
ORIGINAL RESEARCH
published: 24 May 2018

doi: 10.3389/fphys.2018.00594

Frontiers in Physiology | www.frontiersin.org 1 May 2018 | Volume 9 | Article 594

Edited by:
Igor B. Mekjavic,

Jo•ef Stefan Institute (IJS), Slovenia

Reviewed by:
Aaron Petersen,

Victoria University, Australia
Brendan Richard Scott,

Murdoch University, Australia

*Correspondence:
Belén Feriche

mbelen@ugr.es

Specialty section:
This article was submitted to

Exercise Physiology,
a section of the journal
Frontiers in Physiology

Received: 01 February 2018
Accepted: 02 May 2018
Published: 24 May 2018

Citation:
Morales-Artacho AJ, Padial P,

García-Ramos A, Pérez-Castilla A,
Argüelles-Cienfuegos J, De la

Fuente B and Feriche B (2018)
Intermittent Resistance Training at
Moderate Altitude: Effects on the

Force-Velocity Relationship, Isometric
Strength and Muscle Architecture.

Front. Physiol. 9:594.
doi: 10.3389/fphys.2018.00594

Intermittent Resistance Training at
Moderate Altitude: Effects on the
Force-Velocity Relationship,
Isometric Strength and Muscle
Architecture
Antonio J. Morales-Artacho 1, Paulino Padial 1, Amador García-Ramos 1,
Alejandro Pérez-Castilla 1, Javier Argüelles-Cienfuegos 2, Blanca De la Fuente 2 and
Belén Feriche 1*

1 Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain,2 High
Performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain

Intermittent hypoxic resistance training (IHRT) may help to maximize the adaptations
following resistance training, although con�icting evidence is available. The aim of this
study was to explore the in�uence of moderate altitude on thefunctional, neural and
muscle architecture responses of the quadriceps muscles following a power-oriented
IHRT intervention. Twenty-four active males completed two4-week consecutive training
blocks comprising general strengthening exercises (weeks1–4) and power-oriented
resistance training (weeks 5–8). Training sessions were conducted twice a week at
moderate altitude (2320 m; IHRT,n D 13) or normoxia (690 m; NT,n D 11). Training
intensity during the second training block was set to the individual load corresponding
to a barbell mean propulsive velocity of 1 m�s� 1. Pre-post assessments, performed
under normoxic conditions, comprised quadriceps muscle architecture (thickness,
pennation angle and fascicle length), isometric maximal (MVF) and explosive strength,
and voluntary muscle activation. Dynamic strength performance was assessed through
the force-velocity relationship (F0, V0, P0) and a repeated CMJ test (CMJ15MP).
Region-speci�c muscle thickness changes were observed in both training groups
(p < 0.001, � 2

G D 0.02). A small opposite trend in pennation angle changes was
observed (ES [90% CI]:� 0.33 [� 0.65, � 0.01] vs. 0.11 [� 0.44, 0.6], in the IHRT and
NT group, respectively;p D 0.094, � 2

G D 0.02). Both training groups showed similar
improvements in MVF (ES: 0.38 [0.20, 0.56]vs. 0.55 [0.29, 0.80], in the IHRT and
NT group, respectively;p D 0.645, � 2

G < 0.01), F0 (ES: 0.41 [� 0.03, 0.85] vs. 0.52
[0.04, 0.99], in the IHRT and NT group, respectively;p D 0.569, � 2

G < 0.01) and P0

(ES: 0.53 [0.07, 0.98] vs. 0.19 [� 0.06, 0.44], in the IHRT and NT group, respectively;
p D 0.320, � 2

G < 0.01). No meaningful changes in explosive strength performance
were observed. In conclusion, contrary to earlier adverse associations between altitude
and resistance-training muscle adaptations, similar anatomical and functional muscle
strength responses can be achieved in both environmental conditions. The observed
region-speci�c muscle thickness changes may encourage further research on the
potential in�uence of IHRT on muscle morphological changes.
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INTRODUCTION

Since the well-established “live high, train low” altitudetraining
studies developed in the nineties (Levine and Stray-Gundersen,
1997), the use of hypoxia in sport has evolved from a
mainly hematological aim to a broader scope embracing also
neuromuscular aspects (Scott et al., 2014b; Brocherie et al., 2015).
Early hypotheses, presenting altitude as a harmful environment
for skeletal muscle development (Ferretti et al., 1990; Narici and
Kayser, 1995), have been progressively challenged by the idea of
using hypoxia to maximize muscle strength responses (Deldicque
and Francaux, 2013; Millet et al., 2013; Feriche et al., 2017).
Accordingly, it has been suggested that combining systemic
hypoxia during training, and normoxia during recovery (i.e.,
intermittent hypoxic resistance training, IHRT), could confer
an advantageous stimulus to maximize the muscle adaptations
following resistance training (Scott et al., 2014a). Moreover,
while two to 4-week altitude training camps are usually carried
out in elite sport, an IHRT strategy could be used to target
other training goals requiring longer adaptation periods (i.e.,
strength training related). Notwithstanding, studies exploring
the in�uence of IHRT on muscle functional and physiological
adaptations remain inconclusive and limited to normobaric
hypoxic simulated conditions.

