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Abstract

A common way to implement a fuzzy database is on top of a classical Relational
Database Management Systems (RDBMS). Given that almost all RDBMS provide index-
ing mechanisms to enhance classical query processing performance, finding ways to use
these mechanisms to enhance the performance of flexible query processing is of enormous
interest.

This work proposes and evaluates a set of indexing strategies, implemented exclu-
sively on top of classical RDBMS indexing structures, designed to improve flexible query
processing performance, focusing in the case of possibilities queries. Results show the
best indexing strategies for different data a query scenarios, offering effective ways to
implement fuzzy data indexes on top of a classical RDBMS.

Keywords: Possibilistics query, Relational databases, Fuzzy databases, Database
indexing, Fuzzy database indexing.

1. Introduction

Fuzzy set theory is a paradigm shift which helps to solve classical, and non-classical,
problems in a more convenient way than crisp systems by softening set boundaries. The
database world has taken advantage of fuzzy set theory by using it as a way to manage
imprecise, uncertain and inapplicable data (called fuzzy data in this framework) and to
model and process flexible queries. As a result, a significant number of proposals on
fuzzy database models Fukami et al. (1979); Umano (1982); Prade & Testemale (1984);
Testemale (1986); Medina et al. (1994); Caluwe (1997) and flexible querying Bosc & Pivert
(1995) have been published. There have also been proposed various implementations
of fuzzy database management systems (FDBMS) Galindo et al. (1998); Kacprzyk &
Zadrożny (1995), in which imprecise, uncertain and inapplicable data can be managed
and/or flexible queries can be processed.
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The emergence of fuzzy databases means that a new tool is available for developing
novel applications which would process very large data sets pervaded with imprecision
and vagueness using fuzzy methods. As these novel applications prove their potential
as prototypes, they are integrated into real-world environments. In this kind of envi-
ronment, high performance, scalability and availability are required for applications, and
subsequently for each of their components, particularly for their underlying FDBMS.

Many authors claim that FDBMS should not be developed from scratch, as building
an efficient database engine is a costly task, but on top of an existing DBMS. In fact,
this approach makes possible to take advantage of the qualities of the underlying crisp
DBMS. One solution following this idea has been proposed in Barranco et al. (2008c)
where a model of fuzzy object-relational DBMS (FORDBMS) is described. This proposal
takes advantage of the extension mechanisms of a recent commercial object-relational
DBMS (ORDBMS) in order to build user-defined data types to seamlessly represent,
store, query and manage fuzzy data by modeling them as native database objects.

In addition to an efficient database engine, indexing has always been a key technique
to improve performance in database systems. Considering today’s world challenges, as
Big Data, indexing becomes a must. This is also true for the case of fuzzy databases and
of critical importance for their applicability, specially those indexing techniques that can
be built of top of a classical DBMS.

This paper studies, adapts and evaluates the most relevant indexing techniques propos-
als,and propose and evaluate some novel ones, for enhancing the performance of flexible
queries, based on a possibilistic measure (c.f. Sect. 2), that can be implemented on top
of a classical RDBMS. This last premise implies not considering indexing techniques de-
vised without the implementation on top of an RDBMS in mind (i.e. specific indexes not
available in a classical RDBMS).

The paper is organized as follows. The concept of fuzzy numerical data, the possi-
bilistic queries and the principles of indexing for such kind of queries are described in
Section 2. Section 3 describes the main elements available in classical RDBMS for query
optimization. Section 4 briefly introduces related work on fuzzy data indexing. Section 5
describes all indexing techniques for possibilistic queries which are studied in this paper.
Section 6 presents the experimental methods and analyzes the the results. Finally, Section
7 contains the concluding remarks and explores future lines of research.

2. Fuzzy data and possibilistic queries

This paper focuses on the search of the best performing indexing methods for fuzzy
numerical when querying using a possibility measured atomic flexible condition. This
section explains the main concepts involved in this task.

2.1. Fuzzy numerical data

For the purposes of the paper, a fuzzy numerical value is an imprecise and/or vague
numerical value. This kind of values are stored in a fuzzy database when the precise
value of a numerical attribute is not known. Examples of this kind of data for an age
attribute are “about five” or “between 20 and 30”. A value of this kind of data is modeled
by a convex possibility distribution defined on an underlying domain D in which a linear
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order relation is defined. The function that characterises the possibility distribution maps
every element d ∈ D to the possibility degree of the fact that d is the actual value of the
attribute.

When stored in a fuzzy database, fuzzy numerical values are usually represented by
a trapezoidal possibility distribution [α, β, γ, δ], whose membership function is defined as
shown in Eq. 1. For this reason, this kind of data is generically referred as trapezoids in
the rest of the paper.

µ[α,β,γ,δ](x) =


1 if β ≤ x ≤ γ
x−α
β−α if α < x < β
δ−x
δ−γ if γ < x < δ

0 otherwise.

(1)

A trapezoidal distribution can also represent crisp values, as crisp intervals [a, b] (in
the form [a, a, b, b]) and crisp values n as [n, n, n, n].

These trapezoidal distributions can be stored in a database as four numerical at-
tributes. Therefore, a relational table able to store fuzzy numerical data can be created
through a SQL sentence like this:

CREATE TABLE Fuzzy_tab (alpha number,beta number,gamma number,delta number)

(2)

2.2. Flexible conditions

A flexible condition is a gradual restriction imposed on the values of an attribute. This
restriction is modeled as a fuzzy set of acceptable values which must be characterized by
a convex membership function. Some instances of this kind of conditions imposed on an
age attribute are “around 30” and “in his/her 20s”.

Applying a flexible condition on a set of rows, results on tow fuzzy subsets of these
rows: one containing the row possibly satisfying the flexible condition, and one formed
by the rows necessarily satisfying the condition (which is not covered for the purposes
of this paper, as it requires specially designed indexing methods). When we apply a
flexible condition to get the first fuzzy subset of rows, we refer to the condition as a
possibility measured flexible condition. The membership function of the fuzzy set of rows
that possibly satisfy the fuzzy condition C on the attribute A is defined in the Eq. 3.

Π(C/r) = sup
d∈D(A)

(
ΠA(r)(d), µC(d)

)
(3)

where, D(A) is the underlying domain associated to the fuzzy attribute A, ΠA(r) is
the possibility distribution which describes the fuzzy value of the attribute A for the row
r, and µC is the membership function defining the fuzzy condition C.

A flexible condition is typically used in conjunction with a crisp relational comparator
for setting a threshold (i.e. a minimum) for its fulfilment degree. The typical expression
for applying a threshold T is Π(C, r) ≥ T , except when the threshold is 0. In the latter
case, the expression Π(C, r) > T is applied. This combination is called an atomic flexible
condition for the purposes of this paper and is notated as 〈C, T 〉.
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2.3. Indexing principle

The fundamentals of all indexing strategies evaluated in this work are the pre–selection
criterion. This criterion lets us, from the index, to pre–select the rows of a table that
could satisfy an atomic flexible condition for a given threshold or, in other words, remove
from the result set the rows that surely not satisfy a given atomic flexible condition. This
results in the pre–selection set. Of course, after determining this set, the selection set
(the set of rows satisfying the given atomic flexible condition) is determined filtering the
false positives at the pre–selection set.

This criterion, introduced in Bosc & Galibourg (1989), when applied on trapezoidal
fuzzy attribute values ΠA(r) = [αA(r), βA(r), γA(r), δA(r)] and lbase(〈C,T 〉) to find those rows r
that could satisfy 〈C, T 〉, the pre–selection criterion is expressed as Eq. 4 shows, where,
lbase(〈C,T 〉) and ubase(〈C,T 〉) are, respectively, the infimum and the supremum of base(〈C, T 〉),
defined as in Eq. 5.

ps′(C/r, T )⇐⇒ δA(r) ≥ lbase(〈C,T 〉) ∧ αA(r) ≤ ubase(〈C,T 〉). (4)

base(〈C, T 〉) =

{
supp(C), T = 0

suppT (C), 0 < T ≤ 1
(5)

Note that, the proposed pre–selection criterion slightly increases the occurrence of
false positives in some extreme cases when δA(r) = lbase(〈C,T 〉) or αA(r) = ubase(〈C,T 〉) if
these values are not part of the support of the trapezoidal distributions A(r) and C. For
sake of simplicity, from now on, we will note lbase(〈C,T 〉) and ubase(〈C,T 〉) as LCT and UCT ,
respectively.

