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Abstract

The following bachelor thesis introduces the basis of the attitude

representation and measurement theory on Earth’s surface from inertial

and magnetic measurement units data, as well as the use of sensor

fusion algorithms as the optimal and complementary filters. Moreover,

a review of the control system formalism is presented, where the

stability and the reach of the controllers is analyzed, as well as two of

the most used control techniques at the present time: the Proportional

Integral Derivative controller and the Linear Quadratic Regulator.

Finally, a study of the measurement and filtering methods on a real

inverted pendulum with reaction wheel is conducted.



Resumen

En el presente trabajo se realiza una introducción a la teoŕıa de la

medida de la orientación en la superficie terrestre mediante el uso de

sensores inerciales y magnéticos con técnicas de fusión de señales, a

través del uso de filtros óptimos y complementarios. A continuación se

hace una presentación del formalismo de sistemas de control, en la cual

se analiza la estabilidad y el alcance de dichos sistemas, aśı como dos

de los métodos de control más comunes, el controlador Proporcional

Integral Derivativo y el Regulador Lineal Cuadrático. Por último, se

hace un estudio de la medida para un sistema real, el péndulo invertido

con volante de inercia.
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oportunidad de soltar el libro y, a golpe de martillo y con sangre y sudor, materializar lo

que algún d́ıa sólo fueron ideas.

A toda mi familia, a los que han llegado y también a los que se fueron. En especial a

mi madre, por su salmorejo, fuente de inspiración y gozo en mis jornadas de trabajo.

A los amigos con los que he terminado esta carrera, con los que tantos buenos y malos

ratos he compartido.

A la gente de Monachil. Al Marqués de Saldaña: sin él el mundo seŕıa un poco peor.
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5 1 INTRODUCTION

1 Introduction

The study of attitude measurement and control has been indispensable for the develope-

ment of fields as aeronautical and aerospace engineering.

Every satellite has incorporated systems that allow them to know their orientation

respect to the Earth, the sun, or distant stars and galaxies in the case of astronomi-

cal satellites, as well as tools to control that orientation, like reaction wheels, gimballs,

thrusters, magnetorquers, ect.

Figure 1: Control moment gyroscope installed in the International Space Station [25]

Before being sent into orbit, spacecrafts are tested on ground, generally by using test

platforms with air bearing systems [7], which can be constructed in such a way that the

center of mass of the suspended system is coincident with the center of rotation. This way,

the effect of gravitational forces and torques is reduced considerably, simulating an almost

perfect zero-gravity enviroment for testing and developement of spacecraft attitude control

software. Other applications of orientation measurement and control theory include the

developement of autonomous navigation systems and self balancing vehicles, among others.

Figure 2: Test platform with air bearing designed by the Granasat team [21]

At the beginning of this work, a brief overview of the mathematical representation of the

attitude is provided, as well as the different transformation rules and temporal evolution

of the representation elements. After that, the different inertial measurement sensors are

introduced, and the relation between the measured data and the orientation of the system

respect to a ground frame is determined.
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In particular, sensor fusion algorithms will be introduced for the data analysis. Sensor

fusion is the combination of data from different noisy or imprecise sensors that are mea-

suring the value of certain magnitude, in order to obtain information that is more precise

than that from the individual sources. This combination can be done by making use of

statistical methods and optimal estimators like the Kalman filter [25], one of the most

famous and widely used filters nowadays, or taking into account some characteristics of

the noise from each individual sensor and trying to take advantage of the useful part of it’s

data. In the case of orientation measurement, this filtering process leads to the reduction

of noise from the accelerometer and magnetometer data, as well as the minimization of the

characteristic bias errors that arise when gyroscope data is integrated. This constitutes a

great improvement with respect to the non filtered values.

Once the orientation data is known, it can be fed into a controller that is able to

manipulate the state of a certain system, turning or moving it, by using passive or active

actuators. There is a wide set of control approaches available and, depending on the

particular system, different methods can be used.

This work introduces the basics of such control systems from a theoretical and practical

point of view.

2 Orientation representation

The orientation of a body-fixed frame of reference respect to a laboratory or Earth-surface

reference frame and it’s temporal evolution can be represented in many ways.

(Note: vectors are written in bold letters to distinguish them from scalars.)

2.1 Euler angles

According to Euer’s rotation theorem, any rotation in Rn space can be described by a

sequence of no more than n rotations around coordinate vectors, such that consecutive

rotations are performed around distinct vectors.

Those vectors are usually chosen to be the three basis vectors x̂, ŷ and ẑ (but could

also be ŷ, x̂ and ẑ, or x̂, ẑ and x̂ again, etc).

z

yaw

x

roll

pitch

y

Figure 3: Roll, pitch and yaw angles

The angles of rotation around x̂, ŷ and ẑ are called roll (φ), pitch (θ) and yaw (ψ).
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The change of attitude around each axis can be defined by the following three rotation

matrices [1].:

Rx (φ) =

 1 0 0

0 c (φ) −s (φ)

0 s (φ) c (φ)

 Ry (θ) =

 c (θ) 0 s (θ)

0 1 0

−s (θ) 0 c (θ)



Rz (ψ) =

 c (ψ) s (ψ) 0

−s (ψ) c (ψ) 0

0 0 1


(2.1)

Where s (α) and c (α) represent the sine and cosine functions. The complete rotation

after the consecutive individual rotations (2.1) is given by it’s product:

R (φ, θ, ψ) =

 c (θ) c (ψ) s (φ) c (ψ)− c (θ) s (ψ) c (φ) s (θ) c (ψ) + s (φ) s (ψ)

c (θ) s (ψ) s (φ) s (θ) s (ψ) + c (φ) c (ψ) c (φ) s (θ) s (ψ)− s (φ) s (ψ)

−s (θ) s (φ) c (θ) c (φ) c (θ)


(2.2)

This transformation R ∈ SO (3) has the following properties:

R−1 = RT RRT = RTR = I3×3 (2.3)

that is, the inverse rotation transformation is described by the transpose ofR: R (−φ,−θ,−ψ) =

RT (φ, θ, ψ).

k

j

g

g

ib

jb

kb

ig

Figure 4: Ground and body frames

In general, a rotation matrix that defines the orientation of a body-fixed reference frame

respect to a laboratory (ground) frame can be constructed as the projection of each one of

the basis vectors îb, ĵb and k̂b of the body frame onto each basis vector îg, ĵg and k̂g of

the ground frame:

RBG =

 îg · îb ĵg · îb k̂g · îb
îg · ĵb ĵg · ĵb k̂g · ĵb
îg · k̂b ĵg · k̂b k̂g · k̂b

 (2.4)
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This matrix is called the direction cosine matrix (DCM), as the scalar product of each

pair of unitary basis vectors is the cosine of the angle between both. This matrix is

equivalent to (2.2).