Despite greater acute hormonal and metabolic stress
responses following resistance exercise under hypoxic conditions
(Kon et al., 2010; Kurobe et al., 2015), there are studies reporting
both signi�cant (Nishimura et al., 2010; Manimmanakorn
et al., 2013b; Kurobe et al., 2015) and no meaningful e�ects
(Friedmann et al., 2003; Ho et al., 2014; Kon et al., 2014) of
IHRT on the muscle cross-sectional area (CSA). Although
di�erences in crucial resistance-training methodologicalaspects,
such as the resting time between training sets, may in�uence
the lack of agreement between IHRT studies reporting changes
in muscle CSA (Scott et al., 2017a,b), other constraints in the
current literature also limit the translation of these �ndings
to the �eld. Resistance training practices aiming to enhance
athletic performance often comprise maximal intended explosive
e�orts leading to both training-speci�c structural (Blazevich
et al., 2003) and neural adaptations (Buckthorpe et al., 2015).
Most of the IHRT interventions, however, have been focused on
hypertrophy-oriented single-joint exercises (Nishimura et al.,
2010; Manimmanakorn et al., 2013b) without considering the
relevance of performing maximal intended e�orts to enhance
explosive muscle performance. To our knowledge, no previous
studies have explored the potential e�ects of IHRT on other
functionally relevant structural (i.e., muscle architecture) and
neural (i.e., rate of muscle activation) factors.

Acute exposures to moderate hypobaric (i.e., terrestrial
moderate hypoxia), but not normobaric hypoxia (Feriche et al.,
2014; Scott et al., 2014a, 2017a,b), have been described to
enhance muscle performance during the bench-press (Feriche
et al., 2014) and squat jump exercises (García-Ramos et al.,
2016). Although the underlying mechanisms are unclear, these
�ndings suggest that IHRT under hypobaric conditions could
lead to positive neuromuscular adaptations. Despite the limited
evidence, hypoxia-induced changes in motor unit recruitment

patterns could a�ect the neuromuscular responses following
resistance training (Manimmanakorn et al., 2013b). Inconsistent
evidence, however, comes from normobaric IHRT studies
showing greater (Manimmanakorn et al., 2013b; Inness et al.,
2016) and similar adaptations in maximal strength (Friedmann
et al., 2003; Nishimura et al., 2010; Ho et al., 2014; Kon
et al., 2014) compared to normoxia. The fact that very di�erent
maximal strength testing methodologies have been previously
used [i.e., isometric (Manimmanakorn et al., 2013b; Ho et al.,
2014), isokinetic (Friedmann et al., 2003; Ho et al., 2014)
and direct (Kon et al., 2014; Inness et al., 2016), or indirect
(Nishimura et al., 2010) maximal dynamic strength)] could
partially explain these inconsistencies. Moreover, despite the
signi�cance of assessing the neuromuscular maximal mechanical
capabilities, comprising both maximal and explosive strength
performance (Samozino et al., 2012; Ma�uletti et al., 2016), no
previous IHRT studies have considered it. A close examination
of the force-velocity (FV) relationship, comprising performance
assessment under multiple loading conditions (Jaric, 2015),
as well as speci�c maximal and explosive isometric strength
assessments (Ma�uletti et al., 2016) may help to reach a
better understanding of the e�ects of IHRT on muscle strength
performance.

Accordingly, the purpose of the present study was to explore
the e�ects of a power-oriented IHRT intervention performed at
moderate altitude on the functional (i.e., maximal and explosive
measures of muscle strength), neuromuscular (i.e., voluntary
EMG activation) and morphological (i.e., muscle architecture)
responses. It was hypothesized that resistance training at
moderate altitude would lead to greater adaptations in muscle
strength, neuromuscular and morphological responses.

MATERIALS AND METHODS

Participants
Twenty-seven physically active male Sport Science students (age:
22.5� 3.4 years, height: 177.0� 7.1 cm, body mass: 76.1� 8.5 kg)
volunteered to participate in this study. All participants were
informed regarding the nature, aims and risks associated with
the experimental procedures and provided informed consent.
Participants were familiarized with the resistance training
exercises, although none of them was involved in systematic
resistance training programme at the beginning of the study.
None of them reported any physical limitations, health problems
or musculoskeletal injuries that could compromise testing. Due
to personal reasons, three participants withdrew from the study
and 24 completed the training intervention (Hypoxia,n D 13
and Normoxia,n D 11). All participants were lowlanders and
had not previously carried out any exercise training at altitude.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
Granada University Ethic Committee.

