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1. Introduction

A real hypersurface is a submanifold of a Riemannian manifold with a real co-dimensional one.
Among the Riemannian manifolds, it is of great interest in the area of Differential Geometry to study
real hypersurfaces in complex space forms. A complex space form is a Kähler manifold of dimension n
and constant holomorphic sectional curvature c. In addition, complete and simply connected complex
space forms are analytically isometric to complex projective space CPn if c > 0, to complex Euclidean
space Cn if c = 0, or to complex hyperbolic space CHn if c < 0. The notion of non-flat complex space
form refers to complex projective and complex hyperbolic space when it is not necessary to distinguish
between them and is denoted by Mn(c), n ≥ 2.

Let J be the Kähler structure and ∇̃ the Levi–Civita connection of the non-flat complex space
form Mn(c), n ≥ 2. Consider M a connected real hypersurface of Mn(c) and N a locally defined
unit normal vector field on M. The Kähler structure induces on M an almost contact metric structure
(φ, ξ, η, g). The latter consists of a tensor field of type (1, 1) φ called structure tensor field, a one-form η,
a vector field ξ given by ξ = −JN known as the structure vector field of M and g, which is the induced
Riemannian metric on M by G. Among real hypersurfaces in non-flat complex space forms, the class of
Hopf hypersurfaces is the most important. A Hopf hypersurface is a real hypersurface whose structure
vector field ξ is an eigenvector of the shape operator A of M .

Takagi initiated the study of real hypersurfaces in non-flat complex space forms. He provided the
classification of homogeneous real hypersurfaces in complex projective space CPn and divided them
into five classes (A), (B), (C), (D) and (E) (see [1–3]). Later, Kimura proved that homogeneous real
hypersurfaces in complex projective space are the unique Hopf hypersurfaces with constant principal
curvatures, i.e., the eigenvalues of the shape operator A are constant (see [4]). Among the above real
hypersurfaces, the three-dimensional real hypersurfaces in CP2 are geodesic hyperspheres of radius r,

0 < r <
π

2
, called real hypersurfaces of type (A) and tubes of radius r, 0 < r <

π

4
, over the complex
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quadric called real hypersurfaces of type (B). Table 1 includes the values of the constant principal
curvatures corresponding to the real hypersurfaces above (see [1,2]).

Table 1. Principal curvatures of real hypersurfaces in CP2.

Type α λ1 ν mα mλ1 mν

(A) 2 cot(2r) cot(r) - 1 2 -
(B) 2cot(2r) cot(r− π

4
) − tan(r− π

4
) 1 1 1

The study of Hopf hypersurfaces with constant principal curvatures in complex hyperbolic space
CHn, n ≥ 2, was initiated by Montiel in [5] and completed by Berndt in [6]. They are divided into two
types: type (A), which are open subsets of horospheres (A0), geodesic hyperspheres (A1,0), or tubes
over totally geodesic complex hyperbolic hyperplane CHn−1 (A1,1) and type (B), which are open
subsets of tubes over totally geodesic real hyperbolic space RHn. Table 2 includes the values of the
constant principal curvatures corresponding to above real hypersurfaces for n = 2 (see [6]).

Table 2. Principal curvatures of real hypersurfaces in CH2.

Type α λ ν mα mλ mν

(A0) 2 1 - 1 2 -
(A1,1) 2coth(2r) coth(r) - 1 2 -
(A1,2) 2coth(2r) tanh(r) - 1 2 -

(B) 2tanh(2r) tanh(r) coth(r) 1 1 1

The Levi–Civita connection ∇̃ of the non-flat complex space form Mn(c), n ≥ 2 induces on M
a Levi–Civita connection ∇. Apart from the last one, Cho in [7,8] introduces the notion of the k-th
generalized Tanaka–Webster connection ∇̂(k) on a real hypersurface in non-flat complex space form
given by

∇̂(k)
X Y = ∇XY + g(φAX, Y)ξ − η(Y)φAX− kη(X)φY, (1)

for all X, Y tangent to M , where k is a nonnull real number. The latter is an extension of the
definition of generalized Tanaka–Webster connection for contact metric manifolds given by Tanno in [9]
and satisfying the relation

∇̂XY = ∇XY + (∇Xη)(Y)ξ − η(Y)∇Xξ − η(X)φY.

