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Abstract

Background

Trypanosoma cruzi is the obligate intracellular parasite that causes Chagas disease. The

pathogenesis of this disease is a multifactorial complex process that involves a large num-

ber of molecules and particles, including the extracellular vesicles. The presence of EVs of

T. cruzi was first described in 1979 and, since then, research regarding these particles has

been increasing. Some of the functions described for these EVs include the increase in

heart parasitism and the immunomodulation and evasion of the host immune response.

Also, EVs may be involved in parasite adhesion to host cells and host cell invasion.

Methodology/Principal findings

EVs (exosomes) of the Pan4 strain of T. cruzi were isolated by differential centrifugation,

and measured and quantified by TEM, NTA and DLS. The effect of EVs in increasing the

parasitization of Vero cells was evaluated and the ED50 was calculated. Changes in cell

permeability induced by EVs were evaluated in Vero and HL-1 cardiomyocyte cells using

cell viability techniques such as trypan blue and MTT assays, and by confocal microscopy.

The intracellular mobilization of Ca2+ and the disruption of the actin cytoskeleton induced

by EVs over Vero cells were followed-up in time using confocal microscopy. To evaluate

the effect of EVs over the cell cycle, cell cycle analyses using flow cytometry and Western

blotting of the phosphorylated and non-phosphorylated protein of Retinoblastoma were

performed.

Conclusion/Significance

The incubation of cells with EVs of trypomastigotes of the Pan4 strain of T. cruzi induce a

number of changes in the host cells that include a change in cell permeability and higher

intracellular levels of Ca2+ that can alter the dynamics of the actin cytoskeleton and arrest
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the cell cycle at G0/G1 prior to the DNA synthesis necessary to complete mitosis. These

changes aid the invasion of host cells and augment the percentage of cell parasitization.

Author summary

Extracellular vesicles (EVs) are a diverse group of nanoparticles involved in intercellular

communication under physiological and pathological conditions. Trypanosoma cruzi, the

protozoan that causes Chagas disease, releases EVs that facilitate parasite invasion of the

host cell, immunomodulate the host response, and help the parasite to evade this response.

However, little is known about how the host cell is altered. In this work, we confirm that

EVs of tissue-culture cell-derived trypomastigotes of the Pan4 strain increase cell parasit-

ism. We also demonstrate that EVs affect cell permeability in Vero cells and cardiomyo-

cytes and raise intracellular Ca2+ levels, altering the actin filaments and arresting the cell

cycle at the G0/G1 phases. This work seeks to elucidate the way in which EVs influence

certain aspects of the cell physiology that favour the establishment of this parasite inside

the host cell.

Introduction

Trypanosoma cruzi is an intracellular protozoan parasite that causes Chagas disease or Ameri-

can trypanosomiasis. An estimated 8 million people are infected with this parasite worldwide,

with some 300,000 new cases and 15,000 deaths annually [1]. T. cruzi has a life cycle that

includes mammals and blood-sucking bugs (Hemiptera, Reduviidae) as hosts. Humans can be

infected through the insects faeces, by vertical (congenital) transmission, transmission by

blood transfusions, organ transplants, or oral contamination via tainted fluids and foods [2].

Chagas disease displays symptomatic and pathological variations among infected individu-

als [3] but is characterized by an acute as well as a chronic stage. During the chronic stage,

approximately 30% of the patients develop significant complications, which may include

megasyndromes of the gastrointestinal tract (such as megacolon or megaesophagus), neuro-

logical complications, and cardiomyopathy [4–7].

The pathogenesis of Chagas disease is a multifactorial process. The molecular invasion

mechanisms by T. cruzi trypomastigotes (T) and the associated regulatory pathways have been

intensely investigated for many years [8]. A large number of molecules have been involved and

are described as part of the secretome of T. cruzi [9]. Some of them are included in extracellu-

lar vesicles (EVs). EVs are small membrane-bound vesicles classified based on their size, bio-

genesis, and composition [10] in: a) exosome-like EVs (20–100 nm), b) ectosome-like EVs

(100–1000 nm) and c) apoptotic blebs (>1000 nm) [9,11].

The presence of EVs of T. cruzi was first described in 1979 by da Silveira et al., who demon-

strated the secretion of plasma-membrane vesicles by T. cruzi epimastigote forms [12]. These

vesicles were later detected by Gonçalves et al. (1991) in host-cell-derived trypomastigotes

[13]. Since then, numerous publications concerning EVs have appeared, demonstrating their

role in cell-to-cell communication, pathogenesis, evasion of the immune response and

diagnosis.

