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Resumen:

El objetivo final de este proyecto es disefiar una PCB orientada al control de estabilidad de
un CubeSat. El propoésito es conseguir un algoritmo de control preciso que, acompafiado de
una electronica correctamente elegida y configurada, permita levantar el cubo haciéndolo
oscilar entorno a una de sus aristas. Para ello, un analisis profundo de la fisica de control, asi
como de fusion de sefiales y caracterizacion de componentes era necesaria.

Se han desarrollado varias prototipos, para conseguir un correcto entendimiento de la fisica
detras del control y modelado de los componentes. Para ello, herramientas de Disefio
Asistido por Ordenador, como Solidworks o Altium han sido muy Utiles.

Los componentes utilizados en la PCB han sido en su mayoria off the shield, es decir,
componentes que ya estaban disponibles en el laboratorio. Ademas, se ha intentado que todos
los componentes sean reutilizables para futuras PCB o modelos, haciendo que el presupuesto
del proyecto sea lo més bajo posible.



Abstract:

The aim of this project is to develop a attitude control board, able to stabilize a CubeSat,
making it balance around one of the edges. A deep understandig of the equations of motion
and control algorithm was absolutly needed for developing the system. It is detailed on the
first part of the project, devoted to the phisics.

A few prototypes were designed in order to probe the IMUs, motors and the control
algorithm. To do so, EDA software such as Altium Designer and Solidwork were a usefull
tool.

The electronics used for the PCB are off the shield components, already existing in the lab.
One of the purpose of the project was to make the components reusable for further utilisation
in other PCBs or models, keeping the budget of the project low.
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Abstract

El objetivo final de este proyecto es disefiar una PCB orientada al control de
estabilidad de un CubeSat. El propoésito es conseguir un algoritmo de control preciso
que, acompafiado de una electrénica correctamente elegida y configurada, permita
levantar el cubo haciéndolo oscilar entorno a una de sus aristas. Para ello, un analisis
profundo de la fisica de control, asi como de fusién de sefiales y caracterizacién de
componentes era necesaria.

Se han desarrollado varias prototipos, para conseguir un correcto entendimiento de
la fisica detrds del control y modelado de los componentes. Para ello, herramientas de
Disefio Asistido por Ordenador, como Solidworks o Altium han sido muy ttiles.

Los componentes utilizados en la PCB han sido en su mayoria “off the shield”, es decir,
componentes que ya estaban disponibles en el laboratorio. Ademads, se ha intentado que
todos los componentes sean reutilizables para futuras PCB o modelos, haciendo que el
presupuesto del proyecto sea lo mds bajo posible.
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motion and control algorithm was absolutly needed for developing the system. It is
detailed on the first part of the project, devoted to the phisics.

A few prototypes were designed in order to probe the IMUs, motors and the control
algorithm. To do so, EDA software such as Altium Designer and Solidwork were a
usefull tool.

The electronics used for the PCB are off the shield components, already existing in the
lab. One of the purpose of the project was to make the components reusable for further
utilisation in other PCBs or models, keeping the budget of the project low.
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Chapter 1

Introduction

The following Bachelor Thesis ends the studies of the Electronic Engineering degree
in University of Granada. The objective of this work was to design and implement a
Attitude Control Board for the GranaSAT-I CubeSat.

GranaSAT is an aerospace development group from the University of Granada (UGR),
which is made up entirely of students and is under the supervision of professor Dr.
Andrés Maria Rolddn Aranda.

Figure 1.1 — Granasat logo

1.1 State of the Art & Motivation

Theory of control is a topic that mixes up maths, phisics and engineering. The aim
is to obtain an appropiate response of the system, given a feedbak of its estate. When
focusing on the attitude stabilization, the purpose is to keep the system either with a
exact tilt angle, a stablished orientation...

This seemed really interesting when appliying to satellites. A efficient way of setting
an orientation of the satellite is needed so it can achieve its purpose. When satellites are
staying longer in the space, propellants reservoirs don’t seem like a practical option. At
the beginning they can be useful for establishing a certain orientation of the satellite, but
as they are not refillable, at some point the satellite can be useless.

For that purpose, efficient mechanism such as reaction wheels have been developed.
There are some universities developing attitude control system by using reation wheels,

Attitude Control Board for CubeSat 1



such as the popular “Cubli”, developed by the ETH Zurich [11], which consists of a
15x15x15 cube that is capable of balancing around one of the corners, been stable at all
time. It is based itself on the inverted pendulum control, as seen in [12].

To achieve the success of our project, a deep understanding of the functional
working mode of the Cubli, and some other systems, such as the inverted pendulum
was absolutly needed.

A Cubesat is a 10x10x10 cubic satellite popular in the educational and amateur
community, due to its features and standarization. The motivation of this project is to
implement the attitude control on a PCB that can be fitted in a CubeSat, making it
standarized.

1.2 Objectives

Since building a completly functional model involved many tasks and objetives, the
main objetive of this Degree Thesis is to set a base for future improvement and
implementation of a fully working Attitude Control on a CubeSat designed by
GranaSAT.

Building from scratch and implement a fully working Attitude Control Board in a
semester is an impossible task, due to the big amount of tasks and previous
understanding needed. The main objetives ofthe project were set as follows:

(1) To study and understand the theory behind the equations of motion of the system.
Involving the lagrange equation of motion; the dissipative energies; motor torque;
gravitational torque.

(2) To study the already existing approaches when designing attitude control
algoritm, state state model; digital PID implementation.

(3) To identify the system requirements in terms of accuracy; implementation;
mechanical features.

(4) To develop a first prototype useful for a first approach to the control algoritm
implementation; the calibration of the IMUs; and the motor torque
characterisation.

(5) To learn using a milling CNC machine, useful in terms of developing future
prototypes.

(6) To understand the theory behind signal merging and implementation of signal
filtering to get the position by using IMUs.

(7) To develop a method for the characterisation of the motor’s torque when
controlled by a PWM signal.

Juan Aparicio Jiménez



(8) To use EDA software tools such as Solidworks and Altium for real projects
designing.

(9) To develop a working attitude control PCB through Altium Designer.
(8) To get used to working in a lab while being part of a team.

(10) To identify problems during designing or development. Learn to solve problems
by developing an analitic view of the issues.

(11) To set a theorical explanation of every achievement in terms of designing,
firmware, or setting the theorical framework, increasing the GranaSAT team
know-how.

Therefore, the main purpose will be to set a starting point of a fully working attitude
control board to be implemented in future CubeSats designed by GranaSAT. Future
students could finish the implementation, solve mistakes, test it and improve the design.

1.3 Workflow & Chapter Description

Once the objectives of the project have been detailed, the workflow has to be set, so a
sistematic approach is followed. The basic workflow that every engineer should follow
is shown in figure 1.2

REQUIREMENTS
& CONSTRAINS » ANALYSIS »| PLANNING
A
TEST <«—{IMPLEMENTATION DESIGN

Y

RESULTS &
CONCLUSION

Figure 1.2 — Engineering design workflow.
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Following the diagram of the workflow, each chapter will be briefly summarized:

¢ Chapter 2: System Analysis & Theorical Framework
Along this chapter the phisics of the system are explained, setting the
requirements of the system under the theorical framework. First, the dynamics
equations of motion are gotten combining Euler-Lagrange equations. Also, the
method for the characterisation of the PWM signal vs Torque will be exposed. The
mechanical features are also treated. The PID tunning developement and the
stability of the system are deeply analyzed.

¢ Chapter 3: Mechanical Design.
The different prototypes and the aim of each one of them is explained. Also, the
milling features learnt during the utilization of the CNC machine are shown. The
explanation of the actual PCB design will be discussed.

¢ Chapter 4: Electronic Design.
Each component used along the project is analyzed and its working mode is
shown. Therefore by a quick review, anyone could set each component to its
operation mode. The rpm measuring system is deeply explained, along with the
phisics behind the signal merging and filtered needed for a proper position
estimation through an IMU. The firmware update done to the ESC variator used
for the BLDC motor is also analyzed.

¢ Chapter 5: Software Design.
The coding of the project is cut up in different functions, implementing the
requirements and working mode of each component shown in chapter 4. Some
diagrams are avaliable for an easy understanding.

¢ Chapter 6: Final PCB Design.
The PCB design pdf, including hierarchical schematics and the PCB itself is
shown. Each schematic has a description of the component. The signal connection
schematic is set as the top level entity.

¢ Chapter 7: Conclusions & Future Work.
Brief conclusion and future overview.
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Chapter 2

System Analysis & Theorical
Framework

When starting the project, the theorical framework was absolutly essential. For this
reason, along this chapter the dynamics equation of the system are analyzed, making
possible to understand the constrains and the relationship between each part of the
system. To do so, Euler-Lagrange equation will be exposed. Later on the chapter, the
PID control algorithm is analyzed and the tunning parameters are set for a
parametrizable set of values. The mechanical features are also set, allowing a successfull
design.

2.1 Dynamics of the system

The equations of motion are absolutly need when designing a system. The aim of this
section is to get the proper equation of the dynamics of the system, in order to be used
for developing a successful control algorithm and mechanical design. The final purpose
of this project is to develop a Attitude Control Board that allows a cube to self stand.
The dynamics of a cube balancing around one of the edges can be described just by
considering it as a 2D object, as it will only balance around one edge by now, as said
before. Therefore, as a first approach to the system’s dynamics, we will focus on the
system shown in Figure 2.1.
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Gravitational
Center
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Figure 2.1 — 2D Model of the Balancing System

For understanding the phisics within our project Euler Lagrange equations had to be
deeply understood and studied. In order to model our system, according to
D’Alembert’s principle formulation of nonsmooth mechanics which include systems
with nonconservative forces, Euler-Lagrange as used. They given by [13]:

d [oT oT
a <a—ch) — a—ql = Qi (2.1.1)

Where q; is the angular position, ¢; is the angular velocity, Q; is the generalised force
associated with coordinate qi, and T is the total kinetic energy of the system.

Moreover, the Lagrange function (L) is defined as [13]:
L=T-V (2.1.2)

Where T is the total kinetic energy of the mechanical system. V is the total potential
energy of the mechanical system considering the whole system which is characterised.
The generalised force associated with each coordinate can be defined as [14]:

D o
Q=) Fia—.l (2.1.3)
qi

i=1
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On each coordinate of our system those generalised forces are:

v oR

+Ti— (2.1.4)
qi 04y i

Where T; are the nonpartial torques and aTR models the dissipative forces. The potential
Energy of the system isn’t a function of either 0 or 0,,, therefore:

\%
—_— = 2.1.
34 (2.1.5)

By combining the equations given in 2.1.1 and 2.1.2, Euler-Lagrange equations are given

by the expression:
£(£>_£_T._6_R (2.1.6)
dt \9¢qi/ dqi = 0g -

2.1.1 Potential Energy

The potential Energy of our system is related to effect of gravitational force on our
system. We consider that gravity affects on the center of mass, so we model the potential
Energy caused by the gravitational force as:

V = Lim¢g cos O¢qce (2.1.7)

2.1.2 Kinetic Energy

The total kinetic energy of the mechanical system can be seen as the sum of all the
moving objects in the system. For our purpose, we consider the of the kinetic energy of
the reaction wheel, and the kinetic energy of the face itself, which also turns. Therefore:

Ttot - EFace + Ewheel (2-1'8)

As said in [15], for a single particle rotating around a fixed axis we can relate the angular
velocity to the magnitude of the translational velocity using the relation v = wr, where
1 is the distance of the particle from the axis of rotation and v; is its tangential speed.
Substituting into the equation for kinetic energy, we find:
K= 1mvz = 1m(wr)2 = 1(mrz)wz (2.1.9)
22 2 ' o
If we consider a rigid body as the sum of small particles, the angular velocity will be the
same for all the particles. Thus, the Kinetic Energy of the rigid body will be:

_ %(Z mjrjz)wz, (2.1.10)
j
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Which can be derived to: :
K= lez. (2.1.11)

Where I represents the moment of inertia, with units of kgmz, I= Z]- my 2

;-

For our purpose, I¢qce is considered as the inner momentum of the whole system
but the inner wheel, around the pivot point. I,,peer is the inner momentum of the wheel
around its center which, considering the hole system, rotates with a rotation speed that
is the sum of the face rotational speed and the wheel apinning velocity itself. Therefore:

1 .
Eface = ZIf(lcee%ace (2.1.12)

| 2

Ewheel - zIwheel(ewheel + e‘fcu:e) (2-1-13)

2.1.3 Dissipative Energies

The dissipation function represents the power lost to friction, so it is often a
quadratic function of the generalized velocities. The Rayleigh dissipation function, is a
function used to handle the effects of velocity-proportional frictional forces in
Lagrangian mechanics [16]. It is defined for a system of N particles as:

N
1
R= 7 Z(kxv,zC + kyvfJ + kzvﬁ) (2.1.14)

i=1
Therefore, we model the lost caused by the motion of the face and the wheel by:

1. . 1. .
R = EKWE)%\, + szG% (2.1.15)

The dissipative forces interaction within the system can be modeled by g—‘i. Thus:

oR .
E = KWGW (2.1.16)

oR .

6_Gf = KOs (2.1.17)

2.1.4 Lagrange Function

First, all the Inner moments have to be referenced to the same coordinate system. By
implementing the Steiner’s Theorem, the Inner moment of the wheel can be seen from
the pivot point as [14]:

Lvface = Iwheel + me—z (2.1.18)
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Putting it all together, the Lagrange function is computed as:

1 . 1 . )
L= _I—tmtg cos O¢qce + EIfacee%ace + E(Iwheel + me—z) (Oyheel + eface)2 (2-1-19)

The generalized momentas, derivated from the Lagrange function are:

d oL .. .. .
Meface = 3 ( ; > = Ifaceef + (Iwheel + mwl—z)(ew + eface) (2.1.20)
dt aeface
d [ oL o
Mewheel = a <aewheel> = (Liyheet + My L) (05 + 6,y) (2.1.21)

The partial derivative of the Lagrangian are given by the expression:

oL

a—ef = Lymigsin O¢qce (2.1.22)
oL
20, 0 (2.1.23)

2.1.5 Motor Torque vs PWM

A Brushless DC Motor (BLDC) motor delivers a torque while turning which depends
on the RPM and the power given to the motor. In order to modelise our system, the
torque characterizarion was needed for a proper adjustment. The power profile and
torque of a motor follows the folloring rules:

* The higher the spin velocity is, the lower the torque the motor is capable of
delivering.

* The higher value of torque is found when working in intermediate velocities.

To measure the relation between both values and the angular velocity for our particular
motor, an object with known inertia moment is attached to the motor axis. Therefore, a
set of specific pulse width modulation (PWM) signals are used to comunicate to the
motor and a full velocity profile is obtained. For this purpose, the CNY7o0 device,
deeply analised on section 4, was used for measuring each spin of the wheel. The
CNY7o consists of a IR-emitting diode and a phototransistor, if a surface absorbs the
light, then a 5V signal will appear on the collector. Hence, four black stickers were
placed around the item attached to the motor axis. On a first approach to
characterization of the motor, the collector of the CNY7o0 was observed from the
oscilloscope in the lab, as seen in 4.18. We could not get the data fast enough from the
oscilloscope in the lab through the script shown in Appedix C, which ask the
oscilloscope to send the frequency of the pulses seemed in the collector of the
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phototransistor, once it is stabilized, so the angular acceleration couldn’t be taken from
this measure.

