that

aT (p) = aS(p)

holds for all p ∈ ext(BX∗). It is obvious that when X is a real Banach space then Z(X)
coincides with the set of all multipliers on X.

Making use of theory or representability of Banach spaces, in [BR2, Proposition 2.4] it
is proved that a Banach space X has the D2P whenever Z(X) is infinite-dimensional and
its unit ball contains any extreme point. In order to show a sharper result we introduce
some notation, coming from [BR2]. Notice that, by the canonical isometric injection of a
Banach space in its bidual, we have the following chain of Banach spaces

X ⊆ X∗∗ ⊆ X(4 ⊆ . . . ⊆ X(2n ⊆ . . .

Thus we have that
∞⋃
n=0

X(2n is a vector space and, for a given x ∈
∞⋃
n=0

X(2n, the formula

‖x‖ := ‖x‖(2n ⇔ x ∈ X(2n

defines a norm on
∞⋃
n=0

X(2n. We denote by X(∞ the completion of
∞⋃
n=0

X(2n under the

above norm.
It is known that T ∈ Z(X) implies T ∗∗ ∈ Z(X∗∗) [HWW, Corollary I.3.15]. This

fact allows us to embed Z(X) into Z(X(∞) in the natural way. Indeed, given T ∈ Z(X),
we can consider the action of T on the elements of X(2n as the operator T (2n (the 2n-th
adjoint of T ) for every n ∈ N. Indeed, under this point of view, we can actually see
T ∈ Z(X(∞) [BR2, Proposition 4.3].

Now the main result of [BR2] is the following.

Proposition 1.25. Let X be a Banach space. If Z(X(∞) is infinite-dimensional then X
has the D2P.

Remark 1.26. The previous result was improved in [ABL, Theorem 3.3], by using the
same techniques as the original ones of [BR2, Corollary 4.2], where the SD2P was obtained
under the same assumptions.

Example 1.27. Proposition 1.25 applies for the following class of Banach spaces:
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1. Non-reflexive JB∗-triples [BR2, Theorem 5.3].

2. Every non-reflexive Banach space such that X∗ is L-embedded [AB, Proposition
3.3].

3. C(K,X) for every infinite compact Hausdorff topological space K and for every
Banach space X [BR2, Proposition 3.2].

4. L(X, Y ) for every Banach spaces X and Y satisfying that either Z(X∗) or Z(Y ) are
infinite-dimensional [HWW, Lemma VI.1.1].

1.4 Stability results of diameter two properties

In this section we will introduce the problem of how the diameter two properties are
preserved in two different ways. On the one hand, we will exhibit how the diameter two
properties are preserved by taking ℓp-sums, which will lead us the difference between the
D2P and the SD2P. On the other hand, we will present some results about the diameter
two properties in tensor product spaces, a study which will be completed in Section 3.1.

1.4.1 Cartesian products

Given two Banach spacesX and Y , a natural question is whenX⊕pY enjoys any diameter
two property. Several works have dealt with this problem [ABL, ALN2, BL, Lop] because
it is connected with different problems about diameter two properties. For instance, the
stability of the D2P by ℓp-sums is applied in [BL] to analyse the D2P in spaces of Bochner
integrable functions and in [Lop] to study the D2P in M -embedded Banach spaces.

Let us consider the case of the ℓ∞-sum first. This case appears in [Lop], where it
is proved that the D2P is preserved from just one factor by taking ℓ∞-sum. A similar
statement with the same ideas is established in [ALN2] for the SD2P. They are summarised
in the following proposition.

Proposition 1.28. Let X and Y be two Banach spaces. If X has the slice-D2P (respect-
ively D2P, SD2P), then X ⊕∞ Y has the slice-D2P (respectively D2P, SD2P).

Now we turn to analyse the case of the ℓ1-sum. The first results in this line appeared in
[BL], where it was proved that the D2P is preserved from both factors by taking ℓ1-sums.
Later in [ABL], where a very deep study of stability results of diameter two properties in
Cartesian products was made, it was proved that all the diameter two properties in an
ℓ1-sum depend on both factors of the sum. More precisely, the following result follows.

Proposition 1.29. Let X and Y be two Banach spaces. Then X ⊕1 Y has the slice-D2P
(respectively D2P, SD2P) if, and only if, X and Y have the slice-D2P (respectively D2P,
SD2P).

The study of the ℓp-sum is quite more delicate. The first results in this line appeared in
[ALN2], where it was proved the the slice-D2P and the D2P are stable by taking ℓp-sums
1 < p <∞. Later, in [ABL] this result was improved to get the following.
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Proposition 1.30. Let X and Y be Banach spaces and 1 < p <∞. Then X⊕pY has the
slice-D2P (respectively the D2P) if, and only if, X and Y have the slice-D2P (respectively
the D2P).

In contrast with the slice-D2P and the D2P, the SD2P turns out to have a bad be-
haviour with respect to the ℓp-sum of spaces. Indeed, the following result was proved in
[ABL]. See [HL, Oja] for different proofs about this result.

Proposition 1.31. Given two Banach spaces X and Y and 1 < p <∞ then X⊕pY fails
to have the SD2P.

Notice that this result points out the difference between the case p = 1 and p 6= 1
concerning stability results of the diameter two properties by classical ℓp-sums. However,
the most interesting consequence of the above results is that the D2P and the SD2P are
not equivalent, as the following example coming from [ABL] shows.

Example 1.32. Let X := c0 ⊕2 c0. Then X has the D2P but not the SD2P.

By Proposition 1.5 it follows that the bidual of the previous space has the w∗-D2P
but not the w∗-SD2P. Consequently, implications (1) and (6) of (1.1) do not reverse.

As a consequence of the study of the diameter two properties in ℓp-sums of Banach
spaces we present the following result, coming from [BL, Theorem 2.13], concerning spaces
L1(µ,X) of Bochner integrable X-valued functions and L∞(µ,X) of essentially bounded
X-valued functions.

Proposition 1.33. Let (Ω,Σ, µ) a finite measure space and X be a Banach space. Then:

1. L1(µ,X) fails the SD2P if, and only if, µ contains any atom or X fails the SD2P.

2. L∞(µ,X) fails the SD2P if, and only if, µ is purely atomic and X fails the SD2P.

1.4.2 Tensor product spaces

Another line of stability results considered about the diameter two properties is the sta-
bility by taking tensor product. In order to show them, we need to introduce standard
definitions about tensor product spaces. For background on tensor product theory we
refer the reader to [Ryan]. Let X and Y be Banach spaces. Given x ∈ X and y ∈ Y
denote by x⊗ y the evaluation functional acting on elements T ∈ L(X, Y ∗) as follows:

(x⊗ y)(T ) = T (x)(y).

Notice that x⊗ y ∈ L(X, Y ∗)#. Now we consider the (algebraic) tensor product of X and
Y , denoted by X ⊗ Y , as the vector space spanned by {x ⊗ y : x ∈ X, y ∈ Y }. Notice
that every element u of X ⊗ Y is of the form

u =
n∑

i=1

xi ⊗ yi,

where n ∈ N, x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y , and that the representation above is not
unique in general. Notice that, under the above point of view, every element of the form
x⊗ y can be seen as an operator x⊗ y : X∗ −→ Y .
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Now we will introduce two different norms on X ⊗ Y . First, we will consider the
injective norm defined by the equation

‖u‖ε = sup

{
n∑

i=1

|x∗(xi)y∗(yi)| : x∗ ∈ SX∗ , y∗ ∈ SY ∗

}
,

where u :=
∑n

i=1 xi ⊗ yi. Notice that this norm is nothing but the operator norm on
X⊗Y ⊆ L(X∗, Y ). Now we will define the injective tensor product of X and Y , denoted as
X⊗̂εY , as the completion ofX⊗Y in the above norm. Note that every element ofX⊗̂εY ⊆
L(X∗, Y ) is a compact operator from X∗ to Y which is weak∗-to-weak continuous.

Also, we will consider the projective norm on X⊗Y which is defined, given an element
u ∈ X ⊗ Y , by the equation

‖u‖ := inf

{
n∑

i=1

‖xi‖‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}
.

As in the case of the injective tensor product, we define the projective tensor product of
X and Y , denoted by X⊗̂πY , as the completion of X ⊗ Y under the above norm. It is
known that BX⊗̂πY

= conv(BX ⊗ BY ) = conv(SX ⊗ SY ) and that (X⊗̂πY )∗ = L(X, Y ∗).
Concerning stability results of the diameter two properties by taking injective tensor

product, the first result is probably [BL, Corollary 2.9] where it is proved, using an explicit
description of the injective tensor product of a C(K) space [Ryan, Section 3.2], that if X
is an infinite-dimensional L1 predual and Y is a non-zero Banach space, then X⊗̂εY has
the D2P. This result was improved in [ABR, Theorem 5.3], where the following result was
proved.

Proposition 1.34. Let X be a Banach space such that sup
n∈N

dim(Z(X(2n)) = ∞. If Y is

a non-zero Banach space then X⊗̂εY has the D2P.

Concerning the projective tensor product, it has been pointed out several times with
no proof that the slice-D2P is preserved by just one factor by taking projective tensor
product (see [ABR, Section 1] or [ALN2, Theorem 2.7]). Let us include a short proof of
this result because it will shed light on the techniques used in Section 3.1.

Proposition 1.35. Let X and Y be non-zero Banach spaces. If X has the slice-D2P,
then so does X⊗̂πY .

Proof. Pick a slice S := S(BX⊗̂πY
, T, α), where α > 0 and T ∈ SL(X,Y ∗). Let us prove

that diam(S) = 2. To this end pick u ∈ SX , y ∈ SY such that T (u)(y) > 1 − α, that is,
u ⊗ y ∈ S. Notice that u ⊗ y ∈ S if, and only if, T (u)(y) = (y ◦ T )(u) > 1 − α, which
is in turn equivalent to u ∈ S(BX , y ◦ T, α). Since X has the slice-D2P then we can find
x, z ∈ S(BX , y ◦T, α) such that ‖x−z‖ > 2−ε. Now (y ◦T )(x) = T (x)(y) > 1−α means
that x⊗ y ∈ S. Similarly, is obvious that z ⊗ y ∈ S. So

diam(S) ≥ ‖x⊗ y − z ⊗ y‖ = ‖(x− z)⊗ y‖ = ‖x− z‖‖y‖ = ‖x− z‖ > 2− ε.

Since ε > 0 was arbitrary we conclude the desired result. †
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Concerning the D2P and the SD2P, such stability result was not so clear, and it was
even posed as an open question in [ALN2, Question (b)]. We recollect the known results,
coming from [ABR], where a strong use of techniques involving the framework of Banach
spaces with infinite-dimensional centralizer is made.

Proposition 1.36. Let X and Y be non-zero Banach spaces.

1. If X(∞ and Y (∞ have infinite-dimensional centralizer, then X⊗̂πY has the D2P.

2. If X(∞ has an infinite-dimensional centralizer and there exists an element y∗ ∈ SY ∗

such that the set {y ∈ SY : y∗(y) = 1} is norming for Y ∗, then X⊗̂πY has the D2P.

3. If K is an infinite compact Hausdorff topological space and X = C(K), then X⊗̂πY
has the D2P.



Chapter 2

Diameter two properties

This chapter is devoted to analysing several problems related to the diameter two proper-
ties. In Section 2.1 we deal with the question whether the slice-D2P and the D2P are or
not equivalent properties. As a consequence of our study, we deduce that a Banach space
X which contains an isomorphic copy of c0 can be equivalently renormed to have the
slice-D2P but its unit ball contains non-empty relatively weakly open subsets of arbitrar-
ily small diameter. The content of this section is based on [BLR1]. In view of the content
of Section 2.1, in Section 2.2 we analyse the possibility that the D2P and the SD2P,
which are known to be different properties, are actually different in the extreme way that
the slice-D2P and the D2P are. As a consequence, we prove that every Banach space
containing an isomorphic copy of c0 can be equivalently renormed to have the D2P but
whose unit ball contains convex combinations of slices of arbitrarily small diameter, which
shows that the D2P and the SD2P are too different in the extreme way that slice-D2P
and D2P are. The content of this section is based on [BLR3]. In Section 2.3 we consider
almost square Banach spaces (see Definition 2.11), a geometric property of Banach spaces
that implies the SD2P and that is introduced in [ALL]. We show that a Banach space
X admits an equivalent renorming to be almost square if, and only if, X contains an
isomorphic copy of c0, which solves an open problem coming from [ALL]. The content of
this section is based on [BLR7, Section 2]. Finally, Section 2.4 is devoted to proving that
the norm of a Banach space X is octahedral if, and only if, X∗ has the w∗-SD2P which, as
we announced in Section 1.2, solves an open problem posed by R. Deville [Dev, Remark
(c)]. The main application of this equivalence in the present chapter is to prove that every
Banach space which contains an isomorphic copy of ℓ1 satisfies that, for every ε > 0, there
exists an equivalent renorming on X such that every convex combination of slices of BX∗

has diameter, at least, 2 − ε. This can be seen as a kind of partial answer to the open
problem posed by G. Godefroy of whether every Banach space containing an isomorphic
copy of ℓ1 admits an equivalent renorming so that the bidual norm is octahedral [God2].
The content of this section is based on [BLR4]. We end the chapter with Section 2.5,
where we exhibit further research, remarks and open questions related to the content of
the present chapter.

13
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2.1 Slice diameter two property versus diameter two

property

At this point, all the Banach spaces with the slice-D2P which have appeared actually
satisfy the D2P. In order to get an example of a Banach space with the slice-D2P and
failing the D2P, a natural idea is to consider examples of Banach spaces with the CPCP
and failing the RNP, and analyse whether such examples have the slice-D2P or, at least,
can be equivalently renormed to have the slice-D2P since CPCP is invariant under equi-
valent renorming. A well-known example of Banach space with the PCP (and hence with
the CPCP) and failing the RNP is the space B, the predual of the James tree space JT ,
constructed in [Jam] (see [FG] for background on this space). However, it was proved
in [SSW, Theorem 5.1] that there exists a constant β < 2 such that every closed and
convex subset C of the unit ball of B contains a slice of diameter less than or equal to
β so, in particular, B fails the slice-D2P. Thus this natural candidate does not produce
the desired counterexample. Furthermore, since [SSW, Theorem 5.1] deals with every
closed and convex subset of the unit ball of B, we are not optimistic with the possibility
of renorming B (though we do not actually know whether this technique does the trick).
Because of this reason, our strategy will be a bit different. Our aim will be to find a
Banach space X and a closed, convex and bounded subset K of X such that every slice
of K has diameter equal to diam(K) and that K contains non-empty relatively weakly
open subsets of arbitrarily small diameter and, after that, trying to get an equivalent
renorming on X involving K which transfers the properties of K to the new unit ball
to get the desired counterexample. If our renorming technique were sharp enough, we
would get an example of a Banach space with the slice-D2P but whose unit ball contains
non-empty relatively weakly open subsets of arbitrarily small diameter, a statement which
is by far stronger than failing the D2P. In order to get the construction of such set K,
we will introduce some notation. N<ω stands for the set of all ordered finite sequences of
positive integers including the empty sequence denoted by ø. If α = (α1, · · · , αn) ∈ N

<ω,
we define the length of α by |α| = n and |ø| = 0. Also we use the natural order in N

<ω

given by:

α ≤ β if |α| ≤ |β| and αi = βi ∀i ∈ {1, · · · , |α|}.

We also define ø ≤ α for all α ∈ N
<ω. In order to avoid possible confusions with the

notation, we remark that the finite sequence (p) with only one element p ∈ N will be
denoted by ø⌢ p which is an element of N<ω. Also, the resulting finite sequence from the
concatenation of an element α ∈ N

<ω with the sequence (p) will be denoted by α ⌢ p.

As N
<ω is a countable set we can construct a bijective map φ : N<ω → N so that

φ(ø) = 1 and φ(α) ≤ φ(β) whenever α ≤ β ∈ N
<ω and φ(α ⌢ j) ≤ φ(α ⌢ k) for every

α ∈ N
<ω and j ≤ k ∈ N. Indeed, consider {pn} to be an enumeration of prime positive

integers numbers and define the one to one map φ0 : N
<ω → N given by φ0(α1, . . . , αk) =

pα1
1 · · · pαk

k . Now take a strictly increasing and bijective map φ1 : φ0(N
<ω) → N and put

φ = φ1 ◦ φ0. Then φ satisfies the desired properties. Observe that, from the above
construction, {φ(α ⌢ j)}j is a strictly increasing sequence for every α ∈ N

<ω.

We begin the construction of a subset A of c, the space of convergent scalar sequences
with the sup norm. To this end, {en} and {e∗n} stand for the usual basis and the sequence
of biorthogonal functionals of c0, the space of null scalar sequences with the sup norm.
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Define, for every α ∈ N
<ω, eα := eφ(α) ∈ c, e∗α := e∗φ(α) ∈ c∗ and xα ∈ c by xα(i) = 1 if

φ−1(i) ≤ α and xα(i) = −1 otherwise. It is clear that xα ∈ Sc for every α ∈ N
<ω. Note

that if α 6= β ∈ N
<ω then ‖xα − xβ‖∞ = 2.

Define A = {xα : α ∈ N
<ω}, which is a subset of the unit sphere of c and K =

conv(A ∪ −A) which is a closed, convex and symmetric subset of Bc whose diameter
is 2. Let us see that such set K satisfies the desired properties. Note that this set is
a modification of a set appearing in [AOR] which was also used in [LS2] in order to
characterise the failure of PCP for subsets not containing sequences equivalent to the ℓ1
basis.

To begin with, in the following proposition we will prove that every slice of K has
diameter 2.

Proposition 2.1. Every slice of K has diameter 2.

Proof. Pick x∗ ∈ Sc∗ , λ < sup x∗(K) and put S = {x ∈ K : x∗(x) > sup x∗(K) − λ}. As
S is a slice of K and K = conv(A ∪ −A), we deduce that S intersects either to A or to
−A. From the symmetry of K we can assume that S ∩ A 6= ∅. Then there is α ∈ N

<ω

such that xα ∈ S. Pick j ∈ N. Then xα⌢j is an element in A given by xα⌢j(i) = 1 if
φ−1(i) ≤ α ⌢ j and xα⌢j(i) = −1 in otherwise. Hence {xα⌢j}j is a sequence in A ⊂ K
weakly convergent to xα. So there is j ∈ N such that xα⌢j ∈ S, and hence

diam(S) ≥ ‖xα⌢j − xα‖ ≥ |xα⌢j(φ(α ⌢ j))− xα(φ(α ⌢ j))| = |1− (−1)| = 2.

Taking into account that K has diameter 2, we deduce that S has diameter 2, so the
proposition is proved from the arbitrariness of S. †

Recall that the unit ball of the sequence space c contains many extreme points, unlike
c0. It is known that a point which is both extreme and continuity point is a denting point
from [LLT]. Moreover, the extreme points of Bc are extreme in Bc∗∗ , and therefore each
extreme point has a base of weakly relatively open neighborhoods made by slices from
[GMZ, Proposition 9.1]. Then, in order to prove that K has non-empty relatively weakly
open subsets with arbitrarily small diameter, our choice of such relatively weakly open
subsets has to avoid extreme points. Taking into account the above comments, we prove
now that K, as a subset of c, has relatively weakly open subsets with arbitrarily small
diameter.

Proposition 2.2. Given n ∈ N and ρ > 0 with ρ < 2
n(24n−9)

, it follows that diam(Wn) <
5
n
, where Wn is the non-empty relatively weakly open subset of K ⊂ c given by

Wn =

{
x ∈ K : e∗ø⌢i(x) >

2

n
− 1− 2ρ, 1 ≤ i ≤ n, lim

k
x(k) < −1 + ρ

}
.

Proof. First of all, note that x0 =
∑n

i=1
xø⌢i

n
∈ Wn. For this note that limk xø⌢i(k) = −1

and then limk x0(k) = −1 < −1+ ρ. Furthermore x0 is a convex combination of elements
of A ⊂ K and so x0 ∈ K. Finally, for every 1 ≤ j ≤ n, it follows that

e∗ø⌢j(x0) =
n∑

i=1 i 6=j

1

n
e∗ø⌢j(xø⌢i) +

1

n
e∗ø⌢j(xø⌢j) = −n− 1

n
+

1

n
>

2

n
− 1− 2ρ.
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Then Wn is non-empty. In order to prove that diam(Wn) <
5
n
, it is enough to prove that

diam(Wn ∩ conv(A∪−A)) < 5
n
. For this, pick any x, x′ ∈ conv(A∪−A), hence there are

λ, λ′ ∈ (0, 1], a, a′,−b,−b′ ∈ conv(A) such that x = λa+(1−λ)b and x′ = λ′a′+(1−λ′)b′.
Now limk a(k) = limk a

′(k) = −1 and limk b(k) = limk b
′(k) = 1. As x ∈ Wn, we have

that limk λa(k) + (1− λ)b(k) < −1 + ρ and then we get that

2(1− λ) < ρ. (2.1)

Similarly we get that
2(1− λ′) < ρ, (2.2)

and so
|λ− λ′| < ρ/2. (2.3)

For i ∈ {1, · · · , n} we get, taking into account (2.1) and the fact x = λa+(1−λ)b ∈ Wn,
that

e∗ø⌢i(a) >
2
n
− 1− 2ρ− (1− λ)e∗ø⌢i(b)

λ
>

2
n
− 1− 2ρ− ρ/2

λ
.

It follows that

e∗ø⌢i(a) >
2

n
− 1− 5ρ

2
. (2.4)

Similarly, from (2.2) we get that

e∗ø⌢i(a
′) >

2

n
− 1− 5ρ

2
. (2.5)

Now we have that

‖x− x′‖ ≤ ‖λa− λ′a′‖+ ‖(1− λ)b− (1− λ′)b′‖
(2.2),(2.3)

≤ ‖λa− λ′a′‖+ ρ

≤ λ‖a− a′‖+ |λ− λ′|+ ρ

(2.3)

≤ ‖a− a′‖+ 3ρ

2
.

(2.6)

Now, our goal is estimate ‖a − a′‖. For this put a =
∑p

j=1 λjxαj
and a′ =

∑q
j=1 βjxα′

j
,

where p, q ∈ N, λj, βj > 0,
∑p

j=1 λj =
∑q

j=1 βj = 1 and xαj
, xα′

j
∈ A.

We denote by 1 the sequence in c whose all its coordinates are equal to 1. Obviously
‖a− a′‖ = ‖a+ 1− (a′ + 1)‖. Now

a+ 1 =

p∑

j=1

λjxαj
+ 1 =

p∑

j=1

λj(xαj
+ 1) =

p∑

j=1

λjx̂αj
,

where x̂αj
is the element in c given by x̂αj

(i) = 2 if φ−1(i) ≤ αj and x̂αj
(i) = 0 in

otherwise. Similarly a′+1 =
∑q

j=1 βjx̂α′

j
, where x̂α′

j
is the element in c given by x̂α′

j
(i) = 2

if φ−1(i) ≤ α
′

j and x̂α′

j
(i) = 0 otherwise.

Now (2.4) and (2.5) imply that

e∗ø⌢i(â), e
∗
ø⌢i(â

′) >
2

n
− 5ρ

2
holds for all 1 ≤ i ≤ n, (2.7)
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where â = a+ 1 and â′ = a′ + 1.

For every i ∈ {1, · · · , n} we define

Ai = {j ∈ {1, · · · , p} : αj ≥ ø⌢ i}, A′

i = {j ∈ {1, · · · , q} : α
′

j ≥ ø⌢ i}.

If i 6= k then Ai ∩ Ak = ∅ since the elements ø ⌢ i and ø ⌢ k are incomparable in N
<ω.

Similarly, A
′

i ∩ A
′

k = ∅.
Now we have that from (2.7) that

∑

j∈Ai

λj ≥
e∗ø⌢i(â)

2

(2.7)
>

1

n
− 5ρ

4
>

1

n
− 3ρ

2
,

∑

j∈A
′

i

βj ≥
e∗ø⌢i(â

′)

2

(2.7)
>

1

n
− 5ρ

4
>

1

n
− 3ρ

2
.

(2.8)

Then

1 =

p∑

j=1

λj =
∑

j∈∪n
i=1Ai

λj +
∑

j∈(∪n
i=1Ai)c

λj =
n∑

i=1

∑

j∈Ai

λj +
∑

j∈(∪n
i=1Ai)c

λj,

and we deduce from (2.8) that , for every k ∈ {1, · · · , n}, the following holds

∑

j∈Ak

λj = 1−
∑

i=1 i 6=k

∑

j∈Ai

λj −
∑

j∈(∪n
i=1Ai)c

λj

(2.8)
< 1−

n∑

i=1 i 6=k

1

n
− 3ρ

2

= 1− (n− 1)

(
1

n
− 3ρ

2

)
.