A vector vb expressed in the body reference frame can be expressed in the ground frame

as:

vg = RBGvb (2.5)

and from ground frame to body frame:

vb = RGBvg, RBGRGB = I3×3 (2.6)

2.2 Quaternions

Quaternions are an extension to complex numbers with one real and three imaginary parts

[10]:

q = s+ iq1 + jq2 + kq3 (2.7)

with i2 = j2 = k2 = ijk = −1. They are usually represented in form of a 4-dimensional

vector:

q = (s,v) (2.8)

with v = (q1, q2, q3). Since only 3 values are required to fully describe a 3D rotation,

the use of quaternions in the orientation description is limited to unitary vectors:

|q| =
√
s2 + q21 + q22 + q23 = 1 (2.9)

A rotation by an angle α around an unit vector v is represented in quaternion notation

as:

qα,v =
(
cos

α

2
, vsin

α

2

)
(2.10)

so the first component represents the magnitude of the rotation and the last three

correspond with the rotation direction.

a

v

Figure 5: Quaternion representation of a rotation

The conjugate of an unit quaternion is:

q∗ (α,v) = q (α,−v) (2.11)
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Similarly to Euler angles case, a rotation matrix can be obtained for a given quaternion:

Rq =

 1− 2q22 − 2q23 2q1q2 + 2sq3 2q1q3 − 2sq2
2q1q2 + 2sq3 1− 2q21 − 2q23 2q2q3 − 2sq1
2q1q3 − 2sq2 2q2q3 − 2sq1 1− 2q21 − 2q22

 (2.12)

The composition (◦) of two rotations qa and qb is given by the quaternion product:

qa ◦ qb = (sa,va) ◦ (sb,vb) = (sasb − vavb, savb + vasb + va × vb) (2.13)

In general, the composition of quaternions does not commute.

An important thing to take into account when computing quaternions is that any

precision error (floating error) can lead to not normalized results which don’t represent

proper rotations, so algorithms must implement a constant normalization process.

Conversion from quaternion notation to Euler angles can be done as:
φ = atan

(
2sq1+q2q3

1−2(q21+q22)

)
θ = asin (2 (sq2 − q3q1))

ψ = atan

(
2sq3+q1q2

1−2(q22+q23)

) (2.14)

Each representation has some advantages and some drawbacks. The use of Euler angles

is more intuitive and all the information is contemplated in only 3 values, but it suffers

from a problem called gimbal lock whereby the system loses a degree of freedom for certain

continuous rotations. They are also more ambiguous than quaternions in the sense that

Euler angles can be defined for different sets of axes.

Quaternions are less intuitive but they get rid of the gimbal lock problem and the

computational cost associated to it’s use is smaller.

3 Orientation measurement

3.1 Measurement devices

In order to obtain information relative to the orientation of a body, we have to be able to

measure certain magnitudes whose directions are known to us in a ground-fixed frame. In

Earth’s surface, those magnitudes are the Earth’s gravity and magnetic field vectors. In

other enviroments like the outer space, further methods like star tracking systems can be

applied. In any case, the following formalism can be applied for any orientation measure-

ment problem in general.

3.1.1 Accelerometer

In a static situation, an accelerometer measurement provides a constant actualization of

the gravity vector’s direction. When the body is subjected to other accelerations, if a model

of the body’s motion is available, some corrections can be made in order to separate the

gravitational from the rest of the dynamical accelerations. Sometimes those accelerations

are small compared to gravity and can therefore be neglected. Even when the accelerations
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are not small we can still make use of the mean measured value 〈a〉 to have a rough idea

of where downwards is.

The accelerometer static measurement vector is:

a = (ax, ay, az)
T (3.1)

and it’s equal to the gravity vector expressed in the ground frame multiplied by the

corresponding rotation matrix:

a = RT (φ, θ, ψ) (0, 0,−g)T (3.2)

From (2.2) we have the following correspondence:

 −s (θ) g

s (φ) c (θ) g

c (φ) c (θ) g

 =

 ax
ay
az

 (3.3)

From the quotient between ay and az we can obtain the roll angle:

φ = atan2

(
ay
az

)
(3.4)

where the two argument arctangent function atan2 is here used to ensure that the angle

remains in the ±π range.

From ax and realizing that
√
a2y + a2z = c (θ) g, we get the pitch angle:

θ = atan2

 −ax√
a2y + a2z

 (3.5)

3.1.2 Magnetometer

Once we know the roll and pitch angles from the accelerometer measurement, the yaw

angle can be computed from those angles and the magnetometer measurement.

g

b g

z

y

x

Figure 6: Gravity and magnetic vectors in ground frame

The magnetic field vector in Earth’s surface has the form [9]:

b = (Bcosγ, 0, −Bsinγ)T (3.6)
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where γ is the inclination of the vector, which varies depending on the measurement

location.

The vector measured by the magnetometer is:

m = (mx,my,mz)
T (3.7)

If we have already Rx (φ) and Ry (θ) matrices, we get the relation:

Ry (θ)Rx (φ)m = RTz (ψ) b = br (3.8)

where br represents the magnetic vector (3.6) after performing the rotation RTz (ψ) that

we want to determine. From (3.8) we have: c (θ)mx + s (φ) s (θ)my + c (φ) s (θ)mz

c (φ)my − s (φ)mz

−s (θ)mx + s (φ) c (θ)my + c (φ) c (θ)mz

 =

 c (ψ) c (γ)

−s (ψ) c (γ)

−s (γ)

 (3.9)

from the first and second rows of (3.9) we can finally compute the yaw angle:

ψ = atan2

(
c (φ)my + s (φ)mz

c (θ)mx + s (φ) s (θ)my + c (φ) s (θ)mz

)
(3.10)

3.1.3 Gyroscope

Triaxial gyroscopes measure the angular velocity vector ω of the body expressed in the

body-fixed frame. In order to get the orientation from the gyroscope measurements, the

signal has to be integrated over time starting from some initial conditions.

If4t is the sampling time of the measuring device, one might assume that the variation

of the Euler angles can be iteratively computed as the current value of the angles plus the

angular velocity times the sampling time: φ

θ

ψ


k+1

=

 φ

θ

ψ


k

+4t

 ωx
ωy
ωz


k

(3.11)

as ωx, ωy and ωz represent the rate of change of the angular position respect to x, y and

z axes in the body frame. Nevertheless, the Euler angles define a rotation as a sequence

of three rotations, while ω describes the effect of three rotations simultaneously.