For this reason, another solution had to be chosen. Audio signal processing programs,
such as Audacity can record the voltage pulses created on the microphone through the
magnets or condensers. For our purpose, through a coupling capacitor, the collector of
the CNY7o0 phototransistor was plugged into the laptop’s microphone jack for recording
the rising edges on the collector. The purpose of the audio coupling capacitor is to block
DC, allowing AC through it. Of course the ground had to be the same for both, the jack
microphone input, and the CNY7o. The schematic of the circuit implemented is shown
in figure 2.2.

R2 R1
150 50k

Ul
5 §Zﬁ
AudioGND
PC817A J7

Figure 2.2 — Schematic CNY70 Audio Reading.

AudioOutput

The implementation in the lab is shown in the following figure 2.3.

Figure 2.3 — CNY 70 implementation for reading through Audacity.
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Table 2.1 — CNY 70 implementation for reading through Audacity.

The results read from Audacity are shown in figure 2.4. It can be seen that from the
starting point, where the angular velocity is o, the frequency of the pulses get higher as
time goes by, caused by the angular acceleration of the spinning object.

File Edit Select View Transport Tracks Generate Effect Analyze Tools Help

= PAEE 2™ 50 45 47 cickto Stet Montorng A5 A2 & o D] ® s 4 4 3 = 2 18 2 6 0
JEFN= - y - ik to Start Moritoring - g 4 o E r g g K K ¥ - - E
] [ u L} 4] [ ]

e SR T o XKMOE mwr |~ &la|@ Q@[ k-
Windows DirectSound  + \!, Primary Sound Capture Driver |1 (Mono) Recording Char ~ | #{}) | Primary Sound Driver -
v ‘ 2:50.0 2:51.0 2:52.0 253.0 2:54.0 2:56.0 2:56.0 257.0
v 250 ‘ : ‘ : ‘ 253, : : ‘ 255 ‘ 255 . 257

] Audio Track »[ 1.0
hute | Solo | 0.8-

- +
o 0.8

L & |07

Y i

Moo, 441004z | 067
32-bi ot
0.5-

0.4-
0.3-
0.2-
0.1
0.0-
01+
02

0.3
0.4

-0.5-
06
07
0.8

0.9
rs -1.0

Figure 2.4 — Signal read in Audacity.

An algorithm is then created in Matlab to extract the time for each signal peak in
order to perform the analysis. The signal can therefore be seen clearer in order to get the
acceleration of the object caused by the motor’s torque.
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e 9o © 9
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T
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(o)) J? N

L
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0.2 04 0.6 0.8 1 1.2 14 16 1.8 2 2.2
Sample #10°

Figure 2.5 — Signal proccessed in Matlab.

The velocity profile presents different zones: a first part where the acceleration is
linear with time, which comprises the lowest 80% portion of the total velocity range, and
a second part where the acceleration decreases until the motor reaches a saturated state.
It can be seen in Figure 2.6, where the results shown in Figure 2.5 have been further
proccessed to get the velocity profile.

T T T T T

2000r ]

1500 4

Frequency (Hz)

—
o
o
o
T
I

1 1 1 1

500
0 2 4 6 8 10

Time (seconds)

Figure 2.6 — Velocity profile.

Given our specific control purpose, the analysis of the almost-saturated and saturated
regimes will be neglected, and the study will be focused in the linear behavour parts.

The same measurement is made for different values of the PWM Arduino control
signal for a 11.1 volts power supply to the BLDC 3 phase motor, and from the slope of
the linear part and the inertia moment of the rotating object, the torque can be obtained:

T= IE (2.1.24)
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As sais before, for our purpose, only the slopes of the linear part, at the begginning
of the velocity profile will be consider. The object we placed on the motor axis was a
wood stick, so the the inner moment is the same as for a solid cuboid rotating around
the heigth axis, given by [17]:

I, = ]1—2111(1/\)2 +d?) (kg * m?) (2.1.25)

Where m is the mass of the cuboid; w, the width and d, the depth.

The results when analizing the differents slopes is shown in Table 2.2.

PWM Input (%) 110 115 120 125 130
Slope (rad) 373749 3960.54 4117.36 4322.82 4490.55
Torque (kg - m/s?) 1.87 1.98 2.06 2.16 2.25

Table 2.2 — Torque values in relation PWM control signal

We can now stablish a lineal dependence between the PWM control signal and the
Torque given to the system by the motor. In Figure 2.7 the linear trend can easily be seen,
given by:

Tm(PWM) = 0.0187PWM —0.1792 (2.1.26)

TORQUE VS PWM VALUE (3 Phase Motor)
—e—Torque (kg ‘m/sh2) e Lineal (Torque (kg -m/s”2))

N
n

N
>

N
w

N~
N

N
N

y =0.0187x - 0.1792
R?=0.9973

Torque (kg -m/s”2)
m N b b &

=
wn

105 110 120 125 130 135

115
PWM Control Value from Arduino UNO

Figure 2.7 — Torque values obtained for a PWM sweep range (3 Phase Motor).
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2.1.6 System’s Dynamics

Using Euler-Lagrange equations 2.1.6, the motion equation for each coordinate in our
system can be seen as:

i(i)_i_T _ OR (2.1.27)
at \a6,,/ 08, ™ 39, 127
d /oL oL OR
— | — )| —— =19, — — 2.1.28
dt (aef) 00; " 30, (2.1.28)

By combining Euler-Lagrange equations, the generalised momenta, dissipative
energies, and the motor torque, the equations of motion of the system on the 0,
coordinate can be seen as:

(Lvheel + mez)(éf + ew) + Kwew = Tm (2.1.29)
When focusing on the 8¢ coordinate:

ItaceOs + (Luheel + mywL?) (6, + 0;) — Limigsin 0 + K0 =0 (2.1.30)

Reflecting the variables 07 and 0y, interesting for the State Space Model 2.2 the dynamics
of the face of the cube can be described by the equation 2.1.32 [11].

g _ (mili)gsin®; —Tm — K05 4 Ky (2.1.31)
b Ib + mWLZ ! ) .3

b _ (Ir + Ly + My L) (T — KuBy)  miLigsin 0 — K0y
¢ Ly (If + myyL2) (If +my, L2)

(2.1.32)

This two equations will be used when setting the control algorithm, where the plant
of the system is need in order to stabilize it, getting the desired response. Also, during
the Mechanical Features section 2.3, this phisical approach to the system will be used to
stablish the constrains in terms of designing.
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2.2 State Space Model

A state space model can be derived form the equations of motion, 2.1.32 and 2.1.31.
Therefore, we consider the standarized Controllable Canonical Form. Given a system
transfer function, it can be obteined a canonical model, useful for the pole placement
controller design technique. The observable canonical form is defined in terms of the
transfer function coefficients as follows: [18]

X2 10 .. —an X2 bn1—an_1bg
I R . g . " (2.2.1)
| Xn 0 0 . . —ar] [xn] | bi—aibg
-x1-
X2
y= [OO...O]] " | +bou (2.2.2)
_Xn_

Therefore, our system can be described by a observable canonical form, useful when
designing the control plan, where:

x = Ax+ Bu (2.2.3)
y=Cx+Du (2.2.4)

Where x represents the derivated angular velocity of the wheel and the face,
considering the equations of motion; and y represents the observable parameters read
from the sensors which will be explained later on. Thus, the system can be seen as [11]:

x = (Op, Oy, Ow) (2.2.5)
0 1 0
_ (miLt)g K¢ . K 2
A= I¢+my, L2 T +my, L2 (1f+me2)(me ) (2.2.6)
_ (mile)g K¢ K ((TptLy+my L2)
Le+myy 12 Ie+m,, L2 Lol -y L2
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0
B = —Km (2.2.7)

C I+my, L2
K (Ip+Lw+may, L2)
Iw(If+me2)

For linearizing the equations of motion, the equilibrium point where (8¢, 0¢,0,,) =
(0,0,0) is considered, therefore:

sin Of & O¢ (2.2.8)

In terms of the observable parameters, the angle of the face 0p; and the angular
velocity of the face, 0, and the wheel, 6,,, are considered perfectly meassured.

c=[111] (2.2.9)

D= [O} (2.2.10)

Thus, the system’s reading on the variables will be:

y = (O, Op, Ow) (2.2.11)

In the section devoted to the PID control algorithm design, this equation will be the
set base for solving the stabilitation of the system.
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2.3 Mechanical Features & Constraints

When the face is laying on one of the edges (resting position), there is no angular
movement in any of the objects within the body, meaning the inner wheel and the face
itself. Therefore, by using the equation of dynamics shown in 2.1.31 and 2.1.32, assuming
that there’s no movement:

(0r,0w) =~ (0,0) (2.3.1)

The dissipative forces, due to the friction, approach zero. The dynamics equations for
the face laying on one of the edges are then:

Of(Ttace + Lvheet) = Lemigsin O — Ty (23.2)
When the face hasn’t moved and it’s laying on the corner, the torque is then the full
responsible of moving the face against gravitational force:

Tm = Limyg (2.3.3)

Figure 2.8 — 2D Model in rest position.

Also, when the face is balancing around the desired equilibrium point, 8¢, 0,, should
be close to zero, making the system stable. The equations of motion will be then the
same as when the face is laying on one of the edges, and the motor torque will be then
again the responsible of movement. Consequently a gentle and smooth torque will be
needed when the face is balancing around zero and a strong torque will be needed when
the face is laying on the edge.

The aim of the mechanical design is to make the torque needed to move the face
the smallest possible: assuring that the power consumption will be small, the control
algorithm fast and strong enough and the motor capable of moving the system. As
shown in equation 2.3.2, the effect of gravitational force on our system is multiplied by

Attitude Control Board for CubeSat
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the mass of the whole system and by the distance between the bearing point and the
gravity centre of the system. Therefore the system is required to be light and the center
of gravity as closer to the bearing point as possible. Making possible to counter, by using
the motor torque, the force applied by the gravity on our system.

Tm =Limig— éf(Iface + Liyheet) sin O¢ (2-3'4)

[~ Gravitational
Center

Figure 2.9 — 2D Model balancing around target point.

In terms of the inner wheel, regarding the equation 2.3.4,0once the initial torque given
by the motor has counted the gravitational force, Otace Will be different to zero. The inner
moment of the wheel (I,,) multiplies the angular acceleration of the face which decreases
itself the effect of the gravitational force when the face is balancing up. Therefore, the
inner moment should be big enough to make the torque needed smaller, the power
consumption lower, and the softness of the control higher.

Assuming that the inner wheel desired will consist of a cylinder turning around its
centre, the inner moment is given by the expression [14]:

1
[= zm(r% + r%) (2.3.5)

Where M is the mass of the wheel and 11,1, can be seen on figure 2.10:

Given the characteristics of our system, the parameter that can make the torque
needed smaller is the reaction wheel inner moment. As said before, the weight of the
system should be the lighter possible, making the gravitational force acting on the
system small. Taking into account the equation 2.3.5, the size of the inner wheel should
be as big as possible and the weight relevant but light enough not to make the body
weight too high.
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The position of the motor within the system is another parameter to be discussed. If
the motor is placed to high from the bearing point on the one face prototype, the center
of gravity will be then moved up, making the gravitacional torque higher. On the other
hand, the size of the inner is constrained by the position of the bearing ring on the face,
so the higher the motor is, the bigger the inner wheel can be.

(2
N

Figure 2.10 — Cylinder Measures.
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2.4 PID Control Algorithm

Once we have the dynamics equations of the system, shown in section 2.1, the
stability of the system has to be probed. The State Space Representation 2.2 of our
system described by a observable canonical form, is given by:

x = Ax+ Bu (2.4.1)
y=Cx+Du (2.4.2)
0 1 0
_ | g K Ky 2
A= L2 mal?  Trmar2) (Mwl?) (2.4.3)
_ (miLyg K¢ K ((Tp+Iw+myy L?)
If+mwlz If+mWL2 IWIf+mWL2
0
Km
B = _If+me2 (2‘4"4)
K (Ip+ Iy +mwL2)
Iw(1f+me2)

For linearizing the equations of motion, the equilibrium point where (6, O, 0,) =
(0,0,0) is considered, therefore:

sin O ~ O (2.4.5)

In terms of the observable parameters, the angle of the face 6y; and the angular
velocity of the face, 0, and the wheel, 6,,, are considered perfectly meassured.

C:[] 1 1] (2.4.6)

D= M (2.4.7)

A Matlab code was developed in order to get the transfer function of the system. The
values of the inner moment, frictional forces etc... are taken from the system explained
in [11]. [NUM, DEN] = ss2tf(A,B,C,D) creates an object [NUM, DEN] representing the
transfer function of the continuous-time state-space model. From [NUM, DEN] we can
get the simplify transfer function “sys” of the system by sys = tf (NUM, DEN), which
construct transfer function or convert to transfer function. Hence:

clc;

1 = 0.085;
Ib = 0.075;
mb = 0.419;
mw = 0.204;

Ib = 3.34%(10"-3);
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Iw = 0.57%(10" -3);

Cb = 1.02*%(10"-3);
Cw = 0.05*%(10"-3) ;
g = 9.81;

Km= 0.0251;

A=101 0; ((mb*lb + mw*l)*g)/(Ib +@mw*(1°2))) -Cb/(Ib +mw*(
"2)) Cw/(Ib + mw*(1°2)); -((mb*1b +mw*1)* )/ (Ib +(mw*(1°2)
) S

|
) -Cb/(Ib+@w*(1°2))) -Cw*(Ib+Iw+@w*(1°2)))/(Iw*(Ib + (mw*(

“2)))) 1

B = [0; -Km/(Ib+@w*(1°2))); Km*(Ib+Iw+@mw*(1"2)))/(Iw*(Ib + (
w*(17°2)))) |;

C=[11 1];

D=[0];
[NUM, DEN]=ss2tf(A,B,C,D)
sys = tf (NUM, DEN)

The transfer function for the values shown above, in Laplace domain is therefore given
by:
44.04s% + 6.326s — 4376
$3+0.31s%2 — 99.355 — 8.717

G(s) = (2.4.8)

The Pole-Zero Map of the open loop system G(s), where no feedback and no control
are applied, is represented by Matlab’s pzplot() function, which shows the Pole-Zero
map given the transfer function. The result is shown in figure 2.11, where as suppossed
there are poles in the positive part of the Real Axis, meaning that the system without
any control will be unstable. There is no way the system can get to the target point if no
teedback of the angular position of the body is given. Hence, it is obvious that a control
algorithm is needed in order to stabilize the system.

Pole-Zero Map

0.8 .
06 .
04 F .

