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Abstract

Non-invasive fetal electrocardiography (ECG) is based on the acquisition of signals from

abdominal surface electrodes. The composite abdominal signal consists of the maternal

electrocardiogram along with the fetal electrocardiogram and other electrical interferences.

These recordings allow for the acquisition of valuable and reliable information that helps

ensure fetal well-being during pregnancy. This paper introduces a procedure for fetal heart

rate extraction from a single-channel abdominal ECG signal. The procedure is composed of

three main stages: a method based on wavelet for signal denoising, a new clustering-based

methodology for detecting fetal QRS complexes, and a final stage to correct false positives

and false negatives. The novelty of the procedure thus relies on using clustering techniques

to classify singularities from the abdominal ECG into three types: maternal QRS complexes,

fetal QRS complexes, and noise. The amplitude and time distance of all the local maxima

followed by a local minimum were selected as features for the clustering classification. A

wide set of real abdominal ECG recordings from two different databases, providing a large

range of different characteristics, was used to illustrate the efficiency of the proposed

method. The accuracy achieved shows that the proposed technique exhibits a competitve

performance when compared to other recent works in the literature and a better perfor-

mance over threshold-based techniques.

Introduction

The early detection of defects in the fetal heart is of paramount importance for the manage-

ment of pregnancy and childbirth timing. In addition, it can help in the diagnosis of possible

abnormalities in other organs. Among all fetal heart problems, heart rhythm abnormalities [1]

occur in up to 2% of pregnancies and account for 10–20% of the referrals to fetal cardiologists

[2]. Therefore, fetal heart rate (FHR) measurement is integral to fetal surveillance throughout

pregnancy, as it is of significant clinical importance. Fetal electrocardiography [3, 4] can be

used for the detection of the FHR before birth and thus makes it possible to administer faster

medical or surgical interventions once the baby is born, if required. Noninvasive fetal
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electrocardiogram (FECG) monitoring methods [5, 6] measure the abdominal electrocardio-

gram (AECG) through skin electrodes on the expecting mother’s abdomen. This signal is com-

posed of the FECG along with the maternal electrocardiogram (MECG). These measuring

techniques have a greater prospect for the long-term monitoring of FHR and fetal well-being

using signal processing techniques [7]. Among all the different methods, measuring the FHR

from single-channel abdominal recordings [8–13] would be more convenient and have a

lower cost, obtaining also a high accuracy. One of the most important difficulties for detecting

FHR derives from the fact that the FECG signal is much weaker than other interfering bio-

signals (maternal cardiac signals, uterine contraction, fetal brain activity, or fetal and maternal

myography) and movement artifacts [14]. Moreover, obtaining FECG signals from AECG sig-

nals is affected by large distortion from different types of interferences, especially the MECG

signal, which is difficult to suppress without significantly degrading the FECG signal. Satisfac-

tory results have been obtained in the removal of noise from AECG signals [15]. For example,

Discrete Wavelet Transform (DWT) [16] structures can be used for the suppression of differ-

ent types of noise, including direct current (DC) levels and wandering [14, 17, 18]. On the

other hand, although techniques based on the elimination or separation of MECGs make FHR

extraction possible, the results are not as good for obtaining more exhaustive information

referring to the P waves and QRS complexes of the FECG signal. Considering this aspect,

AECG signal processing can be oriented to extracting the same information as prior tech-

niques, the FHR, but directly from the AECG signals, thus avoiding the processing required by

MECG removal. Specifically, maternal and fetal QRS complexes can be localized by means of

thresholds applied to the denoised AECG signal [19]. It is important to keep in mind that

MECG and FECG amplitudes may be comparable in some cases. In addition, in abdominal

signals, the fetal R-peaks often overlap with the maternal R-peaks. These facts make it difficult

to develop a unique method that effectively detects the FHR from AECG signals. In this sense,

the main drawback of threshold-based methods is the difficulty in determining the thresholds

that would make the extensive use of AECG signals possible. The most problematic threshold

is that related to amplitudes since, even with a normalization of the AECG signal, amplitude

depends on several parameters, such as the pregnancy week, the position of the electrodes and

the relative position of mother’s and fetus’ hearts. On the other hand, clustering techniques

[20–22] have been used in many applications to identify sets of similar elements and to group

them in clusters in such a way that elements in the same cluster are more similar to each other

than to those in other clusters. Analyzing the graphical representation of each local maximum

(R-peak candidate) followed by a local minimum (S-peak candidate) in AECG signals, cluster-

ing can be applied to differentiate between three different clusters: maternal RS-peaks, fetal

RS-peaks and other waves (mainly noise). Thus, this paper proposes a new clustering-based

technique for fetal QRS detection in AECG signals, avoiding the problems related to thresh-

olds and enabling its automated application, leading to very high accuracy. Moreover, for FHR

monitoring, the method uses only one abdominal electrode recording without separating the

FECG from the AECG, so the fetal QRS complexes are directly extracted from the denoised