Given that rotations in general are not commutative, the result would be different if

instead of chosing the Euler angles as a sequence of rotations about x→ y → z , we chose

the sequence y → z → x or x→ z → y.

v

qd

dv

a

Figure 7: Infinitesimal rotation of a vector
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An infinitesimal rotation of dθ of a vector v about an unitary vector a in R3can be

expressed as [1]:

du = (a× u) dθ (3.12)

We can express the cross product as a skew symmetric matrix:

a× ≡ [a×] =

 0 −az ay
az 0 −ax
−ay ax 0

 (3.13)

Rearranging:

du

dθ
= [a×]u (3.14)

Integrating both sides we get:

u (θ) = eθ[a×]u (0) (3.15)

The skew symmetric matrix for each basis vector is called the infinitesimal generator

of rotations for that vector:

Lx =

 0 0 0

0 0 −1

0 1 0

 Ly =

 0 0 1

0 0 0

−1 0 0

 Lz =

 0 −1 0

1 0 0

0 0 0

 (3.16)

and any skew symmetric matrix can be expressed as a linear combination of (3.16). It’s

said that the matrices form a basis of the 3D rotation (SO3) Lie group.

To prove the non commutativity of rotations, two sucesive rotations can be performed:

eθ1Aeθ2B =
(

1 + θ1A+
θ21A

2

2! + ...
)(

1 + θ2B +
θ22B

2

2! + ...
)

= 1 + θ1A+
θ21A

2

2! + θ2B +
θ22B

2

2! + θ1Aθ2B + θ2Bθ1A+ ...

= eθ2Beθ1Ae(θ1θ2{A,B}+O(θ3))

(3.17)

where {A,B} is the anticommutator of A and B. As seen above, there is an exponential

term that makes the result differ when the rotations are performed in different order, with

very few exceptions for which that exponential is equal to the identity matrix.

For infinitesimal rotations (θ � 1), that exponential goes fast to zero and the rotations

are indeed commutative.

If the sampling time is short enough so that the rotation angle for each iteration is very

small, then (3.11) can be a good approximation.

The time evolution of a DCM is given by:

dRBG

dt
= RBG [ω (t)×] (3.18)
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or in a discrete iterative form:

RBG (t+4t) = RBG (t)
(
I3×3 +4t [ω (t)×]

)
(3.19)

From the elements of the DCM, comparing (2.4) with (2.2), the Euler angles can be

obtained.

In the case of quaternions, the evolution is given by:

q̇ = q ◦ (0,ω (t)) (3.20)

3.2 Sensor fusion

Let us imagine that at time t0 we measure a given variable x with some sensor, getting

as a result a value of x0 with an error or uncertainty that we can describe by a gaussian

probability density function with mean at x̂0 and variance σ20. Then later, at time t1, we

make another measurement with a different sensor, getting a value of x̂1 with assocated

variance σ21.
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Figure 8: Density probability distributions associated with measurements x̂1 and x̂2

Then we can make use of Bayesian statistics to make an inference about the real value

of x.

The Bayes theorem for contiuous distributions reads [20]:

f (x | x̂0, x̂1) =
f
(
x | µ0, σ20

)
f
(
x | µ1, σ21

)
´∞
−∞ f

(
x | µ0, σ20

)
f
(
x | µ1, σ21

) (3.21)

That is, the a posteriori probability distribution is given by the normalized product of

the two distributions.
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Figure 9: A posteriori distribution obtained from the two measurements

This new probability distribution has the following parameters [22]:

µ =
σ20

σ20 + σ21
µ0 +

σ21
σ20 + σ21

µ1 (3.22)

σ2 =
σ20σ

2
1

σ20 + σ21
(3.23)

where σ2 ≤ σ20, σ20. This means that from two different sources of information with two

given uncertainties we can get a measure that is more reliable, more close to the real value

(statistically at least) than the last two.

Another way to obtain this result is generating an optimal estimator.

If we want to estimate the value of x, we can do it as a linear combination of x̂0 and

x̂1[21]:

x = αx̂0 + βx̂1 = αx̂0 + (1− α) x̂1 (3.24)

where α+ β = 1 so if both measures are equal, then x is also equal to them.

We define the optimal estimate as the one that presents the minimum variance:

σ2 (α) = α2σ20 + (1− α)2 σ21 (3.25)

dσ2 (α)

dα
= 0 → α =

σ20
σ20 + σ21

(3.26)

therefore

σ2 =
σ20σ

2
1

σ20 + σ21
(3.27)

the same result as (3.23).

This linear optimal estimate is the basis of optimal sensor fusion method called Kalman

filter.
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3.2.1 Kalman filter

The Kalman filter is an iterative method for finding the optimal estimate for a set of

magnitudes from certain system, making use of two data:

� A priori estimate xk: is the obtained value for the state vector from the previous

estimate and a model that describes it’s evolution over time:

xk = Axk−1 +Buk−1 + wk−1 (3.28)

where matrices A and B, called state and control matrices, predict the change of the

state variables in sucesive iterations (for a further explanation of the state space represen-

tation, read section 4.2).

wk is the process noise, and it represents the deviation of the state from the model

prediction (this can be due to random noises and internal/external factors that keep the

system from behaving as it should theoretically). This process noise is described as a mul-

tidimensional gaussian probability distribution with a covariance matrix Q, called process

noise covariance [22]:

Q =


σ21,1 σ21,2 . . . σ21,n
σ221 σ22,2 . . . σ22,n

...
...

. . .
...

σ2n,1 σ2n,2 . . . σ2n,n

 (3.29)

where

σ2x,y =
1

n

n∑
i=1

(xi − x̄) (yi − ȳ) (3.30)

The diagonal terms of the covariance matrix are simply the variances for each state

variable, while the off diagonal terms show the correlation between the different errors,

which in practice are usually set equal to zero for simplicity. Essentialy, if the terms in Q

are large, it means that the model is not doing well predicting the current state from the

previous one.

� A measurement yk: is obtained by measuring the current state of the system:

yk = Hxk + vk (3.31)

where H is called observation or output matrix, and it determines the portion of the

state that can be measured. vk is known as measurement noise, and it, as it’s name says,

describes the error of the measurement for each variable. The asociated covariance matrix

is called measurement noise covariance, R.

The algorithm is then divided into two parts or phases:

1. Prediction phase: the previous state is propagated (3.28) to get an a priori estimate(
x−k
)

of the actual state:
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x−k = Axk−1 +Buk−1 (3.32)

as well as the estimate error covariance matrix, which represents the prediction of the

error associated to the predicted state x−k :

P−k = E
[
eke

T
k

]
= APk−1A

T +Q (3.33)

1. Correction phase: a new measurement of the state is made (3.31), and the a posteriori

predicted state is computed as a linear combination of both the predicted and the

measured values:

xk = x−k +Kk

(
yk −Hx−k

)
(3.34)

which bears resemblance to the monodimensional case (3.24). Here, the weighting

parameter is given by the matrix K, known as the Kalman gain. As in (3.24), it represents

the gain that minimizes the error covariance matrix:

Kk =
P−k H

T

HP−k H
T +R

(3.35)

If the measurement error covariance R is small, the value of the a posteriori predicted

state stays closer to the measurement. If P−k is smaller, then the a posteriori predicted

state approaches more to the a priori prediction.

