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A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their 
overlap representation within the DGLAP kinematic region and a further covariant extension to the 
ERBL one, is applied to the valence-quark pion’s case, using light-front wave functions inspired by the 
Nakanishi representation of the pion Bethe–Salpeter amplitudes (BSA). This simple but fruitful pion GPD 
model illustrates the general model building technique and, in addition, allows for the ambiguities related 
to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained 
by requiring a soft-pion theorem to be properly observed.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

GPDs provide a three-dimensional picture of hadrons [1], uni-
fying both Parton Distributions Functions (PDFs) and Form Fac-
tors into a single nonperturbative object which yields information 
about the distributions of partons within the light front. After 
their introduction 20 years ago [2–4], GPDs became a hot topic in 
hadron physics which many experimental and theoretical efforts 
have been since then devoted to (see e.g. Refs. [5–11]). Still today, 
they constitute a central goal contributing to guide experimental 
programs, within the framework of an international cooperative 
effort addressed to the understanding of the deep internal struc-
ture of hadrons on the basis of QCD. In order to gain insight into 
this internal structure, the appropriate description of GPDs plays 
an essential role.

To this purpose, either following a purely phenomenological 
approach [12–17] or handling a nonperturbative framework that 
might possess a direct connection with QCD (see e.g. Refs. [18–22]

* Corresponding author.
E-mail address: nabil .chouika @cea .fr (N. Chouika).
https://doi.org/10.1016/j.physletb.2018.02.070
0370-2693/© 2018 The Authors. Published by Elsevier B.V. This is an open access article
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and references therein), some genuine constraints should be cru-
cially observed. In particular, any theoretical construction properly 
endowed for an accurate extrapolation of the experimental GPD 
information is challenged by the need to fulfill the polynomiality
and positivity properties. Positivity is a quantum mechanics impli-
cation which results from the positivity of the norm in a Hilbert 
space, while polynomiality is the consequence of the Lorentz in-
variance in a quantum field theory, both very fundamental prop-
erties grounded on the underlying structure and symmetries of 
QCD. Only in very few cases, as e.g. Ref. [21], particular models 
have been developed by taking care of both properties simulta-
neously. More often, building a GPD model or applying a given 
computational technique implies to favor one or the other, with 
no guarantee for both being respected at the same footing. Never-
theless, an interesting approach was pioneered by the authors of 
Ref. [23], based on the GPD overlap representation, guaranteeing 
positivity, and its further covariant extension, respecting polynomi-
ality, guided by the Double Distribution representation. However, 
the technique was developed only for a specific algebraic model 
of light-front wave functions (LFWFs). We generalized it recently 
in a model-independent way based on the Radon inverse trans-
form in Ref. [24] and lengthily discussed therein a fully systematic 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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technique to achieve that goal. It is worth noting that another 
technique based on the inverse Laplace transform has been more 
recently presented in Ref. [25]. The basic ingredient for implement-
ing our method is the knowledge of the LFWF for the hadron, 
whichever model or computational framework might be employed 
to obtain it. This letter is particularly intended to illustrate this 
technique with its application to the LFWFs derived from a pion 
Bethe–Salpeter amplitude (BSA) based on the Nakanishi represen-
tation [26,27] in Refs. [18,28] and to the pion DGLAP GPD therein 
developed. But, specially, we also deal here with the ambiguities 
related to the covariant extension to the ERBL region, by using a 
soft-pion theorem [29] for their constraining, and thus produce a 
full sketch of the pion valence-quark GPD based on the Bethe–
Salpeter LFWFs.

2. The covariant extension of the GPD overlap representation: 
generalities

Let us here briefly sketch the approach of Ref. [24] for the co-
variant extension of GPDs obtained in the overlap representation 
from DGLAP to ERBL kinematical domains, specially emphasizing 
the resulting ambiguities.