The cargo of EVs of T. cruzi contain proteins involved in host-parasite interactions, signal-

ling, trafficking, and membrane fusion, transporters, oxidation-reduction, etc. [9]. Small

RNAs derived from tRNAs and rRNAs have also been reported [14]. Some of the functions
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described for these EVs include the increase in heart parasitism and the immunomodulation

of the host response [15]; the evasion of innate immunity [16]; and the induction of the release

of EVs by the host blood cells that are involved in inhibiting complement-mediated lysis

[17]. Also, EVs may be involved in parasite adhesion to host cells and host-cell invasion

[15,17–20]. Recently, EVs have proved useful in evaluating disease severity as well as vaccine

and drug effectiveness against chagasic cardiomyopathy [21]. However, little is known about

the capacity of EVs to modulate the host-cell conditions. In this sense, the present work seeks

to elucidate certain effects exerted by T. cruzi EVs over the parasite establishment inside the

host cell.

Methods

Cell cultures, parasite strains, and isolation of EVs

Vero (ECACC 84113001) and 3T3 cells (CRL 1658) were cultured in Nunc cell-culture flasks

of 75 cm2 surface area (Thermo Fischer Scientific, USA) in Modified Eagle’s Medium (MEM)

(Sigma, USA) supplemented with 10% foetal bovine serum (Gibco, USA) previously inacti-

vated at 56˚C for 30 min (IFBS) plus antibiotics (penicillin 100 U/mL, streptomycin 100 μg/

mL). The cultures were maintained at 37˚C, in a moist atmosphere enriched with 5% CO2.

HL-1 cardiac muscle-cell line was grown as described above, using Claycomb medium supple-

mented with 10% IFBS, norepinephrine 0.1 mM, L-glutamine 2 mM and antibiotics (penicillin

100 U/mL, streptomycin 100 μg/mL). The cell cultures were routinely monitored for Myco-
plasma by PCR.

Vero cells were initially infected with purified metacyclic trypomastigotes of the Pan4 (Tc

Ia + Tc Id) strain of T. cruzi obtained in vitro, according to de Pablos et al. (2011) [22]. After

120 h of the intracellular development of the parasite, tissue-culture cell-derived trypomasti-

gotes (TcT) were harvested by centrifugation. Parasites were collected routinely every 120 h

from the infected cell monolayer. The culture medium was centrifuged at 3,000 xg for 5 min

and the pellet with the parasites was washed in PBS four times.

To obtain the EVs from the TcT, we followed the procedure described previously by de

Pablos et al. (2016) [18], with some modifications. Parasites were incubated for 5 h at 37˚C in

RPMI medium (Sigma, USA) buffered with 25 mM HEPES at 7.2 and supplemented with 10%

exosome-free IFBS. Afterwards, parasites were removed by centrifugation at 3,500 xg for 15

min and the supernatant was collected and centrifuged at 17,000 xg for 30 min at 4˚C. This

supernatant was filtered through a 0.22 μm pore filter (Sartorius, Germany) and ultracentri-

fuged at 100,000 xg for 16–18 h to obtain the EVs (mostly exosomes). All the steps were per-

formed in an ultracentrifuge Avanti J-301 (Beckman Coulter, USA) with a JA-30.50 Ti rotor.

The resulting pellet was washed three times in PBS in an ultracentrifuge Sorwal WX80

(Thermo Fisher Scientific, USA) with F50L-24 x 1.5 fixed-angle rotor and resuspended in

100 μL PBS.

The isolation procedure was evaluated by Transmission Electron Microscopy (TEM),

Nanoparticle Tracking Analysis (NTA) and Dynamic Light Scattering (DLS). The proteins

from the EVs were quantified using the Micro-BCA protein assay kit (Thermo Fischer Scien-

tific, USA), using bovine-serum albumin as standard. Viability of the TcT after shedding of

EVs was evaluated using the trypan blue exclusion test. After 5 h, no significant death was

detected and over 99% of the parasites were viable.

To demonstrate the specificity of the effects of the EVs from the TcT of T. cruzi and to eval-

uate the effect of the EVs of trypomastigotes of the Pan4 strain over the infection of cells with

T. cruzi from a different DTU and another intracellular microorganism, we performed the iso-

lation of EVs from Crithidia mellificae and the 3T3 cell line (a fibroblast cell line) and evaluated
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PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007163 February 21, 2019 3 / 26

https://doi.org/10.1371/journal.pntd.0007163


the effect of these EVs over the parasitization percentages of cells infected with T. cruzi Pan4.

We also employed T. cruzi 4162 strain (Tc IV) and tachyzoites of Toxoplasma gondii RH for

the infection of cells previously incubated with EVs of T. cruzi Pan4.