Finally, the a posteriori estimate error covariance matrix P is computed:

Pk = (I −KkH)P−k (3.36)

The next iteration, the a posteriori predicted state xk becomes the new previous state

xk−1, and matrix Pk becomes the new previous Pk−1.

3.2.2 Complementary filter

A much simpler version of a linear estimator (3.24) is the complementary filter.

When an angle is measured by integrating the gyroscope signal over time (3.19), the

integration of the measurement errors along with the error intrinsic to the discretizacion in

digital signals produces a bias that grows over time and causes the measure to deviate from

the real value in the long term. On the other hand, the accelerometer provides a unbiased

measurement of the orientation that is accurate over long periods of time, but the signal

is submited to a large amount of noise. We can say then that the accelerometer signal is

more valuable at low frequencies and the gyroscope data has more desirable properties at

low frequencies.
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Figure 10: Example of gyroscope and accelerometer signals in angle measurement

The complementary filter exploits this frequency features by adding the pass-filtered

data from each sensor: a low pass filter reduces the high frequency noise from the accelerom-

eter, and a high pass filter minimizes the effect of the bias of the gyroscope measurement,

so from the addition of both filtered data we can a measurement that is useful and reliable

in the entire frequency spectrum. The complementary high and low pass filters in the

Laplace domain are given by [23]:

Glow (s) =
α

1 + αs
Ghigh (s) = 1−Glow (s) (3.37)

The measured angle in the Laplace domain θ(s) is computed as the sum of the filtered

measurements from the accelerometer, θacc(s), and from the gyroscope, θgyro(s):

θ(s) = Glow (s) θgyro(s) + (1−Glow (s)) θacc(s) (3.38)

performing the inverse Laplace transform to express the function in time domain and

discretizing [6]:

θk = αθgyro,k + (1− α) θacc,k = α (θk−1 +4tωk−1) + (1− α) θacc,k (3.39)

with

α =
τ

τ +4t
(3.40)

where τ is the time constant of the filter.

4 Control theory

The control theory, as it’s name indicates, is based on the study of the control of the

dynamic state of a given system (also called plant) through the action of elements which

are capable of modifying it’s behavior, as well as the analysis of the stability and the reach

of such control. These elements are called actuators, and they’re operated by an element

called controller.

In order to control a system, an aim state or setpoint is defined, that is, a specific set

of values for the state variables that we want our system to reach.
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From the difference between the current state and the aim state an error is defined,

and from this error signal and through the use of a particular control law, the controller

decides how the actuators will operate.

This kind of control in which there is a feedback from the state is called closed loop

control. In the case of attitude control on Earth’s surface, the feedback will come from the

signal of the different inertial measurement sensors attached to the body, which provide a

constant uptate of the state of the system.

4.1 Linear time-invariant systems

Although the vast majority of physical systems present inherent nonlinear characteristics,

they can be approximately described by a linear approximation in the neighbourhood of an

equilibrium point by performing a first order Taylor expansion of the dynamic functions.

The reason behind this linearization is the amount of vastly simpler methods for studying

control and it’s stability compared to the nonlinear case.

In particular, for linear systems the total reaction y(t) to a set of inputs/actions fi(ti)

(for example, a voltage step function applied to a circuit, or a certain amount of impulse

generated by a thruster in a spacecraft) is the sum of the individual responses for every

input. This property is known as superposition.

The impulse response of a system, h(t), is defined as the output of the system corre-

sponding to a delta function input f(t) = δ(t) for zero-boundary conditions. Because of

linearity, the response of the system is [14]:

y(t) =

tˆ

0

f(τ)h(t− τ)dτ (4.1)

This equation is known as the convolution integral, also represented by the convolution

operator y(t) = (u ∗ h)(t). The idea behind this comes from expressing any input f(t)

as a set of n scaled and time-shifted delta impulses, and bringing the expression to the

continuum limit (n→∞).

To visualize this superposition feature, we take as an exaple a simple mass-spring-

damper model with an input force, described by the linear differential equation mÿ(t) +

bẏ(t) + ky(t) = u(t). The impulse response to a delta function at t = 0, f(t) = cδ(t), is

in this case equal to a instant change in the momentum of the system mẏ(0+) = c. The

solution to the differential equation reads:

h(t) = e
−b
2m

tsin(ω′t) ω′ =

√
k

m
−
(

b

2m

)2

(4.2)

If the system is subjected to an input force f(t) = sin(10t), t ∈
[
0, πω′

]
, we can approx-

imate it by a set of n scaled and time-shifted delta impulses. Here, these inpulses could

be intuitively seen as “knocks” of a very short duration that change the momentum of the

mass instantaneously.
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Figure 11: Impulse function h(t) for the mass-spring system and input function f(t)

As n becomes larger, the sum of the individual responses becomes closer to the real

response.
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Figure 12: Delta inpulse approximation for n = 5 and added response compared to real
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Figure 13: Delta inpulse approximation for n = 14 and added response compared to real

When n tends to infinity, the sum of every individual response becomes the convolution

of f(t) and h(t).

In this property lies the simplicity and potential of linear time-invariant systems (LTI ):

the behavior of the system as response to any perturbation or control force is completely

determined by a function h(t).
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4.2 System representation

4.2.1 Ordinary differential equations

As in the mass-spring example, the physical description of linear systems is generally

represented by a set of ordinary differential equations that determine the temporal evolution

of the generalized coordinates of the system:

xi(t) =
∑
n

an,i(t)x
(n)
i +

∑
n

bn,i(t)u
(n)
i (4.3)

where xi represents the value of the generalized coordinates that define the state of

the system, and ui represent the variables that define an external action or force from the

actuators. In a complete description, the number of equations is equal to the number of

degrees of freedom of the system.

4.2.2 Laplace domain

A system that responds to a certain signal or input can be seen as a black box that

transforms in a specific way the incoming input into another output signal. In case of a

LTI system, this transformation is completely described by it’s impulse function h(t).

The Laplace transform of h(t) is called transfer function, H(s), and it represents the

relation between output (Y ) and input (U) in the Laplace domain. In it’s more general

form [13]:

Y (s) = H(s)U(s) (4.4)

and as in the case of h(t), it completely defines the behavior of the system.

The advantage of working in the Laplace domain is that the response of a number of

connected interacting systems to an initial signal is computed as simply the product of the

individual transfer functions times the signal, whereas in time domain this response comes

from the convolution (4.1), which can be more arduous to perform.

The transfer function representation also allows us to obtain a large number of charac-

teristics of the system’s dynamics in a relatively easy way.

The transfer function of a system is usually denoted with capital letters.

4.2.3 Block diagrams

In engineering fields, another typical way of describing a system is through block diagrams,

which visually display the different parts of the system and their connections, representing

them by their particular transfer functions. (here the term signal may not strictly refer to

an electric signal, but to any output of an element that generates a reaction on another)

H(s)

Figure 14: System component represented by a block with associated transfer function

H(s)
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The case shown below is the most general case of closed loop system: a controller

connected to a plant, and a feedback signal that is substracted to a reference signal to

determine the error that is then sent into the controller.

