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Abstract

The modeling of the perceptual properties of texture plays a funda-
mental role in tasks where some interaction with subjects is needed. In
order to face the imprecision related to these properties, fuzzy sets defined
on the domain of computational measures of the corresponding property
are usually employed. In this sense, the most interesting approaches show
that the combination of different measures as reference sets improve the
texture characterization. However, the main drawback of these propos-
als is that they do not take into account the subjectivity associated with
human perception. For example, the perception of a texture property
may change depending on the user, and in addition, the image context
may influence the global perception of a given property. In this paper, we
propose to solve these problems by combining the use of several compu-
tational measures in a reference set with adaptation to the subjectivity
of human perception. To do this, we propose a generic methodology that
automatically transforms any multidimensional fuzzy set modeling a tex-
ture property to the particular perception of a new user or to the image
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context. For this purpose, the information given by the user, or extracted
from the textures present in the image, are employed.

Keywords: image analysis; texture modeling; human perception; adaptive
models

1 Introduction

Texture is one of the most used low level features for image analysis and com-
puter vision. In fact, since all the objects in nature have texture, its analy-
sis plays a fundamental role in object or region recognition and classification
[1, 2, 3]. An example of this importance can be appreciated in Figure 1, where
several images with the same shape and a similar color are shown, but that can
be identified thanks to the analysis of their texture.

There are many techniques in the literature for texture analysis, and the use
of one or another depends on the particular task to which it is applied. In this
sense, for a task where a textural description interpretable by humans is not
needed, such as segmentation or texture classification, we can find many tech-
niques that try to model texture by means of feature vectors. These approaches
are based on genetic programming [4, 5], dictionary learning [6, 7], kernel learn-
ing [8, 9], Gabor functions [10, 11] or Wavelets [12, 13], and are considered as
the golden standard in the literature.

However, in tasks where some interaction with subjects is needed, techniques
with the ability of providing a perceptual texture characterization interpretable
by humans can be more useful. In these approaches, texture is modeled on the
basis of some vague textural properties that are usually employed by humans,
like coarseness, directionality, contrast, line-likeness or regularity [14, 15, 16].
These perceptual properties are imprecise by nature, in the sense that, except in
extreme cases, we cannot set a precise threshold between textures that exemplify
a property and textures that do not. For example, we can reasonably say that
the texture shown in Figure 2(a) is coarse and contrasted, and that the texture
shown in Figure 2(c) is not, as they represent potential extreme cases for both
properties. However, the fulfillment of these properties is not so clear for the
texture shown in Figure 2(b). This way, the most interesting approaches arise
from the fuzzy set field [17, 18, 19], as they are able to take into account the
inherent uncertainty. In these proposals, a mapping from low-level statistical
features (crisp computational measures of the corresponding property) to high
level textural concepts is performed by defining membership functions for each
texture feature.

In addition, it is widely known that the combination of different features
in texture analysis improves its recognition and classification. In [20], several
texture descriptors were evaluated both in isolation and by combining some of
them by means of machine learning approaches. In that work, the authors con-
cluded that certain selected texture measures play a complementary role to each
other, satisfying that the combination of different features improves the classifi-
cation accuracy. Similar studies were performed in [21] for unsupervised texture
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(a) (b) (c)

Figure 1: Example of objects with the same shape and color, but different
texture.

segmentation, demonstrating that the combination of features based on Gabor
filters and the wavelet transform provides better performance compared to the
individual features alone. In a similar way, we can find several approaches in
the literature where the combination of different texture descriptors is applied
to improve the accuracy in more specific tasks, such as breast density classifi-
cation [22], cataract detection [23], meningioma subtype discrimination [24] or
face recognition [25].

Focusing our analysis on the fuzzy approaches, two different groups can be
found in the literature. In the first, each texture property is modeled as a
whole by means of a unique fuzzy set, obtaining models that are able to directly
represent the presence degree of that property [26, 27, 28]. In this type of
approach the membership functions associated with the fuzzy sets are obtained
by learning a functional relationship between the values given by the measures
and the human perception of the property. In the second group, fuzzy partitions
are proposed, providing a set of linguistic labels that are related to the presence
degree of the property [29, 30, 31, 32]. In this case, the fuzzy partitions are
generated through an unsupervised fuzzy clustering algorithm on the basis of
the measured values obtained from an image database [31, 32], or by means
of a distinguishability analysis applied to the measured values on the basis of
the human perception of the texture property [29, 30]. Each group of fuzzy
approaches provides a different way to represent the presence of the texture
properties, and the use of one or another will depend on the task to which it is
applied. The first group is useful in classical tasks like pattern recognition, while
the second can be more useful in tasks where a texture characterization using
linguistic terms is needed, such as semantic description of images or content-
based image retrieval using linguistic queries.

Regarding the combination of texture features, most of the fuzzy approaches
in the literature face this question by means of the use of subsets of measures as
a reference set. This allows us to combine their abilities to capture the texture
property, obtaining models that are able to represent this property with more
fidelity. Since the membership functions associated with these fuzzy sets are
defined in a domain of more than one dimension, they are referred to as mul-
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(a) (b) (c)

Figure 2: Examples showing the imprecision associated to the properties.

(a) (b)

Figure 3: Example showing the influence of the image context in the perception
of the fineness property. The presence of the very coarse texture in (b) can
inhibit the understanding of the rest of textures, and they may be perceived as
finer than in (a). This figure has been taken from [28].

tidimensional models. Concerning this type of approach, an interesting study
can be found in [27]. There, nineteen classical computational measures were
analyzed and combined in pairs in order to model the properties of fineness,
contrast and directionality. The performance of the obtained fuzzy models was
evaluated according to human perception of the properties. Their conclusion
was that the proposed bidimensional fuzzy models improve the characterization
of the texture properties compared to the unidimensional fuzzy models in the
literature. In addition, several experiments using these bidimensional models
for pattern recognition were carried out, obtaining better results than those
obtained with unidimensional models.