The Fig. 1 illustrates the computation of the pre–selection and the selection sub-
sets for a set of two rows r, s on which we apply a flexible condition 〈C, T 〉 on the val-
ues of attribute A, with µC = [α, β, γ, δ], ΠA(r) = [αA(r), βA(r), γA(r), δA(r)] and ΠA(s) =
[αA(s), βA(s), γA(s), δA(s)].

A(r) A(s)C

LCT UCT

LA(r)T UA(r)T LA(s)T UA(s)T

T

αA(r) δA(r) αA(s) δA(s)

Selection

Preselection

0

1

Figure 1: Example of the computation of the pre–selection and the selection sets.

It is straightforward to visually check that A(r) and A(s) satisfy the pre–selection
criterion because their respective supports overlap the interval [LCT , UCT ], whose limits
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are calculated by means of the next expressions:

LCT = T ∗ β + (1− T ) ∗ α (6)

UCT = T ∗ γ + (1− T ) ∗ δ

To evaluate if a pre–selected row, A(t), satisfies the selection criterion for the given
threshold T , it is required that it fulfils the next condition of selection:

LA(t)T ≤ UCT ∧ UA(t)T ≥ LCT (7)

where, LA(t)T and UA(t)T values are computed as follows:

LA(t)T = T ∗ βA(t) + (1− T ) ∗ αA(t) (8)

UA(t)T = T ∗ γA(t) ∗ T + (1− T ) ∗ δA(t)

Notice that, in the example of Fig 1, the trapezoid A(r) satisfies the selection condition
given in Eq. 7, whilst the trapezoid A(s) does not.

2.4. SQL expressions for queries involving possibilistic conditions

If we represent trapezoidal data in a table as in Expr. 2, if the trapezoidal repre-
sentation for C is [alpha, beta, gamma, delta] and if the threshold is T , then, taking into
account the Eq. 4, we can express the SQL statement for computing the pre–selection
step as follows:

SELECT * FROM Fuzzy_tab WHERE alpha ≤ UCT AND delta ≥ LCT; (9)

where LCT and UCT are calculated as Eq. 6 shows.
Likewise, based on the Eqs. 7 and 8, the selection condition can be expressed in SQL

by means of the following statement:

SELECT * FROM Fuzzy_tab WHERE (T*beta + (1-T)*alpha) ≤ UCT (10)

AND (T*gamma+ (1-T)*delta) ≥ LCT;

Note that the predicate values of the sentence 10 are only known at execution time,
making impossible to use an indexing technique to speed up its execution. On other hand,
the sentence 9 is a good candidate to profit from indexing on fields alpha and delta fields
values. Actually, most of the considered indexing techniques pursue an efficient way to
storage alpha and delta values in order to speed up the retrieval of the tuples that satisfy
the pre–selection condition. Interestingly, if an indexing strategy allows to store in the
index all values used in the selection condition, the selection step could be performed on
the index entries, without the need to retrieve the values on the table.

3. Query optimization in Traditional RDBMS

When a SQL query is sent to an RDBMS, one expects, not only to get the correct
results but that the response time is as shorter as possible. To reach this last goal, the
RDBMS provide a system that processes the original query and generates an execution
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plan that tries to minimize the execution time of the query. This system is called query
optimizer (QO henceforward).

The input of the QO is a SQL statement and the output is an execution plan that
describes the optimum method of execution. The plan shows the combination of steps
the RDBMS uses to execute a SQL statement.

The QO considers many factors related to the objects and the conditions in the query
to try to determine an optimal execution plan. The QO generates a set of potential plans
for the SQL statement based on available access paths. Then, it estimates the cost of
each plan based on statistics in the data dictionary, which include information on the
data distribution and storage characteristics of the tables and indexes accessed by the
statement. Finally, the QO chooses the plan with the lowest cost.

The QO does not always succeed choosing the optimal execution plan. For this reason,
the RDBMS provides mechanisms for selecting one of the alternative execution plans,
and also provides clauses (called Hints) to force the QO to use particular access paths or
strategies. This feature will be of particular interest in our experiments, as we will use
clauses to force the use of the indexing strategy that is being evaluated.

Given that our experimentation has been carried out using Oracle c© RDBMS 11.2, in
this section we will describe the optimization aspects relevant to our work available in
this RDBMS. Further information can be found in Oracle c© manuals, especially in Oracle
(2012).

3.1. DBMS Indexing techniques

As the indexing techniques studied in this paper must be built on top of existing
traditional RDBMS indexing mechanisms, in this section we review them.

The indexes the classical RDBMS available in can be categorized as follows:

100,102,108,112,rowid
100,102,108,115,rowid
100,103,105,112,rowid
102,104,107,116,rowid
105,108,116,120,rowid
...
199,212,220,225,rowid

200,202,208,212,rowid
200,202,208,215,rowid
200,203,205,212,rowid
202,204,207,216,rowid
205,208,216,220,rowid
...
299,302,320,325,rowid

4000,4100,4208,4212,rowid
4000,4102,4118,4125,rowid
4030,4035,4045,4056,rowid
4040,4043,4054,4060,rowid
4045,4052,4059,4063,rowid
...
4099,4110,4120,4125,rowid

5000,5020,5050,5076,rowid
5000,5035,5058,5073,rowid
5020,5050,5067,5100,rowid
5045,5089,5110,5144,rowid
5065,5088,5099,5112,rowid
...
5099,5112,5120,5125,rowid

100 .. 199
200 .. 299
...
900 .. 999

4000 .. 4099
4100 .. 4199
...
5000 .. 5099

... ...

...

100 .. 999
1000 .. 1999
...
4000 .. 5099

Branch Blocks

Leaf Blocks

Figure 2: Structure of a composite B-tree index
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B-tree indexes B-trees (balanced trees), are the most common type of database index.
A B-tree index is an ordered list of values divided into ranges. By associating a
key with a row or range of rows, B-trees provide excellent retrieval performance for
a wide range of queries, including exact match and range searches. Our proposal
uses composite indexes, which are B-tree indexes ordered by means of two or more
attributes. Fig. 2 shows an example of the internal structure of a composite index
defined on the attributes: alpha, beta, gamma and delta from a table containing
fuzzy data. The first attribute (alpha) is the key of the index. The remaining
attributes determine the partial order of those fuzzy data which have the same
value for alpha.

The index is organized by means database blocks which are of two types: branch
blocks and leaf blocks. The former are used to search values and the second to store
values. Let’s see by an example how this index is used to find a determined value. To
search a tuple that contains the trapezoidal fuzzy value given by [200,202,208,215],
the process starts searching in the root block the range that comprises the first key
value (200); in this case, it is the 100..999 range, which points to the first branch
block at the second level. Then, in this block the range that includes the key value
(200..299) it is searched for and it points to the second leaf block. This block stores
an ordered list of key values which is now sequentially explored to find the searched
key, the second in our case; this element includes the pointer to the table row that
contain the searched value.

The preceding operation is generally called an index scan. Some important con-
siderations about index scan are: 1) if h is the height of the B-tree, to find a key
value it is necessary h I/O operations. 2) If a SQL statement accesses only indexed
columns, then the database reads values directly from the index rather than from
the table.

There are several types of index scans, for our purposes the most important is
Index range scan; it is applied when the predicates include a range condition on an
attribute which constitutes the first value of the index key. The index is used to
search one of the range bounds, then the leaf blocks are scanned (in ascending or
descending order) to retrieve the rowids until the second bound is reached.

