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Abstract

Most of the research studies developed applying microarray technology to the characteriza-

tion of different pathological states of any disease may fail in reaching statistically significant

results. This is largely due to the small repertoire of analysed samples, and to the limitation

in the number of states or pathologies usually addressed. Moreover, the influence of poten-

tial deviations on the gene expression quantification is usually disregarded. In spite of the

continuous changes in omic sciences, reflected for instance in the emergence of new Next-

Generation Sequencing-related technologies, the existing availability of a vast amount of

gene expression microarray datasets should be properly exploited. Therefore, this work pro-

poses a novel methodological approach involving the integration of several heterogeneous

skin cancer series, and a later multiclass classifier design. This approach is thus a way to

provide the clinicians with an intelligent diagnosis support tool based on the use of a robust

set of selected biomarkers, which simultaneously distinguishes among different cancer-

related skin states. To achieve this, a multi-platform combination of microarray datasets

from Affymetrix and Illumina manufacturers was carried out. This integration is expected to

strengthen the statistical robustness of the study as well as the finding of highly-reliable skin

cancer biomarkers. Specifically, the designed operation pipeline has allowed the identifica-

tion of a small subset of 17 differentially expressed genes (DEGs) from which to distinguish

among 7 involved skin states. These genes were obtained from the assessment of a number

of potential batch effects on the gene expression data. The biological interpretation of these

genes was inspected in the specific literature to understand their underlying information in

relation to skin cancer. Finally, in order to assess their possible effectiveness in cancer diag-

nosis, a cross-validation Support Vector Machines (SVM)-based classification including fea-

ture ranking was performed. The accuracy attained exceeded the 92% in overall recognition

of the 7 different cancer-related skin states. The proposed integration scheme is expected

to allow the co-integration with other state-of-the-art technologies such as RNA-seq.
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Introduction

Skin cancer was predicted to account for more than a third of all cancers [1] almost two

decades ago. Nowadays, this prediction is already a crude reality. Skin cancers can be classified

depending on the involved cell type: keratinocytes and melanocytes. These categories are also

widely known as non-melanoma skin cancer (NMSC), with a higher incidence rate, and mela-

noma skin cancer (MSC), with a higher mortality rate, respectively.

Within the first category, the most common skin cancer manifestation is the basal cell carci-

noma (BCC). Generally, BCC almost never spreads beyond the original tumor site, rarely

becoming life-threatening. However, it can be disfiguring if it is not treated promptly. The sec-

ond most common form of skin cancer is the squamous cell carcinoma (SCC). It can cause

death, although most cases are treatable. Both cases are followed in frequency by Merkel cell

carcinoma (MCC). This subtype is considered an aggressive skin cancer with high risk of

recurrence and metastasis. The MSC category represents the most dangerous form of skin can-

cer. In melanoma, the damaged DNA triggers mutations considered as genetic defects permit-

ting a fast multiplication of tumoral skin cells. The early diagnosis of skin melanomas is

usually determined by using ABCDE signs [2].

Notwithstanding the occurrence of skin cancer is becoming alarming, the registration

standards of NMSC are highly precarious almost worldwide [3]. This is due to an insufficient

data collection in cancer registries on BCC cases. Consequently, its real incidence is usually

unknown [4]. Even so, skin cancer is considered the major public health problem in Australia

[5, 6] and the most commonly diagnosed cancer in United States [4, 7]. Therefore, several

campaigns and programs have been promoted in relation to the prevention of skin cancer in

both countries [4, 8]. With respect to its incidence in Europe, NMSC has been categorized as

one of the most worrying malignancies in Germany [9] as well as a systematic review reflected

the current situation in Spain [10].

In order to broaden the knowledge about this disease, a wide range of machine learning

(ML) and computer science approaches have been proposed: neural networks [11], image pre-

processing and classification [12–14], prediction models [15, 16], pattern recognition [17],

optical techniques [18, 19], etc. Although each approach focuses on improving the skin cancer

diagnosis by using different techniques, a comprehensive analysis of the gene expression can

extract revealing genes which could be responsible for a number of manifestations of this

genetic disease [20]. In this sense, ML techniques efficiently help to select those genes with the

highest informative power for the diagnosis.

The current trends of high-throughput gene expression analysis lead to use RNA-seq

instead of microarrays, mainly due to its multiple advantages [21]: i) RNA-seq allows detecting

the variation of a single nucleotide; ii) it does not need genomic sequence knowledge; iii) it

provides quantitative expression levels and isoform-level expression measurements; and

finally, iv) it offers a broader dynamic range than microarrays. However, even though the

imposition of RNA-seq is a matter of time, microarrays still have many factors in their favor.

Above all, microarrays have been used so far, and are still in use, because they are cheaper.

Consequently, a wider number of datasets are available at the moment what has led to the pub-

lication of many skin cancer studies in the last years [22–25].

Nonetheless, these researches are often conducted on a limited sample set, thus reducing

the chance of reaching statistically significant results. Similarly, the number of pathological

states of skin cancer analysed is reduced, thereby obtaining different DEGs sets by using tradi-

tionally binary classifiers for each isolated experiment. As a solution to these limitations, col-

lecting different datasets including skin cancer samples of diverse pathological states from

various experiments, may considerably increase the robustness of the study and help in
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identifying biomarkers for the differentiation of a wider range of pathological states. However,

the joint consideration of cancer datasets with different technical characteristics usually

involves dealing with the removal of batch effects which must be taken into account for an

effective integration [26].

Multiclass classification has been approached for a wide range of cancerous diseases in sev-

eral previous works (breast [27], colorectal [28], ovarian [29], prostate [30], etc.). Specifically, a

number of skin cancer studies have used this strategy from the analysis of histopathological

[31, 32] or dermoscopic images [33–36]. However, this cancerous disease have not practically

addressed from the analysis of gene expression at the multiclass level. Hierarchical clustering

has been exclusively used in order to compare gene expression signatures from different skin

pathological states [37]. Based on the use of highly-discriminant DEGs, any new patient skin

sample could be assessed and correctly classified by distinguishing among several skin patho-

logical states in a single analysis [38]. Since the cancer prognosis is much more encouraging

when a patient diagnosis is available at an early stage, clinicians can take advantage of relying

the final diagnosis on its assessment [39]. Consequently, at the dawn of the personalized medi-

cine, predisposition to certain skin cancer manifestations could be properly detected [40], and

unnecessary medical treatments such as radiation therapies, excision surgeries or medications

supply could be prevented [41].

Under all these considerations, a novel skin cancer diagnosis approach based on the inte-

gration of multiple skin cancer datasets from several microarray platforms is presented in

this work. Up to our best knowledge, the integration of different datasets based on gene

expression analysis still remains unprecedented. Firstly, an exhaustive data acquisition about

patient and control skin samples has been performed from NCBI GEO web platform [42,

43]. A total of 24 series containing 770 microarray samples were collected in first instance.