GPDs are defined as a lightfront projection of a non-diagonal 
hadronic matrix element of a bi-local operator. For instance, the 
twist-2 chiral-even quark GPD of a pion can be written as follows:

Hq (x, ξ, t) = 1

2

∫
dz−

2π
ei x P+z−

(1)

×
〈

P + �

2

∣∣∣∣ ψ̄q (−z) γ +ψq (z)

∣∣∣∣P − �

2

〉∣∣∣∣
z+=0, z⊥=0

,

where P (resp. �) is the momentum average (resp. transfer) of the 
hadron states, t = �2 and x (resp. ξ = − �+

2 P+ ) is the longitudinal 
momentum fraction average (resp. transfer) of the quarks (q clas-
sically stands for the quark flavor). Due to time reversal invariance, 
the so defined GPDs are even in ξ and we will then restrict to 
ξ ≥ 0 in the following (unless explicitly stated otherwise). PDFs 
can be recovered from GPDs as their forward limit, � = 0, while 
the hadron elastic form factor can be expressed as a GPD sum rule. 
A bridge between PDFs and hadron form factors is thus paved by 
GPDs. We will further insist on this as a first benchmark for the 
construction of the GPD model.

On the other hand, it is well known that lightfront quantization 
allows the expansion of any hadron state of given momentum and 
polarization on a Fock basis of N-particles partonic states, weighted 
by the so-called lightfront wave functions (LFWFs) which contain 
all the nonperturbative physics [30]. Thus, one can express GPDs 
in terms of LFWFs [31], albeit the partonic picture and therefore 
the way the GPDs and LFWFs relate to each other depend on the 
considered kinematics.

In the so-called DGLAP region (|x| ≥ ξ ), the GPD is given by an 
overlap of LFWFs defined for the same number of constituents. In 
particular, keeping the example of the pion and restraining our-
selves to the valence contribution (i.e. the two-particle Fock sec-
tor), in the region x ≥ ξ , we have [7]:

Hu
π+ (x, ξ, t) =

∫
d2k⊥
16π3

�∗
ud̄

(
x − ξ

1 − ξ
,k⊥ + 1 − x

1 − ξ

�⊥
2

)

× �ud̄

(
x + ξ

1 + ξ
,k⊥ − 1 − x

1 + ξ

�⊥
2

)
, (2)

where, specializing to the π+ case, � is the pion LFWF for the 
ud̄ two-particle Fock sector. Eq. (2) provides us with a two-particle 
truncated expression for the pion GPD in the DGLAP kinematic do-
main, which highlights the underlying Hilbert space structure and 
makes possible to show the above-mentioned positivity property 
[31–34].

The GPD can be also generally derived in the other kinematic 
domain, called ERBL (ξ ≥ |x|), following the same overlap approach 
but then involving LFWFs for different numbers of constituents, 
namely N and N + 2. Thereupon, in our pion special case, no 
two-particle truncated expression suits within the overlap repre-
sentation, as the first non-vanishing contribution to the GPD will 
result from the overlap of LFWFs defined for the 2- and 4-particle 
Fock sectors. Indeed, the latter reflects a more general and deeper 
feature: inasmuch as independent descriptions of the DGLAP and 
ERBL regions will almost certainly break polynomiality (as stressed, 
for instance, in Ref. [7]), the observance of the Lorentz covariance 
will result from a delicate compensation of contributions to the 
GPD’s Mellin moments from both DGLAP and ERBL regions. There-
fore, Lorentz invariance strongly ties N- to (N + 2)-particle LFWFs, 
in general, and 2- to 4-particle ones, in our special case, thus pre-
venting from a consistently covariant description, in the overlap 
representation, for the valence-quark GPD approximated within the 
lowest Fock-basis sector.

In particular cases, covariant extensions of an overlap of LFWFs 
from the DGLAP to the ERBL region can be found in the litera-
ture [23,35]. As mentioned above, we have recently presented [24]
a general solution to this problem on the mathematical ground 
of a natural expression for the polynomiality condition: the Dou-
ble Distribution (DD) representation of the GPD. The polynomiality 
property is expressed by the condition that the GPD’s mth-order 
Mellin moment is a (m + 1)-degree polynomial in the skewness 
variable, 

∫ 1
−1 dxxm H(x, ξ, t) =∑m+1

k=0 c(m)

k (t)ξk , for all non-negative 
integers m. Let us now assume that there exists1 a function D(x, t)
with support x ∈ [−1, 1] for any t such that 

∫ 1
−1 dxxm D(x, t) =

c(m)
m+1(t), in such a way that the mth-order Mellin moments of 

H(x, ξ, t) − sgn(ξ)D(x/ξ, t) are polynomials of degree m in ξ . 
It can be thereupon formally and rigorously concluded [24,36]
that H(x, ξ, t) − sgn(ξ)D(x/ξ, t) results from the Radon trans-
form [37,38] of a given distribution F D ,2

