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Materials with fluid and matrix phases present different acoustic responses in each phase. While longitudinal waves propagate in
both phases, shear waves do it only through the solid matrix. Longitudinal waves are mainly described by volumetric propagation
and shear waves by deviatoric processes. In the case of nonlinear propagation cross effects occur between both components. This
paper presents a new classical nonlinear model proposing a constitutive equation that separates volumetric and deviatoric effects.
Four nonlinear constants of third order are defined.The formulation is compared to constitutive equations with Landau constants
for weakly elasticity and both types of nonlinear constants related. Some reinterpretation of the Landau’s constants arises in terms
of parallel or cross nonlinear effects between volumetric and deviatoric components.

1. Introduction

The study of the coefficients of acoustic nonlinearity has
recently been recovered again [1–6]. The classical nonlinear
behavior of a material can be characterized using different
parameters: first-second nonlinear parameters, Landau and
Murnaghan constants, and stiffness matrices of second and
third order [7–9]. An example of this interest could be
the advances in early damage detection [10–13] of materials
with complex structures in Nondestricutive Evaluation field,
allowing new paradigms that explore the connection between
the micromechanical scales.

On the mathematical description of nonlinear effects,
it is important to separate the geometrical nonlinearity
from the material-dependent constitutive nonlinearity. The
nonlinear analysis is based on Taylor series expansions of
the strain energy, where the Landau [14] and Murnaghan
[15] coefficients surge and only account for the material-
dependent constitutive nonlinearity. The dynamic problem
and its wave equation deduction bring several calculations
that introduce geometrical nonlinearities. The first one arises
when the stress tensor is calculated from the strain energy

expansion, where several operations involving the deforma-
tion gradient tensor generate new nonlinear terms (see (13),
terms that are independent of Landau constants). The second,
the kinematic relations add the well-known cross derivative
term of the displacements, which is independent on the
material nonlinear behavior.

The understanding of the nonlinear constants meaning
(Landau, Murnaghan, 𝛽, 𝛿, or stiffness coefficients) turns
tough, and their interpretation does not appear as straight
forward as it could seem. Probably, the most intuitive inter-
pretation comes from the first nonlinear parameter 𝛽 and the
Finite Amplitude technique [16], where the parameter is a
measurement of the growth on the second harmonic ampli-
tude with distance. However, this parameter must be further
carefully interpreted, since different definitions of them can
be found in literature while nomenclature is maintained the
same [10, 17]. As some examples in this vain, first and second
nonlinear parameters (𝛽 and 𝛿), defined directly as wave
equation coefficients [18], usually accounts for both geomet-
rical and constitutive nonlinearity. There are simplifications
on some developments that define only constitutive versions
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of the coefficients 𝛽 and 𝛿, directly applying a Taylor series
expansion on the stress as a function of strain that are
used for unidimensional plane wave propagation cases and
neglecting geometrical nonlinearity [19, 20]. Anyway, all
these theoretical proposals have definitely contributed to
understand the main nonlinear experimental phenomena.
But new approaches can better interpret different situations
and open new visions.

This paper proposes deepening on the study of classical
nonlinear acoustics, proposing a newmathematical formula-
tion with the aim of presenting a different classical nonlinear
equation. It splits the general first-order nonlinearity (usually
measured by 𝛽 or by Landau’s constants) into four specific
nonlinear phenomena (measured with four new nonlinear
constants), due to the interaction of the deviatoric and vol-
umetric components of the deformation and stress tensors.
This paradigm turns specially useful to explain shear wave
nonlinear propagation inmaterials constituted by twophases,
as solid fibers embedded in a quasi-fluid matrix. This is the
case of soft tissues, where the propagation of shear waves in
the liquid phase can be neglected against that occurring in the
solid structure.

Nonlinear first- and second-order constants are usually
referred to the nonlinear order of the terms in the wave
equation, or in other cases at the constitutive equation, while
other nonlinear constants are referred to the order of the
Taylor series expansion of the Energy, like Landau constants
as third order. As the new four nonlinear constants are
compared to Landau constants in this paper, they will be
referred as third-order nonlinear constants.

