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Abstract: Different versions of the lognormal diffusion process with exogenous factors have been
used in recent years to model and study the behavior of phenomena following a given growth curve.
In each case considered, the estimation of the model has been addressed, generally by maximum
likelihood (ML), as has been the study of several characteristics associated with the type of curve
considered. For this process, a unified version of the ML estimation problem is presented, including
how to obtain estimation errors and asymptotic confidence intervals for parametric functions when no
explicit expression is available for the estimators of the parameters of the model. The Gompertz-type
diffusion process is used here to illustrate the application of the methodology.

Keywords: lognormal diffusion process; exogenous factors; growth curves; maximum likelihood
estimation; asymptotic distribution

1. Introduction

The lognormal diffusion process has been widely used as a probabilistic model in several
scientific fields in which the variable under consideration exhibits an exponential trend.
Originally, the lognormal diffusion process was mainly applied to modeling dynamic variables in the
field of economy and finance. Important contributions have been made in this direction by Cox and
Ross [1], Markus and Shaked [2], and Merton [3], showing the theoretical and practical importance of
the process in that environment. For example, this process is associated with the Black and Scholes
model [4] and appears in later extensions as terminal swap-rate models (Hunt and Kennedy [5],
Lamberton and Lapeyre [6]).

In 1972, Tintner and Sengupta [7] introduced a modification of the process by including a linear
combination of time functions in the infinitesimal mean of the process. The motivation for this was
the introduction of external influences on the interest variable (endogenous variable), influences that
could contribute to a better explanation of the phenomenon under study. For this reason, these time
functions are known as exogenous factors, whose time behavior is assumed to be known or partially
known. By using these time functions we can model situations wherein the observed trend shows
deviations from the theoretical shape of the trend during certain time intervals, and can therefore use
them to help describe the evolution of the process. Furthermore, a suitable choice of the exogenous
factors can contribute to the external control of the process for forecasting purposes. Note that the
methodology derived from the inclusion of exogenous factors has been applied to several contexts
other than the lognormal process (see, for example, Buonocore et al. [8]).

The lognormal diffusion process with exogenous factors has been widely studied in relation to
some aspects of inference and first-passage times. It has been applied to the modeling of time variables
in several fields (see, for example [9,10]). On occasion, the endogenous variable itself helps identify the
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exogenous factors. However, there are situations in which external variables to the process that have
an influence on the system are not available, or situations in which their functional expressions are
unknown. In such cases, Gutiérrez et al. [11] suggested approaching the exogenous factors by means
of polynomial functions.

The ability to control the endogenous variable using exogenous factors makes this process
particularly useful for forecasting purposes. Some of its main features, such as the mean, mode and
quantile functions (that can be expressed as parametric functions of the parameters of the process),
can be used for prediction purposes. Therefore, the inference of these functions has been the subject
of considerable study, both from the perspective of point estimation and of estimation by confidence
intervals. With respect to the former, in [10] a more general study was carried out to obtain maximum
likelihood (ML) estimators. In that case, the exact distribution of the estimators was found, and then
used to obtain the uniformly minimum variance unbiased (UMVU) estimators. In addition, expressions
for the relative efficiency of ML estimators, with respect to UMVU estimators, were obtained. This last
study was extended for a class of parametric functions which include the mean and mode functions
(together with their conditional versions) as special cases. Concerning estimation by confidence bands,
in this paper the authors extended the results obtained by Land [12] on exact confidence intervals
for the mean of a lognormal distribution, thus obtaining confidence bands for the mean and mode
functions of the lognormal process with exogenous factors and expressing these functions in a more
general form.

In most of the works cited, inference has been approached from the ML point of view, considering
discrete sampling of the trajectories. To this end, it is essential to have the exact form of the transition
density functions from which the likelihood function associated with the sample is constructed.
However, alternatives are available for a range of situations. For example, approximating the transition
density function using Euler-type schemes derived from the discretization of the stochastic differential
equation that models the behavior of the phenomenon under study (sometimes this approach is known
as naive ML approach). Other possible alternatives to ML are those derived, for example, from the
use of the concept of estimating functions (Bibby et al. [13]) and the generalized method of moments
(Hansen [14]). Fuchs in [15] presents a good review of these and other procedures. The Bayesian
approach is also present in the study of diffusion processes, as suggested by Tang and Heron in [16].