H(x, ξ, t) − sgn(ξ)D(x/ξ, t)

=
∫
�

dβdα F D(β,α, t)δ(x − β − αξ) , (3)

where the support � = {
(β,α) ∈R

2/ |β| + |α| ≤ 1
}

reflects the 
physical domain of GPDs (x, ξ ∈ [−1, +1]). It should be noticed 
that, H(x, ξ, t) being even in ξ , F D(β, α, t) is an even function in 
α, D(x, t) is odd in x and, accordingly, c(m)

m+1(t) ≡ 0 for any even in-

teger m. In particular, c(0)
1 (t) ≡ 0 and thus 

∫ 1
−1 H(x, ξ, t) = c(0)

0 (t), 
not depending on ξ as the form factor sum rule requires. Fur-
thermore, D(x/ξ, t)/|ξ | is the Radon transform of the distribution 
G D(β, α, t) = D(α, t)δ(β) and, on top of this, according to [37,39], 
the pair of distributions (F D , G D) does not constitute a unique 
parametrization for the integral representation of the same given 
GPD but it can be transformed in a new couple (F , G) such that

H(x, ξ, t)

=
∫
�

dβdα
[

F (β,α, t) + ξ G(β,α, t)
]
δ(x − β − αξ) , (4)

1 The function D appears thus defined, at any value of t , by all their Mellin mo-
ments.

2 The sgn(ξ) comes from the jacobian of the change of variables x → x/ξ and 
makes transparent the α-parity of D(α, t) when ξ < 0. The same happens for D+
and D− in (6). This is why we consider there and here the general case ξ ∈ [−1, 1].
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where F (β, α) ≡ F D(β, α) − ∂/∂α χ(β, α) and G(β, α) ≡ G D(β, α)

− ∂/∂β χ(β, α) and χ(β, α) is any α-odd function vanishing on 
the boundary of �. The ensemble of transformations defined by all 
the possible functions χ(β, α) are labelled scheme transformations 
(sometimes named gauge transformations) and any of the resulting 
pairs (F , G) constitutes a particular scheme for the DD represen-
tation of the GPD H(x, ξ, t). In Ref. [24], we have generally and 
thoroughly discussed the three main schemes so far employed in 
the relevant literature, the way they are related to each other and 
their conditions and major implications. Here, let us specialize to 
the valence quark GPD, with support x ∈ [−ξ,+1], and use the fol-
lowing representation:

F (β,α, t) = (1 − β) h(β,α, t) + δ(β) D+(α, t) ,

G(β,α, t) = −α h(β,α, t) + δ(β) D−(α, t) , (5)

where h(β, α, t) is one single function for the quark DD, with sup-
port on �> = � ∩ {β > 0}, which fully defines the GPD within the 
DGLAP kinematic domain; while D+ (D−) is an α-even (α-odd) 
function with support α ∈ [−1, +1] which, supplemented by δ(β), 
is non-vanishing only along the line β = 0, a subset of measure 0
which only contributes to the ERBL kinematic region. If one plugs 
the DDs defined in Eq. (5) into Eq. (4), the GPD would read

H(x, ξ, t) = (1 − x)

∫
�

dβdα h(β,α, t)δ(x − β − αξ)

+ 1

|ξ | D+
(

x

ξ
, t

)
+ sgn(ξ) D−

(
x

ξ
, t

)
, (6)

whence it can be easily seen that D− contributes to the so-called 
Polyakov–Weiss D-term [40], linked to the DD G(β, α, t) in Eq. (4), 
while D+ is related to the DD F (β, α, t), and h(β, α, t) is the one 
single component for the DD in the Pobylitsa (P) scheme [41]. On 
the other hand, if one takes the forward limit in Eq. (4) with the 
DDs given by Eq. (5), we would obtain for the PDF

q(x) = H(x,0,0) = 2(1 − x)

1∫
0

dα h(x,α,0) (7)

+ 2δ(x)

1∫
0

dα D+ (α,0)

︸ ︷︷ ︸
= 0

,

which makes manifest the condition to keep conserved the quark 
number. Indeed, as D+ is required not to contribute within the 
DGLAP domain, then: 

∫ 1
0 dαD+(α, t) ≡ 0, for any t , and D+ will 

not contribute to the form factor either through the sum rule,

Fπ (t) =
1∫

−1

dxH(x, ξ, t) =
∫
�

dβdα (1 − β)h(β,α, t) . (8)