The concept would be scalable to the third and higher
harmonics [21–23]. Non-classical nonlinear effects are not
considered at the moment, in order to ease the analysis, and
viscosity, just partially, but they could be considered in future
works, since they could be noteworthy in some cases. The
connection of these new four nonlinear constants with the
Landau third-order elasticity constants is also explored.

2. Methods

Thegeneral method of this paper is the deduction of the non-
linear wave equation, where the new proposed constitutive
equation is the starting point.

𝜎𝑖𝑗 = 𝜎𝑖𝑗 (V, 𝐷𝑖𝑗) (1)

where V and𝐷𝑖𝑗 are the volumetric and deviatoric parts of the
deformation tensor 𝜀𝑖𝑗. This equation defines the new four 𝛽
nonlinear constants.The constitutive equation is transformed
into 𝜎𝑖𝑗 = 𝜎𝑖𝑗(𝜀𝑖𝑗) and compared with the similar expression
given by Landau formulation for weakly elasticity to relate the
four 𝛽 constants to Landau nonlinear constants.

Finally, the nonlinear equation of motion as a function of
the new paremeters is deducted,

𝜌𝑢̈𝑖 = 𝜎𝑖𝑗,𝑗 (2)

2.1. Theoretical Preliminars. The dynamic elastic problem
comprises the momentum balance equation, compatibility

Table 1: List of variables.

Quantity Symbol Units
Displacement 𝑢𝑖 m
Stress 𝜎𝑖𝑗 Pa
Strain 𝜀𝑖𝑗 -
Space 𝑥𝑖 m
Time 𝑡 s
Lamé constants 𝜆, 𝜇 Pa
Density 𝜌 kg/m3

Kinematic viscosity 𝛾 = 𝜂𝜌 s−1

equations, and the kinematic relationships. For wave prop-
agation (body forces neglected), the first and third equations
would be

𝜌𝑢̈𝑖 + 𝛾𝜌𝑢̇𝑖 = 𝜎𝑖𝑗,𝑗 (3)

𝜀𝑖𝑗 = 12 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑘,𝑖𝑢𝑘,𝑗) (4)

where Table 1 shows the symbols of the magnitudes.
The compatibility equations can be considered separating

them into linear, viscous, and nonlinear stress components,𝜎𝐿𝑖𝑗, 𝜎𝑉𝑖𝑗 , and 𝜎𝑁𝐿𝑖𝑗 .

𝜎𝑖𝑗 = 𝜎𝐿𝑖𝑗 + 𝜎𝑉𝑖𝑗 + 𝜎𝑁𝐿𝑖𝑗 (5)

The nonlinear term can be deducted, following a similar
concept of series expansion put forth by Landau [24, 25],
where the volumetric and deviatoric decomposition of the
stress tensor was considered, and only the volumetric part
was detailed in terms of the nonlinear parameter 𝛽, in the
following expression:

−𝑝 = −3𝐾V + 9𝐾𝛽V2 − 3𝜂VV̇. (6)

where 𝑝 and V are the volumetric components of the stress
and deformation tensors, respectively, so that

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
volumetric

+ 𝜏𝑖𝑗⏟⏟⏟⏟⏟⏟⏟
deviatoric

, 𝑝 = −13𝜎𝑘𝑘 (7)

𝜀𝑖𝑗 = −V𝛿𝑖𝑗 + 𝐷𝑖𝑗, V = −13𝜀𝑘𝑘 (8)

with 𝜏𝑖𝑗 and 𝐷𝑖𝑗 being the deviatoric parts of the stress and
strain tensors.
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2.2. Proposal of a New Constitutive Equation. However, a
more generalized constitutive relationship can be hypothe-
sized using a combination of four of nonlinear parameters of
third-order 𝛽 that may explain a different scenario of calcu-
lations. These combinations could be expanded as exploring
the whole set of combinations by quadratic terms as follows:

𝜎𝑖𝑗 = −3𝐾V𝛿𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
pressure

+ 2𝜇𝐷𝑖𝑗⏟⏟⏟⏟⏟⏟⏟
shear⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜎𝐿𝑖𝑗(𝐿𝑖𝑛𝑒𝑎𝑟)

−3𝜂V ̇V𝛿𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
pressure

+ 2𝜂𝐷̇𝑖𝑗⏟⏟⏟⏟⏟⏟⏟
shear⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜎𝑉𝑖𝑗 (𝑉𝑖𝑠𝑐𝑜𝑢𝑠)