(2.9)

Similarly, we get
∑

j∈A
′

k

βj < 1− (n− 1)

(
1

n
− 3ρ

2

)
. (2.10)

Also, from (2.8)
∑

j∈(∪n
i=1Ai)c

λj,
∑

j∈(∪n
i=1A

′

i)
c

βj <
3nρ

2
. (2.11)

Observe that the vectors
∑

j∈Ai
λjx̂αj

−∑j∈A
′

i
βjx̂α′

j
have disjoint supports for co-

ordinates k > 1 and 1 ≤ i ≤ n, and so

max
k>1

∣∣∣∣∣∣




n∑

i=1


∑

j∈Ai

λjx̂αj
−
∑

j∈A
′

i

βjx̂α′

j




 (k)

∣∣∣∣∣∣
≤ 2 max

1≤i≤n




∑

j∈Ai

λj +
∑

j∈A
′

i

βj



 , (2.12)
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since ‖x̂αj
‖ = ‖x̂α′

j
‖ = 2. Now, applying (2.11) and (2.12), we get

‖â− â
′‖ =

∥∥∥∥∥

p∑

j=1

λjx̂αj
−

q∑

j=1

βjx̂α′

j

∥∥∥∥∥

= max

{∣∣∣∣∣

(
p∑

j=1

λjx̂αj
−

q∑

j=1

βjx̂α′

j

)
(k)

∣∣∣∣∣ : k ∈ N

}

= max

{∣∣∣∣∣

(
p∑

j=1

λjx̂αj
−

q∑

j=1

βjx̂α′

j

)
(φ(0))

∣∣∣∣∣ ,

max
k>1

∣∣∣∣∣

(
p∑

j=1

λjx̂αj
−

q∑

j=1

βjx̂α′

j

)
(k)

∣∣∣∣∣

}

= max

{∣∣∣∣∣

(
p∑

j=1

λjx̂αj
−

q∑

j=1

βjx̂α′

j

)
(φ(0))

∣∣∣∣∣ ,

max
k>1

∣∣∣∣∣

(
p∑

j=1

λjx̂αj
−

q∑

j=1

βjx̂α′

j

)
(k)

∣∣∣∣∣

}

= max

{
0,max

k>1

∣∣∣∣∣

(
p∑

j=1

λjx̂αj
−

q∑

j=1

βjx̂α′

j

)
(k)

∣∣∣∣∣

}

≤ max
k>1





∣∣∣∣∣∣




n∑

i=1


∑

j∈Ai

λjx̂αj
−
∑

j∈A
′

i

βjx̂α′

j




 (k)+


 ∑

j∈(∪n
i=1Ai)c

λjx̂αj


 (k)−


 ∑

j∈(∪n
i=1A

′

i)
c

βjx̂α′

j


 (k)|





≤ max
k>1





∣∣∣∣∣∣




n∑

i=1


∑

j∈Ai

λjx̂αj
−
∑

j∈A
′

i

βjx̂α′

j




 (k)

∣∣∣∣∣∣





+ 2


 ∑

j∈(∪n
i=1Ai)c

λj +
∑

j∈(∪n
i=1A

′

i)
c

βj




≤ 2 max
1≤i≤n




∑

j∈Ai

λj +
∑

j∈A
′

i

βj



+ 6nρ

≤ 4(1− (n− 1)

(
1

n
− 3ρ

2

)
+ 6nρ =

4

n
+ 12nρ− 6ρ

Finally, we conclude from (2.6) and the above estimate that

‖x− x′‖ ≤ ‖a− a′‖+ 3ρ/2 ≤ 4

n
+ 12nρ− 6ρ+

3ρ

2

=
4

n
+ 12nρ− 9ρ

2
=

4

n
+

(24n− 9)ρ

2
<

5

n
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since ρ < 2
n(24n−9)

. Hence we have proved that diam(Wn) <
5
n
, as desired. †

The above results provide a closed, bounded, convex and symmetric subset K of Bc

satisfying that every slice ofK has diameter 2 andK contains non-empty relatively weakly
open sets with arbitrarily small diameter. Our next goal is getting a Banach space whose
unit ball behaves like K with respect to the size of slices and of relatively weakly open
subsets. To this end, we need the following lemma.

Lemma 2.3. Let X be a Banach space containing an isomorphic copy of c0. Then there
is an equivalent norm ||| · ||| on X satisfying that (X, ||| · |||) contains an isometric copy
of c and that for every x ∈ B(X,|||·|||) there are sequences {xn}, {yn} ∈ B(X,|||·|||) which are
weakly convergent to x and such that |||xn − yn||| = 2 holds for every n ∈ N. In fact,
xn = x + (1 − αn)en and yn = x − (1 + αn)en for some scalars sequence {αn} satisfying
that |αn| ≤ 1 holds for every n.

Proof. As X contains isomorphic copies of c we can assume, up considering an equivalent
renorming, that c is in fact an isometric subspace ofX. Then, for every separable subspace
Y of X containing c, there is a linear and continuous projection PY : Y −→ c with
‖P‖ ≤ 8. Indeed, let us consider the onto linear isomorphism T : c −→ c0 given by
T (x)(1) = 1

2
limn x(n) and T (x)(n) = 1

2
(x(n) − limn x(n)) for every n > 1. Note that

‖T‖ = 1 and ‖T−1‖ = 4. Now, following [FHHMPZ, Theorem 5.11], we get the desired
projection PY with ‖PY ‖ ≤ 2‖T−1‖ = 8.

Let Υ be the family of subspaces Y ofX containing c such that c has finite codimension
in Y . Consider the filter basis Υ given by {Y ∈ Υ : Y0 ⊂ Y }, where Y0 ∈ Υ is arbitrary
and call U a ultrafilter containing the above filter basis.

For every Y ∈ Υ, we define a new norm in X given by

‖x‖Y := max{‖PY (x)‖, ‖x− PY (x)‖}.

Finally, we define the norm on X given by |||x||| := limU ‖x‖Y . Observe that 1
2
‖x‖ ≤

|||x||| ≤ 9‖x‖ for every x ∈ X and so ||| · ||| is an equivalent norm in X such that
|||x||| = ‖x‖∞ for every x ∈ c, where ‖ · ‖∞ is the sup norm in c. Hence (X, ||| · |||)
contains an isometric copy of c.

Pick x0 ∈ B(X,|||·|||). In order to prove the remaining statement let {en} and {e∗n} the
usual basis of c0 and the biorthogonal functionals sequence, respectively.

Choose λ ∈ R and n ∈ N. For every Y ∈ Υ with x0 ∈ Y we have that

‖x0 + λen‖Y = max{‖PY (x0) + λen‖, ‖x0 − PY (x0)‖} =

max{|λ+ e∗n(PY (x0))|, ‖PY (x0)− e∗n(PY (x0))en‖, ‖x0 − PY (x0)‖}.
Call βn = limU max{‖PY (x0)−e∗n(PY (x0))en‖, ‖x0−PY (x0)‖} and αn = limU e

∗
n(PY (x0)).

Then |‖x0 + λen|‖ = max{|λ + αn|, βn}. Note that |αn| ≤ 1 and βn ≤ 1 just considering
λ = 0 and taking into account that |||x0||| ≤ 1.

Define xn := x0 + (1 − αn)en and yn := x0 − (1 + αn)en for every n, and note that
xn, yn ∈ B(X,|||·|||) because of the previous computations. Finally, it is clear that {xn} and
{yn} are weakly convergent sequences to x0 and |||xn − yn||| = 2 for every n ∈ N. †

Now we are ready to announce the main theorem of the section.
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Theorem 2.4. Let X be a Banach space containing an isomorphic copy of c0. Then there
is an equivalent norm on X such that:

1. Every slice of the new unit ball of X has diameter 2 for the new equivalent norm.

2. There are non-empty relatively weakly open subsets of the new unit ball of X with
arbitrarily small diameter.

Proof. From Lemma 2.3, we can assume that X contains an isometric copy of c and that,
for every x ∈ BX , there are sequences {xn}, {yn} ∈ BX which are weakly convergent to
x such that ‖xn − yn‖ = 2 for every n ∈ N.

Fix 0 < ε < 1 and consider in X the equivalent norm ‖ · ‖ε whose unit ball is
Bε = conv(A ∪ −A ∪ [(1− ε)BX + εBc0 ]). Then we have ‖x‖ ≤ ‖x‖ε ≤ 1

1−ε
‖x‖ for every

x ∈ X and ‖x‖ = ‖x‖∞ for every x ∈ c.
In order to prove (2), fix γ > 0. Pick n ∈ N with 10 < n(1 − ε)γ and choose ρ such

that 0 < ρ < 2
n(24n−9)

, 2ρ < γ and 2ρ < ε. Consider the relatively weakly open subset of
K given by

Wn =

{
x ∈ K : e∗ø⌢i(x) >

2

n
− 1− 2ρ, 1 ≤ i ≤ n, lim

k
x(k) < −1 + ρ

}
.

From Proposition 2.2, Wn 6= ∅ and diam‖·‖∞(Wn) ≤ 5/n.
Now, we define

W =

{
x ∈ Bε : e

∗
ø⌢i(x) >

2

n
− 1− ρ, 1 ≤ i ≤ n, lim

k
(x) < −1 + ρ2

}
,

where e∗n and limk denote to Hanh-Banach extensions to the whole X of the corresponding
functionals defined on c. It is clear that ‖e∗ø⌢i‖ε = ‖e∗ø⌢i‖ = 1 for every i ∈ {1, . . . , n}
and ‖ limk ‖ε = ‖ limk ‖ = 1.

We prove that x0 =
∑n

i=1
xø⌢i

n
∈ W . For this note that limk xø⌢i(k) = −1 and then

limk x0(k) = −1 < −1 + ρ2. Furthermore x0 is a convex combination of elements of A
and so x0 ∈ Bε. Finally, for 1 ≤ j ≤ n, we get that

e∗ø⌢j(x0) =
n∑

i=1 i 6=j

1

n
e∗ø⌢j(xø⌢i) +

1

n
e∗ø⌢j(xø⌢j) = −n− 1

n
+

1

n
>

2

n
− 1− ρ.

Then W is a non-empty relatively weakly open subset of Bε. In order to estimate the
diameter ofW , it is enough compute the diameter ofW∩conv(A∪−A∪[(1−ε)BX+εBc0 ]).
Furthermore, conv(A ∪ −A ∪ [(1 − ε)BX + εBc0 ]) = conv(conv(A) ∪ conv(−A) ∪ [(1 −
ε)BX+εBc0 ]). So, given x ∈ W , we can assume that x = λ1a+λ2(−b)+λ3[(1−ε)x0+εy0],
where λi ∈ [0, 1] with

∑3
i=1 λi = 1 and a, b ∈ conv(A), x0 ∈ BX , and y0 ∈ Bco . Since

x ∈ W , we have that limk(x) < −1 + ρ2, and hence,

−λ1 + λ2 + λ3(1− ε) lim
k
(x0) = −λ1 + λ2 + λ3 lim

k
[(1− ε)x0 + εy0] < −1 + ρ2.

Note that −1 ≤ limk(x0). This implies that

2λ2 + λ3ε− 1 = −λ1 + λ2 − λ3(1− ε) < −1 + ρ2.
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Since 2ρ < ε, then λ2 + λ3 <
1
2
ρ. As a consequence we get that λ1 > 1− ρ

2
.

Given i ∈ {1, . . . , n} then

2

n
− 1− ρ < e∗ø⌢i(x) = λ1e

∗
ø⌢i(a) + λ2e

∗
ø⌢i(−b) + λ3e

∗
ø⌢i[(1− ε)x0 + εy0].

Since ‖e∗ø⌢i‖ε = 1 and −b, (1− ε)x0 + εy0 ∈ Bε, we have that e
∗
ø⌢i(−b) ≤ 1 and e∗ø⌢i[(1−

ε)x0 + εy0] ≤ 1. It follow that

λ1e
∗
ø⌢i(a) + λ2e

∗
ø⌢i(−b) + λ3e

∗
ø⌢i[(1− ε)x0 + εy0] ≤

λ1e
∗
ø⌢i(a) + λ2 + λ3 < λ1e

∗
ø⌢i(a) +

1

2
ρ.

We deduce that

e∗ø⌢i(λ1a) >
2

n
− 1− 3ρ

2
>

2

n
− 1− 2ρ

for 1 ≤ i ≤ n. On the other hand, we have that

lim
k
(λ1a) = −λ1 < −1 +

ρ

2
< −1 + ρ,

and we conclude that λ1a ∈ Wn.
Finally, given x, x′ ∈ W , we can assume that

x = λ1a+ λ2(−b) + λ3[(1− ε)x0 + εy0], x
′ = λ′1a

′ + λ′2(−b′) + λ′3[(1− ε)x′0 + εy′0],

where λi, λ
′
i ∈ [0, 1] with

∑3
i=1 λi =

∑3
i=1 λ

′
i = 1, and a, b, a′, b′ ∈ conv(A), x0, x

′
0 ∈ BX

and y0, y
′
0 ∈ Bc0 . We have that

‖x− x′‖ε ≤ ‖λ1a− λ′1a
′‖ε + λ2 + λ3 + λ′2 + λ′3 < ‖λ1a− λ′1a

′‖ε + ρ.

Since ‖x‖ε ≤ 1
1−ε

‖x‖ holds for every x ∈ X, ‖x‖ = ‖x‖∞ holds for every x ∈ c and
λ1a, λ

′
1a

′ ∈ Wn, we get

‖x− x′‖ε ≤
1

1− ε
‖λ1a− λ′1a

′‖∞ + ρ ≤ 5

n(1− ε)
+ ρ ≤ γ.

Since x, x′ ∈ W were arbitrary we deduce that diam‖·‖ε(W ) ≤ γ.
In order to prove (1), note that Bε ⊂ BX and so ‖x‖ε ≥ ‖x‖ holds for every x ∈ X.
Pick f ∈ X∗, ‖f‖∗ε = 1 and β > 0, and consider the slice

S = {x ∈ Bε : f(x) > 1− β}.

From the properties of slices then either there exists an element a ∈ (A∪−A)∩S or there
exists an element (1− ε)x0 + εy0 ∈ (1− ε)BX + εBc0 such that (1− ε)x0 + εy0 ∈ S.

In the first case, from the symmetry of A ∪ −A, we can assume with no loss of
generality that a ∈ A, so there is α ∈ N

<ω such that a = xα. We recall that xα⌢j(k) = 1
if φ−1(k) ≤ α ⌢ j and xα⌢j(k) = −1 in otherwise, then {xα⌢j}j is a weakly convergent
sequence to xα. Hence we can choose j so that xα⌢j ∈ S. Note that xα⌢j − xα = 2eα⌢j,
then 2 = ‖2eα⌢j‖∞ = ‖xα⌢j − xα‖ ≤ ‖xα⌢j − xα‖ε. It follow that diam‖·‖ε(S) = 2.
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In the second case, that is, if there are x0 ∈ BX and y0 ∈ Bc0 such that

(1− ε)x0 + εy0 ∈ S,

then, since S is a norm open set, we can assume that the support of y0 is finite. From
Lemma 2.3, there is a sequence of scalars {tj} with |tj| ≤ 1 for every j such that, if we
define xj = x0 + (1 − tj)ej and yj = x0 − (1 + tj)ej for every j, we have that {xj} and
{yj} are weakly convergent sequences to x0 in BX . We put j0 such that e∗j(y0) = 0 for
every j ≥ j0, then y0 + ej, y0 − ej ∈ Bc0 for every j ≥ j0.

So it follows that {(1 − ε)xj + ε(y0 + ej)}j≥j0 and {(1 − ε)yj + ε(y0 − ej)}j≥j0 are
sequences in (1−ε)Bε+εBc0 ⊂ Bε which are weakly convergent to (1−ε)x0+εy0. Hence
we can choose j large enough so that (1 − ε)xj + ε(y0 + ej), (1 − ε)yj + ε(y0 − ej) ∈ S.
Then

‖[(1− ε)xj + ε(y0 + ej)]− [(1− ε)yj + ε(y0 − ej)]‖ε
= ‖2(1− ε)ej + 2εej‖ε = ‖2ej‖ε ≥ ‖2ej‖ = ‖2ej‖∞
= 2,

so diam‖·‖ε(S) = 2. †

As a consequence of the above result we have the following corollary, which answers
by the negative the problem about the equivalence between slice-D2P and D2P, posed in
[ALN2, Section 5].

Corollary 2.5. Every Banach space containing an isomorphic copy of c0 can be equivalently
renormed satisfying the slice-D2P and failing the D2P.

Notice that the previous corollary not only gives an example of a Banach space with the
slice-D2P and failing the D2P, but also shows a large class of (non-isomorphic) examples
satisfying our requirements. On the other hand, notice that Theorem 2.4 points out that
the slice-D2P and the D2P are different in the extreme way that the unit ball of a Banach
space can have all its slices of diameter two but contain non-empty relatively weakly open
subsets of arbitrarily small diameter.

2.2 Diameter two property versus strong diameter

two property

In Example 1.32 it is exhibited an example of a Banach space with the D2P and failing
the SD2P. This example, together with Corollary 2.5 and Example 1.4, shows that no
reverse implication in the diagram (1.1) hold. However, in view of Theorem 2.4, a natural
question is whether the D2P and the SD2P are different in an extreme way. More precisely,
we can wonder whether there exists any Banach space with the D2P and whose unit ball
contains convex combinations of slices of arbitrarily small diameter. In the search of this
extreme example, the first natural idea is to analyse the size of the convex combinations of
slices of the example exhibited in Example 1.32. Unfortunately, the following proposition
shows that the space c0 ⊕p c0, is far from satisfying that its unit ball contains convex
combinations of slices with arbitrarily small diameter.
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Proposition 2.6. If p ≥ 1, then every convex combination of slices of Bc0⊕pc0 has dia-
meter, at least, 1.

Proof. Put X = c0 ⊕p c0 and let
∑n

i=1 λiS(BX , (x
∗
i , y

∗
i ), αi) be a convex combination of

slices of BX , where n ∈ N, 0 < αi < 1 holds for every i, (x∗i , y
∗
i ) ∈ SX∗ and λi > 0

for every i with
∑n

i=1 λi = 1. If α = mini αi, then Si ⊂ S(BX , (x
∗
i , y

∗
i ), αi), where

Si = S(BX , (x
∗
i , y

∗
i ), α) for every i. Now, given an arbitrary ε > 0 , for every 1 ≤ i ≤ n

we choose (xi, yi) ∈ Si such that ‖(xi, yi)‖X > 1 − ε with Ai := supp(xi) and Bi :=
supp(yi) being finite, where supp(z) = {n ∈ N : z(n) 6= 0} for every z ∈ c0. Pick
k0 ≥ max∪n

i=1Ai ∪∪n
i=1Bi and k > k0 such that xi ±‖xi‖∞ek, yi ±‖yi‖∞ek ∈ Si holds for

every i. From here we have that

diam

(
n∑

i=1

λiS(BX , (x
∗
i , y

∗
i ), αi)

)
≥ diam

(
n∑

i=1

λiSi

)

≥ 2

∥∥∥∥∥

n∑

i=1

λi(‖xi‖∞ek, ‖yi‖∞ek)
∥∥∥∥∥ .

As ‖xi‖p∞ + ‖yi‖p∞ > 1 − ε one has that for every i either ‖xi‖∞ ≥ (1−ε
2
)1/p or ‖yi‖∞ ≥

(1−ε
2
)1/p. Put I = {i : ‖xi‖∞ ≥ (1−ε

2
)1/p} and t =

∑
i∈I λi (t = 0 if I = ∅). Then t ∈ [0, 1]

and 1− t =
∑

i/∈I λi. Now we have that

diam

(
n∑

i=1

λiS(BX , (x
∗
i , y

∗
i ), αi)

)
≥ diam

(
n∑

i=1

λiSi

)

≥ 2

∥∥∥∥∥

n∑

i=1

λi(‖xi‖∞ek, ‖yi‖∞ek)
∥∥∥∥∥

≥ 2

((
t(1− ε)1/p

21/p

)p

+

(
(1− t)(1− ε)1/p

21/p

)p)1/p

=
2(1− ε)1/p

21/p
(tp + (1− t)p)1/p

≥ 2(1− ε)1/p

21/p

(
1

2p
+

1

2p

)1/p

= (1− ε)1/p.

Since ε is arbitrary we get that diam(
∑n

i=1 λiS(BX , (x
∗
i , y

∗
i ), αi)) ≥ 1 and we are done. †

The previous proposition shows that the space c0 ⊕2 c0 does not produce an example
of Banach space with the D2P and whose unit ball contains convex combination of slices
of arbitrarily small diameter. In order to get such example we will follow the line of ideas
in the construction of Theorem 2.4, that is, we will find a Banach space X with a closed,
convex and bounded subset K ⊆ X satisfying our desired properties, that is, that every
non-empty relatively weakly open subset of K has diameter equal to diam(K) and that
K contains convex combinations of slices of arbitrarly small diameter, and then we will
try to get a renorming of X, involving the set K, so that the unit ball satisfies the same
properties than the set K.

In order to find such X and K, let us consider a family of closed, bounded and convex
subsets of c0 whose diameter is 1 satisfying that every non-empty relatively weakly open
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subset has diameter 1 and containing convex combinations of slices of arbitrarily small
diameter.

Pick a nonincreasing null sequence {εn} in R
+. We construct an increasing sequence of

closed, bounded and convex subsets {Kn} in c0 and a sequence {gn} in c0 as follows: First
define K1 = {e1}, g1 = e1 and K2 = conv(e1, e1 + e2). Choose l2 > 1 and g2, . . . , gl2 ∈ K2

an ε2-net in K2. Assume that n ≥ 2 and that mn, ln, Kn and {g1, . . . , gln} have been
constructed, with Kn ∈ Bspan{e1,...,emn} and gi ∈ Kn for every 1 ≤ i ≤ ln. Define Kn+1 as

Kn+1 = conv(Kn ∪ {gi + emn+i : 1 ≤ i ≤ ln}).

Consider ln+1 = mn + ln and choose {gln+1, . . . , gln+1} ∈ Kn+1 so that {g1, . . . , gln+1} is an
εn+1-net in Kn+1. Finally we define K0 = ∪nKn. Then it follows that K0 is a non-empty
closed, bounded and convex subset of c0 such that x(n) ≥ 0 for every n ∈ N and ‖x‖∞ = 1
for every x ∈ K0 and so diam(K0) ≤ 1.

Now, fixed i, we have from the construction that {gi + emn+i}n is a sequence in K0

which is weakly convergent to gi and ‖(gi − emn+i)− gi‖ = ‖emn+i‖ = 1 holds for every n.
Then diam(K0) = 1. We will freely use the set K0 and the above construction throughout
the section. Observe that, from the above construction, it follows that

K0 = {gi : i ∈ N}w = {gi : i ∈ N}.

Note that the construction of K0 follows word by word the definition of Poulsen simplex
in ℓ2 [Pou], that is, the unique up to homeomorphism Choquet simplex with a dense
subset of extreme points [LOS]. In fact, it is known [AOR] that the weak-star closure
of K0 in ℓ∞ is affinely weak-star homeohorphic to the Poulsen simplex. However K0 is
not a Choquet simplex, because it is not weakly compact, so K0 is a simplex in a more
general sense than Choquet simplex. Notice that this set was used in [LS1] in order to
characterise the failure of CPCP in closed, bounded and convex subsets which do not
contain any sequence equivalent to the ℓ1 basis.

Let us see that K0 satisfies the requirements that we are looking for.

Proposition 2.7. K0 is a closed, bounded and convex subset of c0 with diam(K0) = 1
satisfying that every non-empty relatively weakly open subset of K0 has diameter 1 and
K0 contains convex combinations of slices of arbitrarily small diameter.

Proof. The fact that K0 is a closed, bounded and convex subset of c0 with diam(K0) = 1
has been proved after the construction of K0. From [AOR, Theorem 1.2], we deduce
that K0 has convex combinations of slices of arbitrarily small diameter. Now pick a
non-empty relatively weakly open subset U of K0. From the construction of K0 we
note that K0 = {gi : i ∈ N}w and so there is i ∈ N such that gi ∈ U . Now, again
from the construction of K0, gi + emn+i ∈ K0 for every n. Thus, gi + emn+i ∈ U for
every n greater than some n0, since {gi + emn+i}n is weakly convergent to gi. Therefore,
diam(U) ≥ ‖emn+i‖ = 1. †

Now our aim is to get from K0 a closed, absolutely convex, bounded subset with
diameter 2, containing convex combinations of slices with arbitrarily small diameter and
so that every non-empty relatively weakly open subset has diameter 2. To this end let us
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consider K0 as a subset of c, the space of scalars convergent sequences with the sup norm
and define

K := 2conv

((
K0 −

1

2

)
∪
(
−K0 +

1

2

))
,

where 1 is the sequence of c with every coordinate equal 1. Now, it is clear that K is a
closed, absolutely convex and bounded subset of c with diam(K) = 2.

Now, following the spirit of Theorem 2.4, we will construct an equivalent renorming
of a Banach space containing an isomorphic copy of c0 by making use of the set K and
Lemma 2.3 to get that such renorming satisfies the required properties, i.e. the new unit
ball has all its non-empty relatively weakly open subsets of diameter two but contains
convex combinations of slices of arbitrarily small diameter. That is exactly what will be
done in the following theorem.

Theorem 2.8. Let X be a Banach space containing an isomorphic copy of c0. Then
there is an equivalent norm ‖| · |‖ on X such that every non-empty relatively weakly open
subset of B(X,‖|·|‖) has diameter 2 and that B(X,‖|·|‖) contains convex combinations of slices
of arbitrarily small diameter.

For the proof we will need the following auxiliary lemma.

Lemma 2.9. Let X be a vector space and A,B be two convex subsets of X such that
A−A
2

⊆ B. Then

conv(A ∪ −A ∪ B) = conv(A ∪ B) ∪ conv(−A ∪ B).

Proof. Since the inclusion ⊇ is obvious we will only prove that

conv(A ∪ −A ∪B) ⊆ conv(A ∪B) ∪ conv(−A ∪ B).

To this end, take x ∈ conv(A ∪ −A ∪B). Since A and B are convex we can find a1, a2 ∈
A, b ∈ B and λ1, λ2, λ3 ∈ [0, 1] such that λ1+λ2+λ3 = 1 and such that x = λ1a1−λ2a2+
λ3b. If we assume that λ1 ≥ λ2 then we write x as follows

x = (λ1 − λ2)a1 + 2λ2
a1 − a2

2
+ λ3b.

Notice that the previous expression is a convex combination of a1,
a1−a2

2
, b from the in-

equality λ1 ≥ λ2. In fact, since a1−a2
2

∈ A−A
2

⊆ B, it follows that the previous is a convex
combination of elements of A ∪ B, so x ∈ conv(A ∪ B). In the case that λ1 ≤ λ2 simil-
arly follows that x ∈ conv(−A ∪ B). In any case, x ∈ conv(A ∪ B) ∪ conv(−A ∪ B), as
desired. †

Proof of Theorem 2.8. From Lemma 2.3, we can assume that X contains an isometric
copy of c and that, for every x ∈ BX , there are sequences {xn}, {yn} ∈ BX which are
weakly convergent to x and such that ‖xn − yn‖ = 2 holds for every n ∈ N.

Fix 0 < ε < 1 and consider on X the equivalent norm ‖ · ‖ε whose unit ball is
Bε = conv(2(K0−1

2
)∪2(−K0+

1

2
)∪[(1−ε)BX+εBc0 ]). Then we have ‖x‖ ≤ ‖x‖ε ≤ 1

1−ε
‖x‖

for every x ∈ X and ‖x‖ = ‖x‖∞ for every x ∈ c.
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Fix γ > 0. From Proposition 2.7, there exist slices S1, · · · , Sn of K0 such that

diam

(
1

n

n∑

i=1

Si

)
<

1

4
(1− ε)γ.

We can assume that Si = {x ∈ K : x∗i (x) > 1 − δ̃} where x∗i ∈ c∗ and sup x∗i (K0) = 1

holds for every i = 1, . . . , n and 0 < δ̃ < 1. Denote by 1 the sequence in c with all its
coordinates equal 1. It is clear that sup x∗i (2(K0− 1

2
)) = 2(1−x∗i (

1

2
)), for all i = 1, · · · , n.

We put ρ, δ > 0 such that 1
2
ρ‖x∗i ‖ + δ < δ̃, 2ρ < ε, ρ‖x∗i ‖ < 4δ, and (7−2ε)ρ

(1−ε)
< γ, for all

i = 1, . . . , n. We consider the relatively weakly open set of Bε given by

Ui :=

{
x ∈ Bε : x

∗
i (x) > 2

(
1− δ − x∗i

(
1

2

))
+

1

2
ρ‖x∗i ‖, lim

k
x(k) < −1 + ρ2

}

for every i = 1, . . . , n, where x∗i and limn denote to Hahn-Banach extensions to the whole
X of the corresponding functionals defined on c. It is clear that ‖x∗i ‖ε = ‖x∗i ‖ for every
i = 1, . . . , n and ‖ limn ‖ε = ‖ limn ‖ = 1.