For the isolation of EVs from choanomastigotes of Crithidia mellificae, 1x107 parasites were

incubated for 24 h at 28˚C in LIT medium. Nunc cell-culture flasks of 75 cm2 surface area

(Thermo Fischer Scientific, USA) with confluent monolayers of 3T3 cells were washed 3 times

with MEM without IFBS and the cells were incubated for 24 h at 37˚C with MEM (Sigma,

USA). After 24 h of incubation, the culture media were collected and centrifuged at 3,500 xg

for 15 min and the obtained supernatants were handled the same way as for the isolation of

EVs from TcT. DLS and the quantification of the protein concentration of these samples using

the Micro-BCA protein assay kit (Thermo Fischer Scientific, USA) were performed as

described above.

The purification of metacyclic trypomastigotes of T. cruzi 4162 strain was also performed

according to de Pablos et al. (2011) [22] and TcT were obtained after the infection of Vero

cells as described. Tachyzoites of Toxoplasma gondii RH strain were maintained in our labora-

tory by serial passage, in semiconfluent monolayers of Vero cells and cultured in the same con-

ditions as T. cruzi. The egressed parasites were harvested, centrifuged at 5,000 xg for 10 min,

washed three times in PBS and added to the cell cultures in a ratio 5:1 (parasites:cell).

Transmission electron microscopy

To confirm the presence of EVs in our samples, we resuspended an aliquot of the pellet in 0.1

M Tris HCl (pH 7.2) and 5 μL each sample were adsorbed directly onto Formvar/carbon-

coated grids and stained with 2% (vol/vol) uranyl acetate, for the direct observation in a TEM,

LIBRA 120 PLUS Carl Zeiss microscope. The diameter of the EVs was measured by ImageJ

1.41 software.

Nanoparticle Tracking Analysis (NTA) and Dynamic Light Scattering

(DLS)

Distribution, size, and concentration of T. cruzi EVs from trypomastigotes was determined by

measuring the rate of Brownian motion according to the particle size, using a Nanosight

NS300 (Malvern Instruments, UK). This system was equipped with a sCMOS camera and a

blue 488 nm laser beam. Samples were diluted 1/100 just before the analysis, in low-binding

Eppendorf tubes with PBS and the measurements were performed at 25˚C. For data acquisi-

tion and information processing, we used the NTA software 3.2 Dev Build 3.2.16. The particle

movement was analysed by NTA software with the camera level at 16, slider shutter at 1200,

and slider gain at 146.

To confirm the results obtained by NTA, we also performed Dynamic Light Scattering

(DLS) of the EVs of trypomastigotes, choanomastigotes and cells using a Zetasizer nano ZN90

(Malvern Instruments, UK). Samples were prepared the same way as described for the NTA

and the measurements were also performed at 25˚C. For data acquisition and information pro-

cessing, the Zetasizer Ver. 7.11 software was employed.

Western blotting of EVs of T. cruzi Pan4 to evaluate the presence of

cruzipain, trans-sialidase (TS) and MASPs (SP)

The presence of some molecules without orthologues in other organism and involved in the

invasion process of T. cruzi was evaluated in EVs by Western blotting. Briefly, 300 μg of EVs

isolated from TcT of the Pan4 strain were resolved by SDS-PAGE, transferred to a

EVs of T. cruzi trypomastigotes: Physiological changes in non-parasitized cells
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nitrocellulose membrane and blocked overnight with 5% non-fat milk in PBS-0.1% Tween 20.

Primary antibodies anti-cruzipain (1:3,000), anti-TS (mAb 39) (1:1,000), and anti-MASPs (sig-

nal peptide, SP) (1:1,000) [16] were incubated overnight at 4˚C. The membranes were washed

with PBS-0.1% Tween 20 and incubated for 1 h with goat anti-mouse IgGs conjugated with

peroxidase (1:1,000) (Dako Agilent Pathology Solutions, USA) in the case of TS and MASPs

and goat anti-rabbit IgGs conjugated with peroxidase (1:2,000) in the case of cruzipain (Dako

Agilent Pathology Solutions, USA). The reaction was visualized using Clarity ECL Western

substrate (BioRad, Spain) in a ChemiDoc Imaging system (BioRad, Spain).

Optimization of EV-cell incubation conditions and invasion assays

Cultures of 5x104 Vero cells were grown in MEM supplemented with 10% IFBS over round

13-mm coverslips (Marienfeld, Germany), in Nunc 24-well plates (Thermo Fischer Scientific,

USA) for 24 h at 37˚C and 5% CO2. After this time, coverslips with cells were washed 3 times

in MEM and incubated for 2 h with 0.1, 0.25, 0.5, 1 and 2.5 μg/mL EVs in MEM. After the

incubation, cells were infected with T. cruzi trypomastigotes of the Pan4 strain, at a parasite:

host cell ratio of 5:1. After 4 h, parasites were removed and the cells were washed and main-

tained in culture for 24 h. The cultures were fixed with methanol and stained with Giemsa.

Parasitization percentages and parasitization indexes (number of amastigotes per cell) were

calculated after counting at least 400 cells.