02 r ]

02F ]

Imaginary Axis (seconds'1)
o
s
s

04 ,
06 -

08} -

1 1 l 1 1
-10 -5 0 5 10
Real Axis (seconds'1)

Figure 2.11 — Pole-Zero map of the system’s plant.
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”A system is controllable at a time t¢ if it is possible to transfer through the use of a control
vector without restrictions to the system from the initial state xy, to any other state in a finite
interval of time.”[19]. If the output is the variable to be controlled, then a S matrix is
defined S == [B; AB; A%B], for which it must be fulfilled that the range must be equal
to m; the number of output variables, so the system is controllable. Matlab’s function
ctrb(sys), “calculates the controllability matrix of the state-space LTI object given by x =
Ax + Bu”. Therefore, the code implemented in Matlab for knowing the controllability of
the system is:

clc;

[NUM, DEN|=ss2tf(A,B,C,D)
sys = tf (NUM, DEN)
S=ctrb (sys);

rank (S)

The answer to rank(S) gave 3, so the rank is equal to the number of output variables,
(6f, 65, 0).

For estabilizing the system, once it is known that the system is controllable, a PID
control approach will be used. Probably, in future prototypes a LOR as well. The transfer
function of a PID control algorithm is given by [20]:

de(t)
dt

u(t) =X, {e(t) + Tll[e(t)dt—FTd

i

(2.4.9)

"Where u(t) is control input to the plant model, e(t) is error which is difference between actual
output (y(t)) and reference input (r(t)), Kp is proportional gain, Ti is integral time constant and
Td is derivative time constant.”[20].

For our purpose, the control that will be implemented is actually digital, the system
variables won’t be read continiously, but discretely. The sampling time of the digital
controller, T;, implemented in Arduino UNO, furthered detailed in section 5.3, will be
able to develop a sampling time of 2oms. The digital approach to the PID algorithm is
given by [21]:

uln) =Ky <e(n) P el THT, (e(“) el ”)) o (2.4.10)
Y k=0

A simulink model of the system to be implemented, with the PID algorithm in discrete
time is developed. This model will be useful in terms of the further determination of
the PID parameters for our system, once the PCB model shown in section 3.3 is fully
developed. The PID block used is set to be discrete, with a sampling time of 20ms, which
will correspond to the actual sampling time. As seen in figure 2.12, the compensator
formula make use of the Backward Euler aproximation [22], for the Z transform for the
PID control:

Juan Aparicio Jiménez



23

(2.4.11)

S z—1
“k Function Block Parameters: PID Controller ®
FID Controller o
This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as anti-
windup, external reset, and signal tracking. You can tune the PID gains automatically using the Tune...' button (requires
Simulink Control Design).
Controller: |PID - Form:  Parallel -
Time domain: Discrete-time settings
) Continuous-time Integrator method: Forward Euler o
®) Discrete-time Sample time (-1 for inherited):
Main  PID Advanced  Data Types  State Aftributes
Controller parameters
Source: internal v [ Compensator formuls
Proportional (P):  [228.167124141922 |
Integral (1): [11.5018782062999 |
Derivative (D): 777.353626938636 i
®) | | P+IT,—— Jrl}.%z 1
[ use filtered derivative z-1 s
Filter coefficient (N): |8.09957065760989
Tune...
Initial conditions v
? ] Cancel Help Apply
Figure 2.12 — Simulink PID Block parameters.
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Figure 2.13 — System’s simulink model
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Figure 2.14 — System’s Plant simulink model.

The PWM Signal entering the plant dynamics block, is acctually the control signal
created by the Ardunino, see section 5.2, which has to be converted to the actual torque
given to the system by the motor.

In section 5.2, devoted to the development the software for controlling the motor, we
get to the conclusion that the motor is controlled through a PWM created through the
library Servo.h [23]. Whenever a pulse width is needed, the funcion
ESC.write(PWMValue) can be used. From o to go PWMValue the sense of rotation will
be Clockwise (CCW) and from 9o to 180, Anticlockwise (ACW). This comes from the
explanation shown in figure 5.4, always regarding the throttle set in the BLHELI
firmware update, figure 5.3. Therefore, we can modelise our Torque ouput, regarding
the signal signal created from the Arduino UNO 4.1.

The discrete PID block’s output is also limited between 9o, meaning full power in
ACW rotation; and -9o meaning full power in CCW mode.

Therefore, as seen in section 2.1.5, devoted to the caracterisation of the motor, the
relation between the PWM signal created through the funcion ESC.write(PWMValue)
and the actual torque is given by:

Tm(PWM) = 0.0187PWM — 0.1792 (2.4.12)
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Figure 2.15 — Torque vs PWM signal.

For getting the correct tunning parameters, the PID Tunner tool avaliable in Simulink
was used. It allows to tune the PID, visually checking parameters like overshoot or rise
time. For the values of the system described in [11], the results of the tune through the
PID Tunner are shown in the following figures:

Rise time 1.92 seconds

Settling time 13.9 seconds
Overshoot 14.20%
Phase Margin 75.1 de
Closed-loop stability Stable

Table 2.3 — Response obtained for the PID parameters set with PID Tuning tool.
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Figure 2.17 — Response of the system.
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Figure 2.19 — Signal generated by the PID discrete controller.

Attitude Control Board for CubeSat



28

Juan Aparicio Jiménez



Chapter 3

Mechanical Design

For a better comprenhension of the mechanical restriction and features, regarding the
results shown in 2.3, a few prototypes were built.

Making possible the development of a successful mechanical design, a deep
understanding of 3D modelling programs was needed. The program chose for this
purpose was SolidWorks due to it’s simulation possibilities. Many hours were spent in
learning all the functionalities of this program, allowing at the end a good
understanding of its functionalities and capabilities.

As a first approach to the behaving of the dynamics, the prototype made in first
place was a thick 3D printed 2D body, that as said in section 2.1 can be used to model
the dynamics of the system. It was meant to be heavy making control hard and the
torque needed high. Also, due to the position of the motor and the size of the face,
the constriction caused by the bearing point made the size of the inner wheel small.
Consequently, the inner moment of the wheel wasn’t big enough.

For the following iteration of the mechanical design development, a body face in steel
will be developed due to the high young module (70GPa), and the relatively low density.
Holes will be placed all along the face in order to make it lighter, but strong enough
to withstand the mechanical efforts exerted by the system. Once the CNC coding an
the milling machine working method was understood, the decission made was to use a
already developed by GranaSAT model of a CubeSat.

The final prototype will therefore consists on PCB that can be fitted in this CubeSat.
The measures were taken from the already existing cube and all the components were
titted in it. The design took a long time, due to the constrains and requirements.
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3.1 Plastic Prototype

For the realisation of the first prototype, a really thick plastic body was created in
order to have a heavy face to move. We wanted to confirm that our motor had enough
torque to move the heavy body created, with no holes on it.

Figure 3.1 — 2D Plastic Prototype

The prototype was made out of off the shield components. For that reason, and being
a first approach to the problem, the motor used was a DC motor found in the lab. The
characteristics of the motor will be expose in chapter 4.2.1 . In order to know the weight
and position of the components within the prototype, 3D models of all the components
which are part of the future assembly were made.

It was printed and assembled in the lab, so it could serve its purpose.

The components needed for modeling this prototype and further print it can be seen
in Table 3.1 on the next page.
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Table 3.1 — 3D Components Plastic Body

Render 3D Model Description

e BLDC Motor 3D
Model.

* 3D designed holder
for the Adafruit
10DOF IMU.

¢ Plastic Face
designed so the
DC motor and the
bearing ring could
fit in.

* 3D designed Inner
Wheel, afterwards
printed with high
density, so the mass
could be big enogh.
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* 3D designed mount.

¢ 3D printed holder
for the DC motor.

e MS8 Nut.

e MS8 Rod.
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3.2 Aluminium Prototype

Trying to make the system look alike to the final iteration of it, a aluminium cube
face CNC code was developed. For this purpose, a CNC machine avaliable in the lab
was used. A few tries on the CNC machine were needed in order to understand the
working method: commands, speed and feed rate. It was the first time using a CNC
machine, therefore, the working mode and the coding was unknown. It took some time
to understand its working principle.

3.2.1 Calculation for Spindle Speed and Feed Rate

When milling or drilling, creating the path needed to make our piece, feed rate and
spindle speed must be determined. Materials have rated surface speed depending on
the broach, the harder the material the slower the speed. We consider the parameters
shown in the table bellow, specified for our cutters. The material used is an aluminium
alloy, short chipping and no cover considered. The rest of the table, for other materials
is specified in Appendix A.

Aluminum
-400 300 240 0,030 | 0,060 | 0,10 | 0,15
alloys, short chipping

Table 3.2 — Cutting data recommendations. Source: JHV Tools B.V. [10].

Accordig to the manufacturer [10], the calculations to be made are:

n— M(T m) (3.2.1)
o dy P 32
Vi = f, * 3 *n(mm/min.) (3.2.2)

Where n = SpindleSpeed, V; = FeedRate, V. = CuttingSpeed, d; = Diameter(mm),
f, = Feedpertooth(mm), z = Noofteeth.

4mm, 3mm and 2mm diameter drills are used as milling cutters. Therefore:

Drill 4 n = 805300 — 79099 | V= 0.03% 319099 =573
Drill 3 n = 8008300 — 25465 | V¢ =0.03% 125465 = 763
Drill 2 n = 8004300 — 38197 | V; =0.03 x 138197 = 1146
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In order to make it look alike to the real and final cube that will be developed, and
condering the restrictions found in the firs prototype, a code was developed for making
a aluminium cube face.The final look of this face prototype would be really similar to
the plastic cube face shown in figure 3.1, solving the problems related to the size of the
Inner Wheel due to the position of the inner wheel.

The code developed for making the face of cube isn’t shown, because of the large
number of lines, but through the simulation mode on the CNCgo02 SW, used for
controlling the CNC machine, we can get the path of the cutting. The simulation mode
of CNC402 shows the paths in blue and the drilling in red. The drilling will be used for
the holes to hold the motor, and its holder, in case it's not enough with the screws. In
terms of the path, as shown in the code, each path and trajectory had it's own purpose,
basically for engraving the motor inside the aluminin so it doesn’t move; making the
hole for the bearing ring and the screw used to fix it so it doesn’t move while balancing.

Tl G43-#*** Simulation Mode ***

Figure 3.2 — 2D Aluminium Face Designed
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3.3 CubeSat Momentum Board

In this last iteration of our prototype a CubeSat aluminium model, developed by
GranaSAT, was used. The model considers the 1ox10x10cm measures standarized for
CubeSats and was developed by the CNC machine avaliable in the lab, it can be seen in
tigure 3.3. In order to develop a real and practical control system a PCB was designed,
titting the size and restrictions of the CubeSat, so a unique body could be possible. This
PCB will be used in future satellites developed by GranSat for controlling the Momenta
and the position if the satellite within a exact target. Therefore, the control has to be
smooth enough and accurate.

Figure 3.3 — 2D Aluminium CubeSat designed by GranaSat

The components used for the PCB will be discussed in chapter ??, but it basically
cosists of a Arduino Uno microcontroller Shield, where two 10DOF Adafruit IMUs are
used to get the body orientation; a PWM controlled ESC variator, used for powering a
BLDC motor; a CNY70 phototransistor used as the encoder; and user interface
components, such as an IR receiver and a Graphic LCD. The final assembly can be seen
in figure 3.6.
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For this prototype, in order to develop correctly the PCB and get the physical
parameters that will be used for fitting the PCB in the CubeSat structure all the
components had to be modeling through SolidWorks with the exact sizes and weights.

The electronics on it will be detailed on the next chapter, devoted to the Electronic
Design, chapte 4. Also, all the schematics, detailing each of the components and its
connections are shown in chapter 6.
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Table 3.3 — 3D Components CubeSat Design

Render 3D Model Component Description
e BLDC 3-Phase
Induction Motor.
3D Design made in
Solidworks.
‘r‘i\ » * Wraight32 ESC

variator. 3D Design
made in Solidworks.

e Nokia 5100 48x84

pixels matrix
LCD. 3D Design
downloaded  from
GrabCAD.

e KY-022 IR Receiver.
3D Design made in
Solidworks.
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e CNY70  Reflective
Sensor. 3D Design
downloaded  from

GrabCAD, but
modified to fit our
requirements.

¢ Arduino UNO. 3D
Design downloaded
from GrabCAD.

The following aspects have to be discussed in the design of the PCB:

The design of the PCB is made in two layers, bottom and top layer, so the
components will be placed either on the top or the bottom of the board.

On the top layer, the 3 phase motor, the ESC Airbot Wraigth variator 4.6 and the
two IMUs 4.3 will be placed.

The two IMUs are placed along the diagonal of the PCB, making possible the
utilisation of the algorithm developed for the tilt angle estimation 5.1.

The BLDC 3 phase motor 4.6 will be attached to the PCB through four M3 screws.
The motor itself allows this implementation. In order not to cut the wires of the
motor, holes are placed in the PCB, so the wires go through them before been
soldered to the ESC variator.

The Nokia 5100 LCD 4.7 LCD will be placed on the bottom layer, so whenever the
cube is balancing, the printed information can be read.

The Arduino UNO is placed on the bottom layer, the headers on it will be erased,
so it can be soldered directly to the PCB through new headers. This way we prevent
the overheating of the regulator in the Arduino.
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* The IR Receiver is place so when the cube is balancing it is still accesible for the
user, making easy to point at it with the IR Remote controller.

* A double implementation was designed for the printed PCB. When the PCB Gerber
tile is sent to be printed, a few copies are received, therefore, the idea is to use one
of these copies for placing the electronics, and the other one for placing the battery.

¢ All the nets, as well as the buses are correctly commented on the top overlay layer,
so whenever placing the components will be easy.

e All the nets were sized according to the results given by PCB Trace Width
Conversion Calculator. 3

The final design can be seen in the following figures:

el

Figure 3.5 — Bottom View of the PCB
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Figure 3.7 — Bottom View of the Resulting System
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Chapter 4

Electronic Design

The electronic design will determine whether the project is succesfull or a failure.
Therefore, for the realisation of this project different sensors and motors where
considered. Not only the speed and accuracy of sensors was important, but also how
fast the controller could read the values on them and using the control algorithm give
an output. The final choice will be explained for each case.

4.1 Arduino UNO

Arduino UNO seemed like a simple and affordable option for this project. The idea
was to make a Arduino UNO shield which could be used for controlling the
momentum of a CubeSat. It allowed us to easily communicate with the computer
through the Serial Port, really useful when developing the code and the calibration and
filtering for the IMUs, futher explained 5.1. Also, many libraries for some of the
components were avaliable online, in chapter 5, devoted to the Software design, the
utilisation of this libraries will be detailed.

Moreover, it could be powered with a 11.1V Battery, needed for powering the 3 phase
motor. The recommended input voltage goes from 7V to 12V, according to its datasheet
[1], and the power consumption is really low. Some of our components and sensors
work with a 5V supply, so the internal regulator in the Arduino UNO seemed really
useful. The maximum power supply through this 5V regulator is stimated in 1W, when
a external supply is used. The DC current for 3.3V Pin is maximum 50 mA but, for
our purpose, where only the Nokias100 4.7 works at 3.3V, the power will be more than
enough.
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Figure 4.1 — Arduino UNO. Source [1].