Whether, and under which condition, a given GPD can be rep-
resented by DDs in the P-scheme is an issue discussed at length 
in Ref. [24]. We concluded therein that a DD h(β, α, t), either 
summable over � or not, can be always obtained as a represen-
tation for any GPD. Moreover, it was also shown in Ref. [24] that 
two GPDs with an equal DGLAP region will differ only by terms of 
the form D+ and D− , as those in Eq. (6) which result from con-
tributions to the DDs F and G in Eq. (5) only lying along the line 
β = 0.
Then, eventually, the covariant extension of the GPD overlap 
representation will result from obtaining the DD h(β, α, t) by the 
inversion of Eq. (6) for the DGLAP GPD and the further computa-
tion of the ERBL GPD by the direct application of the same equa-
tion with the so obtained DD. However, the knowledge of the GPD 
in the DGLAP domain can only constrain the ERBL GPD up to the 
additional terms given by D+ and D− in Eq. (6), which generally 
express the ambiguity for this covariant extension.

3. Taming the ambiguities with the soft pion theorem

As far as D+ and D− in (5) have support for α on [−1, 1] and 
appear included in terms only defined along the line β = 0, by 
means of δ(β), they solely contribute to the ERBL kinematic region, 
|x| ≤ ξ , as it is clearly manifest from Eq. (6). Such terms cannot 
be grasped from the DGLAP information but can be, at least, con-
strained with the use of a soft pion theorem that states in the 
chiral limit [29]:

H I=0 (x, ξ = 1, t = 0) = 0 , (9)

H I=1 (x, ξ = 1, t = 0) = ϕπ

(
1 + x

2

)
, (10)

where the isoscalar (isovector) pion GPDs, H I=0 (H I=1), can be de-
fined as the odd (even) contribution to the GPD Hu

π+ :

H I=0 (x, ξ, t) = Hu
π+ (x, ξ, t) − Hu

π+ (−x, ξ, t) , (11)

H I=1 (x, ξ, t) = Hu
π+ (x, ξ, t) + Hu

π+ (−x, ξ, t) , (12)

and where ϕπ is the pion Distribution Amplitude (DA).
Let us define, still for the quark GPD (−ξ ≤ x ≤ 1),

HP
u
π+(x, ξ, t) = (1 − x)

∫
�

dβdα hu
π+(β,α, t) δ(x −β −αξ) (13)

where hu
π+ results from the inversion of Eq. (6) with the DGLAP 

GPD given by the overlap of LFWFs, Eq. (2). Then, after plugging 
(6) into (11) and the result into (9), one is left with:

D−(x,0) = 1

2

[
HP

u
π+(−x, ξ = 1, t = 0)

− HP
u
π+(x, ξ = 1, t = 0)

]
, (14)

which fixes the value of D− at vanishing squared momentum 
transfer. If we apply next Eqs. (6), (12) to (10), we would have

D+(x,0) = 1

2

[
ϕ

(
1 + x

2

)
− HP

u
π+(x, ξ = 1, t = 0)

− HP
u
π+(−x, ξ = 1, t = 0)

]
, (15)

constraining thus D+ at t = 0. An interesting remark in order here 
is the following: when one performs the integration on x over its 
support [−1, 1] of both sides of (15), the r.h.s. gives

1

2

1∫
−1

dxϕ

(
1 + x

2

)

− 1

2

1∫
−1

dx
[

HP
u
π+(x, ξ = 1, t = 0) + HP

u
π+(−x, ξ = 1, t = 0)

]

=
1∫

0

dxϕ(x) −
1∫

−1

dx q(x) = 0 , (16)
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its vanishing relying only on the correct normalization of both DA 
and PDF and, accordingly, imposing for the l.h.s. that3

1∫
0

dx D+(x,0) = 0 , (17)

the condition given by (7), resulting here from a soft pion theorem.
If we restrain ourselves to the pion valence-quark GPD and as-

sume that D+ is a continuous function, we can be fully general 
when writing

D+(α,0) = (1 − α2)

∞∑
i=1

ci C (3/2)

2i (α) , (18)

where the factor 1 −α2 reflects that D(±1, 0) = 0, a condition im-
posed by factorisation, as the GPD has to be continuous at x = ±ξ . 
On top of this, the expansion in the orthogonal 3/2-Gegenbauer 
polynomials of even degree (excluding the first one, C (3/2)

0 = 1) 
guarantees both the α-even parity and the fulfilling of the condi-
tion (17),

1∫
0

dα D+(α,0) (19)

= 1

2

∞∑
i=1

ci

1∫
−1

dα (1 − α2) C (3/2)

0 (α) C (3/2)

2i (α) = 0 .

