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Abstract. During the 2017 record-breaking burning season in Canada / United States, intense wild fires raged during 41 

the first week of September in the Pacific northwestern region (British Columbia, Alberta, Washington, Oregon, Idaho, 42 

Montana and northern California) burning mostly temperate coniferous forests.  The heavy loads of smoke particles 43 

emitted in the atmosphere reached the Iberian Peninsula (IP) a few days later on 7 and 8 September. Satellite imagery 44 

allows to identify two main smoke clouds emitted during two different periods that were injected and transported in 45 

the atmosphere at several altitude levels.  Columnar properties on 7 and 8 September at two Aerosol Robotic Network 46 

(AERONET) mid-altitude, background sites in northern and southern Spain are: aerosol optical depth (AOD) at 440 47 

nm up to 0.62, Ångström exponent of 1.6-1.7, large dominance of small particles (fine mode fraction > 0.88), low 48 

absorption AOD at 440 nm (<0.008) and large single scattering albedo at 440 nm (>0.98).  Profiles from the Cloud-49 

Aerosol Lidar with Orthogonal Polarization (CALIOP) show the presence of smoke particles in the stratosphere during 50 

the transport, whereas the smoke is only observed in the troposphere at its arrival over the IP.  Portuguese and Spanish 51 

ground lidar stations from the European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace gases 52 

Research InfraStructure Network (EARLINET/ACTRIS) and the Micro-Pulse Lidar NETwork (MPLNET) reveal 53 

smoke plumes with different properties: particle depolarization ratio and color ratio, respectively, of 0.05 and 2.5 in 54 

the mid troposphere (5 – 9 km) and of 0.10 and 3.0 in the upper troposphere (10 – 13 km).  In the mid troposphere the 55 

particle depolarization ratio does not seem time-dependent during the transport whereas the color ratio seems to 56 

increase (larger particles sediment first).  To analyze the horizontal and vertical transport of the smoke from its origin 57 

to the IP, particle dispersion modelling is performed with the Hybrid Single Particle Lagrangian Integrated Trajectory 58 

Model (HYSPLIT) parameterized with satellite-derived biomass burning emission estimates from the Global Fire 59 

Assimilation System (GFAS) of the Copernicus Atmosphere Monitoring Service (CAMS).  Three compounds are 60 

simulated: carbon monoxide, black carbon and organic carbon.  The results show that the first smoke plume which 61 

travels slowly reaches rapidly (~1 day) the upper troposphere and lower stratosphere (UTLS) but also shows evidence 62 

of large scale horizontal dispersion, while the second plume, entrained by strong subtropical jets, reaches the upper 63 

troposphere much slower (~2.5 days).  Observations and dispersion modelling all together suggest that particle 64 

depolarization properties are enhanced during their vertical transport from the mid to the upper troposphere. 65 

Keywords. Time-space monitoring, ground-based and space-borne lidars, long-range transport of smoke plume, 66 

injection of particles up to the upper troposphere, particle dispersion model, smoke particle absorption and 67 

depolarization properties. 68 
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1 Introduction 69 

It is well established that atmospheric biomass burning from either prescribed fires or natural wildfires have effects 70 

on air quality, atmospheric circulation and climate (Stocks et al., 2003).  Wildfires have recently become a focus of 71 

growing interest and attention because of their capabilities to inject smoke particles at high altitude levels.  The 72 

mechanisms leading to the vertical transport of smoke particles are either direct injection by pyroconvection (Fromm 73 

et al., 2000; Fromm and Servranckx, 2003), a combination of pyroconvection and radiatively driven uplift forces (de 74 

Laat et al., 2012) or a combination of pyroconvection and gravito-photophoresis (Rohatschek, 1996; Pueschel et al., 75 

2000).  The first mechanism, pyroconvection, materializes through the formation of pyrocumulus (pyroCu) and their 76 

most extreme form, namely pyrocumulonimbus (pyroCb; Fomm et al., 2005).  The characteristic injection height of 77 

pyroCu and pyroCb emissions is the upper troposphere (UT) and less frequently the lower stratosphere (LS) (Fromm 78 

et al., 2010).  The second mechanism, called self-lifting, is based on the absorption of incoming solar radiation by soot 79 

and smoke particles which may cause sufficient warming for air masses to provide buoyancy and subsequent lofting 80 

of the injected plume (Boers et al., 2010; de Laat et al., 2012).  The third mechanism, gravito-photophoresis, is due to 81 

“a sunlight-induced force acting on particles which are geometrically asymmetric and which have uneven surface 82 

distribution of thermal accommodation coefficients” (Pueschel et al., 2000).  It is strongly altitude-dependent because 83 

of the weak lifting forces involved and it is most effective above 10 km.  Renard et al. (2008) suggested that soot from 84 

biomass burning could reach the stratosphere owing to the gravito-photophoresis effect.  The last two mechanisms, 85 

self-lifting and gravito-photophoresis, can only act on particles which are already settled in the free troposphere or in 86 

the stratosphere, and thus require a prior injection of the particles usually produced by pyroconvection. 87 

Once in the UT, the tropopause acts as a dynamic barrier to the upward transport of smoke particles from the 88 

troposphere because of the steep gradient in the temperature lapse rate, and in most cases the particles stay in the 89 

troposphere.  The conditions (burnt matter, fire characteristics, latitude range, local meteorology, synoptic conditions, 90 

dynamics, etc.) allowing for the penetration of smoke particles through the tropopause are still not yet entirely clear, 91 

and many conclusions of the recent literature on the subject call for more investigation on the topic.  The transport of 92 

particles in the upper troposphere and lower stratosphere (UTLS) has several effects: (i) in this altitude range, the 93 

particles can persist for long durations (Robock, 2000), allowing for gradual spread over hemispheric or global scales; 94 

(ii) the long-lived aerosol radiative effects, especially marked for smoke which is a warming agent, may cause 95 

differential regional heating patterns that affect regional circulation (Lau et al., 2008; Son et al., 2009); (iii) complex 96 

interactions with clouds due to their capability to serve as cloud condensation nuclei, producing in the end a reduction 97 
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of precipitation (see details in Rosenfeld et al., 2007); (iv) effects on UTLS ozone chemistry (Crutzen and Andreae, 98 

1990; Forster et al., 2001; Real et al., 2008).  An increasing number of recent studies report on the observation of the 99 

presence of smoke particles in the UTLS: Nédélec et al. (2005), Damoah et al. (2006), Rosenfeld et al. (2007), Fromm 100 

et al. (2010) (and references therein), Siddaway and Petelina (2011), de Laat et al. (2012), Khaykin et al. (2018), 101 

Ansmann et al. (2018), Haarig et al. (2018), and Hu et al. (2018), among others.  The number of modelling studies 102 

dealing with the injection of smoke into the UTLS is more reduced: Trentmann et al. (2006), Luderer et al. (2006), 103 

Cunningham and Reeder (2009), Cammas et al. (2009), and Peterson et al. (2017). 104 

During summer 2017, North America lived one of its worst burning season on record.  On 16 August an aerosol index 105 

(AI), a qualitative index indicating the presence of elevated layers of aerosols with significant absorption, of 55.4 was 106 

recorded over Canada by the Ozone Mapping and Profiling Suite (OMPS) on board Suomi National Polar-orbiting 107 

Partnership satellite (Seftor, 2017a).  It breaks the record of AI values by far, the previous record being 31.2 registered 108 

by the Total Ozone Mapping Spectrometer (TOMS) on 29 May 2001 during the Canadian Chisholm fires (Fromm et 109 

al., 2008).  The cluster of the most intense fires of August 2017 was located in Canada near the intersection border of 110 

Saskatchewan, Alberta and the Northern Territories at latitude 60 °N.  These intense fires produced strong pyroCb 111 

which injected smoke particles in the LS which travelled eastward, entrained and dispersed zonally by polar jet streams 112 

(Khaykin et al., 2018).  Smoke layers at 14 – 16 km with an aerosol optical depth (AOD) at 532 nm of 0.6 were 113 

observed in Germany (Ansmann et al., 2018) on 22 August.  The event is already documented by a series of papers: 114 

Khaykin et al. (2018), Ansmann et al. (2018), Haarig et al. (2018), Hu et al. (2018) and Baars et al. (2019).  Fifteen 115 

days later, on 30 August, AI from OMPS peaked again at 23 in a smoke plume detected over the southern parts of 116 

Alberta and Saskatchewan and the upper Great Plains of the United States (US) (Seftor, 2017b).  Most of the fires of 117 

this new burning period were in the Pacific northwestern region (British Columbia, Alberta, Washington, Oregon, 118 

Idaho, Montana and northern California).  In the US severe air quality issues were reported in Washington and Oregon 119 

at least until 6 September (NYT, 2018).  Prevailing winds and the presence of a frontal boundary across the North 120 

American continent created the conditions for the formation of a long, wide, arching ribbon of smoke that stretched 121 

thousands of kilometers from the source region all the way to Newfoundland, location from where it was further 122 

transported towards Europe.  The smoke hit the Iberian Peninsula (IP) in southwestern Europe on 7 and 8 September 123 

(Sicard et al., 2018).  Although the smoke plume was detected in the LS at some points during its transport, it was 124 

only detected in the UT over the IP. 125 
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This paper investigates the time-space evolution of the smoke plume detected at its arrival over the IP on 7 and 8 126 

September with ground-based multi-wavelength lidars and backward in time with the CALIOP (Cloud-Aerosol Lidar 127 

with Orthogonal Polarization) spaceborne lidar, in terms of optical properties and vertical distribution.  Sun-sky 128 

photometers at mid-altitude, background sites with no local sources are used to monitor the smoke columnar properties 129 

over the IP.  A dispersion model parameterized with satellite-derived fire products simulates the vertical and horizontal 130 

transport of 3 smoke-related compounds: carbon monoxide, black carbon and organic carbon.  Simulations, and 131 

especially the injection heights computed by the dispersion model, are qualitatively evaluated against observations 132 

and used to understand the atmospheric causal mechanisms yielding to the differences observed in the optical 133 

properties over the IP in the mid and upper troposphere. 134 

2 Instrumentation and tools 135 

The tools used in our methodology include passive/active, ground-based and spaceborne observations, as well as a 136 

particle dispersion model.  The observations, listed in For each fire simulated, a series of common parameters (in 137 

brackets we indicate HYSPLIT denomination) are necessary: location (Release location), start time (Release start 138 

time), duration (Release duration) and heat release (Heat release for plume rise). And for each chemical compound 139 

simulated (gas or particle), the emission rate (Emission rate) is necessary.  Such information is extracted from the 140 

biomass burning emission estimates from GFAS (Global Fire Assimilation System; Kaiser et al., 2012) data from 141 

CAMS (Copernicus Atmosphere Monitoring Service).  GFAS Table 1, are used to follow the transport of the smoke 142 

plumes from the source to the IP.  In addition, passive spaceborne observations are also used to parameterize the 143 

emission of the particle dispersion model. 144 

2.1 Ground observations 145 

The ground-based observations include lidars and sun-sky photometers in the IP. A total of five lidar systems are used: 146 

three from the EARLINET/ACTRIS (European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace Gases 147 

Research Infrastructure Network; https://www.actris.eu/default.aspx; Pappalardo et al., 2014) network in Évora (EV), 148 