However, only 678 of them finally passed the quality control and were subjected to the pre-

processing phase: 554 samples from Affymetrix platforms [44] and 124 samples from Illu-

mina platforms [45]. Next, the integration is carried out by using a well-known tool for sam-

ples fusion (virtualArray). These DEGs were obtained after several statistical restrictions and

fusion decisions in the presence of diverse factors such as batch effects. Under its operation,

17 DEGs were preselected as reliable candidate biomarkers of the most relevant skin cancer

pathological states. An ANOVA statistical test validated these DEGs as powerfully informa-

tive and statistically differentiated. Subsequently, in order to identify and assess the most

outstanding genes, a SVM classifier was applied in association with a minimum-Redundancy

Maximum-Relevance (mRMR) feature selection algorithm. The biological interpretation of

the selected genes was finally contrasted using the specific literature and it is included in

detail as an appendix in this work.

The structure of this paper can be summarized as follows: this section motivated and intro-

duced the present work. Next section explains the materials and methods used in this study to

construct the presented pipeline. Following, the results section shows the applied data process-

ing. Firstly, the number of samples selected after the quality control and the number of genes

obtained after the integration. Consequently, the analysis of the integrated gene expression,

revealing those genes which remain unchanged regardless of union and batch effect removal

methods. This section ends with the presentation of the classification tool results. Subse-

quently, the discussion section comments on the obtained results as well as on the contribu-

tions of this study. Finally, the conclusions section underlines the validity of the proposed

approach, its utility for early diagnosis and medical support, as well as the future work. Among

the following purposes, it is expected the integration with other omics technologies such as

RNA-seq and the application to a wide range of other human pathologies.
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Materials and methods

Samples

All analysed RNA samples were obtained from NCBI GEO web platform. An exhaustive search

was carried out covering the main skin cancerous manifestations for which registers were

found in this public database. The two most well-known microarray technologies (Illumina

and Affymetrix) were considered for this purpose. Thus skin carcinoma, skin melanoma and

healthy skin categories were finally chosen. The first category is comprised by the NMSC vari-

ants already mentioned in the introduction section: BCC, SCC and MCC samples. The next

category collects melanoma samples, distinguishing between two types: primary melanoma

and metastatic melanoma. Both melanomas have been labeled as PRIMEL and METMEL,

respectively. The last category includes samples from healthy skin, differentiating between skin

samples with and without nevus. In this case, these samples were marked as NEV and NSK.

Other important cancer manifestations such as Langerhans cells, among others, were not con-

sidered as no registers were found in the database.

Under the specified operation framework, 24 series from Affymetrix and Illumina plat-

forms were selected. These series are publicly available at https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=S.NAME where S.NAME is the name of each series at NCBI GEO web plat-

form. Table 1 summarizes the information about the series before and after the quality control

phase. More details about the distribution of the skin samples for each microarray series used

in this work is specified in S1 Appendix.

From this selection of RNA samples, the following taxonomies were proposed (see Table 2

for complete information including number of samples for each category):

• tumor and healthy samples as the most general taxonomy (2 classes taxonomy).

• carcinoma, melanoma and healthy samples (3 classes taxonomy).

• BCC, SCC, MCC, PRIMEL, METMEL, NSK and NEV samples (7 classes taxonomy).

Tools

R [46] and MATLAB [47] programming languages were used in this study. Most of the used R

packages derived from Bioconductor platform [48]. This platform is an open-source and

open-development software built in the R statistical programming environment for the analy-

sis and comprehension of genomic data. The tools contained in the Bioconductor project rep-

resent many state-of-the-art methods for the analysis of microarray and genomic data. Other

R packages come from CRAN [49], a network of ftp and web servers around the world storing

identical, up-to-date versions of code and documentation for R.

Pipeline

Our work has been based on the steps specified in Fig 1. Each one of the phases carried out is

explained in the next subsections.

Raw data acquisition and preparation. Acquiring raw data is the very first step in any

analysis. Each vendor quantifies its raw data in a different format, even with different plat-

forms. Therefore, a particular procedure has to be applied for each series. In this study, several

R packages have been used to download the microarray datasets in a programmatic manner.

The Bioconductor affy package was used to read and process Affymetrix CEL files for their

later preprocessing [50]. GEOquery package [51] was necessary in order to obtain already pre-

processed RNA samples (when RNA samples CEL files are not available). For the newer
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Affymetrix microarrays, the Bioconductor oligo package [52] was employed. For the Illumina

microarrays, the lumi package [53] has been used.

Quality control. Assessing the quality of the experiments is an essential step in microarray

analysis as array-based technologies present inherent biases. Bioconductor arrayQuality-
Metrics package [54] is widely used for chip analysis and its use is not limited to one technol-

ogy. It provides tests that consider quality metrics over the series samples as comparisons,

intensity distributions, variance mean dependence and individual quality, for the detection of

samples with insufficient quality (outliers). These tests include: distance among samples, prin-

cipal component analysis (PCA), Kolmogorov-Smirnov test based on the Ka parameter,

Table 1. NCBI GEO series selected for this study. Criteria for series selection was getting a relative balancing of the different categories, including all possible samples

from the least frequent diseases. Technology and total number of samples/outliers are included.

Series Technology Samples origin Skin states ordered by frequency (�) # High quality samples # Excluded outliers

GSE2503 Affymetrix Berlin (Deutschland) SCC, NSK 10 1

GSE3189 Affymetrix San Diego (USA) PRIMEL, NEV, NSK 66 4

GSE6710 Affymetrix Berlin (Deutschland) NSK 12 1

GSE7553 Affymetrix Tampa (USA) BCC, PRIMEL, SCC, NSK 44 2

GSE13355 Affymetrix Ann Arbor (USA) NSK 57 7

GSE14905 Affymetrix Gaithersburg (USA) NSK 20 1

GSE15605 Affymetrix Nashville (USA) PRIMEL, NSK, METMEL 46 18

GSE29359 Illumina New Lambton Heights (Australia) METMEL 75 7

GSE30999 Affymetrix Spring House (USA) NSK 74 11

GSE32407 Affymetrix New York (USA) NSK 10 0

GSE32628 Illumina Leiden (Netherlands) SCC 14 1

GSE32924 Affymetrix New York (USA) NSK 7 1

GSE36150 Affymetrix Royal Oak (USA) MCC 10 5

GSE39612 Affymetrix Ann Arbor (USA) MCC, SCC, BCC 28 12

GSE42109 Affymetrix New York (USA) BCC 10 1

GSE42677 Affymetrix New York (USA) SCC 10 0

GSE45216 Affymetrix London (United Kingdom) SCC 28 2

GSE46517 Affymetrix Houston (USA) METMEL, PRIMEL, NSK, NEV 78 10

GSE52471 Affymetrix New York (USA) NSK 10 3

GSE53223 Affymetrix New York (USA) NEV, NSK 14 4

GSE53462 Illumina Suwon (South Korea) BCC, SCC, NSK 25 1

GSE55664 Illumina Philadelphia (USA) NSK 10 0

GSE66359 Affymetrix Turku (Finland) SCC 8 0

GSE82105 Affymetrix New York (USA) METMEL, NSK 12 0

TOTAL Integrated 678 92

(�) Skin states of each series are ordered from most frequent to the lowest frequent one

https://doi.org/10.1371/journal.pone.0196836.t001

Table 2. Taxonomic classifications for the three skin cancer scenarios: 2, 3 & 7 classes.