On the other hand, considering particular choices of the time functions that define the exogenous
factors has enabled researchers to define diffusion processes associated to alternative expressions of
already-known growth curves. Along these lines, we may cite a Gompertz-type process [17] (applied to the
study of rabbit growth), a generalized Von Bertalanffy diffusion process [18] (with an application to the
growth of fish species), a logistic-type process [19] (applied to the growth of a microorganism culture),
and a Richards-type diffusion process [20]. In [21], a joint analysis of the procedure for obtaining
these processes is shown. More recently, Da Luz-Sant’Ana et al. [22] have established, following a
similar methodology, a Hubbert diffusion process for studying oil production, while Barrera et al. [23]
introduced a process linked to the hyperbolastic type-I curve and applied it in the context of the
quantitative polymerase chain reaction (qPCR) technique.

In these last cases, obtaining the ML estimators was a rather laborious task. In fact, the resulting
system of equations is exceedingly complex and does not have an explicit solution, and numerical
procedures must be employed instead, with the subsequent problem of finding initial solutions
(see, for instance [18,19,22]). However, it is impossible to carry out a general study of the system of
equations in order to check the conditions of convergence of the chosen numerical method, since it
is dependent on sample data. One alternative is then to use stochastic optimization procedures like
simulated annealing, variable neighborhood search, and the firefly algorithm [20,23,24]. In any case,
the exact distribution of the estimators cannot be obtained. Recently, the asymptotic distribution
of the MLestimators and delta method have been used in order to obtain estimation errors, as well
as confidence intervals, for the parameters and parametric functions in the context of the Hubbert
diffusion model [25].
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The main objective of this paper is to provide a unified view of the estimation problem by means
of discrete sampling of trajectories, and to cover all the diffusion processes mentioned above. To this
end, we will consider the generic expression of the lognormal diffusion process with exogenous factors.
In Section 2, a brief summary of the main characteristics of the process is presented. Sections 3 and 4
address the problem of estimation by ML by using discrete sampling. In Section 3, the distribution of the
sample is obtained, while in Section 4 the generic form adopted by the system of likelihood equations
is derived in terms of the exogenous factor included in the model. Section 5 deals with obtaining the
asymptotic distribution of the estimators, after calculating the Fisher information matrix, for which
the results of Section 3 are fundamental. Finally, and as an application of the previous developments,
Section 6 deals with the particular case of the Gompertz-type process introduced in [17].

2. The Lognormal Diffusion Process With Exogenous Factors

Let I = [t0,+∞) be a real interval (t0 ≥ 0), Θ ⊆ Rk an open set, and hθ(t) a continuous, bounded
and differentiable function on I depending on θ ∈ Θ.

The univariate lognormal diffusion process with exogenous factors is a diffusion process
{X(t); t ∈ I}, taking values on R+, with infinitesimal moments

A1(x, t) = hθ(t)x
A2(x) = σ2x2, σ > 0

(1)

and with a lognormal or degenerate initial distribution. This process is the solution to the stochastic
differential equation

dX(t) = hθ(t)X(t)dt + σX(t)dW(t), X(t0) = X0,

where W(t) is a standard Wiener process independent on X0 = X(t0), t ≥ t0, being this solution

X(t) = X0 exp
(

Hξ(t0, t) + σ(W(t)−W(t0))
)

, t ≥ t0

with

Hξ(t0, t) =
∫ t

t0

hθ(u)du− σ2

2
(t− t0), ξ = (θT , σ2)T .

An explanation of the main features of the process can be found in [21], where the authors
carried out a detailed theoretical analysis. As regards the distribution of the process, if X0

is distributed according to a lognormal distribution Λ1
[
µ0; σ2

0
]
, or X0 is a degenerate variable

(P[X0 = x0] = 1), all the finite-dimensional distributions of the process are lognormal. Concretely,
∀n ∈ N and t1 < · · · < tn, vector (X(t1), . . . , X(tn))T has a n-dimensional lognormal distribution
Λn[ε, Σ], where the components of vector ε and matrix Σ are

εi = µ0 + Hξ(t0, ti), i = 1, . . . , n

and
σij = σ2

0 + σ2(min(ti, tj)− t0), i, j = 1, . . . , n,

respectively. The transition probability density function can be obtained from the distribution of
(X(s), X(t))T , s < t, being

f (x, t|y, s) =
1

x
√

2πσ2(t− s)
exp

(
−
[
ln(x/y)− Hξ(s, t)

]2
2σ2(t− s)

)
, (2)
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that is, X(t)|X(s) = y follows a lognormal distribution

X(t) | X(s) = y Λ1

(
ln y + Hξ(s, t), σ2(t− s)

)
, s < t.