AECG signal. The rest of the manuscript is organized as follows: the Methods Section first

briefly describes the threshold-based method previously proposed [19] for fetal QRS detection

and introduces some clustering fundamentals. The next subsection is devoted to the descrip-

tion of the clustering-based algorithm developed for the proposed FHR extraction method,

detailing the selection of the parameters involved at each step. Results and discussion are pre-

sented in the following section, while the final section summarizes the conclusions of this

work.
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Methods

Threshold-based FQRS detection background

The main stages of the threshold-based, FQRS-detection method for FHR monitoring in [19] are

wavelet-based preprocessing, maternal and fetal QRS detection, and false positive (FP) and false

negative (FN) correction. The wavelet preprocessing method [14, 19], simultaneously eliminates

baseline wandering (BW) and noise using only one wavelet decomposition and reconstruction

structure. The application of the wavelet preprocessing approach consists of wavelet decomposi-

tion down to L levels [14], with the approximation coefficients at level L replaced by an all-zero

vector. Additionally, for each level from i = 1 toM (with M< L), the appropriate threshold limit

and rule [14] are applied to the detail coefficientsṪhe wavelet reconstruction based on the zero-

ing approximations of level L, the modified details of levels 1 toM, and the original details of lev-

els M + 1 to L are computed to obtain the BW-corrected and denoised AECG signal.

The maternal and fetal QRS detection is based on the localization of maternal and fetal QRS

complexes by means of thresholds [19]. For maternal QRS detection, the maximum of the pre-

processed signal is identified as the R-peak of greatest amplitude in the maternal QRS com-

plexes, which is used as referecence for identifying maternal QRS complexes as a certain

percentage of this maximum. For fetal QRS detection, a search for local maxima (R-peak can-

didates) followed by a local minimum (S-peak candidate) between each two maternal QRS

complexes is carried out. Time and amplitude thresholds are also applied to this search, result-

ing in RS-peak candidates. Time thresholds are related to extremely low FHR, while the ampli-

tude threshold is established within a range related to the maximum of MQRS complexes after

BW and noise suppression. Candidate RS-peaks meeting these two thresholds will be stored as

FQRS candidates.

The FHR monitoring finally includes a method for the detection of false negatives (FN, a

non-detected FQRS complex) and false positives (FP, a false-detected FQRS complex) [19]

[23]. For each FQRS candidate, several RR time distances are defined and checked, and FPs

and FNs are detected according to heart rate limits [19].

Some of the steps required by the method proposed in [19] are based on the selection or cal-

culation of thresholds. These thresholds themselves constitute a major disadvantage for these

methods, as it is difficult to ensure that any selected or calculated threshold is the most appro-

priate for the signal under study. Thus, amplitude thresholds have to be either selected accord-

ing to certain known parameters (such as pregnancy week, position of the fetus or electrode

positions) or manually adapted according to the characteristics of each signal. This is usually

the case when working with different public databases, as it has been found that it is difficult to

establish a fixed relationship between different thresholds and signal parameters, even when

the data are normalized, since thresholds also depend on unknown parameters (from the noise

affecting the abdominal signal to biological characteristics). Moreover, fetal QRS complexes

may be comparable in amplitude to maternal QRSs. This all is a significant barrier to automat-

ing threshold-based methods for real-time FHR monitoring. Therefore, new alternatives were

evaluated for maternal and fetal QRS extraction in order to avoid these difficulties, with clus-

tering techniques [21] being one of the best candidates. The new method uses a clustering pro-

cedure to classify certain information obtained from the denoised abdominal ECG signal into

three clusters: maternal RS-peaks, fetal RS-peaks and other waves.

Fetal ECG datasets

PhysioNet [24] offers free and public web access to large collections of recorded physiologic

signals (PhysioBank) and the included databases are made available under the ODC Public
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Domain Dedication and License v1.0 [25]. Concretely, two of these databases provided by Phy-

sionet [24] have been used for this work:

• Abdominal and Direct Fetal Electrocardiogram Database [24] [26]: this database contains

multichannel FECG recordings obtained from 5 different women in labor. Each recording

comprises four 5-minute differential signals acquired from maternal abdomen and the refer-

ence direct fetal electrocardiogram registered from the fetal head. The recordings are sam-

pled at 1 ksps with 16-bit resolution, and the signal bandwidth is 1-150 Hz. Moreover, the

database includes a set of reference annotations indicating the fetal R-wave locations.

• Challenge 2013 Training Set A [24] [27]: these data consist of one-minute fetal ECG record-

ings, sampled at 1 ksps, each one including four noninvasive abdominal signals as well as the

reference annotations marking fetal R-waves locations.

Clustering fundamentals

Clustering [21, 22] is one of the most important unsupervised learning techniques for the clas-

sification of objects into clusters. A cluster is therefore a collection of similar objects that are

dissimilar to the objects belonging to other clusters. One possible measure of relative dissimi-

larity is the distance D(xi, xj) between two objects xi and xj. Therefore, given a clustering algo-

rithm and according to the distance function, a group X of n objects, X = [x0, . . ., xj, . . ., xn],
where each observation is a d-dimensional real vector xj = (xj1, . . ., xjd)T 2 Rd, is divided into k
clusters, C = [c1, . . ., ck], where [kx¼1

ci ¼ X, and 8i 6¼ j, ci \ cj = ⌀. A distance function over a

data group X is defined to satisfy the reflexivity, symmetry, positivity and Minkowski’s

inequality conditions [28]. The Minkowski distance comprises a family of metrics defined tra-

ditionally to measure distances. The Manhattan, Euclidean, and Chebyshev distances [29] are

special cases of the Minkowski distance when p = 1, p = 2 and p!1, respectively.