Key Rowid Range Bitmap
100 Rowid0 .. Rowid7 00100000
100 Rowid8 .. Rowid15 00000100
102 Rowid8 .. Rowid15 00001000
105 Rowid8 .. Rowid15 01000000
. . . . . . . . .
199 Rowid32 .. Rowid39 01000000

Table 1: Example of the structure and content for the first leaf block of a bitmap index.

Bitmap indexes In a bitmap index, the database stores a bitmap for each index key.
In a conventional B-tree index, one index entry points to a single row. In a bitmap
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index, each index key stores pointers to multiple rows. The database uses a B-tree
index structure to store bitmaps for each indexed key.

If we create a bitmap index on the same table than the used in the previous example,
using the alpha value of the trapezoidal representation as the key, the structure for
the branch blocks is the same that the one shown in Fig. 2; however, the leaf nodes
contain bitmap entries for each distinct key value with the following structure: key
value, range of rowids, bitmap for rowids in the range.

The first leaf block in Fig. 2 shows three entries for the value of the key 100, one for
the values 102, 105 and 199, among other entries not specified. According to this
information, the content of this leaf block could be similar than the one shown in
Table 1.

The information shown in Table 1 is interpreted as follows. The first entry in this
table indicates that third row of the indexed database table contains the value 100
for the indexed attribute. The second entry informs that the fourteenth row of the
database table also contains the 100 value. Likewise, the third, fourth and final
entries indicate that the values 102, 105 and 109 are respectively the values for the
indexed attribute at rows 13th, 10th and 34th.

R*Tree Indexes An R-tree index is designed to index spatial data. In this work we
consider the use of Oracle Spatial c© feature, which uses a R-Tree to index spatial
data of up to four dimensions. Because our proposal will work on a bidimesional
space, we will illustrate the structure and query functioning of this index on such
space. Fig. 3 shows the structure of a R-tree index after the insertion of the
geometries 1 to 9 (which are shown shaded in the left side of the figure). An R-tree
index approximates each geometry by a single rectangle that minimally encloses the
geometry (called the minimum bounding rectangle, or MBR). The R-tree structure
is composed by a hierarchy of MBR of the geometries in the layer where: a, b, c, and
d are the leaf nodes of the R-tree index and contain MBR of geometries together
with pointers to the geometries, A contains the MBR of a and b, and B contains
the MBR of c and d, and finally, the root contains the MBR of A and B (that is
the entire area shown).

A

B

root

4

3

b
1 a

2

5 6

c 7
9

8d

Query window

root

A B

a dcb

Figure 3: Structure and query on a R-tree index
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The processing of a spatial query using this index is as follows. Firstly, the query
is expressed by means of a query window as Fig. 3 (left) shows. Then, the index,
Fig. 3 (right), is traversed from root, finding that the query window overlaps with
the MBRs of nodes A and B. Finally, considering the node A, it checks which
subnodes overlap the query window. In this case, the node a is the only one, which
is subsequently retrieved to get the MBRs of the geometries it includes (1 and 2).
The geometry 2 is then retrieved as a candidate result because is the only one
whose MBR overlaps with the query window ; once retrieved, the concrete spatial
operator is evaluated on the geometry to evaluate if it will be on the final result of
the query. Likewise, considering the node B, the index determines that the MBR of
c is the only one that overlaps with the query window. Such node is retrieved and
it is verified that the MBRs of the geometries 6 and 7 completely inside the query
window ; so these geometries are recovered as a result of the query.

Function-based indexes This type of index includes columns that are either trans-
formed by a function, for instance the SQL UPPER function, or included in an
expression. B-tree or bitmap indexes can be function-based.

Application domain indexes This type of index is created by a user for data in an
application-specific domain. The physical index need not use a traditional index
structure (although it can be used) and can be stored either in the Oracle c© database
as tables or externally as a file. This kind of index, combined with user defined data
types (UDTs) allows to extend the capabilities of the RDBMS to handle new data
types. These capabilities can be used to finally implement some of the indexing
strategies proposed in this work.

3.2. Execution Plan

As we have mentioned, when executing a query, the QO evaluates several execution
plans and selects the optimal one. To examine which is the execution plan selected,
the SQL statement EXPLAIN PLAN FOR <sql_sentence> is used, where the <sql_sentence>

can be a query or any other kind of sql statement. As result of the execution of this
statement, the execution plan for the considered sentence is stored into a table (by default
plan table). After that, this table can be queried to get the execution plan for the analyzed
statement. To get a formatted output of an execution plan from the plan table, we can
use a predefined function dbms_xplan.display(). The following example illustrates the
process to get the execution plan for a query which implements a pre–selection condition
using the expression in Eq. 9:

EXPLAIN PLAN FOR SELECT count(*) FROM TAB WHERE (alpha <=52188 AND delta >=51936.5);

then, we execute:

SELECT * FROM table(dbms_xplan.display());

as result we get:
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PLAN_TABLE_OUTPUT

-----------------------

Plan hash value: 1291143156

------------------------------------

| Id | Operation | Name |

------------------------------------

| 0 | SELECT STATEMENT | |

| 1 | SORT AGGREGATE | |

|* 2 | TABLE ACCESS FULL| TAB |

------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

2 - filter("DELTA">=51936.5 AND "ALPHA"<=52188)

The execution plan shown is interpreted in this way:

1. The DBMS performs a TABLE ACCESS FULL on the table Tab; this operation
means that the RDBMS traverses all tuples of this table for returning the ROWID
of those that satisfy the “filter” predicate.

2. The next step is a SORT AGGREGATE operation which retrieves a single row as
the result of applying a group function to a group of selected rows (count(*)).

3. The higher level operation is SELECT STATEMENT, which indicates that the
analyzed statement is a SELECT statement.

Each operation implies a step in the query processing with the format: <Operation>

<Option> <Object>. Furthermore, the operation can be based on the satisfaction of a
predicate which is described in the ”Predicate Information” section of the output. They
can appear two kinds of predicates: 1) access predicates used to locate rows in an access
structure. For example, start or stop predicates for an index range scan, and 2) filter
predicates, to filter rows before returning them to the user, filter predicates are only applied
during the leaf node traversal, they do not contribute to the start and stop conditions
and do not narrow the scanned range.

3.2.1. Execution plan options

Next, we will detail the operations and options more relevant to our work:

• INDEX. Indicates the use of a B-tree index as access method (the index shown in
the Name column). The option UNIQUE SCAN shows that the retrieval will be
of a single rowid from the index. The option RANGE SCAN informs us that the
retrieval will be of one or more rowids in ascending order.

• BITMAP INDEX. Indicates that the Bitmap index shown in the Name column will
be used. The option RANGE SCAN indicates that bitmaps for a key value range
will be retrieved

• BITMAP. With the option MERGE indicates the merging of several bitmaps re-
sulting from a range scan into one bitmap. With the option AND, it informs us
of the application of a bitwise AND of these bitmaps. The option CONVERSION
TO ROWIDS converts bitmap representations to current rowids that can be used
to access the table.
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• DOMAIN INDEX. Indicates the retrieval of one or more rowids from a domain
index (the index shown in the Name column).

• INTERSECTION is an operation that accepts two sets of rows and returns the
intersection of the sets. The UNION-ALL option indicates the application of an
operation which accepts two sets of rows and returns the union of the sets, without
eliminating duplicates.

• NESTED LOOPS. Operation that accepts two sets of rows, an outer set and an
inner set; the database compares each row of the outer set with each row of the
inner set, returning rows that satisfy a condition.

• TABLE ACCESS. With the option BY INDEX ROWID, it establishes the retrieval
of the tuples of the indicated table by means of the use of the rowids returned by
the previous index operation.

• SORT. With the option AGGREGATE, it indicates the retrieval of a single row that
is the result of applying a group function to a group of selected rows. The UNIQUE
option establishes an operation sorting a set of rows to eliminate duplicates.

• VIEW. Indicates an operation performing a view query and then, returning the
resulting rows back to another operation.