The invasion assays were also performed using T. cruzi EVs submitted to thermal and

chemical treatments. For the thermal treatments, EVs were incubated in a water bath at 50˚C,

70˚C, and 90˚C for 30 min. For the chemical treatments, EVs were incubated with the proteo-

lytic enzymes trypsin (0.5 mg/mL) and proteinase K (0.5 mg/mL) for 1 h at 37˚C and with

sodium periodate (10 mg/mL) for 20 h at room temperature, in the dark, to reduce the glyco-

conjugates surrounding the EVs. After the treatments, EVs were washed twice in PBS by ultra-

centrifugation at 100,000 xg for 1 h, incubated with the Vero cell cultures for 2 h. The protocol

for cell infection was followed as described above.

The specificity of the effects of the EVs isolated from trypomastigotes of T. cruzi Pan4 and

the effect of EVs from TcT of the Pan4 strain over the invasion of another T. cruzi strain and

intracellular parasite were evaluated. For these experiments, cultures of 5x104 Vero cells were

grown the same way as described for the invasion assays using the Pan4 strain. The cells were

incubated for 2 h at 37˚C with 0.38 μg/mL EVs from Crithidia mellificae or 3T3 cells. After this

time, the cells were infected with T. cruzi trypomastigotes of T. cruzi Pan4 (parasite:host cell

ratio of 5:1) and after 4 h of interaction, the parasites were removed. The cells were washed

and maintained in culture for 24 h, when they were fixed with methanol and stained with

Giemsa. Parasitization percentages and indexes were calculated.

The effect of EVs of the Pan4 strain of T. cruzi over the infection of cells with trypomasti-

gotes of T. cruzi 4162 strain (Tc IV) and tachyzoites of T. gondii RH were performed. In this

case, cells were incubated for 2 h with EVs of T. cruzi Pan4 and then infected with trypomasti-

gotes of T. cruzi 4162 strain or tachyzoites of T. gondii RH in a parasite:cell ratio of 5:1. After 4

h, the parasites were removed, the cells were washed and maintained in culture for 24 h. Para-

sitization percentages and indexes were calculated after the evaluation of the cells by Giemsa

stain.

Changes in cell permeability by T. cruzi EVs

To assess the potential capacity of EVs to permeabilize cells, we cultured 5 x 104 Vero cells in

12-well plates as described above. The potential changes in permeability during or after the

EVs-cell interaction was evaluated using the Aspergillus giganteus ribotoxin α-sarcin, a ~17
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kDa protein that inhibits protein biosynthesis when the cells are previously permeabilized

[23–25]. Briefly, after 24 h of culture, cells were washed 3 times with MEM and incubated with

0.38 μg/mL EVs in MEM for 2 h. Cells were washed once and 20 μM of α-sarcin (Sigma, USA)

was added for 4 h. After this time, cells were washed 4 times and subsequently incubated with

MEM supplemented with 10% IFCS. In a parallel assay, the EVs and α-sarcin were added

simultaneously to the cell culture. Viability of the cells was determined using the trypan blue

exclusion test as well as the MTT viability assay (Sigma, USA). Cell viability was also deter-

mined after the incubation of the cell cultures with EVs, α-sarcin and cells without any treat-

ment as negative controls.

The HL-1 cell line was derived from atrial cardiomyocytes is a cell line that maintains a

series of cardiac characteristics such as morphological, biochemical, and electrophysiological

properties in vitro [26]. On round 13-mm coverslips, 5x104 cells were grown in Claycomb

medium supplemented with 10% IFBS, norepinephrine 0.1 mM, L-glutamine 2 mM and anti-

biotics. After 24 h of culture, cells were washed and incubated with 0.38 μg/mL EVs in MEM

for 2 h. Afterwards, coverslips were washed 3 times and fixed with a solution of 2% parafor-

maldehyde and 1% glutaraldehyde for 1 h, washed 3 times in PBS and blocked with a solution

containing 1% BSA and 0.3 M glycine in PBS, for 1 h. Cells were washed 3 times and incubated

with an anti-β2-adrenergic receptor primary antibody (1:500) (Thermo Fisher Scientific, USA)

for 1 h. Afterwards, cells were washed 3 times and incubated in the dark, with a goat anti-rab-

bit IgG antibody conjugated with Alexa Fluor 647 (1:500) (Thermo Fisher Scientific, USA) for

1 h, at 37˚C. Finally, samples were washed 4 times, mounted in Vectashield mounting medium

with DAPI (Vector Laboratories, USA) and imaged with a Leica DM5500B inverted micro-

scope (Leica Microsystems, Germany).

HL-1 cells cultured and fixed as described above but treated with a solution of NP-40 in 10

mM citric acid (pH 6) were employed as positive control of permeabilization of the assay.