A distinction among different types of clusterings is whether the set of clusters is nested or

unnested. Thus, clustering may be classified as hierarchical clustering [30] or partitional clus-

tering [31]. Partitional clustering is popular in various research fields [22] due to its capability

to cluster large datasets, and this is the clustering type used in the present work. It divides the

set of data objects into non-overlapping clusters, given certain criteria, with each cluster repre-

sented by its centroid. The k-means algorithm [32] is the most fundamental partitional cluster-

ing concept, the optimization criterion of which is the minimization of the Euclidean distance

between elements and cluster. Inspired by k-means, several gradient algorithms for partitional

clustering have been developed by researchers, for example, k-means++, which we selected as

the clustering algorithm to classify the information extracted from AECG signals.

Clustering-based procedure for FHR extraction

A schematic of the new clustering-based procedure is shown in Fig 1. The procedure is mainly

composed of three stages, corresponding to each frame in the figure: two of the previously

developed stages, the wavelet-based preprocessing stage, the FP and FN correction stage, and

the new clustering-based method for fetal QRS extraction. This new stage is fed with the

denoised AECG signal, and after extracting the fetal QRS complexes, it sends them to the FP

and FN correction stage. The proof of concept has been implemented using MATLAB and val-

idated using real AECG recordings from the fetal ECG datasets mentioned above. The differ-

ent steps of this clustering stage are illustrated in Fig 1 making use of the r04 Ab-2 recording of

the Abdominal and Direct Fetal Electrocardiogram Database. These steps are described in detail

below.

A clustering-based method for single-channel fetal heart rate monitoring
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Step 1: Extraction of signal features. Distinctive features of the denoised AECG signal

must be selected for the application of the clustering algorithm. This selection is crucial for the

effectiveness of the clustering application. For this task, it is necessary to analyze the signal and

to identify the points or zones of this signal that contain the information of interest. Our

Fig 1. Clustering-based procedure for FHR monitoring.

https://doi.org/10.1371/journal.pone.0199308.g001
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objective is to extract the FHR, which requires localizing the fetal QRS complexes. Analyzing

the denoised AECG signals, it can be observed that for the identification of fetal QRS com-

plexes, the most noticeable characteristics are the RS-peaks. From the QRS morphology, it can

be observed that the RS-peak is a local maximum followed by a local minimum, as shown in

Fig 1, at the extraction of signal features step. In this way, a search for local maxima followed

by a local minimum in the preprocessed AECG signal is made, resulting in the max-min

points. Hence, the objective of our clustering classification consists of using certain features of

these max-min points to classify them adequately into three clusters. Analysing the 5-minute

recordings of the training database and their main characteristics, the amplitude and time dis-

tances of these max-min points have been selected as candidate features, and two different sce-

narios have been considered:

• Scenario 1: This scenario considers signal windows where the maternal RS amplitudes are

larger than the fetal RS amplitudes. This scenario allows for the use of the amplitude distance

between the max-min points as the data to be classified. Fig 2 shows a representation of the

amplitude distance between the max-min points located in a set of 10,000 samples from the

r08 Ab-1 denoised recording from the Abdominal and Direct Fetal Electrocardiogram Data-
base [24], [26]. In Fig 2b the X-axis corresponds to the time where each maximum of the

max-min points occurs, and the Y-axis corresponds to the amplitude distance. From this fig-

ure, three different horizontal zones can be clearly distinguished, related to the maternal RS-

peaks, fetal RS-peaks and other waves. As such, for this case, the amplitude distance between

the max-min points is a good option for classification.

Fig 2. Scenario 1 example. (a) r08 Ab-1 preprocessed signal (b) Amplitude distance between the detected maximum

followed by a minimum.

https://doi.org/10.1371/journal.pone.0199308.g002
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• Scenario 2: This other scenario considers signal windows where fetal RS amplitudes are

similar to maternal RS amplitudes so maternal and fetal RS-peaks would likely be classified

in the same cluster. It was observed from the AECG signals that the maternal RS time dis-

tance is sufficiently larger than the fetal RS time distance to allow for visual differentiation

between the fetal and maternal RS-peaks. Accordingly, the amplitude distance would

allow for the differentiation of maternal and fetal RS-peaks from noise and other wave

information. Meanwhile, the RS time distance, or the RS number of samples, is an impor-

tant parameter that allows us to distinguish between fetal and maternal QRS complexes.