Granada (GR) and Madrid (MA), and two from MPLNET (Micro-Pulse Lidar Network; https://mplnet.gsfc.nasa.gov/; 149 

Welton et al., 2001) in El Arenosillo/Huelva (AR) and Barcelona (BA; see For each fire simulated, a series of common 150 

parameters (in brackets we indicate HYSPLIT denomination) are necessary: location (Release location), start time 151 

(Release start time), duration (Release duration) and heat release (Heat release for plume rise). And for each chemical 152 



7 

 

compound simulated (gas or particle), the emission rate (Emission rate) is necessary.  Such information is extracted 153 

from the biomass burning emission estimates from GFAS (Global Fire Assimilation System; Kaiser et al., 2012) data 154 

from CAMS (Copernicus Atmosphere Monitoring Service).  GFAS Table 1 for more details and Figure 1 for the 155 

geographical position of the stations). The EARLINET lidars are multi-wavelength systems measuring at least at three 156 

elastic wavelengths. In addition, EV and GR have Raman and depolarization-sensitive channels.  The MPLNET 157 

systems have one wavelength at 532 nm and an additional polarization-sensitive channel.  A review of the lidar 158 

techniques using elastic, Raman and depolarization-sensitive channels, among others, for the remote sensing of 159 

aerosols can be found in Comerón et al. (2017).  For the characterization of the smoke plume, we use the particle 160 

depolarization ratio, p , in EV, AR, GR and BA and the pair (color ratio, depolarization ratio) in EV and GR.  The 161 

particle depolarization ratio and the color ratio provide significant information on the particle shape and dominant size 162 

(Burton et al., 2012), respectively. The particle depolarization ratio is defined as (Freudenthaler et al., 2009): 163 

 p




 
  (1) 164 

where   and  
 are the particle parallel and perpendicular backscatter coefficients, respectively. The color ratio, 165 

CR , is defined as a function of the particle backscatter coefficient at 532 nm, 
532 , and at 1064 nm, 

1064 , as: 166 

 532

1064

CR



  (2) 167 

The reason for using this definition of the color ratio between the wavelengths of 532 and 1064 nm is that it allows 168 

direct comparison with the space-borne lidar (see Section 2.2) and it is a common parameter used in aerosol 169 

classification (Burton et al., 2012; Groß et al., 2013).  To understand the reasons of the differences and similarities 170 

found in the upcoming discussion, we also define the extinction-related Ångström exponent (AE) between the 171 

wavelengths of 355 and 532 nm: 172 

 355

532

355
ln ln

532
AE






   
      

  
 (3) 173 

where 
355  and 

532  are the extinction coefficient at 355 and 532 nm, respectively.  This quantity is calculated only 174 

at EV which is the only stations where Raman inversions were successfully performed.  Similarly to the color ratio, 175 

AE   provides information on the particle dominant size.  The advantage of AE   is that it can be directly 176 

compared to the Ångström exponent retrieved by AERONET and defined in the next paragraph.  While the MPLNET 177 

and the EV systems work continuously 24/7, GR and MA measurements are discontinuous. 178 
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Due to the high vertical extension of the smoke plume (up to 14 km) and the high AOD values at 440 nm reached at 179 

peak (0.6), no Raman inversions could be performed satisfactorily in Granada.  Raman inversions performed in Évora 180 

yielded a lidar ratio (the extinction-to-backscatter ratio), LR , at 532 nm, 
532LR , in the mid troposphere smoke plume 181 

on the order of 55 steradian (sr) (see Section 5.2). This value of 55 sr is used in the elastic inversions performed for 182 

the other systems at both 532 and 1064 nm. To maximize the signal-to-noise ratio and thus minimize the retrieval 183 

uncertainties, all ground-based lidar measurements presented in this work are nighttime measurements. For the 184 

EARLINET systems, the Raman-inverted extinction coefficient has an accuracy of 10 – 30 %, the backscatter 185 

coefficient of 5 – 10 % and the lidar ratio of 20 – 35 % (Ansmann et al., 2002). As far as elastic inversions are 186 

concerned, the uncertainty of the backscatter coefficient is 10 – 20 % according to Ansmann et al. (2002) and the one 187 

of the extinction coefficient is almost directly proportional to the uncertainty of the lidar ratio assumed. Thus, a 25% 188 

uncertainty in the lidar ratio input parameter (assuming variations of 14 sr around 55 sr, see Section 5.2) of the elastic 189 

inversion leads to a relative uncertainty of about 25% in the extinction coefficient. The particle depolarization ratio 190 

uncertainty can reach up to 50 % in the UTLS (Rodríguez-Gómez et al., 2017). For the MPLNET systems, according 191 

to Córdoba-Jabonero et al. (2018) the backscactter coeffcient and the particle depolarization ratio retrieved from MPL 192 

data have a relative uncertainty of 5 to 20 % and of 10 to 60 %, respectively. 193 

In order to monitor the event over the IP from columnar optical properties we looked at mid-altitude AERONET 194 

(Aerosol Robotic Network; Holben et al., 1998) sites with no local sources so as to maximize the signature of the 195 

smoke long-range transport.  Such sites are Montsec in northeastern Spain and Cerro Poyos in south Spain (see For 196 

each fire simulated, a series of common parameters (in brackets we indicate HYSPLIT denomination) are necessary: 197 

location (Release location), start time (Release start time), duration (Release duration) and heat release (Heat release 198 

for plume rise). And for each chemical compound simulated (gas or particle), the emission rate (Emission rate) is 199 

necessary.  Such information is extracted from the biomass burning emission estimates from GFAS (Global Fire 200 

Assimilation System; Kaiser et al., 2012) data from CAMS (Copernicus Atmosphere Monitoring Service).  GFAS 201 

Table 1 for more details and Figure 1 for the geographical position of the stations).  We considered AERONET 202 

Version 3 products: AOD and SDA (Spectral Deconvolution Algorithm; O’Neill et al., 2001; 2003) inversions data 203 

level 1.5 in Montsec (level 2.0 is not available yet) and 2.0 in Cerro Poyos; and aerosol inversions data level 1.5 at 204 

both sites.  The AERONET products used in our work are: 205 

 The AOD at 440 nm, 
440AOD , which has an estimated accuracy of ±0.02 (Eck et al., 1999). 206 
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 The Ångström exponent calculated between the wavelengths of 440 and 870 nm, 
440 870AE 

, which has an accuracy 207 

of ±0.25 for 
440 0.1AOD   (Toledano et al., 2007). 208 

 The fine mode fraction, FMF , which has an uncertainty of ~25% for an AOD at 500 nm greater than 0.3 (O’Neill 209 

et al., 2003). FMF  represents the ratio of the fine-mode AOD to the total AOD. 210 

 The absorption aerosol optical depth, AAOD , which has an accuracy of ±0.01 for wavelengths greater than 440 211 

nm (Sicard et al., 2016). AAOD  represents the AOD due to absorption. 212 

 The single scattering albedo, SSA , which has an accuracy of ±0.03 for 
440 0.5AOD   for biomass burning (Sicard 213 

et al., 2016). SSA  represents the fraction of the AOD due to scattering (i.e. AOD AAOD ) to the total AOD. 214 

 The asymmetry factor, g , which has an accuracy in the range [±0.03, ±0.08] for biomass burning (Sicard et al., 215 

2016). g  represents a measure of the preferred scattering direction and varies between -1 (only backward-216 

scattering, i.e., at 180º relative to the incident direction) and +1 (only forward-scattering at 0º). 217 

2.2 Spaceborne observations 218 

Several types of satellite sensors are used to fulfill the objectives of the study. The Atmospheric Infrared Sounder 219 

(AIRS; Chahine et al., 2006), on board the Aqua satellite, is a hyperspectral instrument with 2378 infrared channels 220 

and 4 visible/near-infrared channels.  AIRS, together with the Advanced Microwave Sounding Unit (AMSU-A) and 221 

the Humidity Sounder for Brazil (HSB), form the AIRS instrument suite which is designed to measure the Earth’s 222 

atmospheric water vapor and temperature profiles on a global scale. The physical product from AIRS used in our study 223 

is the Carbon Monoxide (CO) Total Column science parameter which is a parameter of the AIRS Level 2 standard 224 

retrieval product using AIRS only (AIRS2RET_NRT).  It indicates the amount of CO in the vertical column of the 225 

atmosphere and is measured in parts per billion by volume (ppbv). The spatial resolution of the AIRS2RET_NRT 226 

product is 45 km at nadir. The temporal resolution is twice daily (day and night). 227 

To track back the vertical distribution of the smoke plume before its arrival in the IP, we use the spaceborne lidar 228 

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; Winker et al., 2007), on board the Cloud-Aerosol Lidar 229 

and Infrared Pathfinder Satellite Observation (CALIPSO) satellite.  CALIOP is a two-wavelength polarization-230 

sensitive lidar that provides high-resolution vertical profiles of aerosols and clouds. It utilizes three receiver channels: 231 

one measuring the 1064 nm backscatter intensity and two channels measuring orthogonally polarized components of 232 

the 532 nm backscattered signal.  The data used in our study are the CALIOP Aerosol Profile Lidar Level 2 data, 233 
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version 4.10.  Profiles of extinction and backscatter coefficients at 532 and 1064 nm, as well as particle depolarization 234 

ratio at 532 nm, are given at a horizontal resolution of 5 km and a vertical resolution of 60 m.  The uncertainty in the 235 

aerosol extinction coefficient is 40 % (assumed a 30-% lidar ratio uncertainty) and the one in the aerosol backscatter 236 

coefficient is 20 – 30 % at 532 nm (Young et al., 2009). The CALIOP Level 2, version 4.10 data products used in this 237 

study contain substantial changes over the earlier releases, among which the most significant is the updated lidar ratio 238 

assignment (Young et al., 2018). Information on CALIOP aerosol sub-typing algorithm and assigned lidar ratios can 239 

be found in Omar et al. (2018) and Kim at al. (2018). CALIOP observations have been used for the study of long-240 

range transport of fire smoke locally (Kar et al., 2018) and also globally (Mehta and Singh, 2018). 241 

The Moderate Resolution Imaging Spectroradiometer (MODIS; Kaufman et al., 2003), on board Aqua and Terra 242 

satellites, is used for various purposes: 1) to quantify and monitor the smoke AOD at the global scale, 2) to confirm 243 

the fires position and active period, and 3) to parameterize the smoke emission in the dispersion model. For the AOD 244 

we use the near real-time value-added MODIS AOD level 3 gridded product (MCDAODHD) based on MODIS level 245 

2 aerosol products combined from Aqua and Terra satellites. The sensor resolution is 0.5º, imagery resolution is 2 km, 246 

and the temporal resolution is daily.  For the fire information (position and active period), MODIS Fire and Thermal 247 

Anomalies products, either from Terra (MOD14), Aqua (MYD14) or a combination of them (MCD14), are used. Each 248 

MODIS active fire location represents the center of a 1-km pixel that is flagged by the algorithm as containing one or 249 

more fires within the pixel. 250 

2.3 Particle dispersion modeling 251 

2.3.1 Model overview 252 

Back-trajectory and dispersion calculations are performed with the Hybrid Single Particle Lagrangian Integrated 253 