Since ρ‖x∗i ‖ < 4δ, we have that 2(1 − x∗i (
1

2
)) > 2(1 − δ − x∗i (

1

2
)) + 1

2
ρ‖x∗i ‖. Now,

we have that sup x∗i (2(K0 − 1

2
)) = 2(1 − x∗i (

1

2
)), then there exists x ∈ K0 such that

x∗i (2(x − 1

2
)) > 2(1 − δ − x∗i (

1

2
)) + 1

2
ρ‖x∗i ‖ and limk 2(x(k) − 1

2
) = −1 < −1 + ρ2. This

implies that Ui 6= ∅ for every i = 1, . . . , n. In order to estimate the diameter of 1
n

∑n
i=1 Ui,

it is enough to compute the diameter of

1

n

n∑

i=1

Ui ∩ conv

(
2

(
K0 −

1

2

)
∪ −2

(
K0 −

1

2

)
∪ [(1− ε)BX + εBc0 ]

)
.

Since 2(K0 − 1

2
) and (1− ε)BX + εBc0 are a convex subsets of Bε, given x ∈ Bε, we can

assume that x = λ12(a − 1

2
) + λ22(−b + 1

2
) + λ3[(1 − ε)x0 + εy0], where λi ∈ [0, 1] with∑3

i=1 λi = 1 and a, b ∈ K0, x0 ∈ BX , and y0 ∈ Bc0 .
So given x, y ∈ 1

n

∑n
i=1 Ui, for i = 1, · · · , n, there exist ai, a

′
i, bi, b

′
i ∈ K0, λ(i,j), λ

′
(i,j) ∈

[0, 1] with j = 1, 2, 3 and, xi, x
′
i ∈ BX , and yi, y

′
i ∈ Bc0 , such that

2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
−bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi]

2λ′(i,1)

(
a′i −

1

2

)
+ 2λ′(i,2)

(
−b′i +

1

2

)
+ λ′(i,3)[(1− ε)x′i + εy′i]

belong to Ui for every i ∈ {1, . . . , n} and that

x =
1

n

n∑

i=1

2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
−bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi]

and

y =
1

n

n∑

i=1

2λ′(i,1)

(
a′i −

1

2

)
+ 2λ′(i,2)

(
−b′i +

1

2

)
+ λ′(i,3)[(1− ε)x′i + εy′i].
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For i ∈ {1, . . . , n} we have that

2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
−bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi] ∈ Ui,

then

lim
k

(
2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
−bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi]

)
< −1 + ρ2.

This implies that

2λ(i,2) + λ(i,3)ε− 1 = −λ(i,1) + λ(i,2) − λ(i,3)(1− ε) < −1 + ρ2.

Since 2ρ < ε, we deduce that λ(i,2) + λ(i,3) <
1
2
ρ. As a consequence we get that

λ(i,1) > 1− 1

2
ρ, (2.13)

and similarly we get that

λ′(i,1) > 1− 1

2
ρ, (2.14)

for every i = 1, . . . , n. Now the previous inequalities imply that

‖x− y‖ε ≤
1

n

∥∥∥∥∥

n∑

i=1

2λ(i,1)

(
ai −

1

2

)
− 2λ′(i,1)

(
a′i −

1

2

)∥∥∥∥∥
ε

+
1

n

n∑

i=1

∥∥∥∥2λ(i,2)
(
−bi +

1

2

)∥∥∥∥
ε

+
1

n

n∑

i=1

∥∥∥∥2λ
′
(i,2)

(
−b′i +

1

2

)∥∥∥∥
ε

+
1

n

n∑

i=1

‖λ(i,3)[(1− ε)xi + εyi]‖ε +
1

n

n∑

i=1

‖λ′(i,3)[(1− ε)x′i + εy′i]‖ε

≤ 1

n

∥∥∥∥∥

n∑

i=1

2λ(i,1)

(
ai −

1

2

)
− 2λ′(i,1)

(
a′i −

1

2

)∥∥∥∥∥
ε

+
1

n

n∑

i=1

(
λ(i,2) + λ(i,3)

)
+

1

n

n∑

i=1

(
λ′(i,2) + λ′(i,3)

)

(2.13),(2.14)

≤ 1

n

∥∥∥∥∥

n∑

i=1

2λ(i,1)

(
ai −

1

2

)
− 2λ′(i,1)

(
a′i −

1

2

)∥∥∥∥∥
ε

+ ρ

≤ 2

n

∥∥∥∥∥

n∑

i=1

λ(i,1)ai − λ′(i,1)a
′
i

∥∥∥∥∥
ε

+
1

n

n∑

i=1

|λ(i,1) − λ′(i,1)|‖1‖ε + ρ

≤ 2

n

∥∥∥∥∥

n∑

i=1

λ(i,1)ai − λ′(i,1)a
′
i

∥∥∥∥∥
ε

+
(3− 2ε)

2(1− ε)
ρ.
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Now
∥∥∥∥∥

n∑

i=1

λ(i,1)ai − λ′(i,1)a
′
i

∥∥∥∥∥
ε

≤
∥∥∥∥∥

n∑

i=1

(λ(i,1) − 1)ai

∥∥∥∥∥
ε

+

∥∥∥∥∥

n∑

i=1

ai − a′i

∥∥∥∥∥
ε

+

∥∥∥∥∥

n∑

i=1

(λ′(i,1) − 1)a′i

∥∥∥∥∥
ε

≤ 1

1− ε

∥∥∥∥∥

n∑

i=1

ai − a′i

∥∥∥∥∥+
n∑

i=1

1

1− ε
|λ(i,1) − 1|‖ai‖+

n∑

i=1

1

1− ε
|λ′(i,1) − 1|‖a′i‖

≤ 1

1− ε

∥∥∥∥∥

n∑

i=1

ai − a′i

∥∥∥∥∥+
1

1− ε
nρ.

Hence

‖x− y‖ε ≤
2

1− ε

∥∥∥∥∥
1

n

n∑

i=1

ai − a′i

∥∥∥∥∥+
(7− 2ε)

2(1− ε)
ρ. (2.15)

Now in order to prove that the previous norm is small we will prove that both elements
1
n

∑n
i=1 ai,

1
n

∑n
i=1 a

′
i are elements of 1

n

∑n
i=1 Si, which has small diameter. To this end

note that, for every i ∈ {1, . . . , n}, it follows

x∗i

(
2λ(i,1)

(
ai −

1

2

)
+2λ(i,2)

(
−bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi]

)

> 2

(
1− δ − x∗i

(
1

2

))
+ ρ‖x∗i ‖,

then

x∗i

(
2λ(i,1)

(
ai −

1

2

))
+

1

2
ρ‖x∗i ‖

≥ x∗i

(
2λ(i,1)

(
ai −

1

2

))
+ λ(i,2)‖x∗i ‖ε + λ(i,3)‖x∗i ‖ε

≥ x∗i

(
2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
−bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi]

)
.

We have that

x∗i

(
2λ(i,1)

(
ai −

1

2

))
> 2

(
1− δ − x∗i

(
1

2

))
,

and hence

x∗i (λ(i,1)ai) > 1− δ − (1− λ(i,1))x
∗
i

(
1

2

)
≥ 1− δ − 1

2
ρ‖x∗i ‖.

We recall that δ + 1
2
ρ‖x∗i ‖ < δ̃, then x∗i (λ(i,1)ai) > 1 − δ̃. It follows that x∗i (ai) > 1 − δ̃.

Now ai ∈ K0 ∩ Si, and similarly we get that a′i ∈ K0 ∩ Si, for every i = 1, . . . , n, and
1
n

∑n
i=1 ai,

1
n

∑n
i=1 a

′
i ∈ 1

n

∑n
i=1 Si. Since the diameter of 1

n

∑n
i=1 Si is less than

1
4
(1− ε)γ,
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we deduce that 1
n
‖∑n

i=1 ai − a′i‖ < 1
4
(1 − ε)γ. Finally, we conclude from (2.15) and the

above estimate that
‖x− y‖ε ≤ γ.

Hence the set 1
n

∑n
i=1 Ui has diameter, at most γ, for the norm ‖ · ‖ε. We recall now that

every relatively weakly open subset of Bε contains a convex combination of slices [GGMS,
Lemma II.1]. So we conclude that Bε has convex combinations of slices with arbitrarily
small diameter.

In order to prove that every non-empty relatively weakly open subset of Bε has dia-
meter 2, we recall that K0 = {gi : i ∈ N}.

Denote by A := 2(K0 − 1

2
) and B := (1− ε)BX + εBc0 . Observe that Bε = conv(A ∪

−A ∪ B) so, since A−A
2

= K0 −K0 ⊆ Bc0 ⊆ B we get fron Lemma 2.9 that

Bε = conv(A ∪ B) ∪ conv(−A ∪ B).

Thus, in order to prove that every non-empty relatively weakly open subset of Bε has
‖ · ‖ε-diameter 2 it is enough to prove that every non-empty relatively weakly open subset
of conv((2K0 − 1) ∪ [(1− ε)BX + εBc0 ]) has ‖ · ‖ε-diameter 2.

Pick a weakly open subset U of X such that

U ∩ conv((2K0 − 1) ∪ [(1− ε)BX + εBc0 ]) 6= ∅.

Then there is gi ∈ K0, x0 ∈ BX , y0 ∈ Bc0 and λ ∈ [0, 1] such that λ(2gi−1)+(1−λ)[(1−
ε)x0 + εy0] belong to U .

As U is a norm open set, we can assume that the support of y0 is finite. From the
Lemma 2.3, there is a scalar sequence {tj} with |tj| ≤ 1 for every j such that, if we put
xj = x0 + (1− tj)ej and yj = x0 − (1 + tj)ej for every j, we have that {xj} and {yj} are
weakly convergent sequences to x0 in BX . Choose j0 ∈ N such that e∗j(y0) = 0 for every
j ≥ j0, then y0 + ej, y0 − ej ∈ Bc0 for every j ≥ j0. Now, again from the construction of
K0, gi + emn+i ∈ K0 for every n, and hence, {gi + emn+i}n is weakly convergent to gi.

Therefore we get for n big enough that

x := λ(2(gi + emn+i)− 1) + (1− λ)[(1− ε)xmn+i + ε(y0 + emn+i)]

and
y := λ(2(gi − 1) + (1− λ)[(1− ε)ymn+i + ε(y0 − emn+i)]

belong to U . Therefore

diam‖·‖ε(U) ≥ ‖x− y‖ε
= ‖2λemn+i + (1− λ)[2(1− ε)emn+i + 2εemn+i]‖ε
= 2‖emn+i‖ε ≥ 2‖emn+i‖ = 2‖emn+i‖∞ = 2.

We conclude that diam‖·‖ε(U) = 2 and the theorem is proved. †
The following corollary shows that there are many spaces satisfying D2P and failing

SD2P.

Corollary 2.10. Every Banach space containing an isomorphic copy of c0 can be equi-
valently renormed satisfying D2P and failing SD2P.
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Notice that the previous corollary not only gives an example of a Banach space with
the D2P and failing the SD2P, but also shows a large class of (non-isomorphic) examples
satisfying our requirements. On the other hand, notice that Theorem 2.8 points out that
the D2P and the SD2P are different in the extreme way that the unit ball of a Banach
space can have all its non-empty relatively weakly open subsets of diameter two but it
contains convex combinations of slices of arbitrarily small diameter.

2.3 Almost square Banach spaces

In Section 1.2 the interplay between the diameter two properties and earlier geometric
properties of Banach spaces is exhibited. However, after the appearance of the diameter
two properties, new properties related to them have been considered in the literature.
That is the case of the almost square Banach spaces, considered in [ALL].

Definition 2.11. Let X be a Banach space. X is said to be

1. locally almost square (LASQ) if for every x ∈ SX there exists a sequence {yn} in
BX such that ‖x± yn‖ → 1 and ‖yn‖ → 1.

2. weakly almost square (WASQ) if for every x ∈ SX there exists a sequence {yn} in
BX such that ‖x± yn‖ → 1, ‖yn‖ → 1 and {yn} → 0 weakly.

3. almost square (ASQ) if for every x1, . . . , xk elements of SX there exists a sequence
{yn} in SX such that ‖yn‖ → 1 and ‖xi ± yn‖ → 1 for every i ∈ {1, . . . , k}.

It is obvious from the very definition that WASQ Banach spaces are LASQ. Fur-
thermore, it is known that the sequence involved in the definition of ASQ can be taken
(1 + ε)-equivalent to the c0 basis [ALL, Theorem 2.8], so ASQ actually implies WASQ.

In [ALL] it is pointed out the nice relation between almost square Banach spaces and
diameter two properties. Indeed, LASQ (respectively WASQ, ASQ) Banach spaces enjoy
the slice-D2P (respectively the D2P, SD2P). Notice that the corresponding implications
for the LASQ and the WASQ were proved in [Kub], where the diameter two properties are
analysed in the Cesàro functions spaces. However, in [ALL] not only do the authors study
almost square Banach spaces from a geometric point of view but also from an isomorphic
one.

Indeed, as we have pointed out, it is proved in [ALL, Lemma 2.6] that every ASQ
Banach space contains an isomorphic copy of c0. In the reverse direction, using the
fact that almost squareness is preserved by taking ℓ∞-sums from one of the factors [ALL,
Proposition 5.7], it was proved in [ALL, Theorem 2.9] that every Banach space containing
a complemented copy of c0 can be equivalently renormed to be ASQ. In particular every
separable Banach space containing an isomorphic copy of c0 can be equivalently renormed
to be ASQ, as an immediate consequence of the well-known Soboczyk theorem [FHHMPZ,
Theorem 5.11]. However, if one tries to get rid of the separability condition, it seems clear
that the first non-separable example to analyse is ℓ∞, because c0 is not complemented in
ℓ∞ [FHHMPZ, Theorem 5.6].

If one wants to construct an equivalent renorming of ℓ∞ to be ASQ, it is natural to
follow the spirit of the renorming of [ALL, Theorem 2.9] and try to find a closed and
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complemented subspace X of ℓ∞ such that X is ASQ under the ℓ∞ norm. So, assume
that such an X exists. Consider x1, . . . , xn ∈ SX and ε > 0. As X is assumed to be ASQ
then there exists y ∈ SX such that

‖xi ± y‖ ≤ 1 +
ε

2
.

holds for every i ∈ {1, . . . , n}. Now consider k ∈ N such that |y(k)| > 1 − ε
2
. Then

|xi(k)| < ε holds for every i ∈ {1, . . . , n}. Now, if we define

B := {U(x, ε) := {n ∈ N : |x(n)| < ε} : x ∈ SX , ε > 0},

the previous estimates prove that B is a filter basis on N. If we extend B to a ultrafiler U
over N, it follows

X ⊆ ker(lim
U
).

As we also want X to be complemented in ℓ∞ in order to apply [ALL, Proposition 5.7] to
get a renorming on ℓ∞, we can additionally assume that X has codimension 1 in ℓ∞, from
where we get that X = ker(limU). Finally, since ker(limU) is isometric to ℓ∞ whenever U
is a principal ultrafilter, we conclude that U has to be non-principal.

Bearing all the above comments in mind, consider a non-principal ultrafilter U over N
and define lim : ℓ∞ −→ R to be the linear and continuous functional given by

lim(x) = lim
U
(x)

for every x ∈ ℓ∞. Then a natural candidate to an equivalent ASQ norm on ℓ∞ is the
following:

|||x||| := max

{
| lim(x)|, sup

n∈N
|x(n)− lim(x)|

}
x ∈ ℓ∞. (2.16)

Notice that this expression comes from the decomposition ℓ∞ = ker(lim) ⊕ span{1}
and considering ℓ∞ sum in the above direct sum. Notice also that this expression, when
restricted to the space of convergent sequences c, defines an equivalent renorming on c
which is isometrically isomorphic to (the ASQ Banach space) c0. Because of all the above
reasons, (2.16) defines a natural equivalent norm on ℓ∞ under which ℓ∞ should be ASQ.
Let us now prove the following theorem.

Theorem 2.12. There exists an equivalent norm on ℓ∞, say ||| · |||, such that the Banach
space (ℓ∞, ||| · |||) is an ASQ Banach space.

Proof. Consider on ℓ∞ the norm given by

|||x||| := max

{
| lim(x)|, sup

n
|x(n)− lim(x)|

}
,

Let us prove that the norm defined above is equivalent to the classical one on ℓ∞. To this
end consider x ∈ ℓ∞. Now, on the one hand

|||x||| ≤ max

{
| lim(x)|, sup

n
|x(n)|+ | lim(x)|

}
≤ ‖x‖∞ + ‖x‖∞ = 2‖x‖∞,
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since ‖ lim ‖ = 1. On the other hand

|||x||| ≥ sup
n

|x(n)− lim(x)| ≥ sup
n

|x(n)| − | lim(x)|.

Hence
‖x‖∞ ≤ |||x|||+ | lim(x)| ≤ |||x|||+ |||x||| = 2|||x|||.

So ||| · ||| and ‖ · ‖∞ are equivalent norms. Let us now prove that (ℓ∞, ||| · |||) is an ASQ
Banach space. To this aim pick x1, . . . , xn ∈ Sℓ∞ and ε > 0. Given i ∈ {1, . . . , n} consider
the sets

Ai := {n ∈ N : |xi(n)− lim xi| < ε}.

Then A1, . . . , An ∈ U by the definition of limit by ultrafilter, so A :=
n⋂

i=1

Ai ∈ U as a finite

intersection of elements of U . Since U is a ultrafilter we have that A 6= ∅, so pick n ∈ A.
Let us now estimate |||xi ± en||| for every i ∈ {1, . . . , n}. To this aim pick i ∈ {1, . . . , n}.
Then, on the one hand,

| lim(xi ± en)| = | lim(xi)|
since lim en = 0. On the other hand

sup
k

|xi(k)± en(k)− lim(xi ± en)| = max

{
sup
k 6=n

|xi(k)− lim(xi)|, |xi(n)− lim(xi)± 1|
}

≤ max

{
sup
k 6=n

|xi(k)− lim(xi)|, |xi(n)− lim(xi)|+ 1

}

≤ max

{
sup
n

|xi(n)− lim(xi)|, 1 + ε

}

Consequently, by definition of the norm ||| · |||, we get

|||xi ± en||| ≤ max{|||xi|||, 1 + ε} = 1 + ε.

Moreover, note that ||| · ||| agrees with the original norm on c0. Consequently, en ∈ Sℓ∞ .
From [ALL, Proposition 2.1] we get that (ℓ∞, ||| · |||) is ASQ Banach space, as desired. †

Remark 2.13. From the above proof it follows that, given x1, . . . , xn ∈ Sℓ∞ and ε > 0 we
can find y ∈ Sc0 such that |||xi ± y||| ≤ 1 + ε. Roughly speaking we can say that the fact
that ℓ∞ under the norm of Theorem 2.12 is ASQ relies on the subspace c0. This simple
observation will be the key to proving the general renorming result.

As we have pointed out above, the Banach space ℓ∞ plays an important role as an
example of Banach space containing an isomorphic copy of c0 which can be equivalently
renormed to be ASQ. Furthermore, as dual Banach spaces containing an isomorphic copy
of c0 actually contain a complemented copy of ℓ∞ [LT, Proposition 2.e.8], we can deduce
our general result from this particular example by giving a suitable renorming in the
bidual space.

Theorem 2.14. Let X be a Banach space containing an isomorphic copy of c0. Then
there exists an equivalent norm on X such that X is an ASQ space under the new norm.
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Proof. Assume that X contains a subspace Y which is isometric to c0.
As Y ∗∗ ⊆ X∗∗ is linearly isometric to ℓ∞, then Y ∗∗ is complemented in X∗∗ [FHHMPZ,

Proposition 5.10].
Then we can consider on X∗∗ an equivalent norm so that

X∗∗ = Z ⊕∞ Y ∗∗,

and such norm agrees with the original one of Y ∗∗.
Now we can consider on Y ∗∗ the norm defined in Theorem 2.12, so Y ∗∗ becomes into

an ASQ space and the new norm agrees with the original one on Y ⊆ X. This defines an
equivalent norm on X∗∗ which we will denote by ‖ · ‖. Clearly X∗∗ is an ASQ space [ALL,
Proposition 5.7]. Our aim is to prove that X is an ASQ space following similar ideas to
[ALL, Proposition 5.7] and Remark 2.13.

To this end pick x1, . . . , xn ∈ SX and ε > 0. Now xi ∈ X∗∗ = Z ⊕∞ Y ∗∗ for each i ∈
{1, . . . , n}, so we can find zi ∈ Z and yi ∈ Y ∗∗ such that xi = (zi, yi) for all i ∈ {1, . . . , n}.
We can assume, making a perturbation argument if necessary, that yi 6= 0 holds for all
i ∈ {1, . . . , n}. From Remark 2.13 we can find y ∈ Sc0 such that

∥∥∥∥
yi
‖yi‖

± y

∥∥∥∥ ≤ 1 + ε. (2.17)

Define z := (0, y) ∈ Sc0 ⊆ X. Then

‖xi ± z‖ = max{‖zi‖, ‖yi ± y‖} ≤ max{1, ‖yi ± y‖}

=

{
1,

∥∥∥∥‖yi‖
(

yi
‖yi‖

± y

)
± (1− ‖yi‖)y

∥∥∥∥
}

(2.17)

≤ max {1, ‖yi‖(1 + ε) + (1− ‖yi‖)‖y‖} ≤ 1 + ε.

To sum up we have proved that, given x1, . . . , xn ∈ SX and ε > 0, we can find z ∈ SX

such that

‖xi ± z‖ ≤ 1 + ε

holds for every i ∈ {1, . . . , n}. Thus X is an ASQ space under the new equivalent norm,
so we are done.

†

Note that the above theorem allows us to strengthen Proposition 1.24.
Moreover, from Theorem 2.14 and [ALL, Theorem 2.4] we get the following corollary,

which improves [ALL, Corollary 2.10].

Corollary 2.15. Let X be a Banach space. Then there exists an equivalent norm on X
such that X is an ASQ Banach space under the new norm if, and only if, X contains an
isomorphic copy of c0.

In [ALL] the relation between ASQ Banach spaces and the intersection property is
pointed out. Recall that a Banach space X has the intersection property if for every
ε > 0 there exist x1, . . . , xn ∈ X such that ‖xi‖ < 1 and such that if y ∈ X verifies that
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‖xi − y‖ ≤ 1 for every i ∈ {1, . . . , n} then ‖y‖ ≤ ε. Given 0 < ε < 1, X is said to ε-fail
the intersection property if γ(ε) = 1, where

γ(ε) := sup
x1,...,xn∈B[0,1)

inf
y∈B(ε,1]

max
1≤i≤n

‖xi − y‖

and BI := {x ∈ X / ‖x‖ ∈ I} for each I ⊆ R
+. Finally, a Banach space is said to fail the

intersection property if X ε-fails the intersection property for some 0 < ε < 1.
On the one hand, it is known that a Banach space X is ASQ if, and only if, X ε-fails

the intersection property for every 0 < ε < 1 [ALL, Proposition 6.1]. On the other hand,
it is known that a Banach space admits an equivalent norm which fails the intersection
property if, and only if, X contains an isomorphic copy of c0 [HR, Theorem 1.7]. Now we
can improve the above theorem as a straightforward application of Corollary 2.15.

Theorem 2.16. Let X be a Banach space. Then X admits an equivalent norm which ε-
fails the intersection property for each 0 < ε < 1 if, and only if, X contains an isomorphic
copy of c0.

2.4 Octahedral norms and the strong diameter two

property

As we have pointed out in Section 1.2, from Proposition 1.15 joint with Corollary 1.13
it follows that if the norm of a Banach space X is octahedral then X∗ has the w∗-SD2P.
The main aim of this section is to prove the converse statement, which gives a positive
answer to the open question [Dev, Remark (c)]. We will prove the complete equivalence
for the sake of completeness.

Theorem 2.17. Let X be a Banach space. Then the following assertions are equivalent:

1. The norm of X is octahedral.

2. Every convex combination of w∗-slices of BX∗ has diameter 2.

Proof. (1) ⇒ (2). Pick N ∈ N, x1, . . . , xN ∈ SX , ρ1, . . . , ρN ∈ (0, 1) and α1, . . . , αN > 0
such that

∑N
i=1 αi = 1. Let ρ := min

1≤i≤N
ρi. Since

N∑

i=1

αiS(BX∗ , xi, ρ) ⊆
N∑

i=1

αiS(BX∗ , xi, ρi),

it is enough to prove that diam
(∑N

i=1 αiS(BX∗ , xi, ρ)
)
= 2.

Put Y = span({x1, . . . , xN}) and fix n ∈ N. As the norm of X is octahedral there
exists xn ∈ SX such that

‖y + αxn‖ ≥
(
1− 1

n

)
(‖y‖+ |α|)
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holds for every y ∈ Y and every α ∈ R. In particular

‖xi ± xn‖ ≥ 2

(
1− 1

n

)
i ∈ {1, . . . , N} (2.18)

For i ∈ {1, . . . , N}, by (2.18) and Hahn-Banach theorem there exist fin, gin ∈ SX∗

such that

fin(xi + xn) = ‖xi + xn‖
(2.18)

≥ 2

(
1− 1

n

)

gin(xi − xn) = ‖xi − xn‖
(2.18)

≥ 2

(
1− 1

n

)

As a consequence, for i ∈ {1, . . . , N} and n ∈ N, we have that

fin(xi) > 1− 2

n
, fin(xn) > 1− 2

n

gin(xi) > 1− 2

n
, gin(xn) < −

(
1− 2

n

)

Pick T ∈ N such that 1 − 2
T
> 1 − ρ. Then, for k ≥ T , it follow that fik, gik ∈

S(BX∗ , xi, ρ) and so

N∑

i=1

αifik,
N∑

i=1

αigik ∈
N∑

i=1

αiS(BX∗ , xi, ρ).

Moreover

∥∥∥∥∥

N∑

i=1

αifik −
N∑

i=1

αigik

∥∥∥∥∥ ≥
∣∣∣∣∣

N∑

i=1

αifik(xk)−
N∑

i=1

αigik(xk)

∣∣∣∣∣

=
N∑

i=1

αifik(xk)−
N∑

i=1

αigik(xk)

>
N∑

i=1

αi

(
1− 2

k

)
+

N∑

i=1

αi

(
1− 2

k

)

= 2

(
1− 2

k

) n∑

i=1

αi = 2− 4

k
.