Carcinoma (NMSC) Melanoma (MSC) Healthy Skin

BCC SCC MCC PRIMEL METMEL NSK NEV

7 classes 43 84 33 118 118 250 32

3 classes 160 236 282

2 classes 396

TOTAL 678

https://doi.org/10.1371/journal.pone.0196836.t002
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density distribution plots, standard deviation of the samples intensities and Hoeffding’s D-sta-

tistic (normally executed with D < 0.15). All of them are iteratively applied over a given series

until outliers are no longer detected or considered. Final number of excluded outliers from the

considered series is shown in the last column of Table 1.

Preprocessing. Applying a preprocessing step on microarray data is crucial, especially

when different platforms and technologies are integrated. More specifically, microarray tech-

nologies usually require normalization, which involves a platform-dependent process neces-

sary for converting raw data probe intensities into expression values. In this study, the Robust

Multi-array Average (RMA) algorithm [55] was applied on the collected microarray data.

RMA performs background correction, normalization, and summarization in a modular way.

For Affymetrix microarrays, it can be achieved by means of the rma function from affy and

oligo packages. In the case of Illumina microarrays analysis, the homologous lumiExpresso
function from lumi package was used, allowing to do all processing steps simultaneously.

After microarray normalization, other factors have to be taken into account for a correct

microarray integration. On one hand, the logarithmic transformation must be done on the dif-

ferent series as well as the bit depth homogenization. Both processes are necessary in order to

avoid scale errors in further analysis. In particular, all series required logarithmic transforma-

tion in base 2. However, only 4 series had to be changed to 16-bit depth: GSE2503, GSE3189,

GSE29359 and GSE55664. This type of transformations should be applied to any new sample

before it can be classified correctly through the pipeline proposed in this study.

A final verification of correct series annotation was made by checking annotation data for

different chips from Bioconductor AnnotationData Packages website. The main reason lies in

avoiding further integration errors. They can likely come from either a missing annotation in

the raw data taken from NCBI GEO web platform or after the application of the previous pre-

processing R routines. Table 3 summarizes different R packages of annotation data chips

included in this work.

Finally, the sample integration is possible by means of packages as virtualArray [56], read-

bulk [57] or inSilicoMerging [58] in association with inSilicoDb [59]. These tools have in

Fig 1. Microarray gene expression analysis pipeline. The process has been developed sequentially in different phases.

This pipeline summarizes the decisions made throughout the study.

https://doi.org/10.1371/journal.pone.0196836.g001
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common that allow combining multiple microarray samples with different strategies, but not

all have the necessary characteristics for this study. While readbulk can only collect heteroge-

neous datasets, inSilicoMerging only works with Affymetrix platforms. This last package can

also normalize and remove batch effect over multiple datasets of Affymetrix technology, but

virtualArray package allows merging additional datasets from other technologies as Illumina.

For this reason, the package virtualArray was chosen for this approach.

Additionally, the impact of two factors on the quantification of genes can be evaluated with

this tool: batch effect and union method. The first one takes into account the variations in

gene expression due to biological, technical and even atmospheric agents [60]. Taking into

account the hypothetical influence of this factor is considered as a compulsory step in any

study of high-throughput data [61]. Currently, dealing with it is becoming challenging because

there is no absolute certainty about removing the batch effects even after applying correction

algorithms. An effective removal may be essential for effective integration of different datasets

[26]. In this sense, the virtualArray package allows evaluating up to 6 different batch effects

without losing biological information on the quantification of the gene expression: GQ [62],

EB [63], NORDI [64], QD [62], MRS [62] and MC [65]. The second one allows summarising

in a single value all the values of expression of genes that transcribe the same gene identifier.

All transcripts can be gathered into a single expression value in order to be consistent in evalu-

ating the impact of each gene selected in the study. To evaluate its effect, this tool allows 2

union methods: mean and median. Therefore, and in search of independence in the process, a

total of 12 configurations from the combination between the 6 batch effects and the 2 union

methods have been tested. Consequently, only those genes that are also robust to these factors

are obtained.

Post-processing. The next step in the microarray analysis methodology is calculating and

obtaining DEGs. In our work, a seven-classes taxonomy was considered for DEGs identifica-

tion. Then, those results were translated to the three-classes and the two-classes taxonomies

for assessment.

The limma package [66] is commonly used since it includes interesting supplementary fea-

tures: in addition to calculating DEGs, it allows making heatmaps and Venn diagrams.

Although there are several statistical parameters that are taken into account in this type of

studies as moderated t-statistic (T) or B-statistic (B), special attention was paid to other two

parameters: log-fold change (LFC) and p-value (PV). Restrictive values for those two parame-

ters were considered in order to guarantee statistically highly differentiated candidate genes.

This decision is motivated by the fact that certain variations can be expected among the

quantification values of the genes since data are being taken from different platforms. Because

Table 3. Bioconductor R AnnotationData packages and available symbols for the selected series integration.

Annotation data chip # Platform # Possible symbols # Symbols with annotation # Symbols NA’s # Symbols integrated by virtualArray # Series

hgu133a GPL96 24549 23392 1157 12442 4

hgu133a2 GPL571 24543 23390 1153 12441 4

hgu133plus2 GPL570 58616 48709 9907 20545 11

huex10sttranscriptcluster GPL5175 26387 21988 4399 15016 1

illuminaHumanv2 GPL6104 22916 21965 951 17296 1

illuminaHumanv4 GPL10558 50613 39181 11432 21035 1

lumiHumanAll GPL6102 47323 31403 15920 20787 2

TOTAL (Integrated Symbols) 9978 24

Different number of symbols were achieved depending on the platform and technology employed. NA� Not Available.

https://doi.org/10.1371/journal.pone.0196836.t003
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of this, they could influence the selection of the genes that define the considered skin states. To

avoid the potential influence of these factors, it is important to impose severe statistical restric-

tion values on these parameters with the aim of taking those genes that are as representative as

possible.

With these premises, each configuration was subjected to evaluation from the imposition of

the finally chosen values for LFC and PV of 4 and 0.001, respectively. Then, a joint result was

obtained, by selecting as definitive candidates based on the matches among those configura-

tions returning candidates.

Once a set of genes has been selected, it is very important to know the robustness of the

expression of these DEGs when processing microarrays from different technologies. From this

perspective, the main goal is to analyze whether the variation in the expression of these DEGs is

mainly due to the different cancer-related skin states considered in this study or there are also

other relevant factors involved in the processing (such as the batch effect, the country of origin

of the samples or the union methods considered). In order to perform a statistical analysis that

can encompass the information of all DEGs simultaneously, a dependent variable has been

designed based on the Least Squares concept [67]. This algorithm takes into account the differ-

ence between the expression value of each of the candidate genes and their mean over all experi-

ments and preprocessing variants. An ANOVA statistical test [68] was performed in order to

verify the robustness of the selected genes with respect to a number of factors: “country”, “type”

(7 cancer-related skin states), “batch effect” and “union method”. This test allowed us to confirm

the study feasibility and robustness, in the selection of the identified skin cancer biomarkers.