+9𝐾𝛽V𝑝V2𝛿𝑖𝑗+9𝐾𝛽
𝑑𝑝𝐷𝑘𝑝𝐷𝑝𝑘𝛿𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

pressure
+ 4𝜇𝛽𝑑𝑠𝐷𝑖𝑘𝐷𝑘𝑗+4𝜇𝛽𝑐𝑠V𝐷𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

shear⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜎𝑁𝐿𝑖𝑗 (𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟)

(9)

The constants 𝐾 and 𝜇 accompanying nonlinear parameters
have been chosen in accordance with (6), as the quadratic
power expansion. Four nonlinear parameters of third order
(third, in terms of Energy expansion) have been defined and
their terms can be interpreted, as follows:

(i) Term with 𝛽V𝑝: nonlinear volumetric stress generated
from the behavior of the volumetric component of the
deformation

(ii) Term with 𝛽𝑑𝑝: nonlinear volumetric stress generated
from the behavior of the deviatoric component of the
deformation

(iii) Term with 𝛽𝑑𝑠: nonlinear stress generated from the
behavior of the deviatoric component of the deforma-
tion

(iv) Term with 𝛽𝑐𝑠: nonlinear deviatoric stress generated
from the interaction between the volumetric and
deviatoric components of the deformation

To complete all possible combinations of quadratic terms,
there are two additional combinations which have been
removed, since the deviatoric trace 𝐷𝑘𝑘 is always null.

(i) A termwith V𝐷𝑘𝑘𝛿𝑖𝑗: it would be a nonlinear volumet-
ric stress generated from the volumetric part of the
deformation

(ii) A term with 𝐷2𝑘𝑘𝛿𝑖𝑗: with similar interpretation than
the previous one

This expression of the stress presents a similar structure to the
expression of the stress withThird-Order Elastic Constants in
the Landau form (A,B,C), shown below in (13), so it will
be considered later to obtain the differential equation in a
parallel deduction.

Notwithstanding, there is another interesting expression
fully separating the nonlinear volumetric and deviatoric com-
ponents of the stress. The stress term with 𝛽𝑑𝑠 is dependent
on the square 𝐷𝑖𝑘𝐷𝑘𝑗 of the deviatoric component of the
deformation 𝐷𝑖𝑗 and can be split into a volumetric and
deviatoric part

𝐷𝑖𝑘𝐷𝑘𝑗 = 13𝐷𝑝𝑘𝐷𝑘𝑝𝛿𝑖𝑗 + 𝑑𝑖𝑗 (10)

𝑑𝑖𝑗 = deviatoric [𝐷𝑖𝑘𝐷𝑘𝑗] (11)
Thus,

𝜎𝑖𝑗 = −3𝐾V𝛿𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟
pressure

+ 2𝜇𝐷𝑖𝑗⏟⏟⏟⏟⏟⏟⏟
shear⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜎𝐿𝑖𝑗(𝐿𝑖𝑛𝑒𝑎𝑟)

−3𝜂V ̇V𝛿𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
pressure

+ 2𝜂𝐷̇𝑖𝑗⏟⏟⏟⏟⏟⏟⏟
shear⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜎𝑉𝑖𝑗 (𝑉𝑖𝑠𝑐𝑜𝑢𝑠)

+9𝐾𝛽V𝑝V2𝛿𝑖𝑗+(9𝐾𝛽𝑑𝑝+4𝜇𝛽𝑑𝑠)𝐷𝑘𝑝𝐷𝑝𝑘𝛿𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
pressure

+ 4𝜇𝛽𝑑𝑠𝑑𝑖𝑗+4𝜇𝛽𝑐𝑠V𝐷𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
shear⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜎𝑁𝐿𝑖𝑗 (𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟)

(12)

2.3. Relationship to Formulations with Landau Constants. As
aforementioned, a quite similar expression of the Cauchy
stress tensor can be found as a function of the Landau
constants and the deformation tensor, for weakly elasticity:

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜎𝐿𝑖𝑗

+ 2𝜂 ̇𝜀𝑖𝑗 − 23𝜂𝛿𝑖𝑗 ̇𝜀𝑘𝑘 + 𝜂V𝛿𝑖𝑗 ̇𝜀𝑘𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜎𝑉𝑖𝑗