The following relations hold:

∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)φ = 0.

In particular, if the shape operator of a real hypersurface satisfies φA + Aφ = 2kφ, the generalized
Tanaka–Webster connection coincides with the Tanaka–Webster connection.

The k-th Cho operator on M associated with the vector field X is denoted by F̂(k)
X and given by

F̂(k)
X Y = g(φAX, Y)ξ − η(Y)φAX− kη(X)φY, (2)

for any Y tangent to M. Then, the torsion of the k-th generalized Tanaka–Webster connection ∇̂(k) is
given by

T(k)(X, Y) = F̂(k)
X Y− F̂(k)

Y X,

for any X, Y tangent to M. Associated with the vector field X, the k-th torsion operator T(k)
X is defined

and given by
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T(k)
X Y = T(k)(X, Y),

for any Y tangent to M.
The existence of Levi–Civita and k-th generalized Tanaka–Webster connections on a real

hypersurface implies that the covariant derivative can be expressed with respect to both connections.
Let K be a tensor field of type (1, 1); then, the symbols ∇K and ∇̂(k)K are used to denote the covariant
derivatives of K with respect to the Levi–Civita and the k-th generalized Tanaka–Webster connection,
respectively. Furthermore, the Lie derivative of a tensor field K of type (1, 1) with respect to Levi–Civita
connection LK is given by

(LXK)Y = ∇X(KY)−∇KYX− K∇XY + K∇YX, (3)

for all X, Y tangent to M . Another first order differential operator of a tensor field K of type (1, 1) with
respect to the k-th generalized Tanaka–Webster connection L̂(k)K is defined and it is given by

(L̂
(k)
X K)Y = ∇̂(k)

X (KY)− ∇̂(k)
KYX− K(∇̂(k)

X Y) + K(∇̂(k)
Y X), (4)

for all X, Y tangent to M .
Due to the existence of the above differential operators and derivatives, the following questions

come up

1. Are there real hypersurfaces in non-flat complex space forms whose derivatives with respect to
different connections coincide?

2. Are there real hypersurfaces in non-flat complex space forms whose differential operator L̂(k)

coincides with derivatives with respect to different connections?

The first answer is obtained in [10], where the classification of real hypersurfaces in complex
projective space CPn ,n ≥ 3, whose covariant derivative of the shape operator with respect to the
Levi–Civita connection coincides with the covariant derivative of it with respect to the k-th generalized
Tanaka–Webster connection is provided, i.e., ∇X A = ∇̂(k)

X A, where X is any vector field on M.
Next, in [11], real hypersurfaces in complex projective space CPn, n ≥ 3, whose Lie derivative of the
shape operator coincides with the operator L̂(k) are studied, i.e., LX A = L̂

(k)
X A, where X is any vector

field on M. Finally, in [12], the problem of classifying three-dimensional real hypersurfaces in non-flat
complex space forms M2(c), for which the operator L̂(k) applied to the shape operator coincides with
the covariant derivative of it, has been studied, i.e., L̂(k)

X A = ∇X A, for any vector field X tangent to M.

In this paper, the condition LX A = L̂
(k)
X A, where X is any vector field on M is studied in the case

of three-dimensional real hypersurfaces in M2(c).
The aim of the present paper is to complete the work of [11] in the case of three-dimensional real

hypersurfaces in non-flat complex space forms M2(c). The equality LX A = L̂
(k)
X A is equivalent to the

fact that T(k)
X A = AT(k)

X . Thus, the eigenspaces of A are preserved by the k-th torsion operator T(k)
X ,

for any X tangent to M . First, three-dimensional real hypersurfaces in M2(c) whose shape operator A
satisfies the following relation:

L̂
(k)
X A = LX A, (5)

for any X orthogonal to ξ are studied and the following Theorem is proved:

Theorem 1. There do not exist real hypersurfaces in M2(c) whose shape operator satisfies relation (5).

