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Abstract: This paper proposes a hedonic regression model to estimate housing prices and the spatial
variability of prices over multiple years. Using the model, maps are obtained that represent areas of the
city where there have been positive or negative changes in housing prices. The regression-cokriging
(RCK) method is used to predict housing prices. The results are compared to the cokriging with external
drift (CKED) model, also known as universal cokriging (UCK). To apply the model, heterotopic data
of homes for sale at different moments in time are used. The procedure is applied to predict the spatial
variability of housing prices in multi-years and to obtain isovalue maps of these variations for the city
of Granada, Spain. The research is useful for the fields of urban studies, economics, real estate, real
estate valuations, urban planning, and for scholars.
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1. Introduction

In the real estate field, multivariate spatial data models have been widely explored [1–5],
while multivariate spatio-temporal data models have received relatively less attention. The hedonic
regression model is used to make real estate valuations and to determine the characteristics that affect
property prices [6]. Classical estimation methods, such as ordinary-least-squares (OLS), ignore the
presence of spatial autocorrelation, since they assume the independence of the observations [7].

Two approaches are commonly used in spatial hedonic modeling: spatial econometrics [8] and
the geostatistical approach [9]. Spatial econometrics uses the spatial weight matrix and requires an
a priori specification of the matrix, which may affect the final results [10]. However, geostatistics is
a method in which the variance–covariance matrix depends on the Euclidean distance [11]. In the
case of spatial autocorrelation of the error terms, the spatial error model (SEM) is not better than the
geostatistical approach [12]. The literature suggests that the kriging geostatistical method improves
the prediction performance of spatial hedonic models [13]. Moreover, kriging models are superior to
other methods (OLS, SEM, spatial lag model, etc.) in terms of their prediction accuracy [14].

Several methods that consider both spatial and temporal dependences that simultaneously affect
housing prices have been proposed for the study of real estate. A classical method for considering
time-fixed effects is to include dummy variables indicating the year a house is being sold [15,16].
The spatio-temporal autoregressive (STAR) model and its variations [17–20] is another method that
consists of a spatio-temporal model based on a generalization of the traditional spatial autoregressive
model (SAR) [21]. This method has also been used to analyze housing prices in Spain [22,23].
Several authors have used geographically and temporally weighted regression to capture spatial
and temporal heterogeneity in real estate market data [24–27].
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The cokriging method has been used to spatially relate housing prices with different auxiliary
variables [28], age or central heating [29], and quality of the area [30]. A recent application of this
method to housing prices can be found in Kuntz and Helbich [31], who consider structural and
neighborhood characteristics as auxiliary variables. D’Agostino et al. [32], Fassò and Finazzi [33],
and Joyner et al. [34] used the cokriging method to perform spatio-temporal studies in the fields of
geology, the environment, and climatology, respectively, and to obtain isovalue maps of the variable of
interest. Cokriging has also been used to estimate the temporal change in spatially-correlated variables
between only two time instants [35] and for data irregularly distributed in space and time [36].

In this paper, a hedonic housing price model using the regression-cokriging method (RCK) is
proposed in order to estimate a system of equations, in which each equation corresponds to a sample
of dwellings taken in a different year. Each of these equations explains the selling price of a given
year, and not all equations have the same explanatory variables. The main novelty of this work is
that the proposed method solves a common problem for agencies and entities interested in estimating
housing prices or spatio-temporal variations in prices when samples of dwellings in different locations
(heterotopic data), or in the same location (isotopic data) taken at different points in time, are available.

There are suitable methods for spatio-temporal time modeling when sufficient information is
available in both dimensions, and when data are both regularly and irregularly distributed in space
or time (see [37–41]). Due to the limited availability of temporal information in this work, a discrete
temporal study (multi-years) has been performed considering the cross-correlation of spatial data
between different years rather than the dual structure of spatio-temporal autocorrelation. This lack
of temporal information makes the methodology used in this work (RCK) particularly attractive,
as this may occur when modeling other phenomena and in other regions where there is sufficient
spatial information but a scarcity of temporal information. According to Papritz and Flühler [42],
if the data consist of long time series at few sampling locations, then the spatio-temporal process
can be modeled as a multivariate time series. However, if many observations are distributed in
space at a few sampling times, then a multivariate spatial random process, such as a cokriging
method, is a suitable simplification for the general space-time process. This method is suitable for
estimating variations between different (discrete) moments, whether they are distributed regularly or
irregularly in space or time. For instance, Gallois et al. [36] applied cokriging in two periods (winter
and summer) and D’Agostino et al. [32] in three months (May, July and November) for irregularly
distributed observations.