+(A + 4𝜇) 𝜀𝑖𝑘𝜀𝑘𝑗 +B𝜀𝑘𝑝𝜀𝑝𝑘𝛿𝑖𝑗 + 2 (B + 𝐾 − 53𝜇) 𝜀𝑘𝑘𝜀𝑖𝑗 + (C − 𝐾 + 23𝜇) 𝜀2𝑘𝑘𝛿𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜎𝑁𝐿𝑖𝑗

(13)

In order to obtain the relationship between the Landau
constants and the new four nonlinear parameters 𝛽, (13) is
separated into volumetric and deviatoric components:

𝜀𝑖𝑗 = −V𝛿𝑖𝑗 + 𝐷𝑖𝑗 (14)

𝜀𝑘𝑘 = −V𝛿𝑘𝑘 + 𝐷𝑘𝑘 = −3V (15)

𝜀𝑖𝑘 = −V𝛿𝑖𝑘 + 𝐷𝑖𝑘 (16)

𝜀𝑘𝑗 = −V𝛿𝑘𝑗 + 𝐷𝑘𝑗 (17)

𝜀𝑖𝑘𝜀𝑘𝑗 = V2𝛿𝑖𝑘𝛿𝑘𝑗 − V𝐷𝑖𝑘𝛿𝑘𝑗 − V𝐷𝑘𝑗𝛿𝑖𝑘 + 𝐷𝑖𝑘𝐷𝑘𝑗 (18)

𝜀𝑘𝑝 = −V𝛿𝑘𝑝 + 𝐷𝑘𝑝 (19)

𝜀𝑝𝑘 = −V𝛿𝑝𝑘 + 𝐷𝑝𝑘 (20)

𝜀𝑝𝑘𝜀𝑘𝑝 = V2𝛿𝑝𝑘𝛿𝑘𝑝 − V𝐷𝑝𝑘𝛿𝑘𝑝 − V𝐷𝑘𝑝𝛿𝑝𝑘 + 𝐷𝑝𝑘𝐷𝑘𝑝 (21)

𝜀2𝑘𝑘 = 9V2 (22)
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The nonlinear terms of (13) result in the following expres-
sions:

(A + 4𝜇) 𝜀𝑖𝑘𝜀𝑘𝑗
= (A + 4𝜇) (V2𝛿𝑖𝑘𝛿𝑘𝑗 − V𝐷𝑖𝑘𝛿𝑘𝑗 − V𝛿𝑖𝑘𝐷𝑘𝑗 + 𝐷𝑖𝑘𝐷𝑘𝑗) (23)

B𝜀𝑘𝑝𝜀𝑝𝑘𝛿𝑖𝑗 = B (3V2 + 𝐷𝑘𝑝𝐷𝑝𝑘) 𝛿𝑖𝑗 (24)

2 (B + 𝐾 − 53𝜇) 𝜀𝑘𝑘𝜀𝑖𝑗
= 2 (B + 𝐾 − 53𝜇) (3V2𝛿𝑖𝑗 − 3V𝐷𝑖𝑗)

(25)

(𝐶 − 𝐾 + 23) 𝜀2𝑘𝑘𝛿𝑖𝑗 = (𝐶 − 𝐾 + 23𝜇) 9V2𝛿𝑖𝑗 (26)

The above analysis is also valid by combining the nonlinear
part of the stress with V and 𝐷𝑖𝑗 in the constitutive equation,

𝜎𝑁𝐿𝑖𝑗 = (A + 9B + 9C − 3𝐾) V2𝛿𝑖𝑗 +B𝐷𝑘𝑝𝐷𝑝𝑘𝛿𝑖𝑗
+ (A + 4𝜇)𝐷𝑖𝑘𝐷𝑘𝑗
+ (−2A + 6B − 6𝐾 + 2𝜇) V𝐷𝑖𝑗

(27)

Comparing this expression with (9),

𝛽V𝑝 = A + 9B + 9C − 3𝐾9𝐾 (28)

𝛽𝑑𝑝 = B9𝐾 (29)

𝛽𝑑𝑠 = A + 4𝜇4𝜇 (30)