Finally, after all the post-processing tasks were performed, the DEGs identified by the pro-

posed methodology were consulted in different databases in order to assess their hypothetical

relationship with skin cancer. DisGeNET [69], WikiGenes [70], DISEASES [71] and Open

Targets [72] databases were employed for this purpose. Additionally, a text mining tool, “Gene

Set to Disease” (GS2D) [73], was applied to extract the relation among the DEGs with skin dis-

eases or disorders.

Classification. The traditional microarray data processing typically ends with the deter-

mination of DEGs. The experts can usually check these highlighted genes with laboratory

experimentation or contrast them with past works. However, a great interest is aroused in rela-

tion to which DEGs are more relevant according to the analysed data groups.

This work moves one step ahead by applying ML techniques in order to gain knowledge on

the relevance of the selected genes. Similarly, a classification model is designed to automati-

cally classify new data samples.

With the objective of discerning among the involved seven cancer-related skin states, a

ranking of the most significant DEGs was obtained by using the well-known and effective

mRMR algorithm [74]. This algorithm takes into account the redundancy contained among

the considered genes, identifying the genes that add complementary information. This leads to

attaining simpler classifiers with lower number of genes. The mRMR algorithm made use of

the Kraskov Mutual Information estimator [75].

The classification technique considered in this work is the SVMs [76]. Then, two cross-vali-

dation techniques were applied to assess the classifier performance: Leave-One-Out cross-vali-

dation (LOO-CV) [77] and K-Fold cross-validation (KFOLD-CV, where K = 10) [78].

Results

Biological samples integration

24 series from Affymetrix and Illumina platforms were selected. Table 1 summarized the

series selection process and the samples relevant to the study. 92 RNA samples were
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considered outliers and discarded after a strict quality control from the initial selection of 770

RNA samples.

The joint representation of individual series normalization reflected several expression

value ranges (Fig 2). An additional preprocessing was carried out by using virtualArray tool in

order to remove the samples dynamic variability, so that a homogeneous expression range was

obtained for 678 high quality RNA samples (Fig 3).

12 different configurations, coming from six batch effects using two different union meth-

ods, were applied through this tool on all 678 RNA samples. This was made in order to

Fig 2. Expression values of each series after independent normalization. The aggregation of the high quality samples shows dynamic

variability among different datasets.

https://doi.org/10.1371/journal.pone.0196836.g002

Fig 3. Expression values of each series after joint platforms normalization. The integration tool used on the high quality samples

reflects a homogeneous expression range.

https://doi.org/10.1371/journal.pone.0196836.g003
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invalidate the influence of intrinsic anomalies on the quantification of the genes. A cross-plat-

form normalization and batch effect removal was simultaneously applied. Regardless of the

configuration applied, 9978 genes were coerced through correct annotation (Table 3).

Expressed genes selection

As several heterogeneous data series were put together, and with the aim of attaining statistical

robustness in the selection of DEGs, all possible batch effect validations provided by virtualAr-

ray package were tested. Similarly, strong conditions were imposed to the statistical parameters

involved. Values of |LFC|� 4, PV� 0.001 were finally selected. Table 4 summarizes the num-

ber of expressed genes after evaluating each of the 12 configurations.

DEGs appearing in several of the configuration outcomes were expected to perform

robustly as potential biomarkers of skin cancer. Therefore, the intersection of candidate DEGs

for configurations QD and MRS by using both union methods (configuration MC got the

same results as MRS) was carried out. This guarantees that possible anomalies, coming from

the heterogeneous union of datasets, would have no effect on the discriminative gene selection.

The Venn diagram in Fig 4 shows the common DEGs among the 4 considered configurations.

Resulting DEGs selected from this intersection are shown in Table 5; it includes the main

Table 4. Total number of obtained DEGs depending on several restrictions imposed by different evaluated configurations of virtualArray tool. The batch effect

removal and union method factors were considered. The statistical parameters |LFC|� 4 and PV� 0.001 were selected.

Batch Effect GQ QD EB NORDI MRS MC

Union Method

Mean 0 25 0 0 39 39

Median 0 23 0 0 41 41

https://doi.org/10.1371/journal.pone.0196836.t004

Fig 4. Final common DEGs obtained by considering common genes from QD and MRS results intersection. 17

common DEGs were obtained between QD and MRS effect batch removal in addition to apply union methods intersection.

https://doi.org/10.1371/journal.pone.0196836.g004
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statistical parameters presented by limma package in a summary way. Average and standard

deviation values for LFC, T and B parameters were included considering the cases in where

required statistical restrictions were fulfilled. Also, minimum and maximum PV were specified

for these cases. Additionally, in the DEG cases column, the number of times each gene is pres-

ent as a DEG is given. This number is calculated doing pair comparisons between two classes

which results in a total of 21 pair comparisons taking into account the 7 cancer-related skin

states.

The ANOVA test allowed determining the influence of different factors considered on the

17 expressed common genes quantified and extracted from different microarrays. From its

assessment, the analysed cancer-related skin state has been showed to be the factor with greater

repercussion on the variation in the expression of such genes. Therefore, these 17 expressed

common genes were cataloged as hopeful candidates for skin cancer biomarkers. Also, these

genes are able to discern as much as possible among the seven skin states considered in this

study. In accordance with this, Table 6 summarized the main statistics parameters of this

Table 5. List of 17 DEGs which are independent to the union method, batch removal method and multiclass problem. One of the virtualArray configurations (union

method by mean, MRS batch effect and 7 classes taxonomy) was selected for showing those DEGs. All of them were listed and ordered by |μLFC|.