3.2.2. Hints
As mentioned before, the QO evaluates and tries to select the best execution plan,

but if we want to force the use of a specific access method, we can use the ”HINT” clause
that is enclosed by /*+ */ next to the SELECT clause in the way:

SELECT /*+ INDEX (TAB BT_DABG)*/ count(*) FROM TAB WHERE (alpha <=52188 AND delta >=51936.5)

AND (beta*.5 + .5* alpha <=52188 AND gamma*.5+ .5* delta >=51936.5);

The resulting execution plan is:

PLAN_TABLE_OUTPUT

---------------------

Plan hash value: 3749191139

-------------------------------------

| Id | Operation | Name |

-------------------------------------

| 0 | SELECT STATEMENT | |

| 1 | SORT AGGREGATE | |

|* 2 | INDEX RANGE SCAN| BT_DABG |

-------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

2 - access("DELTA">=51936.5 AND "DELTA" IS NOT NULL)

filter("ALPHA"<=52188 AND "BETA"*.5+.5*"ALPHA"<=52188 AND "GAMMA"*.5+.5*"DELTA">=51936.5)

In this example, the hint /*+ INDEX (TAB BT_DABG)*/ forces the QO to perform an
INDEX RANGE SCAN on the index BT_DABG, which is a B-tree index defined on the attributes
delta, alpha, beta and gamma, accessing only the index entries that accomplish ”access”
predicate and then applying on them the ”filter” condition (note that the last operation
can be done on the index entries, because these entries store all the needed values). There
are many available hints, but we will use one more, the INDEX COMBINE hint, which forces
the QO to consider a list of indexes on evaluating the execution plan (see Section 5.2).
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4. Related Work

The aim of this work is to determine the best indexing techniques for possibilistic
queries that can be implemented using the resources that an RDBMS provides. This
premise determines two key aspects: (a) in traditional RDBMS, the most determinant
factor for performance in retrieval is the amount of retrieved database blocks, and (b)
to be implemented into traditional RDBMS, an indexing technique only should require
structures already available in traditional RDBMS.

Taking into account these considerations, we will review the most relevant proposals
in the literature. Because the problem of enhancing possibilistic queries performance is
based on the problem of enhancing the retrieval of intervals that intersect to a given one,
we will also review indexing proposals oriented to the interval retrieval.

4.1. Indexing proposals for possibilistic queries

In the field of fuzzy databases there have been some research efforts aimed to include
indexing mechanisms specially designed to handle flexible queries and imperfect data.

Among the literature, we can highlight the seminal paper Bosc & Galibourg (1989),
as commented in sect. 2.3, where the principles for indexing in fuzzy database are laid.
On top of this, there are proposals to extend traditional database indexes, as B+-trees
Barranco et al. (2008a, 2009), bitmaps Barranco & Helmer (2012) or multidimensional
indexes as g-tree Liu et al. (1996), to make them able to support flexible querying on fuzzy
data. Apart from this, there are proposals in the literature not using the above indexing
principle, as some specially designed structures for fuzzy object-oriented databases Yazici
et al. (2008).

On the set of the above proposals, only some of them are able to assist on open
(i.e. non-fixed) query processing. Particularly, in the case of possibilistic open queries on
numerical data, only some of the above proposals Barranco et al. (2008a) are suitable for
the task.

4.2. Structures for indexing intervals

The most interesting proposal for the indexing of intervals is RI-tree, which was pre-
sented in Kriegel et al. (2000). RI-tree is a relational storage structure based on the
main memory interval tree, Edelsbrunner (1983), and can be built on top of the SQL
layer of any RDBMS. The structure of an RI-tree consists of a binary tree of height h
which makes the range [0..2h − 1] of potential interval bounds accessible. It is called the
virtual backbone of the RI-tree since it is not materialized but only the root value 2h−1

is stored in a metadata table. Traversals of the virtual backbone are performed purely
arithmetically, by starting at the root value and proceeding in positive or negative steps
of decreasing length 2h−1, thus reaching any desired value of the data space in O(h) CPU
time and without causing any I/O operation. Upon insertion, an interval is registered at
the highest node that is contained in the interval. For the relational storage of intervals,
the value of that node is used as an artificial key.

An instance of the RI-tree consists of two relational indexes, which in an extensible
indexing environment, are preferably managed as index-organized tables. These indexes
correspond to the relational schema lowerIndex (node, lower, id) and upperIndex (node,
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upper, id) which store the artificial key value node, the lower and upper bounds, respec-
tively, and the id of each interval. An interval is represented by a single entry in each of
the two indexes, and therefore, O(n/b) disk blocks of size b suffice to store n intervals.
For inserting or deleting intervals, the node values are determined arithmetically, and
updating the indexes requires O(logb n) I/O operations per interval.

Trap id Alpha Beta Gamma Delta
Qry trap 9 12 13 14

T1 1 2 3 5
T2 2 4 7 9
T3 8 12 14 17
T4 9 10 11 15
T5 21 23 25 26

Table 2: Example table of trapezoidal values and a queried value.

To illustrate the creation of the index contents in the RI-tree structure, consider the
trapezoids T1..T5 shown in Table 2. If we want to index the support of these trapezoids,
[alpha, delta], to apply the indexing principle described in Sect. 2.3, the process is as
shown in Fig. 4 (a). As we can see, for the interval T1, the value of the node assigned is
4, because it is the highest node in the virtual backbone between its interval bounds. In
the same way, for the interval T2 the node assigned is 8, and so on.
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(a) RI-tree example
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(b) Query preparation step

Figure 4: (a) RI-tree expample: a1) Support of the five trapezoids example, a2) Virtual backbone and
registration position, and a3) Contents of the indexes lowerIndex and upperIndex. (b) Query preparation
step for the query interval [9,14] (shaded in light gray): leftQueries {8}; rightQueries {16}; innerQueries
{9-14}

The processing of interval intersection query [start, end], based on the RI-Tree is
performed in two phases: the procedural query preparation phase and the declarative
query processing phase. To illustrate the process, see we will analyse the procedure by
an example using as query interval the support of the Qry trap described in Tab 2, that
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is [9, 14] (See Fig. 4 (b)). In the first phase, the virtual backbone is traversed descending
from the root node down to star (9 in this example) and to end (14), respectively. The
traversal is performed arithmetically without causing any I/O operations, and the visited
nodes are collected in two different main-memory tables leftQueries and rightQueries
both obeying the unary relational schema (node). Notice that leftQueries only collects
the intermediate nodes adjacent by the left to start value (8 in this example) discarding
the other nodes, because the upper value of the intervals that they represent is less than
the start value. Respectively, rightQueries only collects the intermediate nodes adjacent
by the right to end value, 14. The intervals with node value in leftQueries intersect the
queried interval if its upper value is greater than or equal to start. In our example T2,
with node value 8, satisfies this condition, so it intersects the interval [9, 14].

Likewise, the intervals with node value in rightQueries intersect the queried interval
if its lower value is less than or equal to end. T3 belongs to the node 16 and its lower
value satisfies the last condition, so it intersects the interval [9, 14]. Whereas these nodes
are taken from the paths, the set of all nodes between start and end belongs to the so-
called innerQuery, which is represented by a single range query on the node values. All
intervals registered at nodes from the innerQueries, (T4 in our example), are guaranteed
to intersect the query, since they have at least their node value in common with the query
interval and, therefore, will be reported without any further comparison of lower or upper
values. The query preparation step is purely based on main memory and requires no I/O
operations.

In the second phase, the transient tables are joined with the relational indexes up-
perIndex and lowerIndex by a single three-fold SQL statement:

SELECT id FROM upperIndex AS i JOIN :leftQueries USING (node) WHERE i.upper >= :start

UNION ALL SELECT id FROM lowerIndex AS i JOIN :rightQueries USING (node) WHERE i.lower <= :end

UNION ALL SELECT id FROM lowerIndex // or upperIndex WHERE node BETWEEN :start AND :end

The upper point of each interval registered at nodes in leftQueries is compared to start,
and the lower point of intervals in rightQueries is compared to end. The innerQuery
corresponds to a simple range scan over the intervals with nodes in [start, end]. Because
intervals are organized by the node value, the significant intervals which intersect the
query interval are stored in contiguous ranges on disk. For a tree height of h, there
are at most 2 · h different ranges which have to be considered when processing the query
interval. Since the output from the relational indexes is fully blocked for each join partner,
the SQL query requires O(h · logbn + r) I/Os to report r results from an RI-tree with n
stored intervals (block size b).