Next, three-dimensional real hypersurfaces in M2(c) whose shape operator satisfies the following
relation are studied:
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L̂
(k)
ξ A = Lξ A, (6)

and the following Theorem is provided.

Theorem 2. Every real hypersurface in M2(c) whose shape operator satisfies relation (6) is locally congruent
to a real hypersurface of type (A).

As an immediate consequence of the above theorems, it is obtained that

Corollary 1. There do not exist real hypersurfaces in M2(c) such that L̂(k)
X A = LX A, for all X ∈ TM.

Next, the following tensor field P of type (1, 1) is introduced:

PX = φAX− AφX,

for any vector field X tangent to M. The relation P = 0 implies that the shape operator commutes with
the structure tensor φ. Real hypersurfaces whose shape operator A commutes with the structure tensor
φ have been studied by Okumura in the case of CPn, n ≥ 2, (see [13]) and by Montiel and Romero
in the case of CHn, n ≥ 2 (see [14]). The following Theorem provides the above classification of real
hypersurfaces in Mn(c), n ≥ 2.

Theorem 3. Let M be a real hypersurface of Mn(c), n ≥ 2. Then, Aφ = φA, if and only if M is locally
congruent to a homogeneous real hypersurface of type (A). More precisely:
In the case of CPn

(A1) a geodesic hypersphere of radius r , where 0 < r <
π

2
,

(A2) a tube of radius r over a totally geodesic CPk,(1 ≤ k ≤ n− 2), where 0 < r <
π

2
.

In the case of CHn,

(A0) a horosphere in CHn, i.e., a Montiel tube,
(A1) a geodesic hypersphere or a tube over a totally geodesic complex hyperbolic hyperplane CHn−1,
(A2) a tube over a totally geodesic CHk (1 ≤ k ≤ n− 2).

Remark 1. In the case of three-dimensional real hypersurfaces in M2(c), real hypersurfaces of type (A2) do
not exist.

It is interesting to study real hypersurfaces in non-flat complex spaces forms, whose tensor field P
satisfies certain geometric conditions. We begin by studying three-dimensional real hypersurfaces in
M2(c) whose tensor field P satisfies the relation

(L̂
(k)
X P)Y = (LXP)Y, (7)

for any vector fields X, Y tangent to M.
First, the following Theorem is proved:

Theorem 4. Every real hypersurface in M2(c) whose tensor field P satisfies relation (7) for any X orthogonal
to ξ and Y ∈ TM is locally congruent to a real hypersurface of type (A).

Next, we study three-dimensional real hypersurfaces in M2(c) whose tensor field P satisfies
relation (7) for X = ξ, i.e.,

(
ˆ

L
(k)
ξ P)Y = (Lξ P)Y, (8)
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for any vector field Y tangent to M. Then, the following Theorem is proved:

Theorem 5. Every real hypersurface in M2(c) whose tensor field P satisfies relation (8) is a Hopf hypersurface.
In the case of CP2, M is locally congruent to a real hypersurface of type (A) or to a real hypersurface of type (B)
with α = −2k and in the case of CH2 M is a locally congruent either to a real hypersurface of type (A) or to a

real hypersurface of type (B) with α =
4
k

.

This paper is organized as follows: in Section 2, basic relations and theorems concerning real
hypersurfaces in non-flat complex space forms are presented. In Section 3, analytic proofs of Theorems 1
and 2 are provided. Finally, in Section 4, proofs of Theorems 4 and 5 are given.

2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc. are considered of class C∞ and all
manifolds are assumed to be connected.

The non-flat complex space form Mn(c), n ≥ 2 is equipped with a Kähler structure J and G is the
Kählerian metric. The constant holomorphic sectional curvature c in the case of complex projective
space CPn is c = 4 and in the case of complex hyperbolic space CHn is c = −4. The Levi–Civita
connection of the non-flat complex space form is denoted by ∇.

Let M be a connected real hypersurface immersed in Mn(c), n ≥ 2, without boundary and N be a
locally defined unit normal vector field on M. The shape operator A of the real hypersurface M with
respect to the vector field N is given by

∇X N = −AX.

The Levi–Civita connection ∇ of the real hypersurface M satisfies the relation

∇XY = ∇XY + g(AX, Y)N.