C(s) P(s)u(s)e(s) y(s)
+
-

r(s)

sensor

Figure 15: Block diagram for closed loop system

The transfer function for a closed loop system can be obtained by noticing the following

relations:

E(s) = R(s)− Y (s)

Y (s) = P (s)C(s)E(s)
(4.5)

Subtituing the first equation into the second we get the closed loop transfer function:

Hcl(s) =
Y (s)

R(s)
=

C(s)P (s)

1 + C(s)P (s)
(4.6)

4.2.4 State space representation

The evolution of the state variables can be expressed in form of matrix equations [11]:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(4.7)

where x(t) is the state vector, which comprises the variables that define the state of

the system at a certain time t, y(t) is the output vector, and u(t) is the input vector from

the controller signal.

The matrix A is called state matrix, and it determines how the current state affects

the variation of the state variables, and B is the control matrix, which describes how the

input affects these variables. C and D, known as output and feed-forward matrices, define

the output vector in terms of the current state. Intuitively, C determines the portion of

the system variables that can be observed.

For closed loop systems, and in particular when the state feedback is constant, u can

be expressed as a function of x. In general we have:

u(t) = Kx(t) (4.8)

where K is known as closed loop feedback matrix or gain matrix.

To change from state space representation to Laplace domain representation, we per-

form the Laplace transform to the state equations (4.7):
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sx(s) = Ax(s) +Bu(s) → (sI −A)x(s) = Bu(s)

y(s) = Cx(s) +Du(s)
(4.9)

then multiplying both sides of the first by (sI −A)−1 and subtituing in the second:

y(s) =
[
C (sI −A)−1B +D

]
u(s) (4.10)

where H(s) =
[
C (sI −A)−1B +D

]
is equal to the transfer function of the system.

4.3 Control analysis

The solution to the set of differential equations that appear in the State Space description

(4.8) can be divided in two separate terms: an homogeneous solution xh for zero input

that describes the response of the system to some initial conditions x0, and a particular

solution xp that corresponds with nonzero input and zero boundary conditions.

The solution to the homogeneous equation x′(t) = Ax(t) has an exponential form:

xh(t) = eAtx(0) (4.11)

where the square matrix exponential is computed as the usual power series expansion:

eAt =

∞∑
n=0

(At)n

n!
= I +At+

A2t2

2!
+
A3t3

3!
+ ... (4.12)

The matrix Φ = eAt is called the state transition matrix of the system. It presents the

following properties [24]:

� Φ(0) = I

� Φ(−t) = Φ−1(t)

� Φ(t1)Φ(t2) = Φ(t1 + t2)

The particular solution is obtained by multiplying both sides of the first equation in (4.7)

by e−At and integrating:

tˆ

0

[
e−Atx′(t)− e−AtAx(t)

]
=

tˆ

0

[
d

dt

(
e−Atx(t)

)]
=

tˆ

0

e−AtBu(t) (4.13)

rearranging the terms:

x(t) = eAtx(0) +

tˆ

0

eA(t−τ)Bu(t) (4.14)

where the first term on the right is the homogeneous solution xh(t), also called zero

input response, and the second is the convolution integral, also known as the zero state

response of the system.
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4.3.1 Stability of linear systems

In general, a linear system is said to be stable if the state vector doesn’t diverge as time

goes to infinity. In particular, a system is asymptotically stable if the state variables tend

to 0 [22] :

lim
t→∞

xi(t) = 0 (4.15)

and marginally stable if the state remains bounded:

sup
t≥0
‖xi(t)‖ < ki (4.16)

Given a transfer function

H(s) =

∑n
i=0 bns

n∑m
i=0 ams

m
(4.17)

the function can be expanded into a sum of partial fractions:

H(s) =
n∑
i=0

ri
s− pi

(4.18)

where pi and ri are called the poles and the residues of the transfer function respectively.

By performing the inverse Laplace transform we get the system impulse response:

L−1(H(s)) = h(t) =
n∑
i=0

rie
pit (4.19)

We can see that if the real part of a pole is positive, then the response of the system

diverges to infinity with time. This fact implies the following property: the system is

asypmtotically stable if and only if all poles of the transfer function have a negative real

part. If the real part of a pole is zero, then the system is marginally stable.

From (4.10) it can be proved that the poles of the transfer function and the eigenvalues

of the state matrix A coincide, so the same criterion can be applied for the real part of the

eigenvalues.

4.3.2 Observability

A system is said to be observable if the system state x(t) can be known from the input

u(t) and output y(t) vectors at a given time t and the initial state x(t0).

A system is observable if and only if the observability matrix O (A,C) has rank n, equal

to the dimension of A [20]:

O =
(

C CA CA2 · · · CAn−1
)T

(4.20)

This ensures that we can obtain an independent system of equations that determines

each value of x(t).
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4.3.3 Controllability

A system is said to be controllable if for any given time t, and any given initial and final

states x(t0) and x(t), there is some input u(t) that can take the state from x(t0) to x(t).

A sufficient condition for controllability is that the controllability matrix Q (A,B) has

rank n:

Q =
(

B AB A2B · · · An−1B
)T

(4.21)

4.3.4 Inverted pendulum

The inverted pendulum is a very useful system when it comes to studying attitude control

and control systems in general. On one hand, it represents the archetypal model of a system

that is subjected to forces or torques that tend to unstabilize it (balancing problem). On

the other hand, because it’s an observable system, the stability can be achieved by using

a wide set of possible control approaches, which will be later discussed in more detail.

The simplest version of an inverted pendulum consists of a body attached to a pivot,

with a constant distance between the body’s center of mass and the pivot. It’s (called)

inverted because the center of mass is above the rotation point of the system. The system

in this first approximation is assumed to be frictionless.

l

q

m

Figure 16: Inverted pendulum

We also assume that the center of gravity coincides with the center of the mass.

The torque produced by the gravity is τ = mlgsinθ, with the associated differential

equation θ̈ + g
l sinθ = 0. To linearize the equation, we perform the first order Taylor

expansion of the sine function around the top equilibrium point

θ̈ − g

l
θ = 0 (4.22)

Expressed in state space representation and taking θ and θ̇ as state variables:

dx
dt =

(
θ̇

θ̈

)
=

(
0 1
g
l 0

)(
θ

θ̇

)

y =
(

1 0
)
x

(4.23)

The eigenvalues of the state matrix are λ1 =
√
g
l and λ2 = −

√
g
l , and therefore the point

is unstable and the body tends to fall when it’s at the top, as expected.
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In order to stabilize the system, we define as error the difference between the current

angle of the pendulum and the top position, in our case equal to θ. The goal of this

control will then be to bring the state as close as possible to the top equilibrium point

θ = θ̇ = 0. First, the functional dependence between an external torque τext that will

control the pendulum and the error has to be set, that is, a control law has to be defined.