The aim of this work is twofold. First, the system of equations is estimated. Secondly, isovalue
maps of housing price variations are obtained across the different time periods by modeling the spatial
autocorrelation and cross-correlation over multi-years. These maps permit detection of areas where
prices are falling, or, conversely, where they are rising.

The paper is structured as follows. The regression-cokriging method and the cokriging with
external drift method, which is the multivariate generalization of the well-known kriging with external
drift (KED) method, are first described. The main results of applying these methods to housing prices
in Granada, Spain, for the period 1988–2005 are then presented.

2. Material and Methods

2.1. Regression-Cokriging Predictor

In this section, a predictor known as regression-cokriging is presented within the framework
of geostatistics. To obtain this predictor, a multi-equation econometric model is used, in which
the price of housing is the dependent variable in all the model equations, and the structural and
location characteristics of the dwellings are the explanatory variables. In our case, each of the model
equations contain different datasets for different years. It is assumed that the disturbances are spatially
autocorrelated within each equation, and can also be spatio-temporally correlated between equations.
In this regard, Gelfand et al. [43] developed a framework where spatial and temporal effects can be
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modeled in the error structure. The aim is to estimate the model parameters, predict housing prices in
any part of the city, and estimate housing price variations between different years. When there is spatial
independence, the best linear unbiased estimator (BLUE) is the ordinary least squares estimator (OLS).
However, the presence of spatial dependence is common in the housing market because short-distance
house prices are more alike than long-distance house prices. Due to the presence of correlation in the
disturbances, the OLS estimator is inefficient. Therefore, general least square (GLS) is used to estimate
the parameters of the model [7] and to carry out the predictions.

Let us take the following multi-equation model with spatial autocorrelation (see [44,45]):

z = Xβ+ u

where:

z =


z1

z2
...

zq

X =


X1 0 · · · 0
0 X2 · · · 0
...

...
...

0 0 · · · Xq

β =


β1
β2
...
βq

u =


u1

u2
...

uq


and where zj is a vector containing the prices of nj houses; j = 1, 2, . . . ; q denotes the moment of
time; βj is the vector of the coefficients of the j-th regression equation;Xj is the matrix (nj × kj) of kj

explanatory variables of the j-th regression equation; and uj are the disturbances presenting spatial
autocorrelation, which can also be cross-correlated.

The GLS estimator of β is BLUE:

β̂ =
(

X′ V−1X
)−1

X′ V−1z

where V is the covariance matrix of disturbances.
The best linear unbiased predictor (BLUP) of z at a new location s0 is [45]:

ẑCKED(s0) = X(s0)β̂+ V′(s0)V−1(z− Xβ̂)

where: X(s0)β̂ = m̂(s0) is the global drift model; X(s0) is a matrix of the known characteristics of
a house to be valued located at s0 for each year j. V(s0) is a matrix containing the covariances of the
disturbances between houses and the house to be valued located at s0. In practice, the V and V(s0)

matrices are unknown, and can be estimated from the variogram function of residuals (see [46]).
Here, ẑCKED(s0) is the cokriging with external drift (CKED) predictor, which is a multivariable

spatial predictor [45], also known as universal cokriging (UCK) [44,47] in the particular case where
the matrix X contains only the trend of the process and is usually expressed by a linear combination
of spatial coordinates. However, Pebesma [48] also refers to the case where the X matrix includes
other explanatory variables as UCK. In the case of the single-equation model, and when the X matrix
contains any type of explanatory variable, this predictor is called kriging with external drift (KED)
or universal kriging (UK). As Hengl et al. [49] indicated, KED should give the same predictions as
regression-kriging (RK), which is obtained by adding the drift plus ordinary kriging of residuals.
In this paper, RK has been generalized to the multi-equation case and regression-cokriging (RCK) has
been used:

ẑRCK(s0) = m̂(s0) + û(s0)

where û(s0) is the estimate of the disturbance by ordinary cokriging of residuals [30].
According to Hengl, Heuvelink, and Stein [49], the main advantage of RK is that it is a flexible

method for modeling and mapping because it can be used in combination with other methods,
such as generalized linear models (GLM) or generalized additive models (GAM), among others [50].
Hengl et al. [51] reported that although KED seems to be computationally more straightforward than
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RK, both need to estimate the variogram of residuals. A disadvantage of RK is that it is a two-step
method. These advantages and drawbacks can be generalized to the RCK and CKED methods.