Gene Symbol # DEG cases |μLFC ± σLFC| |μT ± σT| [PVmin, PVmax] |μB ± σB| Related to skin cancer

PCP4 5 6,4649 ± 0,7160 29,8327 ± 5,3161 [1, 37E-147, 2, 34E-75] 275,6113 ± 68,3340 No

TYRP1 5 5,8649 ± 0,9581 13,3323 ± 2,3796 [4,06E-47, 4,29E-23] 72,3469 ± 24,6074 Yes (DisGeNET)

ISL1 6 5,7691 ± 0,4387 24,3430 ± 1,9227 [5,16E-106, 1,78E-76] 204,9844 ± 24,8309 Yes (TargetValidation)

POU4F1 6 5,6337 ± 0,5265 30,5412 ± 3,4649 [2,94E-164, 2,93E-112] 284,6693 ± 43,9275 Yes (DISEASES)

DSC3 8 5,3559 ± 0,4448 22,3521 ± 8,3026 [6,89E-179, 1,65E-41] 180,4227 ± 104,3494 Yes (WikiGenes)

DSC1 9 5,3304 ± 0,5153 16,3742 ± 5,0402 [3,20E-111, 7,55E-27] 108,0049 ± 60,6726 Yes (DisGeNET)

MLANA 8 5,3174 ± 1,1594 19,0411 ± 4,0277 [3,02E-94, 1,48E-30] 138,9094 ± 48,6644 Yes (DISEASES)

SOSTDC1 3 5,0053 ± 0,4610 18,9934 ± 1,1818 [8,34E-70, 1,05E-57] 136,8830 ± 14,5191 No (�)

TGM3 2 4,9463 ± 0,5166 19,9389 ± 1,6022 [3,32E-76, 8,20E-64] 148,6677 ± 20,0540 Yes (TargetValidation)

CLDN1 6 4,8115 ± 0,5509 17,3556 ± 1,1748 [1,16E-63, 3,65E-48] 116,9768 ± 14,0670 Yes (TargetValidation)

MYO15A 6 4,7396 ± 0,4262 33,1131 ± 5,4205 [3,90E-178, 1,70E-101] 316,6801 ± 68,1730 No

BNC2 2 4,7061 ± 0,0239 24,5090 ± 3,5099 [1,56E-109, 1,60E-81] 206,8020 ± 44,9266 Yes (DISEASES)

SCGB2A1 5 4,6701 ± 0,3740 16,6978 ± 2,7768 [6,47E-68, 4,84E-32] 110,0158 ± 31,7911 No (�)

CRYBA2 5 4,6490 ± 0,2739 33,2294 ± 4,2398 [9,09E-172, 3,93E-117] 318,5401 ± 53,3786 No

ANXA3 2 4,5959 ± 0,1186 17,7576 ± 1,0363 [4,05E-62, 2,21E-54] 121,7490 ± 12,5127 No

KRT20 6 4,5916 ± 0,2552 27,1811 ± 3,9432 [7,86E-142, 3,50E-77] 241,6544 ± 50,8763 Yes (TargetValidation)

LGR5 1 4,3562 ± 0,0000 21,5629 ± 0,0000 6,22E-79 169,1057 ± 0,0000 Yes (DisGeNET)

(�) Related to epithelial tissues

https://doi.org/10.1371/journal.pone.0196836.t005

Table 6. Results of the ANOVA test. The statistical analysis includes the main factors assessed, such as relevant statistics parameters among which highlights associated

PV.

Source (Main Factors) Sum of Squares Df Mean Square F-Ratio P-Value

A: TYPE (�) 6,28026 6 1,04671 1521,63 0,0000
B: BATCH (�) 1,51534 1 1,51534 2202,88 0,0000
C: METHOD 0,00112746 1 0,00112746 1,64 0,2005

D: COUNTRY (�) 0,332589 6 0,0554316 80,58 0,0000
RESIDUAL 1,85524 2697 0,000687889

TOTAL (CORRECTED) 10,1783 2711

(�) Statistically significant factors

https://doi.org/10.1371/journal.pone.0196836.t006
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analysis and supported the independent selection of any configuration for the subsequent anal-

ysis of the 17 DEGs quantification values. More information about the carried out ANOVA

test can be consulted in S2 Appendix.

Gene set assessment & hierarchical clustering

With the aim of illustrating the joint discriminatory power of the 17 DEGs analysed in this

study, a hierarchical clustering of a selection of samples from each skin state is presented in Fig

5. A suitable cluster separation and a inter-cluster grouping among similar cancer-related

skin states were achieved thanks to the dendrogram reorder performed by using the Ward’s

method [79]. On the top, both skin carcinomas (BCC and SCC) were put together. Next, both

healthy skin states (NSK and NEV) and both skin melanoma states (PRIMEL and METMEL)

were sequentially listed. At the bottom, MCC was separated from the other skin carcinomas

as it practically exhibits opposite expression values for almost all the selected genes. In the light

of all this, the different selected genes show to have an expectable remarkable discriminative

power to differentiate among the different cancer-related skin states as well as to obtain a reli-

able skin cancer diagnosis.

Gene relevance identification & classification process

An assessment of the quality of the information provided by the 17 validated DEGs is neces-

sary in order to reduce the complexity of the study. It also allows to limit the effective diagnos-

tic potential of skin cancer to only a small set of genes.

Different databases were consulted with the aim of checking the relationship between these

genes and skin cancer. Table 5 points out if the identified DEGs were previously reported as

related to the cancer-related skin states, according to the consulted databases. Full and

Fig 5. Hierarchical clustering of healthy and skin cancer samples by using the 17 DEGs. A perfect differentiation among the 7

cancer-related skin states was obtained after applying clustering and dendrogram reorder. Five samples from each skin state were

used. Different colors are used for each skin sample type: NSK (light green), NEV (dark green), PRIMEL (dark purple), METMEL

(light purple), BCC (chocolate), SCC (orange) and MCC (salmon).

https://doi.org/10.1371/journal.pone.0196836.g005
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exhaustive information about the biological relationship of these genes with skin cancer and

other cancers can be seen in S3 Appendix.

In order to assess a hypothetical classification procedure, special precaution must be taken

regarding the information provided by the selected set of genes in a new skin sample. For this

reason, a classification model based on SVM multiclass was designed together with two cross-

validation processes (LOO and 10-FOLD) for its assessment. The results reflect an overall

accuracy recognition for the 7 cancer-related skin states considered up to 92% for both cross-

validation processes. Translating this percentage into the 2 additional taxonomies considered

of 3 classes (melanoma, carcinoma and healthy skin) and 2 classes (tumoral and healthy skin),

this percentage increased to 95% and 96%, respectively. The associated confusion matrices can

be seen in the Fig 6.

This previous result does not allow appreciating objectively the informative contribution of

each gene to the skin state recognition. For this reason, the mRMR algorithm was employed in

order to obtain a ranking of these genes according to their potential in the seven skin states dis-

cernment. The genes ranking returned by the algorithm is as follows: DSC3, SCGB2A1, BNC2,

TYRP1, ISL1, DSC1, MLANA, CRYBA2, ANXA3, PCP4, LGR5, CLDN1, POU4F1, SOSTDC1,

KRT20, TGM3 and MYO15A. The expression value distribution of each selected gene sorted

by this ranking over each of the cancer-related skin states can be seen in the Fig 7.

Next, distinct SVM models were designed and retested by cross-validation processes in

order to assess the classification capacity of different subgroups of genes returned by this rank-

ing. The gene ranking classification results on the three considered taxonomies can be seen in

the Fig 8. Finally, an evaluation of the designed classifiers behaviour was carried out for each

of the cancer-related skin states. The accuracy results for each skin state and for each gene sub-

set are showed in the Fig 9.