After carrying out a detailed study, we found that very satisfactory classification results

are achieved using the amplitude multiplied by the number of samples of max-min

points as the data to be classified. Fig 3 shows similar information to that shown in Fig 2b

but for the denoised r08 Ab-4 signal. From Fig 3b, it can be observed that using the ampli-

tude feature, only two horizontal zones can be visually distinguished. The zone with larger

amplitudes corresponds to mixed maternal and fetal RS-peaks, and the other is related to

other waves and noise. This is due to this signal presenting similar max-min point ampli-

tudes for fetal and maternal QRS complexes. Thus, it is necessary to also use another fea-

ture to correctly classify the data into three clusters. Fig 3c displays the obtained graphic

with the amplitude distance multiplied by the number of samples of the max-min points

on the Y-axis. From this figure, it is possible to differentiate the three horizontal zones of

interest.

Step 2: Signal feature selection. In order to automatically detect which of the scenarios

detailed above corresponds to the signal or, more specifically, to the data window to be pro-

cessed, we have used a procedure based on the distribution of the amplitudes of the detected

max-min points:

• Calculate the maximum value of the amplitudes of the max-min points, called MA.

• Divide the range from 0 to MA into 50 intervals, which was found to be an optimum parti-

tioning over a wide range of training sets.

• Calculate the number of amplitudes that are within each interval, i.e., calculate the distribu-

tion of amplitudes.

• Normalize the distribution of amplitudes by dividing them by the total number of the max-

min points.

• Apply a smoothing filter to the normalized distribution of amplitudes. Fig 4a shows the fil-

tered normalized distribution of amplitudes obtained for a 50,000-sample window of the

denoised r01 Ab-1 AECG signal.

• Detect the local maxima and local minima of the filtered normalized distribution of ampli-

tudes. In general, from these points, we have to identify three different cases:

• Case 1: Detection of two local maxima from the first local minimum. Each of these maxima

provides information about the amplitude zones corresponding to fetal RS-peaks and

maternal RS-peaks. After the data training, it was concluded that if the distance between

these maxima, called dmax-max, is 35% greater than the MA value, we are under Scenario

1. In this case, amplitudes are the selected data to be classified. Fig 4a illustrates this case.

As can be observed in this Figure, the identified maxima are separated by more than the

35% of the MA.

A clustering-based method for single-channel fetal heart rate monitoring
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• Case 2: Detection of two local maxima from the first local minimum, the distance between

which is 35% less than the MA value. This situation can be related to Scenario 2, and thus,

amplitudes multiplied by the number of samples of the max-min points are data to be clas-

sified. An example of this case is presented in Fig 4b.

• Case 3: Detection of a single local maximum from the first local minimum. This situation

generally corresponds to Scenario 2, as amplitudes for fetal and maternal RS-peaks are so

similar that they are located in only one zone, with the located maximum being representa-

tive of this zone. For this case, amplitudes multiplied by the number of samples of the

Fig 3. Example of Scenario 2. (a) r08 Ab-4 preprocessed signal (b) Amplitude distance of the detected maximum

followed by a minimum (c) Amplitude distance multiplied by the number of samples of the detected maximum

followed by a minimum.

https://doi.org/10.1371/journal.pone.0199308.g003
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Fig 4. Example of feature selection using the filtered normalized distribution of amplitudes. (a) Case 1: selection of

amplitude (50,000-sample window of r07 Ab-4 denoised recording) (b) Case 2: selection of amplitude multiplied by

the number of samples (50,000-sample window of r01 Ab-4 denoised recording) (c) Case 3: selection of amplitude

multiplied by the number samples (50,000-sample window of r08 Ab-4 denoised recording).

https://doi.org/10.1371/journal.pone.0199308.g004
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max-min points are the selected data to be classified. Fig 4c displays an example of this

case.

For all other cases, the amplitude of the max-min points was selected as the data to be

classified.

Step 3: Clustering classification. After having studied the features of the signal and hav-

ing defined the data to be classified, it was necessary to choose the clustering algorithm to be

used and its parameters. Taking into account the results obtained from a preliminary study

[33], we have focused our interests on k-medoids++. We have used the kmedoids function from

the Statistics and Machine Learning Toolbox in MATLAB. The main input data of this func-

tion are:

• Data to be classified: these data are selected from the previous step.

• Number of clusters: this is equal to 3, as the data have to be classified into three clusters:

maternal RS-peaks, fetal RS-peaks and other waves and noise.

• Distance measure: the dissimilarity between the data have to be measured using distance

functions, which were introduced in the previous subsection. Taking into account that the

data to be classified are unidimensional, for d = 1 Minkowski, Manhattan, Euclidean and

Chebyshev distances are all defined as D(xi, xj) = jxi − xjj. In clustering algorithms, it is com-

mon to use an alternative measure of the Euclidean distance, the squared Euclidean distance,

D2(xi, xj) = (xi − xj)2, which places progressively greater weight on objects that are farther

apart. This squared Euclidean distance is not a metric but is frequently used in optimization

problems in which distances only have to be compared. Thus, the squared Euclidean dis-

tance was applied for our classification.

• Number of times to repeat the clustering using new initial cluster medoid positions: this

value was experimentally fixed to 20 using training sets.