2.2. Direct and Cross-Correlation of Residuals

The direct variogram is used to study the spatial autocorrelation of residuals of each equation,
while the cross-variogram is used to examine the spatial correlation across different years in order to
include the temporal interactions.

The direct variogram γût(h) measures spatial dependence of residuals in year t. An unbiased
estimator of the variogram is [52]:

γ̂ût(h) =
1

2N(h)

N(h)

∑
i=1

[ût(si + h)− ût(si)]
2

where si + h = sj, with si being the locations; h is a distance vector; and N(h) is the number of h
distant point-pairs.

The cross-variogram γûtt′
(h) measures the spatial cross-dependence of the residuals between

year t and year t′. The classical cross-variogram estimator requires that ût and ût′ be available for
each location (isotopic data). In our case, however, the available observations correspond to different
dwellings at different moments in time and the observations are, therefore, heterotopic. When the
observations are heterotopic, the pseudo-cross-variogram is used [45,53]:

γ̂ûtt′
(h) =

1
2N(h)

N(h)

∑
i=1

[ût(si)− ût′(si + h)]2

It is necessary to fit the variogram model to the empirical direct variogram or cross-variogram to
perform the estimations. To do so, the exponential model was used:

γû(h) =

{
c0 + c

[
1− exp

(
− h

a

)]
h > 0

0 h = 0

The model fit depends on three parameters: the nugget effect (c0), range (a), and sill (c0 + c),
where (c) is a partial sill. The nugget effect is a measure of spatial discontinuity. For the exponential
model, the practical range a’ = 3a [54] was used. This is the distance at which the model reaches
95% of its sill, and sill is the value that the variogram model attains at that range. The linear
model of coregionalization (LMC) has been used to fit an exponential model to each direct and
cross-variogram [55,56].

3. Data and Case Study

This work presents a hedonic regression model to explain spatial housing price variation in
multi-years in the city of Granada, Spain. Granada is a small, historic city that is known worldwide for
its monuments. It is located in southern Spain in the region of Andalusia (Figure 1). The study was
carried out for the years 1988, 1991, 1995, and 2005. An overview of the evolution in housing prices
over the four years used in the application is provided in Figure 2.
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Figure 2. Housing prices from 1987 to 2005 for Spain, Andalusia, and Granada (standard dwelling of
100m2). Source: Sociedad de Tasación.

The objective is to analyze the spatio-temporal variability of housing prices in the city of Granada.
To do so, four databases provided by government agencies and real estate companies are used.
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In Granada, there are two government agencies which study housing prices for taxation purposes:
the Junta de Andalucía (JA), which is the regional governmental body, and the Cadastre, which is a
national body. Neither of these agencies conducts official market studies on a yearly basis. In this work,
four market studies of second-hand apartments are used, which as noted, correspond to the years 1988,
1991, 1995, and 2005 (Figure 3). The first and second samples were provided by the JA. The samples
correspond to the years 1988 and 1991 and comprise 260 and 247 apartments, respectively. The third
sample (293 apartments) was provided by the Cadastre and corresponds to the year 1995. The fourth
sample comprises 207 apartments and was obtained from a market study conducted by several real
estate agencies in 2005. The sample size represents 8.5%, 33%, 25%, and 26% of all second-hand
apartments sold in each of the study years, respectively. The application was carried out using a total
sample of 1007 apartments. Therefore, a panel of dwellings was obtained, in which the locations are
not isotopic (no sample locations in common) for the different years and the explanatory variables
of the equations systems are not the same in each of the equations. These years were chosen because
the periods between them represent different housing price trends in the city of Granada, as shown in
Figure 2. The proposed methodology could also be used for isotopic data observed at different points
in time (repeat sales), for which several methods have already been developed [57–60].

The city of Granada is elongated in shape (approximately 7000 m long by 2500 m wide),
as it is bordered by a mountainous area to the east and a protected agricultural area to the west.
As shown in Figure 3, the lowest-priced dwellings are located mainly in the northern part of the city.
The geographical distribution of apartment prices reveals a convex behavior, since prices gradually
fall when moving away from the central business district (CBD), where prices are the highest, to the
outskirts of the city.

As occurs in most cities, housing prices in Granada are explained by a large number of variables,
including structural attributes, neighborhood, and socioeconomic characteristics, and temporal
variables. It is difficult to measure neighborhood and socioeconomic variables, as well as to identify
the relevant neighborhood boundary [18,61]. The difficulty involved in measuring spatially different
variables means that these variables are omitted in the hedonic prices equation, thus resulting in
the spatial dependence of the error term, since the microlocation characteristics [62] have not been
specified in the model. Different methods can be used to eliminate omitted variable bias due to missing
spatial variables [4] from the standpoint of both geostatistics [30,63] and spatial econometrics using
SEM [20,64,65].