Fig 6. Classification accuracy achieved for each of the considered taxonomies: (A) 7 classes, (B) 3 classes and (C) 2 classes. The

confusion matrix for taxonomy A was constructed with 10-CV and 17 DEGs. The other confusion matrices were constructed from the

previous, by summing the respective sub-matrices associated with each skin super-state.

https://doi.org/10.1371/journal.pone.0196836.g006
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Discussion

Heterogeneous dataset integration & expressed gene selection

Two main reasons motivate the integration of multiple gene expression datasets. Firstly, an

extensive quantity of high quality samples from different platforms and technologies must be

put together. This decision enriches the heterogeneity of the study, thus reinforcing its reliabil-

ity and statistical robustness as well. Secondly, resulting from the previous reason, the indepen-

dence of the results obtained can be guaranteed by analyzing a wider heterogeneous dataset.

The collection of a large repertoire of samples increases significantly the dimensionality, the

diversity and the complexity of the experimental analysis, more so when it comes to addressing

a multiclass problem. This ambitious challenge is driven by jointly analyzing multiple batches

where each of them collects only a part of the classes involved in the final approach design.

Table 1 reflects how the heterogeneity can be achieved by taking into account samples that

have been experimentally processed at different time points, from different technologies and

different platforms. Moreover, a large racial diversity can be expected given the origin of the

samples. As a result of the foregoing, Table 2 includes the 678 RNA samples that were finally

Fig 7. Expression level of the selected genes ordered by the ranking returned by mRMR algorithm. Different colors are used for each

cancer-related skin state: NSK (Normal Skin), NEV (Nevus), PRIMEL (Primary Melanoma), METMEL (Metastatic Melanoma), BCC

(Basal Cell Carcinoma), SCC (Squamous Cell Carcinoma) and MCC (Merkel Cell Carcinoma).

https://doi.org/10.1371/journal.pone.0196836.g007
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considered after a strict quality control phase. These samples represent 7 different cancer-

related skin states from which was aimed to extract genes that may be truly representative of

their manifestation. By considering several series with different number of skin states, the

emergence of batch effects may become inevitable and could be seen as a possible limitation

because of the partial association between series and skin states. However, in spite of the great

heterogeneity that can be observed from the expression values of the 24 unprocessed series

Fig 8. Evolution of the classification accuracy for each subset of genes considered, and for each taxonomy. Similar

trends can be observed for both LOO-CV and 10-CV.

https://doi.org/10.1371/journal.pone.0196836.g008

Fig 9. Evolution of the classification accuracy for each cancer-related skin state according to the number of genes

from the mRMR ranking considered in the classifier. Different colors are used for each skin sample type: NSK

(Normal Skin), NEV (Nevus), PRIMEL (Primary Melanoma), METMEL (Metastatic Melanoma), BCC (Basal Cell

Carcinoma), SCC (Squamous Cell Carcinoma) and MCC (Merkel Cell Carcinoma). SVM with 10-CV was used.

https://doi.org/10.1371/journal.pone.0196836.g009
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(Fig 2), a simultaneous preprocessing step across all the samples attains an homogeneous

expression range (Fig 3).

In the translation from samples to genes, only those common genes that have the same

coded symbol for any considered microarray platform, will appear after heterogeneous sample

integration. The lack of uncommon gene symbols from different platforms is an assumed

trade-off since the main purpose of this study is to integrate as many samples as possible that

significantly represent each cancer-related skin state. Table 3 showed how the series from

GPL96 and GPL571 Affymetrix platforms could integrate a little more than 12400 genes. This

imposes a maximum number of potential genes that may eventually appear as common after

the microarray integration. However, those series contain more than half of the PRIMEL sam-

ples (specifically, 73) and almost three quarters of the total NEV samples (in this case, 23). Not

including those series would have had direct repercussions on the balance of classes and their

representativeness in the study.

In view of this decision, a total of 9978 genes with common symbols appeared after integra-

tion and were exposed to the statistical significance process. In order to obtain genes that can

become robust and reliable, very restrictive values were imposed for the statistical parameters

LFC and PV. At this point, ensuring the statistical significance of the selected genes is thought

to be primordial. This imposition can restrict the finding of skin cancer biomarkers that are

strongly invariant against different anomalies or deviations. Under these restrictions, a small set

of genes were highlighted by the tested configurations as presented in Table 4. Those genes were

obtained from the intersection of configurations returning candidate biomarkers as shown in

Fig 4. The final validity of the selected 17 gene set has been supported through the application of

a statistical test. That test confirms the relevance of those genes to classify the 7 different cancer-

related skin states versus other intrinsic factors of the heterogeneous datasets integration.

Biological relevance of the DEGs

The relevance of these DEGs in the diagnosis of cancerous manifestations on the skin was

investigated from an exhaustive search in the literature. Table 5 summarized how 11 of the 17

highlighted genes have already been strongly related to skin cancer in previous studies (ISL1,

POU4F1, CLDN1, TYRP1, DSC1, TGM3, DSC3, BNC2, KRT20, LGR5 and MLANA). Regard-

ing the 6 remaining genes, 2 of them have been linked to epithelial tissues (SOSTDC1 and

SCGB2A1). The other 4 genes have not been previously highlighted as reliable biomarkers of

the disease (PCP4, MYO15A, ANXA3 and CRYBA2).

Additionally, Table 7 reflects the outcome of the “Gene Set to Disease” (GS2D) text mining

tool for the identified DEGs. From these results, 13 of the 17 genes in this study have been

related to some pathology, disorder or disease of the skin, including the cancer-related skin

states studied in this work. However, in addition to the possible relationship of the expressed

genes with different cancerous manifestations and skin diseases, it is important to emphasize

that 4 genes (ANXA3, LGR5, CLDN1 and KRT20) have been related to lymphatic metastasis.

Similarly, 6 genes (DSC3, ISL1, TYRP1, LGR5, MYO15A and BNC2) are related to genetic

predisposition to disease. In this sense, the potential relevance of these genes surpasses the

scope of this study: the potential biomarkers not only reflect their relationship with different

cancerous manifestations of the skin but they also seem to have some relationship with the pre-

disposition to metastasize and to become ill.

Gene ranking assessment

Although the potential of all the identified DEGs as skin cancer biomarkers became evident,

an additional evaluation of the actual information provided in a possible diagnosis test was
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carried out. Two additional objectives were aimed: on one hand, to further reduce the final

repertoire of DEGs in order to decrease the test complexity; on the other hand, to check the

potential relevance of each of the considered DEGs, especially those that were not previously

related to skin cancer. The procedure followed in this study was the evaluation of different

classifiers taking into account the gradual insertion of the highlighted genes according to their

maximization of the discernment capability among the cancer-related skin states. From the

mRMR algorithm point of view, this is translated to a gradual increase of mutual information

between the identified DEGs and the skin states, avoiding as much as possible the redundancy

among them.

Gene relevance analysis. DSC3 gene was chosen from the selected gene set as the most

discriminating gen by mRMR algorithm to differentiate among the 7 cancer-related skin

states. This gene, which has already been previously cataloged as skin oncogene, tends to pres-

ent low gene expression levels on patients who suffer from skin melanoma (see S3 Appendix).