However, the main drawback of all these fuzzy approaches is that they do
not take into account the subjectivity associated with human perception. On
the one hand, the perception of a texture property may change depending on
the person. For example, although we have considered that the texture shown
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in Figure 2(a) is very coarse, another person may consider that this texture is
not so coarse. On the other hand, image context may also affect the global
perception of texture properties. An example of this fact can be seen in Figure
3. The images in figures 3(a) and 3(b) are very similar, but in the last one a new
texture has been added. The presence of this texture, which is much coarser
than the others, can inhibit the rest of the textures, and they may be perceived
as finer than in Figure 3(a). Thus, context adaptation problem, which is a very
important issue in practical applications nowadays [33, 34, 35, 36], should be
also taken into account.

We can find several (crisp and fuzzy) approaches in the literature where the
subjectivity associated with human perception has been considered for texture
analysis. The majority of these proposals try to generate a corresponding model
on the basis of human assessments [26, 31, 32], although they do not propose
any technique for their later adaptation to new information, such as the partic-
ular perception of a person or to the image context. Regarding the techniques
that try to adapt the model to the subjectivity of the human perception, two
different groups can be distinguished. In the first group we can find the tech-
niques referred as metric-based approaches [37, 38, 39], that are widely used in
content-based image retrieval (CBIR). In this type of approach, user’s feedback
is employed to update weights in the metrics used to compute the similarity in
the image features. However, the aim of these techniques is not to adapt the
model itself (which remains static) but to adapt the importance of each feature
in the similarity value.

In the second group, we find model-based approaches [40, 41, 42], which
are the most interesting ones from the point of view of this paper. These ap-
proaches are usually focused on crisp techniques which use classifiers supporting
a feedback stage, where the parameters are locally updated to adapt them to
the particular perception of a person. Nevertheless, none of these approaches
considers the imprecision inherent in the texture feature, as has been previously
mentioned, and in addition they do not take into account the influence of the
image context.

In this paper we propose to address both problems observed above, i.e. our
aim is to combine i) the improvement in the texture modeling given by the use of
a set of several computational measures, with ii) adaptation to the subjectivity
of human perception. For this purpose, we propose a generic methodology that
automatically adapts any multidimensional fuzzy model of a texture property
to the particular perception of a person or to the image context. Starting
from our preliminary work for the unidimensional case [28], in this paper we
provide an adaptation method that is valid for any number of dimensions of the
fuzzy model, i.e. any number of computational measures can be combined as
a reference set. In this method, the membership functions associated with the
fuzzy sets are automatically adapted by means of a functional transformation
on the basis of the new perception. In order to take into account the particular
perception of a new person, a set of texture images representing the particular
profile of the person is employed in the transformation process. In the case of
the adaptation to the image context, the information used in the transformation
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process is obtained by analyzing the textures present in the image.
The rest of the paper is organized as follows. In section 2, a general overview

of our methodology, as well as the used notation, are presented. The techniques
proposed in this paper to obtain multidimensional fuzzy sets adapted to the
perception of different users or to the image context are described in sections 3
and 4, respectively. In section 5 some results obtained by applying these models
are shown, and the main conclusions are summarized in section 6.

2 Preliminaries and Notations

As mentioned in the previous section, several approaches can be found in the
literature that try to model texture properties by means of fuzzy sets defined
on the domain of computational measures of the corresponding property. The
majority of these techniques propose only one measure for the reference set, but
more recent approaches have shown that the combination of different computa-
tional measures improves texture characterization [27]. From now on, let T be
one of these fuzzy sets modeling a texture property, defined on the domain of a
given subset of n measures of this property (a multidimensional reference set),
and whose membership function1 is defined as

T : Rn → [0, 1] (1)

In addition, this membership function should satisfy the following conditions:

• The values T (x) = 0 and T (x) = 1 should be achievable for some feature
vectors.

• The gradient of the function T must satisfy the following condition:

‖∇T (x)‖ 6= 0 ∀x / 0 < T (x) < 1 (2)

In this scenario, given an image, a vector of measure values M = [m1, . . . ,mn]
can be obtained from it, with mj being the result of applying the j-th measure
in the reference set to the image. This way, the presence of the texture property
in this image can be estimated by using T .

As has been mentioned in the previous section, the aim of this paper is to
obtain adaptive fuzzy models that are able to represent the particular perception
of a person. In our approach, we propose to obtain these models by adapting
the generic fuzzy sets T described above. From now on, let T̃ : Rn → [0, 1] be
the adapted fuzzy set obtained from T , that has the same reference set as T
(the domain of the n computational measures of the property).

1To simplify the notation, as it is usual in the scope of fuzzy sets, we will use the same
notation T for the fuzzy set and for the membership function that defines it.
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Figure 4: Graphical example of a non-adaptive fuzzy set T for n = 2, together
with an adaptation point (Mi, vi) and the intersection of the corresponding level
set Lvi with T , i.e. T ∩ Lvi .

3 Adaptation to User Profiles

Our adaptation approach for a certain membership function T is based on using
information provided by users, specifically a collection R = {R1, . . . , RZ} of
texture images, Z ≥ 1, each image having an associated presence degree of the
corresponding property. Let vi ∈ [0, 1] be the degree provided for image Ri and
let V = {v1, . . . , vZ}. We assume that the indexes are assigned so that vi < vi+1

(which also implies that no pair of images agree on the presence degree). Let
also Mi = [mi

1, . . . ,m
i
n] be a vector defined for each Ri as the collection of

measures mi
j ∈ R with 1 ≤ j ≤ n obtained by applying the j-th measure to Ri.

Let us denote by M = {M1, . . . ,MZ} the set of feature vectors for R. On this
basis, we introduce what we call the adaptation points as the following ordered
set:

Ω = {(Mi, vi)}i=1,...,Z (3)

with Mi ∈M and vi ∈ V, and with vi < vi+1 being the order relation.
These ideas are illustrated in Figure 4, where an adaptation point (Mi, vi)

is graphically depicted for n = 2, i.e. Mi = [mi
1,m

i
2]. The fuzzy model T

corresponds to the surface shown in the figure, and the objective is to perform
a suitable transformation of the surface so that the value of the function in Mi

changes from T (Mi) to vi in a particular way that we explain below.
Our approach relies on the concept of a level set2. The level set of value v

of the function T is

2The term level set is not employed here with the usual semantics of fuzzy set theory, but
with the usual semantics employed in mathematics.
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Lv(T ) = {x ∈ Rn, T (x) = v} (4)

Depending on the number of measures, the level set is also known as level
curve (for the case n = 2), level surface (for the case n = 3), and level
hypersurface (for n > 3). An example is shown as a red curve in Figure
4, representing graphically the intersection of the level set for value vi with
T . We also use the concepts of lower level set and upper level set to be
LLv(T ) = {x ∈ Rn, T (x) ≤ v} and ULv(T ) = {x ∈ Rn, T (x) ≥ v}, re-
spectively. Finally, let us denote Lv(T̃ ) by L̃v and Lv(T ) by Lv for simplicity.
In the same spirit, for a given value x ∈ Rn, we use the inequalities x ≤ L̃v

and x ≥ L̃v instead of the membership to the lower and the upper level sets
x ∈ LLv(T̃ ) and x ∈ ULv(T̃ ), respectively.