In economics, it is common to use temporal deflators to try to regularize non-regular time series.
However, the use of these temporal deflators, in addition to being artificial, involves a constant
transformation for all the data in a given year, which does not affect the structure of direct or
cross-autocorrelation. This is why the data have not been deflated to regularize the intervals, but raw
data has been used. In the final results, the average annual rate of change for the periods is presented.
This has allowed interpretation of the results despite the temporal irregularity of the data.
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3.1. Database

In this study, we consider the classical specification of the hedonic housing price model,
which distinguishes between two types of variables: structural variables and accessibility variables [8].
The structural variables are, for example, the age of the house, number of bathrooms, area, etc., and
accessibility is frequently measured by the distance from the CBD. On the other hand, the error term
includes the spatial dependence structure and the random component. In regard to the specification of
the hedonic housing price model, it is very common to use a semilog model [66–69].

The list of the model variables and their definitions are provided below.
LPRICE: natural logarithm of apartment price in 1000 euros; it is the dependent variable.
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AGE: age of apartment (in years) adjusted for major rehabilitation.
BATH: number of bathrooms in the apartment; this variable is considered an indicator of the

quality of the apartment.
DIST: Euclidean distance in meters from the CBD. This represents the accessibility of the

apartment at a large scale. In this paper, the distance from the CBD, which is one of the standard
macrolocation characteristics [62], is assumed to be the main explanatory variable of the presence of
large-scale patterns.

AREA: floor area of apartment in square meters.
FLOOR: binary variable that takes the value of 1 if the apartment is on a low floor.
ELEV: binary variable that takes the value of 1 if the building has an elevator.
HEAT: binary variable that takes the value of 1 if the apartment has central heating.
SPORT: binary variable that takes the value of 1 if the complex has sports facilities.
REHAB: binary variable that takes the value of 1 if the apartment must be remodeled.
The first four explanatory variables are included in all of the model equations, while the other

variables are not present in all of them. The location of each dwelling is defined by its latitude and
longitude coordinates in Universal Transverse Mercator (UTM) projection.

Table 1 provides the descriptive statistics of the variables. As can be seen in the table, the average
price of the sample dwellings in the four years studied shows a similar growth to that observed in
the city of Granada (Figure 2). The average number of bathrooms tends to increase, which can be
interpreted as an increase in the quality of housing in that period. The mean of the variable AGE shows
some growth, while the mean area of the dwellings is similar across years (between 109 and 118 m2).
The mean distance to the CBD, in which the sample dwellings are located, ranges from 1300 to 1600 m
in the different years. The floor area remains fairly stable at 108–119 m across the four years. The table
shows the statistics for the distance between each dwelling and its nearest neighbor, which is less than
100 m on average in all years. Moreover, as can be observed in the table, information is not available
for all the explanatory variables and years, thus indicating the heterogeneity of the data.
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Table 1. Descriptive statistics of the variables of samples (PRICE in 1000 euros) and nearest neighbor statistics of distance (Nearest, in meters).

Minimum Maximum Mean Standard Deviation

1988 1991 1995 2005 1988 1991 1995 2005 1988 1991 1995 2005 1988 1991 1995 2005

PRICE 10.22 15.03 15.03 22.83 240.407 300.51 330.55 751.26 45.89 75.56 90.51 162.40 30.60 36.65 50.03 85.55
AGE 1 1 1 2 40 81 84 40 13.58 11.51 16.96 23.44 7.56 9.72 11.69 8.93
BATH 1 1 1 1 3 3 3 4 1.23 1.51 1.60 1.45 0.44 0.56 0.54 0.58
DIST 166.30 294.98 76.39 81.27 3511.29 3723.63 3695.92 3940.96 1492.94 1577.95 1326.28 1557.46 851.91 963.64 812.76 823.68
AREA 65.00 49.00 40.00 40.00 340.00 320.00 325.00 390.00 109.86 112.85 118.13 108.80 33.00 35.27 42.48 38.64
FLOOR - - - 0 - - - 1 - - - 0.039 - - - 0.19
ELEV - - 0 0 - - 1 1 - - 0.88 0.78 - - 0.31 0.41
HEAT - - 0 0 - - 1 1 - - 0.55 0.54 - - 0.50 0.50
SPORT - - - 0 - - - 1 - - - 0.06 - - - 0.24
REHAB - - - 0 - - - 1 - - - 0.35 - - - 0.48
Nearest 8.10 10.34 6.00 4.20 390.77 385.38 666.40 646.87 74.67 55.75 86.81 98.22 55.45 63.06 88.60 100.24
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3.2. Results and Discussion