Therefore, D+ and D− can be always chosen so that the soft pion 
theorem expressed by Eqs. (9)–(10) may be fulfilled and, for the 
same price, the ambiguities in the covariant extension from DGLAP 
to ERBL domains be constrained at vanishing squared momentum 
transfer.

Indeed, the issue of the observance of the soft pion theorem 
can be approached in the other way around.

We should emphasise once more that, in terms of LFWFs, the 
ERBL region is understood as an overlap of N and N + 2 partons 
LFWFs, starting in the case of the pion at N = 2. On the other hand, 
the covariant extension based on the Radon transform insures the 
polynomiality property, and any idea of Fock state truncation in 
the ERBL region is lost. One can only say that the information from 
higher Fock states LFWFs required to fulfil polynomiality is prop-
erly captured. But since the PDA is completely described by the 
two-body LFWF, one can wonder whether there is some genuine 
information in the 4-body LFWF interplaying with the 2-body one 
via overlap to produce a GPD fulfilling the soft pion theorem in 
our lowest-Fock-states approach.

Rephrasing the question in a more technical way, in connection 
with the Radon transform representation: does the information 
along the line β = 0 in DD space play a crucial role to guaran-
tee the correct limit in the ERBL maximally skewed kinematic? To 
the extent of our knowledge, there is no conclusive answer to this 
question. Previous results [28] have shown how critical the im-
plementation of the Axial-Vector Ward-Takahashi identity is when 
solving the Dyson-Schwinger and Bethe–Salpeter equations in or-
der to fulfil the soft pion theorem in covariant computations. We 
certainly expect the same thing to be true within the overlap of 
LFWFs framework. If the covariant extension of the DGLAP GPD 

3 The even parity of D+ , manifest from Eq. (15)’s r.h.s. because ϕ(x) is symmetric 
under the exchange x → 1 − x, implies ∫ 1

0 dαD+ = 0 as the immediate consequence 
of its vanishing after integration over its support [−1, 1].
obtained from the appropriate 2-body LFWFs is not sufficient to 
fully reconstruct the ERBL in the kinematic limit of the soft pion 
theorem, the terms D+ and D− should be eventually adjusted in 
any case to supply a full description of the pion.

4. The Nakanishi-based Bethe–Salpeter model

We have described a systematic and fully general prescription 
aimed at obtaining a hadron GPD, on its entire kinematic domain, 
from the knowledge of the relevant LFWFs. The prescription is 
essentially based on accommodating the overlap of these LFWFs 
within the DD representation. The pion has been so far used as a 
simple guiding case and, still in what follows, we will consider a 
specific pion GPD model, the one introduced in Ref. [18] in order 
to illustrate this prescription. Owing to the simplicity of the pion 
model, we will produce fully algebraic results and, very specially, 
show how to deal with the soft pion theorem and the ambiguities 
in the covariant extension from DGLAP to ERBL kinematic domains.

The basic ingredient for the GPD construction is the LFWF 
obtained by the appropriate integration and projection of the 
pion Bethe–Salpeter wave function resulting from the algebraic 
model described in [42] and based on its Nakanishi represen-
tation [26,27]. In this model developed in euclidean space, the 
quark propagator is S(q) = [−iγ ·q + M]/[q2 + M2] and the Bethe–
Salpeter amplitude is given by:

�π(q, P ) = iNγ5

∞∫
0

dω

1∫
−1

dz
ρ(ω, z)M2(

q − 1−z
2 P

)2 + M2 + ω
, (20)

where ρ(ω, z) is the Nakanishi weight modelled as ρ(ω, z) =
δ(ω)(1 − z2) and N is an overall normalization constant. The 
Bethe–Salpeter wave function is obtained as S(q)�π (q, P )S(q − P ). 
As shown in Ref. [18] (the details of the computation can be found 
therein), there are two contributions to the LFWF, the helicity-0:

�l=0 (x,k⊥) = 8
√

15π
M3(

k2⊥ + M2
)2 (1 − x) x , (21)

and the helicity-1:

i k⊥ j �l=1 (x,k⊥) = 8
√

15π
k⊥ j M2(

k2⊥ + M2
)2 (1 − x) x (22)

with j = 1, 2 and where M is the model mass parameter intro-
duced above. One can readily notice that our LFWFs do not show 
any (x, k⊥) correlations, and can be written as f (x) g(k2⊥). This 
is due to our simple choice of the Nakanishi weight in Eq. (20), 
ρ(ω, z). There is no doubt that correlations would arise from a 
proper solution of the BSE. But, despite the lack of correlations, 
this simple algebraic model remains insightful for our exploratory 
work, and illustrates well our extension technique. Proceeding with 
the computations, Eqs. (21), (22) can then be combined into the 
following expression,

Hu
π+ (x, ξ, t)

∣∣
ξ≤x = (23)∫

d2k⊥
16π3

[
�∗

l=0

(
x − ξ

1 − ξ
, k̂⊥

)
�l=0

(
x + ξ

1 + ξ
, k̃⊥

)

+ k̂⊥ · k̃⊥ �∗
l=1

(
x − ξ

1 − ξ
, k̂⊥

)
�l=1

(
x + ξ

1 + ξ
, k̃⊥

)]
,

with k̂⊥ = k⊥ + 1−x
1−ξ

�⊥
2 and k̃⊥ = k⊥ − 1−x

1+ξ
�⊥

2 , which extends 
Eq. (2) for the GPD of our special π+ case. One is thus left with:
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Hu
π+ (x, ξ, t)

∣∣
ξ≤x = 15

2

(1 − x)2(x2 − ξ2)

(1 − ξ2)2

1

(1 + ζ )2
(24)⎛

⎜⎜⎜⎜⎜⎝3 + 1 − 2ζ

1 + ζ

arctanh

(√
ζ

1 + ζ

)
√

ζ

1 + ζ

⎞
⎟⎟⎟⎟⎟⎠ ,

as a fully algebraic result for the DGLAP region, where

ζ = −t

4M2

(1 − x)2

1 − ξ2
, (25)

encodes the correlated dependence of the kinematical variables 
x and t , as a natural translation of the kinematical structure of 
Eqs. (21), (22). It should be noticed that such a correlation is 
fully consistent with the results of pQCD when x → 1− , as any 
t-dependence in Eq. (24) appears thus suppressed by a factor 
(1 − x)2 [43]. Indeed, in this limit, Eq. (24) yields:

Hu
π+(x, ξ, t)

∣∣
ξ≤x = 30

(1 − x)2

1 − ξ2

(
1 − 2

1 − x

1 − ξ2
+ O

(
(1 − x)2

))
,

(26)

where the leading term plainly agrees with the one obtained 
in Ref. [43],4 while the first subleading correction is also shown 
not to depend on t . The forward limit of (24),

q(x) = Hu
π+(x,0,0) = 30x2(1 − x)2 , (27)

yields the same result which is found in Ref. [28] as an excellent 
approximation for the pion’s valence dressed-quark PDF [44]. Fur-
thermore, applying the sum rule for the electromagnetic pion form 
factor, expressed by (8), one is left with

Fπ (t) = 720
M4

t2

⎛
⎝1 −

√
4 − t/M2

−t/M2
arctanh

⎛
⎝
√

−t/M2

4 − t/M2

⎞
⎠

+ 1

3
arctanh2

⎛
⎝
√

−t/M2

4 − t/M2

⎞
⎠
⎞
⎠ (28)

= 1 − 4

21

(
− t

M2

)
+ O(t2) , (29)

whence the model mass parameter can be identified as

M =
√

24

21

1

rπ
= 318 ± 4 MeV , (30)

where we use Fπ (t) � 1 − r2
π/6 (−t) and take for the pion elec-

tric charge radius: rπ = 0.672 ± 0.008 fm [45]. Thus, Eq. (28)
supplemented with Eq. (30) provide us with a model prediction 
which, as can be seen in Fig. 1, compare fairly well with contem-
porary data, up to −t � 2.5 GeV2. At large t , nonetheless, Eq. (28)
behaves as 1/t2, whereas the expected behaviour is 1/t [46,47]. 
This wrong behaviour can be well understood, as explained in 
Ref. [28], because Eqs. (21)–(22) have been derived from a Bethe–
Salpeter wave function omitting contributions from the pseudovec-
tor components that are required for a complete description of the 
pion [48,49]. One should also keep in mind that, in the covariant 
approach, the large t behaviour can also be produced by the dress-
ing of the insertion [50,51].