Since k ≥ T was arbitrary we deduce that diam (
∑n

i=1 S(BX∗ , xi, ρ)) = 2, as desired.
(2) ⇒ (1). Let Y ⊆ X be a finite-dimensional subspace, ε ∈ R

+ and δ ∈ R
+ such

that 2δ < ε. By compactness of SY pick a δ−net {y1, . . . , yn} in SY . Let us consider the
convex combination of w∗−slices

n∑

i=1

1

n
S(BX∗ , yi, ρ),
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where 0 < ρ < δ and pick 0 < ρ̂ < ρ
n
.

By the assumption, diam
(∑n

i=1
1
n
S(BX∗ , yi, ρ)

)
= 2, hence there exist

n∑

i=1

1

n
fi,

n∑

i=1

1

n
gi ∈

n∑

i=1

1

n
S(BX∗ , yi, ρ)

such that ∥∥∥∥∥

n∑

i=1

1

n
fi −

n∑

i=1

1

n
gi

∥∥∥∥∥ > 2− ρ̂ .

We put x ∈ SX such that
∑n

i=1
1
n
(fi(x) − gi(x)) > 2 − ρ̂. A convexity argument yields

that
fi(x)− gi(x) > 2− ρ

holds for every i ∈ {1, . . . , n}. This implies that, for every i ∈ {1, . . . , n}, then

fi(x) > 1− ρ, gi(x) < −(1− ρ).

Furthermore, for every i ∈ {1, . . . , n}, we get, since fi, gi ∈ S(BX∗ , yi, ρ), that

fi(yi) > 1− ρ, gi(yi) > 1− ρ.

Take any t ∈ R
+
0 . Now given an arbitrary α ≥ 0 we get

‖tyi + αx‖ ≥ fi(tyi + αx) ≥ t(1− ρ) + α(1− ρ) = (1− ρ)(t‖yi‖+ |α|).

On the other hand, if α ≤ 0 it follows

‖tyi + αx‖ ≥ gi(tyi + αx) = tgi(yi) + (−α)(−gi(x))
≥ t(1− ρ) + (−α)(1− ρ)

= (1− ρ)(t‖yi‖+ |α|).

In any case, we have that

‖tyi + αx‖ ≥ (1− ρ)(t‖yi‖+ |α|)

holds for every α ∈ R and every t ≥ 0. Bearing in mind that {y1, . . . , yn} is a δ-net of SY

it is not difficut to prove from the above inequality that

‖y + αx‖ ≥ (1− ε)(‖y‖+ |α|)

holds for every y ∈ Y and every α ∈ R, which means that the norm of X is octahedral,
and the theorem is proved. †

If we combine Theorem 2.17 with Proposition 1.5 we get the following characterisation
of the SD2P.

Corollary 2.18. Let X be a Banach space. Then, X has the SD2P if, and only if, the
norm of X∗ is octahedral.
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From Proposition 1.18 and Theorem 2.17 it follows that if a Banach space X has the
Daugavet property then the norms of X and X∗ are octahedral. However, the converse
is no longer true, as the following example shows.

Remark 2.19. Take X = L1([0, 1]) ⊕∞ ℓ1. Now, L1([0, 1]) has the Daugavet property
and so, L1([0, 1]) has the SD2P. Then X has the SD2P by Proposition 1.28, and so the
norm of X∗ is octahedral by Corollary 2.18. On the other hand, X∗ = L∞([0, 1]) ⊕1 ℓ∞,
and notice that L∞ and ℓ∞ have the SD2P. As a consequence of Proposition 1.29 then
X∗ has the SD2P, so the norm of X is octahedral by Theorem 2.17. Finally it is easy to
see that X fails the Daugavet property, essentially because ℓ1 fails the Daugavet property
(see the comment preceding [KSSW, Proposition 2.16]).

The following corollary characterises the octahedral norms for real JB∗-triples (see
Subsection 1.3.2 for the definitions).

Corollary 2.20. Let X be a real JB∗-triple. Then X has the Daugavet property if, and
only if, the norm of X is octahedral.

Proof. If X has the Daugavet property, then the norm of X is octahedral. Conversely,
assume that the norm of X is octahedral. From Theorem 2.17, every w∗-slice of BX∗ has
diameter 2 and so, by [DGZ, Proposition I.1.11], X has no Fréchet differentiability points.
From [BM, Theorem 3.10] X has the Daugavet property. †

For the dual of a JB∗-triple, having octahedral norm is automatic.

Corollary 2.21. Let X be a nonreflexive real JB∗-triple. Then the norm of X∗ is octa-
hedral.

Proof. Let us recall that X∗ is a nonreflexive L-embedded Banach space [BLPR, Propo
sition 2.2]. In particular, there exists u ∈ X∗∗∗ \ {0} such that

‖x∗ + u‖ = ‖x‖+ ‖u‖

holds for every x∗ ∈ X∗. This implies that the norm of X∗ is octahedral [GK, Lemma
9.1], so we are done. †

From Corollary 2.18 it follows that the norm of every Banach space with the Daugavet
property is octahedral, so every convex combination of w∗-slices in BX∗ has diameter 2.
On the other hand, if X is a real JB∗-triple, every extreme point of BX∗ is actually a
strongly exposed point. Indeed, given f ∈ ext(BX∗) , by [PS, Corollary 2.1] and [BM,
Lemma 3.1], we can ensure the existence of u ∈ SX∗∗ such that u(f) = 1, and u is a point
of Fréchet-differentiability of the norm of X∗∗. This implies that f is strongly exposed by
u (see [DGZ, Corollary I.1.5]). Consequently, the next corollary follows.

Corollary 2.22. Let X be a real JB∗-triple with the Daugavet property. Then every
convex combination of w∗-slices in BX∗ has diameter 2, but there are convex combinations
of slices in BX∗ with arbitrarily small diameter.
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As we said in Section 1.2, a Banach space X contains an isomorphic copy of ℓ1 if,
and only if, X admits an equivalent octahedral norm [God2, Theorem II.4]. Notice that,
thanks to Theorem 2.17 and [Dev, Theorem 1 and Proposition 3], this is equivalent to the
fact that there exists an equivalent renorming of X such that X∗ has the w∗-SD2P. It is
then a natural question whether a Banach space X containing an isomorphic copy of ℓ1
can be equivalently renormed such that X∗ has the SD2P. In view of Theorem 2.17 this
question is equivalent to the question of whether a Banach space X containing an iso-
morphic copy of ℓ1 can be equivalently renormed such that the norm of X∗∗ is octahedral,
a question which is explicitly stated in [God2, Remark II.5, 3)].

Our next result can be seen as a partial answer to the above question.

Proposition 2.23. Let X be a separable Banach space containing a subspace isomorphic
to ℓ1. Then, for every ε > 0, there is an equivalent norm on X such that every convex
combination of slices of the new unit ball of X∗ has diameter, at least, 2− ε.

In order to prove the above proposition we need a couple of lemmata.

Lemma 2.24. Let X be a Banach space and C be a w∗-compact and convex subset of
BX∗ such that every convex combination of slices of C has diameter 2. Then the set K =
conv(C ∪−C) is a w∗-compact convex subset of BX∗ such that every convex combination
of slices of K has diameter 2.

Proof. As C is a w∗-compact and convex set, then K is also w∗-compact and convex. This
is a consequence from the fact that

K = {λa− (1− λ)b : λ ∈ [0, 1], a, b ∈ C}.

Pick slices S1, . . . , Sn of K and λ1, . . . , λn > 0 with
∑n

i=1 λi = 1. Let A = {i ∈ {1, . . . , n} :
Si ∩C 6= ∅} and B := {1, . . . , n} \A. Let us observe that every slice of K has non-empty
intersection either with C or with −C.

Now we have that

Λ :=
∑

i∈A

λi(Si ∩ C) +
∑

i∈B

λi(Si ∩ (−C)) ⊂
n∑

i=1

λiSi,

and then

Λ− Λ =
∑

i∈A

λi(Si ∩ C) +
∑

i∈B

λi(Si ∩ (−C))−
∑

i∈A

λi(Si ∩ C)−
∑

i∈B

λi(Si ∩ (−C))

=
∑

i∈A

λi(Si ∩ C) +
∑

i∈B

λi(−Si ∩ C)−
(
∑

i∈A

λi(Si ∩ C) +
∑

i∈B

λi(−Si ∩ C)
)

= D −D,

where D =
∑

i∈A λi(Si ∩ C) +
∑

i∈B λi(−Si ∩ C) is a convex combination of slices in C.
From the hypothesis, we have that diam(D)=2, hence we get that diam(Λ) = 2 and so
diam(

∑n
i=1 λiSi) = 2. †
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Now let us consider the following renorming lemma, which is based on the renorming
technique of [SSW, Theorem 3.1]

Lemma 2.25. Let (X, ‖ · ‖) be a Banach space and C ⊂ BX be an absolutely convex and
closed subset satisfying that every convex combination of slices has ‖ · ‖-diameter 2. Then
for every ε > 0 there is an equivalent norm | · | on X such that every convex combination
of slices of B(X,|·|) has | · |-diameter, at least, 2− ε.

Proof. Pick an arbitrary ε > 0 and we put η ∈ R
+ such that 2−2η

1+η
> 2− ε. Consider | · |

the equivalent norm in X whose unit ball is

B|·| := C + ηBX .

Now choose n ∈ N, β1, . . . , βn ∈ (0, 1), λ1, . . . , λn > 0 with
∑n

i=1 λi = 1 and f1, . . . , fn ∈
S(X,|·|)∗ . Let us see that the convex combination of slices

∑n
i=1 λiS(B|·|, fi, βi) has diameter

2 − ε. We put, for i ∈ {1, . . . , n}, γi := supC fi and δi := supBX
fi, then we have that

γi + ηδi = 1. We consider ρ ∈ R such that 0 < ρ < min{βi, γi, δi, βiη, γiη, δiη : i =
1, . . . , n}. As a consequence we have that, for every 1 ≤ i ≤ n, we have

S
(
C, fi,

ρ

2

)
+ ηS

(
BX , fi,

ρ

2η

)
⊂ S(B|·|, fi, ρ).

So
∑n

i=1 λiS(C, fi,
ρ
2
) + λiηS(BX , fi,

ρ
2η
) is contained in

∑n
i=1 λiS(B|·|, fi, βi). Now, as

∆ :=
n∑

i=1

λiS
(
C, fi,

ρ

2

)

is a convex combination of slices of C, we get that ‖ · ‖ − diam(∆) = 2. Moreover

Γ :=
n∑

i=1

λiS

(
BX , fi,

ρ

2η

)

is a subset of BX , and hence ‖ · ‖−diameter is at most 2. Hence

‖ · ‖ − diam(∆ + ηΓ) ≥ 2− 2η

and so

‖ · ‖ − diam

(
n∑

i=1

λiS(B|·|, fi, βi)

)
≥ 2− 2η.

Finally, from B|·| ⊂ (1 + η)BX we deduce that

| · | − diam

(
n∑

i=1

αiS(B|·|, x
∗
i , βi)

)
≥ 2− 2η

1 + η
> 2− ε.

†
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Proof of Proposition 2.23. Assume that X contains a subspace isometric to ℓ1 and fix
ε > 0. From [DGH, Theorem 2] we know C(∆) is isometrically isomorphic to a quotient
space of X, where ∆ = {0, 1}N is the Cantor set. Now X∗ contains a subspace Z isometric
to C(∆)∗. Furthermore, Z is w∗-closed in X∗ and the weak-star topology of X∗ on Z is the
weak-star topology of C(∆)∗ on Z. Now, from [SSW, Theorem 4.6], there is a w∗-compact
and convex subset C of SZ so that every convex combination of slices of C has diameter
2. From Lemma 2.24 we get that K := conv(C ∪ (−C)) is a w∗-compact and absolutely
convex subset of BX∗ such that every convex combination of slices of K has diameter 2.
Finally, from Lemma 2.25 we get an equivalent norm on X∗ such that the new unit ball
B in X∗ satisfies that every convex combination of slices of B has diameter 2− ε. As we
have, for some η > 0, that B = conv(K + ηBX∗), which is w∗-closed, the new norm in X∗

is a dual norm and the proof is complete. †

2.5 Remarks and open questions

In this section we will recollect some research lines, remarks and open questions related
to the present chapter.

2.5.1 Section 2.1

As far as we are concerned, it is not known any example of Banach space with the slice-
D2P and failing the D2P which can be constructed with different techniques that those
coming from Theorem 2.4. Also, the following question is pertinent:

Question 3. Is there any Banach space X with the slice-D2P and the CPCP?

Note that if the answer to Question 1 were positive, such a space would exist.

2.5.2 Section 2.2

In contrast with what happened with the case of the slice-D2P and the D2P, a new example
of Banach space X with the D2P whose unit ball contains convex combination of slices of
arbitrarily small diameter appeared in [AHNTT]. Indeed, in [AHNTT, Proposition 2.11]
it is proved that, for every ε > 0, there exists a Banach space Xε which is isomorphic to
C([0, 1]) with the following properties:

1. Xε has the D2P.

2. The unit ball of Xε contains convex combination of slices whose diameter is smaller
than ε.

3. X is midpoint locally uniformly rotund (MLUR), i.e. whenever x ∈ SX and {xn} is
a sequence in SX with {‖x± xn‖} → 1 then {xn} → 0 in the norm topology.

Then, if one considersX = ℓ2−⊕n∈NX 1
n
, thenX has the D2P and its unit ball contains

convex combinations of slices of arbitrarily small diameter (see the comment previous to
[BLR3, Proposition 2.8]). See [ALNT] for further connections between the diameter two



2 Diameter two properties 41

properties and convexity and smoothness properties. In an opposite way, see [LR] for the
connections between the diameter two properties and polyhedral Banach spaces.

An open question related to Question 3 is the following.

Question 4. Is there any Banach space with the D2P and being SR?

Note that if the answer to first question in Question 2 were positive then such a Banach
space would exist.

2.5.3 Section 2.3

We have introduced in Definition 2.11 the concepts of LASQ, WASQ and ASQ Banach
spaces. From [ALL, Proposition 3.5] it is deduced that L1([0, 1]) is an example of WASQ
Banach spaces which is not ASQ because it does not contain any isomorphic copy of c0.
However, the following question is posed in [ALL, Question 3.4]

Question 5. Is there any LASQ Banach space X which is not WASQ?

Another natural question about ASQ spaces, also posed in [ALL], is the following:

Question 6. Is there any dual ASQ Banach space?

The first natural attempt is to analyse whether the ASQ renorming of ℓ∞ given in
Theorem 2.12 does the work. However, such renorming is far from being a dual Banach
space, as the following observation shows.

Proposition 2.26. Let ||| · ||| be the ASQ norm on ℓ∞. Then ext(Bℓ∞) = ∅. As a
consequence, (ℓ∞, ||| · |||) is not isometric to any dual Banach space.

Proof. Consider x ∈ Sℓ∞ . Then we have the following considerations:

1. If | lim(x)| < 1 then there exists ε > 0 such that | lim(x)± ε| < 1. Now consider

y := x+ ε1 z := x− ε1.

Then clearly | lim(y)| ≤ 1 and | lim(z)| ≤ 1. On the other hand, given n ∈ N, one
has

|y(n)− lim(y)| = |x(n) + ε− lim(x)− ε| = |x(n)− lim(x)| ≤ |||x||| ≤ 1.

So y ∈ Bℓ∞ . By a similar argument we have that z ∈ Bℓ∞ . Since x = y+z
2

we get
that x /∈ ext(Bℓ∞) in this case.

2. If | lim(x)| = 1, we shall assume with no loss of generality that lim(x) = 1. Then
supn |x(n) − 1| ≤ 1 from where we conclude that x(n) ≥ 0 ∀n ∈ N. Moreover as
lim(x) = 1 then we can find ε > 0 and n ∈ N such that x(n) ≥ ε. We claim that

x± εen ∈ Bℓ∞ .

Indeed,
lim(x± εen) = lim(x).
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Moreover, given k ∈ N,

|x(k)± εen(k)− lim(x± εen)| = |x(k)± εδkn − lim(x)|

If k 6= n clearly last quantity is less than or equal to |||x||| ≤ 1. Moreover, if k = n
then we have

|x(n)± ε− lim(x)| = |x(n)± ε− 1| ≤ |x(n)− 1|+ ε = 1− x(n) + ε ≤ 1.

Thus x± εen ∈ Bℓ∞ , so x /∈ ext(Bℓ∞).

This proves that ext(Bℓ∞) = ∅. Now ℓ∞ is not a dual Banach space as an easy consequence
of Krein-Milman theorem. †

Related to Question 6, in [GR] the following strengthening of almost squareness is
introduced.

Definition 2.27. Let X be a Banach space. We will say that X is unconditionally almost
square (UASQ) if, for each ε > 0, there exists a subset {xγ}γ∈Γ ⊆ SX (depending on ε)
such that:

1. for each y1, . . . , yk ∈ SX and δ > 0 there exists γ ∈ Γ such that

‖yi ± xγ‖ ≤ 1 + δ

holds for every i ∈ {1, . . . , k},

2. for every finite subset F of Γ and every choice of signs ξγ ∈ {−1, 1}, γ ∈ F , it
follows ‖∑γ∈F ξγxγ‖ ≤ 1 + ε.

In some sense, we can very roughly say that this concept encodes that X is ASQ
“through the c0-orthogonal” set {xγ : γ ∈ Γ}. Despite this concept seems to be quite
stronger than ASQ, it is proved that ASQ and UASQ agree for a large class of Banach
spaces as is the separable Banach spaces [GR, Corollary 2.4]. The interest in UASQ
Banach spaces is the following result [GR, Theorem 2.5].

Theorem 2.28. Let X be a Banach space. Then X∗ is not UASQ.

Though the previous theorem could not be applied to solve Question 6, it was applied
to prove that certain spaces of Lipschitz functions are not isometric to any dual Banach
space (see [GR, Sections 3,4 and 5] and [GPR, Proposition 2.11 and Remark 2.12]).

Apart from the previous application, the ASQ Banach spaces were used in [BLR7] in
order to provide new examples of symmetric projective tensor products spaces with the
diameter two properties.

Finally, according to [Flo], for a Banach space X and N ∈ N, we will denote by
⊗̂π,s,NX the symmetric projective N-tensor product of X. This space is the completion of

the linear space generated by

{
xN :=

N
x⊗ . . .⊗ x : x ∈ X

}
under the norm given by

‖z‖ := inf

{
k∑

i=1

|λi| : z =
k∑

i=1

λix
N
i , λi ∈ R, xi ∈ SX ∀i ∈ {1, . . . , k}

}
.
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It is well known that its topological dual space is identified with the space of all N -
homogeneous and bounded polynomials on X by the action

P
(
xN
)
:= P (x) ∀x ∈ X

for each N -homogeneous and bounded polynomial P (see [Flo] for background).
Related to the diameter two properties in symmetric projective tensor products it is

known that if X is a Banach space such that X(∞ has an infinite-dimensional centralizer
then ⊗̂π,s,NX has the D2P for every natural number N [AB, Theorem 3.2]. Making a
strong use of the c0 behaviour of ASQ spaces the following result was proved in [BLR7,
Theorem 3.3]

Theorem 2.29. Let X be an ASQ space and N ∈ N. Then ⊗̂π,s,NX has the SD2P.

Notice that we have introduced the LASQ, WASQ and ASQ Banach spaces as natural
stronger properties than the diameter two properties. For further reference about new
strenghtening of the diameter two properties, we refer the reader to [ANP] for the defin-
ition of the symmetric strong diameter two property, an intermediate property between
SD2P and the ASQ, and to [BLR2] for the definition of the diametral diameter two prop-
erties, which are intermediate between the diameter two properties and the Daugavet
property.

2.5.4 Section 2.4

After the paper [BLR4], R. Haller, J. Langemets and M. Põldvere considered in [HLP1]
the following octahedral-kind properties:

Definition 2.30. Let X be a Banach space. It is said that X is:

1. locally octahedral (LOH) if for every x ∈ SX and ε > 0 there exists y ∈ SX such
that ‖x± y‖ > 2− ε.

2. weakly octahedral (WOH) if for every x1, . . . , xn ∈ SX , x
∗ ∈ BX∗ and ε > 0 there

exists y ∈ SX such that ‖xi ± ty‖ ≥ (1 − ε)(|x∗(xi)| + t) for all i ∈ {1, . . . , n} and
t > 0.

It is obvious from the definitions that octahedrality implies weak octahedrality, which
in turn implies local octahedrality. None of the converse of the above implications holds
because no reverse implication in the diagram 1.1 hold and because of the following result,
proved in [HLP1].

Proposition 2.31. Let X be a Banach space. Then:

1. X is LOH if, and only if, X∗ has the w∗-slice-D2P.

2. X is WOH if, and only if, X∗ has the w∗-D2P.

See [HLP1] for further nice reformulations of LOH, WOH and octahedral norms as
well as for a re-proof of Theorem 2.17.

In view of Proposition 2.23, the natural question is the following.
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Question 7. Let X be a Banach space which contains an isomorphic copy of ℓ1. Can X
be equivalently renormed such that X∗ has the SD2P?

First of all, notice that it has been recently proved in [LL] that the answer to the
previous question is positive if X is separable.

Moreover, from the fact that the dual of a Banach space X is strongly regular if, and
only if, X does not contain any isomorphic copy of ℓ1 [GGMS, Corollary VI.18], this
question is equivalent to the second question in Question 2 in the context of dual Banach
spaces.

Finally, we want to point out the existing connection between octahedral norms and
different properties of Banach spaces as are the almost Daugavet property (see [KSW])
and with the thickness of the unit ball (see [God2, GK]).



Chapter 3

Examples of Banach spaces with an

octahedral norm

In this chapter we will analyse the octahedrality of the norm of two different kind of
Banach spaces. First, in Section 3.1 we will analyse the octahedrality of the operator
norm in spaces of operators. We get in Theorem 3.9 that, given two Banach spaces X
and Y , then the operator norm on every subspace H ⊆ L(X, Y ) containing the finite rank
operators is octahedral as soon as the norms of X∗ and Y are octahedral. We also prove in
Lemma 3.17 that the assumption of octahedrality on just one factor is not sufficient. As
a consequence, Corollary 3.10 joint with Theorem 3.18 imply that the SD2P is preserved
from both factors by taking projective tensor product but not from just one of them,
which gives a complete answer to [ALN2, Question (b)] in the case of the projective
tensor product and the SD2P. Further, we give in Theorem 3.27 a characterisation of
when L(ℓp, X) and L(ℓnp , X), where X is either ℓ1 or L1, have an octahedral norm in
terms of 1 ≤ p ≤ ∞ and of n ∈ N. The results of this section are based on [BLR5]
(from Proposition 3.1 to Corollary 3.12) and on [LLR2, Section 3] (from Lemma 3.17
until the end). We will also analyse the octahedrality of Lipschitz-free spaces in Sections
3.2 and 3.3. In Section 3.2 we consider the vector-valued Lipschitz-free spaces and prove
in Theorem 3.32 that the norm of a Lipschitz-free space F(M,X) is octahedral whenever
M is unbounded or it is bounded but it is not uniformly discrete under the additional
assumption of extensions of X∗-valued Lipschitz functions (see Definition 3.31). We also
construct vector-valued Lipschitz-free spaces F(M,X) where not only its norm fails to be
octahedral but also its unit ball contains points of Fréchet differentiability. The content
of the section is based on [BLR6]. In Section 3.3 we focus on octahedrality of the norm
of real Lipschtz free spaces, where we introduce a geometric property of metric spaces,
the long trapezoid property, which characterises the octahedrality of Lipschitz-free spaces
in the sense that a metric space M has the long trapezoid property if, and only if, the
norm of F(M) is octahedral (Theorem 3.35). By making use of this characterisation we
prove, for instance, that the norm of F(M) is octahedral if M is an infinite subset of ℓ1
(see Proposition 3.49). The content of the section is based on [PR]. We end the chapter
with Section 3.4, where we exhibit further research, remarks and open questions related
to the content of the present chapter.
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3.1 Octahedrality in spaces of operators

Let X and Y be two Banach spaces. In this section we will analyse when the operator
norm of a subspace H of L(X, Y ) is octahedral. Apart from being a natural question
to analyse the octahedrality of the norm in a classical Banach space as L(X, Y ) is, the
strong connection with SD2P in the projective tensor product thanks to Theorem 2.17
makes of such study a useful tool to answer the question of how is the SD2P preserved
by taking projective tensor product [ALN2, Question (b)].

Our starting point is the next proposition, which will be used in order to deal with
spaces satisfying the SD2P and which is somehow encoded in the proof of Theorem 2.17.

Proposition 3.1. Let X be a Banach space and C :=
∑n

i=1 λiSi be a convex combination
of slices of BX such that

diam(C) = 2.

Then for every ε > 0 there exist xi, yi ∈ Si for all i ∈ {1, . . . , n} and f ∈ SX∗ such that

f(xi − yi) > 2− ε

holds for all i ∈ {1, . . . , n}. Thus

f(xi), f(−yi) > 1− ε

holds for all i ∈ {1, . . . , n}.
Proof. Fix an arbitrary ε > 0. Choose δ > 0 such that δ < mε, for m := min

1≤i≤n
λi (notice

that we can assume that λi 6= 0 for every i ∈ {1, . . . , n}).
Since diam(C) = 2 then, for every 1 ≤ i ≤ n, there exist xi, yi ∈ Si such that

∥∥∥∥∥

n∑

i=1

λixi −
n∑

i=1

λiyi

∥∥∥∥∥ > 2− δ.

Hence there exists f ∈ SX∗ satisfying

f

(
n∑

i=1

λixi −
n∑

i=1

λiyi

)
=

n∑

i=1

λif(xi − yi) > 2− δ.

As a consequence, we have
f(xi − yi) > 2− ε (3.1)

holds for all i ∈ {1, . . . , n}. Indeed, assume that there exists i ∈ {1, . . . , n} such that
f(xi − yi) ≤ 2− ε. Then

2− δ <

n∑

j=1

λjf(xj − yj) = λif(xi − yi) +
∑

j 6=i

λif(xj − yj)

≤ λi(2− ε) + 2(1− λi)

= 2− λiε < 2− δ

a contradiction. So (3.1) holds. †
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We omit the proof of next proposition which is the dual version of the above one.

Proposition 3.2. Let X be a Banach space and C :=
∑n

i=1 λiSi be a convex combination
of w∗-slices of BX∗ such that

diam(C) = 2.

Then for every ε > 0 there exist fi, gi ∈ Si for every i ∈ {1, . . . , n} and x ∈ SX such that

(fi − gi)(x) > 2− ε

holds for all i ∈ {1, . . . , n}. Thus

fi(x), gi(−x) > 1− ε

holds for all i ∈ {1, . . . , n}.