The key role of level sets in our approach relies on the fact that the collection
of all level sets for a certain T can be used as a representation of T , similarly
to the representation theorem of fuzzy sets based on alpha-cuts, since

T (x) = v iff x ∈ Lv(T ) (5)

We use this representation in order to obtain T̃ from T using the collection
of adaptation points Ω in the following way: the level set L̃vi with vi ∈ V
is obtained by performing multidimensional translation and expansion of the
corresponding level set Lvi . This transformation is performed so that Mi ∈ L̃vi ,
and in such a way that for all the points x ∈ Lvi , their distance in the direction
of the gradient of T in x to Lvi+1 is reduced in a fixed proportion, given by the
distance between Mi and the closest point in Lvi . This is illustrated in Figure
5, and will be formalized in the next sections.

Note that computing all level sets L̃v for every v ∈ [0, 1] extensively is
not possible. Instead, the value of T̃ (x) for any x ∈ Rn is obtained on the
basis of the original fuzzy set T , and the level sets L̃vi and L̃vi+1 that satisfy
x ≥ L̃vi and x ≤ L̃vi+1 . For that purpose, a multidimensional translation and

expansion function A
LviLvi+1

L̃vi L̃vi+1
(x) will be employed that basically computes a

kind of inverse of the transformation performed when computing the level sets
for the adapted function. The details of the calculation of T̃ (x), that is intended
to keep the proportions of the original function T in the transformed one, will
also be explained and formalized in next sections.

It is important to remark that, for this approach to be feasible, the set
Ω must satisfy an additional property: since the function T̃ has to main-
tain the condition imposed by Equation (2) in this adaptation process, i.e.∥∥∥∇T̃ (x)

∥∥∥ 6= 0 ∀x / 0< T̃ (x)< 1, the adaptation points should satisfy the con-

dition Mi ≤ Lvi+1 , that is, Mi must be in the lower level set LLvi+1(T ).
Formalizing these ideas, we propose to define T̃ as a function of the form3

3Notice that the transformation for x ≤ L̃v1 and x ≤ L̃v2 is the same. In fact, as L̃v1 < L̃v2

according to our notation, this condition can be reduced to x ≤ L̃v2 . The same happens with

x > L̃vZ−1 and x > L̃vZ , that can be reduced to x > L̃vZ−1 .
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Figure 5: Graphical example of the parameters needed to calculate the level
set L̃vi for n = 2. Every point xi in the original level set Lvi is translated in
the direction of the gradient of the original function (∇̂T (xi)). The translation
distance Dvi(xi) is proportional to the separation between the level sets Lvi

and Lvi+1 .

T̃ (x; Ω) =



T (A
Lv1Lv2

L̃v1 L̃v2
(x)) x ≤ L̃v1 or x ≤ L̃v2 ,

...

T (A
LviLvi+1

L̃vi L̃vi+1
(x)) L̃vi < x ≤ L̃vi+1 ,

...

T (A
LvZ−1LvZ

L̃vZ−1 L̃vZ
(x)) x > L̃vZ−1 or x > L̃vZ

(6)

In the next sections we are going to explain in detail the remaining aspects
of our proposal: (i) how the level sets L̃vi , i = 1, . . . , Z of the adapted model
are obtained (section 3.1), (ii) how to determine x ≤ L̃vi and x ≥ L̃vi (section

3.2) and (iii) how the functions A
LviLvi+1

L̃vi L̃vi+1
(x) are defined (section 3.3).

3.1 Calculating the Level Sets L̃vi

Our approach for computing L̃vi for any n > 0 is illustrated in Figure 5 for
n = 2. Level curves of values vi and vi+1 of the original model are represented
by solid lines, whilst the adapted curve L̃vi is depicted as a dashed line. The
transformation translates every point xi in the original level sets in the direction
of the gradient of the original function in that point as follows:

x̃i = xi +Dvi(xi)∇̂T (xi) (7)
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with ∇̂T (xi) being the unit vector in the direction of the gradient in xi. The
translation distance Dvi(xi) is proportional to the separation between the level
sets Lvi and Lvi+1 in the direction of the gradient. Let l(xi) be the line that
goes through the point xi and has the same direction as the gradient in this
point. Let zi be the intersection of Lvi+1 and l(xi) (see Figure 5). Then

Dvi(xi) = Kvi ·
∥∥xi − zi

∥∥ (8)

where Kvi is calculated as follows: let M̄i ∈ Lvi be that point in Lvi whose
gradient goes through Mi, i.e. the point that is translated to Mi in the trans-
formation (both lying on l(M̄i)). Note that Mi is the only known point that

must reside on L̃vi . Let zM
i

be the intersection of Lvi+1 and l(M̄i). Then

Kvi =

∥∥Mi − M̄i
∥∥∥∥M̄i − zMi
∥∥ (9)

Note that Kvi is the same for all the points of the level set Lvi . This
proportionality is used in Equation (8) to transform the entire level set Lvi into
L̃vi .

3.2 Solving the Inequalities x < L̃vi and x > L̃vi

As introduced in previous sections, x < L̃vi and x > L̃vi stand for T̃ (x) < vi

and T̃ (x) > vi, respectively. The main problem is that T̃ (x) is not known in
general; of the function T̃ we just know the level sets L̃vi .

Given a point x, let pi ∈ Lvi be the point in Lvi whose gradient goes through
x, that is, the point in Lvi closest to x.