Experimental Design
A longitudinal repeated measures design was used to evaluate
the functional and physiological muscle adaptations following
resistance training at intermittent moderate altitude or normoxic
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conditions. One week before o�cial testing, two familiarization
sessions comprising loaded CMJ were carried out. Afterwards,
participants attended the laboratory for three o�cial testing
sessions before (2–4 days pre-training) and after (2–4 days
post-training) the 8-week training intervention. On days 1 and
2, unilateral knee extension isometric force, voluntary muscle
activation (surface electromyography, EMG) and ultrasound-
based muscle architecture repeated assessments were performed.
Speci�c separate testing protocols were performed to measure
maximal and explosive voluntary isometric force (Ma�uletti
et al., 2016). In order to assess the between-day reliability of
isometric and ultrasound measurements, assessments carried
out on day 1 were repeated on a separate day. On the third
visit to the laboratory (48 h later), participants �rst carried
out a progressive loading FV test during the CMJ exercise
and then performed a repeated jumping test consisting of 15
continuous CMJ repetitions at maximum intended velocity.
All laboratory assessments were performed under normoxic
conditions (i.e., 690 m) and participants were asked to refrain
from physical e�orts, alcohol intake and maintain their sleep
and diet habits 48 h before assessments. The training intervention
comprised two continuous 4-week training periods (16 training
sessions in total) of resistance training under normoxic
environmental conditions (690 m; NT group) or intermittent
terrestrial moderate altitude (at the High Performance Center
of Sierra Nevada, 2,320 m; IHRT group). Participants in the
IHRT group traveled 32 Km by car to altitude to complete
each training session and returned to normoxic conditions.
Arrivals and departures from altitude training took place
� 20 min before and after the corresponding training session. The
hypoxic environmental conditions during IHRT were ensured
by assessing the arterial oxygen saturation (SaO2) before each
training session. Moreover, all participants were asked to avoid
any lower-body resistance training activity out of the study.

Training Intervention
Training sessions were performed twice weekly, with at leasta
48 h rest between them. The training intervention consistedof
two-consecutive 4-week resistance training periods. In order to
optimize the power training adaptations (Cormie et al., 2010b),
the �rst 4 weeks of training comprised bodyweight strength
exercises, loaded squats and deadlifts and were designed to
enhance general strength levels and CMJ jumping technique.
During the back squat and deadlift exercises, the training load
was individually set to� 12 RM. Two approximation sets (i.e., at
50 and 80% of their perceived 12 RM load) during the speci�c
warm-up for each exercise were used to determine the individual
training load for each session. This exercise program designwas
aiming to maximize muscle adaptations following lower-body
explosive training (Zamparo et al., 2002; Ha� and Nimphius,
2012). During the second 4-week training period, sessions were
designed to improve both maximal power development and
repeated jumping performance. A detailed description of the
training program (i.e., exercises, sets, repetitions, rest periods,
etc.) is shown inTable 1. All loaded CMJ were performed in a
Smith Machine (Technogym, Gambettola, Italy) and the external
load used was selected for every participant as the load associated TA
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with a barbell mean propulsive velocity of 1 m�s� 1 (see below
training load estimation procedure). Additionally, 5 min before
the warm-up, the SaO2 levels were measured using a pulse
oximeter (Onyx Vantage 9590, Nonin, Plymouth, MN, USA). The
IHRT group displayed a mean SaO2 value of 93.6� 2.1%.

Training Load Estimation
During the second 4-week period, the external load used during
all loaded CMJ was estimated from the load-velocity relationship
for each participant on a weekly basis. Precisely, during the
1st weekly training session, the load-velocity relationship was
constructed by performing two CMJ attempts at three di�erent
absolute loading conditions (i.e., 20, 40, and 60 kg). A linear
regression model was �tted and used to estimate the externalload
corresponding to a barbell mean propulsive velocity of 1 m�s� 1.
This load is known to be equivalent to� 50–55% 1RM during
the CMJ exercise (Pérez-Castilla et al., 2017). This procedure
ensured that training loads were adjusted in both experimental
conditions, and thus participants trained at the same relative
intensity, for the same prescribed training volume.

Pre- and Post-training Assessments
Knee Extension Isometric Maximal and Explosive
Strength
Maximal and explosive voluntary strength assessments were
performed on a custom-made isometric rigid dynamometer
(Ma�uletti et al., 2016) with knee and hip angles of 110�

and 130� (180� D full extension), respectively. Pelvis and
shoulders were �rmly secured to the chair and a rigid strap
was attached proximally to the ankle (2 cm above the lateral
malleolus) in series with a calibrated low-noise strain gauge
(Force Logic, Swallow�eld, UK). The force signal from the strain
gauge was ampli�ed (� 370) and digitized at 1 kHz using a
16-bit analog to digital converter (DT 9804; Data Translation,
Marlboro, Massachusetts, USA). Following a standardized warm-
up (three sustained contractions for 3–4 s at 20, 40, 60, and
80% of maximal perceived exertion), participants performed
three maximal voluntary contractions (MVC) extending their
knee “as hard as possible” for 3–5 s. Resting periods between
e�orts were set to 1 min. Thereafter, participants performed
10 explosive voluntary contractions interspersed by 30 s resting
periods. They were instructed to push “fast, then strong” for
� 1 second and to avoid any countermovement or pre-tension
prior to the force onset (Ma�uletti et al., 2016). Force signals
recorded from the strain gauge were �ltered with a 4th order
150-Hz low pass Butterworth �lter and were corrected for
the in�uence of gravity during o�ine analysis. The highest
instantaneous peak force achieved during the MVCs was de�ned
as maximal voluntary force (MVF). Force signals recorded
during the explosive voluntary contractions were �rst analyzed
to determine onset and to discard any attempt with pre-tension
or countermovement. Force onsets were automatically identi�ed
and visually con�rmed (Tillin et al., 2013), as the last zero-
crossing point on the �rst derivative of the �ltered signal force
(de Ruiter et al., 2007). To discard any contraction with pre-
tension or countermovement, 100 ms baseline force signals prior
to force onset were �tted with a least-squares linear regression,

and absolute slope values> 1.5 N�m�s� 1 were set as a criterion for
contraction omission due to potential e�ects of co-contraction
or countermovement on explosive performance (de Ruiter et al.,
2007). Explosive contractions reaching peak force< 75% MVT
were also discarded. From the remaining explosive voluntary
contractions, the three attempts with the highest force at 100 ms
were further analyzed and eventually averaged across. For each
contraction, force at 50 ms (F50), 100 ms (F100), and 150 ms (F150)
after the force onset were used for further analyses (Figure 1A).