Our last preliminary lemma allows us to write the unit ball of the dual of certain
spaces of operators in terms of basic tensor of functionals in the following sense.

Lemma 3.3. Let X, Y be Banach spaces. Let H be a closed subspace of L(X, Y ) such
that X∗ ⊗ Y ⊆ H. Then we have that BH∗ = convw

∗

(SX ⊗ SY ∗).

Proof. Given T ∈ H, it is clear that

‖T‖ = sup{y∗(T (x)) : x ∈ SX , y
∗ ∈ SY ∗}.

This implies that the set of continuous linear functionals x ⊗ y∗ ∈ H∗ given by (x ⊗
y∗)(T ) := y∗(T (x)), for x ∈ SX and y∗ ∈ SY ∗ , is a norming subset of H∗. Since X∗⊗Y ⊆
H, we have that ‖x⊗ y∗‖ = 1 for every x ∈ SX and y∗ ∈ SY ∗ . By a separation argument,
we get that BH∗ = convw

∗

(SX ⊗ SY ∗). †

Remark 3.4. Notice that we can replace SX (respectively SY ∗) with a norming set
A ⊆ SX for X∗ (respectively a norming set B ⊆ SY ∗ for Y ) in Lemma 3.3.

Now we are ready to get sufficient conditions on octahedrality in spaces of operators.
The first result is the following.

Theorem 3.5. Let X, Y be Banach spaces. Assume that the norm of Y is octahedral and
that there exists f ∈ SX∗ such that {x ∈ SX : x∗(x) = 1} is norming for X∗. Let be H a
closed subspace of L(X, Y ) such that X∗ ⊗ Y ⊆ H. Then the norm of H is octahedral.

Proof. By Theorem 2.17, the norm of H is octahedral, if and only if, every convex com-
bination of w∗-slices of BH∗ has diameter 2. So, in order to prove the theorem, let
C :=

∑n
i=1 λiSi be a convex combination of w∗-slices in BH∗ . We can assume that there

exist ε ∈ R
+ and Ai ∈ SH such that Si = S(BH∗ , Ai, ε) for every i ∈ {1, . . . , n}.

Fix δ ∈ R
+. By Lemma 3.3 we can assume that there exist xi ∈ SX , y

∗
i ∈ SY ∗ such

that xi ⊗ y∗i ∈ Si for all i ∈ {1, . . . , n}. Thus ∑n
i=1 λixi ⊗ y∗i ∈ C.

Since the set {x ∈ SX : f(x) = 1} is norming for X∗ then, by Remark 3.4, we can
assume with no loss of generality that f(xi) = 1 holds for every i ∈ {1, . . . , n}.

Fix i ∈ {1, . . . , n} and y∗ ∈ BY ∗ . Then the following equivalences hold

xi ⊗ y∗ ∈ Si ⇔ Ai(xi ⊗ y∗) > 1− ε⇔ Ai(xi)(y
∗) > 1− ε.



48 3.1 Octahedrality in spaces of operators

Thus

xi ⊗ y∗ ∈ Si ⇔ y∗ ∈ S(BY ∗ , Ai(xi), ε).

Since
∑n

i=1 λiS(BY ∗ , Ai(xi), ε) is a convex combination of w∗-slices in BY ∗ we deduce, by
Proposition 3.2 and since the norm of Y is octahedral, the existence of u∗i , v

∗
i ∈ BY ∗ such

that xi ⊗ u∗i , xi ⊗ v∗i ∈ Si for i ∈ {1, . . . , n}, and y ∈ SY such that

y(u∗i − v∗i ) > 2− δ

holds for every i ∈ {1, . . . , n}.
Then

∑n
i=1 λixi ⊗ u∗i ,

∑n
i=1 λixi ⊗ v∗i ∈ C.

Define T : X → Y by the equation T (x) := f(x)y for x ∈ X. Clearly ‖T‖ = 1 and
T ∈ H. Thus

diam(C) ≥
∥∥∥∥∥

n∑

i=1

λixi ⊗ u∗i −
n∑

i=1

λixi ⊗ v∗i

∥∥∥∥∥ =

∥∥∥∥∥

n∑

i=1

λixi ⊗ (u∗i − v∗i )

∥∥∥∥∥

≥
n∑

i=1

λiT (xi)(u
∗
i − v∗i ) =

n∑

i=1

λif(xi)y(u
∗
i − v∗i )

> (2− δ)
n∑

i=1

λi = 2− δ.

From the arbitrariness of δ we deduce that diam(C) = 2 and the theorem is proved. †

From the symmetry in the proof of the above theorem we get the following theorem.

Theorem 3.6. Let X, Y be Banach spaces. Assume that the norm of X∗ is octahedral
and that there exists f ∈ SY such that {y∗ ∈ SY ∗ : y∗(f) = 1} is norming for Y . Let H be
a closed subspace of L(X, Y ) such that X∗ ⊗ Y ⊆ H. Then the norm of H is octahedral.

The sufficient condition obtained in the above theorem is satisfied when it is assumed
the following infinite-dimensional centralizer condition.

Corollary 3.7. Let X, Y be Banach spaces. Assume that Z((Y (∞)∗) is infinite-dimensional
and that there exists f ∈ SX∗ such that {x ∈ SX : f(x) = 1} is norming for X∗. Let be H
a closed subspace of L(X, Y ) such that X∗ ⊗ Y ⊆ H. Then the norm of H is octahedral.

Proof. By Remark 1.26, it follows that Y ∗ has the SD2P, so Theorem 3.5 applies. †

Bearing in mind the projective tensor product, we improve 2 in Proposition 1.36
invoking Theorem 3.5.

Corollary 3.8. Let X, Y be Banach spaces. Assume that Z(Y (∞) is infinite-dimensional
and that there exists f ∈ SX∗ such that {x ∈ SX : f(x) = 1} is norming for X∗. Then
X⊗̂πY has the SD2P.

The next result follows the lines of the Theorem 3.5, but for another kind of spaces.
As a consequence, we will get the stability of octahedral norms in spaces of operators.
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Theorem 3.9. Let X, Y be Banach spaces. Assume that the norms of X∗ and Y are
octahedral. Let be H a closed subspace of L(X, Y ) such that X∗⊗Y ⊆ H. Then the norm
of H is octahedral.

Proof. Again by Theorem 2.17 the norm of H is octahedral if and only if every con-
vex combination of w∗-slices of BH∗ has diameter 2. Let C :=

∑n
i=1 λiSi be a convex

combination of w∗-slices in BH∗ . Hence there exist ε ∈ R
+ and Ai ∈ SH such that

Si = S(BH∗ , Ai, ε) for every i ∈ {1, . . . , n}. Fix δ ∈ R
+.

By Lemma 3.3 we can ensure the existence of xi ∈ SX , y
∗
i ∈ SY ∗ such that xi⊗y∗i ∈ Si

for all i ∈ {1, . . . , n}. Thus
∑n

i=1 λixi ⊗ y∗i ∈ C. For every i ∈ {1, . . . , n} we consider
A∗

i (y
∗
i ) : X → R defined by A∗

i (y
∗
i )(x) = y∗i (Ai(x)) for every x ∈ X. Then we have that

x⊗ y∗i ∈ Si ⇔ x ∈ S(BX , A
∗
i (y

∗
i ), ε).

Now, the norm of X∗ is octahedral, so every convex combination of slices of BX has
diameter 2.

Applying Proposition 3.2, there exists wi ∈ S(BX , A
∗
i (y

∗
i ), ε) and f ∈ SX∗ such that,

for all i ∈ {1, . . . , n}, we get that

f(wi) > 1− δ,

and that
n∑

i=1

λiwi ⊗ yi ∈ C.

Following as in the proof of Theorem 3.5, we deduce that diam(C) > (2− δ)(1− δ). Due
to the arbitrariness of δ we deduce that diam(C) = 2 and the theorem is proved. †

The first consequence of the above theorem is the stability of the SD2P for projective
tensor products of Banach spaces. Indeed, taking into account the duality (X⊗̂πY )∗ =
L(X, Y ∗) and the duality between octahedrality and the SD2P exhibited in Section 2.4,
the following corollary easily follows.

Corollary 3.10. Let X and Y be Banach spaces. If X and Y have the SD2P, then so
does X⊗̂πY .

This last corollary gives a stability result of the SD2P for projective tensor products,
which partially answers to [ALN2, Question (b)] for the case of the projective tensor
product and the SD2P.

Furthermore, recall that given Banach spacesX and Y such that Z(X(∞) and Z((Y (∞)∗)
are infinite-dimensional, then the norms of X∗ and Y are octahedral. Consequently, the
following corollary holds.

Corollary 3.11. Let X, Y be Banach spaces such that Z(X(∞) and Z((Y (∞)∗) are infinite-
dimensional. Let be H a closed subspace of L(X, Y ) such that X∗ ⊗ Y ⊆ H. Then the
norm of H is octahedral.

As a new consequence, we get a result improving 1. in Proposition 1.36 in the following
sense.
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Corollary 3.12. Let X, Y be Banach spaces such that Z(X(∞) and Z(Y (∞) are infinite-
dimensional. Then the space X⊗̂πY has the SD2P.

Notice that a natural question is whether the hypothesis on one of the spaces in
Corollary 3.10, can be removed; that is, whether the SD2P is stable from just one factor by
taking projective tensor product. Notice that an answer to this question would completely
answer how the SD2P is preserved by taking projective tensor product, explicitly posed in
[ALN2, Question (b)]. In order to do so, it is natural to look for necessary conditions for
a projective tensor product to have the SD2P. That is what is obtained in the following
proposition in the language of octahedrality in spaces of operators.

Proposition 3.13. Let X, Y be Banach spaces and let H be a closed subspace of L(X, Y )
whose norm is octahedral such that X∗ ⊗ Y ⊆ H. Assume that the norm of X∗ is non-
rough. Then the norm of Y is octahedral.

Proof. Let us prove that every convex combination of w∗-slices of BY ∗ has diameter 2.
We put y1, . . . , yn ∈ SY , δ > 0 and λ1, . . . , λn ∈ (0, 1) with

∑n
i=1 λi = 1, and consider the

convex combination of w∗-slices

n∑

i=1

λiS(BY ∗ , yi, δ).

Let ε > 0. Since the norm of X∗ is non-rough we have from Theorem 1.8 that there
exist x∗ ∈ SX∗ and α > 0 such that diam(S(BX , x

∗, α)) < ε. Put ρ := min{δ, α} and
x0 ∈ SX ∩ S(BX , x

∗, α). Consider the convex combination of w∗-slices of BH∗ given by

n∑

i=1

λiS(BH∗ , x∗ ⊗ yi, ρ
2).

Now, since H has octahedral norm, then for i ∈ {1, . . . , n} there exist fi, gi ∈ SH∗ ∩
S(BH∗ , x∗ ⊗ yi, ρ

2) such that

∥∥∥∥∥

n∑

i=1

λifi −
n∑

i=1

λigi

∥∥∥∥∥ > 2− ε.

By Lemma 3.3 we can assume that fi =
∑mi

k=1 γ(k,i)x(k,i)⊗y∗(k,i) and gi =
∑mi

k=1 γ
′
(k,i)u(k,i)⊗

v∗(k,i), where x(k,i), u(k,i) ∈ SX , y
∗
(k,i), v

∗
(k,i) ∈ SY ∗ , and

∑mi

k=1 γ(k,i) = 1 =
∑mi

k=1 γ
′
(k,i) which

γ(k,i), γ
′
(k,i) ∈ [0, 1] for all (k, i), k ∈ {1, . . . ,mi} and i ∈ {1, . . . , n}. For i ∈ {1, . . . , n}, we

consider the sets Pi := {(k, i) ∈ {1, . . . ,mi} × {i} : (x∗ ⊗ yi)(x(k,i) ⊗ y∗(k,i)) > 1 − ρ} and

Qi := {(k, i) ∈ {1, . . . ,mi} × {i} : (x∗ ⊗ yi)(u(k,i) ⊗ v∗(k,i)) > 1− ρ}. Then we have that

1− ρ2 < (x∗ ⊗ yi)

(
mi∑

k=1

γ(k,i)x(k,i) ⊗ y∗(k,i)

)

=
∑

i∈Pi

γ(k,i)(x
∗ ⊗ yi)(x(k,i) ⊗ y∗(k,i)) +

∑

i/∈Pi

γ(k,i)(x
∗ ⊗ yi)(x(k,i) ⊗ y∗(k,i))

≤
∑

i∈Pi

γ(k,i) + (1− ρ)
∑

i/∈Pi

γ(k,i) = 1−
∑

i/∈Pi

γ(k,i) + (1− ρ)
∑

i/∈Pi

γ(k,i).
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We conclude that
∑

i/∈Pi
γ(k,i) < ρ, and hence we have that

(x∗ ⊗ yi)

(
∑

i∈Pi

γ(k,i)x(k,i) ⊗ y∗(k,i)

)
> 1− ρ.

It follows that

yi

(
∑

i∈Pi

γ(k,i)y
∗
(k,i)

)
≥ (x∗ ⊗ yi)

(
∑

i∈Pi

γ(k,i)x(k,i) ⊗ y∗(k,i)

)
> 1− ρ,

and
∑

i∈Pi
γ(k,i)y

∗
(k,i) ∈ BY ∗ , so ϕi :=

∑
i∈Pi

γ(k,i)y
∗
(k,i) ∈ S(BY ∗ , yi, δ).

For (k, i) ∈ Pi, we have that (x∗ ⊗ yi)(x(k,i) ⊗ y∗(k,i)) > 1 − ρ. This implies that

x∗(x(k,i)) > 1− ρ, and as a consequence ‖x(k,i) − x0‖ < ε. In a similar way, we have that

yi

(
∑

i∈Qi

γ′(k,i)y
∗
(k,i)

)
≥ (u∗ ⊗ vi)

(
∑

i∈Qi

γ′(k,i)u(k,i) ⊗ v∗(k,i)

)
> 1− ρ,

and
∑

i∈Qi
γ′(k,i)v

∗
(k,i) ∈ BY ∗ , so ψi :=

∑
i∈Qi

γ(k,i)v
∗
(k,i) ∈ S(BY ∗ , yi, δ).

For (k, i) ∈ Qi, we have that (x∗ ⊗ yi)(u(k,i) ⊗ v∗(k,i)) > 1 − ρ. This implies that

x∗(u(k,i)) > 1− ρ, and as a consequence ‖u(k,i) − x0‖ < ε. It follows that

‖fi − x0 ⊗ ϕi‖ ≤
∥∥∥∥∥fi −

∑

i∈Pi

γ(k,i)x(k,i) ⊗ y∗(k,i)

∥∥∥∥∥+
∥∥∥∥∥
∑

i∈Pi

γ(k,i)x(k,i) ⊗ y∗(k,i) − x0 ⊗ ϕi

∥∥∥∥∥

=

∥∥∥∥∥∥

∑

i/∈Pi

γ(k,i)x(k,i) ⊗ y∗(k,i)

∥∥∥∥∥∥
+

∥∥∥∥∥
∑

i∈Pi

γ(k,i)(x(k,i) − x0)⊗ y∗(k,i)

∥∥∥∥∥

≤
∑

i/∈Pi

γ(k,i) +
∑

i∈Pi

γ(k,i)‖x(k,i) − x0‖‖y∗(k,i)‖ ≤ ρ+ ε.

In a similar way, we have that

‖gi − x0 ⊗ ψi‖ ≤ ρ+ ε.

As a consequence we have that

2− ε <

∥∥∥∥∥

n∑

i=1

λifi −
n∑

i=1

λigi

∥∥∥∥∥

≤
∥∥∥∥∥

n∑

i=1

λi(fi − x0 ⊗ ϕi)

∥∥∥∥∥+
∥∥∥∥∥

n∑

i=1

λix0 ⊗ (ϕi − ψi)

∥∥∥∥∥+
∥∥∥∥∥

n∑

i=1

λi(gi − x0 ⊗ ψi)

∥∥∥∥∥

≤ 2(ρ+ ε) +

∥∥∥∥∥

n∑

i=1

λix0 ⊗ (ϕi − ψi)

∥∥∥∥∥ = 2(ρ+ ε) +

∥∥∥∥∥x0 ⊗
n∑

i=1

λi(ϕi − ψi)

∥∥∥∥∥

≤ 2(ρ+ ε) + ‖x0‖
∥∥∥∥∥

n∑

i=1

λi(ϕi − ψi)

∥∥∥∥∥ ≤ 2(ρ+ ε) +

∥∥∥∥∥

n∑

i=1

λi(ϕi − ψi)

∥∥∥∥∥ .
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It follows that ∥∥∥∥∥

n∑

i=1

λiϕi −
n∑

i=1

λiψi

∥∥∥∥∥ > 2− 2ρ− 3ε.

We recall that ϕi, ψi ∈ S(BY ∗ , yi, δ), and hence

diam

(
n∑

i=1

λiS(BY ∗ , yi, δ)

)
≥ 2− 2ρ− 3ε ≥ 2− 2δ − 3ε.

Since ε is arbitrary, we conclude that

diam

(
n∑

i=1

λiS(BY ∗ , yi, δ)

)
≥ 2− 2δ.

Hence, for 0 < η < δ we have

n∑

i=1

λiS(BY ∗ , yi, η) ⊆
n∑

i=1

λiS(BY ∗ , yi, δ),

and diam (
∑n

i=1 λiS(BY ∗ , yi, η)) ≥ 2− 2η by using a similar argument. Hence

diam

(
n∑

i=1

λiS(BY ∗ , yi, δ)

)
≥ 2− 2η.

Since η ∈ (0, δ) is arbitrary we deduce that

diam

(
n∑

i=1

λiS(BY ∗ , yi, δ)

)
= 2,

and we are done. †

From the symmetry of the spaces X and Y in the proof of the above result, this one
can also be written in the following way.

Corollary 3.14. Let X, Y be Banach spaces and let be H a closed subspace of L(X, Y )
whose norm is octahedral and such that X∗ ⊗ Y ⊆ H. Assume that Y has non-rough
norm. Then the norm of X∗ is octahedral.

As a consequence of Proposition 3.13 and Theorem 3.5 we get the following equivalence.

Corollary 3.15. Let X, Y be Banach spaces. Assume that the norm of X∗ is non-rough
and that there exists f ∈ SX∗ such that {x ∈ SX : f(x) = 1} is norming for X∗. Then,
for every closed subspace H of L(X, Y ) such that X∗ ⊗ Y ⊆ H, the following assertion
are equivalent:

i) The norm of H is octahedral.

ii) The norm of Y is octahedral.
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Again, using the duality between having octahedral norm and the SD2P joint with
the duality (X⊗̂πY )∗ = L(X, Y ∗), we get from Proposition 3.13, a necessary condition
for a projective tensor product to have the SD2P.

Corollary 3.16. Assume that X and Y are Banach spaces such that X⊗̂πY has SD2P
and X∗ has non-rough norm. Then Y has the SD2P.

Although the previous corollary gives a necessary condition for a projective tensor
product to have the SD2P, as far as we are concerned it does not produce any counter-
example to the question whether the SD2P is preserved from one factor by taking projective
tensor product. Because of this reason, we will present another necessary condition for a
space of operators to have an octahedral norm.

Lemma 3.17. Let X and Y be Banach spaces and assume that Y ∗ is uniformly convex.
Assume also that there exists a closed subspace H of L(Y ∗, X) such that X ⊗ Y ⊆ H and
that the norm of H is octahedral. Then Y ∗ is finitely representable in X.

Proof. Recall that the modulus of uniform convexity of Y ∗ is defined by

δ(ε) = inf

{
1−

∥∥∥∥
f + g

2

∥∥∥∥ : f, g ∈ BY ∗ , ‖f − g‖ ≥ ε

}
.

Note that if f, g ∈ BY ∗ satisfy f(y) > 1− δ(ε) and g(y) > 1− δ(ε), for some y ∈ SY , then
‖f − g‖ < ε.

Let ε > 0 and choose ν > 0 so small that (1+ ν)(1− 3ν)−1 < 1+ ε. Pick 0 < η < ν/2
such that δ(η) < ν/2.

Let F ⊆ Y ∗ be a finite-dimensional subspace. Pick a ν-net (fi)
n
i=1 for SF . Choose

yi ∈ SY such that fi(yi) = 1.
Let x ∈ SX . By assumption the norm of H is octahedral, so there exists a T ∈ SH

such that
‖yi ⊗ x+ T‖ > 2− δ(η)

holds for every i ∈ {1, ..., n}.
We want to show that F is (1+ε) isometric to a subspace of X. We have ‖T (f)‖ ≤ ‖f‖

since T has norm one. For every i ∈ {1, . . . , n} we choose ϕi ∈ SY ∗ such that

‖ϕi(yi)x+ T (ϕi)‖ > 2− δ(η).

By the triangle inequality |ϕi(yi)| > 1 − δ(η) and ‖T (ϕi)‖ > 1 − δ(η). We may assume
that ϕi(yi) > 1 − δ(η). Since fi(yi) = 1 we get from the uniform convexity of Y ∗ that
‖fi − ϕi‖ < η < ν/2. We also get

‖T (fi)‖ ≥ ‖T (ϕi)‖ − ‖T‖‖fi − ϕi‖ > 1− δ(η)− ν

2
> 1− ν.

From [AK, Lemma 11.1.11] we see that T restricted to F is a (1 + ε) isometry. †

From the previous lemma we get the desired counterexample.

Theorem 3.18. Let 2 < p < ∞ and n ≥ 3. Then neither ℓ∞⊗̂πℓ
n
p nor L∞⊗̂πℓ

n
p enjoy

the SD2P.
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Proof. Notice that (ℓnp )
∗ = ℓnp∗ , where

1
p
+ 1

p∗
= 1, is not finitely representable in L1 nor in

ℓ1. This means that the norms of ℓnp∗⊗̂εℓ1 and ℓ
n
p∗⊗̂εL1 are not octahedral by Lemma 3.17.

Consequently, their dual spaces, which are ℓnp⊗̂πℓ∞ and ℓnp⊗̂πL∞ [Ryan, Theorem 5.33],
fail the w∗-SD2P, and the theorem follows. †
Remark 3.19. In [ALN2, Question (b)] it is asked how the diameter two properties
are preserved by tensor products. We can now provide a complete answer to this ques-
tion for the SD2P in the projective case. The SD2P is preserved from both factors, by
Corollary 3.10, but not in general from one of them, by Theorem 3.18.

Remark 3.20. Note that L∞ as well as ℓ∞ have an infinite-dimensional centralizer
[HWW, Example I.3.4.(h)]. From Theorem 3.18 we see that, given two Banach spaces
X and Y , it is not enough to assume that X has an infinite-dimensional centralizer to
ensure that X⊗̂πY has the SD2P. But both L∞ and ℓ∞ are isometric to C(K) spaces so
L∞⊗̂πY and ℓ∞⊗̂πY do have the D2P for any Y by 3 in Proposition 1.36.

Remark 3.21. Our results also give natural examples of tensor products failing the
Daugavet property.

By Theorem 4.2 and Corollary 4.3 in [KKW] there exists a two dimensional complex
Banach space E such that both LC

1 ⊗̂εE and LC

∞⊗̂πE
∗ fail the Daugavet property.

Note that both real and complex L1 and L∞ have the Daugavet property.
However, from our techniques we improve the above-mentioned results of [KKW] by

giving examples of (real) Daugavet spaces such that their projective tensor product fail
to have the SD2P, as the example ℓnp⊗̂πL∞ shows in Theorem 3.18.

LetX and Y be two Banach spaces andH be a subspace of L(Y ∗, X) containingX⊗Y .
Notice that Lemma 3.17 shows that, in presence of uniform convexity assumptions, finite
representability of Y ∗ in X is a necessary condition in order to get that the norm of H is
octahedral. In the case that X = ℓ1 or L1, it turns out to be a sufficient condition too.

Theorem 3.22. Let X be a Banach space. Then:

1. If, for all ε > 0, X is (1+ε) isometric to a subspace of ℓ1, then the norm of L(X, ℓ1)
is octahedral.

2. If, for all ε > 0, X is (1 + ε) isometric to a subspace of L1, then the norm of
L(X,L1) is octahedral.

Proof. (1). Let ε > 0 and ψ : X → ℓ1 be a (1 + ε) isometry. Let T1, . . . , Tn ∈ SL(X,ℓ1)

and, for every i ∈ {1, . . . , n}, pick xi ∈ SX such that ‖Ti(xi)‖ > 1− ε.
Let Pk be the projection on ℓ1 onto the first k coordinates. Choose k ∈ N so that

‖Pk(Ti(xi))− Ti(xi)‖ < ε and ‖Pk(ψ(xi))− ψ(xi)‖ < ε for every i ∈ {1, . . . , n}.
Let ϕk : ℓ1 → ℓ1 be the shift operator defined by

ϕk(x)(n) :=

{
0 if n ≤ k,

x(n− k) if n > k.

Define S := ϕk ◦Pk ◦ψ. Now, as Pk(Ti(xi)) and S(xi) have disjoint support, we have that

‖Ti + S‖ ≥ ‖PkTi(xi)‖ − ε+ ‖Pk(ψ(xi))‖
≥ ‖Ti(xi)‖+ ‖ψ(xi)‖ − 3ε > 2− 5ε,
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so we are done.
(2). Define A := [0, 1]. Let T1, . . . , Tn ∈ SL(X,L1) and ε > 0. By assumption there

exists xi ∈ SX such that ‖Ti(xi)‖ =
∫
A
|Ti(xi)| > 1 − ε

2
for all i ∈ {1, . . . , n}. Pick a

non-empty closed interval I ⊆ A such that
∫
I
|Ti(xi)| < ε

2
holds for each i ∈ {1, . . . , n}.

By assumption there exists a (1 + ε) linear isometry T : X → L1. Let φ : I → A be
an increasing and affine bijection. Define SI : L1 → L1 by the equation

SI(f) = (f ◦ φ)φ′χI for all f ∈ L1,

where χI denotes the characteristic function on the interval I. Note that SI is a linear
isometry because of the change of variable theorem. Indeed

‖SI(f)‖ =

∫

I

|(f ◦ φ)φ′| =
∫

φ(I)

|f | =
∫

A

|f | = ‖f‖ for all f ∈ L1.

Define G := SI ◦ T , which is a (1+ ε) linear isometry such that supp(G(f)) ⊆ I holds
for all f ∈ L1. Given i ∈ {1, . . . , n}, we have

‖Ti +G‖ ≥ ‖Ti(xi) +G(xi)‖ =

∫

A\I

|Ti(xi)|+
∫

I

|Ti(xi) +G(xi)|.

Now ∫

A\I

|Ti(xi)| = ‖Ti(xi)‖ −
∫

I

|Ti(xi)| > 1− ε.