Let p̃i ∈ L̃vi be the point in L̃vi where pi has been translated according
to the methodology described in the previous section. Note that pi, p̃i, and x
lie on the same line, the direction of which is defined by the gradient ∇̂T (pi).
Thus, the inequality x > L̃vi holds iff the sense of the vector that goes from p̃i

to x matches that of ∇̂T (pi), i.e.

x > L̃vi iff ̂̃pix = ∇̂T (pi) (10)

Similarly,

x < L̃vi iff ̂̃pix = −∇̂T (pi) (11)

3.3 Defining the Function A
LviLvi+1

L̃vi L̃vi+1
(x)

As can be seen in Equation (6), in order to calculate the value of the adapted
membership function T̃ in a point x, the idea is to find the point A(x) translated
to x in the adaptation. The value of T for such point will be the value of T̃ for
x.

Since T̃ is defined as a piecewise function, the function A varies depending

on the level sets enclosing x, and hence it is denoted as A
LviLvi+1

L̃vi L̃vi+1
.

10



Figure 6: Graphical example of the parameters needed to calculate the proposed
transformation for n = 2. Given a point x, with L̃vi ≤ x ≤ L̃vi+1 , its transfor-
mation will be a combination of the translations of the level sets L̃vi and L̃vi+1

(DL̃vi
and DL̃vi+1

) weighted by the relative distances from x to L̃vi+1 and L̃vi

(RD(x, L̃vi+1) and RD(x, L̃vi)).

Before going into details, let us point out that the main requirement for

A
LviLvi+1

L̃vi L̃vi+1
is that, for every point x ∈ L̃vi , the function must yield the corre-

sponding point in Lvi . This way, if we know L̃vi for all v ∈ [0, 1], the function
is exactly the inverse of the transformation.

Figure 6 shows a graphical example where we can see all the parameters
needed to calculate the proposed transformation for n = 2. Let us suppose
that we want to calculate the transformation of a given point x ∈ Rn, with
L̃vi ≤ x ≤ L̃vi+1 . Let us also suppose that the level set L̃vi is translated to
Lvi and that L̃vi+1 is translated to Lvi+1 (note that these are the inverse of the
translation applied in section 3.1 to obtain the level sets L̃vi from Lvi).

According to the notation of the previous section, let pi ∈ Lvi and pi+1 ∈
Lvi+1 be the point in each level set Lvi and Lvi+1 with the minimum Euclidean
distance to x. Let also p̃i ∈ L̃vi and p̃i+1 ∈ L̃vi+1 be the points where pi and
pi+1 have been translated to by using equation (7)4. This way, the translations
of the level sets L̃vi and L̃vi+1 can be calculated as DL̃vi

= (pi − p̃i) and

DL̃vi+1
= (pi+1 − p̃i+1), respectively. In addition, we can calculate the relative

distances from x to L̃vi and L̃vi+1 as

RD(x, L̃vi) =

∥∥x− p̃i
∥∥∥∥x− p̃i

∥∥+
∥∥x− p̃i+1

∥∥ (12)

4Note that they are also the points of L̃vi and L̃vi+1 with the minimum Euclidean distance
to x.
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RD(x, L̃vi+1) =

∥∥x− p̃i+1
∥∥∥∥x− p̃i

∥∥+
∥∥x− p̃i+1

∥∥ (13)

Thus, given a point x, with L̃vi ≤ x ≤ L̃vi+1 , we propose a transformation
of the form:

A
LviLvi+1

L̃vi L̃vi+1
(x) = x +RD(x, L̃vi+1)DL̃vi

+RD(x, L̃vi)DL̃vi+1

= x +

∥∥x− p̃i+1
∥∥∥∥x− p̃i

∥∥+
∥∥x− p̃i+1

∥∥ (pi − p̃i)

+

∥∥x− p̃i
∥∥∥∥x− p̃i

∥∥+
∥∥x− p̃i+1

∥∥ (pi+1 − p̃i+1)

(14)

It can be noticed that the translation of x will be a combination of the
translations of the level sets L̃vi and L̃vi+1 (DL̃vi

and DL̃vi+1
) weighted by

the relative distances from x to L̃vi+1 and L̃vi (RD(x, L̃vi+1) and RD(x, L̃vi)).
Note that, if x ∈ L̃vi (i.e. x = p̃i), then RD(x, L̃vi) = 0 and RD(x, L̃vi+1) = 1.

This implies that A
LviLvi+1

L̃vi L̃vi+1
(x) = x + DL̃vi

= pi, i.e. x will be translated

to the corresponding point in Lvi , as it was expected. In a similar way, if
x ∈ L̃vi+1 , its transformation is given by the translation of the level set L̃vi+1 ,

i.e. A
LviLvi+1

L̃vi L̃vi+1
(x) = pi+1.

3.4 Particular Case of Z = 1

We have to take into account that equation (6) is valid only for Z > 1. In
the particular case of Z = 1 only a translation is needed. In this case Ω =
{(M1, v1)}, which implies that the level set Lv1 should be translated to go
through the point M1. Figure 7 shows an example of the case Z = 1 for n = 2.
As has been mentioned in the previous sections, the translation of each point
x1 ∈ Lv1 will be performed in the direction of its gradient, transforming it
into the point x̃1 ∈ L̃v1 according to equation (7). In order to calculate the
translation distance Dv1(x1) using equation (8), we propose this distance to
be proportional to the separation between the level sets Lvi and Lvi+1 in each
direction. However, in this case, the level set Lvi+1 does not exist, so we need
to choose a different reference level set, e.g. L1 (the level set where the model
takes the value 1).

As in the previous section, let’s suppose that the level set L̃v1 is translated
to Lv1 (the inverse of the translation applied to obtain the level set L̃v1 from Lv1

according to the methodology proposed in section 3.1). Given a point x ∈ Rn,
it has been translated in the same direction and distance as the points in L̃v1 .
Following the same notation as in previous sections, let p1 ∈ Lv1 be the point in
the level set Lv1 with the minimum Euclidean distance to x (and whose gradient
direction goes through x) and let p̃1 ∈ L̃v1 be the point in L̃v1 where p1 has
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Figure 7: Example of Z = 1 for n = 2. In this case, only one level set Lv1 (and
the corresponding level set L̃v1 of the adapted function) is employed. Given a
point x, only a translation in the same direction and distance as the points in
L̃v1 will be applied, i.e. the same translation as p̃1.

been translated to by using equation (7). The translation applied to x will be
performed in the same direction and distance as p̃1, and it has the form

T̃ (x; Ω) = T (x + (p1 − p̃1)) (15)

4 Adaptation to Image Context

Natural images will usually show several textures with different perception de-
grees of the properties. It is natural to assume that the textures with the
minimum and the maximum presence of a property in the image may influence
the perception of this property for the rest of textures, i.e. the perception can
depend on the context. For example, in the case of the fineness property, the
coarsest and the finest texture in the image may inhibit the rest of textures,
influencing their perception of fineness, as it is shown in Figure 3.