From the previous distributions, one can obtain the characteristics most commonly employed for
practical fitting and forecasting purposes. These characteristics can be expressed jointly as

Gλ
ξ (t|y, τ) = Mξ(t|y, τ)λ1 exp

(
λ2

(
λ3 σ2

0 + σ2(t− τ)
)λ4
)

, (3)

with λ = (λ1, λ2, λ3, λ4)
T and where Mξ(t|y, τ) = exp

(
y + Hξ(τ, t)

)
. Table 1 includes some of these

characteristics (the n−th moment, and the mode and quantile functions as well as their conditional
versions) according to the values of λ, τ and y.

Table 1. Values used to obtain the n-th moment and the mode and quantile functions from Gλ
ξ (t|z, τ).

zα is the α-quantile of a standard normal distribution.

Function Expression z τ λ

n-th moment E[X(t)n] µ0 t0 (n, n2/2, 1, 1)T

n-th conditional moment E[X(t)n|X(s) = y] ln y s (n, n2/2, 0, 1)T

mode Mode[X(t)] µ0 t0 (1,−1, 1, 1)T

conditional mode Mode[X(t)|X(s) = y] ln y s (1,−1, 0, 1)T

α-quantile Cα[X(t)] µ0 t0 (1, zα, 1, 1/2)T

α-conditional quantile Cα[X(t)|X(s) = y] ln y s (1, zα, 0, 1/2)T

3. Joint Distribution of d Sample-Paths of the Process

Let us consider a discrete sampling of the process, based on d sample paths, at times tij,

(i = 1,. . . , d, j = 1, . . . , ni) with ti1 = t0, i = 1, . . . , d. Denote by X =
(
XT

1 | · · · |XT
d
)T the vector containing

the random variables of the sample, where XT
i includes the variables of the i-th sample-path, that is

Xi = (X(ti1), . . . , X(ti,ni ))
T , i = 1, . . . , d.

From Equation (2), and if the distribution of X(t1) is assumed lognormal Λ1(µ1, σ2
1 ), the probability

density function of X is

fX(x) =
d

∏
i=1

exp
(
− [ln xi1−µ1]

2

2σ2
1

)
xi1σ1

√
2π

ni−1

∏
j=1

exp

(
−
[
ln(xi,j+1/xij)−mi,j,j+1

ξ

]2

2σ2∆j+1,j
i

)
xijσ

√
2π∆j+1,j

i

where mi,j+1,j
ξ = Hξ(tij, ti,j+1) and ∆j+1,j

i = ti,j+1 − tij.

Now, we consider vector V =
[
VT

0 |VT
1 | · · · |VT

d
]T

=
[
VT

0 |VT
(1)

]T
, built from X by means of the

following change of variables:

V0i = Xi1, i = 1, . . . , d

Vij = (∆j+1,j
i )−1/2 ln

Xi,j+1

Xij
, i = 1, . . . , d; j = 1, . . . , ni − 1.

(4)

Taking into account this change of variables, the density of V becomes
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fV(v) =
exp

(
− 1

2σ2
1
(ln v0 − µ11d)

T(ln v0 − µ11d)

)
d

∏
i=1

v0i

(
2πσ2

1

) d
2

exp
(
− 1

2σ2

(
v(1) − γξ

)T (
v(1) − γξ

))
(2πσ2)

n
2

(5)

with ln v0 = (ln v01, . . . , ln v0d)
T , n = ∑d

i=1(ni − 1). Here, 1d represents the d-dimensional vector
whose components are all equal to one, while γξ is a vector of dimension n with components
γ

ξ
ij = (∆j+1,j

i )−1/2mi,j,j+1
ξ , i = 1, . . . , d; j = 1, . . . , ni − 1.

From Equation (5) it is deduced that:

• V0 and V(1) are independents,
• the distribution of V0 is lognormal Λd

[
µ11d; σ2

1 Id
]
,

• V(1) is distributed as an n-variate normal distribution Nn
[
γξ ; σ2In

]
,

being Id and In the identity matrices of order d and n, respectively.