Surface Electromyography (EMG)
During all isometric force assessments, EMG activity was
recorded wirelessly from thevastus medialis(VM), vastus
lateralis(VL), and rectus femoris(RF) muscles (Delsys, Boston,
Massachusetts, USA). Raw EMG signals were ampli�ed (� 1,000)
and sampled at 2 kHz. After skin preparation (shaving, light
abrasion and cleaning with alcohol), EMG surface electrodes
(Trigno Standard Sensor; Delsys Boston, Massachusetts, USA)
were placed according to the surface EMG for non-invasive
assessment of muscle recommendations (Hermens et al., 2000).
EMG signals were �rst �ltered with a 4th order band-pass
Butterworth �lter (6–450 Hz). The EMG signal during MVCs
was assessed with a 500 ms root mean square (RMS) epoch,
250 ms either side of the peak EMG (Buckthorpe et al., 2012),
averaged across muscles and taken as maximal EMG activation
during MVC (EMGMVC). During explosive contractions, EMG
onset was manually identi�ed as the �rst muscle to be activated.
Speci�cally, raw EMG signals were graphically displayed with
systematic x and y-axis (i.e., 300 ms and� 0.05 mV, respectively)
before manually selecting the last point at which the signal
de�ected away from baseline (Balshaw et al., 2016). Thereafter,
RMS EMG was averaged over three periods from the EMG onset:
0–50 ms, 50–100 ms, and 100–150 ms (EMG0� 50, EMG50� 100,
EMG100� 150, respectively), normalized to EMGMVF and averaged
across muscles (Figure 1B).

Muscle Architecture
Figure 2 shows an overview of the muscle architecture
measurements carried out. For each measurement site, muscle
thickness was measured as the perpendicular distance between
super�cial and deep aponeuroses, averaged at three evenly spaced
points along the image width (i.e., two at the edges, one at
midpoint). Pennation angle was measured along the VL muscle
(i.e., at 20, 50, and 60% of thigh length), as the angle between
the deep aponeurosis and the line of the fascicle. Moreover, VL
fascicle length (FL) was estimated as:

FL D
Thickness

sin�
(1)

where� is the fascicle pennation angle. Three pennation angle
and FL measurements were performed on the two repeated
images for each measurement site, and an average was taken to
provide overall VL pennation angle and FL.

Countermovement-Jump Incremental Test
After a standardized warm-up protocol (i.e., 5 min jogging,
joint mobility exercises and �ve unloaded CMJ), participants
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FIGURE 1 | (A) Typical example of force trace during an isometric explosive
strength assessment. Each force onset was automatically detected as the last
zero-crossing point on the �rst derivative of the �ltered signal force (de Ruiter
et al., 2007), and force values at 50, 100, and 150 ms were compared.(B)
Typical example of EMG recording during the isometric contractions. Signal
onset was manually identi�ed and the root means square (RMS) was averaged
across 0–50 ms, 50–100 ms, and 100–150 ms time periods after onset.

completed an incremental CMJ test at �ve absolute loading
conditions (i.e., 17, 30, 45, 60, and 75 kg) using a Smith Machine
(Technogym, Gambettola, Italy). Two attempts were performed
at each loading condition and resting time between repetitions
and loads was set to 1 and 3 min, respectively. Instructions
to keep constant downward pressure on the barbell and to

jump as high as possible were given. Also, participants were
instructed to perform a CMJ depth of� 90� knee �exion and
to keep it constant across the di�erent loading conditions.
All jumps were performed on a force plate (Type 9260AA6,
Kistler, Switzerland) which recorded vertical ground reaction
force (GRF) data at 1 kHz, using an analog-to-digital converter
(DAQ system 5691A1, Kistler). Signals were collected through
the BioWare software (Kistler, Winterthur, Switzerland).For
each jump, the system center of mass (COM) velocity was
calculated from vertical GRF recordings (Linthorne, 2001).
Speci�cally, net GRF was calculated by subtracting the system
weight and then divided by the system mass (kg) to provide
acceleration. Acceleration was numerically integrated toprovide
instantaneous COM velocity. Further analyses were performed
on the concentric movement phase, de�ned from the onset of
upward motion (i.e., instantaneous COM velocity> 0 m�s� 1) to
the take-o� instant (i.e., GRF< 5 N). Only the repetition with
the highest mean velocity and correct COM displacement was
selected for further analysis. At each loading condition, mean
power output was obtained and used for comparisons. Moreover,
force and velocity were averaged across the concentric phase
of each load and modeled by a least-squares linear regression
model to calculate the FV pro�le variables. The intercepts of the
FV relationship with the force and velocity axes were taken to
calculate the maximal theoretical force (i.e., force valuewhen
velocity is 0; F0) and maximal theoretical velocity (i.e., velocity
when force is 0; V0), respectively. The slope of the relationship
(F0/V0) and maximal theoretical power (P0) (computed as
P0 D (F0�V0)/4) were also analyzed.