In this section, a proposal for adapting the membership function T to the
image context is presented. In our approach, the minimum and the maximum
perception degrees of the property in the model, i.e. the values of the reference
set where the function T̃ achieves the membership degrees 0 and 1, will depend
on the inhibition present in the image. In turn, this inhibition will depend on the
difference between the textures with the minimum and the maximum presence
of the property in the image, in the sense that the greater this difference, the
stronger the inhibition.

From now on, let Mmin and Mmax be the vector of measure values obtained
by applying the computational measures in the reference set to the textures with
the minimum and the maximum presence of the property in the image, respec-
tively; let λ be the inhibition degree present in the image for the corresponding
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property; and let M0 and M1 be the values of the reference set that will impose
the minimum and the maximum perception degrees of T̃ , respectively. At this
point, our first aim is to obtain the values Mmin and Mmax of the corresponding
image. Secondly, these values will be used to estimate the inhibition degree λ.
Finally, this inhibition degree will be used to calculate the adaptation points M0

and M1. This way, the membership function T̃ adapted to the image context
can be obtained by applying the same transformation shown in section 3 on the
basis of the set Ω = {(M0, 0), (M1, 1)}.

In order to obtain the textures with the minimum and the maximum presence
of the property in the image, for each pixel in the original image, the values of
the measures in the reference set are calculated using a window centered at this
pixel. Let M = {Mi, Mi ≤Mi+1}i=1,...,N be the ordered set of the measure
vectors calculated from the N pixels in the image. Since the values obtained
with different measures are not comparable, in order to perform this ranking we
will take into account only the value of one of the measures in the reference set5.
In particular, in this paper we propose to rank the vectors inM according to the
measure that better captures the presence of the texture property (the measure
with the highest goodness value according to the studies in [27]), although a
different criterion may be employed. Thus, we will consider that Mi ≤Mi+1 if
mk,i ≤ mk,i+1, with Pk being the measure with the highest goodness value.

The textures with the minimum and the maximum presence of the property
will correspond with the first and the last element in M, respectively6, i.e.
Mmin = M1 and Mmax = MN . However, in order to avoid the influence of
outliers (the presence of very low and very large measure values), the elements
z > 1 and z′ < N have been chosen, i.e. Mmin = Mz and Mmax = Mz′ . In
particular, we propose to use the 20th percentile and the 80th percentile in M,
i.e. z = round(0.2N + 0.5) and z′ = round(0.8N + 0.5), with round(x) being
the function that returns the nearest integer to x.

Once the values Mmin and Mmax are calculated, the next step is to estimate
the inhibition degree λ present in the image. In this paper, we consider that
λ will reach the highest degree (λ = 1) if the difference

∣∣Mmax −Mmin
∣∣ is

large enough, and it will decrease as this difference is smaller. However, as we
have commented above, the values obtained with different measures are not
comparable, so we propose to calculate this difference by using the measure
considered to rank the vectors in M (in our case, the measure that better
captures the presence of the texture property). Thus, we propose to define the
inhibition degree as a value between 0 and 1 of the form

λ =

{
|mmax

k −mmin
k |

Uk

∣∣mmax
k −mmin

k

∣∣ < Uk,

1
∣∣mmax

k −mmin
k

∣∣ ≥ Uk

(16)

5Note that in this case there are no presence degrees of the corresponding property associ-
ated to these images to perform the ranking, as in the adaptation to user profiles. In addition,
we can not use T to estimate the presence of the texture property in these images, because
this function saturates at 0 and 1.

6For a measure Pk that increases according to the perception of the property.
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Figure 8: Graphical example of M0 and M1 in the adaptation to the image
context for n = 2 and the inhibition degrees λ = 1, λ = 0.5 and λ = 0.

with mmax
k ∈Mmax and mmin

k ∈Mmin being the elements in Mmax and Mmin

corresponding to the measure Pk with the highest goodness value, and with
Uk being the threshold value for considering that the difference between the
textures with the maximum and the minimum presence of the property in the
image is large enough7.

At this point, the aim is to obtain M0 and M1 on the basis of the inhibition
degree. Figure 8 shows a graphical example of M0 and M1 for the inhibition
degrees λ = 1, λ = 0.5 and λ = 0. In our approach, if the inhibition is
strong (λ = 1), M0 and M1 will be imposed by the textures with the minimum
and the maximum presence of the property in the image, i.e. M0 = Mmin

and M1 = Mmax, respectively. On the contrary, if no inhibition is present in
the image (λ = 0), M0 and M1 will coincide with the corresponding values
of the non-adaptive model, i.e. the points where T takes the values 0 and
1, respectively. However, as it was commented in section 3, there are infinite
points where these values are reached: the level sets L0 and L1. From now on,
let ML0 ∈ L0 and ML1 ∈ L1 be the points in L0 and L1 whose gradient goes
through Mmin and Mmax, respectively. As these are the point in L0 and L1

with the lowest euclidean distance to Mmin and Mmax, they can be calculated
by solving the following minimization problem

ML0 = arg min
x0∈L0

∥∥x0 −Mmin
∥∥ (17)

ML1 = arg min
x1∈L1

∥∥x1 −Mmax
∥∥ (18)

Thus, we propose to calculate M0 and M1 as

M0 = ML0 + λ · (Mmin −ML0) (19)

7Note that this threshold value will depend on the measure Pk.
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M1 = ML1 + λ · (Mmax −ML1) (20)

This way, if no inhibition is present in the image (λ = 0), M0 = ML0 and
M1 = ML1 , so the non-adaptive model is not affected by the adaptation to the
image context, as expected. As the inhibition increases, M0 will gradually take
values in the line that goes from ML0 to Mmin, reaching this last value for the
maximum inhibition degree (λ = 1). In a similar way, M1 will take the values
in the line that goes from ML1 to Mmax, as it is shown in Figure 8.