5. Indexing techniques for possibilistic queries

In this Section we will describe several proposals based on the use of B-trees, RI-
trees, Bitmap and R-trees (Oracle Spatial c©) indexes. For each evaluated index strategy,
we briefly describe its fundamentals, the necessary structure to implement it into an
RDBMS, the rewritten query to force the use the defined indexes and the execution plan
the host RDBMS generates to execute the query.

It must be noted that, in this section and in the performance evaluation section, we
only use statements that retrieve amount of tuples satisfying the fuzzy condition, not the
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set of such tuples. This decision allows to better focus the study in the performance of each
strategy, avoiding considerations of how rows must be retrieved after index processing.

5.1. B-Tree based indexing

There are few approaches that use B-trees to enhance possibilistic queries performance.
This section reviews existing and proposes some novel ones.

5.1.1. 2BPT indexing

In Barranco et al. (2008b) the authors propose an indexing technique to enhance possi-
bilistic queries by means of the use of two indexes defined on alpha and delta, respectively.
To pre–select the tuples that satisfy the query, it uses the first index to get the tuples that
accomplish the condition alpha ≤ U CT and uses the second one to get the tuples that
satisfy the condition delta ≥ L CT; then, the intersection of these sets is calculated to get
the tuples that satisfy the pre–selection criterion. Finally, on these tuples, the selection
criterion is applied.

We have adapted this technique to enhance the selection performance by means of the
inclusion of all trapezoidal values into the defined indexes, in this way:

CREATE INDEX BT_ADBG ON TAB (ALPHA,DELTA,BETA,GAMMA); CREATE INDEX BT_DABG ON TAB (DELTA,ALPHA,BETA,GAMMA);

The query that forces the RDBMS to execute the query according to this indexing
strategy is:

SELECT COUNT(*) FROM ((SELECT /*+ INDEX (TAB BT_ADBG)*/ rowid FROM TAB WHERE (alpha<=U_CT)

AND (beta*T + alpha*(1-T)<=U_CT AND gamma*T+ delta*(1-T)>=L_CT))

INTERSECT (SELECT /*+ INDEX (TAB BT_DABG)*/ rowid FROM TAB WHERE (delta>=L_CT)

AND (beta*T + alpha*(1-T)<=U_CT AND gamma*T+ delta*(1-T)>=L_CT)));

The execution plan for an example of query using this indexing strategy is:

-----------------------------------------

| Id | Operation | Name |

-----------------------------------------

| 0 | SELECT STATEMENT | |

| 1 | SORT AGGREGATE | |

| 2 | VIEW | |

| 3 | INTERSECTION | |

| 4 | SORT UNIQUE | |

|* 5 | INDEX RANGE SCAN| BT_ADBG |

| 6 | SORT UNIQUE | |

|* 7 | INDEX RANGE SCAN| BT_DABG |

-----------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

5 - access("ALPHA"<=40179); filter("BETA"*0+1*"ALPHA"<=40179 AND "GAMMA"*0+1*"DELTA">=40129)

7 - access("DELTA">=40129 AND "DELTA" IS NOT NULL)

- filter("BETA"*0+1*"ALPHA"<=40179 AND "GAMMA"*0+1*"DELTA">=40129)

As we can see, the intersection operation (3) invoves two sort operations (4 and 6) on
each set of rows obtained from the respective index range scan operations (5 and 7). It
must be noted that the computational cost of the intersection is high (O(n · log n)). For
the evaluation of performance of the next Section, we will refer to this strategy with the
label 2BPT.
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5.1.2. Strategies based on the use of a single B-Tree index
Because of the computational cost of the intersection operation, we have considered

an alternative based on the use of a single B-tree defined on either alpha or delta. For
example, we will use a compound B-tree index defined on the fields alpha, delta, beta,
gamma. The query statement that force the use of this index would be:

SELECT /*+ INDEX (TAB BT_ADBG)*/ count(*) FROM TAB

WHERE (alpha<=U_CT AND delta>=L_CT) AND (beta*T + alpha*(1-T)<=U_CT AND gamma*T+ delta*(1-T)>=L_CT);

The execution plan generated for an example query based on this strategy is:

-------------------------------------

| Id | Operation | Name |

-------------------------------------

| 0 | SELECT STATEMENT | |

| 1 | SORT AGGREGATE | |

|* 2 | INDEX RANGE SCAN| BT_ADBG |

-------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

2 - access("DELTA">=16803.5 AND "ALPHA"<=16838.5)

filter("BETA"*.3+.7*"ALPHA"<=16838.5 AND "GAMMA"*.3+.7*"DELTA">=16803.5 AND "DELTA">=16803.5)

It worth noticing that given that the first attribute indexed is alpha, the queries with
a low value for U CT (what implies small amount of rows with a value of alpha ≤ U CT)
are the most benefited by the use of this index (this is the case in this example). We
name this strategy as 1BT.

5.1.3. Strategies based on the use of two B-Tree indexes
To try to solve the previous problem, we are going to define another compound B-tree

index on the attributes (delta,alpha,beta,gamma). The idea is to avoid the inefficient
intersection operation of the 2BPT strategy and provide a mechanism to force the QO
to use one of these indexes depending of the values of the query. Therefore, when the
condition alpha ≤ U CT involves fewer rows than the condition delta ≥ L CT, the QO will
use the B-tree Index based on (alpha,delta,beta,gamma), otherwise it will use the B-tree
index based on (delta,alpha,beta,gamma). To adopt the better decision, the QO needs
some statistics about the real distribution of the rows in the index in function of its alpha
and delta values. In our case, Oracle c© 11.2 automatically collects statistics during index
creation and rebuilding. We only need to instruct Oracle c© to consider the two defined
indexes in its query optimization process, using the INDEX COMBINE optimization hint:

SELECT /*+ INDEX_COMBINE (TAB BT_ADBG BT_DABG)*/ count(*) FROM TAB

WHERE (alpha<=U_CT AND delta>=L_CT) AND (beta*T + alpha*(1-T)<=U_CT AND gamma*T+ delta*(1-T)>=L_CT);

For the previous query example, the execution plan is the same and the QO uses the
index BT ADBG. The following execution plan is elaborated by the QO for a query that
has a greater value for L CT, and so the use of the index BT DABG is more efficient.

-------------------------------------

| Id | Operation | Name |

-------------------------------------

| 0 | SELECT STATEMENT | |

| 1 | SORT AGGREGATE | |

|* 2 | INDEX RANGE SCAN| BT_DABG |

-------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

2 - access("DELTA">=72659.1 AND "DELTA" IS NOT NULL)

filter("ALPHA"<=72711.8 AND "BETA"*.9+.1*"ALPHA"<=72711.8 AND "GAMMA"*.9+.1*"DELTA">=72659.1)

We will refer to the above indexing strategy as 2ABT.
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5.1.4. RI-Tree based indexing

This indexing structure, described in Section 4.2, is designed to enhance the retrieval
of intervals. Here, we will adapt it to better functioning on a traditional RDBMS and to
operate on posibilistic queries. Again, to get better performance for possibilistic queries,
we include the values of the attributes alpha, beta, gamma and delta into the indexes, to
perform the selection step into the index.