• Method for choosing the initial cluster medoid positions: as the k-medoids++ clustering algo-

rithm was chosen, this input was selected as ‘plus’ (++).

The kmedoids function returns a vector containing cluster indices that were used to separate

these data into three clusters. The cluster corresponding to the fetal RS-peaks was identified as

that with a median value situated between the median values of the other two clusters.

Step 4: Classification improvement. A final stage to improve classification results is car-

ried out, mainly consisting of the imposition of some limits on the amplitude and time dis-

tance of the data classified as fetal RS-peaks. These limits are calculated using the local points

detected from the filtered normalized distribution of amplitudes. Thus, the first graphic in Fig

5 shows the max-min points of each resulting cluster with different colors, with blue points

corresponding to maternal RS-peaks and red points to fetal RS-peaks, while green points are

related to other waves. The second graphic displays the denoised signal and the detected fetal

RS-peaks (red points). The marked max-min point (black circle) was classified as a fetal RS-

peak, but it is not fetal, as it corresponds to other waves. As can be observed in the graphic of

the classification improvement step, this max-min point is eliminated from the fetal cluster,

thus showing the effectiveness of this improvement step. Different recordings were used as a

training set to establish the optimal value of the number of samples in this data window for the

clustering classification. This study indicated that in general, from 10,000- to 60,000-sample

windows, there was no noticeable difference between the effectiveness of the classification

results. From this value range, we have selected 50,000-sample windows. It should be noted
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that Fig 5 uses a 10.000-sample window to clearly show the detected fetal R-peak. Fig 6 shows

the results of k-medoids++ classification for a 50,000-sample window and the denoised signal,

including the max-min points classified as fetal RS-peaks (red dots) and the annotations of the

database (black circles). For this signal, the amplitude of the max-min points was the automati-

cally selected feature for the clustering classification. Fig 7 shows similar results to those in Fig

6, but for this signal, as fetal and maternal RS amplitudes are very similar, the amplitude

Fig 5. Clustering improvement example.

https://doi.org/10.1371/journal.pone.0199308.g005

Fig 6. Clustering classification for r01 Ab-1 recording.

https://doi.org/10.1371/journal.pone.0199308.g006
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multiplied by the number of samples of the max-min points was the automatically selected fea-

ture for the clustering classification.

Finally, the data identified as fetal RS-peaks are ready to be processed by the FP and FN cor-

rection stage [19].

Results and discussions

The parameters selected to assess the performance of this clustering-based proposal are sensi-

tivity, Se, positive diagnostic value, PPV, accuracy, Acc [23], and F1-measure [34]:

Se ¼
TD

TDþ FN
ð1Þ

PPV ¼
TD

TDþ FP
ð2Þ

Acc ¼
TD

TDþ FN þ FP
ð3Þ

F1 ¼ 2 �
PPV � Se
PPV þ Se

¼
2 � TP

2 � TPþ FN þ FP
ð4Þ

Fig 7. Clustering classification for r08 Ab-1 recording.

https://doi.org/10.1371/journal.pone.0199308.g007
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where TD means true detected fetal QRS complexes, and FP and FN are false negatives and

false positives, respectively, that are found after the FP and FN correction stage. To decide

when an obtained FQRS complex corresponds to a true FQRS complex, a fixed criterion is set.

Thus, we discard all candidates differing by more than 50 ms from the reference annotation

and mark them as FPs. Thus, Se, PPV and Acc are calculated from the fetal QRS complexes

extracted by the proposed method having the annotations by the specialists in the databases as

references.

The Abdominal and Direct Fetal Electrocardiogram Database, which was used to train the

clustering-based stage, was also used to train the complete method, since it includes R-wave

markers that allow the calculation of accuracy parameters. When reviewing other works in the

field [8–10, 13], authors neglect recordings where the FECG is hardly detectable or make a

selection of some recordings and channels for their studies. For this work, a medical specialist

determined the clinical interest of the AECG signals for our study. The cardiology specialist

thus excluded from the study some of the AECG abdominal signals where fetal heart beats

were not detectable, and signals that were affected by severe artifacts, and even saturation, or

were made of no clinical interest by severe noise. These excluded signals were r04 Ab-1, r07

Ab-1 and r10 Ab-3. At the same time, the rest of the database signals, all included in the study,

were classified in two groups: first, those with no evident problems or artifacts (group 1),

opposed to a second group of recordings presenting segments with big or repetitive artifacts or

segments where it is extremely difficult to differentiate maternal from fetal PQRS complexes

or to detect fetal complexes (group 2). On the other hand, the selected parameters for the

wavelet preprocessing stage were wavelet function db6, M = 3, universal threshold, single

rescaling and soft thresholding, with L = 7 [14, 19]. Table 1 presents the results obtained for

the selected recordings of this dataset, classified in the two groups discussed above. Addition-

ally, Table 1 also includes three different statistical summarizations of results: total data for all

the analysed recordings, data for only recordings in group 1 (not affected by severe artifacts),

and data for the best performing channel in each recording (shown in bold characters in

Table 1), since some authors select for each recording a representative channel for the statisti-

cal summarizations of results [9, 10, 13]. Thus, selecting the best performing channel in each

recording as representative data, Se, PPV, Acc and F1 are 98.40%, 98.86%, 97.30% and 98.63%,

respectively, when the proposed clustering-based classification is applied. These performance

data comprise a total of 3,182 FQRSs, of which 51 were not detected (FN 1.60%) and 36 were

falsely detected as FQRS (FP 1.13%). When all the signals in Group 1 in Table 1 are considered,

with a total of 6,990 FQRSs resulting in 175 FNs (2.50%) and 98 FPs (1.40%), Se, PPV, Acc and

F1 are 97.50%, 98.58%, 96.15% and 98.04%, respectively. These results validate the proposed

procedure and its capabilities.