4.2 First Prototype

This basic first approach to the project was developped using exclusively off the shield
components that were found in the lab. As said previously in section 3.1 the aim of this
tirst prototype developed and 3D printed was to understand the phisics and developing
the basic algorithms and IMU based estimation of the position. The components that
were used only in this prototype, and later discared are shown in the following sections
4.2.1 and 4.2.2.

4.2.1  DC Mini-Motors M30N

According to the research on internet, probably used in a old scanner. Being a DC
motor, CCW/ACW movement was possible, regarding the polarity.

The voltage range goes from 28 34 V, therefore, it wont be really useful when not
connected to a power supply. Also, the size and weight of this motor won’t make it
useful for our project in terms of the smooth control needed. As seen in section 2.3 when
the weigth of our system is too high, the torque needed and the consumption of energy
will be higher. Even though it wasn’t the best options in terms of the control, in order to
understand better the meaning of the torque shown in 2.1.5 and how to get the constant
for a given input, this motor was usefull.

The dimmensions of this motor are shown in figure 4.2 and a SolidWorks model was
developed as well to size the 3D printed face and the holes on it.
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Figure 4.2 — Measures DC Motor. Source [2].

DC motors draw high current, the copper loss is high and they are not smooth enough
for our purpose. Therefore, for the following prototype, the DC motor won’t be used
because it decreased power and increased vibration compared to a 3-phase motor, which
runs smoother. Also, when using a 3 phase motor, we can get maximum torque at the
beginning considering the high efficiency.

4.2.2 L298N H-Bridge

The L298N bridge was chosen for this prototype, considering that the operating
supply voltage was up to to 46V an the high current admitted. It integrates two power
output stages, for our purpose only one will be used, but thinking about the future and
the aim of this project, set the base for a further attitude control of a satellite, it seemed
interesting to control a dual H-Bridge.

”Each bridge is driven by means of four gates the input of which are In1 ; In2 ; EnA and In3
; Ing ; EnB. The In inputs set the bridge state when The En input is high ; a low state of the En
input inhibits the bridge.” [24].

The regulator only works with voltages up to 12V in Vin, therefore, for our purpose
the jumper between Vin and the regulator had to be removed and the logical part of the
module had to be feed from another 5V source.

As supposed before using, once it was understood how to use an H-Bridge through
PWM pins in Arduino as an output of the control algorithm implemented, PID as seen in
section 2.4. The DC motor was changed for a 3 phase motor and therefore, the H-Bridge
wasn’t used for the following prototype.

Figure 4.3 — L298N H-Bridge. Source [3].
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4.3 Adafruit 1o0DOF IMU

A Adafruit breakboard was used in order to get the position of the face fast enough
and with high accuracy. The basic components within the 10DOF breakboard, as seen is
its datasheet [4] are:

* L3GD20H 3-axis gyroscope: +250, +500, or +2000 degree-per-second scale.
* LSM303 3-axis compass: +1.3 to £8.1 gauss magnetic field scale.
* LSM303 3-axis accelerometer: +2g/+4g/+8¢/+16g selectable scale.

* BMP180 barometric pressure/temperature: -40 to 85 °C, 300 - 1100hPa range, 0.17m
resolution.

Figure 4.4 — Adafruit 10DOF IMU. Source [4].

The actual IMU breakboard we had was a Chineese clone, hence, some of the
components weren’t the components they were suppossed to be, specially the
gyroscope was an old version. That caused delays in terms of developing the code,
many of the 10DOF libraries couldn’t be used and had to be modified to make it work.

For our project, two IMUs were avaliable in the lab, and they were used in order to
make the interference immunity higher. Consequently, we had to connect two IMUs to
the 12C bus in Arduino Uno. The I2C address of each component on this breakboard
wasn’t programable, so both IMUs couldn’t be plugged into the same I2C Bus.

The solution chosen was to develop a Softwarel2C Bus on other pair of pins in the
Arduino Uno, acting as sda/scl. Hence, depending on which I2C bus we read, either
the HW or SW, we will get the data from the components on one of the breakboards or
the other. For this purpose, the library Softwarel2C for arduino was used.
[https:/ /github.com/felias-fogg /Softl2CMaster Softwarel2C Master Library].

The libraries given by Adafruit for the 10DOF breakboard were adapted to the new
Softwarel2C protocol so the read was done properly. When using Softwarel2C, the
commands are not the same as when using HW 12C, thus, a library for Softwarel2C
had to be created.
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Arduino UNO
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» SCL
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\J
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Figﬁre 4.5 — HW and SW i2c Bus for comunnication with two 10DOF IMUs.

For a proper position and tilt angle estimation, some filtering and calibration is
needed to compensate the error caused by the inertial sensors. After considering a few
options, such as AHRS filter, Mahony filter, Kalman filter, the decision made was to use
geometry to stimate the tilt angle of the body and a complementary filter, which
combines accelerometer and gyroscope signals for proper estimation. Both, calibration
of the components and the tilt estimation algorithm are explained in subsection 4.3.1
and 4.3.2.

4.3.1 IMU Calibration Process

Inertial sensors may be subject to different types of measurement errors, not only due
to the limitations on the precision with which those measurements are made, but also
because of a possible lack (or excess) of sensitivity of the sensor and steady-state related
errors among others.

Those two can be modelled as follows:

Xmeas = Asens (Xreal + Asteady) (4'3-1)

that is, Agens represents an error that scales proportional to the measurement
magnitude, and Agteqqy is the bias that comes out when the real measured magnitude is
Zero.

Depending on the sensor, there is a variety of plausible methods for obtaining both
errors.

Attitude Control Board for CubeSat

4




4

50

4.3.1.1  Gyroscope

A gyroscope measures the angular velocity vector of the system. In particular, in the
process of obtaining the orientation of a given body, the gyroscope signal is integrated
over time. This is done by adding up the product of the angular velocity times the
sampling period for every iteration:

O(k)=0(k—1)+wg(k—T1) At (4.3.2)

Is easy to see how each error affects the measurement of the attitude.

First, the sensitivity error results in an augmented or diminished value of the angle
respect to the initial value. Secondly, the steady-state error sums up in every iteration
and increases over time.

The last is well seen after computing the angle value for a fixed system state:
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Figure 4.6 — Angle bias for fixed state

To obtain the steady-state error, the sensor signal is measured over a period of 120
seconds (20.000 iterations), and a mean of —1.867° is obtained.
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Figure 4.7 — Gyroscope measurement for fixed state

o

This value has to be substracted to each measurement of the angular velocity. To
obtain the sensitivity error, a rotation of 9o° is performed on the system and then the
angle is measured.
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Figure 4.8 — Gyroscope measured rotation

The value stabilises at 91.5° and the sensitivity error is given by 9;—(')5 =1.0167°.
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Figure 4.9 — Orientation measurement before and after calibration compared to reference

Although the calibration results in a considerable improvement of the body
orientation measurement, the effect of the intrinsic noise 4.7 results in a random
walker-type error that increases with time. This error and the one produced by the
discrete integration generates a bias that can’t be reduced by any calibration, and needs
from further methods like sensor fusion for improvement. This methods, particularly
the complementary filter will be explain on section 4.3.2.

4.3.1.2 Accelerometer

An accelerometer measures the acceleration of the body along it’s three axes. The
accelerometer measurements are subjected to a large amount of noise compared to the
gyroscope, and it varies depending on the static or dynamic state of the body, getting
larger as the change rate of the acceleration vector grows.
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Figure 4.10 — Accelerometer noise in dynamic state

As in the previous case, the accelerometer presents sensitivity scaling and static offset
errors.

A quick method to calibrate the accelerometer is to use the orthogonality property of
the axes to determine the maximum gravity output value for each individual axis. This
is done by slowly rotating the sensor in a way that the measured acceleration in two of
the axes becomes zero at some point, in which the third axis displays the absolute value
of the gravitational acceleration.

When the positive and negative value of acceleration is computed for a given axis,
both the scaling and steady-state error can be obtained.

Acceleration (m/sz)
N
T

Time (seconds)
Figure 4.11 — Acceleration measurement during rotation

As seen above, when two of the accelerations cross at o, the third reaches it’s
maximum value. This is done for both positive and negative part of each axis.
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Accelerometer 1 | Positive (m/s?) Negative (m/ s2) Steady state bias (m/ s?) Scaling

X axis 9.60 -10.31 -0.35 1.02
Y axis 10.06 -10.15 -0.05 1.03
Z axis 10.00 -10.37 -0.19 1.04

Accelerometer 2 | Positive (m/s?) Negative (m/s?) Steady state bias (m/s?) Scaling

X axis 9.96 -10.25 -0.16 1.04
Y axis 9.80 -10.06 -0.13 1.01
Z axis 9.65 -9.92 -0.14 9.99

Table 4.1 — Maximum values of acceleration, static bias and scaling error

4.3.2 Complementary Filter

When measuring a system’s magnitude, each sensor gives some information with
different accuracy. For example, if two measurements are avaliable for the same
magnitude: x1,%;, each one with the error Axy, Ax;. Moreover, we can assume that the
probability distribution associated with the measures is given by a gaussian function,
with a standard deviation o; = Ax;.
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0.251 7

probability
o

o

o N

o
-
T
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0.05f i

0 | | |
-10 -5 0 5 10 15

magnitude value
Figure 4.12 — Two meassures with its associate Error

Then, according to Bayes’ theorem [25], the distribution of the optimal estimatimation
of the magnitude is given by the product of the two probability functions (normalized):
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Figure 4.13 — Optimal estimation merging two measures.

Where the mean and variance of the new distribution is given by [25]:

2
_ Uo(M — Ho)
PR S (4-34)
T

Therefore, for every pais of measures, the variance associated to the optimal measure
is always less than the variance of the measures before merging.

o < 0y, 07 (4.3.5)

This implies that no matter how bad a measure is, the information that it contains
will always be useful when estimating the real value of the magnitude.

In this statistical principle, optimal filters are based, such as Kalman.

However, these filters have a high computational cost due to the large number of
calculations involved, and for certain applications you can use other simpler sensor
fusion methods but also valid and that require a shorter execution time. A simple
implementation filter is the so-called complementary filter.

The complementary filter is based on calculating the value of a quantity making a
weighted average of all the different measures carried out:

X = Z Cnxn Z Ch=1 (4.3.6)
n n
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The weighting of said measures is done based on the estimate of the error of each of
them; If a measurement has a lot of error, it will associate a constant of small
proportionality and the other way around.

For our purpose, two sensors are avaliable in the IMU, that as seen before in sectio
4.3.1:

* Gyroscope: has a very precise measurement and with little rotation noise of the
system, but is subject to a bias that increases with time.

* Accelerometer: through the measurement of the gravitational vector returns a
constant update of the orientation of the system without presenting bias, but the
measurement is subject to a large amount of noise.

Making a weighted sum of the two measures, we managed to obtain a value with
a very low noise similar to that the one given by the gyroscope but with a temporary
correction of the bias thanks to the measure given of the accelerometer.

The values of the proportionality constants were obtained in a empirical way:

0 = 0.9604yro + 0.040 4cc (4.3.7)

In the algorithm, the change in the angular position of the body in a iteration is given
by the angular velocity 09¥™ by the sampling time, wAt:

AT = WAL (4-3.8)

The change in angular position measured by the accelerometer is the previous
measure minus the current one:

A = ek — ek,1 (439)

The update in the angle calculated by complementary filter is then:

A8 = 0.96/A0gyro + 0.04A0 4cc (4.3.10)
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4.4 CNY7o

Meassuring the speed of the wheel was a challenge in terms of accuracy and cost. A
tachometer was needed for characterizing the motor and it’s torque at the beginning, and
later on, when a LOR control algorithm was considered, the spin velocity of the inner
wheel was crucial. In order to make it useful for future projects, no matter the kind of
motor used (BLDC or brushed motor) the choice made was to make the tachometer by
using a CNY7o.

i Marking aerea

Top view 95 10930

Figure 4.14 — CNY7o0. Source: [5]

L ¢
;_ _—_/l \E\\ D&rtacmr

JL Y
Emitter _ |
A C E [

Figure 4.15 — CNY70 phototransistor working mode. Source: [6]

Summing up the working principle shown in Vishay Semiconductors, the
manufacturer, Application of Optical Reflex Sensors [26]: The CNY7o0 contains a
IR-emitting diode as transmitter and a phototransistors as receiver. The transmitter emit
radiation of a wavelength of 950 nm. Depending on the reflection surface the output
will represent a different logic value. If there’s reflection of the infrared then the gate of
the transistor will allow the flow of electrons, and thank to the pull down resistor, a 5V
signal (1 in logic level) will appear on the output. If on the contrary the surface absorbs
the light, then the logic level on the output will be o. The Cut-off frecuency is 40KHz,
according to the manufacturer, so it will be fast enough for our purpose.

We place four black stickers along the Inner Wheel, absorbing the infrarred, so on
every spin there will be four changes in the electrical signal. IO5 is connected to the
phototransistor’s collector. Counter 2 on the Arduino Uno will then count every rising
edge on 105, and therefore the number of spins within a meassured time can be known.
The internal structure of the Counter 2 in the ATmega328 can be seen in the block
diagram shown in figure 4.16.
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Figure 4.16 — Counter2 ATmega328 block diagram. Source: [7]

(from Prescaler)

Some registers have to be programmed in order to use the collector in the CNY7o
as the input in Counter 2 of ATMega 328 (Arduino Uno HW). During the setup of the
Arduino program, this code has to be added, in order to count the rising edges on the
counter 2, which will be connected to the collector of the CNY7o0 phototransistor, this is
turther explained in section 5.4, devoted to the RPMs measurement code for measuring
through the Arduino UNO.

The measurement setup is shown in 4.17 for meassuring the torque and later on the
CNY7o will be placed on the PCB close to the inner wheel so it can meassure the same
way the inner wheel spinning velocity in real timing.

Figure 4.17 — CNY 70 implementation for reading RPMs.

To probe the correct operation of the CNY70 in rpms meassurement, the output was
plugged into the oscilloscope. The spinning frecuency meassured was then compared
with the frecuency given by a laser tachometer found in the lab.
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Figure 4.18 — Osciloscope scope CNY 70 outpu.

10.0: 1| D 1.0:1

For setting up the measurement of spinning frequency with the CNY7yo, the
oscilloscope was used as a first approach. A python script shown in Appen C. was
implemented for giving the frequency of rising edges on the output of the CNY7o,
connected to the osciloscope, while the voltage input was changed automatically. As it
can be seen in the code, a volt sweep was made, and the measured frequency, the
current drawn and the voltage applied for each case where written in a .csv file. The
script was run 6 times in order to detect any disturbances. During the voltage sweep,
using a manual tachometer the rpms were measured as well. The results are shown
bellow in table 4.4.