There is a subtle difference when adapting the RI-tree structure to handle queries on
trapezoidal data since we apply the indexing on the support of the trapezoids; this means
that the result set depends on the threshold of the query. For example, the trapezoid T4
in the database example shown in Table 2, was assigned the node value 12, calculated from
its support, in the RI-tree index (Fig. 4 (a)). When we use the trapezoid Qry trap (Table
2) to perform a query, establishing a 0 threshold, the Fig. 4 (b) shows that the T4 node
belongs to the innerQueries (light gray rectangle), and so, it is rightly retrieved in the
result set. However, when a threshold of 1 is set, the lists leftQueries, rightQueries and
innerQueries change containing, respectively, the nodes {8, 10, 11}, {14, 16} and, {12 −
13}. Again, the indexed trapezoid belongs to the new innerQueries list, and following the
original RI-tree algorithm, this trapezoid would be recovered; however, for this threshold,
T4 becomes the interval [10, 11] which does not intersect the queried interval [12, 13] (dark
gray rectangle). For this reason, for possibilistics queries, the indexed nodes which belong
to the inner Queries list, do not necessarily satisfy the query, and it is necessary that they
also satisfy the selection condition.

Our adaptation of the RI-tree technique to handle possibilistic queries is called possi-
bilistic Ri-tree (PRI for short) and consists of the following structures:

• A PL/SQL implementation of the function forkNode, that generates a node value
for the support of the fuzzy value ([alpha,delta]).

• A table (Trape(fnode,alpha,beta,gamma,delta)) that stores the trapezoidal represen-
tation of the fuzzy values together with the value returned by the forkNode function
applied to the interval [alpha,delta] (fnode).

• We don’t use the auxiliary tables lowerIndex and upperIndex of the original strategy,
but we use two B-Tree indexes defined on the base table: one (RI nadbg) built on the
fnode, alpha, delta, beta, gamma attributes and, the other (RI ndabg) on the fnode,
delta, alpha, beta, gamma attributes. These indexes are automatically updated
when the base table is updated, without the need of triggers for this task.

• Two PL/SQL functions leftNodes and rightNodes, which implement the transient
tables leftQueries and rightQueries described in Section 4.2, respectively.

To perform a query according to this implementation, the SQL query must be rewritten
as follows:

SELECT /*+ INDEX (Trape RI_ndabg)*/ count(*) FROM Trape

WHERE (fnode in (SELECT /*+ CARDINALITY(l,20) */ l.column_value FROM table(LeftNodes(L_CT)) l) --leftNodes

AND delta >=L_CT) AND (beta*T + alpha*(1-T)<=U_CT AND gamma*T+ delta*(1-T)>=L_CT)

UNION ALL SELECT /*+ INDEX (Trape RI_nadbg)*/ count(*) FROM Trape

WHERE (fnode in (SELECT /*+ CARDINALITY(r,20) */ r.column_value FROM table(RightNodes(U_CT)) r) --rightNodes

AND alpha <=U_CT) AND (beta*T + alpha*(1-T)<=U_CT AND gamma*T+ delta*(1-T)>=L_CT)

UNION ALL SELECT /*+ INDEX (Trape RI_nadbg)*/ count(*) FROM Trape

WHERE (fnode BETWEEN L_CT AND U_CT) AND (beta*T + alpha*(1-T)<=U_CT AND gamma*T+ delta*(1-T)>=L_CT)
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The execution plan for an example query using this strategy is:

------------------------------------------------------------

| Id | Operation | Name |

------------------------------------------------------------

| 0 | SELECT STATEMENT | |

| 1 | UNION-ALL | |

| 2 | SORT AGGREGATE | |

| 3 | NESTED LOOPS | |

| 4 | SORT UNIQUE | |

| 5 | COLLECTION ITERATOR PICKLER FETCH| LEFTNODES |

|* 6 | INDEX RANGE SCAN | RI_ndabg |

| 7 | SORT AGGREGATE | |

| 8 | NESTED LOOPS | |

| 9 | SORT UNIQUE | |

| 10 | COLLECTION ITERATOR PICKLER FETCH| RIGHTNODES |

|* 11 | INDEX RANGE SCAN | RI_nadbg |

| 12 | SORT AGGREGATE | |

|* 13 | INDEX RANGE SCAN | RI_nadbg |

------------------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

6 - access(FNODE=LEFTNODES(value) AND DELTA>=832240.6 AND DELTA IS NOT NULL)

filter(BETA*.2+.8*ALPHA<=835769.2 AND GAMMA*.2+.8*DELTA>=832240.6)

11 - access(FNODE=RIGHTNODES(value) AND ALPHA<=835769.2)

filter(BETA*.2+.8*ALPHA<=835769.2 AND GAMMA*.2+.8*DELTA>=832240.6)

13 - access(FNODE>=832240.6 AND FNODE<=835769.2)

filter(BETA*.2+.8*ALPHA<=835769.2 AND GAMMA*.2+.8*DELTA>=832240.6)

As the execution plan shows, for the two initial parts of the query (2, 7), the RDBMS
iterates (NESTED LOOPS) each node (5, 10) obtained from transient tables leftNodes and
rightNodes, respectively, scanning the RI indexes using the node value to access them and
finally, retrieving those ones that satisfy the filter predicate (6, 11), that is the selection
criterium. The third part of the query is accomplished by means of an index range scan
retrieving those tuples that satisfy the predicate 13.

5.2. Bitmap based indexing

This indexing strategy is based on the use of the following two bitmap indexes:

CREATE BITMAP INDEX BIT_ALPHA ON TAB(alpha); CREATE BITMAP INDEX BIT_DELTA ON TAB(delta);

The pre–selection step processing can be improved with the use of these indexes but,
to perform the complete selection process, it is necessary to retrieve from the table the
trapezoidal representation of the pre–selected values, given that it not practically feasible
to create composed bitmaps indexes, contrary to what we have done with B-tree based
indexes.

The rewritten query that forces the use of this index strategy is:

SELECT /*+ INDEX_COMBINE (TAB BIT_Alpha BIT_Delta)*/ count(*) FROM TAB

WHERE (alpha <=U_CT AND delta >=L_CT) AND (beta*T + alpha*(1-T)<=U_CT AND gamma*T+ delta*(1-T)>=L_CT)

The execution plan for an example query using this strategy is:

---------------------------------------------------

| Id | Operation | Name |

---------------------------------------------------

| 0 | SELECT STATEMENT | |

| 1 | SORT AGGREGATE | |

|* 2 | TABLE ACCESS BY INDEX ROWID | TAB |

| 3 | BITMAP CONVERSION TO ROWIDS| |
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| 4 | BITMAP AND | |

| 5 | BITMAP MERGE | |

|* 6 | BITMAP INDEX RANGE SCAN | BIT_DELTA |

| 7 | BITMAP MERGE | |

|* 8 | BITMAP INDEX RANGE SCAN | BIT_ALPHA |

---------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

2 - filter("BETA"*0+1*"ALPHA"<=56832 AND "GAMMA"*0+1*"DELTA">=51832)

6 - access("DELTA">=51832); filter("DELTA">=51832); 8 - access("ALPHA"<=56832); filter("ALPHA"<=56832)

As the execution plan shows, the index BIT ALPHA is scanned searching the bitmaps
for all values of alpha which are less or equal than 56832 (8). Then, these bitmaps are
merged using a bitwise OR (7). Similar processing is performed using the BIT DELTA
index (6,5). The two previous steps return two bitmaps on which the intersection is
calculated by means on a bitwise AND (4). Then, the obtained bitmap is transformed
into a set of row identificators (3) which allow to retrieve from the table the pre–selected
tuples. On these tuples the ”filter” predicate is applied to retrieve those ones that satisfy
the selection criteria (2). This indexing strategy will be tagged as BIT.

5.3. R-Tree based indexing

To evaluate a strategy based on multidimensional indexes (that can be feasible to im-
plement on traditional RDBMS), we have used Oracle Spatial c©. This feature of Oracle c©

is based on the use of R-Trees to enhance spatial queries. To implement this multidi-
mensional indexing strategy, we perform the following steps: first, we define the interval
that represents the support of a fuzzy datum ([alpha,delta]) as a point in a bi-dimensional
space, i.e., as an instance of the sdo geometry type in this way:

sdo_geometry(2001, null, SDO_POINT_TYPE(alpha,delta,NULL), NULL, NULL)

where, value 2001 indicates that this instance is a point into a bi-dimensional space,
the NULL value in the second parameter establishes the use of the cartesian coordinate
system, the third parameter provides, by means of the SDO POINT TYPE construc-
tor, an instance of the point with coordinates: x=alpha, y=delta and NULL for the z
coordinate. The last parameters are not used in our case.