The Kähler structure of the ambient space induces on M an almost contact metric structure
(φ, ξ, η, g) in the following way: any vector field X tangent to M satisfies the relation

JX = φX + η(X)N.

The tangential component of the above relation defines on M a skew-symmetric tensor field of
type (1, 1) denoted by φ known as the structure tensor. The structure vector field ξ is defined by ξ = −JN
and the 1-form η is given by η(X) = g(X, ξ) for any vector field X tangent to M. The elements of the
almost contact structure satisfy the following relation:

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY) = g(X, Y)− η(X)η(Y) (9)

for all tangent vectors X, Y to M. Relation (9) implies

φξ = 0, η(X) = g(X, ξ).

Because of ∇J = 0, it is obtained

(∇Xφ)Y = η(Y)AX− g(AX, Y)ξ and ∇Xξ = φAX

for all X, Y tangent to M. Moreover, the Gauss and Codazzi equations of the real hypersurface are
respectively given by
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R(X, Y)Z =
c
4
[g(Y, Z)X− g(X, Z)Y + g(φY, Z)φX− g(φX, Z)φY

−2g(φX, Y)φZ] + g(AY, Z)AX− g(AX, Z)AY,
(10)

and

(∇X A)Y− (∇Y A)X =
c
4
[η(X)φY− η(Y)φX− 2g(φX, Y)ξ], (11)

for all vectors X, Y, Z tangent to M, where R is the curvature tensor of M.
The tangent space Tp M at every point p ∈ M is decomposed as

Tp M = span{ξ} ⊕D, (12)

where D = ker η = {X ∈ Tp M : η(X) = 0} and is called (maximal) holomorphic distribution (if n ≥ 3).
Next, the following results concern any non-Hopf real hypersurface M in M2(c) with local

orthonormal basis {U, φU, ξ} at a point p of M.

Lemma 1. Let M be a non-Hopf real hypersurface in M2(c). The following relations hold on M:

AU = γU + δφU + βξ, AφU = δU + µφU, Aξ = αξ + βU,

∇Uξ = −δU + γφU, ∇φUξ = −µU + δφU, ∇ξξ = βφU, (13)

∇UU = κ1φU + δξ, ∇φUU = κ2φU + µξ, ∇ξU = κ3φU,

∇UφU = −κ1U − γξ, ∇φUφU = −κ2U − δξ, ∇ξφU = −κ3U − βξ,

where α, β, γ, δ, µ, κ1, κ2, κ3 are smooth functions on M and β 6= 0.

Remark 2. The proof of Lemma 1 is included in [15].

The Codazzi equation for X ∈ {U, φU} and Y = ξ implies, because of Lemma 1, the following relations:

ξδ = αγ + βκ1 + δ2 + µκ3 +
c
4
− γµ− γκ3 − β2, (14)

ξµ = αδ + βκ2 − 2δκ3, (15)

(φU)α = αβ + βκ3 − 3βµ, (16)

(φU)β = αγ + βκ1 + 2δ2 +
c
2
− 2γµ + αµ, (17)

and for X = U and Y = φU

Uδ− (φU)γ = µκ1 − κ1γ− βγ− 2δκ2 − 2βµ. (18)

The following Theorem refers to Hopf hypersurfaces. In the case of complex projective space CPn,
it is given by Maeda [16], and, in the case of complex hyperbolic space CHn, it is given by Ki and Suh
[17] (see also Corollary 2.3 in [18]).

Theorem 6. Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then,

(i) α = g(Aξ, ξ) is constant.
(ii) If W is a vector field, which belongs to D such that AW = λW, then

(λ− α

2
)AφW = (

λα

2
+

c
4
)φW.



Mathematics 2018, 6, 84 7 of 12

(iii) If the vector field W satisfies AW = λW and AφW = νφW, then

λν =
α

2
(λ + ν) +

c
4

. (19)

Remark 3. Let M be a three-dimensional Hopf hypersurface in M2(c). Since M is a Hopf hypersurface relation
Aξ = αξ, it holds when α = constant. At any point p ∈ M, we consider a unit vector field W ∈ D such
that AW = λW. Then, the unit vector field φW is orthogonal to W and ξ and relation AφW = νφW holds.
Therefore, at any point p ∈ M, we can consider the local orthonormal frame {W, φW, ξ} and the shape operator
satisfies the above relations.