The data obtained in the experiment is shown in the following figures.
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Figure 4.19 — Mean I-V DC MOTOR. It shows how the higher the voltage is, the more current
the DC motor drawns.
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Figure 4.20 — Measured RPMs during voltage sweep. It shows how both measures, the one taken
by the CNY70 and read by the oscilloscope, and the one gotten from the hand tachometer are
really similar, the error is almost o, probing the correct operation of the CNY 70.
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4.5 KY-022 IR Receiver

KY-022 IR Receiver is used for IR communication with a remote controller. Each key
on the remote controller has an unique coding. In order to make the system start/stop
and move the target point when balancing the IR controller seemed like an easy and
practical way on control.

Figure 4.21 — KY-022 IR Receiver. Source [8]

The signal is trasmitted to the Arduino Uno through this device. The modulated IR
signal is a series of IR light pulses switched on and off at a high frequency known as the
carrier frequency. The pattern in which the modulated IR signal is converted to binary
is defined by a transmission protocol. The NEC protocol used in our project considers
the following: Logical ‘1" starts with a 562.5 us long HIGH pulse of 38 kHz IR followed by a
1,687.5 us long LOW pulse. Logical "o’ is transmitted with a 562.5 us long HIGH pulse followed
by a 562.5 us long LOW pulse. [8]

Modulated Voltage
Signal

Encoder | ]

Remote Control

Modulated IR Signal

DAL 1A

Binary Signal

S

Microcontroller

Receiving IR Diode

Figure 4.22 — KY-022 IR Receiver working method. Source: [8]
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4.6 Airbot Wraith32 ST

For the final prototype a 3-phases BLDC motor was chosen due to the smoother
control, low weight and high torque in low rpms. A cheap and light motor was chosen
for this purpose, trying to reduce the weight of the system and the budget. In order to
move the 3 phase induction motor, a variator driver was needed.

The aim of the algorithm is to control the torque given by the motor to the system in
order to stabilize the tilt angle. PMW control was therefore used as the output variable
of the algorithm and the input of the variator. The Pulse Width Modulation is then the
responsible of controlling the system, when using a ESC variator, the PWM range goes
from a pulse of 1ms which would be consider the lower, to 2ms, in a 50Hz wave. The
PWM range can be seen in figure 4.23.
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~ 1 1 1
24r ]
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Figure 4.23 — 50Hz PWM control wave

The variator chosen was the Airbot Wraith32 ST because it allowed up to 65 LIPO
batteries, useful for the experiment, and a current limiter was also avaliable. The
frequency is PWM programmabled and up to 48kHz, which makes the motor control
smooth.
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Figure 4.24 — Airbot Wraith32 ST ESC variator

A firmware update for the Wraight32 controller was first needed in order to make
the BLDC motor work properly for our purpouse. Once the Wraight32 is connected
to the Arduino an update can be done through the Software BLHELI32, avaliable in
GitHub BLHeli32. The parameters shown in figure 4.25 were the parameters chosen for
a bidirectional working mode, smooth stop and high torque. Some other parameters
where chosen according to the working mode needed and the programming parameters
shown in GitHub.

¢ Bidirectional 3D mode, so CW and CCW rotation will be avaliable. The minimum
Throttle, meaning full power on reverse, will be set by a 100ons width pulse in the
50Hz PWM wave; stop 1500ns width pulse; and full fordward power by a 2000ns
width pulse.

* Low RPM Power Protect was disabled so full power was avaliable even if the supply
voltage is low. Same for Low Voltage Protection.

¢ Brake On Stop was disabled, so a brake force won’t be applied, an the stop will be
smooth, so no negative torque is created (needed for our purpose).

¢ Rampup Power was set up to 60%, so the power consumption wouldn’t be to high.
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https://github.com/bitdump/BLHeli

ﬂ BLHeliSuite32 32.6.1.2 [BLHEeli32 Bootloader (dway-if); mdwARm328P16v20.0.0.3 @COMS]

ESCsetup ESCtools  Select BLHeli_32 Interface  Options 7  BlLHeli_32 info
ESC setup ESC overview Make interfaces
ESC# 1 - Name Airbot_Wraith32_ST Misc

EHPTY
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Save Screenshot
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< > & < > # |« >
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< > < > < > @) < >
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Low Voltage Protection Maximum Acceleration Brake On Stop PWM Frequency
[ Maximum Off | 40 kHz |
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Current Protection Current Sense Calibration Non Damped Mode Music Note Config
| +/- 0% off | Music Off ]
< B & B = B Music Editor
= 2, Write Setup | | () Flash BLHei
Single ESC#1
Port: Baud: 33400 !\ Disconnect 1 Copy 4y Check

ESC#1 setup read successfully

Figure 4.25 — BLHeli 32 Firmware for the ESC.

Immitating a 3S LIPO battery, which would feed the variator with 11.1V, the power
source was used so the correct operation could be checked, and the BLDC 3 Phase motor
could be modelled, as seen in 2.1.5. The three-phase electric power on the output of the
variator for a given PWM control signal is shown in figure 4.26.
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Flgure 4. 26 Three-phase electric power on the output of the ESC.

For the interacting between the Arduino Uno and the ESC, a PWM pin will be used.
A 50Hz PWM wave is needed as seen in figure 4.23, for that purpose, a 50Hz wave will
be created from the 49oHz standar signal in Arduino Uno. Also, on every start of the
system, the maximum and minimum throttle has to be set. Therefore, in the setup of our

code, a 1ms width pulse; and a 2ms width pulse are sent to the ESC variator. Later on,
the control will determine the pulse width to be sent.
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4.7 Nokia 5100 LCD

Figure 4.27 — Nokia 5100 48 x 84 pixels matrix LCD

This Nokia 5100 LCD was designed as a cellphone screen. It comes with the PCD8544
controller driving a 48x84 LCD matrix, which allows Serial Peripheral Interface, instead
of a huge parallel interface. Therefore, the pinout characteristic are [27]:

* Vcc, which range goes from 2.7V to 3.3V, so we will feed the screen through the
Arduino UNO 3V3 supply.

¢ SCE Chip Select.
* RST Reset pin.
¢ D/C Input mode selection, either Command (low) or Data (High).

e DN(MOSI) and SCLK, both inputs for the SPI. Arduino UNO Hardware SPI pins
will be used for this purpose, making the trasmission faster.

e LED, which can be pluged in a PWM pin, so the dim or bright can be set through
the Arduino.

The lines are supposed to work at 3V, so limiting resistors will be used to buck the 5V
lines in Arduino UNO.

As indicated on the PCD8544 controller datasheet [9], the instruction for SPI protocol
are:

"The instruction format is divided into two modes: If D/C (mode select) is set LOW, the current
byte is interpreted as command byte. Figure 4.28 shows an example of a serial data stream for
initializing the chip. If D/C is set HIGH, the following bytes are stored in the display data RAM.
After every data byte, the address counter is incremented automatically. The level of the D/C
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signal is read during the last bit of data byte. The serial interface is initialized when SCE is
HIGH. In this state, SCLK clock pulses have no effect and no power is consumed by the serial

interface. A negative edge on SCE enables the serial interface and indicates the start of a data
transmission.” [9]

function set (H = 1) bias system setVop temperature control

|
function set (H = 0) display control Y address X address
SV N e e I v

MGL642

Figure 4.28 — Serial Data stream, PCD8544. Source [9]
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Chapter 5

Software Design

Along this section, the main Software developed will be analysed. The code has been
developed for Arduino Uno, therefore for flashing the device the Arduino IDE was used
during the realisation of the project. The chose of the Arduino Uno as controller for this
project was influenced also for the amount of libraries avaliable online, as seen in section

4.1.

5.1 IMU Calibration and Complementary Filtering

As seen before, in section 4.3 devoted to the Adafuit 10DOF utilisation in this project,
the main issues when coding regarding the correct operation of the IMU are:

¢ The actual gyroscope avaliable in the 10DOF breakout bought wasn’t the original
one it was supposed to be. For this reason, the libraries avaliable for this breakout
couldn’t be used and had to be modified.

* The I2C addresses of the components within the 10DOF weren’t programmable.
Two IMUs were needed to get an accurate tilt angle. To communicate with both,
only one HW I2C bus was avaliable in Arduino Uno, so a SW I2C bus was
developed through the library
[https://github.com/felias-fogg /Softl2CMaster Softwarel2C Master Library].

* The calibration and signal filtering had to be implemented in the code, once it was
understood the theorical framework, explained in sections 4.3.1 and 4.3.2.

5.1.1 Software i2c

For solving the first problem, an i2c scanner code was used in order to obtain the
real i2c address of the component on the 10DOF breakout bought. One of the addresses
found was ox69, which wasn’t suposed to be within the addresses found. A look online
showed that this address is used for the Gyroscope L3G4200D, which is actually the one
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on the breakouts. The specified library for this Gyroscope is then used for sensing the
angular velocity.

In terms of the implementation of the Software I2C needed for the utilisation of the
two IMUs, the libraries for each component within the breakout had to be adapted for
working with both, HW and SW 12C.

When debugging the Arduino, the sensors have to be initialised, making sure there is
a pair of each one, one on the HW I2C bus, and another on the SW 12C bus. To do so,
I2C protocol will be inisialised and each component will be enable and set up as slaves.
To probe the identity of each component, the WHOAMI (Who am I?) register will be
checked for the Gyroscope, and CTRL_REG1_A; CRA_REG_M will be checked for the
Accelerometer and Magnetometer. Example for the magnetometer:

uint8't regl'a = read8(LSM303’ADDRESS MAG,
LSM303 REGISTER MAG'CRA'REG'M) ;
if (regl'a != 0x10) // the default value is (0b00010000/0x10)

return false;

5.1.2 Tilt Estimation

As explained in [11], to estimate the tilt angle of the body ©qce, a accelerometer-based tilt
estimation was implemented using two accelerometers. As the two accelerometers are placed
along the diagonal of the pendulum body, there will only be angular acceleration on two
axis, as seen in figure 5.1.

Figure 5.1 — 2D Model of the Balancing System IMUs along the diagonal.
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For our purpose, the IMUs will be place so the Z Axis is perpendicular to the body
face, so no acceleration will be sensed in this axis when balancing. Therefore, the gravity
affects only on the X and Y axis, and the angular acceleration of the system to both axis,
as follows [11]:

ai™ := (r,0p + gsin Oy, —riéf) —gcosBy,0),i=1,2 (5.1.1)
arm — pgem = ((1—p)gsin Oy, —(1 — p)g cos By, 0) = (Mmy, My, 0) (5.1.2)
where W = 11/vy and the estimated tilt angle of the pendulum body is given by

0y, = tan™ (—myx/my) [11]

Everytime the data is read from the accelerometers, this calculations have to be made
in order to get the actual tilt angle of the body, according to the accelerometers reading.
This is achieved by the following code:

//Trigonometry

mx=accelerationX1 -4.17*accelerationX2; //mx=almx-(rl/r2)a2mx

my=-(accelerationY1 -4.17*accelerationY2); //my=almy-(rl/r2)a2my

angle=-mx/my;

theta'b=atan (angle)-kappa; // arc tangent of -mx/my ; kappa
will be explained in function calibrate2imu/().

theta b 'degree=theta b*360/(2%3.1416) ;

5.1.3 Calibration

To calibrate the IMUs on every debugging, a function was developed regarding the
theory explained in section 4.3.1. The tilt angle of the system is referenced by the
balancing point, where the 0¢yc. has to be 0. To do so, when debugging the Arduino,
the system has to be placed around the balancing point, so we can get the kappa angle.
Also, Gamma will be defined as the angle between the gravitational acceleration read
by two IMUs, needed for making the vector paralels by using a rotation matrix. The
function is called calibrate2imu().

void calibrate2imu () -

int i;

//Calculate gamma, the angle between the two IMUs and Kappa,
the angle correction around the balancing point.

x1=0;

x2=0;

y1=0;

y2=0;

for (i=1;ij4;i++)- //Three measures are taken, so the mean can
be made later on, getting higher accuracy.
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sensors ' event 't eventSWi2c;
acceli2c.getEvent(&eventSWi2c) ;

sensors ' event 't eventHWi2c;
accel . getEvent(&eventHWi2c) ;

x1 += eventSWi2c. acceleration .x;
yl 4= eventSWi2c. acceleration .y;
x2 4= eventHWi2c. acceleration .x;
y2 4= eventHWi2c. acceleration.y;

x1=x1/3;

yl=yl/3;
x2=x2/3;

y2=y2/3;

gamma=((x1-x2)/(y2));

//The gravitational vector read from the IMU in the SWi2¢c bus
is made paralel to the one on the HWi2c bus, by multiplying

for the rotational matrix.
x1=cos (gamma) *x1+sin (gamma) *y1;
yl=-sin (gamma) *x14+cos (gamma) *y1;

emel=x2-(4.17*x1);
eme2=-(y2-(4.17*yl));
float angl=-emel/eme2;
kappa=atan (angl);

5.1.4 Complementary Filter

As seen in section 4.3.2, making a weighted sum of the measures given by the
accelerometer and the gyroscope, we managed to obtain a value with a very low noise
similar to that the one given by the gyroscope but with a temporary correction of the
bias thanks to the measure given of the accelerometer.

The values of the proportionality constants were obtained in a empirical way:

e = 0.9669131‘0 ‘l’ 0'0490CC (5.1.3)
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Therefore, the complementary filter implementation can be coded as:

//Complementary filter implementation

deltaAcc=theta’b - AnguloComp; //The angle just read and
calculated by the tilt angle estimation algorithm minus the
old angle.

deltaGyro=-norm.YAxis*samplingtime; //Angular acceleration of
the body in the Y axis by the sampling time.

AnguloComp+=0.96*deltaGyro+0.04*deltaAcc; //Proportionality
constants obtained in a empirical way.

AnguloComp'deg=AnguloComp*360/(2*3.1416) ;

5.1.5 Code Diagram

UPDATE CURRENT
POSITION

Y !

Software i2c IMU Hatdware i2c IMU

Y '

\

\ \ Y

Read Gyroscope Read Accelerometer Read Accelerometer Read Gyroscope

Y
Tilt Angle through
the gravity vector
seen by each IMU

Y

Complementary | _
Filter i

\

CURRENT
POSITION

Figure 5.2 — Updating Position code diagram.

5.2 Inner Control Communication

As seen in Section 4.6, the Airbot Wraith32 ST ESC variator was chosen for this
project, for it’s low price and weight and the good features. The firmware update
shown in Figure 5.3 set up the minimum and maximun throttle. Hence, figure 5.4
shows the communication protocol between a Pulse Width Modulation wave an the
output of the ESC.