Then, we create the table that stores the fuzzy data represented in this way:

CREATE TABLE RTAB (support SDO_GEOMETRY, beta NUMBER, gamma NUMBER);

Next, we create a spatial index on the support attribute by means of the sentence:

CREATE INDEX RT_supp ON RTAB (support) INDEXTYPE IS MDSYS.SPATIAL_INDEX;

The insertion of fuzzy data ([alpha,beta,gamma,delta]) in this table is performed by
means of the statement:

INSERT INTO RTAB VALUES(sdo_geometry(2001,null,SDO_POINT_TYPE(alpha,delta,NULL),NULL,NULL),beta,gamma);

Finally, it is necessary to rewrite each possibilistic query for the use of this indexing
strategy in this way:

SELECT count(*) FROM RTAB WHERE SDO_FILTER(support,

SDO_GEOMETRY(2003, NULL, NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(0,L_CT,U_CT,100000)))=’TRUE’

AND (beta*.3 + .7*I.support.SDO_POINT.X <=U_CT AND gamma*.3 + .7*I.support.SDO_POINT.Y >=L_CT);
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where, the SDO Filter function delimits the pre–selection search using the defined spa-
tial index. To do this, by means of the SDO GEOMETRY type, a rectangle search defined
by the left lower coordinates (0,L CT) and the right upper coordinates (U CT,100000) is
defined; Note that, in our example, the domain range is [0,100000]. The last part of the
query statement comprises the selection condition taking the necessary attributes values
from the table.

The execution plan generated for a query example which uses this index strategy is:

-------------------------------------------------

| Id | Operation | Name |

-------------------------------------------------

| 0 | SELECT STATEMENT | |

| 1 | SORT AGGREGATE | |

|* 2 | TABLE ACCESS BY INDEX ROWID| RTAB |

|* 3 | DOMAIN INDEX | RT_SUPP |

-------------------------------------------------

Predicate Information (identified by operation id):

---------------------------------------------------

2 - filter("BETA"*.3+.7*"I"."SYS_NC00004$"<=4672.5 AND "GAMMA"*.3+.7*"I"."SYS_NC00005$">=1157.5)

3 - access("SDO_FILTER"("SUPPORT","SDO_GEOMETRY"(2003,NULL,NULL,"SDO_ELEM_INFO_ARRAY"(1,1003,3),

"SDO_ORDINATE_ARRAY"(0,1157.5,4672.5,100000)))=’TRUE’)

As the execution plan manifests, the pre–selection step is performed by means of the
use of the multidimensional index through the ”access” predicate (3). The rows identifiers
retrieved in this step allow to access the values in the table to perform the selection step
(2). This indexing strategy is labeled as RT.

Name Support Position Support Length
Distribution Distribution

D1(n, d) uniform
in [0, 1020 − 1]

uniform in [0, 2d]
D2(n, d) exponential in [0,∞], mean=d
D3(n, d) poisson process

in [0, 1020 − 1]
uniform in [0, 2d]

D4(n, d) exponential in [0,∞], mean=d

Table 3: Types of databases generated for DBset2

6. Performance Evaluation

To determine the best indexing strategy we will evaluate its real performance by
performing tests on a traditional RDBMS. The experimental setups have been developed
on a Win64 version of the Oracle c© 11.2 RDBMS running on a server having a Core i7
CPU with 4 cores running at 3.4GHz, 32 GB of RAM and a 512GB SSD as secondary
storage.

We have carried out several tests on two sets of databases, the first one for testing the
performance and scalability of each indexing strategy and, the second one, to reproduce
the same conditions that the used in the experiments evaluated in the work Kriegel et al.
(2000), to compare our proposals in the same conditions. In total, we have generated 63
tables containing from 1000 to 107 tuples, with 249 index structures built on them and,
finally, we have generated, executed and evaluated 2272262 queries on these tables. The
database block size used is 8 KB and, to get the same execution conditions, the database
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block buffer cache was cleaned before each query execution (this forces all requested blocks
to be recovered from the secondary storage).

The first set of databases (DBset1) was generated on the domain [0,100000] and
comprises the following elements:

• 3 tables with 100000 tuples, containing trapezoids uniformly distributed with a
fixed support size of 50, 500 and 5000, respectively. The kernel of each trapezoid
was generated using also a uniform distribution.

• 3 tables with 1.000.000 tuples and 3 tables with 107 tuples which have been generated
following the same distribution parameters that the previous ones.

• To evaluate the proposal based on the use of the RI-Tree strategy, 9 versions of the
previous tables have been generated which, additionally, include the attribute fnode
(which stores the forknode value for the support of the trapezoid)

• To evaluate the proposal based on the use of the R-Tree strategy, 9 versions of the
above tables have been generated using a spatial representation of the support and
the kernel of the trapezoids contained in these tables.

• The necessary indexes to implement each evaluated indexing strategy.

The second set of databases (DBset2) was generated on the domain [0, 1020 − 1]
and consists of 18 tables with different cardinalities (n) which contain trapezoids whose
position and size (d) have been generated combining the uniform distribution and the
Poisson process as summarized in Table 3.
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Figure 5: Storage and time to indexes generation respect to DB size.(DBset1).

We have generated another set of 18 tables with the same data, respectively, which
append the forknode attribute to allow testing of PRI indexing strategy. Also, the
necessary indexing structures have been built.
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6.1. Storage use and performance for index construction

Fig. 5 a) shows the number of blocks used for each indexing strategy evaluated with
respect to the amount of rows indexed. Also includes the size (blocks used) for each table
size (DB label in Fig. 5 (a)). Note that 2BPT use the same two indexes as the 2ABT
strategy that is shown in the figure. It must be also noted that for all the indexing
strategies that use two index structures, the reported figures refer to the total size of
them. The 1ABT strategy only uses a index, because of this, the size and time spent is
half of the ones used by the 2ABT/2BPT strategies.

The size used for the BIT indexing strategy is the smallest because the bitmap index
size depends on the number of different key values which, in this case, is 100.000 at most,
not the number of indexed rows, like the other indexing techniques evaluated. Moreover,
this technique, along with the RT technique, does not include in each index entry the rest
of values of the trapezoid. The size used by the other indexing techniques grows linearly
(approximately).

With respect to the time spent for the building of the indexes, Fig. 5 b) shows again
that BIT is faster, 2ABT, 2BPT and PRI techniques grow linearly (approximately)
with respect to the size of the DB and, the time spent for the RT technique increases
exponentially with respect to the size of the DB.

6.2. Query performance tests

To take as reference the query performance when no indexing strategies are used, we
have also performed the query tests directly on the base table performing a full scan
(notated as FS in the figures). The structure of this base table is only composed by the
four attributes that store the trapezoidal representation of the fuzzy data. It must be
noted that, this simple structure, with no more attributes, performs better on full scan
queries than real tables with more attributes, because it needs to retrieve fewer database
blocks. Therefore, this setup represents the best case when comparing with the other
indexing techniques.
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Figure 6: Average performance respect to database size (DBset1).
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Figs. 6 to 9 show the results of tests performed on the database set DBset1. Fig.
6 shows the average performance respect to the size of the queried table. The PRI
technique shows the better average performance with respect to the amount of blocks
retrieved and with respect to the time spent in the execution of the queries, for all table
sizes evaluated. The 2ABT technique shows the second best performance. The average
time spent for query execution for BIT, RT and 2BPT techniques is very large, even
compared with performing a full scan (FS). The average blocks retrieved also show the
same trend. In the rest of our tests we get the same poor performance for this techniques;
because of this, we will focus on the performance analysis of the rest of the techniques.
The selectivity of the queries determines the strategy used by de QO in order to
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Figure 7: Average execution time spent with respect the query selectivity (DBset1).

consider, or not, the use of an index.
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Figure 8: Average performance respect to selectivity (Database size 10e7 rows) (DBset1).)