Moreover ∫

I

|Ti(xi) +G(xi)| ≥
∫

I

|G(xi)| − |Ti(xi)| >
∫

I

|G(xi)| −
ε

2
.

Finally note that, as supp(G(xi)) ⊆ I, we have
∫
I
|G(xi)| = ‖G(xi)‖ > (1−ε)‖xi‖ = 1−ε.

Consequently

‖Ti +G‖ > 2− 5ε

2
.

As ε was arbitrary we conclude that the norm of L(X,L1) is octahedral, as desired. †

From here we can conclude the following result.

Corollary 3.23. If X is a 2-dimensional Banach space, then the norms of both ℓ1⊗̂εX =
L(c0, X) and L1⊗̂εX are octahedral.

Proof. We have that X∗ is isometric to a subspace of L1 [Dor, Corollary 1.4], so in
particular Theorem 3.22 applies. †

Note that the above corollary improves [HLP1, Proposition 2.3], where the authors
show that the norm of L(c0, ℓ

2
p) is octahedral for every 1 ≤ p ≤ ∞. Dualising we get the

following result, which improves [LLR1, Proposition 2.10] for two dimensional Banach
spaces.

Corollary 3.24. If X is a 2-dimensional Banach space, then c0⊗̂πX has the SD2P.

Next we give more examples of finite-dimensional Banach spaces for which the norm
of its projective tensor product with ℓ∞ and L∞ have the SD2P.
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Proposition 3.25. Let n ≥ 3 be a natural number and 2 ≤ p ≤ ∞. Then the norms of
both L(ℓnp∗ , ℓ1) and L(ℓ

n
p∗ , L1) are octahedral.

Proof. We know that ℓp∗ is isometric to a subspace of L1 [AK, Theorem 6.4.19] which in
turn contains ℓnp∗ isometrically. In particular, ℓnp∗ is finitely-representable in ℓ1 and in L1,
so Theorem 3.22 applies, which shows that the norm of L(ℓnp∗ , Y ) is octahedral for Y = ℓ1
and Y = L1. †

In fact, an infinite-dimensional version of the previous result also works.

Proposition 3.26. Let 2 ≤ p <∞. Then:

1. Given a closed subspace H of L(ℓp∗ , ℓ1) containing ℓp ⊗ ℓ1, then the norm of H is
octahedral.

2. Given a closed subspace H of L(ℓp∗ , L1) containing ℓp ⊗ L1, then the norm of H is
octahedral.

Proof. (1). We proceed as in Theorem 3.22. Given T1, . . . , Tn ∈ SH and ε > 0 we start
by choosing, for every i ∈ {1, . . . , n}, an element xi ∈ Sℓp∗ such that ‖Ti(xi)‖ > 1 − ε.
Find m ∈ N such that ‖Pm(xi) − xi‖ < ε, where Pm is the projection onto the first
m coordinates. Since ℓp∗ is finitely representable in ℓ1 there exists a (1 + ε) isometry
T : Pm(ℓp∗) → ℓ1. The operator ψ := T ◦ Pm is then well-defined and using this ψ we
define S := ϕk ◦ Pk ◦ ψ as in the proof of Theorem 3.22. Note that S ∈ ℓp ⊗ ℓ1 ⊆ H since
Pm has finite rank. Similar estimates to the ones in Theorem 3.22 conclude the proof.

The proof of (2) is similar. †

Let us end the section with a summary of the behaviour of the octahedrality of the
subspaces of H of L(X, Y ) containing the finite rank operators when X = ℓ1 or L1 and
Y is an ℓp space.

Theorem 3.27. Let 1 ≤ p ≤ ∞ and let X be either L1 or ℓ1. Then:

1. If H is a closed subspace of L(ℓp∗ , X) which contains ℓp ⊗ X, then the norm of H
is octahedral if, and only if, 2 ≤ p or p = 1.

2. If H is a closed subspace of L(ℓ1, X) which contains c0 ⊗X, then the norm of H is
octahedral.

3. If n is a natural number and H is a closed subspace of L(ℓnp∗ , X) which contains
ℓnp ⊗ X, then the norm of H is octahedral if, and only if, either n ≤ 2 or if n > 2
and 2 ≤ p or p = 1.

The case p = ∞ follows since ℓn∞ is alternatively octahedral and so the octahedrality
follows (see [HLP2, Theorem 2.1] for details).
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3.2 Octahedrality in vector-valued Lipchitz-free Banach

spaces

The following two sections will be devoted to studying octahedrality of the norm of
Lipschitz-free spaces (see formal definitions below). Our motivation for this study is that,
roughly speaking, there is a strong ℓ1 behaviour in these spaces (e.g. every Lipschitz-free
space contains a complemented copy of ℓ1 whenever it is infinite-dimensional [CDW]).
This means, according to [God2, Theorem II.4], that every infinite-dimensional Lipschitz-
free space admits an equivalent octahedral norm. In view of such result, it is natural the
question whether the norm of Lipschitz-free spaces is or not octahedral. This is the aim
of the following two sections.

In order to do so, we will introduce the Lipschitz-free spaces. Given a metric space
M with a designated origin 0 and a Banach space X, we will denote by Lip0(M,X)
the Banach space of all X-valued Lipschitz functions on M which vanish at 0 under the
standard Lipschitz norm

‖f‖ := sup

{‖f(x)− f(y)‖
d(x, y)

: x, y ∈M,x 6= y

}
.

First of all, notice that we can consider every point of M as the origin with no loss of
generality. Indeed, given x, y ∈M , let Lipx(M,X) (Lipy(M,X)) be the space of X-valued
Lipschitz functions which vanish at x (respectively at y). Then the map

Lipx(M,X) −→ Lipy(M,X)
f 7−→ f − f(y),

defines an onto linear isometry. So the designated origin will be freely chosen.
From a straightforward application of Ascoli-Arzela theorem it can be checked that

BLip0(M,X∗) is a compact set for the pointwise topology. Hence Lip0(M,X∗) is itself a dual
Banach space. In fact, the map

δm,x : Lip0(M,X∗) −→ R

f 7−→ f(m)(x)

defines a linear and bounded map for each m ∈ M and x ∈ X. In other words, δm,x ∈
Lip0(M,X∗)∗. Then if we define

F(M,X) := span({δm,x : m ∈M,x ∈ X})

then we have that F(M,X)∗ = Lip0(M,X∗) by [Kai, Theorem 1]. We will refer to the
previous space as the X-valued Lipschitz-free space over M . The reference to the Banach
space X will be omitted when X = R.

Lipschitz-free Banach spaces have been intensively studied in the last 20 years. We
refer to [God1, GK, Kal, Wea] for background about Lipschitz-free spaces. Concerning
the vector-valued versions, we refer the reader to [Joh, Section 4].

Notice that, given a metric space M , then the mapping δ : M −→ F(M) such that
δ(m) = δm defines an isometry. The fundamental linearisation property of Lipschitz-free
spaces is the following: given a metric space M and a Banach space X, then for every
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Lipschitz mapping f : M −→ X then there exists a bounded operator Tf : F(M) −→ X
such that the following diagram commutes

M
f

//
� _

δ
��

X

F(M)
Tf

<<

The commutativity of the previous diagram says nothing but Tf (δm) := f(m). This
defines a linear isometry

Φ : Lip0(M,X) −→ L(F(M), X)
f 7−→ Tf .

(3.2)

We claim that the previous isometry is onto. Indeed, given a bounded operator T :
F(M) −→ X then define f(m) := T (δ(m)) for every m ∈ M . It is clear, from the
boundedness of T , that f is Lipschitz. Furthermore Tf and T agree on {δm : m ∈ M} ⊆
F(M). So T = Tf , which proves the surjectivity of Φ.

In the dual setting, notice that Φ is an isometric isomorphism between Lip0(M,X∗) =
F(M,X)∗ and L(F(M), X∗) = (F(M)⊗̂πX)∗. We can wonder whether the isometry Φ is,
in such a case, w∗ − w∗ continuous, in order to guarantee that F(M,X) and F(M)⊗̂πX
are isometrically isomorphic. That is what will be done in the next result. Before the
statement of such result, notice that a bounded net {fs} in Lip0(M,X∗) converges in the
weak-star topology to a function f ∈ Lip0(M,X∗) if, and only if, {fs(m)} → f(m) for
each m ∈M , where the last convergence is in the weak-star topology of X∗. Now we can
prove the desired result.

Proposition 3.28. F(M,X) and F(M)⊗̂πX are isometrically isomorphic Banach spaces
for every metric space M and for every Banach space X.

Proof. It is enough to prove that Φ is w∗−w∗ continuous, where the weak-star topologies
are respectively induced by F(M,X) on Lip0(M,X∗) and by F(M)⊗̂πX on L(F(M), X∗).

Note that Φ is w∗ − w∗ continuous if, and only if, for every z ∈ F(M)⊗̂πX one has
that z◦Φ is a weak-star continuous functional. By [FHHMPZ, Corollary 3.94] it is enough
to prove that, given z ∈ F(M)⊗̂πX, we have that ker(z ◦ Φ) ∩ BLip0(M,X∗) is weak-star
closed. So, pick z ∈ F(M)⊗̂πX and consider {fs} a net in ker(z ◦Φ) ∩BLip0(M,X∗) which
is weak-star convergent to f , and let us prove that (z ◦Φ)(f) = 0. To this end, pick ε > 0.
Note that z can be expressed as

z :=
∞∑

n=1

γn ⊗ xn

where γn ∈ F(M) and xn ∈ X verify that ‖z‖ ≤∑∞
n=1 ‖γn‖‖xn‖ <∞ [Ryan, Proposition

2.8]. Now, consider a sequence {εn} in R
+ such that

∑∞
n=1 εn <

ε
3
and consider, for each

n ∈ N, an element ψn ∈ span{δm : m ∈M} verifying ‖γn −ψn‖‖xn‖ < εn
2
for each n ∈ N.

As it is clear that
∑∞

n=1 ‖ψn‖‖xn‖ <∞, consider k ∈ N such that
∑∞

n=k+1 ‖ψn‖‖xn‖ < ε
6
.

Finally, in view of weak-star topology of Lip0(M,X∗), it is obvious that {fs(ψn)(xn)} →
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f(ψn)(xn) for each n ∈ N, hence we can find s such that |(f − fs)(ψn)(xn)| < ε
3k

for each
n ∈ {1, . . . , k}. Now, bearing in mind that ‖f − fs‖ ≤ 2, we get

|(z ◦ Φ)(f)| = |(z ◦ Φ)(f − fs)| =
∣∣∣∣∣

∞∑

n=1

Tf−fs(γn)(xn)

∣∣∣∣∣ ≤

∣∣∣∣∣

k∑

n=1

Tf−fs(ψn)(xn)

∣∣∣∣∣+ ‖f − fs‖
∞∑

n=k+1

‖γn − ψn‖‖xn‖ ≤

k∑

n=1

|(f − fs)(ψn)(xn)|+ ‖f − fs‖
∞∑

n=k+1

‖ψn‖‖xn‖+
ε

3

<
k∑

n=1

ε

3k
+

2ε

3
= ε.

As ε > 0 was arbitrary we conclude that (z ◦ Φ)(f) = 0, so we are done. †
Let M be a metric space and X be a Banach space. Notice that we have a useful

description of F(M,X) because we know a dense subspace of it. This fact will play an
important role in the following because diameter two properties actually rely on dense
subspaces in the following sense.

Proposition 3.29. Let X be a Banach space. Let Y ⊆ X∗ be a norm dense subspace.
Then:

1. If for each f ∈ SY and α ∈ R
+ the slice S(BX , f, α) has diameter two, then X has

the slice-D2P.

2. If for each f1, . . . , fn ∈ SY and α1, . . . , αn ∈ R
+ such thatW :=

n⋂
i=1

S(BX , fi, αi) 6= ∅
it follows that W has diameter two, then X has the D2P.

3. If for each f1, . . . , fn ∈ SY , α1, . . . , αn ∈ R
+ and λ1, . . . , λn ∈]0, 1] with∑n

i=1 λi = 1,
the convex combination of slices

∑n
i=1 λiS(BX , fi, αi) has diameter two, then X

satisfies the SD2P.

Proof. We will prove statement (1) because the proofs of (2) and (3) are completely
similar.

Pick a slice S := S(BX , f, α) of BX . Since Y is norm dense in X∗ we can find ϕ ∈ SY

such that ‖f − ϕ‖ < α
2
.

By hypothesis, given an arbitrary δ ∈ R
+ we can find x, y ∈ S(BX , ϕ,

α
2
) such that

‖x − y‖ > 2 − δ. Let us prove that x ∈ S, being the proof of y ∈ S similar. Bearing in
mind that ϕ(x) > 1− α

2
and that ‖f − ϕ‖ < α

2
we deduce

f(x) = ϕ(x) + (f − ϕ)(x) ≥ ϕ(x)− ‖f − ϕ‖ > 1− α.

On the other hand, as x, y ∈ S, we conclude

2− δ < ‖x− y‖ ≤ diam(S).

As δ ∈ R
+ was arbitrary we conclude that X has the slice-D2P, as desired. †
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Now we consider the weak-star version of proposition above.

Proposition 3.30. Let X be a Banach space and Y ⊆ X be a dense subspace. Then:

1. If for each y ∈ SY and α ∈ R
+ the slice S(BX∗ , y, α) has diameter two, then X has

the w∗-slice-D2P.

2. If for each y1, . . . , yn ∈ SY and α1, . . . , αn ∈ R
+ such that W :=

n⋂
i=1

S(BX∗ , yi, αi) 6=
∅ one has that W has diameter two, then X has the w∗-D2P.

3. If for y1, . . . , yn ∈ SY , α1, . . . , αn ∈ R
+ and λ1, . . . , λn ∈]0, 1] with ∑n

i=1 λi = 1 the
convex combination of weak-star slices

∑n
i=1 λiS(BX∗ , yi, αi) has diameter two, then

X satisfies the w∗-SD2P.

Recall that one of the central results in the theory of Lipschitz functions is the classical
McShane’s extension theorem. It says that if N ⊆ M and f : N −→ R is a Lipschitz
function, then there is an extension to a Lipschitz function F : M −→ R with the same
Lipschitz constant (see, e.g. [Wea, Theorem 1.5.6]). It is known that such result is false
in the vector-valued setting (see below for counterexamples). Because of the implications
of the previous theorem, we will consider the following definition.

Definition 3.31. Let M be a metric space and let X be a Banach space.
We will say that the pair (M,X) satisfies the contraction-extension property (CEP) if

given a set N ⊆ M and a Lipschitz function f : N −→ X then there exists a Lipschitz
function F :M −→ X which extends f such that

‖F‖Lip0(M,X) = ‖f‖Lip0(N,X).

On the one hand note that, in the particular case of M being a Banach space, the
definition given above agrees with the one given in [BeLi].

On the other hand, let us give some examples of pairs which have the CEP. First of
all, given a metric spaceM , the pair (M,R) has the CEP by McShane extension theorem.
In addition, in [BeLi, Chapter 2] we can find some examples of Banach spaces X such
that the pair (X,X) satisfies the CEP such as Hilbert spaces and ℓn∞. Finally, if Y is a
strictly convex Banach space such that there exists a Banach space X with dim(X) ≥ 2
and verifying that the pair (X, Y ) has the CEP, then Y is a Hilbert space [BeLi, Theorem
2.11].

Let us explain in a rough way the key idea of the main result of the section which
proves, for every unbounded or not uniformly discrete metric space M , that the norm of
F(M,X) is octahedral, whenever the pair (M,X∗) has the CEP, where X is any Banach
space. For this, it is enough to show that, given a convex combination of w∗-slices C in the
unit ball of Lip0(M,X∗), then C has diameter exactly 2. What is done first is to observe
that it is enough to consider w∗-slices given by elements in span{δm,x : m ∈ M,x ∈ X},
which is based on Proposition 3.30. Now, depending on the assumptions on the metric
space, we construct a pair of Lipschitz functions in every w∗-slice defining C. Each pair
of these Lipschitz functions are defined on different finite metric subspaces so that, when
extended to the whole metric space by making use of the CEP assumption, each pair of
these norm preserving extensions are in the corresponding w∗−slice of those defining C.
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All these pairs define two elements of C which we can guarantee that are far enough to
get that C has diameter 2 from the construction too. The detailed construction will be
made discussing by cases depending on the topological structure of the metric space, but
the existence of a unified idea motivates us to present the following result in a joint way.

Theorem 3.32. Let M be an infinite pointed metric space and let X be a Banach space.
Assume that the pair (M,X∗) has the CEP. IfM is unbounded or is not uniformly discrete
then the norm of F(M,X) is octahedral. Consequently, the unit ball of F(M,X) can not
have any point of Fréchet differentiability.

Proof. We will prove, by Theorem 2.17, that Lip0(M,X∗) has the w∗-SD2P. Let C =∑k
i=1 λiS(BLip0(M,X∗), ϕi, α) be a convex combination of weak-star slices in BLip0(M,X∗)

and let us prove that C has diameter exactly 2. From Proposition 3.30 we can assume
that ϕi ∈ span{δm,x : m ∈M,x ∈ X} for each i ∈ {1, . . . , k}. So assume that

ϕi =

ni∑

j=1

λijδmi,j ,xi,j
,

for suitable ni ∈ N,mi,j ∈M\{0}, xi,j ∈ X\{0}, λij ∈ R for i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}.
Pick gi ∈ S(BLip0(M,X∗), ϕi, α) and δ0 ∈ R

+ verifying

ϕi(gi)

1 + δ0
> 1− α

holds for all i ∈ {1, . . . , k}. Fix 0 < δ < δ0. Now we will divide the proof in several steps.
Step 1: we will define, for every i ∈ {1, . . . , k}, a subspace Mi ⊂ M and functions Fi

and Gi in Lip0(Mi, X
∗).

We will do this depending on the following cases: M is unbounded, M is bounded and
discrete but not uniformly discrete or M is bounded and 0 ∈M ′. It is clear that when M
is unbounded or not uniformly discrete, it is enough to study each of these three cases.

Assume that M is unbounded. Then there exists a sequence {mn} ⊆M verifying

{d(mn, 0)} → ∞.

Hence
{d(mn,m)} → ∞

for each m ∈M in view of triangle inequality. Now pick a positive integer N so that

d(mi,j, 0)

d(mN ,mi,j)
+

‖gi(mi,j)‖
d(mN ,mi,j)

< δ (3.3)

holds for every i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}. Choose x∗ ∈ SX∗ and define Mi :=

{0} ∪
k⋃

i=1

ni⋃
j=1

{mi,j} ∪ {mN} for every i ∈ {1, . . . , k}. (In this case Mi does not depend on

the index i). We also define Fi, Gi :Mi −→ X∗ given by

Fi(mi,j) = Gi(mi,j) = gi(mi,j) i ∈ {1, . . . , k}, j ∈ {1, . . . , ni},

Fi(0) = Gi(0) = 0, Fi(mN) = −Gi(mN) = d(mN , 0)x
∗.
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Assume now that M is bounded and discrete, but not uniformly discrete. As M is
discrete we can find r > 0 such that

B(0, r) = {0}, B(mi,j, r) = {mi,j}

holds for all i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}. Furthermore, sinceM is not uniformly discrete
we can find a pair of sequences {xn}, {yn} in M such that 0 < d(xn, yn) → 0. Pick n ∈ N

big enough so that d(xn, yn) < δ and that

1 + d(xn,yn)
d(xn,v)

1− d(xn,yn)
d(xn,v)

< 1 + δ (3.4)

holds for all v ∈ {mi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ ni} ∪ {0}. Note that such an n exists since
{d(xn, v)−1} is a well defined bounded sequence because M is discrete and bounded in

this case. Given i ∈ {1, . . . , k} and x∗ ∈ SX∗ define Mi := {0} ∪
ni⋃
j=1

{mi,j} ∪ {xn, yn} and

Fi, Gi :=Mi −→ R given by

Fi(0) = gi(0) = 0, Fi(mi,j) = Gi(mi,j) = gi(mi,j), j ∈ {1, . . . , ni},

and
Fi(xn) = Gi(xn) = gi(xn), Fi(yn) = gi(xn) + d(yn, xn)x

∗,

Gi(yn) = gi(xn)− d(yn, xn)x
∗.

Finally, we assume that M is bounded and 0 ∈ M ′. Then we can find a sequence
{mn} in M \ {0} such that {mn} → 0. So there exists a positive integer m such that
mn /∈ {mi,j : i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}} for every n ≥ m. Now pick x∗ ∈ SX∗ and, for
each i ∈ {1, . . . , k}, we define Mi := {0,mn}

⋃∪ni

j=1{mi,j} and Fi, Gi :Mi −→ X∗ by the
equations

Fi(mi,j) = Gi(mi,j) = gi(mi,j) i ∈ {1, . . . , k}, j ∈ {1, . . . , Ni}
and

Fi(mn) = −Gi(mn) = d(mn, 0)x
∗, Fi(0) = Gi(0) = 0.

Now, for each unbounded or not uniformly discrete metric space M we have defined
the desired subspacesMi and functions Fi and Gi in Lip0(Mi, X

∗) for every i ∈ {1, . . . , k}.
Step 2: we claim that ‖Fi‖Lip0(Mi,X∗) ≤ 1 + δ holds for all i ∈ {1, . . . , k}. To this end

we have three cases again: M is unbounded, M is bounded, discrete but not uniformly
discrete or M is bounded and 0 ∈M ′.

Assume that M is unbounded. Given i ∈ {1, . . . , k} and u, v ∈ Mi, we have two
different possibilities:

a) If u, v /∈ {mN} then

‖Fi(u)− Fi(v)‖
d(u, v)

=
‖gi(u)− gi(v)‖

d(u, v)
≤ ‖gi‖ ≤ 1.
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b) If u = mN then

‖Fi(u)− Fi(v)‖
d(u, v)

=
‖d(mN , 0)x

∗ − Fi(v)‖
d(mN , v)

≤ d(mN , 0)

d(mN , v)
+

‖gi(v)‖
d(mN , v)

≤ 1 +
d(v, 0)

d(mN , v)
+

‖gi(v)‖
d(mN , v)

(3.3)
< 1 + δ.

Now, taking supremum in u and v, we get

‖Fi‖Lip0(Mi,X∗) ≤ 1 + δ.

Assume now that M is bounded, discrete but not uniformly discrete. Again given
u, v ∈Mi, u 6= v and i ∈ {1, . . . , k} we have different possibilities:

a) If u 6= yn and v 6= yn then we have

‖Fi(u)− Fi(v)‖
d(u, v)

=
‖gi(u)− gi(v)‖

d(u, v)
≤ ‖gi‖ ≤ 1.

b) If u = yn, v 6= xn then

‖Fi(u)− Fi(v)‖
d(u, v)

=
‖gi(xn) + d(xn, yn)x

∗ − gi(v)‖
d(yn, v)

≤ ‖gi(xn)− gi(v)‖+ d(xn, yn)

d(yn, v)

<
d(xn, v) + d(xn, yn)

d(xn, v)− d(yn, xn)

=
1 + d(xn,yn)

d(xn,v)

1− d(xn,yn)
d(xn,v)

(3.4)
< 1 + δ.

c) If u = yn and v = xn then

‖Fi(u)−Gi(v)‖
d(u, v)

=
d(xn, yn)‖x∗‖
d(xn, yn)

= 1

Then, taking supremum in u and v, it follows

‖Fi‖Lip0(Mi,X∗) ≤ 1 + δ.

If M is bounded and 0 ∈M ′ we can also get that

‖Fi‖Lip0(Mi,X∗) ≤ 1 + δ
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using similar arguments to the ones of the above cases taking large enough n.
Similar computations also arise that

‖Gi‖Lip0(Mi,X∗) ≤ 1 + δ

holds for every i ∈ {1, . . . , k}.
Now, we have defined subspaces Mi ⊂ M and functions Fi, Gi ∈ Lip0(Mi, X

∗) such
that

max
1≤i≤k

{‖Fi‖Lip0(Mi,X∗), ‖Gi‖Lip0(Mi,X∗)} ≤ 1 + δ.

Since the pair (M,X∗) has the CEP then, for each i ∈ {1, . . . , k}, we can find an extension
of Fi and Gi to the wholeM respectively, which we will call again Fi and Gi, respectively,
such that

‖Fi‖Lip0(M,X∗) ≤ 1 + δ, ‖Gi‖Lip0(M,X∗) ≤ 1 + δ.

So Fi

1+δ
, Gi

1+δ
∈ BLip0(M,X∗) for each i ∈ {1, . . . , k}.

Step 3: we prove that
∑k

i=1 λi
Fi

1+δ
∈ C,

∑k
i=1 λi

Gi

1+δ
∈ C and conclude from here

that C has diameter 2. We prove this fact in the case M is unbounded. For the other
cases, the arguments and estimates are similar. Then, assume M is unbounded. Given
i ∈ {1, . . . , k} it follows

ϕi

(
Fi

1 + δ

)
=

∑ni

j=1 λ
i
jFi(mi,j)(xi,j)

1 + δ
=

∑ni

j=1 λ
i
jgi(mi,j)(xi,j)

1 + δ
=
gi(ϕi)

1 + δ
> 1− α.

So
∑k

i=1 λi
Fi

1+δ
∈ C. Similarly one has

∑k
i=1 λi

Gi

1+δ
∈ C. Hence

diam(C) ≥
∥∥∥∥∥

k∑

i=1

λi
Fi

1 + δ
−

k∑

i=1

λi
Gi

1 + δ

∥∥∥∥∥

≥

∥∥∥
∑k

i=1 λi
Fi(mN )
1+δ

−∑k
i=1 λi

Gi(mN )
1+δ

∥∥∥
d(mN , 0)

=

∥∥∥
∑k

i=1 2λi
d(mN ,0)x∗

1+δ

∥∥∥
d(mN , 0)

=
2

1 + δ
.

From the above estimate and the arbitrariness of 0 < δ < δ0 we deduce that diam(C) =
2, and we are done. †

Now let us end the section by analysing the vector-valued Lipschitz-free Banach space
over a concrete metric space. From here, we will get two interesting consequences: on
the one hand, we will get examples of vector-valued Lipschitz-free Banach spaces which
not only fail to have an octahedral norm but also its unit ball contains points of Fréchet
differentiability. On the other hand, we will prove that the construction of the points of
Fréchet differentiability does depend on the underlying target Banach space.

For the construction of such a metric space consider an infinite set Γ. Define M :=
Γ ∪ {0} ∪ {z}. Consider on M the following distance:

d(x, y) :=





1 if x, y ∈ Γ ∪ {0}, x 6= y,
1 if x = z, y ∈ Γ or x ∈ Γ, y = z,
2 if x = z, y = 0 or x = 0, y = z,
0 Otherwise.
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This is obviously an infinite, bounded and uniformly discrete metric space. Moreover,
it is not difficult to prove that the pair (M,X) has the CEP for every Banach space X.
Consider a Banach space X, pick y ∈ SX and notice that δz,y is a 2-norm functional, so

define ϕ := δz,y
2

∈ SF(M,X). Given α ∈ R
+ consider

Sα := S
(
BLip0(M,X∗), ϕ,

α

2

)
= {f ∈ BLip0(M,X∗) / f(z)(y) > 2− α}.