Trajectory Model (HYSPLIT; Stein et al., 2015; Rolph et al., 2017).  HYSPLIT is developed at NOAA’s Air Resources 254 

Laboratory and is one of the most widely used models for atmospheric trajectory and dispersion calculations.  It is a 255 

complete system for computing simple air parcel trajectories as well as complex transport, dispersion, chemical 256 

transformation, and deposition simulations.  The model calculation method is a hybrid between the Lagrangian 257 

approach and the Eulerian methodology. Apart from calculating back-trajectories, HYSPLIT is mostly used in this 258 

study to calculate the transport, dispersion, and deposition of emitted CO (used as a tracer of the transport) and 259 

particulate matter (black carbon, BC, and organic carbon, OC). The specificity of our HYSPLIT runs is that the heat 260 

release from the fires is used to estimate the smoke release height, i.e. no release heights were a priori set.  The initial 261 
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particle height is assumed equal to the final buoyant rise height as computed using the method of Briggs (1969) with 262 

the fire heat release given in input, implying that the final rise is a function of the estimated fire heat release rate, the 263 

atmospheric stability, and the wind speed. Stein et al. (2009) tested the sensitivity of HYSPLIT to fixed and variable 264 

release heights by comparing PM2.5 levels modelled and measured at the surface of northwestern US fires in 265 

September 2006.  They found that the case when the heat release from the fire was used to estimate the release height 266 

showed the best performance, although they also concluded that the model is highly sensitive to variations in the 267 

smoke release height and to whether the smoke injection actually occurred below or above the planetary boundary 268 

layer. Rolph et al. (2009) also used HYSPLIT plume rise computation from the fire heat release. 269 

For each fire simulated, a series of common parameters (in brackets we indicate HYSPLIT denomination) are 270 

necessary: location (Release location), start time (Release start time), duration (Release duration) and heat release 271 

(Heat release for plume rise). And for each chemical compound simulated (gas or particle), the emission rate (Emission 272 

rate) is necessary.  Such information is extracted from the biomass burning emission estimates from GFAS (Global 273 

Fire Assimilation System; Kaiser et al., 2012) data from CAMS (Copernicus Atmosphere Monitoring Service).  GFAS 274 

Table 1: Instruments used in this study. The nomenclature 3β+2α+1δ stands for 3 elastic channels (here, 355, 532, 275 

1064 nm), 2 Raman channels and one depolarization channel; 1β+1δ stands for 1 elastic channel (here, 532 nm) and 276 

one depolarization channel; 3β stands for 3 elastic channels (here, 355, 532, 1064 nm). 8-λ refers to the number (8) of 277 

wavelengths of the photometers. 278 

Ground-based 

 Station / 

Network 

Latitude, longitude, altitude Instrument type 

Active EV / 

EARLINET 

38.57N, 7.91W, 293 m asl 3β+2α+1δ lidar 

AR / 

MPLNET 

37.10N, 6.73W, 59 m asl 1β+1δ lidar 

GR / 

EARLINET 

37.16N, 3.61W, 680 m asl 3β+2α+1δ lidar 

MA / 

EARLINET 

40.45N, 3.72W, 669 m asl 3β lidar 

BA / 

MPLNET 

41.39N, 2.11E, 115 m asl 1β+1δ lidar 

Passive Cerro Poyos / 

AERONET 

37.11N, 3.49W, 1830 m asl 8-λ sun-sky photometer 

Montsec / 

AERONET 

42.05N, 0.73E, 1574 m asl 8-λ sun-sky photometer 

    
Spaceborne 

 Instrument Satellite Instrument type 
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Active CALIOP CALIPSO 2β+1δ lidar 

Passive MODIS Aqua and Terra Moderate resolution imaging 

radiometer 

AIRS Aqua High-spectral resolution, 

multispectral infrared sounder 

 279 

assimilates fire radiative power (FRP) observations from satellite-based sensors (Freeborn et al., 2014), namely 280 

MODIS/Aqua and Terra and SEVIRI (Spinning Enhanced Visible and InfraRed Imager), to produce daily estimates 281 

of biomass burning emissions.  GFAS data (in brackets we indicate GFAS denomination) used in our work include 282 

daily information of the fire location and heat release (Wildfire radiative power), and for each chemical compound the 283 

emission rate (Wildfire flux).  Data are available globally on a regular latitude-longitude grid with horizontal resolution 284 

of 0.125º x 0.125º.  We used the current version of GFAS, i.e. GFAS v1.2.  This work contains modified Copernicus 285 

Atmosphere Monitoring Service Information (CAMS, 2018). 286 

The quantification of the HYSPLIT dispersion model uncertainties is not straightforward and it is usually performed 287 

through complex sensitivity studies (Mosca et al., 1998; Pielke and Uliasz, 1998; Straume, 2001; Warner et al., 2002).  288 

In general, the performance of dispersion models is largely attributed to uncertainty in the input fields (Challa et al., 289 

2008). For our case, the GFAS data used for estimating the magnitude and timing of fire emissions have a typical 290 

uncertainty around 30% (Andela et al., 2013). 291 

           292 

Figure 1: MODIS/Aqua corrected reflectance (true color) map centered over Spain on 8 September. Green bullets indicate lidar 293 

stations (EV: Évora, AR: El Arenosillo/Huelva, GR: Granada, MA: Madrid, BA: Barcelona) and red bullets indicate AERONET 294 

sites. Map created from https://firms.modaps.eosdis.nasa.gov/map/. 295 
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BA 

Montsec 
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2.3.2 Model parametrization 296 

The dispersion of CO, BC and OC is simulated in the forward direction, with a time resolution of 6 hours and at 15 297 

altitude levels: one between 0 and 2.5 km and then 14 adjacent 1-km thick layers up to 16.5 km.  The meteorology is 298 

taken from GDAS (Global Data Assimilation System) data with a horizontal resolution of 0.5º x 0.5º.  Noteworthy is 299 

the fact that the first simulations with GDAS 1º x 1º meteorological data (not shown) simulated the dispersion of the 300 

smoke plume too far north reaching France and Germany, instead of the IP.  The use of the finer resolution of 0.5º x 301 

0.5º improved significantly the arrival location of the plume, and put forward the importance of the horizontal 302 

resolution of the meteorological data upon the correct dispersion of the emitted plume studied.  The vertical limit of 303 

the internal meteorological grid of HYSPLIT was set to 20 km, which, according to the following sections, is well 304 

above the maximum height at which the smoke particles were observed.  The daily number of active fires, the FRP 305 

per fire and the emission rate per fire and chemical compound are from GFAS 0.125º x 0.125º data. Since the time 306 

resolution of GFAS data is daily, the emission rate and FRP are assumed constant during the day the fires are active.  307 

In all simulations 2500 particles were released to calculate the transport. 308 

In the case of CO, dry deposition is neglected and wet removal is parameterized with a Henry’s law constant of 9.9x10-309 

4 mol atm-1.  BC (OC) is parameterized with the following values (Chin et al., 2002): 310 

 Particle radius: 0.0118 (0.0212) μm. 311 

 Particle density: 1.0 (1.8) g cm-3. 312 

 Gravitational settling velocity (for dry deposition): 0.5 cm s-1 for both types. 313 

 Scavenging coefficient in- and below-cloud (for wet deposition): 8x10-5 s-1 for both types. 314 

3 Methodology 315 

The proposed methodology is a two-way process, posterior to an initial phase (step 0) consisting in visualizing the 316 

“big picture” of the event at global scale with satellite images and back-trajectories. A flowchart of the methodology 317 

is shown in Figure 2. The first step of the methodology (step 1) consists in monitoring the smoke optical properties 318 

observed over the IP and their backward evolution back to the source with CALIOP retrievals. The second step (step 319 

2) consists in parameterizing the smoke emission and run HYSPLIT forward simulations to obtain 4D (space and 320 

time) dispersion maps of the concentration of smoke-related compounds such as carbon monoxide, black carbon and 321 
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organic carbon.  The main contribution of the modelling in Section 6 is to support the possible hypothesis made along 322 

the discussion in Section 5.2. 323 

 324 

Figure 2: Flowchart of the methodology. 325 

4 Canadian/United States fires and general overview 326 

The first hint of the arrival and the presence of the smoke plume over the IP is given by the temporal evolution of a 327 

combination of AERONET parameters in Montsec and Cerro Poyos, namely the AOD at 440 nm, 
440 870AE 

, and FMF  328 

(Figure 3).  According to Sola et al. (2014) the mean AOD at 500 nm (
440 870AE 

) in Montsec during the month of 329 

September is ~0.1 (~1.5) which corresponds to an AOD at 440 nm of 0.12.  In Montsec 
440AOD  starts to exceed this 330 

value on 4 September, day from which the AOD increases continuously until it reaches its peak value of 0.55 (0.54) 331 

on 7 (8) September. These peak values of AOD are associated with values of 
440 870AE 

 of 1.7 (1.6) on 7 (8) September. 332 

On both days the fine mode fraction is higher than 0.98, leaving basically no room for the presence of coarse mode 333 

 334 

 335 

 336 

 EV 

 AR 

 GR 

 MA 

 BA 
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337 

 338 

Figure 3: AOD440 (black), FMF (blue) and AE440-870 (red) in (top) Montsec, northeastern Spain, and (bottom) Cerro Poyos, south 339 

Spain. The gray areas in the bars on top of the figures indicate coincident lidar measurements. 340 

smoke particles (diameter > 1μm).  In Cerro Poyos, the background AOD at 440 nm is even lower than in Montsec, 341 

being smaller than 0.1 (AERONET, 2018).  This value is exceeded from 5 September on, and the AOD increases until 342 

7 September when it reaches its peak value of 0.62 with an associated 
440 870AE 

 of 1.6.  The fine mode fraction is 343 

higher than 0.88 on both 7 and 8 September.  The main difference between Montsec and Cerro Poyos is their proximity 344 

to anthropogenic emissions: while Montsec is a remote site, far away from any industrial or large metropolitan area, 345 

Cerro Poyos, although higher in altitude, is only 12 km SE of the city of Granada (~600,000 inhabitants including 346 

metropolitan area). Due to its position with respect to Granada and the prevailing winds during the period under study, 347 

Cerro Poyos was downwind of the city.  This has several implications: the AOD in Cerro Poyos shows a diurnal cycle 348 

related to the anthropogenic emissions of Granada, and the fine mode fraction is lower than in Montsec due to the 349 

same emissions.  However one can appreciate from Figure 3 that during the night of 7-8 September FMF  in Cerro 350 

Poyos is nearly 1 like in Montsec.  In terms of AOD, the biomass burning contribution at both sites is roughly five 351 
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times higher than the background values, and the peak values (~0.6) are considered very large for biomass burning 352 

long-range transport.  In comparison the North American biomass burning event detected 15 days earlier (~22 August 353 

2017) in northern Europe produced AODs at 500 nm near 1, 
440 870 ~1.1AE 

 and ~ 1FMF  (Ansmann et al., 2018). 354 

To track back the plume transport in the atmosphere from the source to the IP, we use maps of columnar CO (AIRS) 355 

and AOD (MODIS; Figure 4) as well as CALIOP curtains and HYSPLIT back-trajectories (Figure 5).  The combined 356 

day/night columnar CO maps are reported for the period 30 August – 8 September and a threshold of 95 ppb was 357 

applied in order to highlight strong concentrations.  The active fires are indicated by a red star (Figure 4) centered in 358 

a region defined by the orange square visible in Figure 5 (bottom plot).  This square covers the provinces of British 359 