As indicated, given that not all the explanatory variables are available for every year, each model
equation includes different explanatory variables. Thus, the multi-equation model is:

LPRICE1i = β10 + β11 AGE1i + β12FLOOR1i + β13BATH1i + β14ELEV1i + β15HEAT1i+

+β16SPORT1i + β17REHAB1i + β18 AREA1i + β19DIST1i + u1i
LPRICE2i = β20 + β21 AGE2i + β22BATH2i + β23ELEV2i + β24HEAT2i + β25 AREA2i+

+β26DIST2i + u2i
LPRICE3i = β30 + β31 AGE3i + β32BATH3i + β33 AREA3i + β34REHAB3i + β35DIST3i + u3i
LPRICE4i = β40 + β41 AGE4i + β42BATH4i + β43 AREA3i + β44DIST44 + u4i

where the first equation corresponds to the year 2005, the second to 1995, the third to 1991, and the
fourth to 1988.

As mentioned above, the OLS estimator of the regression model parameters is inefficient
when disturbances are spatially autocorrelated, whereas the GLS estimator is efficient. The spatial
autocorrelation of the residuals was studied using the experimental variogram, while the
coregionalization of the residuals was studied using the pseudo-cross-variogram [70]. Figure 4 shows
the direct variograms (for each year) and the cross-variograms (between different years) of the residuals,
all of which are observed to have a stationary shape. The prices might capture unobservable factors
associated with the dwellings, thus resulting in the spatial autocorrelation of the residuals, which
is reflected in the direct variograms. Moreover, homebuyers in the year 2005 may have known the
selling prices of homes in previous years, and these prices can also be affected by unobservable factors.
The cross-variograms capture the cross-correlation between these unobservable factors for each pair of
years, hence the spatio-temporal relationship between them.
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As the upward shape of the experimental variograms shows, the values of the residuals are not
randomly distributed over the city map but spatially correlated and depend on the location of the
dwellings. Thus, the degree of spatial correlation is higher (and the variogram value is lower) for
units in close proximity (corresponding to low h values). For such units, overall housing tends to be
similar. In contrast, the similarity in overall housing decreases as the distance separating the units
increases, although this similarity tends to decrease with distance until becoming stable at around a
range of 465 m (see Table 2). This distance includes the radius of influence at which the microlocation
characteristics affect house prices. Although spatial autocorrelation has been observed, there is also a
high degree of randomness. This randomness is reflected in the nugget values of the fitted variograms,
which remain fairly stable over the four years. The exponential variogram model (Table 2) was fitted
to each of the experimental variograms (see Figure 4). The method used to estimate the parameters of
the variograms was implemented in FORTRAN using the LCMFIT2 program [71]. Anisotropy was not
observed in any of the directional variograms for any year.

Table 2. Parameters of fitted direct variograms and cross-variograms of residuals from the
multi-equation model.

Residuals Nugget Partial Sill Practical Range

û1 (2005) 0.023 0.015 465.00
û2 (1995) 0.025 0.011 465.00
û3 (1991) 0.026 0.014 465.00
û4 (1988) 0.044 0.024 465.00

û1/û2 0.024 0.012 465.00
û1/û3 0.024 0.014 465.00
û1/û4 0.032 0.019 465.00
û2/û3 0.025 0.011 465.00
û2/û4 0.034 0.016 465.00
û3/û4 0.033 0.018 465.00

Several studies in both the natural and social sciences have fit an exponential variogram with
cokriging [33,72,73]. In addition, a cross-validation was performed for each of the system equations
with the three most common types of variogram models: the spherical, the exponential, and the
Gaussian models (Table 3). In general, it can be observed that the exponential model provides the best
results, as it has the highest R2

cv and the lowest mean absolute error (MAE) and mean squared error
(MSE) values.

Table 3. Cross-validation for different variogram models.