Intracellular mobilization of Ca2+ induced by T. cruzi EVs

Vero cells were grown overnight in MEM without phenol red plus IFBS and in MEM without

phenol red plus IFBS and 2.5 μM EDTA, on μ-slide ibidi multichamber dishes. Cells were

washed 3 times in MEM without phenol red and incubated at 37˚C for 20 min with Fluo4-AM

(Thermo-Fisher, USA) in 1) MEM without phenol red, 2) MEM without phenol red plus

2.5 μM EDTA and 3) a culture medium similar to MEM but without Ca2+ and Mg2+. Fluo-4 is

an indicator that exhibits greater fluorescence upon binding intracellular free Ca2+. It presents

an AM grouping (acetoxymethyl ester) that, when internalized, is cleaved by intracellular

esterases and released to bind to cytoplasmic calcium [20].

After 20 min of incubation of the cells with Fluo-4 AM, EVs of TcT of T. cruzi Pan4 were

added to the cells and followed-up in time until 25 min of interaction. Basal controls of fluores-

cence in cells before the application of the stimulus with EVs were included.

Images were taken every 5 min with a confocal microscope Nikon A1 (Nikon Instruments,

The Netherlands) equipped with 10x, 20x multi-immersion, 40x oil, 60x oil, and 60x water

objectives and a system of cell incubation at 37˚C with enriched atmosphere with 5% CO2.

The Fluo4 probe was excited at 494–506 nm and light emission was detected at 516 nm. The

fluorescence intensity was analysed and normalized with reference to the basal fluorescence

using NIS Elements Software (Nikon Instruments, The Netherlands). The analysis of images

was performed using Fiji software (Fiji is Just Image J). Controls of cells incubated with

A23187 (a calcium ionophore) and 3-isobutyl-1-methylxantine (IBMX) (a non-specific inhibi-

tor of cAMP and cGMP phosphodiesterase that induces calcium release from intracellular

stores) were included.
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Effects of the EVs of T. cruzi over the actin cytoskeleton integrity

Cultures of 5x104 Vero cells were seeded over round 13-mm coverslips (as described above)

and allowed to attach to the coverslips overnight. The cells were washed 3 times with MEM

and incubated in MEM during different times with 0.38 μg/mL EVs in MEM. After this incu-

bation step, coverslips were washed 3 times and fixed with cold acetone (Scharlab, Spain) for

15 min at -20˚C. After the fixation step, coverslips were washed 3 times with PBS and permea-

bilized in a solution of 0.1% Triton X-100 (Sigma, USA) for 10 min. The cells were washed 3

times and blocked with 1% BSA and 0.3 M glycine in PBS for 1 h in PBS. After this time, the

cells were washed and incubated with 5 μg/mL of a vimentin polyclonal antibody (1:300)

(Thermo Fischer Scientific, USA) for 1 h, washed 4 times and incubated in the dark, with a

goat anti-rabbit IgG antibody conjugated with Alexa Fluor 647 (1:500) (Thermo Fisher, USA)

for 1 h, at 37˚C. The coverslips were washed 4 times and stained with a solution of phalloidin,

fluorescein isothiocyanate labelled (Sigma, USA) for 30 min. Samples were finally mounted in

Vectashield mounting medium with DAPI (Vector Laboratories, USA) and imaged in a Leica

DM5500B inverted microscope (Leica Microsystems, Germany). Images were captured 15

min, 30 min, 120 min, and 24 h after EVs-cell contact. Cells not treated with EVs and cells

incubated with the final supernatant from the EVs purification medium were employed as

controls.

Cell cycle analysis: Flow cytometry and Western blotting of the

phosphorylated and non-phosphorylated protein of Retinoblastoma (pRb)

Vero cells (1x105) were synchronized according to the method described previously by Osuna

et al. (1984) [27]. Cells were seeded in 6-well plates with a culture medium with 25 mM thymi-

dine for 12 h, when the medium was replaced with MEM + 10% IFCS. Afterwards, cells were

washed with MEM and 1 h later, EVs were added directly to each well. One hour after this EV-

cell contact, cells were washed and maintained for 2 and 8 h. Afterwards, the culture medium

of the corresponding wells was removed, the cells were washed with PBS, fixed with 70% cold

ethanol and incubated with a solution (0.2 M Na2HPO4, 0.1 M citric acid, pH 7.8) for 15 min

at 37˚C. Cells were then centrifuged, washed with PBS and resuspended in 250 mL of a solu-

tion of propidium iodide (40 mg/mL) and RNAse (100 mg/mL) for 30 min at 37˚C in the

dark, according to Carrasco et al. (2014) [28]. Finally, the samples were analysed in a FACS

Calibur (BD Biosciences, San Jose, CA, USA) flow cytometer. The results were analysed with

FlowJo software (v 7.6.5, Tree Star, Inc.).