Columbia and Alberta (Canada) and the states of Washington, Oregon, Idaho, Montana and northern California (US) 360 

where more than 90% of the active fires in North America are present during the period considered.  The habitat type, 361 

a little more south than the Canadian boreal forests, corresponds to temperate coniferous forests (Ricketts et al., 1999).  362 

Some important forests in this region of North America are the National Forests of Wenatchee, Flathead, Nez Perce-363 

Clearwater or Payette, among others, which, under the influence of both continental and maritime climates, produce 364 

a large variety of ecosystems ranging from wet, western redcedar bottoms to high alpine peaks, and forests of alpine 365 

larch and whitebark pine. So, from this region, a first plume (Plume 1) is released from the source region on 30 August, 366 

travels E-NE on 31 August and then eastwards on 1 and 2 September.  On 3 September a second plume (Plume 2) is 367 

released from the same source region and starts travelling east, slightly SE. On 4, 5, and 6 September Plume 2 is 368 

carried by the jet stream and travels rapidly towards the east, while at the same time Plume 1 travels slowly eastwards 369 

above the Atlantic. The column concentration of Plume 2 is stronger than the one of Plume 1.  On 7 September both 370 

plumes merge into one and reach the IP.  The high MODIS AOD values on 8 September over the IP confirm that the 371 

high level of column CO is accompanied with high aerosol loads.  These aerosols are also clearly visible especially in 372 

the eastern part of the IP as a gray/brownish smoke shroud on MODIS true color image of 8 September (Figure 1). 373 

The 10-day back-trajectories at selected heights are shown in Figure 5.  Although we computed back-trajectories at 374 

all lidar stations, only Madrid is shown as point of arrival for the sake of clarity of the figure and because Madrid is 375 

  376 
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  377 

  378 

                                 379 

   380 

Figure 4: Total column carbon monoxide (day/night) from AIRS/AQUA from 30 August until 8 September. The extra plot at the 381 

bottom to the right represents the MODIS combined (Aqua and Terra) value-added AOD at 550 nm on 8 September. The red star 382 

indicates the position of the active fires. On the plots of 3 and 4 September the descending, nighttime orbits of CALIPSO are 383 

reported.  Maps created from https://worldview.earthdata.nasa.gov/. 384 
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 387 

Figure 5: (top) 10-day back-trajectories, 1-hour resolution, arriving in Madrid, in the center of Spain, on 8 September at 00UT at 388 

heights of 3 (red), 6 (green) and 11 (blue) km; (bottom) Same back-trajectories, different viewing angle and superposition of 389 

CALIOP curtains on 4 September at 05:10UT (D-4, day-4 before arrival) and on 3 September at 09:23UT (D-5) where the smoke 390 

plumes, clearly visible, match very well in space and time with the back-trajectories.  Pink crosses indicate active fires in the period 391 

30 August – 5 September.  The red rectangle of corner coordinates (125W, 40N; 93W, 58N) is the area in which the fires were 392 

taken into account in the dispersion modelling analysis (see Section 6).  The orange rectangle simply highlights the region 393 

containing most of the fires.  Maps created with Google Earth. 394 

located in the center of the IP.  The selected heights (3, 6 and 11 km asl) have been chosen by looking at the smoke 395 

vertical distribution from the lidar data (see next section).  All three trajectories pass over the region containing most 396 

of the active fires (orange square): the trajectory arriving in Madrid at 3 km passes over this region on 31 August at 397 

08UT (7-8 days of transport) and the trajectories arriving at 6 and 11 km, very similar in path and speed, pass over the 398 

region of the fires on 3 September between 17 and 22UT (4-5 days of transport).  These results suggest that the 399 

airmasses arriving above the IP at 3 km on 8 September picked up smoke most likely from Plume 1, while those 400 

arriving at 6 and 11 km most likely from Plume 2.  During the transport CALIPSO orbits intersect the back-trajectories 401 

in space and time in two occasions: once southeast of Greenland on 4 September at 05:10 UT (D-4, 4 days before 402 

arrival in Madrid, intersects with Plume 1 which is 5 days old) at 3 km height, and another time on 3 September at 403 

09:23 UT (D-5, intersects with Plume 2 which is less than 1 day old) at 6 and 11 km heights.  On D-5 the shortest 404 
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distance between CALIPSO curtain and the center of the region of the fires (orange square) is 700 km.  On both 405 

occasions the cloud-free CALIOP curtains show clearly the large spatial extension of the smoke: 1700 km (below 406 

orbit) x 15 km (height) on D-4 and 1100 km (below orbit) x 8-9 km (height) on D-5.  The attenuated backscatter of 407 

CALIOP on D-5 is clearly much stronger than on D-4 because of the proximity of the orbit to the source region.  On 408 

D-5, in the southernmost part of the plume, most of the smoke between 4 and 7 km height is optically so thick that it 409 

attenuates the lidar signal below it. 410 

5 Optical properties of the smoke particles 411 

Many papers, most of them listed in the literature overview of Ortiz-Amezcua et al. (2017) or of Haarig et al. (2018), 412 

deal with the optical properties of long-range transport smoke particles derived from observations of photometers, 413 

lidars or a combination of them.  More general aerosol-typing literature based on lidar remote sensing and including 414 

biomass burning are available in Burton et al. (2012), Groß et al. (2013), Illingworth et al. (2015) and Baars et al. 415 

(2016; 2017). 416 

5.1 Column-averaged properties 417 

Figure 6 shows the spectral AAOD, SSA and asymmetry factor retrieved from AERONET sun-sky photometer 418 

measurements at Montsec and Cerro Poyos on 7 and 8 September.  Several aspects are noteworthy.  AAOD, similar 419 

at both sites in absolute values, is surprisingly very low. Compared to the climatological AAOD representative of 420 

boreal forests from US and Canada (Russell et al., 2010), recalculated from Dubovik et al. (2002), our AAOD values 421 

are 2 to 3 times lower.  As a consequence of the small AAOD observed in Montsec and Cerro Poyos, SSA is large 422 

(~0.98 at 440 nm) and indeed much larger than the climatological values for boreal forest biomass burning (0.94 at 423 

440 nm) from Dubovik et al. (2002).  However it is in the range of values of SSA at 355 nm obtained in Europe by 424 

Markowicz et al. (2016), 0.91 – 0.99, and Ortiz-Amezcua et al. (2017), 0.965 – 0.991, in smoke plumes originating 425 

from North America in July 2013.  In particular Markowicz et al. (2016) attribute these high SSA values to “a 426 

transformation of [biomass burning] during long-range transport […] and mixing of the [biomass burning] with non-427 

absorbing aerosol species”.  The high transport altitude of the fire smoke observed over the IP in summer 2017 makes 428 

the second hypothesis (mixing with non-absorbing aerosol species) highly improbable.  If these low AAOD and high 429 
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 430 

  431 

 432 

Figure 6: AERONET daily mean spectral (top) AAOD, (center) SSA, and (bottom) asymmetry factor at Montsec and Cerro Poyos 433 

on 7 and 8 September. 434 

SSA were due to low BC emission at the source, the following rationale can be made.  According to Radke et al. 435 

(1991) and more recently to Russell et al. (2014) the absorption properties of biomass burning in its smoldering 436 

combustion phase are lower than during its flaming phase, the reason being a larger production of black carbon in the 437 

flaming phase relative to the smoldering phase (Radke et al., 1991).  In addition, smoldering combustion occurs over 438 
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a much longer period of time relative to the comparatively short lives flaming phase of tree-crown fires of, e.g., pines, 439 

cedar or cypress that commonly populate temperate coniferous forests.  These results suggest that the smoke particles 440 

observed over the IP might be the product essentially of smoldering combustion at the source.  We also recall that 441 

level 1.5 AERONET data are not totally quality assured and that the values of AAOD and SSA should be taken with 442 

certain caution.  The values and spectral behavior of g  in Montsec and Cerro Poyos are in good agreement with 443 

results for biomass burning aerosols from other studies (Dubovik et al., 2002; Sayer et al., 2014; Nikonovas et al., 444 

2015), with g  presenting a sharp decrease with increasing wavelength.  Nikonovas et al. (2015) distinguished the 445 

behaviour of fresh (within the first 24 h) and aged (more than 72 h) smoke and values reported therein for aged smoke 446 

agree quite well with the mean values obtained at Montsec and Cerros Poyos on 7 and 8 September 2017 (~0.70 at 447 

440 nm and ~0.53 at 1020 nm). This spectral behavior is typical of the dominance of fine particles that are scatterers 448 

of solar radiation more efficient at lower wavelengths, with the forward scattering decreasing with increasing 449 

wavelength. 450 

We analyze the wavelength dependence of AAOD by means of the absorption Ångström exponent, AAE, calculated 451 

between the wavelength of 440 and 870 nm.  Although a clear difference is observed between both sites in terms of 452 

AAE: 1.24 < AAE < 1.35 in Montsec and 0.99 < AAE < 1.03 in Cerro Poyos, conclusions are not straightforward.  453 

We rely our discussion on the results of Lack and Cappa (2010).  According to these authors, the AAE for pure BC 454 

cores varies in the range [-0.2, +1.3], for BC cores coated in non-absorbing matter (i.e. coated with a purely scattering 455 

shell) it can be as high as 1.6 -1.7, and for BC cores coated in absorbing matter, namely brown carbon (mildly 456 

absorbing organic matter; Andrea and Gelencsér, 2006), it is usually greater than unity even if for certain combinations 457 

of core/shell size pairs and values of the imaginary part of the refractive index, it can be close to unity.  Thus the 458 

absolute attribution of BC or brown carbon is hampered when AAE < 1.6.  However Lack and Cappa (2010) also 459 

showed that high SSA values (> 0.9) could only be achieved for BC cores coated in absorbing matter.  The results 460 

allow us to conclude (i) that, without any doubt, the AAE values in Montsec (~ 1.3) are representative of brown carbon 461 

(or BC coated in brown carbon), likely contained in the long-range transport smoke plume detected, and (ii) that the 462 

AAE ~ 1 in Cerros Poyos is most probably caused by brown carbon from biomass burning origin and maybe pure BC 463 

from the anthropogenic fossil fuel emissions of the nearby city of Granada.  Another possible reason for AAE ~ 1 in 464 

Cerros Poyos may be the presence of nearby persistent local fires in Sierra Morena, approximately 150 km northwest 465 

of Cerro Poyos. For comparison, Bergstrom et al. (2007) measured an AAE of 1.45 in the range 325 – 1000 nm in a 466 
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plume of South Africa biomass burning with data from the SAFARI (Southern Africa Regional Science Initiative) 467 

campaign. 468 

5.2 Vertically-resolved properties 469 

To relate smoke optical properties and their vertical distribution, we use ground- and space-borne lidar profiles.  The 470 

availability of lidar measurements in the period 3 – 9 September is indicated by the gray areas in the bars of Figure 3.  471 

Because of the high aerosol load and the high vertical extension of the plumes (> 10 km) on the night of 7 to 8 472 