This can be seen in Fig 7, where gene expression levels for each gene in each skin state are

observed. In this gene, only its PRIMEL gene expression wide range prevents separating this

skin state from the rest. Even so, DSC3 allows separating those skin states that present a greater

probability of provoking malignant tumor formations and spreading (PRIMEL, METMEL and

MCC) from those less aggressive or simply healthy skin states (BCC, SCC, NSK and NEV).

Table 7. Relation between DEGs in this study and different skin diseases or disorders. A minimum number of two disease-related citations for each gene was selected,

as well as one gene significantly associated at least with a disease. A maximum False Discovery Rate (FDR) equal to 0.05 was imposed.

Disease # Genes involved Genes (%) LFC PV FDR Gene symbols

Hutchinson’s Melanotic Freckle 1 0.06 9,4778 2,80E-03 2,10E-01 MLANA

Dermatitis Herpetiformis 1 0.06 8,4778 2,80E-03 1,05E-01 TGM3

Lentigo 1 0.06 7,4778 5,60E-03 7,00E-02 MLANA

Unknown Primary Neoplasms 1 0.06 6,4777 1,12E-02 9,31E-02 ISL1

Oculocutaneous Albinism 1 0.06 5,7778 1,81E-02 1,36E-01 TYRP1

Merkel Cell Carcinoma 1 0.06 5,3903 2,36E-02 1,47E-01 KRT20

Pemphigus 1 0.06 4,6702 3,86E-02 1,93E-01 DSC3

Vitiligo 2 0.12 4,6450 2,81E-03 7,04E-02 MLANA, TYRP1

Ichthyosis 1 0.06 4,6200 3,99E-02 1,87E-01 CLDN1

Nevus 1 0.06 4,3903 4,67E-02 1,94E-01 MLANA

Circulating Neoplastic Cells 2 0.12 4,2683 4,70E-03 7,05E-02 LGR5, KRT20

Experimental Melanoma 1 0.06 3,6702 7,58E-02 2,37E-01 TYRP1

Neuroendocrine Tumors 1 0.06 3,5472 8.23E-02 2.47E-01 ISL1

Skin Diseases 1 0.06 3,1027 1,10E-01 2,76E-01 DSC3

Basal Cell Carcinoma 1 0.06 2,6826 1,45E-01 3,11E-01 TYRP1

Atopic Dermatitis 1 0.06 2,2780 1,88E-01 3,52E-01 TGM3

Lymphatic Metastasis 4 0.25 1,6276 3,54E-02 1,90E-01 ANXA3, LGR5, CLDN1, KRT20

Skin Neoplasms 2 0.12 1,1440 2,28E-01 3,97E-01 MLANA, TYRP1

Adenoma 1 0.06 0,9561 4,08E-01 5,78E-01 LGR5

Carcinogenesis 1 0.06 0,9184 4,16E-01 5,78E-01 LGR5

Neoplasm Metastasis 1 0.06 -0,8365 8,50E-01 9,11E-01 CLDN1

Melanoma 2 0.12 0,6871 3,56E-01 5,34E-01 TYRP1, MLANA

Squamous Cell Carcinoma 3 0.19 0,6781 2,87E-01 4,79E-01 DSC3, CLDN1, TGM3

Genetic Predisposition to Disease 6 0.38 -0,6666 9,80E-01 9,93E-01 DSC3, BNC2, TYRP1, ISL1, LGR5, MYO15A

Carcinoma 1 0.06 -0,2515 7,11E-01 7,73E-01 LGR5

Neoplasm Invasiveness 3 0.19 0,2016 4,99E-01 6,24E-01 LGR5, CLDN1, KRT20

https://doi.org/10.1371/journal.pone.0196836.t007
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Following, the mRMR algorithm selected the SCGB2A1 gene as the next with more infor-

mation to discern among the 7 cancer-related skin states. In this gene, at least 2 groups can be

easily differentiated: 1) NSK together with MCC, and 2) the rest. It is noteworthy that this

gene, that had never been related to skin cancer before, appeared in second position. However,

this gene has certainly been linked to epithelial tissues and other cancers (ovary, prostate,

uterus, primary and occult breast, liver, colorectal, etc.), and what it is more important, with

up-expression in almost all of them. From Fig 7, we observe that in skin cancer, gene expres-

sion levels appeared down-expressed with respect to NSK for the remaining cancer-related

skin states, except for MCC. In this sense, there is evidence that its gene expression level is

lower for cancer-related skin states than for the other healthy skin state (NEV). For all of this,

this gene could be a novel and valid biomarker that provides clues about the predisposition to

suffer from some type of skin cancer. Extended information can be consulted in S3 Appendix.

BNC2 gene was ranked in third position by the feature selection algorithm. Already previ-

ously accepted as skin oncogene, this biomarker allows clearly differentiating among the 2

most diagnosed skin carcinomas (BCC and SCC). Additionally, its expression adds comple-

mentary information to what it is already provided by DSC3 and SCGB2A1, providing a better

discernment among the 7 cancer-related skin states.

The gene expression differences for each of the next selected genes in the ranking can be

also observed in Fig 7. It should be noted at this point that, although the mRMR ranking pro-

poses genes with greater ability to discriminate among cancer-related skin states than others,

all of them present relevant information for the specific skin states diagnosis. For example, sev-

eral genes from the final part of the ranking, present specific clear information on MCC

against the rest skin states as LGR5, POU4F1, SOSTDC1, KRT20, TGM3 and MYO15A genes,

as their gene expression levels are opposite against to the other cancer-related skin states.

Among all of them, up-expression of POU4F1 and KRT20 genes was previously related to

MCC. Surprisingly, although LGR5 and TGM3 have been linked before to BCC risk, they

showed here down-expressed values in MCC (Fig 7). Even going beyond, SOSTDC1 and

MYO15A have not been previously reported as skin cancer biomarkers. However, they show

down-expression and up-expression in MCC, respectively. On the other hand, PCP4 gene

appeared as down-expressed in several skin states with respect to NSK as well as so did

SCGB2A1. More biological details about these genes and their relationship with skin cancer

can be seen in S3 Appendix.

Accuracy-complexity trade-off. Although only 17 genes fulfilled all the statistical con-

straints and a high overall recognition rate was obtained, there are chances that not all of them

have a direct influence on improving the classifier performance. In this regard, a detailed anal-

ysis of the influence of each DEG on the classifier improvement can be made. Multiple inter-

pretations could be drawn from the gene relevance analysis. On the one hand, it could be

achieved from the interlaced analysis of their distribution on each cancer-related skin state.

On the other hand, together with the previous one, it could be analysed from their influence

on the classifying power of the classifier model both in the global recognition and in the spe-

cific recognition of each skin state. Thus, in search of informative power for the genes to be

finally selected for the diagnosis tool, a classification accuracy improvement was assessed, by

gradually adding genes from the ranking into the classifier.