Fig 8 shows an example of FHR monitoring of the r08 Ab-4 AECG signal. In the first sub-

plot, it can be seen that the proposed method is able to detect changes in the FHR with high

accuracy. The second subplot shows 20 seconds of the denoised signal, including the detected

FQRS complexes (red dots) and fetal annotations (black circles).

The Challenge 2013 Training Set A was used as testing data. As for the trainig database, a

cardiology specialist selected a set of recordings from this testing database. All parameters for

the wavelet preprocessing stage were the same as those detailed for the Abdominal and Direct
Fetal Electrocardiogram Database. The results obtained from the 64 recordings selected by the

specialist are summarized in Table 2. Moreover, Table 2 also includes two different statistical

summarizations of results: data for all the analysed recordings and data for the best performing

channel in each recording (shown again in bold characters in Table 2). The Se, PPV, Acc and

F1 for the best performing channels are 97.93%, 99.11%, 97.08% and 98.52%, respectively. It is

important to note that the processed signals include a wide range of different characteristics,

A clustering-based method for single-channel fetal heart rate monitoring

PLOS ONE | https://doi.org/10.1371/journal.pone.0199308 June 22, 2018 13 / 22

https://doi.org/10.1371/journal.pone.0199308


Fig 8. Five-minute FHR monitoring for r08 Ab-4 AECG recording and 20-second fetal QRS complex detection.

https://doi.org/10.1371/journal.pone.0199308.g008

Table 1. Evaluation results using Abdominal and Direct Fetal ECG Database 5-minute recordings as training data (data for the best performing channel in each

recording are shown in bold characters).

Recording T FQRS TP FN FP Se(%) PPV(%) Acc(%) F1(%)

Group 1: signals selected by a medical specialist

r01 Ab-1 643 631 12 8 98.13 98.75 96.93 98.44

r01 Ab-4 643 637 6 2 99.07 99.69 98.76 99.38

r04 Ab-2 631 614 17 13 97.31 97.93 95.34 97.62

r04 Ab-4 631 609 22 13 96.51 97.91 94.57 97.21

r07 Ab-2 626 603 23 12 96.33 98.05 94.51 97.18

r07 Ab-3 626 607 19 8 96.96 98.70 95.74 97.82

r07 Ab-4 626 619 7 6 98.88 99.04 97.94 98.96

r08 Ab-1 650 616 34 9 94.77 98.56 93.47 96.63

r08 Ab-4 650 644 6 6 99.08 99.08 98.17 99.08

r10 Ab-1 632 618 14 12 97.78 98.10 95.96 97.94

r10 Ab-2 632 617 15 9 97.63 98.56 96.26 98.09

Group 2: signals afected by artifacts and noise

r01 Ab-2a 643 478 165 77 74,34 86,13 66.39 79,80

r01 Ab-3b 643 608 35 28 94.56 95.60 90.61 95.07

r04 Ab-3b 631 548 83 31 86.85 94.65 82.78 90.58

r08 Ab-2a,c 650 463 187 91 71.23 83.57 62.48 76.91

r08 Ab-3c 650 512 138 41 78.77 92.59 74,10 85.12

r10 Ab-4b 632 576 56 47 91.14 92.46 84.83 91.79

Total 10,839 10,000 839 413 92.26 96.03 88.87 94.11

Group 1 6,990 6,815 175 98 97.50 98.58 96.15 98.04

Best channel 3,182 3,131 51 36 98.40 98.86 97.30 98.63

a Segments with undifferentiated maternal and fetal PQRS complexes
b Segments with artifacts
c Segments with saturation

https://doi.org/10.1371/journal.pone.0199308.t001
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Table 2. Evaluation results using Challenge 2013 Training Set A 1-minute recordings as testing data (data for the best performing channel in each recording are

shown in bold characters).