Repeated Countermovement Jump Test
Fifteen minutes after the completion of the FV incremental test,
participants carried out a 15-repetition CMJ test at maximum
intended velocity (Nindl et al., 2002). For each participant, the
external load used during the test was individually selected as the
load associated with barbell mean propulsive velocity of 1 m�s� 1,
interpolated from the load-velocity relationship performedon
that day. All repetitions were performed continuously, and
participants were verbally encouraged to jump as high as possible
and to maintain CMJ depth constant during all repetitions. A
linear velocity transducer (T-Force System; Ergotech, Murcia,
Spain) providing barbell displacement instantaneous feedback
was used to calculate mean propulsive power for each repetition.
The mean propulsive power averaged across all 15 CMJ
repetitions were measured and used for further comparisons
(CMJ15MP).

All signal data analyses were performed using custom-
written scripts computed with MATLAB (version R2015a; The
Mathworks, Natick, Massachusetts, USA).

Statistical Analysis
Descriptive statistics are presented as mean� standard deviation
(SD). Normal distributions of the data were con�rmed using a
Shapiro-Wilk test. Between-day reliability of isometric torque,
ultrasound and EMG parameters was assessed by calculating the
intraclass correlation coe�cient (ICC), coe�cient of variation
(CV) and corresponding 95% con�dence intervals. Separate
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FIGURE 2 | Muscle architecture assessments. Muscle thickness measurements on vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM), and vastus
intermedius (VI) were performed at each corresponding measurement location (% thigh length). Muscle thickness VI measurements were performed in the anterior
portion, in the same location as RF measurements. Pennationangles and linear estimations of fascicle lengths were averaged across the three VL muscle
measurements.

two-factor mixed ANOVAs were used to assess the e�ects of
time (within-participant factor: prevs.post) and training group
(between-participants factor: IHRTvs. NT) on the FV-pro�le
variables (i.e.,F0, V0, P0, Slope), CMJ15MP, MVF, EMGMVF and
VL pennation angle and fascicle length. A three-factor mixed
analysis of variance (ANOVA) was used to evaluate the e�ects of
training group (between-participants factor: IHRTvs.NT), time
(within-participant factor: prevs.post) and loading condition
(within-participant factor: 17, 30, 45, 60, and 75 kg) on power
output. Separate three-factor mixed ANOVAs were employed
to evaluate the e�ects of training group (between-participants
factor: IHRT vs. NT), time (within-participant factor: prevs.
post) and contraction timing (i.e., F50, F100, F150, and EMG0� 50,
EMG50� 100, and EMG100� 150, in the isometric force and EMG
variables, respectively) on explosive strength and EMG activation
variables. Finally, a three-factor mixed ANOVA was also used to
assess the e�ects of training group (between-participants factor:
IHRT vs.NT), time (within-participant factor: prevs.post) and
muscle site (eight level within-participant factor: VL, RF, VI,
and VM muscles at each corresponding thigh length: 20, 50,
and 60%). Alpha was set at 0.05 for ANOVAs. Generalized Eta-
Squared measures of e�ect size and thresholds (0.02 [small], 0.13
[medium], and 0.26 [large]) were calculated along with ANOVA
e�ects (Bakeman, 2005).

In addition to the null-hypothesis statistical testing,
standardized di�erences (i.e., Cohen'sd e�ect sizes; thresholds:
> 0.2 [small], > 0.6 [moderate], > 1.2 [large], and very large
[> 2]; Hopkins et al., 2009) with 90% con�dence intervals
and qualitative probabilistic inferences indicating con�dence
(possibly, likely, most likely, almost certainly) and magnitude
levels of the observed changes (trivial, small, moderate, large, very
large) were calculated. All statistical analyses were performed
using R software (version 3.3.2,R Core Team, 2017). Packages

“ez” (Lawrence, 2016) and “mbir” (Peterson, 2017) were
employed to perform ANOVA and magnitude-based inferences,
respectively.

RESULTS

Reliability of Isometric and Muscle
Architecture Measurements
Reliability data on the isometric strength, voluntary activation
and muscle architecture variables is shown inTable 2.