The actual contribution of each gene to the classifier can be more clearly verified from the

overall and specific trends in the evolution analysis seen in Figs 8 and 9. If the 17 DEGs are

used, an overall accuracy above 92%, 95% and 96% can be attained when the 7, 3 and 2 classes

taxonomy are used. The curves associated with each taxonomy evolve similarly for both cross-

validation processes. This fact indicates that a great robustness was reached in this study from

the large sample integration, which leads to the convergence of both validation processes.
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With respect to the 7 classes taxonomy curve trend, an ascending order is clearly observed as

the genes are introduced into the classifier. Therefore, it shows that there is a gradual real

information input.

Since the 3 and 2 classes taxonomies results were obtained from the 7 classes confusion

matrix summary, there are certain local convergence zones in their accuracy evolutions. These

events occur among the fourth and sixth genes, and from the tenth gene, from which the accu-

racy practically reaches its maximum value. Therefore, this quantity of genes can be considered

as a suboptimal gene subset, allowing to establish a trade-off between the number of genes con-

sidered for the diagnosis model and its accuracy. Precision rounded 95.5% for 2 classes, 95%

for 3 classes and 90% for 7 classes for the 10 genes model. This implies a decrease of around

2% of accuracy in the classifier performance for the main 7 classes taxonomy, at the expense of

reducing in 40% the number of genes needed for diagnosing. Thus a simpler diagnosis model

is possible, with the resulting economical and time reduction. To sum up, different accuracy-

complexity trade-offs can be raised depending on the benefits that intend to be optimized:

1. Minimum number of genes: 4 DEGs, accuracies around 92% (2 classes), 90% (3 classes)

and 83% (7 classes).

2. Maximum accuracy: All 17 DEGs, accuracies around 96% (2 classes), 95% (3 classes) and

92.5% (7 classes) (see Fig 8).

3. Accuracy-genes trade-off approach: 10 DEGs, accuracies around 95.5% (2 classes), 95% (3

classes) and 90% (7 classes).

Fig 9 showed how different accuracy evolutions were reached by each cancer-related skin

state as the genes were gradually aggregated into the classifier model. For example, with only

the first 3 genes (DSC3, SCGB2A1 and BNC2), an accuracy above 80% is insured for 4 skin

states (NSK, METMEL, BCC and MCC). By selecting 10 genes as trade-off, high classification

rates are reached for most cancer-related skin states: NSK (99%), PRIMEL (82%), METMEL

(90%), BCC (84%), SCC (90%) and MCC (96%).

These observations suggest that different gene rankings could be returned when pursuing

an optimal classification of a specific cancer-related skin state. For example, although MCC

shows expression values contrary to the rest of skin states in the identified DEGs, there are

genes like LGR5, POU4F1, SOSTDC1, KRT20 and MYO15A which are clearly postulated as

differentiating genes in MCC diagnosing in comparison to other cancer-related skin states.

However, their contribution on the MCC diagnosis improvement can not be appreciated

because these genes were ranked after eleventh position and the diagnosis of this skin carci-

noma does not improve after the ninth gene as can be seen in Fig 9. From the same figure, a

similar conclusion can be drawn from the PCP4 gene that was ranked in tenth position and its

potential informative power for diagnosing some skin state seems to be irrelevant despite hav-

ing a distribution similar to SCGB2A1.

Limitations of the approach

Although this research study has focused on offering a general view of the most relevant can-

cer-related skin states, there is awareness that this approach can be extended and improved in

some aspects.

Human RNA samples from several skin parts were considered with the aim of getting a

global and generic perspective of the disease. However, this study has dealt with the main

cancerous manifestations on human skin, and specifically, only those appearing in different

cells or zones located in the epidermis. According to this, other cells or skin layers (dermis,
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subcutaneous tissue, etc.) were not taken into account in this first approach. This was partially

supported by the fact that samples concerning lymph nodes and mucosal tissues (mouth, geni-

tal areas, neck, head, etc) can introduce too specific genes that are not related to the cancerous

manifestations of the most human skin outer layer.

Likewise, the consideration of skin illnesses that are categorized as skin cancer precursors

such as actinic keratosis [80], psoriasis [81] or Bowen’s disease [82] were not considered and

could be taken into account for future studies. Additionally, biological samples from other

manufacturers (Agilent, Exon, Taqman, etc.) could be considered which would imply an incre-

ment in the sample number. For this purpose, the finding of appropriate processing techniques

from platforms associated with those manufacturers for information extraction would be an

immediate challenge to be assessed in future researches.

It is necessary to clarify that the aim of this pipeline is not only the integration of numerous

skin samples coming from microarrays, but to co-integrate biological samples coming from

other technologies. Mainly, it would be interesting to integrate with nowadays precise technol-

ogies as RNA-seq, which provides a high consistency by getting an equivalence between reads

and gene expression value [21, 83, 84]. Similarly, it would be possible the integration with an

older technology like quantitative polymerase chain reaction (qPCR) [85], given that multiple

considerations at quality and processing level are carried out. Reverse transcription qPCR

(RT-qPCR) has been considered during many years as the gold standard for measurement of

gene expression [86]. Thus, and although other technologies have appeared later, Real-Time

RT-qPCR can be taken into account as a suitable method for fast, accurate, sensitive and cost-

effective gene expression analysis [87].

Conclusions

Through a restrictive pipeline process, 17 DEGs were obtained for discriminating up to seven

cancer-related skin states from the integration of multiple skin cancer datasets. In the light of

all results and discussions presented in this work, these genes have been seen as reliable skin

cancer biomarkers. Consequently, they are expected to serve as a guide to improve the early

diagnosis of skin cancer because these indicate the potential predisposition to suffer from it.

Many of these genes have been linked even to other pathologies or disorders of the skin that

are considered as precancerous skin states.

The vast heterogeneity of the sample collection with respect to diverse factors like plat-

forms, origin, parts of the body, etc. positively influenced in the finding of 6 genes that had

not previously related to skin cancer: SCGB2A1, CRYBA2, ANXA3, PCP4, SOSTDC1 and

MYO15A. In this sense, beyond the importance of each DEG in the overall recognition, the

relevance analysis of each DEG showed the differentiating role of the SCGB2A1 gene. This is

greatly due to the fact that the massive heterogeneous sample integration has allowed extract-

ing extremely useful underlying information from the joint study of up to 7 different cancer-

related skin states. SCGB2A1 appeared as down-expressed for all the cancer-related skin states,

but MCC. The same gene was also down-expressed for the NEV state, in comparison with

NSK gene expression levels. In terms of accuracy recognition, an overall recognition around

92.5% of accuracy has been achieved to distinguish among 7 cancer-related skin states. More

briefly, an accuracy of 96% is guaranteed to discriminate between healthy and tumor samples

from the 17 DEGs.

Our next objectives include the idea of using this pipeline in other types of cancers or dis-

eases with a good number of existing samples from public repositories, available private data

or even from further generation sequencing techniques, having data quantified in gene expres-

sion values. Additionally, modifications of the general pipeline are aimed to be used in the
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improvement of the diagnosis of those cancer-related skin states with lowest diagnostic

accuracies.
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