Given that the gravitational torque increases with θ, we can assume a proportional

dependence with θ as a first ansatz [19]:

θ̈ − g

l
θ = τext = αθ (4.24)

In the state space representation, this feedback can be expressed as:

u(t) = Kx(t) =
(
α 0

)
x(t) (4.25)

The state space equations then read:

ẋ =

(
θ̇

θ̈

)
=

(
0 1
g
l 0

)(
θ

θ̇

)
+

(
0

1

)(
α 0

)( θ

θ̇

)
=

(
0 1

g
l + α 0

)(
θ

θ̇

)
y =

(
1 0

)( θ

θ̇

)
(4.26)

For constant gain closed loop, the state matrix becomes Acl = A+BK, and the system

equation can be treated as for the open loop control case ,ẋ = Aclx.

In this case, the eigenvalues of the state matrix can either be a positive-negative pair

or a pure imaginary pair. In the first case the system response diverges, and in the second

the imaginary pair creates a constant oscillatory response (4.19). Therefore the control

law (4.25) is not useful.
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Figure 17: Phase portraits of the system for divergent and constant responses

This divergence of the dynamic variables corresponds to the linearized equations; in

the real inverted pendulum system, the divergence is translated into a proggresive shift

away from the top unstable equilibrium position towards the lower stable point.

As a second attempt, we can introduce in the feedback a negative dependence with θ̇:

θ̈ − g

l
θ = τext = αθ − βθ̇ (4.27)

The characteristic equation then reads:
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λ(β − λ)− g

l
+ α = 0 (4.28)

This second order equation can return complex values with positive real part, and the

system can therefore be stabilized.
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Figure 18: Phase portrait for convergent response

As we see, for certain systems a proportional control (that is, the gain K is proportional

to the error) is not enough. In the oscillatory situation the torque produced by the actuator

makes the pendulum pass the equilibrium point at a high velocity, producing an overshoot

that repeats towards both sides throughout the motion: the inverted pendulum becomes

a simple pendulum, but pointing upwards instead of downwards.

By adding a derivative term, the overshoot reduces over time, making the system

converge to the equilibrium point, just like a regular pendulum with friction would do.

This example serves as an introduction to one of the most used control approaches in

the world of industrial processes and automatization, and in control systems in general:

the Proportional-Integral-Derivative control, also known as PID control.

4.4 Controllers

4.4.1 PID controller

A PID controller makes use of three different terms to calculate the control function from

the error e(t) [23]:

u(t) = Kpe(t) +Ki

tˆ

0

e(τ)dτ +Kd
de(t)

dt
(4.29)

where Kp, Ki and Kd are called proportional, integral and derivative constants respec-

tively.

� The proportional term depends on the actual value of the error: if the value of the

controlled variable is far from the setpoint, the action introduced will be large. If

they are equal, the proportional term will be zero.

� The derivative term depends on the rate of change of the error, that is, it’s influenced

by the speed with which the state is getting closer or further from the setpoint.

The derivative term has a predictive nature, given that it acts on the error trend,
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preventing the system from overshooting. For example, if a car wants to reach a

certain position and stop at that point, it will have to begin decelerating before

arriving or it will inevitably pass the point at nonzero speed.

� The integral term, as it’s name says, is proportional to the error integrated over time.

It’s useful in the situations in which there is a disturbance that prevents the state to

reach the setpoint. This disturbance appears for example in cases where the setpoint

monotonically changes over time and the proportional-derivative control is not able

to make the system reach a nonzero error. The integral term would then increase

until the disturbance is overcome.

To see the effect of the PID constants Ki, we can write a second order homogeneous

differential equation in a canonical form [1]:

ẍ (t) + 2ζωnẋ (t) + ω2
nx (t) = u (t) (4.30)

Where ζ is called damping ratio and ωn is the natural frequency of the undamped

system. The transfer function reads:

P (s) =
1

s2 + 2ζωns+ ω2
n

(4.31)

If we add a PID control to the system, the closed loop transfer function can is computed

as (4.6):

H(s) =

(
Kp + 1

sKi + sKd

)
1

s2+2ζωns+ω2
n

1 +
(
Kp + 1

sKi + sKd

)
1

s2+2ζωns+ω2
n

(4.32)

The charasteristic equation for this transfer function is:

s
(
s2 + 2ζωns+ ω2

n

)
+Kps+Ki +Kds = 0 (4.33)

rearranging terms:

s3 + (2ζωn +Kd) s
2 +

(
ω2
n +Kp

)
s+Ki = 0 (4.34)

That is, by tuning the three PID constants, we can change the value of the different

poles of the system. This allows us to directly modify the dynamic properties of the system

and make it stable, or even impose some characteristics on it’s movement, given that the

poles of the system determine it’s behavior (4.19).

For example, in the case of the inverted pendulum (4.22) with a PD control, the system

approaches the setpoint in different ways depending on the value Kp and Kd.

The transfer function of the pendulum in that case is (4.6) (4.10):

H(s) =

(Kp + sKd)
s

s2+ l
g

1 + (Kp + sKd)
s

s2+ l
g

=
s (Kp + sKd)

s2 (1 +Kd) + sKp + l
g

(4.35)
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Figure 19: Evolution of angle for fixed Kp and different values of Kd

As we can see, the controller can be configurated in many ways. The optimallity of the

control depends on various factors; on the one hand, we want the system to converge to

the setpoint as fast as possible and, on the other, we may want the system to overshoot as

little as possible.

Comparing (4.35) with (4.31):

ζ =
Kp
√
g√

l (1 +Kd)
ω2
n =

l

g (1 +Kd)
(4.36)

Theoretically, by tuning Kd and Kp we can make the system reach the wanted state

virtually as fast as we want, and make the overshoot as low as we want.

But in practice real systems and actuators present technical and physical limitations

that maight not be overcome.

Another thing of great importance and that needs to be addresed is the energy con-

sumption of the actuator in the control process. The PID control approach doesn’t directly

take into account this fact, but more modern techniques do, as we will see in the next sec-

tion.

4.4.2 LQR controller

As an example, we can imagine a satellite with a thruster that can change the object’s

angular momentum and make it rotate” around a certain axis n̂.

Now we want to change the orientation and turn the satellite by α degrees around n̂.

To reach this new rotated state, the thruster has to be activated twice: one to accelerate

the body so it begins rotating, and another to stop it, so the final state is stationary.

We assume for simplicity that the accelerating and decelerating impulses are instanta-

neous, one at the beginning and other at the end of the motion. We also assume that the

mass of fuel used each time is directly proportional to the angular impulse, that is, the

variation in the angular momentum: mf = γ4L = γIn̂4ω.

Then the time that it takes for the system to reach the setpoint is αγIn̂
mf

. That means

that the fastest we want our control to respond, the more fuel we will have to spend.