Muscle Architecture
Muscle thickness values for each corresponding training group
are shown inFigure 3A. ANOVA showed a main e�ect of muscle
site (F D 38.00,p < 0.001,� 2

G D 0.43), and a time� muscle
site interaction e�ect (F D 10.85,p < 0.001,� 2

G D 0.02) on
muscle thickness, due tosmall increments in VL50, VI and
VM muscles (Figure 3B). No main e�ect of time (F D 3.36,
pD 0.080,� 2

G < 0.01), training group� time (FD 0.01,pD 0.939,
� 2

G < 0.01) or training group� time � muscle site interaction
e�ects were observed on muscle thickness (F D 0.56,p D 0.722,
� 2

G < 0.01).
No main e�ects of time (12.1� 1.4 vs. 11.9 � 1.3� , pre

to post-training respectively;F D 0.29,p D 0.596,� 2
G < 0.01)

or training group (F D 0.03, p D 0.871, � 2
G < 0.01) were

observed on VL pennation angle. A small training group�
time e�ect was observed (F D 3.06,p D 0.094,� 2

G D 0.02) due
to small decrements in the IHRT group (12.3� 1.3 vs. 11.8
� 1.3� and 11.8� 1.6 vs. 12.1 � 1.4� , in the IHRT and NT
groups, respectively;Figure 3). Similarly, no main e�ects of time
(F D 0.07,p D 0.790,� 2

G < 0.01) and a trivial training group�
time interaction e�ect (115.2� 16.8vs.118.2� 16.2 mm and
120.5� 22.2vs.116.3� 21.4 mm, in the IHRT and NT groups,
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TABLE 2 | Reliability outcomes of isometric strength (N), electromyography (EMG0� 50, EMG50� 100, and EMG50� 100 [% MVCEMG]; EMGMVC [mV]) and muscle
architecture (RF, VI, VL, and VM muscles thickness at 20, 50, or 60% of thigh length [mm]; pennation angle [� ] and fascicle length [mm]) variables measured from the two
repeated measurements prior to the training intervention.

Test 1 Mean � SD Test 2 Mean � SD CV % (95% CI) ICC (95% CI)

ISOMETRIC STRENGTH

MVF 890.0 � 187.3 883.2 � 181.4 3.76 (2.3, 5.22) 0.97 (0.93, 0.99)

F50 151.4 � 70.3 176.0 � 52.6 24.71 (14.21, 35.21) 0.68 (0.2, 0.87)

F100 459.4 � 145.8 481.6 � 101.1 11.39 (5.12, 17.66) 0.86 (0.66, 0.94)

F150 621.1 � 175.3 631.1 � 134.0 8.69 (4.01, 13.36) 0.90 (0.75, 0.96)

ELECTROMYOGRAPHY

EMG0� 50 60.3 � 26.6 68.2 � 18.7 23.5 (12.62, 34.38) 0.52 (-0.18, 0.81)

EMG50� 100 87.6 � 25.6 95.1 � 21.4 17.3 (11.17, 23.43) 0.45 (-0.35, 0.78)

EMG100� 150 77.8 � 18.8 83.1 � 18.6 14.3 (8.86, 19.74) 0.56 (-0.08, 0.82)

EMGMVC 0.23 � 0.10 0.25 � 0.12 9.44 (6.03, 12.86) 0.97 (0.93, 0.99)

MUSCLE ARCHITECTURE

RF50 23.8 � 2.9 23.6 � 2.9 2.3 (1.13, 3.48) 0.96 (0.9, 0.98)

RF60 25.3 � 2.5 24.7 � 2.8 3.27 (2.13, 4.41) 0.93 (0.82, 0.97)

VI50 21.5 � 4.1 21.5 � 4.3 3.15 (2.02, 4.28) 0.98 (0.95, 0.99)

VI60 22.2 � 4.5 22.3 � 5.1 4.02 (2.1, 5.93) 0.96 (0.91, 0.98)

VL20 17.4 � 5.7 17.9 � 4.7 8.81 (3.59, 14.02) 0.93 (0.83, 0.97)

VL50 25.7 � 2.6 25.8 � 2.9 2.72 (1.75, 3.68) 0.95 (0.87, 0.98)

VL60 27.7 � 2.9 26.9 � 2.8 2.92 (1.64, 4.2) 0.93 (0.84, 0.97)

VM20 20.7 � 4.7 20.9 � 5.1 6.36 (3.65, 9.07) 0.94 (0.85, 0.98)

VL P. Angle 11.7� 1.7 12.5 � 1.4 6.99 (4.65, 9.33) 0.84 (0.61, 0.94)

VL F. Length 124.2� 22.3 113.3 � 18.9 8.33 (5.36, 11.31) 0.83 (0.61, 0.93)

FIGURE 3 | (A) Vastus lateralis (VL), rectus femoris (RF), vastus intermedius (VI), and vastus medialis (VM) thickness raw values at each corresponding percentage of
thigh length before (gray-�lled boxes) and after (white boxes) training. Horizontal thick lines within bars are mean andupper and lower bars edges de�ne standard
deviation. Individual observations are shown as gray or white circles, respectively.(B) Cohen's d standardized mean differences with 90% con�dence intervals and
magnitude-based inferences for the muscle thickness (subscripts indicate the respective location of measurement relative to thigh length), pennation angle (PA), and
fascicle length (FL) variables.
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respectively;F D 2.57,p D 0.123,� 2
G < 0.01) were observed on

fascicle length (Figure 3B).

Isometric Force
There was a main e�ect of time on MVF (F D 29.96,p < 0.001,
� 2

G D 0.06) due to increments in both experimental groups. No
main e�ect of training group (F D 2.89,p D 0.104,� 2

G D 0.12)
or time � training group interaction (F D 0.22,p D 0.645,
� 2

G < 0.01) were observed on MVF (Figure 4A). Likewise, no
main e�ects of time (F D 0.04,p D 0.853,� 2

G < 0.01) or time�
training group interaction e�ects (FD 0.25,pD 0.620,� 2

G < 0.01)

were observed on the explosive isometric strength (Figure 4A).
Magnitude-based inferences are shown inFigure 4C.