Attitude Control Board for CubeSat



74

@ BLHeliSuite32 32.6.1.2 [BLHeli32 Bootloader (dway-if): mdwARmM328P16v20.0.0.3 @COM3E] — m} ®
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Temperature Protection Demag Compensation Maximum Throttle Beacon/Signal Volume
I 1a0c ) L tew ] 2000 ) s ]
< > < > < > @ < >
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Low Voltage Protection Maximum Acceleration Brake On Stop PWM Frequency
. off ) [ Maximum ] . off ) [ 40kHz )
< - < - < - < > &
Current Protection Current Sense Calibration Non Damped Mode Music Note Config
I off ] L #0% I off ] [ HMusicoff |
< > < > < > [ MuscEditor |

% @R&adsﬁmpi | (g writeSetup | | (5 Fiash BLHeli |

Single ESC#1
s [ R e e

ESC#1 setup read successfully

Figure 5.3 — BLHeli 32 Firmware for the ESC.
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PWM Control Motor 50Hz
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Figure 5.4 — 50Hz PWM control wave

For succesfully communicating with the ESC, a 50Hz carrier wave was needed. To do
so, thanks to the library Servo.h [23], we just have to declare a Servo object, called ESC
in our code. It is meant to be used for communication with servos, which use a 50Hz
carrier wave, for a Pulse Width Modulated signal. During the set up some adjustment
has to be made:

//ESC Initation

ESC.attach(10,1000,2000); //The PWM pin is chose, 1010. Minimum
Throttle is 1000ns and maximun Throttle is 2000ns. This
Servo.h library allows us to map this 1000ns-2000ns range to
0-180. Hence, if a 1000ns width pulse is needed, ESC.write
(0) would make it .

ESC. write(0); //On every debugging for communication with the
Airbot Wraith32, updated with BLHELI32 firmware, the minimum
and maximum throttle have to be sent.

delay (10);

ESC. write (90); //Maximun throttle for forward sense of rotation
ccw.
delay (10);
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Later in the main code, whenever a pulse width is needed, the funcion
ESC.write(PWMValue) can be used. From o to go PWMValue the sense of rotation will
be CCW and from go to 180, ACW. This comes from the explanation shown in figure
5.4, always regarding the throttle set in the BLHELI firmware update, figure 5.3.

5.3 PID Implementation in Arduino

For the realisation of the code, the basic principle of PID controller was asumed and
inplemented in the code. As seen in 2.4, the PID control algorithm digital aproximation
is:

(5.3.1)

A function was created to be called from the Main loop everytime it runs, so the
PID algorithm is executed. The inputs are the current position, read from the IMU and
properly adjusted and filtered; the target position, that can be set by the IR remote
controller seen in section 4.5; and the threshold, which determines the range around the
target point where the error is accumulated for the integral control.

void PID(int targetPosition, float currentPosition, int thresh)

error = targetPosition - currentPosition;
if (abs(error);j thresh)

Integral 4+= error; //Accumulate Error
else
Integral = 0;
P =Kp * error;
I = Ki * Integral;
D=Kd * (error - last'error);
last error = error;

correction =P + I + D;

motor'pwm = constrain (correction, -90, 90);
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ESC. write (90+motor'pwm); //The maximum power CCW is transmitted
to the ESC through ESC.write(0), as explained in the
previous section devoted to the ESC coding. The maximum ACW
power is transmitted by ESC.write(180). Hence, as the
correction is constrained to -90 90 range, adding 90 to its
value will make it transmittable.

5.4 Counting RPMs

DATA BUS —» TOVI
- > (Int. Req.)
A
Y Clock Select
count
I clk Dgtc:a?;or B Tn
TCNTn <+—2% 1 Control Logic |-e—10
direction
(from Prescaler)

bottom T T top

Figure 5.5 — Counterz ATmega328 block diagram.[7]

Some registers have to be programmed in order to use the collector in the CNY7o0
as the input in Counter 2 of ATMega 328 (Arduino Uno HW). During the setup of the
Arduino program, this code has to be added, in order to count the rising edges on the
counter 2, which will be connected to the collector of the CNY70 phototransistor. The
count will be saved in register TCNT2, as seen in figure 5.5.

The code needed for programming the Counter 2 to read from the Pin D5 was
understood from the source [28].

DDRD &= (1 jj DDD5); // Clear the PD5 pin
// PD5 is now an input

PORTD —= (1 jj PORTD5); // turn On the Pull-up
// PD5 is now an input with pull-up enabled

TCCR2B —= (1 jj CS12) — (1 j; CS11) — (1 ;i CS10);
// Turn on the counter, Clock on Rise

Once the Counter is set up for reading rising edges from the Pin D5 in Arduino Uno,
and the CNY70’s collector is connected to this pin, the count has to be transformed
into RPMs. To do so, we make use of the sampling time of our system. As explained
before, in section 5.3, the samplig time is determined in the code, so the data read from
the sensors is actualized every exact amount of milliseconds. Therefore, if we divide the
number of rising edges counted in the counter’s register (TCNT2) by the time it has been
counting, we can get the number of spins per milliseconds. The code for the implentation
is described in funcion rpmget(), which returns the rpm of the Inner Wheel:
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float rpmget(void)
// Update sensor readings
if (oldcount TCNT2) //If we have gotten to its maximum
(which is unlikely to happen) then we start counting
by 0.

oldcount =0;

oldcount=counter;

counter=ICNT2;

Serial.println (counter -oldcount) ;

rpms=(oldcount - counter) /(SamplingTIME); //Revolutions
per millisecond

rpm=rpms*(60*1000) //Revolutions per minute

Serial.println (rpm);

return rpm;

5.5 IR Receiver

The IR Receiver will be used as the interface between the user and the balancing cube.
For that purpose, a remote controller will be given to the user. By pressing buttons the
target point will be set and it can be turned off and on. The NEC protocol, shown in
tigure 5.6 is used for decoding the infrarred signal sent by the remote controller.

Logic O Logic 1
38 kHz IR
i 562.5 ps 562.5 ps i 562.5 us 1687.5 ps i >
Time

Figure 5.6 — NEC protocol. Source [§]

The IR Receiver is commonly used with the Arduino, hence, some libraries were
avaliable. For our purpose the library IRremote.h [29] will be used.
The code is basically this [30]:

int RECVPIN = 7; // define input pin on Arduino. As shown in
the connector diagram, for our purpose IO7 will be used.
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IRrecv irrecv (RECV'PIN);
decode’'results results; // decode'results class is defined in
IRremote.h

void setup () —

irrecv.enableIRIn(); // Start the receiver

void loop () -

if (irrecv.decode(&results)) — // Check if there are
received data. The code is saved in results.value.

irrecv.resume(); // Receive the next value

if (result.value==0xFF02FD)- //Forward button has been
pushed (/)

targetPosition=targetPosition+1;

if (result.value= 0xFF22DD)- //Backward button has been
pushed (i)
targetPosition=targetPosition+1;

if(result.value= 0xFF22DD)- //Backward button has been
pushed (i)
targetPosition=targetPosition+1;

if(result.value=— O0XFF6897)— //If 0 button has been
pushed, then we stop the system
stopper=1;

if(result.value—= O0XFF6897)— //If 1 button has been
pushed, then we turn on the system
stopper=0;

The code for each key in the remote controller is shown in Table ??, found in [29]:

Key Code Purpose
<< | oxFF22DD Target Point +1°.
>> | oxFFo2FD Target Point -1°.
o | oXFF689g7 Stop the motor.
1 | oxFF30CF | Start balancing around the Target Point.
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5.6 Main Function

A diagram was developed so the final main loop code could be easily understood.

MAIN LOOP

v

CHECK THE TIME
SINCE LAST READING

l R

UPDATE CURRENT

Stopper=1?

VELOCITY INNER
Vas WHEEL
<SAMPLING TIME —No— l
UPDATE CURRENT
POSITION
I
Yes ’
STOP MOTOR r
PID ALGORITHM
OUPUT
ESC VARIATOR

eceived data
through the IR
Receiver?

Yes

v

Read data

¢
l l

Change Stopper Update Target
(Turn OFF/ON) Point

Figure 5.7 — Main Loop code diagram.
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The main loop code consists basically in implementing all the function described
before in the previous sections. After the setup loop is executed, the code goes to a loop
that keeps doing till it is disconnected.

On every time the main loop is executed, if the stop variable hasn’t been set to 1,
we check if the time since the last time the sensors were read. To do so, everytime the
sensors are read, a variable is set with the current time, millisends precision. The current
time on every execution of the loop is compared then whith the variable where we saved
the last time the sensors were read. If the last time the sensors were read is now bigger
than the sampling time, the current position and the velocity of the wheel are updated.
That means that these values are updated each sampling time milliseconds.

This current time is now used as the input of the PID algorithm, which creates an
output. This output, as said before in section 5.2, is a PWM signal which is sent to the
ESC variator, which controls the motor.

Now it is checked if there was any received information in the IR receiver, as said
in section 5.5. If the stop button has been pushed, then we set the variable “stopper” to
1, meaning that at the beginning of the loop the sampling time won’t be checked; the
sensors’ information won’t be updated; and the motor will just stop. On the contrary, if
te start button is pushed, the “stopper” is set to o, allowing the normal PID algorithm
based inner control. Also, the target point of the system can be modified from the IR
remote controller.

The code is exposed:

void setup (void)
//10DOF IMU (SW i2C and HW i2C)
// Serial.println (F(” Adafruit 10DOF two magnetometers
and two accelerometers working on different i2c

buses (HW and SW)”)); Serial.println(””);

/* Initialise the sensors */
if ('bmp. begin ())
/* There was a problem detecting the BMPO085
check your connections */
Serial.print (”"Ooops, no BMPo85 detected
Check your wiring or I2C ADDR!”);
while (1) ;

else

// Serial . print (”Bien! Sensor T y Presién
BMPO085 detectado.!“n”);
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/* Initialise the sensors */
if (lacceli2c.initSoftwarel2C(&WireS1, 3, 2)) //
initSoftwarel2C , sda, scl

/* There was a problem detecting the ADXL345
check your connections */
Serial.println (F(”Ooops, no LSM303 detected
Check your wiring!”));
while (1) ;

else

// Serial.print (” Bien! Sensor Acelerdémetro
LSM303 detectado mediante SW i2c.!“n”);

if (!magi2c.initSoftwarel2C(&WireS1, 3, 2)) //
initSoftwarel2C , sda, scl

/* There was a problem detecting the LSM303
check your connections */

Serial.println (”Ooops, no LSM303 detected
Check your wiring!”);

while (1) ;

else

// Serial .print (” Bien! Sensor Magnetémetro
LSM303 detectado mediante SW i2c.!“n”);

if (laccel.begin())
/* There was a problem detecting the ADXL345
check your connections */
Serial.println (F(”Ooops, no LSM303 detected
Check your wiring!”));
while (1) ;

else

// Serial .print (” Bien! Sensor Acelerdémetro
LSM303 detectado mediante HW i2c.!“n”);
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if (!mag.begin ())
/* There was a problem detecting the LSM303
check your connections */
Serial.println (”Ooops, no LSM303 detected
Check your wiring!”);
while (1) ;

else

// Serial .print (” Bien! Sensor Magnetémetro
LSM303 detectado mediante HW i2c.!“n”);

// Initialize L3G4200D

// Serial.println(” Initialize L3G4200D”);

// Set scale 2000 dps and 400HZ Output data rate (cut-
off 50)

if (lgyro.begin (L3G4200D'SCALE 2000DPS,
L3G4200D" DATARATE 400HZ'50) )

/* There was a problem detecting the L3G4200D
check your connections */
Serial.print (”Ooops, no L3G4200D gyroscope
detected ... Check your wiring or I2C ADDR!”
) ;
while (1) ;

else

// Serial.print (”Bien! Sensor Girdscopo
L3G4200D detectado.!“n”);

// Calibrate gyroscope. The calibration must be at rest
// If you don’t want calibrate , comment this line.

// gyro.calibrate (100);
deltaGyro=0;
AnguloComp=0;
displaySensorDetails () ;
calibrar2imu () ;

//ESC Initation
ESC. attach(10,1000,2000) ;
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// Serial.print (0);
ESC. write (0) ;

delay (10);

// Serial.print (90);
ESC. write (90) ;

delay (10) ;

//Start measuring time
timestamp = millis ();

//Counterl setup for CNY70

DDRD &= ~(1 i DDD5); // Clear the PD5 pin
// PD5 is now an input Digital Pin n 5 in Arduino Uno

PORTD —= (1 i PORTDS5) ; // turn On the Pull-up
// PD5 is now an input with pull-up enabled

TCCR2B —= (1 j; CS12) — (1 j; CS11) — (1 ;i CS10);

// Turn on the counter on Rise

irrecv.enableIRIn(); // Start the receiver

// Main loop
void loop ()

if (stopper=1)

ESC. write (90); //Stop the motor

if (stopper=0)
// Time to read the sensors again?
if ((millis () - timestamp) ;=
OUTPUT "DATA'INTERVAL)

timestamp = millis () ;

// Update sensor readings

currentPosition=updatecurrentposition ()
; //Update Current Position

rpms=rpmget (); //Update RPMs

PID(targetPosition , currentPosition, thresh);
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if (irrecv.decode(&results)) — // Check if there are
received data. The code is saved in results.value.
irrecv.resume(); // Receive the next value
if (result.value==0xFF02FD)- //Forward button
has been pushed (/)
targetPosition=targetPosition+1;

if (result.value= 0xFF22DD)- //Backward button
has been pushed (jj)
targetPosition=targetPosition+1;

if (result.value= 0xFF22DD)- //Backward button
has been pushed (jj)
targetPosition=targetPosition+1;

if (result.value= O0XFF6897)- //If 0 button has
been pushed, then we stop the system
stopper=1;

if (result.value—= O0XFF6897)- //If 1 button has
been pushed, then we turn on the system
stopper =0;
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Chapter 6

Final PCB Design. Altium
Designer.
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CNY70 TACHOMETER

“A CNY70 was chosen for measuring the spinning velocity of the
Inner Wheel.