In general, if we want our control system to perform better dinamically, it will be at

the expense of a higher energy consumption. If we want to go to work, taking an helicopter
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might be much faster than walking or driving, but the cost associated with this mean of

transportation is considerably higher.

In real systems, the adequacy of the control depends both on the state regulation

capability and the magnitude of the control action.

the Linear Quadratic Regulator (LQR) control consists of contructing a cost function

that takes into acount the two terms and finding a state feedback control law that minimizes

it.

The control and action costs are computed as quadratic forms of the state and input

vectors and their associated weighting matrices:

xT (t)Qx(t) uT (t)Ru(t) (4.37)

where weighting matrices Q and R are real, symmetric and positive definite. By tuning

Q and R we are able to either penalize states that lie far from it’s setpoint and maximize

convergence rate of certain value xi, or punish the use of an actuator, therefore minimizing

certain control action throughout the control process. The cost function is then defined as

the integral over time of both quadratic costs [21]:

J =

∞̂

0

(
xT (τ)Qx (τ) + uT (τ)Ru (τ)

)
dτ (4.38)

In order to find the optimal control u? for a given set of matrices {A, B, Q, R} that

minimizes J , we start by defining a value function:

V (x (t) , t) = min
u


tfˆ

t

(
xT (τ)Qx (τ) + uT (τ)Ru (τ)

)
dτ

 ≡ min
u


tfˆ

t

g (x (t) ,u (t) , τ) dτ


(4.39)

This function represents the smallest possible value of the cost function associated with

bringing the state from x(t) to some final state x(tf ).

Now we make use of the Bellman optimallity principle. The principle states that every

segment of an optimal path (here path is refered to a control signal u(t) fed into the system

over time) is itself optimal. This simply means that at each time step, the optimal control

makes the cost function evolve in a way that it’s extremal. This can be expressed as [19]:

V (x (t+ dt) , t+ dt) = min
u

V (x (t) , t) +

t+dtˆ

t

g (x (τ) ,u (τ) , τ) dτ

 (4.40)

or in an alternative form:

min
u

{
V̇ (x, t) + g (x,u, t)

}
= 0 (4.41)

This functional equation is called Hamilton-Jacobi-Bellman equation, widely used in

calculus of variations.
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As an ansatz for the value function, we define it as a quadratic form V (x, t) =

xT (t)Px (t). Substituing into (4.41) and making use of the chain rule (4.7):

min
u

{
xT Ṗx + 2xTP (Ax +Bu) + xTQx + uTRu

}
= 0 (4.42)

For LTI systems, Ṗ = 0 due to the time invariance of V . Now differentiating respect

to u to find the minimum:

2uTR+ xTPB = 0 (4.43)

so

u = −R−1BTPx = Kx (t) (4.44)

As we see above, the optimal control is given by a state feedback control with a gain

matrix K = −R−1BTP . To find the matrix P , we substitute (4.44) into (4.41) again and

simplify to get

xT
[
ATP + PA− PBR−1BTP +Q

]
x = 0 (4.45)

this only holds if:

ATP + PA− PBR−1BTP +Q = 0 (4.46)

This equation is called the algebraic Riccati equation, and it has to be solved in order

to find K, usually by using numerical methods.

As we said earlier, there are many feasible ways to control a system. In the LQR

problem, this translates into choosing the individual terms of Q and R matrices that suit

best our requirements, and this is generally done by trial and error.

As a starting point for the weighting marices, the so called Bryson’s rule is usually

used: if the approximated largest possible values of the state and control variables are

x̃1, x̃2, ..., x̃n and ũ1, ũ2, ..., ũm respectively, then:

Q =


1
x̃21

0 . . . 0

0 1
x̃22

. . . 0

...
...

. . .
...

0 0 . . . 1
x̃2n

 R =


1
ũ21

0 . . . 0

0 1
ũ22

. . . 0

...
...

. . .
...

0 0 . . . 1
ũ2m

 (4.47)

that is, the cost for each variable is normalized by it’s magnitude, so the control is

roughly adjusted to the characteristics of the specific studied system.
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5 Inverted pendulum with reaction wheel

A prototype of an inverted pendulum with a reaction wheel integrated was constructed for

future attitude measurement and control testing.

The structure consists of a plastic face attached to a static mount by a ball bearing

that allows the face to rotate around it’s axis.

This face presents two brackets at different heights to hold two low cost inertial mea-

surement units (IMUs) and a central hole to place a motor with a wheel attached to it’s

axis.

Figure 20: 3D model and finished prototype

The structure was designed in Solidworks and eventually printed using a 3D printer.

Each IMU has incorporated a triaxial accelerometer, magnetormeter and gyroscope. The

serial communication with the devices as well as the signal processing and algorithms

execution is performed by an Arduino UNO microcontroller.

The motor along with the reaction wheel work as the actuator of the system, applying

a controlled torque that can modify the orientation of the body.

5.1 Sensor calibration and characterization

Inertial sensors may be subject to different types of measurement errors, not only due to the

limitations on the precision with which those measurements are made, but also because of

a possible lack (or excess) of sensitivity of the sensor and steady-state related errors among

others.

Those two can be modelled as follows:

Xmeas = ∆scal (Xreal + ∆steady) (5.1)

that is, ∆scal represents an error that scales proportional to the measurement magni-

tude, and ∆steady is the bias that comes out when the real measured magnitude is zero.

The steady-state error can be obtained by measuring the sensor signal while the system

remains still.

For the gyroscope, the values measured in the y-axis (face’s rotation axis) are grouped

around a mean value of −1.764°/s.
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Figure 21: Gyroscope static measurements and value histogram

The gyroscope noise can be well approximated by a normal probability density distri-

bution with variance σ2gyro = 0.1166.

To obtain the scaling error, a rotation of 90° is performed on the system and the angle is

integrated. The value obtained from the measurement is 91.5°, so ∆scal = 91.5
90 = 1.0167.x

0 10 20 30 40 50 60

Time (seconds)

-50

0

50

100

150

A
n
g

le
 (

d
e
g

re
e
s)

Reference
Calibrated
Non-calibrated

Figure 22: Orientation measurement from gyroscope before and after calibration compared

to reference

A quick method for calibrating the accelerometer is to use the orthogonality property

of the axes to determine the maximum gravity output value for each individual axis. This

is done by slowly rotating the sensor in a way that the measured acceleration in two of the

axes becomes zero at some point, in which the third axis displays the absolute value of the

gravitational acceleration.