5 Results

In this section, several experiments using the proposed adaptation method are
shown. In the first three experiments, fuzzy sets adapted to the particular
perception of different users are described, analyzing their ability to represent
the corresponding profile. The last experiment shows an example where the
fuzzy sets are adapted to the image context, analyzing their ability to represent
the perception of the texture properties influenced by the context.

For the first experiment, we considered Figure 9(a), corresponding to a mi-
croscopic image of a volvox, which is a colony of greencells. In this image we can
see the main colony, composed of numerous flagellate cells embedded in a semi-
transparent gelatinous ball, as well as 7 daughter colonies growing up inside it
(the green spheres). Note that several textures with different perceptual degrees
of fineness are shown, corresponding to the background, the main colony, and
the daughter colonies. Figure 9(d) shows a mapping from the original image
to its fineness values using the bidimensional non-adaptive model proposed in
[27], corresponding to the pair of measures {FD,Amadasun}. For each pixel
in the original image, a centered window of size 32× 32 has been analyzed and
its fineness membership degree has been calculated using the fuzzy model. This
degree has been mapped into a gray level from 0 to 255. It can be noticed that
this mapping represents the fineness of the different textures present in the im-
age according to the average fineness perception gathered from the poll: a fine
texture (pixels in white) corresponding to the daughter colonies, an interme-
diate coarseness texture (pixels with an intermediate grey level) corresponding
to the main colony, and a coarse texture (pixels in black) corresponding to the
background.

Now we modify the non-adaptive model to the fineness perception of two
users. In this case, both users give a feedback about the fineness presence
of the texture in the subimage surrounded by a white square in Figure 9(a)
according to their particular perception. Specifically, it contains the texture of
the main colony, that has an intermediate fineness perception according to the
non-adaptive model (a fineness membership degree around 0.5). However, it is
perceived as a very fine texture (membership degree 1) by the user 1, and as
a very coarse texture (membership degree 0) by the user 2, as it is shown in
figures 9(b) and 9(c).

Figures 9(e) and 9(f) show a mapping from the original image to its fineness
values using the model adapted to the particular perception of the user 1 and
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Figure 9: Results for the fineness property. (a) Original image. (b)(c) Sam-
ples representing the particular fineness perception of two different users. (d)
Mapping from the original image to its fineness values using the non-adaptive
model. (e)(f) Mapping using the fuzzy model adapted to user 1 and user 2,
respectively. (g) Top view of the non-adaptive model. (h)(i) Top view of the
fuzzy model adapted to user 1 and user 2, respectively.

the user 2, respectively. It can be noticed that, in the first case, the main
colony, as well as the daughter colonies, are considered very fine, which is in
accordance with the fineness perception of user 1. In the second case, the main
colony, as well as the background, is considered very coarse, while the daughter
colonies have an intermediate fineness degree. This is also in accordance with
the particular perception of user 2, who considers all textures are coarser than
the average.

Figures 9(g)-(i) display a 2D graphical representation (top view) of the non-
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Figure 10: Results for the fineness property. (a) Original image. (b) Mapping
from the original image to its fineness values using the proposed bidimensional
non-adaptive model, corresponding to the pair of measures {FD,Amadasun}.
(c)(d) Mapping using the unidimensional non-adaptive models proposed in [28]
for each measure separately (Amadasun (c) and FD (d)). (e) Samples repre-
senting the particular fineness perception of a user. (f)(g)(h) Mapping using
the fuzzy models employed in (b)(c)(d) adapted to the user, respectively.

adaptive model, and the model adapted to the particular perception of user 1
and user 2, respectively. The two dimensions in the depiction correspond to
the two measures employed as reference set, while the colors are related to the
membership degrees, representing 10 different levels from 0 (dark blue) to 1
(dark red) in steps of 0.1. The measures used as the reference set have been
applied to the sample image given by the users, and the obtained values have
been represented as a white point in the figures (this is the adaptation point in
both cases). It can be noticed that, according to the proposed methodology, the
level curve L1 in the adaptation to the first user, and the level curve L0 in the
adaptation to the second one, have been forced to go through this adaptation
point.

In the second experiment, we compare the approach proposed in this paper
with the work in [28], where unidimensional adaptive models where introduced.
In this experiment, we considered Figure 10(a), corresponding to a microscopic
image of plant cells, where several textures with different perceptual degrees of
fineness are shown. Figure 10(b) shows a mapping from the original image to
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its fineness values using the proposed bidimensional non-adaptive model, corre-
sponding to the pair of measures {FD,Amadasun}. As in the first experiment,
it can be noticed that this mapping represents the fineness of the different tex-
tures present in the image according to the average fineness perception gathered
from the poll: a coarse texture (pixels in black) corresponding to the big cells
at the bottom of the image, an intermediate coarseness texture (pixels with an
intermediate grey level) corresponding to the intermediate size cells at the top
of the image, and a fine texture (pixels in white) corresponding to the small
cells between them.

Figures 10(c) and 10(d) show a mapping using the unidimensional non-
adaptive models proposed in [28] for the measures of Amadasun and FD, respec-
tively. It can be noticed that in this case, the unidimensional models are not
able to capture the fineness degree of the textures present in the image. This
way, multidimensional models should be used to improve the texture character-
ization, and, in order to adapt them to the subjectivity of human perception,
the adaptive multidimensional fuzzy approach proposed in this paper is needed.
In fact, Figures 10(f)-(h) show a mapping from the original image using the
fuzzy models adapted to the particular perception of a user. As in the previous
experiment, the user gives a feedback about the fineness presence of the texture
in the subimage surrounded by a white square in Figure 10(a). Specifically, it
contains the texture of the intermediate size cells, that has an intermediate fine-
ness perception according to the non-adaptive model. However, it is perceived
as a very coarse texture (membership degree 0) by the user, as it is shown in
Figure 10(e). It can be noticed that, using the bidimensional adaptive model
(Figure 10(f)), the intermediate size cells, as well as the big cells, are considered
as very coarse, while the small cells have an intermediate fineness degree, which
is in accordance with the particular perception of the user. However, using the
unidimensional adaptive models (Figures 10(g) and 10(h)), the results do not
match with this perception. Thus, in this experiment we have shown that i) the
combination of different computational measures as reference set improves the
texture characterization, and ii) the method proposed in this paper improves
the unidimensional adaptive fuzzy approaches.