𝛽𝑐𝑠 = −2A − 6B − 6𝐾 + 2𝜇4𝜇 (31)

A = 4𝜇 (𝛽𝑑𝑠 − 1) (32)

B = 9𝐾𝛽𝑑𝑝 (33)

C = 𝐾𝛽V𝑝 − 49𝜇𝛽𝑑𝑠 − 9𝐾𝛽𝑑𝑝 + 13𝐾 (34)

For the viscous components, it is shown that the establish
definition in (6) matches Landau’s one:

2𝜂 ̇𝜀𝑖𝑗 = 2𝜂 (−V̇𝛿𝑖𝑗 + 𝐷̇𝑖𝑗) (35)

−23𝜂 ̇𝜀𝑘𝑘𝛿𝑖𝑗 = 2𝜂V̇𝛿𝑖𝑗 (36)

𝜂V ̇𝜀𝑘𝑘𝛿𝑖𝑗 = −3𝜂VV̇𝛿𝑖𝑗 (37)

𝜎𝑉𝑖𝑗 = −3𝜂VV̇𝛿𝑖𝑗 + 2𝜂𝐷̇𝑖𝑗 (38)

2.4. Differential Wave Equation. Adopting the acoustic non-
linear constitutive equation presented in (9), in terms of

deviatoric a volumetric parts of the deformation, it is possible
to obtain the three dimensional nonlinear equation ofmotion
in terms of the new four parameters 𝛽. Previously, the
kinematic relations must be introduced in the constitutive
equation.

𝜀𝑖𝑗 = 12 ( 𝜕𝑢𝑖𝜕𝑥𝑗 +
𝜕𝑢𝑗𝜕𝑥𝑖 +

𝜕𝑢𝑘𝜕𝑢𝑖
𝜕𝑢𝑘𝜕𝑢𝑗) (39)

The wave equation is,

𝜌𝜕2𝑢𝑖𝜕𝑡2 = 𝐾( 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑖 +
𝜕𝑢𝑙𝜕𝑥𝑘

𝜕2𝑢𝑙𝜕𝑥𝑘𝜕𝑥𝑖)

+ 𝜇(𝜕2𝑢𝑖𝜕𝑥2𝑗 +
𝜕2𝑢𝑗𝜕𝑥𝑖𝜕𝑥𝑗 +

𝜕2𝑢𝑘𝜕𝑥2𝑗
𝜕𝑢𝑘𝜕𝑥𝑖 +

𝜕2𝑢𝑘𝜕𝑥𝑖𝜕𝑥𝑗
𝜕𝑢𝑘𝜕𝑥𝑗

− 23 ( 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑖 +
𝜕𝑢𝑙𝜕𝑥𝑘

𝜕2𝑢𝑙𝜕𝑥𝑘𝜕𝑥𝑖))

+ 2𝐾𝛽V𝑝 ( 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑖
𝜕𝑢𝑙𝜕𝑥𝑙)

+ 9𝐾𝛽𝑑𝑝 (12 ( 𝜕2𝑢𝑙𝜕𝑥𝑘𝜕𝑥𝑖
𝜕𝑢𝑙𝜕𝑥𝑘 +

𝜕2𝑢𝑘𝜕𝑥𝑙𝜕𝑥𝑖
𝜕𝑢𝑘𝜕𝑥𝑙

+ 𝜕2𝑢𝑙𝜕𝑥𝑘𝜕𝑥𝑖
𝜕𝑢𝑘𝜕𝑥𝑙 +

𝜕2𝑢𝑘𝜕𝑥𝑙𝜕𝑥𝑖
𝜕𝑢𝑙𝜕𝑥𝑘) − 23 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑖

𝜕𝑢𝑙𝜕𝑥𝑙)

+ 4𝜇𝛽𝑑𝑠 (14 ( 𝜕2𝑢𝑖𝜕𝑥𝑘𝜕𝑥𝑗
𝜕𝑢𝑘𝜕𝑥𝑗 +

𝜕2𝑢𝑘𝜕𝑥𝑖𝜕𝑥𝑗
𝜕𝑢𝑘𝜕𝑥𝑗

+ 𝜕2𝑢𝑖𝜕𝑥𝑘𝜕𝑥𝑗
𝜕𝑢𝑗𝜕𝑥𝑘 +

𝜕2𝑢𝑘𝜕𝑥𝑖𝜕𝑥𝑗
𝜕𝑢𝑗𝜕𝑥𝑘))