4. Maximum Likelihood Estimation of the Parameters of the Process

Consider a discrete sample of the process in the sense described in the previous section, including
the transformation of it given by Equation (4). Denote by η = (µ1, σ2

1 )
T and suppose that η and ξ are

functionally independent. Then, for a fixed value v of the sample, the log-likelihood function is

Lv(η, ξ) = − (n + d) ln(2π)

2
−

d ln σ2
1

2
−

d

∑
i=1

ln v0i −

d

∑
i=1

[ln v0i − µ1]
2

2σ2
1

− n ln σ2

2
−

Z1 + Φξ − 2Γξ

2σ2 (6)

where

Z1 =
d

∑
i=1

ni−1

∑
j=1

v2
ij, Φξ =

d

∑
i=1

ni−1

∑
j=1

(
mi,j+1,j

ξ

)2

∆j+1,j
i

, Γξ =
d

∑
i=1

ni−1

∑
j=1

vijm
i,j+1,j
ξ

(∆j+1,j
i )1/2

.

Taking into account Equation (6), and since η and ξ are functionally independent, the ML
estimation of η is obtained from the system of equations (Given a function f : Rk → R, ∂ f

∂xT =(
∂ f
∂x1

, . . . , ∂ f
∂xk

)
. Notation ∂ f

∂xT indicates that the result is a row vector).

∂Lv(η, ξ)

∂ηT =

(
∂Lv(η, ξ)

∂µ1
,

∂Lv(η, ξ)

∂σ2
1

)
= 0

resulting in

µ̂1 =
1
d

d

∑
i=1

ln v0i and σ̂2
1 =

1
d

d

∑
i=1

(ln v0i − µ̂1)
2.

On the other hand, by denoting

Ωξ =
1
2

∂Φξ

∂θT =
d

∑
i=1

ni−1

∑
j=1

mi,j+1,j
ξ

∆j+1,j
i

∂mi,j+1,j
ξ

∂θT , Ψθ =
1
2

∂Γξ

∂θT =
d

∑
i=1

ni−1

∑
j=1

vij

(∆j+1,j
i )1/2

∂mi,j+1,j
ξ

∂θT

(7)

Υξ = −
∂Φξ

∂σ2 =
d

∑
i=1

mi,ni ,1
ξ , Z2 = −2

∂Γξ

∂σ2 =
d

∑
i=1

ni−1

∑
j=1

vij(∆
j+1,j
i )1/2
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we have

∂Lv(η, ξ)

∂θT =
1
σ2

[
Ψθ−Ωξ

]
∂Lv(η, ξ)

∂σ2 = − n
2σ2 +

Z1 + Φξ − 2Γξ

2σ4 −
Z2 − Υξ

2σ2 .

Thus, the ML estimation of ξ is obtained as the solution of the following system of k + 1 equations:

Ψθ−Ωξ = 0 (8)

Z1 + Φξ − 2Γξ − σ2Z2 + σ2Υξ = nσ2 (9)

In the case where hθ is a linear function in θ, it is possible to determine an explicit solution for
this system of equations (see [10,26]). In other cases, the existence of a closed-form solution can not
be guaranteed, and it is therefore necessary to use numerical procedures for its resolution. The fact
that these methods require initial solutions has motivated the construction of ad hoc procedures which
depend on the process derived according to the function hθ considered (see [18,19,22]). However, it is
impossible to carry out a general study of the system of equations in order to check the conditions of
convergence of the chosen numerical method, since the system is dependent on sample data and this
may lead to unforeseeable behavior. One alternative would be using stochastic optimization procedures
like simulated annealing, variable neighborhood search and the firefly algorithm. These algorithms
are often more appropriate than classical numerical methods since they impose fewer restrictions on
the space of solutions and on the analytical properties of the function to be optimized. Some examples
of the application of these procedures in the context of diffusion processes can be seen in [19,21,23,25].

5. Distribution of the ML Estimators of the Parameters and Related Parametric Functions

In this section we will discuss some aspects related to the distribution of the estimators of the
parameters of the model, and their repercussions in the corresponding distributions of parametric
functions, which can be of interest for several applications.

With regard to the distribution of the estimators of η, it is immediate to verify that

µ̂1  N1[µ1; σ2
1 /d] and

d σ̂2
1

σ2
1
 χ2

d−1.