September and their implication on the signal-to-noise ratio of the lidar signals and thus on the quality of the 473 

inversions, Raman inversions were performed only the night of 6 to 7 September.  In Figure 7 we show the result of a 474 

Raman inversion in Évora on 7 September between 04 and 06UT.  Although this measurement time is a few hours 475 

before the arrival time fixed for the back-trajectory simulations (8 September at 00UT) our back-trajectory analysis 476 

(not shown) confirms that air mass paths were very similar during the 48 hours of both days 7 and 8 September.  A 477 

series of quality checks have been applied to Évora lidar profiles: negative optical properties are not considered and 478 

intensive properties ( AE   , AE   , CR , LR  and 
p , see caption of Figure 7 for symbol definition) are 479 

calculated only for optical properties greater than a minimum threshold in order to guarantee the presence of aerosols 480 

and to avoid physically meaningless retrievals.  In addition to the profiles, smoke layer-mean values are given in two 481 

altitude ranges corresponding to the mid and upper troposphere.  These layer mean values are also reported in Table 482 

2.  We find smoke particles up to 12.7 km, below the tropopause height, with a clear plume extending from 2.3 to 8.1 483 

km and a very shallow one from 11.5 to 12.7 km.  The AOD at 532 nm is 0.24.  The color ratio is significantly different 484 

in the two altitude levels considered (~2.49 in the mid troposphere and ~3.31 in the upper troposphere).  For 485 

comparison Haarig et al. (2018) found color ratios of 1.8 and 2.3 in the troposphere and the stratosphere, respectively, 486 

for the North American biomass burning detected in northern Europe 15 days earlier (22 August).  Our higher values 487 

indicate particles of smaller size.  This finding is corroborated by the columnar effective fine mode radius measured 488 

by AERONET in Montsec and Cerro Poyos on 7 September which vary in the range 0.14 – 0.18 μm, while values 489 

larger than 0.23 μm were found during the 22 August event (Ansmann et al., 2018).  AE  , only retrieved in the 490 

mid troposphere, is 1.51.  For comparison Haarig et al. (2018) found a AE   of 0.9 in the troposphere.  The 491 

difference with our AE   is probably due to different absorption properties: low in our case and rather large on 22 492 

August (Ansmann et al., 2018).  Low absorption properties yield to AE   very similar to the scattering Ångström 493 
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exponent.  According to Valenzuela et al. (2015) scattering AE larger than 1.5 indicates that submicron particles 494 

dominate the aerosol size distribution, which is in agreement with our findings. 495 

 496 

Figure 7: Nighttime multi-wavelength lidar inversion in Évora on 7 September between 04 and 06UT. The first plot represents the 497 

quicklook of range-square corrected signal at 1064 nm in arbitrary units.    is the particle backscatter coefficient,   the particle 498 

extinction coefficient, AE   the extinction-related AE, CR  the color ratio, LR  the lidar ratio and p  the particle 499 

depolarization ratio.  Mean values in the mid troposphere and stratosphere (as depicted by the gray rectangles) for AE  , CR500 

, LR  and p  are reported in the plots.  The horizontal dash lines at 13.6 km indicate the tropopause height calculated with 1º x 1º 501 

GDAS data. 502 

The lidar ratio at 532 nm is 55.1±14.2 and 34.3±10.5 sr in the mid and upper troposphere, respectively.  Our 
532LR  503 

values are slightly lower than those of Haarig et al. (2018), 65 – 80 sr, if we take into account the standard deviations 504 

associated to our retrievals, but are definitely in the range of literature values (26 – 80 sr) for North American biomass 505 

burning detected in Europe (Ortiz-Amezcua et al., 2017).  A lower lidar ratio in the upper troposphere compared to 506 

the mid troposphere might indicate less absorbing particles in higher altitude (Ortiz-Amezcua et al., 2017), maybe 507 

related to a lesser amount of BC with respect to organic carbon, or to a lesser degree of coating on BC since coatings 508 

on BC enhance scattering and absorption properties (Cheng et al., 2014).  These hypotheses are further investigated 509 

in the next section.  At 355 nm we find in Évora 
355 41.8 6.8LR sr   in the mid troposphere, which is in good 510 

agreement with the range of 40 – 45 sr found by Haarig et al. (2018) and with the range of literature values (26 – 80 511 

sr) from Ortiz-Amezcua et al. (2017). 512 
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Table 2: Layer mean values of the color ratio, the Ångström exponent, the lidar ratios at 355 and 532 nm and the particle 513 

depolarization ratio at 532 nm in Évora, and from CALIOP on D-4 and D-5. 514 

 UTLS Mid troposphere 

Parameter Évora 

7/9 at 04UT 

CALIOP D-4 

Plume 1 

CALIOP D-5 

Plume 2 

Évora 

7/9 at 04UT 

CALIOP D-4 

Plume 1 

CALIOP D-5 

Plume 2 

Color ratio 3.31±0.27 3.06±1.19 - 2.49±0.24 2.17±0.28 1.86±0.36 

α-AE - NA NA 1.51±0.76 NA NA 

355LR  (sr) - NA NA 41.8±6.8 NA NA 

532LR  (sr) 34.3±10.5 NA NA 55.1±14.2 NA NA 

p  0.12±0.02 0.12±0.03 - 0.04±0.01 0.05±0.01 0.05±0.02 

 515 

Last but not least, the analysis of the profile of the particle depolarization ratio at 532 nm also reveals interesting 516 

results.  The layer mean values of p  are 0.04 and 0.12 in the mid- and upper troposphere, respectively.  While the 517 

mid troposphere value falls in the range of literature values (Ortiz-Amezcua et al., 2017) and indicate spherical or 518 

almost spherical smoke particles, the value of 0.12 in the upper troposphere is rather unusual.  Some works 519 

investigating the inter-continental transport of North American fire smoke to Europe from August 2017 also report 520 

unusually high depolarization ratios (Khaykin et al., 2018; Haarig et al., 2018; Hu et al., 2018; Sicard et al., 2018) up 521 

to 0.20 at 532 nm in the stratosphere.  The causes of such high depolarizing capabilities of smoke particles are still 522 

not well understood.  Recently Burton et al. (2015) made a nice discussion based on literature to explain the high 523 

values of three-wavelength depolarization ratios and their spectral dependence that they observed for smoke particles 524 

from North American fires retrieved by high-spectral resolution lidar.  They proposed two possible explanations of 525 

the depolarization by smoke: the “lifting and entrainment of surface soil into the smoke plume and asymmetry of 526 

smoke particles themselves”.  Haarig et al. (2018) hypothesized that high p  values may be the result of dried out 527 

smoke particles (relative humidity ~0 %) with a non-spherical shape.  This hypothesis, however, is probably unlikely 528 

in the range of altitude considered here (< 13 km over the IP) as radiosoundings in Barcelona (not available in Évora) 529 

on 8 September at 00 UT indicate a relative humidity in the range 20 – 30 % in the upper troposphere.  At this stage 530 

of the paper, our intention is not to give a single explanation of our high p  values, as we believe that the main 531 

features observed over the IP (injection in the upper troposphere, low absorption and high depolarization properties) 532 

are somehow connected, but to list some fire characteristics and physical/chemical mechanisms which could lead to 533 

such features: the burnt material at the source (BC and OC contents), flaming versus smoldering phases, fire power, 534 

BC aging processes (coagulation, condensation, and heterogeneous reactions) during transport resulting in changes in 535 



25 

 

its morphology and mixing state, relative humidity.  Literature on these issues can be found in Fromm et al. (2003; 536 

2008), Zhang et al. (2008), Lack and Cappa (2010), Adachi et al. (2010), Cheng et al. (2014), China et al. (2015). 537 

Forrister et al. (2015), Burton et al. (2015), among many others, and will be used in the discussion of the next section. 538 

To analyze the spatio-temporal evolution of the smoke transport, we compare the smoke CR  and p  profiles from 539 

Évora (7 September at 04 UT) with CALIOP retrievals in Plume 1 (5 days old, D-4) and in Plume 2 (fresh < 1 day, 540 

D-5).  CALIOP retrievals are shown in Figure 8.  CALIOP quicklooks of the total attenuated backscatter at 532 nm 541 

show a spatial extension clearly larger for Plume 1 than for Plume 2 both horizontally and vertically.  Plume 1 extends 542 

up to ~15 km and into the stratosphere while Plume 2 stays in the troposphere below 9 km.  This result suggests that 543 

the UTLS injection of smoke particles does not occur immediately a few hours after fire ignition but during the 544 

transport.  Indeed Cammas et al. (2009) simulated with the anelastic non-hydrostatic mesoscale model Meso-NH the 545 

time needed for a boundary layer tracer to reach the tropopause to be about 7.5 hours.  Logically, the particle 546 

backscatter coefficient at 532 nm is much stronger in Plume 2 (> 5 Mm-1sr-1 below 4 km at latitudes of 48 – 50ºN) 547 

resulting in a high AOD at 532 nm of 1.20 (versus 0.78 for Plume 1).  The color ratios in the troposphere are 2.17 and 548 

1.86 for Plume 1 (5 days old) and Plume 2 (< 1 day), respectively, indicating a decrease of the particle size as the 549 

plume gets older.  In Évora CR  is 2.49.  In the stratosphere the color ratio of Plume 1 is 3.06, while it is 3.31 in the 550 

upper troposphere in Évora.  Given the large standard deviation of CALIOP CR  retrieval in the stratosphere (Table 551 

2), the relatively small difference between both values (3.06 and 3.31) cannot be interpreted as a decrease of particle 552 

size.  In fact, once in the UTLS the smallest particles (with radii < 0.5 μm), tend to maintain at their altitude level or 553 

to ascend.  Rohatschek (1996) and Pueschel et al. (2000) explained the self-lofting of UTLS-level BC with the gravito-554 

photophoresis mechanism consisting in sunlight-induced upward forcing.  It is interesting to note a significant increase 555 

of CR  (> 3) close to the ground in Plume 2 which probably reflects freshly emitted, small soot particles, before they 556 

undergo any of the various aging processes that lead to their size increase.  The CALIOP particle depolarization ratio 557 

at 532 nm in the troposphere is 0.05 in both plumes, a value similar to 0.04p   found in Évora in the mid 558 

troposphere.  It is an indication that the smoke particle depolarizing capabilities, and subsequently also their shape, in 559 

the troposphere are stable during transport.  In the stratosphere p  in Plume 1 increases from 0.04 to a peak value of 560 

0.16, the mean value being 0.12.  In Évora the same value of 0.12 is found in the upper troposphere between 11.5 and 561 

12.7 km.  As far as Plume 1 is concerned, the smoke particles reached the UTLS in less than 5 days after their release 562 

in the atmosphere and it seems that the smoke particle depolarizing capabilities (and thus their shape) at UTLS level 563 
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are also stable during transport.  The quasi-linear increase of p  with height may be an indication of the height-564 

dependence of the ongoing aging processes leading to the transformation of the smoke particle depolarization 565 

properties from low- (0.04 at 12.25 km) to moderately-depolarizing (0.16 at 14.95 km).  In Évora p  in the upper 566 

troposphere does not seem height-dependent as the particles must have already undergone these aging processes. 567 