4 The limit x → 1− of (24) given by Eq. (26) is equivalent to q(x)/(1 − ξ2), as it 
is displayed by Eq.(4) of Ref. [43].
Fig. 1. Pion’s electromagnetic form factor expressed by Eq. (28) (dashed red line), 
with the model mass parameter fixed by Eq. (30) and displayed in terms of −t
in GeV, compared to experimental data [52] (red solid circles) and to the results 
obtained in Ref. [28] within a covariant DS-inspired calculation (black solid line) 
where a different model mass parameter, M = 0.40 GeV, was determined. (For in-
terpretation of the colours in the figure(s), the reader is referred to the web version 
of this article.)

Then, as well the PDF as the pion form factor that result from 
Eq. (24) consistently agree with the zero skewness GPD sketched 
in Ref. [28], within the context of a covariant calculation inspired 
by the solutions of Dyson-Schwinger (DS) and Bethe–Salpeter (BS) 
equations (see Fig. 1). More than this, Eq. (24) specialized at ξ = 0
can be readily accommodated within the general form given by 
Eq. (16a) in Ref. [28],

Hu
π+(x,0, t) = q(x)N (t)Cπ (x, t)Fπ (t) (31)

such that the function Cπ (x, t), defined to express the (x, t) corre-
lations in the GPD, takes the form

Cπ (x, t) = C D S
π (x, t)

(
1 − 2

3
ζ0 +O(ζ 2

0 )

)
(32)

with C D S
π (x, t) = 1/(1 + ζ0)

2 being the result obtained in Ref. [28]
and ζ0 = ζ(ξ = 0) = −t/[4M2](1 − x)2, while

1

N (t)
=

1∫
−1

dx q(x)Cπ (x, t) = 1

N D S(t)

(
1 − 1

21

−t

M2
+O(t2)

)
.

(33)

Then, at low-t , Cπ (x, t) � C D S
π (x, t) and N (t) � N D S(t) such that 

Eq. (24) can both support the approximations made in Ref. [28]
and be understood as an extension, beyond the zero skewness 
limit, of the results therein obtained. This extended DGLAP GPD 
appears displayed in Fig. 2.

Now, according to the prescription described in the previous 
section, the first step for the covariant extension from DGLAP to 
ERBL domains of Eq. (24) consists in performing the inversion of 
the Radon transform in Eq. (6) for the DGLAP GPD, and obtaining 
thus the DD in the P scheme. A careful computation, based on a 
sensible choice of trial functions, allows for the derivation of the 
following closed expression:

hu
π+(β,α, t) =15

2
θ(β)

[
1 + −t

4M2

(
(1 − β)2 − α2

)]−3

×
[

1 − 3(α2 − β2) − 2β

+ −t

4M2

(
1 − (α2 − β2)2 − 4β(1 − β)

)]
, (34)
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Fig. 2. DGLAP GPD given by Eq. (24) and obtained from the overlap of LFWFs, 
Eqs. (21)–(22), expressed by Eq. (23), plotted in terms of x and ξ , at t = 0 (up-
per panel); and in terms of x and t at ξ = 0 (lower panel).

which, plugged into Eq. (13), gives

H P
u
π+(x, ξ,0)

∣∣|x|≤ξ

= 15

2

(1 − x)(ξ2 − x2)

ξ3(1 + ξ)2

(
x + 2xξ + ξ2

)
, (35)

a simple closed expression for the ERBL GPD in the case t = 0. 
Of course, Eq. (13) can also provide us with ERBL GPD results for 
any nonvanishing t . We will however focus on t = 0, wherein, for 
the pion’s case and as explained in Sec. 3, there is a unique way to 
perform the covariant extension by fulfilling the soft pion theorem.

Indeed, if one applies Eq. (35) to Eq. (14), the additional D-term 
is constrained by

D−(α,0) = −15

4
α(1 − α2) , (36)

such that (9) is observed. In addition, the asymptotic DA, ϕ(x) =
6(1 − x)x can be straightforwardly derived from the LFWFs5

expressed by Eqs. (21)–(22) and, together with the ERBL GPD 
in Eq. (35), plugged into Eq. (15) to give:

D+(α,0) = 9

8
(1 − α2)(5α2 − 1) = 3

4
(1 − α2) C (3/2)

2 (α) , (37)

which, in particular, corresponds to the general form given by 
Eq. (18), with c2 = 3/4 and, otherwise, ci = 0.