If hθ is linear, it is then possible to calculate exact distributions associated with the estimators of ξ,
which allows us to establish confidence regions for the parameters as well as UMVU estimators and
confidence intervals for linear combinations of θ and σ2 (see [10,26]). However, in the non-linear case,
the fact that an explicit expression for the estimators of ξ is not always readily available precludes
obtaining, in general, exact distributions for them. In that case, asymptotic distributions can be used
instead. In fact, on the basis of the properties of the ML estimators, it is known that ξ̂ is asymptotically
distributed as a normal distribution with mean ξ and covariance matrix I(ξ)−1, where I(ξ) is the
Fisher’s information matrix associated with the full sample (in this case, ignoring the data of the
initial distribution).

First we calculate the associated Hessian matrix: (we have adopted the usual expression for the

Hessian matrix of f : Rk → R using vectorial notation, that is
∂2 f

∂x∂xT ).
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H(ξ) =
∂2Lv(η, ξ)

∂ξ∂ξT =


∂2Lv(η, ξ)

∂θ∂θT

(
∂2Lv(η, ξ)

∂σ2∂θT

)T

∂2Lv(η, ξ)

∂σ2∂θT
∂2Lv(η, ξ)

∂(σ2)2



=
1
σ2


Πξ − Ξξ − 1

σ2

[
ΨT

θ −ΩT
ξ

]
+

1
2

(
∂Υξ

∂θT

)T

− 1
σ2

[
Ψθ−Ωξ

]
+

1
2

∂Υξ

∂θT
n

2σ2 −
Z1 + Φξ − 2Γξ

σ4 +
Z2 − Υξ

σ2 − Z3

4


where

Πξ =
d

∑
i=1

ni−1

∑
j=1

∂2mi,j+1,j
ξ

∂θ∂θT (∆j+1,j
i )−1/2

(
vij − (∆j+1,j

i )−1/2mi,j+1,j
ξ

)
and

Ξξ =
d

∑
i=1

ni−1

∑
j=1

(∆j+1,j
i )−1

∂mi,j+1,j
ξ

∂θT

T
∂mi,j+1,j

ξ

∂θT , Z3 =
d

∑
i=1

∆ni ,1
i .

Taking into account the distribution of the sample (see Section 3), we have

E[Πξ ] = 0, E[Z1] = nσ2 + Φξ , E[Z2] = Υξ , E[Ψθ] = Ωξ , E[Γξ ] = Φξ

so, the Fisher’s information matrix is given by

I(ξ) = −E[H(ξ)] =
1
σ2


Ξξ −1

2

(
∂Υξ

∂θT

)T

−1
2

∂Υξ

∂θT
n

2σ2 +
Z3

4

 ,

from where it is concluded that ξ̂
D→ Nk+1

[
ξ; I(ξ)−1]. In addition, and by applying the delta method,

for a q−parametric function g(ξ) (q ≤ k + 1) it is verified that

g(ξ̂) D→ Nq

[
g(ξ);∇g(ξ)T I(ξ)−1∇g(ξ)

]
where ∇g(ξ) represents the vector of partial derivatives of g(ξ) with respect to ξ.

The elements in the diagonal of matrix I(ξ)−1 provide asymptotic variances for the estimations
of the parameters, while the delta method provides the asymptotic covariance matrix for g(ξ̂) (and
consequently the elements of the diagonal are the asymptotic variances for the estimation of each
parametric function of g(ξ)). For example, if we consider g(ξ) = Gλ

ξ (t|y, τ), that is the general
expression for the main characteristics of the process given by Equation (3), then

∇g(ξ) = g(ξ)
(

λ1
∂Hξ(τ, t)

∂θT , (t− τ)

[
−λ1

2
+ λ2λ4

(
λ3 σ2

0 + σ2(t− τ)
)λ4−1

])
.
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6. Application: The Gompertz-Type Diffusion Process

In this section we focus on the Gompertz-type diffusion process introduced in [17] with the aim
of obtaining a continuous stochastic model associated with the Gompertz curve whose limit value
depends on the initial value. Concretely

f (t) = x0 exp
(
−m

β

(
e−β t − e−β t0

))
, t ≥ t0 ≥ 0, m, β > 0 and x0 > 0.