Phosphorylation of the protein Rb after the incubation of cells with EVs was evaluated by

immunoblotting. Briefly, 1x105 cells were grown in 6-well plates for 24 h. Cells were washed

with MEM and incubated with EVs for 5, 10, 30 and 60 min. After this session, the cells were

washed with PBS and lysed in RIPA lysis buffer with a protease inhibitor cocktail (Roche, Swit-

zerland) for 15 min. Cells were harvested with a cell scraper and centrifuged at 14,000 xg for

10 min at 4˚C. Supernatants were transferred to new Eppendorf tubes and stored at -20˚C.

The protein from cell lysates was quantified using the Bradford reagent (Sigma, USA) and

90 μg of protein from cell lysates were resolved by SDS-PAGE, transferred to a nitrocellulose

membrane and blocked overnight with 5% non-fat milk in PBS-0.1% Tween 20. Rb (1:2,000)

and phospho-Rb (1:1,000) (Cytoskeleton, USA) primary antibodies (Sigma, USA) were incu-

bated overnight at 4˚C. Tubulin antibody (1:5,000) (Cytoskeleton, USA) was used as the load-

ing control. The membranes were washed with PBS-0.1% Tween 20 and incubated for 1 h with

goat anti-mouse IgGs conjugated with peroxidase (1:1,000) (Dako Agilent Pathology Solu-

tions, USA) in the case of Rb, goat anti-rabbit IgGs conjugated with peroxidase (1:2,000) in the

case of phospho-Rb (Dako Agilent Pathology Solutions, USA), and rabbit anti-sheep IgGs
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conjugated with peroxidase (1:5,000) (Dako Agilent Pathology Solutions, USA) in the case of

tubulin. The reaction was also visualized using Clarity ECL Western substrate (BioRad, Spain)

in a ChemiDoc Imaging system (BioRad, Spain).

Statistical analysis

Quantification values represent the means of two or more independent experiments, each per-

formed in triplicate. Means and standard deviations of the EVs size (NTA), percentage of

infected cells (invasion assays) and percentage of live cells (permeabilization assays) were cal-

culated. One-factor ANOVAs were performed to detect significant differences between cells

treated with EVs and control cells in the case of permeabilization and cell-cycle assays. Multi-

ple post hoc comparisons were performed using the Tukey-Kramer test on GraphPad Prism 5

Software (USA). Values with p<0.0001 were considered statistically significant (���).

Results

Transmission electron microscopy, NTA and DLS of EVs of T. cruzi
After the incubation of 1x107 trypomastigotes of the Pan4 strain for 5 h at 37˚C in the culture

medium for the release of EVs, 12 μg of total protein of EVs were obtained. The isolation of

the EVs by the ultracentrifugation protocol described was evaluated by TEM, NTA and DLS

and the presence of surface molecules of T. cruzi in these samples was confirmed by Western

blotting (S1 Fig).

Most of the particles visualized by negative staining under TEM were of 30–100 nm size

(S1A Fig). Analyses by NTA revealed a majority of EVs with a size of 70.7 ± 7.3 nm (S1C Fig)

and a concentration of approximately 5x1010 ± 3.9x109 particles/mL. In the DLS analyses, two

populations of EVs with different sizes were observed for TcTs, choanomastigotes and 3T3

cells (S1D, S1E and S1F Fig); EVs of T. cruzi showed a population of 23.05 ± 6.96 nm and a

population of 55.74 ± 13.97 nm (S1D Fig). Western blotting confirmed the presence of cruzi-

pain, trans-sialidase and MASPs (SP) in the EVs of T. cruzi Pan4 (S1B Fig).

Invasion assays

To evaluate the effect of EVs of TcT from the Pan4 strain in host-cell invasion, we tested differ-

ent doses measured in total μg/mL of protein. After 2 h of incubation of the cells with the

EVs, the infection with T was performed in a ratio 5:1 (T:cell) for 4 h. Counts were performed

24 h later, as described in the Methods section. The results indicate that the parasitism

increased the most when the cells were treated with 0.5 μg/mL of EVs. These values in percent-

age of parasitization (88.88 ± 3.73) significantly differed with respect to the other doses ana-

lysed (S2A Fig). From these results, the Effective Dose 50 (ED50) for subsequent trials was set

as 0.38 μg/mL.

Regarding the effect of EVs on cells over time (the increase in cell parasitization), these

were treated with 0.38 μg/mL of total protein of EVs for 2 h. After the cells were washed three

times in medium without serum, they were infected at different time points after the treatment

with EVs at a T:cell ratio 5:1, as described above. The results (S2B Fig) show that the difference

between the percentage of parasitization of the cells treated with the EVs vs. the percentage of

parasitization of non-treated control cells were statistically significant up to 8 h after the treat-

ment. The effects were more evident at 2 and 4 h, when the increase in the percentages was

higher compared to untreated cultures. This effect was not appreciated when the cells were

infected 24 h after the treatment with the EVs. The parasitization indexes (number of parasites

per cell) calculated also differed. For example, in the case of the cells incubated with EVs for 2
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h was 2.78 ± 0.55, an index that was twice the parasitization index of the control infected cells

without the previous treatment (1.33 ± 0.18).