Electromyography (EMG)
No main e�ects of time (F D 0.64,p D 0.432,� 2

G < 0.01) or
training group (F D 0.17,p D 0.686,� 2

G < 0.01) were found
on EMGMVF. Likewise, there was no training group� time
interaction e�ect (0.22� 0.07vs.0.23� 0.08 mV in the IHRT
group and 0.24� 0.15vs.0.25� 0.13 mV in the NT group, pre
to post-training, respectively;F D 0.00,p D 0.952,� 2

G < 0.01).
ANOVA showed no main e�ects of time (F D 0.04,p D 0.853,

FIGURE 4 | (A) Isometric explosive and maximal force values before and after the training intervention at each corresponding environmental condition. (B) Voluntary
activation levels (EMG RMS normalized to EMGMVC) before and after the training intervention. In top panels, horizontal thick lines within bars are mean and upper and
lower bars edges de�ne standard deviation. Individual observations are shown as gray or white circles, respectively. Panels (C,D) display magnitude-based inferences
for the isometric strength and EMG activation variables.
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� 2
G < 0.01) or time� training group interaction e�ect on the

EMG activation during the explosive contractions (F D 0.25,
p D 0.620,� 2

G < 0.01;Figures 4B,D).

Force-Velocity Test
Main e�ects of time (FD 30.91,p< 0.001,� 2

G D 0.10) and loading
condition (F D 34.18,p < 0.001,� 2

G D 0.07) were observed
on power output. However, no meaningful training group�
time (F D 0.22,p D 0.647,� 2

G < 0.01), time� load (F D 1.97,
pD 0.132,� 2

G < 0.01), training group� load (FD 0.08,pD 0.932,
� 2

G < 0.01) or training group� load� time (F D 1.89,pD 0.145,
� 2

G < 0.01) interaction e�ects were observed (Figure 5).
Regarding the FV pro�le parameters, signi�cant main e�ects

of time were observed onF0 (35.6� 5.4vs.38.5� 5.4 N�kg� 1;
F D 6.55,p D 0.018,� 2

G D 0.07) andP0 (29.8� 4.1vs.31.5�
5.0 W�kg� 1; F D 6.45,p D 0.019,� 2

G D 0.04). There was a main
e�ect of training group onP0 (F D 4.94,p D 0.037,� 2

G D 0.17)
due to greater values in the IHRT compared to the NT group
(32.4� 3.2vs.28.7� 4.6 W�kg� 1). No main e�ects of time on
V0 (3.38� 0.51vs.3.30� 0.54 m�s� 1; F D 0.43,p D 0.521,
� 2

G < 0.01),Slope(� 10.9� 2.9vs.� 12.1� 3.0 N�s�m� 1�kg� 1;
F D 2.19,p D 0.153,� 2

G D 0.04) or time� training group
interactions were observed on any of the FV pro�le variables
(F0: F D 0.33,p D 0.569,� 2

G < 0.01;V0: F D 1.33,p D 0.261,
� 2

G D 0.03;P0: F D 1.04,p D 0.320,� 2
G < 0.01;Slope: F D 0.39,

p D 0.541,� 2
G < 0.01;Figure 6A). Magnitude-based inferences

are displayed inFigure 6B.

Repeated CMJ Test (CMJ 15MP)
ANOVA showed a main e�ect of time on CMJ15MP (9.5 � 1.8
vs. 10.3 � 2.1 W�kg� 1; F D 16.15,p < 0.001,� 2

G D 0.04). A
small main e�ect of training group was observed (F D 3.81,
p D 0.064,� 2

G D 0.15), although no meaningful time� training

group interaction e�ects were observed (F D 0.18,p D 0.679,
� 2

G < 0.01;Figures 7A,B).

DISCUSSION

The present study examined the e�ects of an 8-week resistance
training intervention, under normoxic or moderate altitude
environmental conditions (i.e., intermittent exposure), onthe
functional (i.e., maximal and explosive strength performance),
voluntary EMG activation and morphological adaptations of the
quadriceps muscles. The main results, speci�c to the training
strategy employed, showed similar functional and morphological
training muscle responses in both environmental conditions.
Despite no meaningful between-group statistical di�erences,
opposite trends in pennation and fascicle length changes were
depicted.