+ 4𝜇𝛽𝑑𝑠(14 ( 𝜕2𝑢𝑘𝜕𝑥𝑗𝜕𝑥𝑗
𝜕𝑢𝑖𝜕𝑥𝑘 +

𝜕2𝑢𝑗𝜕𝑥𝑘𝜕𝑥𝑗
𝜕𝑢𝑖𝜕𝑥𝑘

+ 𝜕2𝑢𝑘𝜕𝑥𝑗𝜕𝑥𝑗
𝜕𝑢𝑘𝜕𝑥𝑖 +

𝜕2𝑢𝑗𝜕𝑥𝑘𝜕𝑥𝑗
𝜕𝑢𝑘𝜕𝑥𝑖 ))

+ 4𝜇𝛽𝑑𝑠(−13 ( 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑗
𝜕𝑢𝑖𝜕𝑥𝑗 +

𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑗
𝜕𝑢𝑗𝜕𝑥𝑖

+ 𝜕2𝑢𝑖𝜕𝑥2𝑗
𝜕𝑢𝑘𝜕𝑥𝑘 +

𝜕2𝑢𝑗𝜕𝑥𝑖𝜕𝑥𝑗
𝜕𝑢𝑘𝜕𝑥𝑘) + 29 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑖

𝜕𝑢𝑙𝜕𝑥𝑙)

+ 4𝜇𝛽𝑑𝑠 (−16 ( 𝜕2𝑢𝑙𝜕𝑥𝑘𝜕𝑥𝑖
𝜕𝑢𝑙𝜕𝑥𝑘 +

𝜕2𝑢𝑘𝜕𝑥𝑙𝜕𝑥𝑖
𝜕𝑢𝑘𝜕𝑥𝑙
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+ 𝜕2𝑢𝑙𝜕𝑥𝑘𝜕𝑥𝑖
𝜕𝑢𝑘𝜕𝑥𝑙 +

𝜕2𝑢𝑘𝜕𝑥𝑙𝜕𝑥𝑖
𝜕𝑢𝑙𝜕𝑥𝑘) + 29 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑖

𝜕𝑢𝑙𝜕𝑥𝑙)

+ 4𝜇𝛽𝑐𝑠(−16 ( 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑗
𝜕𝑢𝑖𝜕𝑥𝑗 +

𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑗
𝜕𝑢𝑗𝜕𝑥𝑖

+ 𝜕2𝑢𝑖𝜕𝑥2𝑗
𝜕𝑢𝑘𝜕𝑥𝑘 +

𝜕2𝑢𝑗𝜕𝑥𝑖𝜕𝑥𝑗
𝜕𝑢𝑘𝜕𝑥𝑘) + 29 𝜕2𝑢𝑘𝜕𝑥𝑘𝜕𝑥𝑖

𝜕𝑢𝑙𝜕𝑥𝑙)
(40)

where, as it was defined,𝐾 is the Bulk modulus, 𝜇 is the shear
modulus, 𝜌 is the density, and 𝛽V𝑝, 𝛽𝑑𝑝, 𝛽𝑑𝑠, and 𝛽𝑐𝑠 are the
four nonlinear parameters of third order already explained
in the constitutive expression.

3. Discussion

Considering the new nonlinear constitutive equation (12), it
can be applied to the case of a pure plane horizontal shear

wave. Disregarding the viscous term, the deformation tensor𝜀𝑖𝑗 will have all components null but 𝜀12, yielding 𝐷𝑖𝑗 = 𝜀𝑖𝑗,
V = −(1/3)𝜀𝑘𝑘 = 0, and 𝐷𝑘𝑝𝐷𝑝𝑘 = 2𝜀212,

𝜎𝑖𝑗 = [[
[

0 2𝜇𝜀12 0
2𝜇𝜀12 0 0
0 0 0

]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑙𝑖𝑛𝑒𝑎𝑟

+[[[
[

(9𝐾𝛽𝑑𝑝2 + 4𝜇𝛽𝑐𝑠) 𝜀212 0 0
0 (9𝐾𝛽𝑑𝑝2 + 4𝜇𝛽𝑐𝑠) 𝜀212 0
0 0 9𝐾𝛽𝑑𝑝2𝜀212

]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

(41)

In this case, the linear part of the stress continues with the
same shear structure while the nonlinear part is a diagonal
matrixmeaning that there exists a volumetric component in it
that would contribute to posterior volumetric deformations.
Only two constants survive reducing the mathematical com-
plexity for shear waves.