  568 

  569 

  570 

Figure 8: CALIOP images and products on (left) 4 September at 05:10UT (D-4, Plume 1 released 5 days earlier) and (right) 3 571 

September at 09:23UT (D-5, Plume 2, fresh < 1 day). (top) CALIOP quicklooks of the total attenuated backscatter signal at 532 572 

nm; (center) CALIOP quicklooks of the retrieved backscatter coefficient at 532 nm restricted to the smoke plume (red squares); 573 

(bottom) CALIOP mean profiles of backscatter coefficient at 532 and 1064 nm, the color ratio and the particle depolarization ratio 574 

at 532 nm.  The horizontal black dash lines indicate the tropopause height calculated with 1º x 1º GDAS data. 575 
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To close this section, we compare the time-height evolution of mid and upper tropospheric particle depolarization 576 

ratio at all Iberian lidar stations (capable of measuring particle depolarization) plus CALIOP, and the dependency of 577 

p  versus CR  in Évora and Granada plus CALIOP.  The results are shown in Figure 9.  The reason for choosing to 578 

plot p  versus CR  is twofold: 1) they are the two intensive parameters provided by CALIOP, and 2) low-level aerosol 579 

typing is possible with these parameters (Groß et al., 2013), although the classification they propose also includes the 580 

lidar ratio.  The profiles in the IP were selected during the night of 7 to 8 September, close to the back-trajectory 581 

arrival time (8 September at 00UT), according to measurement availability and clear-sky conditions.  They all fall 582 

around the back-trajectory arrival time – 3/ + 1 hour.  Contrarily to the observations of North American smoke in the 583 

stratosphere in France (Khaykin et al., 2018; Hu et al., 2018) and Germany (Ansmann et al., 2018; Haarig et al., 2018) 584 

earlier in August, 2017, over the IP no aerosols are observed in the stratosphere in the period considered.  At all 585 

stations of the IP, a continuum of aerosols is observed up to the upper troposphere: aerosols are present in the whole 586 

troposphere.  In order to identify representative layers and give layer mean values, we selected in both the mid and 587 

upper troposphere the layers centered around the backscatter coefficient peak value in each altitude range.  This 588 

methodology guarantees a higher representativeness of the smoke particle properties, but in certain cases the selected 589 

layer may be spatially thin which may bias the interpretation of the top plot of Figure 9.  Hence the layer height and 590 

its thickness represented in this plot has to be interpreted as the layer of maximum intensity, i.e. of maximum aerosol 591 

load.  Before entering in the discussion, it is worth noting the important difference between the AOD at 532 nm in 592 

Barcelona (0.65) and the rest of the stations of the IP (0.27 – 0.34).  This difference is indeed not that surprising if we 593 

look back at MODIS AOD on 8 September (Figure 4) which clearly shows a decreasing AOD tendency along the axis 594 

NE-SW.  In the mid troposphere, with the exception of Granada, all measurements including CALIOP give a particle 595 

depolarization ratio of 0.05 – 0.06.  This result reflects again that in the mid troposphere the smoke particle 596 

depolarization ratio was neither time- nor plume-dependent.  The particle depolarization in Granada at ~7 km is 0.01 597 

and clearly indicates non-depolarizing particles, slightly different from what is observed over the other stations of the 598 

IP in the mid troposphere.  The layers of maximum intensity are rather high (between 6 and 8.3 km) and are higher in 599 

Évora, Granada and El Arenosillo/Huelva than in Barcelona.  The center of the youngest plumes (CALIOP) are slightly 600 

below the layers of maximum intensity detected over the IP.  In the upper troposphere p  varies between 0.09 and 601 

0.10 over the IP, while in the low stratosphere 0.12p   is found for Plume 1 (CALIOP, D-4).  Given the large 602 

standard deviations associated to the retrieval of p  in the UTLS, these findings are here again not sufficient to point 603 
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out a clear difference between the plume over the IP on D-0 and CALIOP on D-4.  In case this difference is real, at 604 

this stage our findings only allow to give hypothetical explanations to be taken with care, listed in order of likelihood: 605 

1) the stations over the IP are representative of Plume 1 + Plume 2 while CALIOP D-4 is representative of Plume 1; 606 

2) on D-0 the plume is in the upper troposphere while on D-4 it is in the stratosphere; and 3) a transformation of the 607 

smoke depolarizing capabilities between D-4 and D-0. 608 

 609 

 610 

Figure 9: (top) Mid and upper tropospheric layer mean particle depolarization ratios at 532 nm at all Iberian lidar stations on the 611 

night of 7 to 8 September. Cyan and Purple bullets represent CALIOP measurements.  The vertical bars indicate the vertical 612 

extension of the smoke layers of maximum intensity (base to top height).  The horizontal bars indicate the standard deviation 613 

associated to p  in these layers.  (bottom) Layer mean particle depolarization ratios at 532 nm vs. layer mean color ratio.  The 614 

bullet color code is the same as in the top plot.  We have reported four aerosols classes adapted from Groß et al. (2013).  The 615 

vertical and horizontal bars indicate the standard deviation associated to p  and CR , respectively. 616 
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The bottom plot of Figure 9 represents pairs of ( p , CR ) mean layer values in Évora and Granada (D-0) and in Plume 617 

1 (D-4) and Plume 2 (D-5). The color-coded shaded areas, representative of different aerosol classes, are adapted from 618 

Groß et al. (2013).  The results can be summarized as follows: 619 

 UTLS-level smoke particles have large color ratios (~2.5 – 3) and moderate particle depolarization ratios (~0.10). 620 

Between D-4 and D-0 a small decrease of both parameters, within the statistical variability of one another, is noted. 621 

 In the mid troposphere, 0.05p   is stable with time, except in Granada.  CALIOP CR  values are smaller than in 622 

Évora (and also Madrid (not shown) as 2.95CR  in the smoke layer centered around 6 km on 7 September at 623 

21UT; in Madrid no smoke layer was observed in the UTLS), indicating that as the smoke gets closer to its arrival 624 

in the IP, the particles get smaller.  The difference between CALIOP CR  values cannot be evaluated since they 625 

correspond to two different smoke plumes which may initially have different morphology and thus different optical 626 

properties.  The results obtained in Granada  0.01, 4.30p CR    are an indication of ultrafine, non-depolarizing 627 

particles and reveals a clear difference in the smoke properties with the rest of observations in the mid troposphere.  628 

The back-trajectories in all three southern stations (EV, AR and GR) are very similar and do not allow to give an 629 

explanation related with long-range transport. In turn, locally, Granada may have been exposed to nearby persistent 630 

fires in Sierra Morena, approximately 150 km northwest of the city.  Fresh smoke produces low p  and large CR631 

, but this is only an hypothesis at this stage. 632 

 The pairs of ( p , CR ) fall in the Canadian biomass burning type, but often on the edges.  In the mid troposphere, 633 

except in Granada, the pairs of ( p , CR ) actually overlap between the classes of Canadian and African biomass 634 

burning and marine aerosols.  It is worth recalling that the fires studied are not exactly “Canadian biomass 635 

burning”, which stands for boreal forest fires in the literature, but fires from temperate coniferous forests.  This 636 

result calls for further investigation on biomass burning properties in relation to their origin which goes beyond 637 

the usual Amazonian, African and North American classes. 638 

Note en passant that the mid and upper tropospheric values of p  and CR  in Évora on 7 September at 21UT (close 639 

in time to the back-trajectory arrival time of 8 September at 00UT, so called D-0) are not significantly different from 640 

the values found on 7 September at 04UT, for which the Raman inversion was performed (see Figure 7 and associated 641 

text). 642 
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6 UTLS injection and inter-continental transport 643 

In order to investigate the role of each of the plumes identified in Figure 4, each plume is simulated separately and 644 

then together.  The emission of Plume 1 is set to 30/8 – 1/9 (3 days) and the emission of Plume 2 to 2/9 – 5/9 (4 days).  645 

Only fires falling inside the red square defined in Figure 4 are considered.  For each chemical compound (CO, BC and 646 

OC), three simulations are run, corresponding to: 647 

 Plume 1 (noted P1 from now on) from 30/8 until 8/9 with emissions limited to the period 30/8 – 1/9. 648 

 Plume 2 (P2) from 2/9 until 8/9 with emissions limited to the period 2/9 – 5/9. 649 

 Plume 1 + Plume 2 (P1+2) from 30/8 until 8/9 with emissions from 30/8 until 5/9. 650 

From the results of Section 4, the hypothesis is implicitly made that the emitted matter before 30/8 and after 5/9 is not 651 

affecting the IP on 7 and 8 September.  The fire characteristics are summarized in Table 3. 652 

Before entering in the discussion, we recall the questions raised in Section 5.2 and left opened: 1) injection mechanisms 653 

responsible of the injection in the upper troposphere, 2) smoke particles with low-absorbing properties and decrease 654 

of the absorption properties with height, 3) high depolarization properties, and 4) differences observed between the 655 

smoke plume observed in the IP (D-0) and the younger plume (D-4) observed by CALIOP. 656 

Table 3: Characteristics of the fires at the origin of the emission of Plume 1 (emission: 30/8 – 1/9), Plume 2 (emission: 2/9 – 5/9) 657 

and for the whole period (emission: 30/8 – 5/9).  The data are from GFAS daily estimates of biomass burning emissions. 658 

  P1 P2 P1+2 

Simulation period  30/8 – 8/9 (10 days) 2/9 – 8/9 (7 days) 30/8 – 8/9 (10 days) 

Emission period  30/8 – 1/9 (3 days) 2/9 – 5/9 (4 days) 30/8 – 5/9 (7 days) 

Number of active 

fires 

 836 772 1073 

Number of active 

fires x day 

 1843 2123 3966 

FRP per fire (MW) Min 0.1 0.1 0.1 

Mean 95.1 137.0 117.5 

Max 5405.7 7162.2 7162.2 

Number of fires 

with FRP > 50 MW 

 232 190 277 

     
  P1 P2 P1+2 

  CO BC OC CO BC OC CO BC OC 

Emission rate per 

fire 

(T h-1) 

Min 0 0 0 0 0 0 0 0 0 

Mean 26.63 0.15 2.23 32.39 0.17 2.79 29.71 0.16 2.53 

Max 2031.15 10.80 175.79 2561.98 13.63 221.73 2561.98 13.63 221.73 

 659 
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During the emission period 30 August – 5 September a total of 1073 fires were detected in the domain considered (red 660 

square, Figure 5), which in terms of fires per day, defined as the sum of all fires multiplied by the number of days they 661 

were active, represents nearly 4000 emitting fires.  From these numbers one can deduce that, on average, each fire had 662 

an emission duration of approximately 4 days.  The mean FRP is 117.5 MW and it is approximately 50 % higher 663 

during P2 than during P1.  Maxima are also higher during P2 (7162.2 MW) than during P1 (5405.7 MW).  Two 664 

hundred and seventy seven fires had a FRP larger than 50 MW.  For comparison, Ansmann et al. (2018) reports a 665 

number of 10000 fires with FRP larger than 50 MW in Canada for the month of August 2017. 666 