Consider x ∈ Γ and f ∈ Sα. We claim that

f(x)(y) > 1− α.

Indeed, assume by contradiction that f(x)(y) ≤ 1− α. Then

1 < f(z)(y)− f(x)(y) = (f(z)− f(x))(y) ≤ ‖f(z)− f(x)‖ ≤ d(z, x) = 1,

a contradiction.
We will prove that infα diam(Sα) depends on the target space X∗.

Proposition 3.33. If y is a point of Fréchet differentiability of BX , then infα diam(Sα) =
0.

Proof. Notice that, as y is a point of Fréchet differentiability, then there exists (Šmulyan

lemma) δ : R+ −→ R
+ such that δ(ε)

ε→0−→ 0 and such that

x∗, y∗ ∈ BX∗

x∗(y) > 1− α
y∗(y) > 1− α



⇒ ‖x∗ − y∗‖ < δ(α). (3.5)

Pick f, g ∈ S
(
BLip0(M,X∗), ϕ,

α
2

)
and u, v ∈M \ {0}, u 6= v. Our aim is to estimate

‖f(u)− g(u)− (f(v)− g(v))‖
d(u, v)

≤ ‖f(u)− g(u)− (f(v)− g(v))‖ ≤

≤ ‖f(u)− g(u)‖+ ‖f(v)− g(v)‖ =: K.

If u = z then we have

f(u)(y)

2
> 1− α

2
,
g(u)(y)

2
> 1− α

2

(3.5)
=⇒‖f(u)− g(u)‖ ≤ 2δ

(α
2

)
.

Similarly, if u ∈ Γ then

f(u)(y) > 1− α, g(u)(y) > 1− α
(3.5)
=⇒‖f(u)− g(u)‖ ≤ δ (α) .

Hence K ≤ δ(α) + max
{
δ(α), 2δ

(
α
2

)}
.

From the arbitrariness of f, g ∈ S
(
BLip0(M), ϕ,

α
2

)
we conclude that

diam
(
S
(
BLip0(M), ϕ,

α

2

))
≤ δ(α) + max

{
δ(α), 2δ

(α
2

)}
.

Finally, taking infimum in α ∈ R
+, from the hypothesis on δ and the continuity of the

map max we conclude the desired result. †
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Despite the obtained result in Proposition 3.33, we will prove that F(M,X) has a
dramatically different behaviour whenever X∗ has the w∗-slice-D2P.

Proposition 3.34. If X∗ has the w∗-slice-D2P, then infα Sα = 2.

Proof. Pick two arbitrary numbers α > 0 and ε > 0. As X∗ has the w∗-slice-D2P we can
find x∗, y∗ ∈ S

(
BX∗ , x, α

2

)
such that ‖x∗ − y∗‖ > 2 − ε. Now define f, g : M −→ X∗ by

the equations
f(t) := d(t, 0)x∗ g(t) := d(t, 0)y∗ ∀t ∈M.

Now f, g are clearly norm one Lipschitz functions. Moreover

ϕ(f) =
f(z)(x)

2
= x∗(x) > 1− α

2
.

So f ∈ Sα. Analogously g ∈ Sα. Consequently

diam(Sα) ≥ ‖f − g‖ ≥ ‖f(z)− g(z)‖
2

= ‖x∗ − y∗‖ > 2− ε.

As ε and α were arbitrary we conclude that diam(Sα) = 2 for every α, so we are done. †

From the two propositions above we can get the desired consequences. From Pro-
position 3.33 we get vector-valued Lipschitz-free Banach spaces with points of Fréchet
differentiability which, keeping in mind that the pair (M,X∗) has the CEP for every
Banach space X, proves that the assumptions on the metric space in Theorem 3.32 can-
not be removed. However, from Proposition 3.34 we conclude that the existence of such
Fréchet differentiability point depends on the target space. Indeed, we can even get oc-
tahedrality for suitable choices of X in the above example. For instance, the norm of
F(M, ℓ1) = F(M)⊗̂πℓ1 = ℓ1(F(M)) is octahedral.

3.3 Octahedrality in real Lipschitz-free spaces

In this section we will focus on the octahedrality in real Lipschitz-free Banach spaces in
order to characterise when the norm of a Lipschitz-free space F(M) is octahedral in terms
of a metric property of the underlying metric space M . That is what will be done in the
following theorem, which is the main result of the section.

Theorem 3.35. For a metric space M it is equivalent:

1. The norm of F(M) is octahedral.

2. For each ε > 0 and each finite subset N ⊂ M there are points u, v ∈ M , u 6= v,
such that every 1-Lipschitz function f : N → R admits an extension f̃ : M → R

which is (1 + ε)-Lipschitz and satisfies f̃(u)− f̃(v) ≥ d(u, v).

3. For each finite subset N ⊆M and ε > 0, there exist u, v ∈M,u 6= v, such that

(1− ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v)

holds for all x, y ∈ N .
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To prove this theorem we will need the following result, which brings to light the
importance of norming subsets of Banach spaces with an octahedral norm.

Proposition 3.36. Let X be a Banach space whose norm is octahedral and consider a
norming subset V ⊆ SX for X∗. Then, given x1, . . . , xn ∈ SX and ε > 0, there exists
v ∈ V such that

‖xi + v‖ > 2− ε

holds for every i ∈ {1, . . . , n}.

Proof. The proof will strongly rely on the ideas of Theorem 2.17. Pick x1, . . . , xn ∈ SX

and ε > 0. Consider the convex combination of weak-star slices of BX∗ defined by

C :=
1

n

n∑

i=1

S(BX∗ , xi, ε).

Since diam(C) = 2 by Theorem 2.17 then there are 1
n

∑n
i=1 fi,

1
n

∑n
i=1 gi ∈ C such that

∥∥∥∥∥
1

n

n∑

i=1

(fi − gi)

∥∥∥∥∥ > 2− ε

n
.

Since V is norming for X∗ we can find v ∈ V such that

1

n

n∑

i=1

(fi − gi)(v) > 2− ε

n
.

It follows that fi(v) − gi(v) > 2 − ε and consequently fi(v) > 1 − ε holds for every
i ∈ {1, . . . , n}. With this and since fi ∈ S(BX∗ , xi, ε) we have

‖xi + v‖ ≥ fi(xi) + fi(v) > 1− ε+ 1− ε = 2− 2ε

for every i ∈ {1, . . . , n}, and the result follows. †

Proof of Theorem 3.35. (2) ⇒ (1): Pick finitely-supported measures µ1, . . . , µn ∈ SF(M)

and ε > 0. Define N := {0} ∪
n⋃

i=1

supp(µi), which is a finite subset of M . For each

i ∈ {1, . . . , n} we can find gi ∈ SLip0(N) such that gi(µi) = ‖µi‖. By (2) we can find
u, v ∈ M,u 6= v such that, for each i ∈ {1, . . . , n}, there exists fi ∈ Lip0(M) such that
fi = gi on N , fi(u)− fi(v) ≥ d(u, v) and ‖fi‖ ≤ 1 + ε. Pick i ∈ {1, . . . , n}. Now

∥∥∥∥µi +
δu − δv
d(u, v)

∥∥∥∥ ≥
fi(µi) +

fi(u)−fi(v)
d(u,v)

1 + ε
≥ gi(µi) + 1

1 + ε
=

‖µi‖+ 1

1 + ε
.

Consequently, the norm of F(M) is octahedral, as desired.
(1) ⇒ (3): Pick a finite subset N ⊆M and ε > 0. Since the norm of F(M) is octahedral
we can find, making use of Proposition 3.36, two elements u 6= v ∈M such that

∥∥∥∥
δx − δy
d(x, y)

+
δu − δv
d(u, v)

∥∥∥∥ > 2− ε,
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holds for every x 6= y ∈ N . Hence, given x 6= y ∈ N , there exists f ∈ SLip0(M) such that

f(x)− f(y)

d(x, y)
+
f(u)− f(v)

d(u, v)
> 2− ε.

This implies the following two conditions

f(x)− f(y)

d(x, y)
> 1− ε, and

f(u)− f(v)

d(u, v)
> 1− ε.

Now, we have the following chain of inequalities:

1 ≥ f(x)− f(v)

d(x, v)
=
f(x)− f(y) + f(u)− f(v) + f(y)− f(u)

d(x, v)

>
(1− ε)d(x, y) + (1− ε)d(u, v)− d(u, y)

d(x, v)
.

Consequently
(1− ε)(d(x, y) + d(u, v)) < d(x, v) + d(u, y).

Since x 6= y ∈ N were arbitrary we conclude (3).
(3) ⇒ (2): Let N ⊂M finite and ε > 0 be given. By the assumptions, there are u, v ∈M ,
u 6= v, such that

1

1 + ε
(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v)

for all x, y ∈ N . Given a 1-Lipschitz function f on N we define f̃(u) = inf
x∈N

f(x) + (1 +

ε)d(x, u), f̃(v) = sup
x∈N∪{u}

f̃(x)− (1 + ε)d(x, v). Here we have just used twice the classical

“infimal-convolution” extension of f (see Theorem 1.5.6 in [Wea] and comments after the
proof), so f̃ = f on N and f̃ is (1+ε)-Lipschitz on N ∪{u, v}. Hence f̃ admits an (1+ε)-
Lipschitz extension to the whole of M (for example using again the infimal convolution).
Since N is finite, there exist z ∈ N and z′ ∈ N ∪{u} such that f̃(u) = f(z)+(1+ε)d(z, u)
and f̃(v) = f̃(z′) − (1 + ε)d(z′, v). If z′ = u, we have f̃(u) − f̃(v) = (1 + ε)d(u, v). If
z′ 6= u, we have

f̃(u)− f̃(v) = f(z)− f(z′) + (1 + ε)(d(z, u) + d(z′, v))

≥ f(z)− f(z′) +
1 + ε

1 + ε
(d(z, z′) + d(u, v)) ≥ d(u, v)

which finishes the proof. †
Remark 3.37. Let M be a metric space and 0 ≤ r < 1. Note that, adapting the proof
of Theorem 3.35, it can be proved that each of the following assertions implies the next
one:

1. For every µ1, . . . , µn ∈ SF(M) and every ε > 0 there exist u 6= v ∈M such that
∥∥∥∥µi +

δu − δv
d(u, v)

∥∥∥∥ ≥ 2− r − ε

holds for every i ∈ {1, . . . , n}.
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2. For each finite subset N ⊆M and ε > 0, there exist u, v ∈M,u 6= v, such that

(1− r − ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v)

holds for all x, y ∈ N .

3. For each ε > 0 and each finite subset N ⊂M there are points u, v ∈M , u 6= v, such
that every 1-Lipschitz function f : N → R admits an extension f̃ : M → R which
is 1

1−r−ε
-Lipschitz and satisfies f̃(u)− f̃(v) ≥ d(u, v).

4. For every µ1, . . . , µn ∈ SF(M) and every ε > 0 there exists u 6= v ∈M such that

∥∥∥∥µi +
δu − δv
d(u, v)

∥∥∥∥ ≥ 2− 2r − ε

holds for every i ∈ {1, . . . , n}.

We do not know whether (3) actually implies (1). Moreover, notice that Theorem 3.35 is
the particular case of the above implications whenever r = 0. Finally, notice that assertion
(1) is equivalent to the fact that the Whitley’s thickness index of F(M) is greater than
or equal to 2 − r (we refer to [CPS] and references therein for formal definitions and
background on such index).

Theorem 3.35 motivates the following definition.

Definition 3.38. Let M be a metric space. We will say that M has the long trapezoid
property (LTP) if, for each finite subset N ⊆ M and ε > 0, there exist u, v ∈ M,u 6= v,
such that

(1− ε)(d(x, y) + d(u, v)) ≤ d(x, u) + d(y, v)

holds for all x, y ∈ N .

Note that, in terms of the LTP, Theorem 3.35 reads as follows: a metric space M has
the LTP if, and only if, the norm of F(M) is octahedral.

To begin with, let us reprove the scalar version of Theorem 3.32 in terms of the LTP
condition.

Example 3.39. Any of the following properties implies that a metric space M has the
LTP.

1. M is unbounded.

2. inf
x 6=y

d(x, y) = 0.

Proof. Pick a finite subset N ⊆ M and ε > 0. In order to prove (1), consider v = 0.
Then, if d(0, u) is large enough, we have for every x, y ∈ N that

d(x, y) + d(u, 0)

d(x, u) + d(y, 0)
≤

1 + d(x,y)+d(x,0)
d(x,u)

1 + d(y,0)
d(x,u)

<
1

1− ε
.
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In order to prove (2), let θ = infx 6=y∈N d(x, y) and find u, v ∈ M , u 6= v, such that
d(u, v) < εθ

2
. Then, for every x, y ∈ N , we have

d(x, y) + d(u, v) ≤ d(x, u) + d(y, v) + 2d(u, v)

≤ d(x, u) + d(y, v) + ε(d(x, y) + d(u, v)).

This proves (2). †
We will apply Theorem 3.35 to prove two stability results for the LTP. But first,

we have to state a preliminary result concerning the octahedrality in ℓ1-sums of Banach
spaces. Though this proposition may be well known for specialist, we will include a proof
for easy reference.

Proposition 3.40. Let X and Y be Banach spaces. Then the norm of X⊕1Y is octahedral
if and only if the norm of X or the norm of Y is octahedral.

Proof. The sufficiency is proved in [HLP1, Proposition 3.10]. Let us prove the necessity.
We will assume that the norms of X and Y both fail to be octahedral and we will prove
that the norm of Z := X ⊕1 Y is not octahedral. In order to do that we will prove that
Z∗ = X∗ ⊕∞ Y ∗ fails the w∗-SD2P. By assumptions both X∗ and Y ∗ fail the w∗-SD2P,
hence there are two convex combinations of weak-star slices of the following form

C1 :=
1
m

∑m
i=1 S(BX∗ , x̂i, α), C2 :=

1
n

∑n
i=1 S(BY ∗ , ŷi, α)

such that diam(C1) < 2 and diam(C2) < 2. Assume, with no loss of generality, that
n ≥ m, and define

C :=
1

n

(
m∑

i=1

S(BX∗ , x̂i, α)× S(BY ∗ , ŷi, α) +
n∑

i=m+1

BX∗ × S(BY ∗ , ŷi, α)

)
.

Notice that C is a convex combination of non-empty relatively weakly-star open subsets
of BZ∗ . Since each non-empty relatively weakly-star open subset of BZ∗ contains a convex
combination of weak-star slices of BZ∗ (see the proof of [GGMS, Lemma II.1]), it is enough
to prove that diam(C) < 2. To this aim pick 1

n

∑n
i=1(xi, yi),

1
n

∑n
i=1(x

′
i, y

′
i) ∈ C. Now

∥∥∥∥∥
1

n

n∑

i=1

((xi, yi)− (x′i, y
′
i))

∥∥∥∥∥ = max

{∥∥∥∥∥
1

n

n∑

i=1

(xi − x′i)

∥∥∥∥∥ ,
∥∥∥∥∥
1

n

n∑

i=1

(yi − y′i)

∥∥∥∥∥

}
.

Let us prove that both members of the above maximum are strictly smaller than 2. On the
one hand, notice that 1

n

∑n
i=1 yi,

1
n

∑n
i=1 y

′
i ∈ C2, hence

∥∥ 1
n

∑n
i=1(yi − y′i)

∥∥ ≤ diam(C2) <
2. On the other hand

∥∥∥∥∥
1

n

n∑

i=1

(xi − x′i)

∥∥∥∥∥ ≤ 1

n

(∥∥∥∥∥

m∑

i=1

(xi − x′i)

∥∥∥∥∥+
n∑

i=m+1

‖xi − x′i‖
)
.

Again, since 1
m

∑m
i=1 xi,

1
m

∑m
i=1 x

′
i ∈ C1 we get that ‖∑m

i=1(xi − x′i)‖ ≤ m diam(C1). So
∥∥∥∥∥
1

n

n∑

i=1

(xi − x′i)

∥∥∥∥∥ ≤ 1

n
(m diam(C1) + (n−m)2) < 2

which finishes the proof. †
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Now we will exhibit the announced stability result for the LTP.

Proposition 3.41. Let M be a metric space. Then:

1. Assume that M is the ℓ1 sum of its two subsets, say T1, T2, i.e. M = T1 ∪ T2,
T1 ∩ T2 = {0} and

d(x, y) = d(x, 0) + d(0, y)

for every x ∈ T1 and every y ∈ T2. Then, M has the LTP if, and only if, T1 or T2
has the LTP.

2. If M has the LTP and N1 is a subset of M such that M \N1 is finite, then N1 has
the LTP.

Proof. (1) Notice that the assumptions imply that F(M) = F(T1) ⊕1 F(T2) [KauP,
Proposition 5.1]. Now the result follows applying Theorem 3.35 twice and Proposition 3.40
once in between.

(2) We assume without loss of generality that 0 ∈ N1. Let us denoteN2 := {0}∪M\N1.
Notice that if M is either unbounded or non-uniformly discrete then so is N1. So we will
assume thatM is a bounded and uniformly discrete metric space. In this case the following
retractions will be Lipschitz:

r1(x) =

{
x if x ∈ N1

0 if x ∈ N2

and r2(x) =

{
0 if x ∈ N1

x if x ∈ N2

Clearly r1 ◦ r2(x) = r2 ◦ r1(x) = 0 and so the unique linear extensions r̄i : F(M) → F(Ni)
of ri, i = 1, 2, are continuous linear projections such that ker r1 = F(N2) and vice versa.
It follows that F(M) = F(N1) ⊕ F(N2). The norm on F(M) is octahedral by the
hypothesis and Theorem 3.35. Since dimF(N2) < ∞, [Abr, Theorem 3.9] implies that
F(N1) is octahedral. Now another application of Theorem 3.35 shows that N1 has the
LTP. †
Remark 3.42. The assumption in Proposition 3.41 (2) of M \N1 being finite can not be
removed. This can be easily seen by taking the ℓ1 sum of two infinite metric spaces, one
enjoying and the other one failing the LTP, and applying Proposition 3.41 (1).

Let us now turn to an analysis of the failure of the LTP. When a metric space M fails
the LTP, one might wonder whether this can be checked on a subset N consisting of mere
2 points. The next example provides a negative answer.

Example 3.43. Consider M := {α, β, 0, z} ∪ {xn : n ∈ N} whose distance is defined in
the following way:

d(0, xn) = d(xn, z) = 1, d(0, z) = 2, d(α, 0) = d(β, 0) = 1, d(α, β) = 2,

d(α, xn) = d(β, xn) = 2, d(α, z) = d(β, z) = 3 and d(xn, xm) = 1.

Denote by T := {0, z} ∪ {xn : n ∈ N}. Then it follows by [KauP, Proposition 5.1] that

F(M) = F(T )⊕1 F({0, α})⊕1 F({0, β}),
so the norm of F(M) fails to be octahedral (note that the norm of F(T ) is not octahedral
since T is the metric space considered in Proposition 3.33) and, consequently, M fails the
LTP. We will prove, however, that the condition of LTP holds for every subset of M of
cardinality 2. To this aim, pick a, b ∈M . Then we have three possibilities for a and b:
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1. d(a, b) = 3. Then, up to re-labeling a and b, b = z and a is either α or β. We will
assume, with no loss of generality, that a = α. Then, the choice u = β and v = 0
does the work.

2. d(a, b) = 2. In this case, we still have two more possibilities:

(a) a = 0 and b = z. In this case it is enough to choose u = α, v = β.

(b) b = xn for certain n ∈ N and a is either α or β. We assume, with no loss
of generality, that a = α. In this case u = β and v = 0 yields the desired
condition.

3. d(a, b) = 1. In this case, choose u 6= v points such that d(u, v) = 1 and u, v being
different from a and b, and the inequality trivially holds.

In spite of the previous example, the failure of the LTP can be checked on subsets of
two points when we restrict our attention to a suitable metric subspace. More precisely,
we get the following result.

Proposition 3.44. Let M be a metric space failing the LTP. Then there exists an infinite
subspace A ⊂M such that, for some ε > 0 and some x, y ∈ A, we have

(1− ε)(d(x, y) + d(u, v)) > min {d(x, u) + d(y, v), d(x, v) + d(y, u)}
for all u, v ∈ A.

Proof. There is ε > 0 and a finite N ⊂ M such that, for every pair u 6= v ∈ M \ N , we
have

(1− ε)(d(x, y) + d(u, v)) > min {d(x, u) + d(y, v), d(x, v) + d(y, u)}
for some pair x 6= y ∈ N . Since there are only finitely many pairs x 6= y ∈ N , a direct
application of Ramsey’s theorem gives that there exist x0 6= y0 ∈ N and an infinite
A′ ⊂M such that

(1− ε)(d(x0, y0) + d(u, v)) > min {d(x0, u) + d(y0, v), d(x0, v) + d(y0, u)} (3.6)

for every u 6= v ∈ A′. If {x0, y0} ⊂ A′, the result is true for A := A′. If not, we denote

A(x) := {z ∈ A′ : (3.6) fails for u = x, v = z} .
Note that

A(x0) := {z ∈ A′ : d(y0, z) ≥ (1− ε)(d(x0, y0) + d(x0, z))} ,
that A(x0) ∩ {x0, y0} = ∅, and that similar properties hold for A(y0). We put

A := {x0, y0} ∪ A′ \ (A(x0) ∪ A(y0)).
We claim that A(x0), resp. A(y0), is a singleton at most. In order to get a contradiction
assume that z 6= w ∈ A(x0). We have, without loss of generality, the following inequality

(1− ε)(d(x0, y0) + d(z, w)) > d(x0, z) + d(y0, w)

≥ d(x0, z) + (1− ε)(d(x0, y0) + d(x0, w))

= (1− ε)(d(x0, y0) + d(x0, z) + d(x0, w)) + εd(x0, z)

≥ (1− ε)(d(x0, y0) + d(z, w)) + εd(x0, z),

which is absurd. Hence |A(x0)| ≤ 1. An identical proof shows that |A(y0)| ≤ 1. It follows
that A is infinite and the proposition follows. †
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A prominent class of non-octahedral norms are the norms that admit a point of Fréchet
differentiability. Theorem 3.32 implies that for the norm of F(M) this can happen only
when M is uniformly discrete and bounded. Though this is not the general case as we
will see in Proposition 3.49, in Proposition 3.33 an example of a metric space M such
that F(M) admits a point of Fréchet differentiability appears. In the following result we
will take a closer look at this phenomenon.

Theorem 3.45. LetM be a uniformly discrete bounded metric space. Consider x1, . . . , xn, y ∈
M and λ1, . . . , λn ∈ R

+ such that
∑n

i=1 λi = 1. Define ϕ :=
∑n

i=1 λi
δxi−δy
d(xi,y)

. The following
are equivalent:

1. ϕ is a Fréchet differentiability point of F(M).

2. Given z ∈M there exists i ∈ {1, . . . , n} such that

d(xi, y) = d(xi, z) + d(z, y).

3. ϕ is a Gâteaux differentiability point of F(M).

Proof. We will assume with no loss of generality that y = 0.
(2)⇒(1). Pick ε > 0 and f ∈ BLip0(M) such that ϕ(f) =

∑n
i=1 λi

f(xi)
d(xi,0)

> 1 − ε
min

1≤i≤n
λi
.

An easy convexity argument yields that f(xi) > (1 − ε)d(xi, 0) for each i ∈ {1, . . . , n}.
Pick an element z ∈ M . By assumptions there exists i ∈ {1, . . . , n} such that d(xi, 0) =
d(xi, z) + d(z, 0). Now

d(z, 0) ≥ f(z) ≥ f(xi)− |f(z)− f(xi)| > (1− ε)d(xi, 0)− d(xi, z)

= (1− ε)(d(xi, z) + d(z, 0))− d(xi, z) = d(0, z)− εd(xi, 0)

We thus have |f(z)− d(z, 0)| < εd(xi, 0) < ε diam(M). Consequently, one has

‖f − d(·, 0)‖ ≤ C ‖f − d(·, 0)‖∞ ≤ εC diam(M)

where C ≥ 1 is the constant of equivalence between the Lipschitz and the uniform norm on
Lip0(M) (we recall that Lip0(M) is isomorphic to ℓ∞(M \{0}) as M is uniformly discrete
and bounded). According to Šmulyan lemma, ϕ is a point of Fréchet differentiability
(with d(·, 0) ∈ F(M)∗ being the differential).

(1)⇒(3) is obvious.
(3)⇒(2). Assume that for some z ∈M , (2) does not hold for any xj and let us prove

that (3) does not hold either. To see that define fi : {0, x1, . . . , xn, z} → R for i = 1, 2
as follows: fi(0) = 0, fi(xj) = d(0, xj) for every j ∈ {1, . . . , n}, f1(z) = d(0, z) and
f2(z) = max{−d(0, z), max

1≤i≤n
d(xi, 0)− d(z, xi)}. We clearly have that ‖fi‖ = 1, fi(ϕ) = 1

and f1 6= f2. Indeed, by assumptions f2(z) < d(z, 0) = f1(z). Now the respective norm-
one extensions f̃i of fi, i = 1, 2 show that ϕ is not a point of Gâteaux differentiability. †

Let X be a Banach space whose norm ‖·‖ is not octahedral. It is easily seen that there
exists ε > 0 such that every norm |·| which satisfies

1

1 + ε
‖x‖ ≤ |x| ≤ (1 + ε) ‖x‖
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is non-octahedral. Let now (M, d) be a bounded uniformly discrete metric space which
fails the LTP. Then it follows from the above and from Theorem 3.35 that there exists
ε > 0 such that every metric d′ on M which satisfies

1

1 + ε
d(x, y) ≤ d′(x, y) ≤ (1 + ε)d(x, y)

fails the LTP too.
We single out a particular example of this fact. In what follows we will work with the

metric graph M = {0, z} ∪ {xi : i ∈ N} where the edges are the pairs of the form {0, xi}
or {xi, z} and the metric d is the shortest path distance.

Lemma 3.46. Let d′ be a metric on M such that (M, d) and (M, d′) are Lipschitz equi-
valent with distortion D < 2. Then (M, d′) fails the LTP.

Notice that the countable equilateral space is 2-Lipschitz equivalent to (M, d) so the
above lemma is optimal.