R2
cv MAE MSE

1988
Spherical 0.8349 0.1862 0.0557
Gaussian 0.8461 0.1806 0.0519

Exponential 0.8507 0.1793 0.0503

1991
Spherical 0.8639 0.1406 0.0340
Gaussian 0.8719 0.1356 0.0320

Exponential 0.8727 0.1371 0.0318

1995
Spherical 0.9285 0.1424 0.0359
Gaussian 0.9296 0.1396 0.0353

Exponential 0.9332 0.1362 0.0335

2005
Spherical 0.7946 0.1564 0.0428
Gaussian 0.8075 0.1497 0.0401

Exponential 0.8001 0.1545 0.0416
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The global drift multi-equation model (m̂(s0)) was estimated by GLS. The results of the estimation
are presented in Table 4. In the estimated equations, all the variables are significant at a confidence
level above or equal to 90%, with most being significant at 99%. All the signs of the coefficients are as
expected (negative relation in the AGE, DIST, REHAB, and FLOOR variables, and a positive relation in
the rest of the variables).

Table 4. Estimation results of multi-equation model by RCK (p-values in brackets).

1988 1991 1995 2005

Intercept 1.042 × 101 1.084 × 101 1.041 × 101 1.148 × 101

(0.000) (0.000) (0.000) (0.000)

AGE
−2.119 × 10−2 −7.828 × 10−3 −8.497 × 10−3 −6.176 × 10−3

(0.000) (0.000) (0.000) (0.000)

BATH
8.929 × 10−2 1.176 × 10−1 6.929 × 10−2 9.256 × 10−2

(0.020) (0.000) (0.000) (0.000)

AREA
7.949 × 10−3 5.782 × 10−3 8.361 × 10−3 5.951 × 10−3

(0.000) (0.000) (0.000) (0.000)

DIST
−3.853 × 10−4 −2.532 × 10−4 −2.111 × 10−4 −2.257 × 10−4

(0.000) (0.000) (0.000) (0.000)

REHAB
– −1.517 × 10−1 – −6.733 × 10−2

(0.000) (0.008)

ELEV
– – 1.552 × 10−1 1.187 × 10−1

(0.000) (0.000)

HEAT
– – 7.528 × 10−2 4.679 × 10−2

(0.000) (0.060)

FLOOR
– – – −1.056 × 10−1

(0.059)

SPORT
– – – 1.278 × 10−1

(0.011)
R2

cv 0.8507 0.8727 0.9332 0.8001
MAE 0.1793 0.1371 0.1362 0.1545
MSE 0.0503 0.0318 0.0335 0.0416

n 260 247 293 207

In this paper, the CKED and RCK methods are applied. In order to compare both methods, a
cross-validation method has been used, specifically leave-one-out cross-validation (LOOCV). LOOCV
allows for comparison of predicted and observed values using only the information available in
the sample dataset. The LOOCV procedure consists of temporarily discarding a sample value at
a particular location from the sample data set, and then estimating the value at the same location
using the remaining samples [55]. This procedure is repeated for all the experimental points in
order to compare the observed values to the predicted values using statistical and visual tools.
The cross-validation statistics used are mean absolute error (MAE), mean squared error (MSE), and
R-squared of cross-validation, which is obtained from the square of the correlation between the model’s
predicted values and the observed values (R2

cv). As can be seen in Table 5, the two methods show
similar cross-validation statistics, although those of the RCK method are slightly better, as the R2

cv value
is closer to one and the other statistics are closer to zero. Figure 5 shows the regression between the
predicted and observed data with RCK and CKED. As can be observed, the two scatterplots are quite
similar and the regression line is very close to the 1:1 line. Moreover, Figure 6 shows the RCK versus
the CKED predictions. As can be seen, the predictions obtained with both methods are very similar.
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Table 5. Cross-validation statistics of CKED and RCK (R-squared of cross-validation, R2
cv;

mean absolute error, MAE; mean squared error, MSE and sample size, n).

CKED RCK

R2
cv 0.9277 0.9331

MAE 0.1400 0.1355
MSE 0.0343 0.0317

n 1007 1007

Additionally, in order to compare the predictions of traditional OLS and cokriging, Table 6 shows
the OLS estimates for each of the equations. This permits quantification of the added value of the
cokriging method versus OLS. As can be observed in the table, all the variables are significant, as was
the case with RCK.
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Table 6. OLS estimation for each equation (p-values in brackets).