A series of experiments were performed to study whether the thermal treatment, the treat-

ment with proteolytic enzymes or the reduction of the glycoconjugates surrounding the EVs

alters their ability to induce higher levels of parasitization in the host cells with which they

interact. Results are shown in S2C and S2D Fig. The thermal treatment of the EVs at 50˚C,

70˚C and 90˚C annuled the action of the EVs on the cells, so the increase in the percentage of

parasitization was not observed. The enzymatic treatment with the two proteases employed

and the treatment with sodium periodate (for the reduction in the content of carbohydrates of

the EVs) also inhibited the capacity of increasing the cell parasitization by trypomastigotes of

T. cruzi in the cultures.

Finally, Fig 1A, 1B and 1C show the effect of the incubation of cells with EVs of C. mellificae
and 3T3 cells prior to the infection with T. cruzi Pan 4 and the increase in the infection of cells

when these are incubated with EVs isolated from trypomastigotes of the Pan4 strain and then

infected with TcT of the 4162 strain or tachyzoites of T. gondii RH. In Fig 1A is possible to

observe that the incubation of cells with EVs from another source different than T. cruzi did

not boosted an increase in the percentage of infected cells as it happens when the cells are in

contact with EVs of T. cruzi Pan4 prior to the infection. When the cells were incubated with

EVs of C. mellificae and 3T3 cells, the percentage of infected cells obtained were 29.3 ± 5.0 and

29.8 ± 4.3, respectively. These results did not differ significantly from the results obtained in

the case of the cells infected only with TcT of T. cruzi Pan4 without the previous treatment

with the EVs (36.5 ± 3.8). In these experiments, the parasitization indexes obtained were

1.31 ± 0.08 in the cells incubated with EVs of C. mellificae, 1.79 ± 0.28 in the cells incubated

with EVs of the 3T3 cell line and 1.54 ± 0.31 in the cells infected with TcT without the prior

incubation with EVs, but it rose to 2.60 ± 0.14 when the cells were previously treated with EVs

of T. cruzi Pan4. This Figure also shows that this increase in the parasitization percentage and

index of cells is independent of the strain of T. cruzi employed to infect the cells, as we proved

that the infection with TcT of a strain that is classified as Tc IV almost doubled the percentage

of infected cells not incubated previously with the EVs (53.5 ± 6.0 vs 32 ± 2.6; parasitization

indexes: 2.10 ± 0.14 vs 1.39 ± 0.21, respectively).

In the case of the cells treated with EVs of T. cruzi Pan4 prior to the infection with tachy-

zoites of T. gondii RH, in Fig 1B is possible to observe a slight, non-significant increase in the

percentage of infected cells in those incubated with EVs of T. cruzi prior to the infection with

tachyzoites, when compared to the cells infected with the parasite without the previous incuba-

tion with the EVs of T. cruzi (56.50 ± 4.80 vs. 46.50 ± 4.93).

EVs of T. cruzi induce cell permeabilization of Vero and HL-1 cells

A toxin of Aspergillus giganteus, α-sarcin, constitutes a ribotoxin with a molecular weight of

16.8 kDa that acts at the ribosomal level, inhibiting the protein synthesis. This toxin has been

used to determine the potential permeabilization induced in the cells on the entry of certain

viruses [29]. The cells were treated in two ways: i) they were simultaneously incubated with

EVs of T. cruzi Pan4 and α-sarcin or ii) they were incubated with EVs of T. cruzi Pan4 for 2 h

and then with α-sarcin for 4 h. After 24 h of the treatment, the trypan blue exclusion assay was

performed. Vero cells treated with EVs and α-sarcin registered mortality percentages of

76.10 ± 6.81 (simultaneous incubation) and 82.20 ± 10.17 (separated incubation of EVs and

the toxin). The control cells incubated only with the toxin or with the EVs showed mortality

percentages of 16.90 ± 4.10 and 17.23 ± 7.73, respectively, while the percentage of viability of

the untreated control culture cells was 15.56 ± 7.67. These results were confirmed using the
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MTT cell-viability assay, as shown in Fig 2A. In this case, the percentage of viability of the cells

treated with EVs and the toxin was 37.36 ± 15.39, while the same percentages in the cells

treated only with the toxin or the EVs alone were 90.10 ± 7.03 and 95.30 ± 3.30, respectively.

The percentage of viability in the untreated control cell cultures was 99,0 ± 0.1. Fig 2B shows

the appearance of the different cell monolayers preincubated with EVs and treated with α-sar-

cin and the different control cells at 24 h of the treatment.