3. Proofs of Theorems 1 and 2

Suppose that M is a real hypersurface in M2(c) whose shape operator satisfies relation (5),
which because of the relation of k-th generalized Tanaka-Webster connection (1) becomes

g((AφA + A2φ)X, Y)ξ − g((Aφ + φA)X, Y)Aξ + kη(AY)φX + η(Y)AφAX

−η(AY)φAX− kη(Y)AφX = 0, (20)

for any X ∈ D and for all Y ∈ TM.
Let N be the open subset of M such that

N = {p ∈ M : β 6= 0, in a neighborhood of p}.

The inner product of relation (20) for Y = ξ with ξ due to relation (13) implies δ = 0 and the
shape operator on the local orthonormal basis {U, φU, ξ} becomes

Aξ = αξ + βU, AU = γU + βξ and AφU = µφU. (21)

Relation (20) for X = Y = U and X = φU and Y = ξ due to (21) yields, respectively,

γ = k and µ = 0. (22)

Differentiation of γ = k with respect to φU taking into account that k is a nonzero real number
implies (φU)γ = 0. Thus, relation (18) results, because of δ = µ = 0, in κ1 = −β. Furthermore,
relations (14)–(17) due to δ = 0 and relation (22) become

αk +
c
4

= 2β2 + kκ3, (23)

κ2 = 0, (24)

(φU)α = β(α + κ3), (25)

(φU)β = αk− β2 +
c
2

. (26)

The inner product of Codazzi equation (11) for X = U and Y = ξ with U and ξ implies because
of δ = 0 and relation (21),

Uα = Uβ = ξβ = ξγ = 0. (27)

The Lie bracket of U and ξ satisfies the following two relations:

[U, ξ]β = U(ξβ)− ξ(Uβ),

[U, ξ]β = (∇Uξ −∇ξU)β.
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A combination of the two relations above taking into account relations of Lemma 1 and (27) yields

(k− κ3)[(φU)β] = 0.

Suppose that k 6= κ3, then (φU)β = 0 and relation (26) implies αk +
c
2
= β2. Differentiation of

the last one with respect to φU results, taking into account relation (25), in κ3 = −α. The Riemannian
curvature satisfies the relation

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z,

for any X, Y, Z tangent to M. Combination of the last relation with Gaussian Equation (10) for X = U,
Y = φU and Z = U due to relation (22) and relation (24), κ1 = −β, κ3 = −α and (φU)β = 0 implies
c = 0, which is a contradiction.

Therefore, on M, relation k = κ3 holds. A combination of R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −
∇[X,Y]Z with Gauss Equation (10) for X = U, Y = φU and Z = U because of relations (22) and (26)
and κ1 = −β yields

k2 = −αk− 3c
2

.

A combination of the latter with relation (23) implies

β2 + k2 = −5c
8

.

Differentiation of the above relation with respect to φU gives, due to relation (26) and k2 =

−αk− 3c
2

,

β2 + k2 = − c
2

.

If the ambient space is the complex projective space CP2 with c = 4, then the above relation leads
to a contradiction. If the ambient space is the complex hyperbolic space CH2 with c = −4, combination

of the latter relation with β2 + k2 = −5c
8

yields c = 0, which is a contradiction.
Thus, N is empty and the following proposition is proved:

Proposition 1. Every real hypersurface in M2(c) whose shape operator satisfies relation (5) is a Hopf
hypersurface.

Since M is a Hopf hypersurface, Theorem 6 and remark 3 hold. Relation (20) for X = W and for
X = φW implies, respectively,

(λ− k)(ν− α) = 0 and (ν− k)(λ− α) = 0. (28)

Combination of the above relations results in

(ν− λ)(α− k) = 0.

If λ 6= ν, then α = k and relation (λ− k)(ν− α) = 0 becomes

(λ− α)(ν− α) = 0.