1988 1991 1995 2005

Intercept 1.027 × 101 e+01
(0.000)

1.074 × 101

(0.000)
1.446 × 101

(0.000)
1.650 × 101

(0.000)

AGE −2.033 × 10−2

(0.000)
−6.484 × 10−3

(0.000)
−1.035 × 10−2

(0.000)
−6.583 × 10−3

(0.001)

BATH 1.269 × 10−1

(0.004)
1.788 × 10−1

(0.000)
9.536 × 10−2

(0.002)
1.107 × 10−1

(0.002)

AREA 8.506 × 10−3

(0.000)
5.766 × 10−3

(0.000)
1.188 × 10−2

(0.000)
6.125 × 10−3

(0.000)

DIST −3.521 × 10−4

(0.000)
−2.510 × 10−4

(0.000)
−2.685 × 10−4

(0.000)
−2.139 × 10−4

(0.000)

REHAB – −1.981 × 10−1

(0.000)
– −6.925 × 10−2

(0.048)

ELEV – – 2.540 × 10−1

(0.000)
1.875 × 10−1

(0.000)

HEAT – – 1.550 × 10−1

(0.000)
7.201 × 10−2

(0.053)

FLOOR – – – −1.482 × 10−1

(0.079)

SPORT – – – 1.376 × 10−1

(0.041)
R-squared 0.8176 0.8278 0.9234 0.7745

R2
cv 0.8060 0.8173 0.9180 0.7442

MAE 0.2056 0.1664 0.1567 0.1767
MSE 0.0655 0.0457 0.0411 0.0556

n 260 247 293 207

This study has considered accessibility to the CBD, which is one of the main locational variables.
However, other relevant variables have been omitted (i.e., provision of public and private services,
socio-economic and environmental variables, etc.). Therefore, the differences observed between the
OLS coefficients (see Table 6) and RCK (see Table 4) may be due to this omission. It is difficult to specify
these locational factors and quantify their radius of influence, since they usually refer to areas whose
sizes and shapes tend to be subjective [30,74]. In fact, numerous studies on hedonic models have
mostly included structural variables and omitted relevant characteristics of the location [8,9,31,43,75].
Nevertheless, models that correct this omission by considering the presence of spatial autocorrelation
in disturbances, such as the SEM and RCK models, provide better results than OLS [4]. Therefore, an
advantage of the RCK model is that it improves the estimates by indirectly considering the omission of
relevant variables through modeling the correlation between disturbances.

Table 6 shows the results of the cross-validation. It is important to keep in mind that in traditional
OLS, all observations are used to fit the model, while this does not occur in cross-validation. Since the
R-squared of the OLS model is not directly comparable to the R2

cv of the RCK model, the R2
cv and other

statistics for the OLS models have been obtained using cross-validation (MAE and MSE). Table 7 shows
the improvement in % by RCK over OLS. Specifically, the R2

cv in the RCK model shows an almost 8%
improvement over OLS, while the MAE shows an improvement of approximately 18% and the MSE
of more than 30%. As can be seen, there is a clear improvement in the predictive ability of the RCK
model, thus supporting the added value of the spatial effect and the cross between space and time.

Table 7. Improvement in % by RCK over OLS.

1988 1991 1995 2005

R2
cv 5.5459 6.7784 1.6557 7.5114

MAE 12.7918 17.6082 13.0823 12.5637
MSE 23.2061 30.4157 18.4915 25.1798
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The co-dispersion coefficients have also been obtained. These coefficients provide an interpretive
tool to analyze the correlation between the variation between two dates [76]:

ccij(h) =
γij(h)√

γii(h) γjj(h)

If coefficients ccij(h) are constant, the correlation of the variable in two dates does not depend
on the spatial scale, which is referred to as intrinsic correlation [52]. However, if the correlation is
affected by spatial scale (ccij(h)) are not constant), it is necessary to cokrige the variable, as suggested
by the right-hand path [70]. The experimental co-dispersion function (ccij(h)) is represented in Figure 7
and shows the correlation coefficients between two dates by h-increments. Since a constant function
behavior is not observed, it is appropriate to use cokriging.
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3.3. Estimation of Spatial Price Variation in Multi-Years

From the standpoint of the housing market, it is clearly of interest to determine spatio-temporal
variation in housing prices [24,77] at any location, and thus obtain flat isovalue maps of these
changes [18,78]. To do so, it is necessary to first estimate the price of housing for each of the years
observed at any point on the map. Since it is not possible to know the explanatory characteristics at
each point of the map, with the exception of the variable DIST (which was calculated for each point
to be estimated), a standard dwelling on which to make the prediction must be defined. A standard
dwelling is obtained by assigning the numerical value of the sample average of these characteristics to
each of the structural characteristics of the dwelling. Because the model estimates show the estimated
value of a standard dwelling in different locations in space, the spatial distribution of the prices
estimated with the proposed model are caused by the value of the location. In this work, a standard
dwelling is defined according to the following values:

AGE = 16, AREA = 113, BATH = 1, FLOOR = 0, ELEV = 1, HEAT = 1, SPORT = 0, and REHAB = 0.
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The values for the standard dwelling variables are the arithmetic means of AGE and AREA, while
the mode has been used for the rest of the variables.