Recording T FQRS TP FN FP Se(%) PPV(%) Acc(%) F1(%)

a03 Ab-1 127 127 0 0 100 100 100 100

a03 Ab-2 127 124 3 5 97.64 96.12 93.94 96.88

a03 Ab-4 127 125 2 4 98.43 96.90 95.42 97.66

a04 Ab-1 128 126 2 3 98.44 97.67 96.18 98.05

a04 Ab-3 128 124 4 4 96.88 96.88 93.94 96.88

a04 Ab-4 128 128 0 2 100 98.46 98.46 99.22

a05 Ab-1 128 124 4 1 96.88 99.20 96.12 98.02

a05 Ab-3 128 124 4 2 96.88 98.41 95.38 97.64

a05 Ab-4 128 128 0 0 100 100 100 100

a08 Ab-3 127 127 0 0 100 100 100 100

a08 Ab-4 127 126 1 1 99.21 99.21 98.44 99.21

a12 Ab-1 137 137 0 1 100 99.28 99.28 99.64

a12 Ab-2 137 137 0 1 100 99.28 99.28 99.64

a13 Ab-2 125 125 0 0 100 100 100 100

a13 Ab-3 125 120 5 1 96.00 99.17 95.24 97.56

a13 Ab-4 125 122 3 2 97.60 98.39 96.06 97.99

a14 Ab-1 122 119 3 2 97.54 98.35 95.97 97.94

a20 Ab-2 130 130 0 0 100 100 100 100

a20 Ab-3 130 123 7 1 94.62 99.19 93.89 96.85

a22 Ab-1 125 125 0 0 100 100 100 100

a22 Ab-4 125 125 0 0 100 100 100 100

a23 Ab-2 125 123 2 1 98.40 99.19 97.62 98.80

a23 Ab-3 125 121 4 2 96.80 98.37 95.28 97.58

a23 Ab-4 125 123 2 2 98.40 98.40 96.85 98.40

a24 Ab-2 122 120 2 2 98.36 98.36 96.77 98.36

a24 Ab-3 122 122 0 0 100 100 100 100

a24 Ab-4 122 122 0 0 100 100 100 100

a25 Ab-2 124 124 0 0 100 100 100 100

a28 Ab-1 166 158 8 1 95.18 99.37 94.61 97.23

a28 Ab-2 166 160 6 0 96.39 100 96.39 98.16

a28 Ab-3 166 159 7 3 95.78 98.15 94.08 96.95

a35 Ab-1 162 158 4 3 97.53 98.14 95.76 97.83

a35 Ab-2 162 158 4 3 97.53 98.14 95.76 97.83

a35 Ab-3 162 158 4 3 97.53 98.14 95.76 97.83

a35 Ab-4 162 161 1 4 99.38 97.58 96.99 98.47

a36 Ab-1 167 164 3 0 98.20 100 98.20 99.09

a36 Ab-2 167 166 1 0 99.39 100 99.40 99.70

a36 Ab-3 167 167 0 0 100 100 100 100

a36 Ab-4 167 163 4 1 97.60 99.39 97.02 98.49

a44 Ab-1 162 162 0 0 100 100 100 100

a44 Ab-2 162 157 5 1 96.91 99.37 96.32 98.13

a44 Ab-3 162 157 5 3 96.91 98.13 95.15 97.52

a44 Ab-4 162 160 2 1 98.77 99.38 98.16 99.07

a49 Ab-1 147 145 2 1 98.64 99.32 97.97 98.98

a49 Ab-2 147 147 0 0 100 100 100 100

a49 Ab-3 147 147 0 0 100 100 100 100

(Continued)
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and some include artifacts and very noisy fragments that were not eliminated from the results

in Table 2. Even so, the obtained accuracy corroborates the efficiency of the method.

Fig 9a depicts a segment of the a03 Ab-4 signal, in which it can be seen that the signal is

contaminated by wandering, and the noise virtually masks the fetal QRS complexes in the

interval from 7s to 9s. Fig 9c shows the denoised signal, the detected fetal R-peaks (red dots)

and the clinical annotations (black circles), while Fig 9d presents the FHR monitoring of this

signal. It is shown that apart from the wandering and noise, the FHR extraction method has a

high accuracy. In the 7-9s interval, the classification improvement step and FP and FN correc-

tion step significantly improve the results from the clustering classification. This verifies the

performance of our method in noisy scenarios of typical recordings. In addition, the 1-minute

FHR monitoring of the signal a49 Ab-2 is presented in Fig 10b, where high efficiency can be

also noted (100%). Moreover, the natural fluctuations in the FHR can be also noted. These

results validate the proposal and provide evidence of its capabilities.

The presented proposal is thus able to perform robust fetal QRS detections for a total of 55

minutes for the Abdominal and Direct Fetal Electrocardiogram Database and 64 min for the

Challenge 2013 Training Set A. The obtained results can be compared to those obtained from

some recent single-channel fetal ECG extraction methods, including sequential total variation

denoising (STVD), extended Kalman filter (EKF), template subtraction principle component

analysis (TSPCA) and total variation denoising (TVD) combined to TSPCA (TVD+TSPCA)

as proposed in [35], template substraction principle component analysis (TSpca), least mean

square (LMS), recursive least square (RLS) and state neural network (ESNa), as proposed in

[34], template adaption (TA) and extended Kalman smoother (EKS), as proposed in [36],

extended Kalman smoother (EKS) combined to differential evolution (DE) and adaptive

neuro fuzzy inference system (ANFIS) (EKS+DE+ANFIS) and EKF combined to DE and

ANFIS (EKF+DE+ANFIS) as proposed in [8], singular value decomposition (SDV) combined