If ν 6= α, then λ = α and relation (19) implies that ν is also constant. Therefore, the real
hypersurface is locally congruent to a real hypersurface of type (B). Substitution of the values of
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eigenvalues in relation λ = α leads to a contradiction. Thus, on M, relation ν = α holds. Following
similar steps to the previous case, we are led to a contradiction.

Therefore, on M, we have λ = ν and the first of relations (28) becomes

(λ− k)(λ− α) = 0.

Supposing that λ 6= k, then λ = ν = α. Thus, the real hypersurface is totally umbilical, which
is impossible since there do not exist totally umbilical real hypersurfaces in non-flat complex space
forms [18].

Thus, on M relation λ = k holds. Relation (20) for X = W and Y = φW implies, because of
λ = ν = k, λ = α. Thus, λ = ν = α and the real hypersurface is totally umbilical, which is a
contradiction and this completes the proof of Theorem 1.

Next, suppose that M is a real hypersurface in M2(c) whose shape operator satisfies relation (6),
which, because of the relation of the k-th generalized Tanaka-Webster connection (1), becomes

(Aφ− φA)AX− g(φAξ, AX)ξ + η(AX)φAξ + kφAX + g(φAξ, X)Aξ

−η(X)AφAξ − kAφX = 0, (29)

for any X ∈ TM.
Let N be the open subset of M such that

N = {p ∈ M : β 6= 0, in a neighborhood of p}.

The inner product of relation (29) for X = U with ξ implies, due to relation (13), δ = 0 and the
shape operator on the local orthonormal basis {U, φU, ξ} becomes

Aξ = αξ + βU, AU = γU + βξ and AφU = µφU. (30)

Relation (29) for X = ξ yields, taking into account relation (30), γ = k. Finally, relation (29) for
X = φU implies, due to relation (30) and the last relation,

(µ2 − 2kµ + k2) + β2 = 0.

The above relation results in β = 0, which implies that N is empty. Thus, the following proposition
is proved:

Proposition 2. Every real hypersurface in M2(c) whose shape operator satisfies relation (6) is a Hopf hypersurface.

Due to the above Proposition, Theorem 6 and Remark 3 hold. Relation (29) for X = W and for
X = φW implies, respectively,

(λ− k)(λ− ν) = 0 and (ν− k)(λ− ν) = 0.

Suppose that λ 6= ν. Then, the above relations imply λ = ν = k, which is a contradiction.
Thus, on M, relation λ = ν holds and this results in the structure tensor φ commuting with

the shape operator A, i.e., Aφ = φA and, because of Theorem 3 M , is locally congruent to a real
hypersurface of type (A), and this completes the proof of Theorem 2.
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4. Proof of Theorems 4 and 5

Suppose that M is a real hypersurface in M2(c) whose tensor field P satisfies relation (7) for
any X ∈ D and for all Y ∈ TM. Then, the latter relation becomes, because of the relation of the k-th
generalized Tanaka-Webster connection (1) and relations (3) and (4),

g(φAX, PY)ξ − η(PY)φAX− g(φAPY, X)ξ + kη(PY)φX− g(φAX, Y)Pξ

+η(Y)PφAX + g(φAY, X)Pξ − kη(Y)PφX = 0, (31)

for any X ∈ D and for all Y ∈ TM.
Let N be the open subset of M such that

N = {p ∈ M : β 6= 0, in a neighborhood of p}.

Relation (31) for Y = ξ implies, taking into account relation (13),

β{g(AX, U) + g(AφU, φX)}ξ + PφAX + β2g(φU, X)φU − kPφX = 0, (32)

for any X ∈ D.
The inner product of relation (32) for X = φU with ξ due to relation (13) yields δ = 0. Moreover,

the inner product of relation (32) for X = φU with φU, taking into account relation (13) and δ = 0,
results in

β2 + k(γ− µ) = µ(γ− µ). (33)

The inner product of relation (32) for X = U with U gives, because of relation (13) and δ = 0,

(γ− k)(γ− µ) = 0.

Suppose that γ 6= k, then the above relation implies γ = µ and relation (33) implies β = 0,
which is impossible.