Compared to NT, the IHRT intervention exhibited similar
maximal strength responses assessed either from the FV-
relationship (i.e.,F0) or using a single-leg knee extension
isometric MVC. These results contribute to the con�icting IHRT
research available showing signi�cant (Inness et al., 2016; Yan
et al., 2016) and non-meaningful changes in maximal strength
compared to training under normoxic conditions (Ho et al., 2014;
Kurobe et al., 2015). The wide variety of training protocols and
strength assessment procedures used in previous research [i.e.,
dynamic: direct (Inness et al., 2016) and indirect (Nishimura
et al., 2010) estimations of 1RM; static: bilateral (Yan et al., 2016)
and unilateral (Manimmanakorn et al., 2013a) isometric MVF]
make direct comparisons di�cult. Strength training responses
are known to be load and task-speci�c (Cormie et al., 2010a),
which may partially explain the con�icting evidence often
reported in the current IHRT literature. The �ve-load FV-pro�le

FIGURE 5 | (A) Power output values at each loading condition before (gray-�lled boxes) and following (white boxes) training. Horizontal thick lines within bars are
mean and upper and lower bars edges de�ne standard deviation.Individual observations are shown as gray or white circles, respectively.(B) Cohen's d standardized
mean differences and 90% con�dence intervals for each corresponding variable.
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FIGURE 6 | (A) Raw values of the FV pro�le related variables before (gray-�lled boxes) and after (white boxes) training.Slope units are N�s�m� 1�kg� 1. Horizontal thick
lines within bars are mean and upper and lower bars edges de�nestandard deviation. Individual observations are shown as gray or white circles, respectively.(B)
Cohen's d standardized mean differences and 90% con�dence intervals for each corresponding variable.

assessment procedure used in this investigation shows that
training adaptations were maximized in the loading conditions
close to the training load used (i.e., greatest changes in power
output in 60 kg;Figure 5), although no meaningful di�erences
between loading conditions were observed. Indeed, while “small”
to “moderate” changes in F0 and MVF occurred in both groups,
unclear changes in V0 and unchanged isometric explosive
performance were observed. Consequently, “small” changes in
the overall FV-performance (i.e., P0) were observed only in the
IHRT group, although group di�erences with NT were trivial (see
Figure 6). It should be noted that these responses are consistent
with the training load adjustment approach used. The fact that
training velocity was kept at 1 m�s� 1 and thus the training load
increased throughout the training period likely explains why
changes in maximal but no explosive strength parameters (i.e.,
F50, F100, F150, V0) were observed in both groups.

Neuromuscular and muscle morphological changes are
known to underpin changes in muscle strength following
resistance training (Folland and Williams, 2007). The use of
IHRT to maximize muscle growth remains one of the potential
training applications (Nishimura et al., 2010; Deldicque and
Francaux, 2013; Manimmanakorn et al., 2013a) even in the
absence of muscle functional adaptations (Kurobe et al., 2015).
In the present study, however, no di�erences between training
conditions were observed on the muscle thickness changes.
Both groups showed region-speci�c morphological changes,
with “small” changes in the thickness of VL and VI muscles
(seeFigure 3). The small magnitude of the observed muscle
thickness changes after both IHRT and NT is likely explained
by the high-intensity, power-oriented (Blazevich et al., 2003)
and short-term nature of the training intervention employed
(Blazevich et al., 2007). Despite unclear di�erences between

groups, a tendency toward smaller VL pennation angles and
greater fascicle lengths in the IHRT group was observed,
which has been previously linked with velocity-speci�c muscle
architecture responses (Blazevich et al., 2003). Variations in
the amount of skeletal muscle contractile tissue are known
to underpin changes in muscle architecture (Blazevich and
Sharp, 2005; Narici et al., 2016). However, while training-
speci�c changes in muscle architecture could be expected
(Blazevich et al., 2003), neither the training period length
nor the sets and repetitions schemes employed in the current
investigation were designed to speci�cally target skeletalmuscle
growth (Schoenfeld et al., 2017). Instead, a combination of
neuromuscular and structural changes of the muscle-tendon
unit is known to determine muscle power production (Cormie
et al., 2010a), which are likely to account for the improvements
in strength performance observed here. Notwithstanding, no
signi�cant changes in voluntary activation were observed during
isometric maximal and explosive strength assessments. Task-
speci�c adaptations (Buckthorpe et al., 2015), as well as the
high between-day variability observed in the EMG variables,may
explain the lack of neural e�ects observed in muscle activation.

It should be considered that the current experimental design
did not comprise a mid-intervention assessment, which would
have allowed to examine potential di�erences in the time course
of training-induced responses. While neural adaptations are
thought to be responsible for the early responses to resistance
training (Moritani and deVries, 1979; Folland and Williams,
2007), other biomechanical factors not comprised in the
current investigation, should have been also considered to reach
a comprehensive evaluation of the mechanisms determining
muscle performance. Task-speci�c neuromuscular adaptations
(i.e., changes in muscle coordination) and changes in the
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FIGURE 7 | (A) Mean power values obtained during the repeated CMJ test
(CMJ15MP). Horizontal thick lines within bars are mean and upper and lower
bars edges de�ne standard deviation. Individual observations are shown as
gray or white circles, respectively.(B) Cohen's d standardized mean
differences and 90% con�dence intervals for each corresponding variable.

mechanical properties of the muscle-tendon unit may have
occurred and should be addressed in future investigations.

Collectively, the results of the present investigation
display similar responses in terms of muscle strength
and muscle architectural adaptations following an 8-week
resistance training intervention. Nonetheless, these and
previous �ndings suggest that, contrary to earlier adverse
associations between altitude and resistance-training muscle
responses (Narici and Kayser, 1995), similar anatomical and
functional muscle strength responses can be achieved in both
environmental conditions. These results may be of relevance
for athletes and coaches planning their altitude training
strategies.
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