If it is a compressional wave in the 𝑥1 direction, with 𝜀𝑖𝑗 =0 ∀𝑖𝑗 ̸= 11,

𝜎𝑖𝑗 = 𝐾𝜀11𝛿𝑖𝑗 + 2𝜇
[[[[[[
[

23𝜀11 0 0
0 −13𝜀11 0
0 0 −13𝜀11

]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑙𝑖𝑛𝑒𝑎𝑟

+(𝐾𝛽V𝑝 + 6𝐾𝛽𝑑𝑝 + 4𝜇𝛽𝑐𝑠) 𝜀211𝛿𝑖𝑗 + 4𝜇 (𝛽𝑑𝑠 − 𝛽𝑐𝑠)
[[[[[[
[

29𝜀211 0 0
0 −19𝜀211 0
0 0 −19𝜀211

]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

,

(42)

where now the four nonlinear coefficients must be consid-
ered, indicating the existence of all kind of cross and parallel
effects, although pure volumetric plus deviatoric nonlinear
stress components are the result, allowing the separation of
both nonlinear components.

Landau constants only account for the constitutive non-
linear behavior of the material, expressed in all the nonlinear
terms of (13) that includeA B and C. As mentioned above,
there are several additional nonlinear terms in this expression
without these constants, but with 𝐾 and 𝜇. They represent
the geometrical nonlinearity originated in the geometrical
transformation from the Piola tensor 𝑃𝑖𝑗 as a function of the
strain energy 𝑈 to get the Cauchy stress tensor.

𝑃𝑖𝑗 = 𝜕𝑈𝜕𝐹𝑖𝑗 = 𝐹𝑖𝑗 𝜕𝑈𝜕𝜀𝑖𝑗 (43)

𝜎𝑖𝑗 = 1
det (𝐹)𝑃𝑖𝑗𝐹𝑗𝑖 (44)

𝜎𝑖𝑗 = 1
det (𝐹)𝐹𝑖𝑗 𝜕𝑈𝜕𝜀𝑖𝑗𝐹𝑗𝑖 (45)

It must be noted that the four new 𝛽 constants would include
constitutive and geometrical effects, with the exception of𝛽𝑑𝑝
that is only of constitutive nature (see (29) and (28), (30), and
(31)).

Considering the relations among the four new 𝛽 parame-
ters and Landau constants in (32), (33), (34), (28), (29), (30),
and (31), some conclusions can be extracted.

(i) As the Landau constant B is only dependent on 𝛽𝑑𝑝
(see (33)), B is a measure of the intensity on the
cross effect from the deviatoric deformation into a
nonlinear volumetric stress.
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(ii) As the Landau constant A is only dependent on 𝛽𝑑𝑠
(see (32)), A is a measure of the intensity on the
nonlinear effect from the deviatoric deformation into
the stress, which can be split into both volumetric and
deviatoric parts (see (12)).

(iii) As the Landau constant C is only dependent on𝛽V𝑝 (see (34)), C is the only one that measures the
intensity on the nonlinear effect from the volumetric
deformation into the volumetric component of the
stress.

(iv) As expected, 𝛽𝑐𝑠 is linearly dependent on 𝛽𝑑𝑠 and 𝛽𝑑𝑝:
𝛽𝑐𝑠 = −2𝛽𝑑𝑠 − 27𝐾2𝜇 𝛽𝑑𝑝 − 12 − 3𝐾2𝜇 (46)

4. Conclusions

Anew approach is proposed in the field of nonlinear acoustics
introducing the volumetric and deviatoric separation in
deformation and stress. The relevance of this expression is
directly linked to the possibility of separating longitudinal
and shear waves and selecting the responses of interest. Addi-
tional interpretations on the Landau constants are deducted
in terms of the cross and parallel effects between volumetric
and deviatoric components.
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