CNY70 contain a IR-emitting diode as transmitter and a
phototransistors as receiver. The transmitter emit radiation of a
wavelength of 950 nm. The working method is basically this, the
- i tteris i -
light emitted by the transmitter is influenced by an object or a
golK lSROZR medium on its way to the detector. The change in the light signal
o1 caused by the interaction with the object then produces a change
in the electrical signal in the optoelectronic receiver.
3 1 the electrical I'in the optoelect
7| COLLECTOR E [—5—
CATHODE A .
We place four black stickers along the Inner Wheel, so on every
CNY70 spin there will be four changes in the electrical signal. 105 is
connected to the phototransistor's collector. Counter 2 on the
Arduino Uno will then count every rising edge on 105, and
therefore the number of spins within a meassured time can be
GND known.
DATA BUS ML
(Int. Req.)
L
I T
Clock Select r
d
s count B Edge ™
clear . clkry Detector L
TCNTn Control Logic |-
__ direction ~d
o (from Prescaler) Emitter _|
bottom top
fmommmooemmmooy _____________-__—'
NY70 COUNTER i | bEsieN NOTE:
“““ T = l Some registers have to be changed in order to use the collector in the |
! CNY70 as the input in Counter 2 of ATMega 328 (Arduino Uno HW). '
E : DDRD &= (1 << DDD5); // Clear the PD5 pin // PD5 is now an input '
1
! PORTD |= (1 << PORTDS5); // turn On the Pull-up [
DESIGN NOTE: ) ' /I PD5 is now an input with pull-up enabled
GPIQ 5 will t_)e connected to Count_e_r lin l - X l Designer's signature Sheet title: CNY 70 Dpto. Electronica y Tecnologia
Arduino uno in order to count the rising edges TCCRIB |= (1 << CS12) | (1 << CS11) | (1 << CS10); eet title: p °
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BLDC Motor Control

U4 L o [SE) GND
BLACK BLACK  GND U3
GND 2
YELLOW |2 ” | YELLOW sl WM Control 1] gNp
i
RED —2 6 | Rep "BAT Bornera
BLDC Motor Wraith 32 ESC  VeBATD
\ PWM_BLDC
PWM_Control PWM_Control
LEDS SYSTEM ADO
LED_Forward
< PWM_BLDC > -
o . AD1
Airbot Wraith32 ST LED_Reverse s
AD0 LED_Stop et
3 Phase BLDC Motor
{:::(::;::(:::::(::::::\::(::::({
() BLHeliSuite32 32.6.1.2 [BLHeli32 Bootloader (4way-if): mdwARM328P16v20.0.03 @COMS)] - o X "‘ UM Corlrl Motor 50Hz (
ESCsetup ESCtools Select BLHeli 32 Interface  Options 7  BLHeli 32info  Save Screenshot ‘7 1M yotor Max Reverse !
ESC setup ESC overview Make interfaces ! S ‘ [ . ‘
ESC# 1 - Name Airbot_Wraith32_ST Misc v s Pt | ‘
for Multicopter Motors | H
EMPTY BLHeli_32 Revision: 32.4 Throttle Cal Enable @ ] ] 1 0 f T [
-Rampup Power = -Motor Direction Minimum Throttle Startup Beep Volume GND ‘~ 0 001 002 003 004 005 006 "
60 % Bidirectional 3D [E— T ) 40 ) ! L sme ) !
< B > & < B K B K J L = Motor Stop |
Temperature Protection Demag C: ion i Throttle Beacon/Signal Volume \ sS4k T ! I i i
140C ) Low ) 2000 ) 80 ) ] < \
< > < > < > & < > | § 2+ 1 L
Low RPM Power Protect Motor Timing Center Throttle Beacon Delay X ‘1 & 0F I 1 T 1 T ‘
[ 16 deg ) 1500 ) 10:00 min DESIGN NOTE: ) ) ‘ p
~ > < = = 5 = 5 A firmware update fot the Wraight32 controller was needed in order to i 0 001 002 003 004 005 006 )
T = e AT P make the BLDC motor work properly for our purpouse. Once the . (s) [
JLow Yoitage Protection “HMaxkuium Acceleration: take. On.5top: R y TequUenc Wraight32 is connected to the Arduino an update can be done through [ v
d daximum | - - 2
= i ) T off ) & 20 k2 ) the Software BLHELI32, avaliable in: { >* MotorMax. Forard \
< > < > < > < > @ ‘ T |
ZGaxrent: Protection—— Grent Sense Gallbration-— .- Not Damped. Mode — HusiciRote Contlg — https://github.com/bitdump/BLHeli/blob/master/BLHeli_32%20ARM/BLH E ; i
off ) [ +/-0% ) | off ) | Musicoff | eli_32%20manual?%20ARM%20Rev32.x. pdf | s
< > < > < > Music Editor | Sk
The parameters shown in the screenshot were the parameters chosen H ! ! . !
for a bidirectional working mode, smooth stop and high torque. Some [ 0 0ot 002 008 004 005
other parameters where chosen according to the working mode needed 1 1)
and the programming parameters shown in GitHub. [
g ey Wirite Setup | | (35} Flash BLHeli s an o or ov ar ar od v ad a0 Ed Ed E> @ @ @ o
Single ESC#1
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KY-022 INFRARED RECEIVER

controller.

Each key on the remote controller has an unique coding. In order
to make the system start/stop and move the target point when
balancing the IR controller seemed like an easy and practical way

5 U6 KY-022_IR_Receiver |
Slgnal 0 I—‘ on control.
SIGNAL

2 . . . . . .
R 5V — The signal is trasmitted to the Arduino Uno through this device.
Vcc+ GND Aol i : :
The modulated IR signal is a series of IR light pulses switched on
GND KY-022 GND and off at a high frequency known as the carrier frequency.

The pattern in which the modulated IR signal is converted to
binary is defined by a transmission protocol. The NEC protocol
used in our project Logical ‘1’ starts with a 562.5 ps long HIGH
pulse of 38 kHz IR followed by a 1,687.5 us long LOW pulse.
Logical 0 is transmitted with a 562.5 s long HIGH pulse
followed by a 562.5 us long LOW pulse.

D;SI; ;T; —_——eeesssssss- -l Parameter Symbol Test Conditions Min Typ Mnx Unit
| The pattern in which the modulated IR signal is converted to binary is Operating V0|tage Vcee 2.7 55 V
defined by a transmission protocol. The NEC protocol used in our '
l project Logical ‘1’ starts with a 562.5 ps long HIGH pulse of 38 kHz IR ' Receiving L L5|R = 300MA 10 15 M
l followed by a 1,687.5 ps long LOW pulse. Logical ‘0’ is transmitted with
a562.5 s long HIGH pulse followed by a 562.5 ps long LOW pulse. ] distance (test Signa|)
TTTTTT T T T T T T Carrier Frequency fo 38K HZ
—_— e, ————-——- Acceptance angle 01/2 Distance attenuation 1/2 +/-35 Deg
| Logic O Logic 1 | BMP width FBW -3Db andwidth 2 3.3 5 kHz
: | Quiescent Current[  lcc | When there is no signal - 0.8 1.5 mA
- i | l input
| j, 28 kHz IR i i | Low output VOL Vin = 0V Vce = 5V 0.2 0.4 v
| : High-level output | VOH Vee = 5V 45 Y;
| " The output pulse | TPWL Vin = 500uVp-p % 500 600 700 us
| | width
Q— | . > TPWH Vin = 50mVp-p % 500 600 700 us
l 562.5 ps 562.5 ps 562.5 ps 1687.5 ps l
4 Time "
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' This LCD has a maximum input voltage of 3.6V, so we can't hook up a

A
standard 5V Arduino straight to it. Sticking resistors in-line with the data l

| signals is an easy way to add some protection to the 3.3V lines.
d

3V3
NOKIA_LCD_GPIOs_and_RST -
GND —
o o — LT
| R6 i u7
106 =l 1}
NOKIA_LCD_GPIOs_and_RST RST 0w m,;(—————: ; vee
04
D/Ce—]= ’ 106 R7 3 S(l:\léj
LED el I0KR 2 RST
R8 1 DIC
=l § DN<MoOSI>
10KR 31 SCLK
Bus_SPI
= . 1013 1013 R9 EED
[}
10KR NOKIA5100LCD
1011
SCLK et  joi1 Ruo
10KR
109 RIL
330R
[TTTTTTITTTTTITTTTTITITT T ITTTI T~
ry . = 2
The Nokia 5100 LCD is a 48 x 84 pixels matrix LCD. 4032 pixels Suue s I s AR i o I i
(84*48=4032). —
The PCD8544 is a low power CMOS LCD controller/driver,
designed to drive a graphic display of 48 rows and 84 columns.
All necessary functions for the display are provided in a single T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
chip, including on-chip generation of LCD supply and bias function set (H = 0) display control Y address X address
voltages, resulting in a minimum of external components and low JEE I 1 1 T A I O A A
power consumption. The PCD8544 is manufactured in n-well MGL642
CMOS technology.
. . . Fig.9 Serial data stream, example.
The PCD8544 interfaces to microcontrollers through a serial bus
interface. For the data transmission with the Nokia 5100 LCD,

pins -- SCLK and DN(MOSI) -- Arduino's hardware SPI pins will

be used, which will help to achieve a faster data transfer. P GGG e e e e e e e e E e e e e EEEEEE S e - -
|The serial interface is initialized when SCE is HIGH. In this state, SCLK clock pulses have no effect and no power is consumed by the serial
interface. A negative edge on SCE enables the serial interface and indicates the start of a data transmission.

GPIOs 8-6-4-9 are used for: Chip _SeIECt (SCE) , reset (RST), * When SCE is HIGH, SCLK clock signals are ignored; during the HIGH time of SCE, the serial interface is initialized.

data/command (D/C). The LED pin should be connected to a + D/C indicates whether the byte is a command (D/C = 0) or RAM data (D/C = 1); it is read with the eighth SCLK pulse.

PWM-capabIe Arduino pin so we can dim the backlight as we | « If SCE stays LOW after the last bit of a command/data byte, the serial interface expects bit 7 of the next byte at the next positive edge of l
B SCLK.

please, therefore 109 was chosen. |- Areset pulse with RES interrupts the transmission. No data is written into the RAM. The registers arecleared. If SCE is LOW after the |

Aposifive edge of RES, the seralinerfage is ready o teceive Bt of acommandjdts byte.,
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Power Connections

DESIGN NOTE:

For powering our PCB and the motor a 3S LIPO
battery was chosen. It gives 11.1 volts and it has a
relatively high power density, 1500mAh in 130g.
Also, it squared shape allow us having the battey
inside the steel CubeSat developed, making the
system indepent from external power.

Screw_M1 Screw_M2 Screw_M3 Screw_M4
SC1 SC1 SC1 SC1
b e e e H
U_InnerControl
InnerControl.SchDoc DESIGN NOTE:
A terminal will be place in order to connect the
V+BAT batery for powering the Arduino and the motor.
U_10DOF U_KY-022 U_CNY70
10DOF.SchD KY-022.SchDoc NY70.SchD
OF.SchDoc Sc o] SchDoc GND GND i
1
TR
: |
2 L Bat | |
GND : GND !
]
U_ArduinoUno | Bornera - i
ArduinoUno.SchDoc
5V VIN
(> GND
O 3Vv3 GND O GND
a ™
z &
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1 3 4
S - I C t -
DESIGN NOTE:
GPIOs 2-3 are used as SDA-SCL in a DESIGN NOTE:
Softwarel2C protocol in order to GPIO 10 (Arduino Uno) will be used for controlling the
communicate with one of the 10DOF IMUs. input PWM signal, as well as for any change or updating
The accelerometers and gyroscopes had the on the Wraith 32 ESC firmware, through BLHELI 32.
same non-configurable 12C address so the GPIO 12 will be used to communicate a software Rx
Sofwarel2C was needed. The second 10DOF U ArduinoUn implemented in Arduino Uno, Hardware Rx and Tx will be
IMU is connected to the HW 12C bus in Aquinl(J)Ugo SghDoc used for communication with the computer. U_lInnerControl
Arduino Uno. . InnerControl.SchDoc
U_10DOF "
10DOF.SchDoc i ‘ - (—
: i
Bus_HW._[2C Bus_HW_I2C PWM_BLDC < ; : [ PWM_BLDC

12C_HW_SDA &= 12C_HW._SCL
Bus_HW_I2C <_| " Bus_SW_I2C
12C_HW_SCL eSSk 12C_HW _SDA - -

BLDC Motor and ESC. The internal regulator in Arduino Uno
allowed us to connect 5V and 3.3V components to it.

Furthermore, libraries were avaliable for some components, such
as for the Nokia 5100 LCD and the KY-022 IR Receiver.

DESIGN NOTE:
General Power Connections are detailed on PowerConnections.SchDoc

GPIOs 8-6-4-9 are used for: chip select
(SCE) , reset (RST), data/command (D/C).
The LED pin should be connected to a
PWM-capable Arduino pin, so we can dim the
backlight as we please, therefore 109 was
chosen.

1 1
i i
1 1
E E
1 1
i ' DESIGN NOTE:
i
! E GPIO 7 is used for the signal given by the U_KY-022
: : KY-022 IR Receiver. KY-022.SchDoc
| Bus_SW_I2C Bus_SW_I2C ! -
! 103 !
! 12C_SW_SCL : ;
Bus_SW_I2C </ ; HELSILEPR - E K Bus_HW_I2C KY-022_IR_Receiver [ b ] KY_receiver
| 12C_sw_scL —92. 1oc_sw _spA E
1 v G‘
i i ] |
! : : scE et | ED : U_NOKIA5100
U_CNY70 lmoomomomoomoomommmmmmmmmnnmmm e n T ! o7 ' NOKIA5100.SchDoc
SR Schio NOKIA_LCD_GPIOs_and_RST < ! RST pic :
— —_ — —_ [
L E S e 5 {__ NOKIA_LCD_GPIOs_and_RST
1 ! 1 |
CNY70 COUNTER \D*:l CNY70 COUNTER 1 LED =% scE !
DESIGN NOTE: ’ E Bus_SPI Bus_SPI !
GPIO 5 will be connected to Counter 1 in ! MOSI 1013 SCLK :
Arduino uno in order to count the rising edges Bus_SPI < | v . " Bus_SPI
happening every time the wheel spins. - [ SCLK 1011 MOSI ! =
A . - .
Avrduino Uno was chosen for the project trying to make the Inner
Control Platform reusable and only with off-the-shelf components.
Also, it could be powered by a 11.1V LIPO battery, needed for the DESIGN NOTE: BESICRICTE

For the data transmission with the Nokia
5100 LCD, pins -- SCLK and DN(MOSI) --
Arduino's hardware SPI pins will be used,
which will help to achieve a faster data
transfer.
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Chapter 7

Conclusions & Future Work.

In this Degree Thesis an overview of all the necessary items for a successful development
of a Inner Control System has been made, following a reasonable and useful path.

Fist, a deep understading of the Euler-Lagrange dynamics, with its associated
parameters and equations was absolutely needed for developing the dynamics of the
system. This came together with the need of characterization of the components, such
as the motor’s torque and its relation with the PWM signal created with an Arduino
UNO. The fact of using the software Audacity and the jack in our computer for this
purpose allowed me to understand a new way of approaching the problems, at the
beginning only the oscilloscope seemed like the right tool to be used, but later on a
whole new set of tools were avaliable in my personal knowledge. This happen similar
with many of the things we developed in the lab.

The PID controlled simulink model will be really useful for future students in
GranaSAT, only the parameters have to be set for each prototype, and the tunning will
be easily accomplished. The previous knowledge in Matlab allowed me to understand
and perfom the model, but it was really useful in terms of remembering thigs that had
been learnt a while ago.

During the Mechanical Design, a few prototypes were designed and built. The aim
of this was not only to get a better prototype on each iteration but also to learn using
different tools. For each prototype a SolidWorks model was developed, including all the
components within it. That meant many hours learning on using SolidWorks, not
compulsory during the Bachelor Degree but really useful in terms of a future
employment. Also, after being designed thanks to EDA tools, the prototypes were built.
For this purpose, I had to learn using a milling CNC machine, with all it comes with,
learning how to code, actually use the machine and its interface, the utilization of the
software CNCyo2 that allows to simulate the path of the machine and move it later on...
Moreover, many of the pieces designed were 3D printed, meaning that many
parameters had to be set. I had never printed 3D models, so some of the objects weren't
properly printed at the beginning, but the final result was the expected.
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Many electronic components have been deeply analyzed and the code is now avaliable
for future students. Components such as the IMU; the ESC variator, the CNY7o... were
in the lab, but had never been used for this purpose. The development of the signal
merging filtering and the calibration was succesfull and usefull in terms of getting a
proper tilt stimation. It happens similar with the rest of the components, the result were
succesfull, and they are now avaliable for further utilisation.