For the third experiment, we considered Figure 11(a), corresponding to a
natural image where several textures with different perceptual degrees of con-
trast are shown. Figure 11(c) shows a mapping from the original image to its
contrast values using the bidimensional non-adaptive model proposed in [27],
corresponding to the pair of measures {Tamura,Haralick}. As in the previous
experiment, it can be noticed that this mapping represents the contrast presence
according to the average contrast perception: a high contrasted texture (pixels
in white) corresponding to the leopard skin, a low contrasted texture (pixels in
black) corresponding to the background, and a half-contrasted texture (pixels
with an intermediate gray level) corresponding to the branch. Finally, Figure
11(d) shows the original image using this mapping as alpha channel. It can be
noticed that the contrasted region corresponding to the leopard skin emerge with
ease, while the region of the branch is a bit transparent, and the background
has disappeared completely.
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Figure 11: Results for the contrast property. (a) Original image. (b) Samples
representing the particular contrast perception of a user. (c) Mapping from
the original image to its contrast values using the non-adaptive model. (e)
Mapping using the fuzzy model adapted to the user. (d)(f) Original image
using the mappings in (c) and (e) as alpha channel, respectively.

Now let’s modify the non-adaptive model to the particular contrast percep-
tion of a user. Figure 11(b) shows six texture images given by this user to
represent his/her particular perception, each one with an associated presence
degree of contrast. The three textures in the second row are considered as very
contrasted according to the non-adaptive model. However, only the last one is
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perceived by this user as a very contrasted texture (membership degree 1), while
the membership degrees given to the other two are 0.35 and 0.45, respectively.
Figure 11(e) shows a mapping from the original image in Figure 11(a) to its
contrast values using the adapted model. It can be seen that in this case all the
leopard skin is not considered as a very contrasted texture, but only the legs,
where the skin is white and the spots are more salient. The rest of the body
is now considered as a low contrasted texture, which is in accordance with the
contrast perception of this user. Figure 11(f) shows the original image using
this mapping as alpha channel. It can be noticed that in this case the legs of the
leopard emerge with ease, while the rest of the body has almost disappeared,
as well as the branch and the background.

Figure 12 presents an example where the non-adaptive fineness model is
adapted to the image context. For this experiment, we have considered Figure
12(a), corresponding to a microscopic image of a corneal cell. Figure 12(b) shows
a mapping from the original image to its fineness values using the bidimensional
non-adaptive model proposed in [27], corresponding to the pair of measures
{FD,Amadasun}. It can be noticed that the texture of the cell nucleus, that
is much finer than the other textures in the image, is considered as very fine
according to the non-adaptive model. Now let’s consider Figure 12(d), which
is a zoom of a section of the image shown in Figure 12(a). The corresponding
mapping using the non-adaptive model is shown in Figure 12(e). It can be
noticed that, due to the absolute nature of the non-adaptive model, the obtained
degrees depend on the zoom level of the image. Thus, in this case the texture
of the nucleus is not considered as very fine.

The adaptation to the image context proposed in this paper can be used to
reduce the influence of the zoom level. In order to calculate the inhibition degree
λ, for this experiment we have used the measure of Amadasun, that according
to [27] is the measure in the reference set that better captures the fineness
presence. In this case, we propose to apply a threshold value Uk = |α− β|, with
α and β being the values defined in [27] (the values where the unidimensional
model corresponding to the measure of Amadasun achieves the fineness degrees
1 and 0, respectively).

Figures 12(c) and 12(f) show a mapping from the images in figures 12(a)
and 12(d) using the model adapted to the corresponding image context. It can
be noticed that, since the value where T̃ achieves the fineness degree 1 depends
on the finest texture in the image, the region corresponding to the cell nucleus
is considered as a very fine texture in both mappings. Thus, the influence of the
zoom level has been reduced, and the obtained results are in accordance with
the change in the fineness perception due to the image context.

6 Conclusions and Future Works

In this paper, an adaptive multidimensional fuzzy approach has been proposed
to model perceptual properties of texture. We combined adaptation to the
subjectivity of a human’s perception with the improvement in the texture char-
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Figure 12: Adaptation to the image context for the fineness property. (a)(d)
Original images. (b)(e) Mapping from the original images to their fineness values
using the non-adaptive model. (c)(f) Mapping using the fuzzy model adapted
to the image context.

acterization given by the combination of different computational measures as
a reference set. Some experiments have been performed in order to analyze
the ability of the adapted models obtained with the proposed methodology to
represent different perceptions of given texture properties. In particular, in the
experiments shown in section 5, the bidimensional fuzzy sets proposed in our
previous work [27] have been used, although the proposed adaptation method is
valid for any other fuzzy sets that represent the presence degree of texture prop-
erties. In these experiments we have shown that, in the case of the adaptation
to users’ profiles, the perception degrees provided by the obtained models match
what each particular user would expect. In addition, in the case of the adapta-
tion to the image context, we have shown that the obtained models are able to
represent the perception of the texture properties influenced by the context.

The proposed approach can be very useful in applications where a perceptual
texture characterization is employed, and, in particular, in tasks that need some
interaction with subjects, where the subjectivity of human’s perception may be
an important issue. For example, it can be applied in expert systems, where
the information provided by the expert is related to the presence of the texture
properties. In this case, the perception of a texture property may change de-
pending on the field of application: the concept of “very fine” may be different
for a geologist, who analyzes satellite images, than for a medical expert, who
study the textures present in x-ray or microscopic images. Moreover, even in the
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same field of application, two experts may have different perceptions about the
texture properties. Thus, using the adaptive multidimensional fuzzy approach
proposed in this paper, the systems can be adapted to the particular perception
of the corresponding expert.

In addition, the proposed approach can be used for context-awareness in
different applications, such as semantic description of images or segmentation.
In particular, it can be employed in order to reduce the influence of the zoom
level in segmentation tasks, as has been shown in the last experiment of section
5.