Table 2. (Continued)

Recording T FQRS TP FN FP Se(%) PPV(%) Acc(%) F1(%)

a55 Ab-2 142 135 7 3 95.07 97.83 93.10 96.43

a55 Ab-3 142 128 14 6 90.14 95.52 86.49 92.75

a61 Ab-2 139 133 6 7 95.68 95.00 91.10 95.34

a61 Ab-4 139 132 7 0 94.96 100 94.96 97.42

a62 Ab-2 143 141 2 1 98.60 99.30 97.92 98.95

a62 Ab-3 143 142 1 1 99.30 99.30 98.61 99.30

a62 Ab-4 143 138 5 3 96.50 97.87 94.52 97.18

a65 Ab-2 143 130 13 8 90.91 94.20 86.09 92.53

a65 Ab-4 143 138 5 1 96.50 99.28 95.83 97.87

a66 Ab-3 129 119 10 4 92.25 96.75 89.47 94.44

a67 Ab-4 153 135 18 7 88.24 95.07 84.38 91.53

a69 Ab-1 148 136 12 4 91.89 97.14 89.47 94.44

a70 Ab-1 140 127 13 11 90.71 92.03 84.11 91,37

a70 Ab-2 140 137 3 2 97.86 98.56 96.48 98.21

a72 Ab-1 166 166 0 0 100 100 100 100

a72 Ab-2 166 166 0 0 100 100 100 100

a72 Ab-3 166 164 2 1 98.80 99.39 98.20 99.09

a72 Ab-4 166 161 5 3 96.99 98.17 95.27 97.58

Total 9,103 8,876 227 123 97.51 98.63 96.21 98.07

Best channel 3,627 3,552 75 32 97.93 99.11 97.08 98.52

https://doi.org/10.1371/journal.pone.0199308.t002
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to smoothd windows (SW) (SDV+SW) as proposed in [9], and complete ensemble empirical

mode decomposition with adaptive noise (CEEMDAN) as proposed in [13]. Results are also

compared to the threshold-based method (THR) proposed in [19]. This comparison is sum-

marized in Table 3, where the recordings used for each method are indicated. Table 3 shows

that the results obtained by the proposed FHR monitoring model exhibit improved success

Fig 9. Application of the new method to the a03 Ab-4 recording. (a) 10-second recording (b) Clustering

classification (c) Fetal RS detection after classification improvement and FP and FN correction (d) Ten-second FHR

monitoring.

https://doi.org/10.1371/journal.pone.0199308.g009
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rates compared to those including a significant number and duration of recordings, such as

STDV, EKF, TVD+TSPCA, TSPCA, TSLpca, LMS, RLS, ESNa, EKS+DE+ANFIS and

EKF+DE+ANFIS methods. This good performance of the presented work compared to these

approaches reaffirms its validity. The SDV+SW and CEEMDAN methods show a very high

efficiency, but it must be noted that the results for the SDV+SW method are based on only 3

recordings, while results for the CEEMDAN method include only a few recordings of limited

length, 30 and 40 seconds. It must be also noted that for our method, the testing database

results are similar to those obtained for the training database, which shows the strength of our

proposal.

Conclusions

In this paper, we propose a new method for fetal QRS extraction from single-channel abdomi-

nal ECGs of pregnant women. The proposal combines a previously developed technique for

wavelet-based denoising with a new clustering-based procedure for the extraction of fetal QRS

complexes, along with a final stage for FP and FN correction. This clustering procedure locates

candidate RS-peaks as local maxima of the denoised signal followed by a minimum and

extracts the amplitude and time distance features of these candidate peaks. These features are

used for the classification of candidate peaks into three clusters: maternal RS-peaks, fetal RS-

peaks and other waves. A classification improvement step based on the amplitude distribution

is also applied to increase efficiency. Parameters for the classification steps were optimized

through the analysis of the Abdominal and Direct Fetal ECGDatabase from PhysioNet. Further

testing and validation of the methodology has been carried out using real-life benchmark clini-

cal recordings in the Challenge 2013 Training Set A dataset from PhysioNet. The obtained

results illustrate how the proposed method achieves high accuracy in fetal QRS extraction for

both training and testing databases, comprising a total of 119 minutes of abdominal data. It

must be noted the fact that, while method parameters where tuned for the training recordings,

results for the testing database are also highly accurate. This improves the applicability of the

proposed method when compared to the threshold-based technique proposed in [19], while

Fig 10. Application of the new method to the a49 Ab-2 recording. (a) Fetal RS detection after classification

improvement and FP and FN correction (b) One-minute FHR monitoring for a49 Ab-2 recording.

https://doi.org/10.1371/journal.pone.0199308.g010
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also enhancing the average accuracy in the detection of fetal QRS complexes. Comparisons to

other existing FHR extraction methods also corroborate the high efficiency of the proposal.

Finally, the good performance of the proposed method using a single parameter set over two

different databases may allow the automated use of this method, which may also be proved to

be useful for FHR monitoring in real-life clinical conditions with noisy abdominal ECG

recordings.
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