To this end, the non-homogeneous lognormal diffusion process with infinitesimal moments

A1(x, t) = me−β tx (10)

A2(x) = σ2x2

was considered.
In order to apply the general scheme developed in the preceding sections, we consider the

following reparameterization θ = (δ, α)T = (m/β, e−β)T , which leads to expressing the Gompertz
curve as

fθ(t) = x0 exp
(
−δ
(
αt − αt0

))
(11)

whereas the infinitesimal moments (10) are written in the form of Equation (1), with hθ(t) = −δαt ln α.
Denoting ϕα

i,j+1,j = αti,j+1 − αti,j and ωα
i,j+1,j = ti,j+1αti,j+1 − tijα

tij , one has mi,j+1,j
ξ = −δϕα

i,j+1,j −
σ2

2 ∆j+1,j
i and

∂mi,j+1,j
ξ

∂θT = −
(

ϕα
i,j+1,j, δωα

i,j+1,j

)
,

so, from Equation (8), and by taking into account of Equation (7), the following system of
equations appears

Xα
1 + δXα

2 +
σ2

2
Xα

3 = 0

Xα
4 + δXα

5 +
σ2

2
Xα

6 = 0

where

Xα
1 =

d

∑
i=1

ni−1

∑
j=1

vij ϕ
α
i,j+1,j

(∆j+1,j
i )1/2

, Xα
2 =

d

∑
i=1

ni−1

∑
j=1

(
ϕα

i,j+1,j

)2

∆j+1,j
i

, Xα
3 =

d

∑
i=1

ϕα
i,ni ,1

Xα
4 =

d

∑
i=1

ni−1

∑
j=1

vijω
α
i,j+1,j

(∆j+1,j
i )1/2

, Xα
5 =

d

∑
i=1

ni−1

∑
j=1

ϕα
i,j+1,jω

α
i,j+1,j

∆j+1,j
i

, Xα
6 =

d

∑
i=1

ωα
i,ni ,1.

After some algebra, one obtains

δα =
Xα

3 Xα
4 − Xα

1 Xα
6

Xα
2 Xα

6 − Xα
3 Xα

5
and σ2

α = 2Sα, where Sα =
Xα

1 Xα
5 − Xα

2 Xα
4

Xα
2 Xα

6 − Xα
3 Xα

5
.

On the other hand, and since

Φξ = δ2Xα
2 +

σ4

4
Z3 + δσ2Xα

3 , Γξ = −δ Xα
1 −

σ2

2
Z2, Υξ = −δ Xα

3 −
σ2

2
Z3,

Equation (9) results in

Sα [2n + Sα]− δα [2Xα
1 + δαXα

2 ]− Z1 = 0 (12)
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The solution of this equation provides the estimation of α, whereas those of the other parameters
are given by δα̂ and σ2

α̂ .
As regards the asymptotic distribution of ξ̂, it is a trivariate normal distribution with mean ξ and

covariance matrix given by I(ξ)−1, being

I(ξ) =
1
σ2


Xα

2 δ Xα
5 −Xα

3
δ Xα

5 δ2 Xα
7 −δ Xα

6

−Xα
3 −δ Xα

6
n

2σ2 +
Z3

4


with

Xα
7 =

d

∑
i=1

ni−1

∑
j=1

(
ωα

i,j+1,j

)2

∆j+1,j
i

.

This distribution can be used to obtain the asymptotic standard errors for the estimation of the
parameters as well as for some parametric functions of interest (see the last comment of the previous
section). In particular, we focus on the inflection time and the corresponding expected value of
the process at this instant, conditioned on X(t0) = x0. Another important parametric function in
this context is the upper bound that determines the carrying capacity of the system modeled by the
process. Concretely:

• Upper bound, conditioned on X(t0) = x0, g1(θ) = x0 exp
(
δ αt0

)
.

• Inflection time, g2(θ) = − ln δ/ ln α.
• Value of the process at the time of inflection, conditioned on X(t0) = x0, g3(θ) = g1(θ)/e.

On the other hand, when using the model for predictive purposes some of the parametric functions
of Table 1 can be used. In particular, the conditioned mean function adopts the expression

E[X(t)|X(τ) = y] = g4(θ) = y exp
(
−δ
(
αt − ατ

))
.

Note that this curve is of the type of Equation (11). For this reason, this function is useful for
forecasting purposes. In this case, it is of interest to provide not only the value of the function at each
time instant, but also the standard error of the prediction and a confidence interval determining a
range of values that includes, with a given confidence level, the true real value of the forecast.

Application to Real Data

The following example is based on a study developed in [27] on some aspects related to the
growth of a population of rabbits. Figure 1 shows the weight (in grams) of 29 rabbits over 30 weeks.
The sample paths begin at different initial values, thus showing a sigmoidal behavior, and their bounds
are dependent on the initial values. These two aspects suggest that using the Gompertz-type model
proposed above would be appropriate.