Before presenting the results of the dispersion analysis, we will make a point about the geographic location of the fires 667 

of this study.  A notable difference between the fires of August (Khaykin et al., 2018; Ansmann et al., 2018; Haarig 668 

et al., 2018; Hu et al., 2018) vs. September 2017 (this study) is the latitude at which they occurred.  In August the 669 

most intense fires were located in Canada, 49 < latitudes < 67 ºN (see Ansmann et al., 2018), while the emission region 670 

considered in our study goes from British Columbia down to northern California, 40 < latitudes < 53 ºN.  In this lower 671 

part of the mid-latitude region, air masses can be under the influence of either the polar or the subtropical jet streams, 672 

and therefore be entrained either north- or south-ward, respectively.  The latitude difference, 49 – 67 ºN vs. 40 – 53 673 

ºN, also results in a higher tropopause height in September than during the August event, and also a thicker 674 

troposphere-stratosphere transition layer due to the vicinity of the subtropical jet in September (Pan et al., 2004).  It 675 

has also another important implication: the material burnt, and consequently the content of emitted CO, BC and OC, 676 

are different.  While the fires in August were from boreal forests, in September the fires occurred in a region of 677 

temperate coniferous forests.  According to Lavoué et al. (2000) the main difference between boreal and temperate 678 

forests does not rely on the canopy itself, but in the shrubland and the grassland which are more abundant in temperate 679 

forests.  McMeeking et al. (2009) who made controlled laboratory burns of Alaskan spruce and forest floor (duff), 680 

among other fuels, found that the forest floor has a strong contribution from smoldering combustion, but a lower 681 

carbon monoxide emission factor than most of the other fuels because it contains less carbon per mass unit.  This 682 

result supports low BC and OC contents at the source and thus low absorption properties as discussed in Section 5.1. 683 

Results are shown in Figure 10 and Supplements (S) 1-12.  Figure 10 shows the dispersion maps of CO, BC and OC 684 

over the IP at time of arrival on 8 September at 00UT in terms of column density, i.e. the concentration integrated 685 

along the vertical axis.  S1-S4, S5-S8 and S9-S12 are 6-hour time resolution animated gif images of the dispersion of, 686 

respectively, CO, BC and OC for the total column density, and the concentration at 3, 6 and 11 km.  The heights of 6 687 

and 11 km are representative of the mid- and upper troposphere, where smoke particles were detected in the IP.  The 688 
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images of the total column density (S1, S5 and S9) are the same as in Figure 10, i.e. a dispersion map on top and a 689 

longitudinal cross-section below at the latitude of Madrid, taken as a central point in the IP.  On all dispersion maps, 690 

the color bar for P1 goes from red (low) to yellow (high) and for P2 from blue (low) to green (high).  On a horizontal 691 

scale all three compounds have similar dispersion patterns.  For this reason, the interpretation of the dispersion maps 692 

is made independently of the compound.  Partly because the simulation time of P1 is longer relative to P2, its dilution 693 

in the northern hemisphere is wider and circulations around the globe start to be visible, although in low concentration 694 

level, in the final dispersion maps of all compounds.  On 8 September CO/BC/OC from P1 are present around the pole 695 

and also in eastern Russia.  Interpretations of S1, S5 and S9 confirm that: 696 

 P1 is transported northeast-ward the first four days of the simulation.  On 3 September a large swath of the US is 697 

covered by P1.  This feature is confirmed by OMPS images (Seftor, 2017c).  Later, as a large smoke tongue travels 698 

slowly over the Atlantic towards the IP (this transport coincides with the interpretation of the satellite images in 699 

Figure 4, see Section 4), large scale jets make the plume start meandering anti-clockwise around a point centered 700 

initially above Iceland which drifts slowly with time towards Ireland. 701 

 P1 reaches the IP (Madrid) on 6 September at 12UT with column density levels of CO of 0.02 mg m-2.  For 702 

comparison on 8 September at 00UT the CO column density of P1 is on the order of 0.83 mg m-2. 703 

 P2 is travelling eastward since the first day of emission.  On 4 September at 18UT one can already observe the 704 

beginning of the stretching of P2 located on the cyclonic-shear side of a strong jet, probably of subtropical origin 705 

since it ends up in northern Africa.  Later a relatively thin smoke tongue travels rapidly along the large scale jet 706 

towards the IP.  Residual smoke from P1 is also marginally carried with this flow. 707 

 P2 reaches the IP (Madrid) on 7 September at 12UT with column density levels of CO below 1.20 mg m-2.  For 708 

comparison on 8 September at 00UT the CO column density of P2 is on the order of 18.60 mg m-2.  This result 709 

indicates that at the peak of the event the CO level observed over the IP and emitted by P2 is roughly 20 times 710 

larger than the one emitted by P1.  For comparison, Yurganov et al. (2001) reports values of total column CO in 711 

Moscow, Russia, in the vicinity of strong wildfires ~50 times larger than the our values of ~20 mg m-2. 712 

As far as the vertical transport is concerned, we first analyze S3, S7 and S11 to identify where and when the injection 713 

at 6 km (mid troposphere) occurs, and then S4, S8 and S12 for the injection at 11 km (upper troposphere).  CO/P1 714 

(S3) appears for the first time at 6 km 18 hours after the first emission of the fires and close to the source region.  715 

CO/P2 appears for the first time at 6 km much later, ~30 hours after the emission, but also much farther, ~2000-3000 716 

km from the source.  In the upper troposphere, CO/P1 (S4) appears for the first time at 11 km 36 hours after the first 717 
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emission of the fires and at ~2000 km from the source region, while CO/P2 appears for the first time at 11 km 60 718 

hours after the emission and about 4000 km east of the source region.  The time difference between injections from 6 719 

to 11 km is 18 hours for P1 and 30 hours for P2, indicating a much faster ascending rate for P1 than for P2, despite 720 

higher FRPs during P2 relative to P1 (Table 3).  It seems there is a tradeoff between vertical and horizontal transport: 721 

slow horizontal transport is favorable to vertical motion whereas strong horizontal transport reduces it.  In the case of 722 

P2, it is highly probable that the strong jets leading to its fast transport towards the IP contributed at the same time to 723 

limit its vertical transport.  In addition, we believe that the injection at higher altitudes of P1 is favored by its transport 724 

above the region of Lake Winnipeg (a large lake visible on the Supplements to the southwest of Hudson Bay) where 725 

wildfires are active, especially in the northern part of the lake.  The hot region of the active fires is prone to increase 726 

the convection of upper air masses travelling above it.  The analysis of S7 and S11 (BC and OC at 6 km) and S8 and 727 

S12 (same compounds at 11 km) indicates that the ascending rate of BC and OC is slower than for CO.  BC and OC 728 

reach the altitude of 6 km approximately 6 hours after CO does, and they reach the altitude of 11 km approximately 729 

12 hours later than CO.  No significant difference is observed between the two types of particles in terms of ascending 730 

rate. 731 

As far as the maximum injection height is concerned, interestingly none of the altitude levels is empty, indicating that 732 

the dispersion model injects smoke at all altitude levels considered, i.e. up to 16 km.  However, above 10 km the 733 

number of pixels with non-zero concentration significantly decreases.  We investigate the maximum injection height 734 

calculated by the model by defining a threshold of significant aerosol load at a given height when the probability of 735 

occurrence is greater than 2 %, i.e. when more than 2 % of the pixels at a given height are filled with non-zero values.  736 

With such a criterion, we find that CO/P1 (CO/P2) generally stays below 13 (9) km, BC/P1 (BC/P2) below 12 (9) km 737 

and OC/P1 (OC/P2) below 12 (11) km.  These approximations of the maximum injection heights are in good 738 

agreement with the profiles of both the ground-based lidar stations and CALIOP.  One sees clearly that the injection 739 

at high levels is much less efficient for P2 than for P1.  One singular feature is the small difference (1 km) between 740 

the maximum injection heights of OC/P1 and OC/P2.  It may be related to the emission rate increase between P1 and 741 

P2 which is the strongest for OC compared to CO or BC. 742 

To the right of the longitudinal cross-sections of Figure 10 we plot the vertical distribution of both P1 and P2 above 743 

Madrid on 8 September at 00UT and superimpose the particle backscatter coefficient measured in Madrid on 7 744 

September at 21 UT. In order not to rely on a single profile of the simulations, P1 and P2 profiles are averaged over a 745 

square of 9 pixels centered around the coordinates of Madrid.  At time of arrival over the IP, HYSPLIT results for all 746 
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compounds contribute to assign Plume 2 as the main source of smoke particles, representing more than 90 % of the 747 

column density.  At arrival over the IP CO is present up to 13 km, BC up to 11 km and OC up to 12 km (Figure 10, 748 

right plots).  The concentration of all three compounds is low in the first height interval between 0 and 2.5 km, except 749 

for CO/P1.  For CO and BC the concentration levels of P1 are higher than for P2 which supports a former suggestion 750 

(see Section 4) that the airmasses arriving above the IP at 3 km on 8 September picked up smoke most likely from 751 

Plume 1, while those arriving at 6 and 11 km most likely from Plume 2.  The peak of CO near 5-km height is very 752 

well reproduced by the model: it matches exactly the peak of the backscatter coefficient.  For BC and OC the 753 

concentration peak (at 4 km) is 1 km lower than the peak of the backscatter coefficient (at 5 km).  For both types of 754 

particles the gradual decrease of the concentration with increasing height above the peak reflects well the behavior of 755 

the backscatter coefficient.  Given the poor model vertical resolution and the long distance of the horizontal transport 756 

(~10000 km), the particle transport is indeed very well simulated at its arrival in the IP.  HYSPLIT simulates the 757 

presence of a layer of BC at ~11 km in the upper troposphere and a layer of OC at 10 – 12 km just below the tropopause, 758 

whereas the observation indicates that the smoke plume is not present above 10 km.  Interestingly enough if the fact 759 

that a tiny layer of BC is simulated by HYSPLIT above the tropopause at 14 km.  With respect to the literature, the 760 

concentrations simulated by HYSPLIT correspond to relatively small amount of what is usually measured at ground 761 

level.  In a city like Barcelona, where BC is abundantly produced, the background BC concentration is usually higher 762 

than 1000 ng m-3 (Pérez et al., 2010), i.e. much higher than the values simulated after long-range transport which peak 763 

at 10 ng m-3. 764 

Finally, we now come back to some of the hypotheses made in Section 5.2 and look for supporting arguments with 765 

the results of the dispersion modelling.  With respect to the material burnt possibly containing low carbon content or 766 

the dominance of smoldering combustion, the dispersion modelling is of no help.  The lower lidar ratio at 532 nm in 767 

the upper troposphere compared to the mid troposphere reflects less absorbing particles and possibly a lesser amount 768 

of BC with respect to OC.  This tendency is actually confirmed by the vertical distributions of BC and OC at their 769 

arrival over the IP: BC and OC peak at 4 km and then gradually decrease up to 12 km, and the relative decrease of BC 770 

is stronger than for OC. About the increase of the depolarization ratio with height, the dispersion modelling is of little 771 

help, the result the most useful being that in the upper troposphere only P2 is present.  Overall the observations and 772 

the dispersion modelling point out to the following: near the source the smoke particles slightly depolarize ( 0.05p   773 

at ~6 km height, CALIOP, D-5) and at the arrival over the IP after a 5-day transport the particles have gained altitude 774 

and 
p  has increased ( 0.10p   at ~12 km, Évora, D-0).  The particles arriving over the IP at ~6 km have unchanged  775 
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 776 