Thus, relation γ = k holds and relation (33) results in

β2 + (γ− µ)2 = 0.

The latter implies β = 0, which is impossible.
Thus, N is empty and the following proposition has been proved:

Proposition 3. Every real hypersurface in M2(c) whose tensor field P satisfies relation (7) is a Hopf hypersurface.

As a result of the proposition above, Theorem 6 and remark 3 hold. Thus, relation (31) for X = W
and Y = ξ and for X = φW and Y = ξ yields, respectively,

(λ− k)(λ− ν) = 0 and (ν− k)(λ− ν) = 0.

Supposing that λ 6= ν, the above relations imply λ = ν = k, which is a contradiction.
Therefore, relation λ = ν holds and this implies that Aφ = φA. Thus, because of Theorem 3, M is

locally congruent to a real hypersurface of type (A) and this completes the proof of Theorem 4.
Next, we study three-dimensional real hypersurfaces in M2(c) whose tensor field P satisfies

relation (8). The last relation becomes, due to relation (2),

F(k)
ξ PY− PF(k)

ξ Y + φAPY− PφAY = 0, (34)
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for any Y tangent to M.
Let N be the open subset of M such that

N = {p ∈ M : β 6= 0, in a neighborhood of p}.

The inner product of relation (34) for Y = ξ implies, taking into account relation (13), β = 0,
which is impossible. Thus, N is empty and the following proposition has been proved

Proposition 4. Every real hypersurface in M2(c) whose tensor field P satisfies relation (8) is a Hopf hypersurface.

Since M is a Hopf hypersurface, Theorems 6 and 3 hold. Relation (34) for Y = W implies, due to
AW = λW and AφW = νφW,

(λ− ν)(ν + λ− 2k) = 0.

We have two cases:
Case I: Supposing that λ 6= ν, then the above relation implies ν + λ = 2k. Relation (19) implies,

due to the last one, that λ, ν are constant. Thus, M is locally congruent to a real hypersurface with
three distinct principal curvatures. Therefore, it is locally congruent to a real hypersurface of type (B).

Thus, in the case of CP2, substitution of the eigenvalues of real hypersurface of type (B) in
ν + λ = 2k implies α = −2k. In the case of CH2, substitution of the eigenvalues of real hypersurface of

type (B) in ν + λ = 2k yields α =
4
k

.
Case II: Supposing that λ = ν, then the structure tensor φ commutes with the shape operator A,

i.e., Aφ = φA and, because of Theorem 3, M is locally congruent to a real hypersurface of type (A) and
this completes the proof of Theorem 5.

As a consequence of Theorems 4 and 5, the following Corollary is obtained:

Corollary 2. A real hypersurface M in M2(c) whose tensor field P satisfies relation (7) is locally congruent to a
real hypersurface of type (A).

5. Conclusions

In this paper, we answer the question if there are three-dimensional real hypersurfaces in non-flat
complex space forms whose differential operator L(k) of a tensor field of type (1, 1) coincides with
the Lie derivative of it. First, we study the case of the tensor field being the shape operator A of
the real hypersurface. The obtained results complete the work that has been done in the case of real
hypersurfaces of dimensions greater than three in complex projective space (see [11]). In Table 3 all the
existing results and also provides open problems are summarized.

Table 3. Results on condition L̂
(k)
X A = LX A.

Condition M2(c) CPn, n ≥ 3 CHn, n ≥ 3

L̂
(k)
X A = LX A, X ∈ D does not exist does not exist open
L̂
(k)
ξ A = Lξ A type (A) type (A) open

L̂
(k)
X A = LX A, X ∈ TM does not exist does not exist open

Next, we study the above geometric condition in the case of the tensor field being P = Aφ− φA,
which is introduced here. In Table 4, we summarize the obtained results.
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Table 4. Results on condition L̂
(k)
X P = LX P.

Condition CP2 CH2

L̂
(k)
X P = LX P, X ∈ D type (A) type (A)

L̂
(k)
ξ P = Lξ P type (A) and type (A) and

type (B) with α = −2k type (B) with α =
4
k

L̂
(k)
X P = LX P, X ∈ TM type (A) type (A)
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