Proof. By the hypothesis there are D < 2 and s > 0 such that

s

D
d(x, y) ≤ d′(x, y) ≤ sd(x, y)

for all x, y ∈ M . Since the LTP is invariant under scaling of the metric, we may assume
that s = 1. We are going to show that for N = {0, z}, 0 < ε < 1− D

2
and all u, v ∈M we

have

A := (1− ε)(d′(0, z) + d′(u, v)) > min {d′(0, u) + d′(z, v), d′(0, v) + d′(z, u)} =: B.

When (u, v) = (xn, xm) we have A > 2 ≥ B. When (u, v) = (0, xn) we have A > 3
2
>

1 ≥ B. The same relation holds when (u, v) = (z, xn). †

Proposition 3.47. For every 1 < p < ∞, the above space (M, d) embeds into ℓp with
distortion D < 2. Consequently, ℓp contains a subset A failing the LTP.

Proof. Let 1 < p < ∞ be fixed. We define φ : M → ℓp as φ(0) = −e1, φ(z) = e1 and

φ(xi) = 2
p−1
p ei, where (ei) is the canonical basis of ℓp. A routine computation shows that

the distortion of φ is p
√
1 + 2p−1 which is strictly less than 2 for p > 1. It follows from

Lemma 3.46 that (φ(M), ‖·‖p) fails the LTP. †
It is shown in [Yag, Proposition 3.4] that if X is a separable L-embedded space, then

the norm of every non-reflexive subspace Y of X is octahedral. We thus get the following.

Corollary 3.48. Let M be a separable metric space which contains an infinite subset
without the LTP. Then F(M) is not L-embedded. In particular, F(ℓp) is not L-embedded
when 1 < p <∞.

Even though we prove below that ℓ1 has no subset without the LTP, we do not know
whether F(ℓ1) is L-embedded. In fact, it is a famous open problem whether F(ℓ1) is
even complemented in its bidual. Similarly, it is not known whether F(Rn), n ≥ 2, is
L-embedded for some norm on R

n. Nevertheless, it has been recently shown in [CKK]
that the spaces F(Rn) are complemented in their biduals.
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The distortion of the embedding in Proposition 3.47 tends to 2 when p→ ∞ or p→ 1.
In the case of p→ ∞, this is not of fundamental importance. Indeed, one can easily embed
isometrically (M, d) into c, the space of convergent sequences. Similarly, one can easily
embed isometrically the space considered in Proposition 3.33 into c0. Thus both c and c0
contain subsets failing the LTP.

On the other hand the behaviour of the distortion when p→ 1 is a manifestation of a
fundamental fact that we will present next.

We need to introduce the following concepts. Given a Banach space (X, ‖·‖) it is
said that X is asymptotically uniformly convex (AUC) if, for every t > 0, the following
inequality holds

δX(t) := inf
x∈SX

sup
codim(Y )<∞

inf
y∈SY

‖x+ ty‖ − 1 > 0.

The function δX is called the modulus of asymptotic uniform convexity of X and it was
introduced in [Mil] (see also [JLPS1] for some further properties of this modulus). It is
clear that δX(t) ≤ t holds for every t > 0. Moreover, X = ℓ1 satisfies that δX(t) = t for
all t ∈ R

+.

Proposition 3.49. Let X be an AUC Banach space such that δX(t) = t holds for all
t ≥ 0. Then every infinite subset of X has the LTP.

In particular, for every infinite subset M of X it follows that the norm of F(M) is
octahedral.

In particular, the previous proposition applies for every metric space which is an R-tree
(see [Go] for formal definition of R-trees and their importance in the theory of Lipschitz-
free spaces), since those spaces embed isometrically embeds into ℓ1 of the corresponding
density. Even though the last claim seems to be quite natural, the only proof we know
of is in [JLPS2] where it is proved in Proposition 4.1 that the notion of a separable R-
tree coincides with the notion “SMT” introduced in that paper. It is proved in [JLPS2,
Corollary 2.1] that every SMT embeds isometrically into ℓ1. The non-separable case
follows the same lines, using transfinite induction.

In the proof of Proposition 3.49 we shall need the following lemma.

Lemma 3.50. Let X be a Banach space such that δX(1) = 1. Then, for every x ∈ X
and every ε > 0 there exists a finite-codimensional subspace Y ⊆ X such that, for every
y ∈ Y , it follows

‖x+ y‖ ≥ (1− ε)(‖x‖+ ‖y‖) for all y ∈ Y.

In particular, δX(t) = t holds for every t > 0.

Proof. Pick x ∈ X \ {0} and ε > 0. Since δX(1) = 1, then there exists a finite-
codimensional subspace Y of X such that, for every y ∈ SY , it follows

∥∥∥∥
x

‖x‖ + y

∥∥∥∥ ≥ 2− ε.

Call z = x
‖x‖

. Consider t1, t2 ∈ [0, 1] such that t1 + t2 = 1 and assume, with no loss of
generality, that t1 ≥ t2. Then

‖t1y + t2z‖ = ‖t1(z + y) + (t2 − t1)z‖ ≥ t1‖z + y‖ − (t1 − t2)

> t1(2− ε) + t2 − t1 ≥ t1 + t2 − ε = 1− ε.
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Finally, given y ∈ Y , from the previous estimates we get

‖x+ y‖
‖x‖+ ‖y‖ =

∥∥∥∥
‖x‖

‖x‖+ ‖y‖
x

‖x‖ +
‖y‖

‖x‖+ ‖y‖
y

‖y‖

∥∥∥∥ ≥ 1− ε,

and the lemma follows. †
Proof of Proposition 3.49. In order to get a contradiction assume that there exists an
infinite subset A ⊆ X failing the LTP. By Proposition 3.44 we can assume, with no loss
of generality, that there are ε0 > 0 and x 6= y ∈ A such that, for every u 6= v ∈ A, we get

(1− ε0)(‖x− y‖+ ‖u− v‖) > min{‖x− u‖+ ‖y − v‖, ‖x− v‖+ ‖y − u‖}.
Since δX(1) = 1 we conclude the existence of a finite-codimensional subspace Y ⊆ X such
that, for all z ∈ Y , it follows

‖x− y + z‖ ≥ (1− ε)(‖x− y‖+ ‖z‖),
where 0 < ε < ε0. Since Y is finite-codimensional in X we can find a finite-dimensional
subspace F ⊆ X such that X = Y ⊕ F . Consider P and Q to be the corresponding
linear and continuous projections onto Y and F respectively. Note that, since F is finite-
dimensional, Q is bounded and A is bounded then we can find B ⊆ A such that, for every
u 6= v ∈ B, we have that ‖Q(u− v)‖ < ε0−ε

4
‖x− y‖. Now, for fixed u 6= v in B, we have

(1− ε0)(‖x− y‖+ ‖u− v‖) > min{‖x− u‖+ ‖y − v‖, ‖x− v‖+ ‖y − u‖}.
We can assume, with no loss of generality, that the following inequality holds:

(1− ε0)(‖x− y‖+ ‖u− v‖) > ‖x− u‖+ ‖y − v‖. (3.7)

Now

‖x− u‖+ ‖y − v‖ ≥ ‖x− y − (u− v)‖ = ‖x− y − P (u− v)−Q(u− v)‖
≥ ‖x− y − P (u− v)‖ − ‖Q(u− v)‖.

Since P (u− v) ∈ Y we conclude that ‖x− y−P (u− v)‖ > (1− ε)(‖x− y‖+ ‖P (u− v)‖).
Consequently, using this joint to (3.7), we get

(1− ε0)(‖x− y‖+ ‖u− v‖) > (1− ε)(‖x− y‖+ ‖P (u− v)‖)− ‖Q(u− v)‖.
Now, the triangle inequality implies that ‖u−v‖ ≤ ‖P (u−v)‖+‖Q(u−v)‖. Consequently,
the previous inequalities imply

0 ≥ (ε0 − ε)(‖x− y‖+ ‖P (u− v)‖)− 2‖Q(u− v)‖ > ε0 − ε

2
‖x− y‖,

which is a contradiction. Consequently, we conclude that there exists no subset A of X
failing the LTP, so we are done. †
Remark 3.51. It is well known and easily seen, that if a Banach space X satisfies that
for every ε > 0 there are finite dimensional spaces En, n ∈ N, such that X is (1 + ε)-
isomorphic to a subspace of (⊕∞

n=1En)ℓ1 then δX(t) = t. Up to our knowledge it is an

open problem whether every Banach space such that δX(t) = t must be of this form.
On the other hand, many (Lipschitz-free) Banach spaces satisfying this hypothesis

have been pinned down by C. Petitjean in [Pet]. Among others, one such example is the
space F(M) whenever M is a countable compact space.
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3.4 Remarks and open questions

In this section we will recollect some research lines, remarks and open questions related
to the present chapter.

3.4.1 Section 3.1

Theorems 3.5 and 3.9 were generalised to spaces of weak∗-to-weak continuous operators
in [LLR1, Theorem 2.2]. Indeed, the following result was proved there.

Proposition 3.52. Let X and Y be Banach spaces and let H ⊆ L(X∗, Y ) be a closed
subspace such that X ⊗ Y ⊆ H. Assume that each T ∈ H is weak∗-to-weakly continuous.

1. If the norms of X and Y are octahedral, then the norm of H is octahedral.

2. If the norm of X is octahedral and there exists y ∈ SY such that the set {y∗ ∈ SY ∗ :
y∗(y) = 1} is norming for Y , then the norm of H is octahedral..

The main interest in the generalisation given in Proposition 3.52 is to cover the case of
H being the injective tensor product of X and Y . As a consequence of Proposition 3.52
and Theorem 3.18 the preservation of the octahedrality by injective tensor product is
completely obtained: octahedrality is preserved by taking injective tensor product from
both factors but not from one of them (and a counterexample is ℓ1⊗̂εℓ

n
p for every n ≥ 3 and

1 < p < 2, according to Lemma 3.17). Finally, concerning further generalisations of the
results of Section 3.1, in relation to Theorem 3.22, the connection between octahedrality
in spaces of operators and finite representability in ℓ1 was put further in [Rue2] where the
following result, which generalises Theorem 3.22, was proved.

Proposition 3.53. Let Y be a Banach space which embeds isometrically in L1 and has
a monotone basis. Let X be a Banach space whose norm is octahedral and consider a
subspace H ⊆ L(Y,X) containing the space of finite-rank operators. Then the operator
norm on H is octahedral.

As a consequence of this result and since every 2-dimensional real Banach space is
isometrically isomorphic to a subspace of L1 [Dor, Corollary 1.4], it follows that X⊗̂πY
has the SD2P whenever X has the SD2P and dim(Y ) = 2.

Further generalisations of results of Section 3.1 were considered in [HLP2].
Let us end with some open problems related with the content of Section 3.1. First,

we point out the following problem posed in [D.Wer2, Section 6. (3)].

Question 8. If X and Y have the Daugavet property, does X⊗̂πY and X⊗̂εY have the
Daugavet property?

First of all, notice that a partial answer has been given in [RTV].
Furthermore, in this direction, in [KSW] it was shown that there exists a com-

plex 2-dimensional Banach space E such that LC

1 ([0, 1])⊗̂εE and LC

∞([0, 1])⊗̂πE
∗ fail the

Daugavet property, answering by the negative the question also posed in [D.Wer2] whether
the Daugavet property is preserved by projective or injective tensor product from just
one of the factors. Apart from this result, the study of the Daugavet property in tensor
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product spaces have just appeared by showing new particular examples (see [BR1] for ex-
amples coming from representation theory of Banach spaces, [Rue1] for examples coming
from an additional L-embedded structure and [GPrR] for examples where one factor is a
Lipschitz-free space).

A very related problem is the following.

Question 9. When is the norm of X⊗̂πY octahedral?

Note that in [LLR1, Question 4.4] it is particularly asked whether octahedrality is
preserved by projective tensor product from just one factor. Two partial positive answers
to this problem are the following:

Proposition 3.54. Let X and Y be two Banach spaces.

1. [LLR1, Corollary 2.9] If X is ASQ, Y is Asplund and if either X∗ or Y ∗ has the
approximation property, then the norm of X∗⊗̂πY

∗ is octahedral.

2. [LLR2, Theorem 4.3] If X is a non-reflexive L-embedded space and either X∗∗ or Y
has the metric approximation property, then the norm of X⊗̂πY is octahedral.

3.4.2 Section 3.2

Different ways in which the space Lip0(M,R) enjoy the diameter two properties have been
studied in the literature. In [Iva] it is proved that Lip0(M) has the slice-D2P wheneverM
is unbounded or bounded but not uniformly discrete. Furthermore, in [IKW] it is proved
that Lip0(M) has the Daugavet property whenever M is an almost metrically convex
metric space, spaces where the distance of each pair of points can be approximated by
the length of rectifiable curves joining them (see [IKW] for formal definitions). See also
the recent paper [HLLN] where it is analysed the so-called w∗-symmetric strong diameter
two property.

Under the assumptions of Theorem 3.32 we have that Lip0(M,X∗) has the w∗-SD2P.
This rises a natural question.

Question 10. Let M and X under the hypothesis of Theorem 3.32. Does Lip0(M,X∗)
satisfy the SD2P?

Note that in the recent paper [CCGMR] it has been proved that this is the case if M ′

is infinite and if M is discrete but not uniformly discrete. Furthermore, it turns out to
be also the case when M is infinite and compact [CCGMR, Section 5].

Furthermore, Propositions 3.33 and 3.34 show that geometry of vector-valued Lipschitz-
free Banach spaces does not only depend on underlying scalar Lipschitz-free space but
also on the target Banach space. This fact makes natural to pose the following question.

Question 11. Let M be a pointed metric space and let X be a non-zero Banach space.

1. Does Theorem 3.32 hold without assuming that the pair (M,X∗) has the CEP?

2. Does F(M,X) have an octahedral norm whenever F(M) does?
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Bearing in mind the identification F(M,X) = F(M)⊗̂πX, the above question is
related to Question 9. Furthermore, particular examples where no CEP assumption is
needed are given in [GR, Remark 3.2] and [GPR, Remark 2.12].

Finally, we have analysed octahedrality in F(M,X) whenever M is a metric space
and X is a Banach space. However, we did not get any result about the dual properties
(i.e. diameter two properties). More precisely.

Question 12. Given M a metric space and X a non-zero Banach space.
Which assumptions do we need over M and X in order to ensure that F(M,X) has

the slice-D2P (respectively D2P, SD2P)?

Note that a complete answer to this question has been recently given ifX = R. Indeed,
putting all together [AM, GPrR, IKW], it follows that given a complete metric space M
then either F(M) has the Daugavet property or its unit ball is dentable (actually BF(M)

has a strongly exposed point).
Also, taking into account the equality F(M,X) = F(M)⊗̂πX, general results in the

real case joint with the results of Section 3.1 yield examples of vector-valued free spaces
with the SD2P.

3.4.3 Section 3.3

Note that the fact that 1 and 2 are equivalent in Theorem 3.35 is not a special case of
Lipschitz-free spaces but a manifestation of a general equivalence which holds for a general
Banach space. Indeed, in [Lan, Theorem 3.21] the following result is proved (which should
be compared with the first two assertions of Theorem 3.35).

Proposition 3.55. Let X be a Banach space. The following assertions are equivalent:

1. The norm of X is octahedral.

2. For every finite-dimensional subspace E of X, every n ∈ N, every x∗1, . . . , x
∗
n ∈ BX∗,

every ε > 0 and 0 < ε0 < ε then there exists y ∈ SX with the property that given
|γi| ≤ 1 + ε0, i ∈ {1, . . . , n}, we can find y∗i ∈ X∗ for i ∈ {1, . . . , n} such that, for
every i ∈ {1, . . . , n}, it follows:

(a) y∗i and x∗i agree on E;

(b) y∗i (y) = γi;

(c) ‖y∗i ‖ ≤ 1 + ε.

In Proposition 3.41 we have cited the preprint version of [Kau] since [KauP, Proposi-
tion 5.1] does not appear in the final published version.

In his thesis, L. Garćıa-Lirola proved that every asymptotically uniformly smooth
Banach space contains an infinite subset failing the LTP [Gar, Proposition 5.1.17], which
extends Proposition 3.47.
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Conclusions

In this thesis we have dealt with diameter two properties and related isometric properties
of Banach spaces such as octahedrality of the norms and almost square Banach spaces.

After an introductory chapter about basic aspects of diameter two properties, first
examples, stability results in the literature and relations with other geometric properties
of Banach spaces (Chapter 1), we can obtain the following consequences:

• All the diameter two properties are different in an extreme way. In fact, from
Theorems 2.4 and 2.8 we get that every Banach space containing an isomorphic copy
of c0 can be equivalently renormed to have the slice-D2P (respectively the D2P) and
its new unit ball contains non-empty relatively weakly open subsets (respectively
convex combination of slices) of arbitrarily small diameter. The isomorphic nature
of the above results also implies the abundance of such extreme examples.

• In Section 2.3 we have considered almost square Banach spaces, a geometric property
of Banach spaces which is stronger than the SD2P. In Theorem 2.14 we have shown
that a Banach space X admits an equivalent renorming to be ASQ if, and only
if, X contains an isomorphic copy of c0. An interesting feature of that result is
that almost squareness is a geometric property of Banach spaces strongly related
to the diameter two properties which characterises, up to considering an equivalent
renorming, the fact that a Banach space contains an isomorphic copy of c0.

• The main consequence of Section 2.4 is that the SD2P and the octahedrality of
a norm are dual properties, in the sense that the norm of a Banach space X is
octahedral if, and only if,X∗ has the w∗-SD2P (Theorem 2.17). This characterisation
establishes a bridge of information which allows to get consequences about octahedra-
lity of the norm by studying the w∗-SD2P in the dual, and vice versa. This bridge
of information is exploited until the end of the thesis. Indeed, Proposition 2.23 is
the first example of this fact where the duality between octahedrality and the SD2P
is used in order to get a partial answer to the question whether every Banach space
containing an isomorphic copy of ℓ1 can be equivalently renormed so that the bidual
norm is octahedral, a problem coming from [God2, Remark II.5].

• In Section 3.1, a deep analysis of octahedrality in L(X, Y ∗) or, equivalently, of the
SD2P in X⊗̂πY is considered. One of the main consequences obtained there is
that if X and Y have the SD2P then so does X⊗̂πY , but in the above sentence we
can not replace “and” with “or”. Furthermore, we conclude from Lemma 3.17 and
Theorem 3.22 that there is a strong relation between octahedrality of the operator
norm in spaces of operators and the theory of finite representability.
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• The techniques involving the results of Section 3.2 reveal two central consequences.
First, the use of the duality between octahedral norms and the w∗-SD2P exposed
in Section 2.4 is fundamental to derive consequences about octahedrality in spaces
F(M,X). Also, it is essential, in view of those techniques, the assumption of the
CEP. Further, the two final results of Section 3.2 derive two important conclusions.
On the one hand, in spite of the abundance of Lipschitz-free spaces whose norm is
octahedral, it is possible for these spaces to contain points of Fréchet differentiability.
On the other hand, the fact that the norm of F(M,X) is octahedral depends on
the underlying metric space M as well as on the target Banach space X.

• From the results of Section 3.2 it follows that if the norm of F(M) is not octa-
hedral then M has to be uniformly discrete and bounded. However, thanks to the
characterisation given in Theorem 3.35, it follows that there are a lot of uniformly
discrete bounded metric spaces M such that the norm of F(M) is octahedral, and
an example of the abundance of such metric spaces is given in Proposition 3.49.
Further, Lemma 3.36 reveals, again making a strong use of the duality between
octahedral norms and the w∗-SD2P, that norming subsets of the sphere play an
important role in the octahedrality of a given norm.



Conclusiones

En esta tesis hemos abordado el estudio de las propiedades de diámetro dos y propiedades
geométricas relacionadas tales como la octaedralidad de una norma o los espacios de
Banach casi cuadrados.

Después de un caṕıtulo introductorio sobre resultados básicos relativos a propiedades
de diámetro dos, ejemplos, resultados de estabilidad y relaciones con otras propiedades
geométricas de espacios de Banach (Caṕıtulo 1), podemos obtener las siguientes con-
secuencias.

• Todas las propiedades de diámetro dos son diferentes entre śı en un sentido extremo.
Más concretamente, de los Teoremas 2.4 y 2.8 obtenemos que todo espacio de Banach
que contenga una copia isomorfa de c0 puede renormarse equivalentemente para
tener la slice-D2P (respectivamente la D2P) y para que su bola unidad contenga
abiertos débiles no vaćıos (respectivamente combinaciones convexas de rebanadas)
de diámetro arbitrariamente pequeño. Además, la naturaleza isomórfica de este
resultado nos indica la abundancia de tales contraejemplos.

• En la Sección 2.3 hemos considerado los espacios casi cuadrados, una propiedad
geométrica que es (estrictamente) más fuerte que la SD2P. En el Teorema 2.14 de-
mostramos que un espacio de Banach X admite una renormación equivalente para
ser ASQ si, y solamente si, el espacio contiene una copia isomorfa de c0. Como
consecuencia obtenemos que la propiedad de ser ASQ, que es una propiedad es-
trechamente relacionada con las propiedades de diámetro dos, caracteriza, bajo
renormación equivalente, el hecho de que un espacio contenga una copia isomorfa
de c0.

• La principal consecuencia de la Sección 2.4 es que la SD2P y la octaedralidad de
la norma son propiedades duales, en el sentido de que la norma de un espacio de
Banach es octaedral si, y solamente si, X∗ tiene la w∗-SD2P (Teorema 2.17). Esta
caracterización establece un puente de información que permite obtener consecuen-
cias sobre octaedralidad de normas en términos de la w∗-SD2P en el dual, y vice
versa. De hecho, la Proposición 2.23 es el primer lugar donde esta dualidad entre
octaedralidad y SD2P es empleada para dar una respuesta parcial a la pregunta
de si todo espacio de Banach que contiene una copia isomorfa de ℓ1 admite una
renormación equivalente de manera que la norma bidual es octaedral, un problema
que proviene de [God2, Remark II.5]

• En la Sección 3.1 hacemos un profundo análisis sobre la octaedralidad de la norma de
operadores en L(X, Y ∗) o, equivalentemente, de la SD2P enX⊗̂πY . Una de las prin-
cipales consecuencias que obtenemos es que siX e Y tienen la SD2P, entoncesX⊗̂πY

83



84 Conclusiones

también tiene la SD2P, pero en el enunciado anterior no podemos reemplazar “e” por
“o”. Además, del Lema 3.17 y del Teorema 3.22 concluimos que, bajo hipótesis de
convexidad uniforme, existe una fuerte relación entre la octaedralidad de la norma
de operadores en espacios de operadores acotados y la teoŕıa de representabilidad
finita.

• Las técnicas empleadas en los resultados de la Sección 3.2 revelan dos hechos funda-
mentales. En primer lugar, el uso de la dualidad entre la octaedralidad de normas
y la w∗-SD2P expuesta en la Sección 2.4 es esencial para obtener condiciones su-
ficientes sobre la octaedralidad de la norma de F(M,X). Es también esencial, en
vista de dichas técnicas, la hipótesis de la CEP. Por último, los dos resultados fi-
nales de la sección arrojan dos importantes conclusiones. Por un lado, a pesar de
la abundancia de espacios Lipschitz libres cuya norma es octaedral, es posible que
la bola de estos espacios puedan contener puntos de diferenciabilidad Fréchet. Por
otra parte, el hecho de que la norma de F(M,X) sea octaedral depende tanto del
espacio métrico subyacente como del espacio de llegada X.

• De los resultados de la Sección 3.2 se sigue que si la norma de F(M) no es octaedral
entonces M tiene que ser uniformemente discreto y acotado. Sin embargo, gracias
a la caracterización expuesta en Teorema 3.35, se sigue que existen muchos espa-
cios uniformemente discretos y acotados M de manera que la norma de F(M) es
octaedral, y un ejemplo de la abundancia de tales espacios métricos lo proporciona,
por ejemplo, la Proposición 3.49. Además el Lema 3.36 revela, de nuevo haciendo
un fuerte uso de la dualidad entre octaedralidad y la w∗-SD2P, que los subconjuntos
normantes de la esfera juegan un papel crucial en la octaedralidad de una norma
dada.
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[BLR5] J. Becerra Guerrero, G. López-Pérez and A. Rueda Zoca, Octahedral norms in
spaces of operators, J. Math. Anal. Appl. 427, 1 (2015), 171–184.
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[IKR] J. M. Isidro, W. Kaup and A. Rodŕıguez-Palacios, On real forms of JB∗-triples,
Manuscr. Math. 86, 3 (1995), 311-335.

[Iva] Y. Ivakhno, Big slice property in the spaces of Lipschitz functions, Visn. Khark.
Univ. Ser. Mat. Prylk. Mat. Mekh. 749, 56 (2006), 109–118.

[Iva2] Y. Ivakhno, On sets with extremely big slices, Zh. Mat. Fiz. Anal. Geom. 2, 1
(2006), 94–103.

[IKW] Y. Ivakhno, V. Kadets and D. Werner, The Daugavet property for spaces of
Lipschitz functions, Math. Scand. 101, 2 (2007), 261–279.

[Jam] R. C. James, A separable somewhat reflexive Banach space with nonseparable dual,
Bull. Am. Math. Soc. 80 (1974), 738–743.

[JZ] K. John and V. Zizler, On rough norms on Banach spaces, Commentat. Math.
Univ. Carol. 19 (1978), 335–349.

[Joh] J. A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz
functions, Trans. Amer. Math. Soc. 148 (1970), 147–169.

[JLPS1] W. B. Johnson, J. Lindenstrauss, D. Preiss and G. Schechtman, Almost Fréchet
differentiability of Lipschitz mappings between infinite-dimensional Banach spaces,
Proc. Lond. Math. Soc. 84 3 (2002) , 711–746.

[JLPS2] W. B. Johnson, J. Lindenstrauss, D. Preiss and G. Schechtman, Lipschitz quo-
tients from metric trees and from Banach spaces containing ℓ1, J. Funct. Anal.
194, 2 (2002), 332–346.

[KKW] V. Kadets, N. J. Kalton, D. Werner, Remarks on rich subspaces of Banach spaces,
Stud. Math. 159, 2 (2003), 195–206.

[KSW] V. Kadets, V. Shepelska, and D. Werner, Thickness of the unit sphere, ℓ1-types,
and the Daugavet property, Houston J. Math. 37, 3 (2011), 867–878.

[KSSW] V. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner. Banach spaces with
the Daugavet property, Trans. Am. Math. Soc. 352, 2 (2000), 855–873.



90 3.4 Bibliography

[Kai] S. Kaijser, A note on dual Banach spaces, Math. Scand. 41 (1977), 325–330.

[Kal] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications,
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[Lop] G. López-Pérez, The big slice phenomena in M-embedded and L-embedded spaces,
Proc. Am. Math. Soc. 134, 1 (2005), 273–282.
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