A PCB which can fit in a model of CubeSat developed by GranaSAT has been design.
That involved many hours using EDA software such as Altium and SolidWorks. The
result is shown through renders and good quality schematics, that allow an easy
comprehension of the utilisation of each component and its working mode. The Altium
schematics were designed hierarchical for this reason, makin easy to understand how it
works and the connections between the different components.

The fact of writting the Bachelor Thesis in English made it hard, but absolutely worth
it. It allowed me to practice for a future employment were I would be assumed the
writting abilies in English. Also, it was all typed and coded in LaTeX, never used before.

The proposed future work is a main part of this project, as it was all taken from
zero towards the design of an attitude control board for future satellites developed by
GranaSAT. The future guidelines that will allow the implementation of the knowledge
achieved along this projects are:

* Board Implementation: Assembly the board, or a similar one for an specific
satellites, as all the components are modelled and integrated in Altium.

o Test & Verification: Tune through the Simulink model and test the correct
operation of the PID algorithm. Develop a LOR algorithm, by implementing the
dynamics equation gotten for the system.

* Update Firmware: Some of the components used along this project are commonly
used in some other areas, such as the ESC, that it's mainly used for drones. That
means that firmware updates are being released really often, so it is interesting
to keep the components updated, for a better operation and maybe a smoother
control.

From a personal point of view, this Degree Thesis was a real challenge. Almost all
the EDA software tools and fabrication proccess were unknown before starting digging
online for tutorials. This meant many hours of dedication and learning, but the result
was successful, achieving the objectives of the Thesis. Nevertheless, after this months of
dedication I see myself more prepared for a successful professional career, where all the
knowledge achieved during the realisation of this project will be surely emplyed.

Juan Aparicio Jiménez



Appendix A

Cutting data recommendations

Metals, 400 -800
400 320 0,020 | 0,040 | 0,08 | 0,14
soft (120 - 310HB)
Aluminum 100 -400
1000 800 0,030 | 0,060 0,10 | 0,15
alloys, long chipping | (120 - 260HB)
Aluminum
-400 300 240 0,030 | 0,060 | 0,10 | 0,15
alloys, short chipping
Copper 150 -250
300 240 0,025 | 0,050 | 0,09 | 0,14
alloys, long chipping | (160 - 230HB)
Copper
-500 250 200 0,025 | 0,050 | 0,09 | 0,14
alloys, short chipping
Magnesium
160 -300 400 320 0,030 | 0,060 | 0,09 | 0,14
alloys
0 -700
Thermoplastics 35077 250 200 0,030 | 0,060 | 0,10 | 0,15
(150 - 280HB)
Duroplastics 20 -40 350 280 0,025 | 0,050 | 0,10 | 0,15
Graphite - 400 320 0,040 | 0,080 0,15 | 0,20

Table A.1 — Cutting data recommendations. Source: JHV Tools B.V. [10].
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Appendix B

Adafruit 10DOF HW and SW
CODE

Typing help from: http://patorjk.com/software/taag/#p=display&f=
Graffiti&t=Type%20Something%20

*

* https://granasat.ugr.es

*

* Programmers :

*  Prof. Andrés Roldén 1/03/2019 (amroldan@ugr.es)
Koo 02/04/2018 (7777777777777 Qgmail.com)
*

*  Uso:

*

*

Esta versién inicial de uso del IMU 10 DOF https://www.adafruit.
com/product /1604
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* que tiene disponible:

*

* LSM303 3-axis compass: +-1.3 to +8.1 gauss magnetic field scale

* LSM303 3-axis accelerometer: +2g/44gH8g/+-16g selectable scale

* BMP180 barometric pressure/temperature: -40 to 85 C, 300 -
1100hPa range, 0.17m resolution

*

* Versions:

*

*V02:

* La direccién de los integrados es fija , y no hay patilla de
configuracién de direcciones. Asi para poder leer de dos IMUs es
necesario tener dos canales de

* i2c diferentes. Para conseguirlo recurrimos a la librerfia
Softwarel2C .h, que nos permite crear un bus i2c¢ virtual en los
pines digitales que determinemos.

* En nuestro caso utilizamos el pin digital 3 para SDA y 2 para SCL

*

*

He modificado la biblioteca del accelerdmetro y del magnetémetro
(Adafruit' LSM303'U.h) para que, dependiendo de la clase que
definamos , poder leer del
* bus i2c¢ HW del arduino, o del SW. Las funciones de lectura del
magnetometro y del accelerémetro son idénticas pero modificamos la
interaccién con el bus i2c.

*

* Para modificar la libreria seguimos el tutorial que encontramos
en: ”"http://wiki.seeedstudio.com/Arduino Software 12C user ' guide /7.

*

* Modificacién preparada por Juan Aparicio Jiménez.

%

* VO01:

* Metido la cabecera y la descripcién de emails.

* Version portable del cédigo para ver los valores de los sensores
incluidos en el IMU, preparada por el prof. Andrés Roldéan

*
Scanning ... I2C devices: Estos son los dispositivos encontrados.

* 12C device found at address 0x19 ! #define
LSM303'ADDRESS'ACCEL (0x32 ¢ 1) // 0011001x

* T12C device found at address Ox1E ! #define LSM303’ADDRESSMAG

(0x3C ;g 1) // 0011110x

* I2C device found at address 0x69 !
* 12C device found at address 0x77 | BMPO085’ADDRESS (0x77)
done

Juan Aparicio Jiménez
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*/
#include jSoftwarel2C .hj
SoftwareI2C WireS1; //We have to define Softwarel2C object

#include ”Adafruit_Sensor/Adafruit_Sensor.h”
#include ”Adafruit. LSM303DLHCboth/Adafruit_ LSM303_Uboth.h”
#include ”Adafruit. LSM303DLHCboth/Adafruit_ LSM303_Uboth.cpp”

/* Assign a unique ID to the SW i2¢ sensors */

Adafruit'LSM303"Accel ' UnifiedSWi2¢c acceli2c =
Adafruit' LSM303 Accel UnifiedSWi2c¢(30301);

Adafruit'LSM303 Mag UnifiedSWi2c magi2c =
Adafruit’'LSM303 Mag UnifiedSWi2c (30302) ;

/* Assign a unique ID to the HW i2c¢ sensors */
Adafruit'LSM303 Accel ' Unified accel = Adafruit'LSM303 Accel Unified

(30301) ;

Adafruit'LSM303"'Mag ' Unified mag = Adafruit'LSM303 Mag Unified
(30302) ;

// Timers

unsigned long timer = 0;

float timeStep = 0.01;

void displaySensorDetails (void)

sensor't sensor;

acceli2c.getSensor(&sensor);
Serial.println (F(” ACCELEROMETER ——") ) ;

Serial.print (F(”Sensor: ”)); Serial.println (sensor.name);
Serial.print (F(”Driver Ver: ”)); Serial.println(sensor.version);
Serial.print (F(”Unique ID: ”)); Serial.println (sensor.sensor’id)

)
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Serial.print (F(”"Max Value: ”)); Serial.print(sensor.max value);
Serial.println (F(” m/s"2"));
Serial.print (F(”Min Value: ”)); Serial.print(sensor.min value);
Serial.println (F(” m/s"2"));
Serial.print (F(”Resolution: ”)); Serial.print(sensor.resolution);
Serial.println (F(” m/s"2"));
Serial.println (F(” “));

Serial .println (F(”"));

magi2c. getSensor(&sensor ) ;
" MAGNETOMETER "))

r
Serial . println (F
F
F
F

(
Serial.print (F(”Sensor: ”)); Serial.println (sensor.name);
Serial.print (F(”Driver Ver: ”)); Serial.println(sensor.version):;
Serial.print (F(”Unique ID: ”)); Serial.println(sensor.sensor’id)
Serial.print (F(”"Max Value: ”)); Serial.print(sensor.max value);
Serial.println (F(” uT”));
Serial.print (F(”Min Value: ”)); Serial.print(sensor.min value);
Serial.println (F(” uT”));
Serial.print (F(”Resolution: ”)); Serial.print(sensor.resolution);
Serial.println (F(” uT”));
Serial.println (F(” "))

Serial.println (F(”"));

void setup (void)
Serial.begin(115200);
Serial.println (F(”Adafruit 10DOF two magnetometers and two
accelerometers working on different i2c buses (HN and SW)”));
Serial.println (””);

/* Initialise the sensors */
if (lacceli2c.initSoftwarel2C(&WireS1, 3, 2)) // initSoftwarel2C , sda

, scl

/* There was a problem detecting the ADXL345 ... check your
connections */

Serial.println (F(”Ooops, no LSM303 detected ... Check your wiring!”

)
while (1) ;

else
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Serial .print (”Bien! Sensor Acelerémetro LSM303 detectado mediante
SW iz2c.!\n"”);

if (!magi2c.initSoftwarel2C(&WireS1, 3, 2)) // initSoftwarel2C , sda,

scl

/* There was a problem detecting the LSM303 ... check your
connections */

Serial.println (”"Ooops, no LSM303 detected ... Check your wiring!”);

while (1) ;

else

Serial.print (”Bien! Sensor Magnetémetro LSM303 detectado mediante
SW i2c.!\n");

if (laccel.begin())

/* There was a problem detecting the ADXL345 ... check your
connections */

Serial.println (F(”Ooops, no LSM303 detected ... Check your wiring!”
)

while (1) ;

else

Serial .print (”Bien! Sensor Acelerémetro LSM303 detectado mediante
HW iz2c.!\n");

if (!mag.begin())

/* There was a problem detecting the LSM303 ... check your
connections */
Serial.println (”"Ooops, no LSM303 detected ... Check your wiring!”);

while (1) ;

else

Serial.print (”Bien! Sensor Magnetémetro LSM303 detectado mediante
HW iz2c.!\n");
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”

displaySensorDetails () ;

void loop (void)

/* Get a new sensor event, for the sensor connected through SW i2c¢*/
sensors event 't eventSWi2c;

/* Display the results (acceleration is measured in m/s”"2) */

acceli2c . getEvent(&eventSWi2c) ;

Serial.print (F(”ACCEL ")) ;

Serial.print (”X1: ”); Serial.print(eventSWi2c.acceleration.x); Serial
.print (7 7);

Serial.print (”Y1: ”); Serial.print(eventSWi2c.acceleration.y); Serial
.print (7 7);

Serial.print(”Z1: ”); Serial.print(eventSWi2c.acceleration.z); Serial
.print (” ”);Serial.println("m/s"2 ”);

/* Display the results (magnetic vector values are in micro-Tesla (uT
) ¥/

magi2c. getEvent(&eventSWi2c) ;

Serial.print (F("MAG ”));

Serial.print (”X1: ”); Serial.print(eventSWi2c.magnetic.x); Serial.
print (7 ”);

Serial.print (”Y1: ”); Serial.print(eventSWi2c.magnetic.y); Serial.
print (” ”);

Serial.print (”Z1: ”); Serial.print(eventSWi2c.magnetic.z); Serial.
print (” ”);Serial.println ("uT”);

/* Get a new sensor event, for the sensor connected through HW i2¢ */
sensors event't eventHWi2c;

/* Display the results (acceleration is measured in m/s"2) */

accel.getEvent(&eventHWi2c) ;

Serial.print (F(”ACCEL ")) ;

Serial.print (”X2: ”); Serial.print(eventHWi2c. acceleration.x); Serial
.print (7 7);

Serial.print (”Y2: ”); Serial.print(eventHWi2c.acceleration.y); Serial
.print (7 7);

Serial.print (”Z2: ”); Serial.print(eventHWi2c.acceleration.z); Serial
.print (” ”);Serial.println("m/s"2 ”);

/* Display the results (magnetic vector values are in micro-Tesla (uT
) ¥/

mag. getEvent (&eventHWi2c) ;

Serial.print (F("MAG ”));
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Serial.print (”X2: ”); Serial.print(eventHWi2c.magnetic.x); Serial.
print (7 ”);

Serial.print (”Y2: ”); Serial.print(eventHWi2c.magnetic.y); Serial.
print (” ");

Serial.print(”Z2: ”); Serial.print(eventHWi2c.magnetic.z); Serial.
print (” ”);Serial.println ("uT”);

/* Display the pressure sensor results (barometric pressure is
measure in hPa) */

Serial.println (F(”"));
delay (1000) ;
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Appendix C

Python Script for comunnication
with Oscilloscope and Power
Source

import visa

from visa import constants
import vxill

import csv

import pandas as pd
import time

import math

import os

import numpy as np

def tolS(m, unit):
if m | 1E3:
return “%.3f” % (m) + 7 ” 4+ unit
elif m | 1EG6:
return "%.3f” % (m/1E3) + 7 k” + unit
elif m | 1E9:
return “%.3f” % (m/1E6) + ” M” + unit
elif m | 1E12:
return "%.3f” % (m/1E9) + 7 G” + unit

# GPIB INIT

# visa.log'to'screen ()

SG = wvxill.Instrument(”192.168.1.119")

OSC = visa.ResourceManager(’@py’).get instrument ("TCPIPo
2:192.168.1.121::insto :: INSTR")

OSC. timeout=2500000
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# IDENTIFYING

print ("SG found: ” + SG.ask(”+IDN?”).strip ())
print ("OSC found: ” + OSC.query('+IDN?").strip ())
#0OSC Setting -up

OSC. write (" :CHANnel1: DISPlay ON”)

OSC. write (" : DISPlay : SIDebar MEASurements’)

OSC. write (" : MEASure : FREQuency ” )

#5G Setting -up

SG. ask ("CH1:VOLT 3.3”)
SG. ask ("CH2:VOLT 1”)

SG. ask ("CH1:CURRent 2”)
SG. ask (“CHz: CURRent 3”)

SG. ask (“OUTPut CH1,0ON”)
SG. ask (”OUTPut CHz,0N")

volt'Sweep=np.arange (0.5,8,0.5)
current Sweep =[]
measured Osc =[]
for V in volt'Sweep:
SG. ask ("CH2:VOLT %f” %V)
if V==8.5 or V==0:
time . sleep (60)

else:

time.sleep (10)

current Sweep . append (SG. ask ("MEASure : CURRent? CH2"))
measured Osc.append (OSC. query (" : MEASure: FREQuency? CHANnel1”))

voltage Data=pd.DataFrame(volt 'Sweep)
current ' Data=pd.DataFrame(current Sweep)
measured Freq=pd.DataFrame (measured Osc)
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4

pd.concat ([voltage Data ,current Data ,measured Freq],axis=1).to csv (’
data18.csv”)

print ("Data written to CSV”)

SG. ask ("OUTPut CHz1, OFF”)
SG. ask ("OUTPut CH2,OFF”)
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