In general, for selectivities greater than the 10%, a full scan performs better than an
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indexing based retrieval. Figs. 7 and 8 show the average performance with respect to
the selectivity of the queries evaluated in databases of different size. As we can see, the
2ABT indexing strategy performs better on databases with size near to 100000 tuples.
The performance of the PRI technique for databases of this size is worse, even when
compared to 1BT technique. However, for larger database sizes the PRI technique
outperforms the rest of techniques; this is due to the smaller amount of blocks required
to execute the queries in databases of these sizes. This performance dependency with
respect to the database size, shown by the PRI and 2ABT techniques, remains in the
rest of performed tests.
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Figure 9: Average execution time in function of threshold and UCT (DBset1).

103 105 105.48 106
101

102

103

103.7

Database size (rows)

B
lo

ck
s(

I/
O

)

FS
1BT

2ABT
PRI

(a) Average blocks used

103 105 105.48 106
100

101

102

Database size (rows)

T
im

e(
m

s)

(b) Average execution time

Figure 10: Performance with respect to database size: D4(∗, 2k), Selectivity 0.6%. (DBset2).

To conclude the query performance analysis on the database set DBset1, we analyze
how the threshold set in the query affects the performance of the queries (Fig. 9 (a)) and
how the query performance varies depending on the UCT value (Fig. 9 (b)). As we can
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see, the performance barely varies with respect to the threshold of the query, because the
selection step is performed on the index in the case of the considered techniques. For the
database size shown (10e6 tuples) the PRI technique is the best, followed by the 2ABT
technique. For a database size of 100000 tuples, the results are swapped between PRI
and 2ABT techniques.

As Fig 9 b) shows, the UCT value affects the performance of the query for all indexing
strategies except FS and PRI. The 2ABT strategy performs worse for UCT values around
the middle of the domain, because it needs a larger scan on one of the defined indexes.
Note how the efficiency of the 1BT strategy decreases as UCT grows; this is because the
access condition (alpha <= UCT ) on the defined index on the alpha value retrieves more
entries for large UCT values.

Next, we analyze the results obtained for the tests performed on the database set
DBset2. This database set and the tests we have executed on it have been built following
the experimental set up in the work Kriegel et al. (2000) to compare with the indexing
strategies analyzed there. For each test, we have generated and run an average of 100
queries.

The blocks used and the time spent by the indexes generation for each indexing strat-
egy follows the same trend observed for the database set DBset1.
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Figure 11: Performance with respect to selectivity, D1(100k, 2k) (DBset2).

Fig. 10 shows the average query performance depending of the database size. For
databases up to 200,000 tuples, the 2ABT strategy shows the best overall performance.
For larger databases, PRI outperforms the other techniques.

The selectivity of the query in the avobe test was set to 0.6%. Fig. 11 shows the results
obtained on the database D1(100k, 2k) from different selectivity level of queries. For this
database size, like in previous tests, 2ABT strategy outperforms the PRI technique,
although the PRI technique retrieves fewer blocks from the indexes. This is due to low
density of selected trapezoids in each retrieved node and this fact increases the processing
time.

When the test is carried out on a database with 400.000 tuples, as Fig. 12 shows,
the results demonstrate a better performance for the PRI technique versus the 2ABT
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technique.
Fig. 13 shows that the threshold of the query does not affect the performance, because

in the retrieval process prevails the pre–selection step performed in the index, and this
depends marginally on the set threshold. For the database with 200.000 tuples, the PRI
outperforms the 2ABT technique except for queries with threshold below 0.1; in such
case, most of the pre–selected trapezoids also satisfy the selection condition and it is
manifested the best retrieval performance of the B-trees. However, for a database with
400.000 tuples, the performance of the PRI technique is better than the others.
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Figure 12: Performance with respect to selectivity, D1(400k, 2k) (DBset2).
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Figure 13: Average execution time with respect to the threshold (Selectivity 0.6%). (DBset2).

Fig. 14 shows how the UCT value affects the performance of the query. Again, 2ABT
performs better on a database with (200.000) tuples (Fig. 14 a)), except when UCT takes
a value around the middle of the domain. For a database with 400.000 tuples, the PRI
technique is more stable and performs better, except for those UCT values around the
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Figure 15: Average execution time with respect to the support length (Selectivity 1%). (DBset2).

bounds of the domain because, in this case, 2ABT retrieves very few items from the
selected index.

Finally, Fig 15 shows how the query performance depends on the average length of
the indexed supports. Again, the size of the database evaluated determines the winner
indexing strategy: 2ABT for a database with 100.000 tuples, and the PRI technique for
a database with 400.000 tuples.

6.3. Discussion

We have carried out an exhaustive set of tests covering a wide variety of databases
and kind of queries for evaluating a lot of indexing strategies. All databases, indexing
strategies and tests have been implemented, executed and evaluated in a real RDBMS,
Oracle c© in our case, using only the mechanisms and structures it provides.

From the analysis of the results obtained from the tests we can highlight the following:
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• As occurs when indexing crisp data, the use of indexes only is efficient when applied
on large tables and when the queries are selective enough. The designer must decide
the use of an index for an estimated size of table and, on the other hand, the QO
must decide to use or not an index depending of the selectivity of a given query.

• It is difficult to design an indexing strategy that enhances the performance of queries
based on the search for overlapping intervals, which is basically our case.

• In fact, most indexing strategies evaluated perform worse than a full scan on the
database. It is necessary to point that this full scan carried out on a table that
contains only a column with trapezoidal data; a table with more attributes, probably
decreases the efficiency of the full scan.

• The indexing strategies that do not include all trapezoidal values in the index entries
do not perform efficiently because these ones require additional retrieval of database
blocks to complete the selection step. This is the case of BIT and RT techniques.

• The indexing techniques that require the conjunctive composition of two sets of
results, like 2BPT, are computationally expensive because these sets require some
kind of previous sorting.

• The indexing strategy that better performs on data sets whose size exceeds 200000
rows is PRI. Furthermore, this strategy is the most stable with respect to variations
on the parameters of the query (the threshold, size and position of the queried trape-
zoid), with respect to selectivity of the query and the distribution of the trapezoids
in the data set.

• For data sets whose size is less than 200000, the 2ABT indexing strategy performs
better in general. However, its performance slightly decreases when the queried
trapezoid is located about the middle of the domain.

7. Concluding Remarks and Future Works

The goal of our work is to find the most efficient indexing techniques for possibilistic
queries on fuzzy databases, using the access structures and the extension capabilities
available on a classical RDBMS only. To carry out this task, we have proposed, adapted,
implemented and tested thirty indexing strategies variants using the most important
indexing structures available in classical RDBMS: B-trees, bitmaps and R-trees. Along
them, we have considered the most relevant proposals in the literature, modified some of
these approaches, and proposed some novel ones.

The results of this experimental work can be summarized as follows

• It is feasible and efficient to implement indexing techniques to enhance possibilis-
tic query retrieval using indexes available in traditional RDBMS. One of the best
evaluated indexing techniques, our 2ABT technique, consists of two B-trees and
an optional query optimiser algorithm, which can be implemented on any classi-
cal RDBMS. The other best indexing technique, which performs better on large
databases, the PRI technique, needs to implement additional structures to operate,
but it is relatively easy to implement also.
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• One of the most important factors for performance retrieval in RDBMS is the
amount of database blocks the query resolution involves, not the amount of items ac-
cessed. Because of this, some indexing techniques suitable for searching in memory,
do not perform well on the database scope.

Future works will focus on integrating the best evaluated indexing strategies, 2ABT and
PRI, in our FORDBMS prototype (Barranco et al. (2008c)) built on Oracle c© RDBMS.
Also, we will perform a cost analysis for its integration into the QO for the selection of the
better execution plan for each query. Finally, we will perform a similar study for necessity
based queries, to find the best indexing strategy to be used on classical RDBMS also.
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