This data set has been used in various papers to illustrate some aspects of the Gompertz-type
process, such as the estimation of the parameters and the study of some time variables that may
be of interest in the analysis of growth phenomena of this nature. As regards the estimation of
the parameters, in [17] the authors designed an iterative method for solving the likelihood system
of equations, while in [24] the maximization of the likelihood function was directly addressed by
simulated annealing. In addition, in [28] two time variables of interest for this type of data were
analyzed: concretely the inflection time and the time instant in which the process reaches a certain
percentage of total growth. Both cases were modeled as first-passage time problems.

In this paper the estimation of the parameters has been carried out from the resolution of
Equation (12) by means of the bisection method (see Figure 2) and then by using expressions δα̂

and σ2
α̂ .
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Figure 1. Weight of 29 rabbits over 30 weeks.
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Figure 2. Graph of equation for α.

Table 2 contains the estimated values for the parameters and the inflection time, as well as the
asymptotic estimation error and 95% confidence intervals by applying the delta method.

Table 2. Estimated values, standard errors and 95% confidence intervals of the parameters and the
inflection time.

Parametric Function δ α σ g2(θ)

Estimated value 4.1020 0.8301 0.0708 7.5803
Standard error 0.0556 0.0021 0.0002 0.1053

Confidence interval (3.9929, 4.1063) (0.8258, 0.8343) (0.0704, 0.0713) (7.3738, 7.7869)
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As regards the weight value at the inflection time and the upper bound, remember that these
values depend on the one observed at the initial instant. Taking into account the range of observed
weight values at the initial instant of observation, several values have been considered within this
range. For these values, the expected weight of a rabbit at the moment of inflection has been studied,
as well as the possible value of the maximum weight (upper bound). Table 3 contains the estimated
values, the asymptotic standard errors, and the 95% confidence intervals.

Function E[X(t)|X(t0) = x0] can be used to provide forecasts of the weight of a rabbit that
presents an initial weight x0. Figure 3 shows, for a selection of four of the rabbits used in the study,
the estimated mean function together with the 95% asymptotic confidence intervals obtained for each
value of this function. Additionally, the observed values are included to check the quality of the
adjustment made by the model under consideration. Obviously, this type of representation can also be
obtained by considering any value of x0 in the range of the initial distribution of the weight. Note that
the estimated mean functions for each rabbit depend on the initial value, and so do the corresponding
confidence intervals for the mean at each time instant. Therefore, the graphs in the figure are different
for each rabbit although the estimation of the parameters is unique.

Table 3. Estimated values, standard errors, and 95% confidence intervals of the upper bound and value
at the inflection time for several values of the initial weight.

Initial Weight
Upper Bound Value at Inflection Time

g3(θ̂) St. Error 95% Interval g1(θ̂) St. Error 95% Interval

145 1772.836 70.546 (1634.568, 1911.104) 4819.068 191.764 (4443.215, 5194.920)
155 1772.836 75.411 (1625.032, 1920.640) 4819.068 204.990 (4417.295, 5220.841)
165 1883.638 80.276 (1726.298, 2040.978) 5120.260 218.215 (4692.566, 5547.954)
175 2105.243 85.142 (1938.367, 2272.118) 5722.643 231.440 (5269.028, 6176.258)
185 2216.045 90.007 (2039.634, 2392.456) 6023.835 244.665 (5544.299, 6503.371)
195 2216.045 94.872 (2030.098, 2401.992) 6023.835 257.890 (5518.378, 6529.291)
205 2105.243 99.737 (1909.760, 2300.726) 5722.643 271.115 (5191.266, 6254.020)
215 1883.638 104.603 (1678.620, 2088.657) 5120.260 284.341 (4562.961, 5677.558)
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Figure 3. Observed values, estimated mean function, and confidence intervals for a choice of rabbits.

7. Conclusions

The present paper deals with some topics about inference for the non-homogeneous lognormal
process (or with exogenous factors). Starting from the general form of the process, we studied the
ML estimation of the parameters by using discrete sampling. This general overview enabled us to
provide a unified method for several diffusion processes which can be built from particular cases of
the non-homogeneous lognormal process for several choices of exogenous factors. In addition, we also
looked into the asymptotic distribution of estimators, through which we can calculate the estimation
errors and confidence intervals for the estimators of a wide range of parametric functions of interest
in many fields. Finally, the process here described is applied to the Gompertz-type diffusion process
introduced in [17].
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