Then, as can be seen in Fig. 3, only when Eq. (35) is supple-
mented by Eqs. (36)–(37), as indicated by Eq. (6), the full GPD 
fulfills the soft pion theorem, Eqs. (9)–(10). This full GPD ap-
pear displayed in Fig. 4, as a function of x, at t = 0 and for 
ξ = 0, 0.25, 0.5, 0.75 and 1. It is worthwhile to notice that the os-
cillatory behaviour displayed by the ERBL GPD, the more and more 
manifest when ξ → 0, results from the structure of the term D+ , 
generally written in Eq. (18), and that can be in no way inferred 
from the knowledge of the GPD within the DGLAP kinematic do-
main.

5 The asymptotic DA can be also directly obtained from the BSA, Eq. (20), as 
shown in Ref. [42].
Fig. 3. Check of the soft pion theorem. H I=1
P (2x − 1, 1) (red solid line), the max-

imally skewed GPD with D+(α, 0) ≡ 0, clearly differs from the asymptotic pion’s 
distribution amplitude, ϕ(x) (black solid line). Only after incorporating the term 
D+(α, 0) given by (37) do H I=1(2x − 1, 1) (red dotted line) and ϕ(x) agree with 
each other, as dictated by Eq. (10).

Fig. 4. The full GPD at t = 0, expressed by Eq. (6), where H P
u
π+ is given by Eq. (24)

for DGLAP and by Eq. (35) for ERBL, and D− and D+ appear constrained by Eq. (36)
and Eq. (37), respectively. The results displayed stand for ξ = 0, 0.25, 0.5, 0.75 and 1.

5. Discussion and conclusions

The systematic technique developed very recently in Ref. [24]
for a GPD model building based on the knowledge of the hadron 
LFWFs, their overlap representation and the inverse Radon trans-
form approach, thus respecting both polynomiality and positivity 
at the same footing, has been here illustrated by being applied to 
a particular simple case: a pion’s valence-quark GPD model con-
structed on the basis of a LFWF derived from a pion’s BSA built 
within the Nakanishi representation. The kinematical structure of 
the LFWFs remains simple, as it results from a BSA that disregards 
some relevant contributions for a complete pion’s description. As a 
consequence, a realistic nonperturbative PDA or the correct large-t
power behaviour for the pion’s form factor remains for instance 
out of the model’s scope. However, owing to this simplicity, fully 
algebraic closed results have been obtained for any kinematics; 
and being so, the model has revealed itself to be very insightful, 
yielding explicit correlations among the GPDs variables beyond the 
usual Regge parametrizations, in agreement with the predictions 
of pQCD. In particular, the model predicts the pion’s form factor 
in fair agreement with empiric information up to −t � 2.5 GeV, 
with the pion’s electric charge radius as the only input, and yields 
a PDF in the forward limit and a zero skewness GPD at low-t
both in excellent agreement with the results obtained within the 
DS- and BS-inspired covariant approach in Ref. [28]. As the well-
reproduced leading contribution, in this latter case, is independent 
of t , the commonplace for all the model’s achievements is that the 
large-t kinematical region appears not to be under consideration. 
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This seems to suggest that the use of more sophisticated LFWFs 
models will essentially impact the large-t region. One should any-
how keep in mind that the Nakanishi representation, is completely 
general. The very same procedure can thus be applied with more 
realistic BSA and propagators including DCSB effects like the run-
ning quarks and gluons masses. This work therefore paves the way 
for a proper evaluation of the contribution of the leading Fock state 
to the 3D structure of the pion and, beyond, of the one of the nu-
cleon.

Last but not least, in addition to illustrating the approach of 
Ref. [24] by building a simple but fruitful algebraic pion GPD 
model, we have also shown how a soft-pion theorem can be in-
voked to constrain the ambiguities which result from the covariant 
extension from DGLAP to ERBL. As far as the theorem relies on 
the chiral symmetry and Ward-Takahashi identities, a tantalizing 
connection between underlying symmetries and a univocal relation 
of the GPD descriptions within DGLAP and ERBL domains appears 
also to be herefrom suggested, at least in the pion case.
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