In this work, several lines of research have been left open. First, although we
have focused our study on membership functions T satisfying Equation (2), we
are working on a solution to apply the proposed methodology with functions that
do not satisfy this condition. Second, we will take into account the possibility
of inconsistencies in the images given by subjects to represent his particular
perception. And finally, we will extend the proposed methodology to other
image features that can be modeled by a fuzzy set T satisfying the imposed
conditions, such as fuzzy colors.

Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy and
Competitiveness and the European Regional Development Fund - ERDF (Fondo
Europeo de Desarrollo Regional - FEDER) under project TIN2014-58227-P. We
also would like to thank Dr. Daniel Sánchez for his valuable assistance in the
field of fuzzy logic.

References

[1] E. Davies, Machine Vision: Theory, Algorithms, Practicalities, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[2] M. Jian, L. Liu, F. Guo, Texture image classification using perceptual tex-
ture features and gabor wavelet features, in: Proceedings of the Asia-Pacific
Conference on Information Processing, Vol. 2, IEEE Computer Society,
2009, pp. 55–58.

[3] B. S. Manjunath, W. Y. Ma, Texture features for browsing and retrieval of
image data, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 18 (8) (1996) 837–842.

[4] L. Shao, L. Liu, X. Li, Feature learning for image classification via mul-
tiobjective genetic programming, IEEE Transactions on Neural Networks
and Learning Systems 25 (7) (2014) 1359–1371.

23



[5] P. Srisook, K. Praditwong, Automatic feature weight assignment based on
image retrieval using genetic algorithm, Advanced Materials Research 931-
932 (2014) 1402–1406.

[6] Y. Gao, R. Ji, W. Liu, Q. Dai, G. Hua, Weakly supervised visual dictio-
nary learning by harnessing image attributes, IEEE Transactions on Image
Processing 23 (12) (2014) 5400–5411.

[7] F. Zhu, L. Shao, Weakly-supervised cross-domain dictionary learning for vi-
sual recognition, International Journal of Computer Vision 109 (1-2) (2014)
42–59.

[8] D. Cheng, T. Sun, X. Jiang, A robust image classification scheme with
sparse coding and multiple kernel learning, in: Digital Forensics and Wa-
termaking, Vol. 7809 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2013, pp. 520–529.

[9] J. Li, Y. Wang, S. Chu, J. F. Roddick, Kernel self-optimization learning
for kernel-based feature extraction and recognition, Information Sciences
257 (2014) 70–80.

[10] Z. Huang, S. Lo, N. Mayr, W. Yuh, Texture segmentation in magnetic
resonance images using discrete wavelet transform combined with gabor
wavelets, Medical Physics 40 (2013) 175.

[11] A. G. Zuñiga, J. B. Florindo, O. M. Bruno, Gabor wavelets combined with
volumetric fractal dimension applied to texture analysis, Pattern Recogni-
tion Letters 36 (2014) 135–143.

[12] S. Hu, C. Xu, W. Guan, Y. Tang, Y. Liu, Texture feature extraction based
on wavelet transform and gray-level co-occurrence matrices applied to os-
teosarcoma diagnosis, Bio-Medical Materials and Engineering 24 (1) (2014)
129–143.

[13] N. E. Lasmar, Y. Berthoumieu, Gaussian copula multivariate modeling for
texture image retrieval using wavelet transforms, IEEE Transactions on
Image Processing 23 (5) (2014) 2246–2261.

[14] M. Amadasun, R. King, Textural features corresponding to textural prop-
erties, IEEE Transactions on Systems, Man and Cybernetics 19 (5) (1989)
1264–1274.

[15] R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd Edition, Pren-
tice Hall, 2002.

[16] H. Tamura, S. Mori, T. Yamawaki, Textural features corresponding to vi-
sual perception, IEEE Transactions on Systems, Man and Cybernetics 8
(1978) 460–473.

24



[17] H. Aboulmagd, N. El-Gayar, H. Onsi, A new approach in content-based
image retrieval using fuzzy, Telecommunication Systems 40 (1) (2009) 55–
66.

[18] D. Antonypandiarajan, K. Suganya, Performance analysis for coal tex-
ture classification, in: Proceedings of the 2012 International Conference
on Emerging Trends in Science, Engineering and Technology, Tiruchirap-
palli, India, 2012, pp. 251–254.

[19] S. Kulkarni, B. Verma, Fuzzy logic based texture queries for CBIR, in: Pro-
ceedings of the 5th International Conference on Computational Intelligence
and Multimedia Applications, Xi’an, China, 2003, pp. 223–228.

[20] A. Barley, C. Town, Combinations of feature descriptors for texture image
classification, Journal of Data Analysis and Information Processing 2 (3)
(2014) 67–76.

[21] S. Rao, M. Puri, S. Das, Unsupervised segmentation of texture images us-
ing a combination of Gabor and wavelet features, in: Proceedings of the
Fourth Indian Conference on Computer Vision, Graphics & Image Process-
ing, 2004, pp. 370–375.

[22] G. Liasis, C. Pattichis, S. Petroudi, Combination of different texture fea-
tures for mammographic breast density classification, in: 2012 IEEE 12th
International Conference on Bioinformatics Bioengineering (BIBE), 2012,
pp. 732–737.

[23] Y. Fuadah, A. Setiawan, T. Mengko, Budiman, Mobile cataract detection
using optimal combination of statistical texture analysis, in: 2015 4th In-
ternational Conference on Instrumentation, Communications, Information
Technology, and Biomedical Engineering (ICICI-BME), 2015, pp. 232–236.

[24] O. Al-Kadi, Texture measures combination for improved meningioma clas-
sification of histopathological images, Pattern Recognition 43 (6) (2010)
2043 – 2053.

[25] S. Rahman, S. M. Naim, A. A. Farooq, M. Islam, Combination of Gabor
and curvelet texture features for face recognition using principal component
analysis, International Journal of Computer & Electrical Engineering 4 (3).

[26] J. Chamorro-Mart́ınez, P. Mart́ınez-Jiménez, J. Soto-Hidalgo, B. Prados-
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Suárez, An adaptive fuzzy approach for modelling visual texture properties,
Fuzzy Sets and Systems 286 (2016) 86–113.

[29] J. Chamorro-Mart́ınez, P. Mart́ınez-Jiménez, J. Soto-Hidalgo, Fuzzy par-
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