 777 

 778 

Figure 10: (top) Dispersion map of CO column density and longitudinal cross-section of CO concentration at the latitude of Madrid 779 

on 8 September at 00UT; (center) the same for BC; (bottom) the same of OC.  Note the different scales.  The emission and dispersion 780 
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of P1 (red-yellow color bar) and P2 (blue-green color bar) are separated.  To the right of the longitudinal cross-sections we report 781 

the vertical profile of each chemical compound at the coordinates of Madrid for P1 and P2, as well as the backscatter coefficient at 782 

532 nm retrieved in Madrid on 7 September at 21UT. The yellow star indicates the fire source region. 783 

depolarization properties ( 0.05p  ) with respect to CALIOP, D-5.  These findings enlighten the enhancement of 784 

the smoke depolarization properties with vertical transport.  As smoke particles are relatively effective cloud 785 

condensation nuclei (Reid and Hobbs, 1998; Warner and Twomey, 1967), we finally hypothesize that smoke particles 786 

at non-dry altitude levels such as the upper troposphere (relative humidity ~ 20-30 %, see Section 5.2) may suffer 787 

freezing which may accentuate their asymmetric form and thus their depolarization properties. 788 

7 Conclusions 789 

This paper documents the time-space evolution of a smoke plume detected at its arrival over the Iberian Peninsula on 790 

7 and 8 September, 2017.  The smoke was emitted by strong and powerful wildfires in the Pacific northwestern region 791 

of North America, a region mostly composed of temperate coniferous forests.  The column properties retrieved at two 792 

mid-altitude, background AERONET sites in northern and southern Spain reveal 
440AOD  as high as 0.62, exceeding 793 

the background AOD by a factor larger than 6, 
440 870AE 

 of 1.6-1.7, a large dominance of small particles ( 0.88FMF 794 

), low 
440AAOD  (<0.008) and large 

440SSA  (>0.98).  The low absorption properties are attributed either (i) to the 795 

burning of low carbon content fuels such as forest floors, particularly abundant in temperate forests, (ii) the dominance 796 

of smoldering vs. flaming combustion, and/or (iii) a transformation (coating processes) of the smoke particles during 797 

transport.  AAE ~ 1.3, together with large 
440SSA , in northern Spain is representative of brown carbon, while AAE ~ 798 

1.0, also associated with large 
440SSA , in southern Spain is representative of brown carbon probably mixed with pure 799 

BC from the anthropogenic fossil fuel emissions of the nearby city of Granada, or from local fires approximately 150 800 

km northwest of the site. 801 

Satellite images of total column CO allows to identify two strong periods of emission that gave birth to two different 802 

plumes reaching the IP almost simultaneously: Plume 1 is emitted from 30 August until 1 September and Plume 2 803 

from 2 to 5 September.  The vertical distribution of the smoke plumes was monitored by ground-based lidars from 804 

both EARLINET and MPLNET networks, and from space by CALIOP.  Over the IP a continuum of aerosols is 805 

observed up to the upper troposphere: aerosols are present in the whole troposphere.  No particles are observed in the 806 

low stratosphere.  Results are given for the mid (5 – 9 km) and upper (10 – 13 km) troposphere.  The analysis of the 807 
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ground-based lidars indicates a color ratio of 2.5 (3.0), 
532LR  of 55 (34) sr, and 

p  of 0.05 (0.10) in the mid (upper) 808 

troposphere, which points out to smaller, less absorbing and more depolarizing particles in the upper troposphere than 809 

in the mid troposphere.  Rewinding in time with CALIOP, one observes that the older the smoke plume, the larger the 810 

color ratio, i.e. that the particle size gets smaller during transport.  As far as the particle depolarization ratio is 811 

concerned, no changes related to the transport are observed in the mid troposphere.  The unusual values of 
p  in the 812 

upper troposphere (0.10) are further analyzed with dispersion modelling. 813 

To analyze the horizontal and vertical transport of the smoke from its origin to the IP, particle dispersion modelling is 814 

performed with HYSPLIT parameterized with satellite-derived biomass burning emission estimates from 815 

GFAS/CAMS.  We simulated CO, BC and OC, for separately P1 and P2, with a time resolution of 6 hours, at 15 816 

altitude levels and using meteorology data from GDAS with a horizontal resolution of 0.5 x 0.5º.  The smoke release 817 

height was not artificially fixed, but calculated internally by the model and assumed to be equal to the final buoyant 818 

plume rise height as computed using Briggs (1969), implying that the final rise is a function of the input fire radiative 819 

power and the meteorology.  The results show that the dispersion of both plumes is quite different: P1 travels slowly 820 

and disperses over a large area of the northern hemisphere, while P2 is entrained by a strong subtropical jet and travels 821 

quickly towards the IP.  The ascending rate of CO is nearly twice larger for P1 than for P2: CO/P1 reaches the height 822 

of 11 km in 36 hours, while CO/P2 needs 60 hours.  There is undeniably a tradeoff between vertical and horizontal 823 

transport: slow horizontal transport is favorable to vertical motion whereas strong horizontal transport reduces it.  At 824 

time of arrival over the IP, both BC and OC profiles over the IP are similar in shape to the lidar-derived backscatter 825 

coefficient profile: they both peak at 4 km and then gradually decrease up to 12 km, and the relative decrease of BC 826 

is stronger than for OC, which corroborates one of the former hypothesis, namely that particles in the upper 827 

troposphere are less absorbing than in the mid troposphere because of a smaller ratio of BC to OC.  HYSPLIT results 828 

for all compounds contribute to assign P2 as the main source of smoke particles over the IP, representing more than 829 

90 % of the column density.  These findings, all together, show that 
p  increase from 0.05 to 0.10 occurs during the 830 

vertical transport from the mid to the upper troposphere, and stress the influence of the vertical transport on the smoke 831 

depolarization properties.  As smoke particles are relatively effective cloud condensation nuclei, we finally 832 

hypothesize that smoke particles at non-dry altitude levels such as the upper troposphere may suffer freezing which 833 

may accentuate their asymmetric form and thus their depolarization properties. 834 
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List of Figure Captions 1192 

 1193 

Figure 1: MODIS/Aqua corrected reflectance (true color) map centered over Spain on 8 September. Green bullets 1194 

indicate lidar stations (EV: Évora, AR: El Arenosillo/Huelva, GR: Granada, MA: Madrid, BA: Barcelona) and red 1195 

bullets indicate AERONET sites. Map created from https://firms.modaps.eosdis.nasa.gov/map/. 1196 

 1197 

Figure 2: Flowchart of the methodology. 1198 

 1199 

Figure 3: AOD440 (black), FMF (blue) and AE440-870 (red) in (top) Montsec, northeastern Spain, and (bottom) Cerro 1200 

Poyos, south Spain. The gray areas in the bars on top of the figures indicate coincident lidar measurements. 1201 

 1202 

Figure 4: Total column carbon monoxide (day/night) from AIRS/AQUA from 30 August until 8 September. The extra 1203 

plot at the bottom to the right represents the MODIS combined (Aqua and Terra) value-added AOD at 550 nm on 8 1204 

September. The red star indicates the position of the active fires. On the plots of 3 and 4 September the descending, 1205 

nighttime orbits of CALIPSO are reported.  Maps created from https://worldview.earthdata.nasa.gov/. 1206 

 1207 

Figure 5: (top) 10-day back-trajectories, 1-hour resolution, arriving in Madrid, in the center of Spain, on 8 September at 00UT at 1208 

heights of 3 (red), 6 (green) and 11 (blue) km; (bottom) Same back-trajectories, different viewing angle and superposition of 1209 

CALIOP curtains on 4 September at 05:10UT (D-4, day-4 before arrival) and on 3 September at 09:23UT (D-5) where the smoke 1210 

plumes, clearly visible, match very well in space and time with the back-trajectories.  Pink crosses indicate active fires in the period 1211 

30 August – 5 September.  The red rectangle of corner coordinates (125W, 40N; 93W, 58N) is the area in which the fires were 1212 

taken into account in the dispersion modelling analysis (see Section 6).  The orange rectangle simply highlights the region 1213 

containing most of the fires.  Maps created with Google Earth. 1214 

 1215 

Figure 6: AERONET daily mean spectral (top) AAOD, (center) SSA, and (bottom) asymmetry factor at Montsec and Cerro Poyos 1216 

on 7 and 8 September. 1217 

 1218 

Figure 7: Nighttime multi-wavelength lidar inversion in Évora on 7 September between 04 and 06UT. The first plot 1219 

represents the quicklook of range-square corrected signal at 1064 nm in arbitrary units.    is the particle backscatter 1220 

coefficient,   the particle extinction coefficient, AE   the extinction-related AE, CR  the color ratio, LR  the 1221 

lidar ratio and p  the particle depolarization ratio.  Mean values in the mid troposphere and stratosphere (as depicted 1222 

by the gray rectangles) for AE  , CR , LR  and p  are reported in the plots.  The horizontal dash lines at 13.6 km 1223 

indicate the tropopause height calculated with 1º x 1º GDAS data. 1224 

 1225 

Figure 8: CALIOP images and products on (left) 4 September at 05:10UT (D-4, Plume 1 released 5 days earlier) and 1226 

(right) 3 September at 09:23UT (D-5, Plume 2, fresh < 1 day). (top) CALIOP quicklooks of the total attenuated 1227 

backscatter signal at 532 nm; (center) CALIOP quicklooks of the retrieved backscatter coefficient at 532 nm restricted 1228 

to the smoke plume (red squares); (bottom) CALIOP mean profiles of backscatter coefficient at 532 and 1064 nm, the 1229 
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color ratio and the particle depolarization ratio at 532 nm.  The horizontal black dash lines indicate the tropopause 1230 

height calculated with 1º x 1º GDAS data. 1231 

 1232 

Figure 9: (top) Mid and upper tropospheric layer mean particle depolarization ratios at 532 nm at all Iberian lidar 1233 

stations on the night of 7 to 8 September. Cyan and Purple bullets represent CALIOP measurements.  The vertical 1234 

bars indicate the vertical extension of the smoke layers of maximum intensity (base to top height).  The horizontal 1235 

bars indicate the standard deviation associated to p  in these layers.  (bottom) Layer mean particle depolarization 1236 

ratios at 532 nm vs. layer mean color ratio.  The bullet color code is the same as in the top plot.  We have reported 1237 

four aerosols classes adapted from Groß et al. (2013).  The vertical and horizontal bars indicate the standard deviation 1238 

associated to p  and CR , respectively. 1239 

 1240 

Figure 10: (top) Dispersion map of CO column density and longitudinal cross-section of CO concentration at the 1241 

latitude of Madrid on 8 September at 00UT; (center) the same for BC; (bottom) the same of OC.  Note the different 1242 

scales.  The emission and dispersion of P1 (red-yellow color bar) and P2 (blue-green color bar) are separated.  To the 1243 

right of the longitudinal cross-sections we report the vertical profile of each chemical compound at the coordinates of 1244 

Madrid for P1 and P2, as well as the backscatter coefficient at 532 nm retrieved in Madrid on 7 September at 21UT. 1245 

The yellow star indicates the fire source region. 1246 
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