Figure 23: Acceleration measurement during rotation. The Y axis reaches it’s maximum

value at the junction point
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Acc 1 Positive (m/s2) Negative (m/s2) Zero state error (m/s2) Scaling error

X axis 9.60 -10.31 -0.35 1.02

Y axis 10.06 -10.15 -0.05 1.03

Z axis 10.00 -10.37 -0.19 1.04

Table 1: Maximum values of acceleration, zero-state bias and scaling error for accelerometer

1

Acc 2 Positive (m/s2) Negative (m/s2) Zero state error (m/s2) Scaling error

X axis 9.96 -10.25 -0.16 1.04

Y axis 9.80 -10.06 -0.13 1.01

Z axis 9.65 -9.92 -0.14 9.99

Table 2: Maximum values of acceleration, zero-state bias and scaling error for accelerometer

2

The noise asociated with the accelerometer’s angle measurement (and with accelerom-

eters in general) is not constant; it presents a dependence with the motion of the system

and becomes higher as the magnitude of the accelerations grow.

To model the acceleration noise, a set of different measurements is made. For each

measurement, the system is subjected to an oscillatory movement with different frequency

for a certain period of time. The higher the frequency is, the faster the system oscillates

and therefore the larger the noise becomes.

The noise error is computed as the diference between the angle from the accelerometer

measurement (5.5) minus the angle obtained by filtering the data with a complementary

filter. Then this noise is associated to the squared average of the gyroscope signal’s rate

of change, a measure of the sharpness of the motion.

ᾱ2 =
1

n2

n∑
k=1

(
ωk+1 − ωk
4t

)2

(5.2)
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Figure 24: Accelerometer measurement error for smooth motion and error histogram. The

yellow line represents the difference between accelerometer and filter data.
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Figure 25: Accelerometer measurement error for sharp motion and error histogram
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Figure 26: Relation between noise variance and sharpness parameter

The relation between the variance σ2acc and ᾱ2 is given by:

σ2acc ≈ 0.078ᾱ2 + 0.1442 (5.3)
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5.2 Orientation measurement

In order to decouple the gravity part of the acceleration measurement from other dynamical

terms [23], in this case the centripetal acceleration caused by the rotation motion, the two

IMUs are placed at a different distance from the rotating point.

q

d1

d2

z

x

Figure 27: Accelerometers configuration scheme

If the distances are d1 and d2, the accelerometer measurement vectors (x and z axes)

read:

an = (an,1, an,1) =
(
dnθ̈ + gsinθ,−θ̇2dn − gcosθ

)
(5.4)

Cancelling the terms of order higher than 2 from the two vectors a1 and a2, we can

compute the angle (3.4):

θ = atan2

(
a1,1 − µa2,1
−a1,2 − µa2,2

)
(5.5)

where µ = d1
d2

= 4.17.

To make sure that the gravity vectors measured by both accelerometers are indeed

parallel, first a measurement of the gravity vector is performed for both sensors. Then,

the angle between both is computed and one measurement vector is multiplied by the

convenient rotation matrix.

Then, a signal fusion is performed between both accelerometers and a gyroscope to

minimize the noise and the bias.

A state vector is defined for the Kalman filter; a common approach is to chose as

variables the angle θ and the gyroscope bias b [6]:

xk =

(
θk
bk

)
(5.6)

The last one is not observable, so the output matrix presents only one nonzero term:

H = (1, 0) (5.7)

During the observation phase, the previous state is propagated using the gyroscope

data to obtain an a priori estimate (3.28) of the current state:
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x−k =

(
θ−k
b−k

)
=

(
1 −4t
0 1

)(
θk−1
bk−1

)
+

(
4t
0

)
ωk (5.8)

The measurement noise covariance matrix R in this case is given by the variance of the

accelerometer’s angle measurement noise.

Finally, for the determination of the process noise covariance matrix Q, we can assume

that the error associated with the prediction is proportional to the sampling period (the

longer the time between the measurements, the more the noise can affect the variables)

and to the gyroscope noise variance previously computed:

Q =

(
4tσgyro 0

0 4tσgyro

)
(5.9)

The complementary filter is tuned by trial and error. The final value for the gain

constant c is 0.97. That means that the 97% of the measurement value comes from the

gyroscope data.
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Figure 28: Angle measurement by accelerometer, gyroscope, complementary filter and

Kalman filter
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5.3 Discussion

From figure (28) we can see that the accelerometer pair presents a small amplitude noise

when the body remains fixed, but this noise gets larger when the system moves abruptly,

to the point that the angle obtained by it’s measurement reaches twice the value from

the gyroscope. This is due, as it’s shown in (5.3), to the fact that accelerometers become

unstable when the accelerations vary rapidly in time. Nevertheless, the two parallel ac-

celerometers system is fully able to decouple the signal correspondant to the gravity vector

and the rest of accelerations.

The effect of the bias in the gyroscope measurement is also noticeable. After 25 seconds,

the difference between the real angle and the biased is of 2.5° even when the gyroscope

has been previously calibrated. Even though this bias doesn’t seem disproportionate, it’s

effect in the long term may become large.

The running time for each filtering algorithm is shown in the following figure:
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Figure 29: Running times for Kalman and complementary filters

The Kalman filter algorithm takes 3.24 times more time to run than the complementary

filter.

The signals from the Kalman and complementary filters stay practically the same, but

the complementary filter signal seems to differ slightly in the oscillating period.

Lastly, a small phase shift arises in both filtered signals, which could be overcome by

using a faster microcontroller.
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6 Conclusions and future work

The performance of the Kalman filter and the complementary filter are very similar in the

studied case. This is due to the fact that the gyroscope itself provides a very accurate value

of the orientation, so the data is provided mostly from it in both cases. The accelerometers

only correct the bias in the long term, but don’t affect much the instantaneous measurement

of the device. Given that the running time of the complementary filter is more than three

times lower, it’s use could be more appropiate for simple applications like the one studied

here.

Also, even though the Kalman filter is optimal, it’s optimallity depends completely on

knowing the right value of the elements of each covariance matrix, which can be difficult

to get in some occasions.

Because of this, Kalman filter will be more useful for systems that present more com-

plexity, and where a higher degree of accuracy is needed, or where the system parameters

change with time and the weights must be adjusted.

We have a similar situation for the controllers. The PID controller is very easy to

implement, as only 3 parameters need to be tuned to configurate the whole control. This

simplicity makes of the PID a good option when the system’s behavior is not precisely

known and trial and error methods could be used for the adjustement of the parameters,

even when there is any analytical model available. On the other hand, the LQR control

is much more complex when it comes to the tuning process; not only a bigger set of

parameters have to be defined, but also the dynamics of the system have to be determined

(a model has to be available). Another consequence of the state-feedback nature of the

LQR is that the system has to be observable (otherwise the dynamics of some variable

could not affect the cost function). Nevertheless, the LQR method allows us to perform

a more complete and optimized control, not only of the different state variables but also

of the energy/resources consumption of the system. It also can manage a bigger set of

inputs/outputs, whereas the classical PID controller is designed to control a single error

parameter (although further improvements can be done).

The next step in this study will be to finish the inverted pendulum prototype and test

the control algorithms. By measuring features like the settling time or the overshot of the

system, we can have a good idea of which control approach is more convinient for a given

system, as well as the real difficulties that can arise in the implementation and tuning

processes.
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