Therefore, the procedure to obtain the spatio-temporal variation was as follows. First, using each
of the methods, spatial estimates were performed to obtain the price of a standard dwelling at the nodes
of a mesh inserted in the city map, which forms square cells measuring 100 meters per side. Once the
prices were estimated at the mesh nodes for each year, the average annual rate of change (AARC) in
prices was calculated for each period. The AARC was calculated using the following expression:

AARC = n

√
Yt

Yt−1
− 1

where Yt and Yt−1 are the prices of a standard dwelling estimated in the final and initial year of the
period, respectively; and n is the length, in years, of the period.

The AARC is 26% for the period 1988–1991, 3% for the period 1991–1995, and 8% for the
period 1995–2005. For these same periods, the AARC obtained from data published by the Sociedad
de Tasación, which uses sample dwellings that differ from those of this study, are 21%, 4%, and
9%, respectively.

Finally, these variations are used to obtain the AARC isovalue maps for the three periods by
means of RCK (see Figure 8) and CKED (see Figure 9). The results obtained by both methods are very
similar. It should be noted that in the first period (1988–1991), the AARC spatial range of variation
(14% to 44%) is much higher than in the period 1991–1995 (−0.5% to 9%) and the period 1995–2005
(6% to 9.5%). This indicates a high degree of spatial heterogeneity in price variation in the first period,
while there is less spatial heterogeneity in the third period. These maps show how the price variation of
standard dwellings is spatially distributed. Thus, in the first period, the explanatory variable distance
to city center (DIST) has the strongest effect, and produces a U effect in the variations. Furthermore, the
largest increases occur in the outskirts, particularly in the northern third part of the city, which is where
the lowest prices (see Figure 3) are located. These marked increases are due to the extensive urban
development and greater provision of services in this area. In the period 1991–1995, the increases are
again higher in the outskirts of the city, although they are more moderate than in the previous period
due to the stabilization of urban development at this time. Moreover, price variation is generally
observed to have a more irregular distribution than in the preceding period. Thus, in the first period,
a clear U-shaped behavior with low values in the center can be observed, which steadily increases
towards the periphery. However, the variations are more irregular in the second period. Finally, in the
last period, the observed behavior is opposite to that of prior periods, since the largest increases occur
in the central third part of the city, largely due to the rehabilitation of housing, while the smallest
increases are observed in the northern part. In addition, the variable DIST is not observed to have such
a dominant effect in the last two periods.
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In using a standard dwelling to make these estimates, what stands out most in these estimated
prices is their location, thus indicating that the price variation obtained with these methods in different
parts of the map is attributable to the different spatial characteristics (macro and microlocation
characteristics). This is consistent with the theory that structural characteristics are theoretically
reproducible anywhere on the map, but not spatial characteristics [79,80].

4. Discussions and Conclusions

Given the importance of understanding spatio-temporal variation in housing prices in the real
estate market and obtaining isovalue maps of these variations, a method to develop these maps has
been presented.

Since heterotopic data have been used, it has not been possible to determine the true price
variation for the same dwelling at two points in time. With the proposed method, however, it is
possible to estimate spatio-temporal variation in housing prices with heterotopic samples, which is
undoubtedly one of the main contributions of this work. In addition, this method enables management
of the heterogeneity of both the data and the explanatory variables observed in the different years.
This procedure is based on a multi-equation hedonic regression model with spatial autocorrelation
and temporal cross-correlation in the disturbances.

In this paper, an application of this procedure to predict spatio-temporal variation in housing
prices for the city of Granada has been presented. In the first two periods (1988–1991 and 1991–1995),
the largest variations occur in the city outskirts, while in the last period (1995–2005), the largest
variations were observed in the central third part of the city. The increases observed in the first two
periods are due to urban development and the provision of services in the northern area. In the
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third period, however, the increase observed in the central third part of the city is the result of
housing rehabilitation.

Finally, it is important to highlight that the proposed procedure to obtain the spatio-temporal
variation can be implemented with the CKED and RCK methods. In comparing the two methods, the
main conclusion is that in our case, the cross-validation results are similar, although slightly better for
RCK. While RCK is more cumbersome than CKED, the first method is more versatile as it can be easily
combined with any generalized additive model.

This work could be improved by including socio-economic neighborhood characteristics in the
model, since it would allow quantification of the effect of these factors on the spatio-temporal variation
in housing prices.
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