The beta-2 adrenergic receptor (β2 adrenoreceptor), also known as ADRB2, is a cell mem-

brane-spanning beta-adrenergic receptor that binds epinephrine or adrenaline, whose signal-

ling, via a downstream L-type calcium channel interaction, mediates physiological responses

such as smooth-muscle relaxation and bronchodilation [30]. Using an antibody that recog-

nizes an epitope between the amino acids 340–413 (which corresponds to the intracytoplasmic

domain of the receptor), we demonstrated that the EVs of T. cruzi can alter and permeabilize

the cell membrane, exposing the epitope to the antibody, as shown in Fig 2C. In the case of the

untreated cells, this effect was not detected. An image similar to that of the cells treated with

the EVs resulted in the cultures that, prior to the incubation with the antibody, were permeabi-

lized with a solution containing NP-40.

EVs of T. cruzi induce the intracellular mobilization of Ca2+

The time-course measurements of the intracellular calcium levels of Vero cells treated with the

EVs of T. cruzi Pan4 are shown in Fig 3. Results show that, when the cells were incubated in a

culture medium with Ca2+ and Mg2+, the fluorescence levels increased up to 3.83 ± 0.62 times

the initial values as soon as 10 minutes of interaction. Moreover, when the interaction was per-

formed in a culture medium depleted of Ca2+ and Mg2+, there was also a progressive increase

in the fluorescence levels. For example, at 10 min of the interaction, there was a 1.40 ± 0.39-

fold increase in the fluorescence levels of the cells, which could correspond to a mobilization

of the ions from their intracellular deposits to the cytoplasm.

In the case of the cells incubated in MEM with EDTA, a calcium chelator, there was also a

1.69 ± 0.01 increase in the fluorescence levels at 10 minutes of incubation, when the

Fig 1. Invasion assays in Vero cells pre-incubated with EVs. The specificity of the effects of EVs of T. cruzi in increasing the percentages of

parasitization is shown in A. The percentages of Vero cell parasitization after the incubation with EVs of C. mellificae and 3T3 cells and the

latter infection with trypomastigotes of T. cruzi Pan4 were also calculated. In this case, the incubation of cells with EVs from another source

different than T. cruzi did not generate an increase in the percentage of infected cells or in the parasitization indexes, as happens when cells are

in contact with EVs of T. cruzi prior to the infection. In these experiments, the parasitization indexes obtained were 1.31 ± 0.08 in the case of the

cells incubated with EVs of C. mellificae, 1.79 ± 0.28 in the case of the cells incubated with EVs of the 3T3 cell line and 1.54 ± 0.31 in the case of

the cells infected with TcT without the incubation with EVs, but it rose to 2.60 ± 0.14 when the cells were previously incubated with EVs of T.

cruzi. Moreover, the percentage of Vero cell parasitization after the incubation with EVs of T. cruzi Pan4 and the latter infection with

trypomastigotes of T. cruzi 4162 was evaluated. This Fig also shows that these increases in the percentages of parasitization and the

parasitization indexes of the cells don´t depend on the strain of T. cruzi employed to infect the cells, as the percentage of infected cells with the

strain 4162 almost doubled the percentage of infected cells not incubated previously with the EVs (parasitization indexes: 2.10 ± 0.14 vs

1.39 ± 0.21, respectively). Vero cells were also incubated for 2 h with EVs of T. cruzi Pan4 prior to the infection with tachyzoites of T. gondii RH

(B). Results show a slight, non significant increase in the percentage of parasitization in the case of the cells incubated with EVs of T. cruzi prior

to the infection with the tachyzoites, when compared to the cells only infected with the parasite (56.50 ± 4.80 vs. 46.50 ± 4.93); a) Giemsa stain

of Vero cells incubated with EVs of T. cruzi Pan4 and infected with tachyzoites of T. gondii RH; b) Giemsa stain of Vero cells infected with

tachyzoites of T. gondii RH (low magnification fields, 20x). Images that illustrate the effect of T. cruzi EVs in increasing the percentage of

parasitization of Vero cells by Giemsa stain are shown in C. Vero cells were incubated with EVs of C. mellificae (a), EVs of 3T3 cells (b) and EVs

of TcT of T. cruzi Pan4 (c, d) and then infected with TcT of T. cruzi Pan4 (a, b, d) of TcT of T. cruzi 4162 strain (c). Cells incubated only with

EVs of C. mellificae (e), EVs of 3T3 cells (f), EVs of TcT of T. cruzi Pan4 (g) and control cells (without incubation) (h) were also included. Low

magnification fields (20x) were taken in order to show the overall effect of the different treatments on the cell culture. A magnification field of

40x is included for the incubation of cells with EVs of C. mellificae and then infected with trypomastigotes of the Pan4 strain (i), cells incubated

with EVs of TcT of T. cruzi Pan4 and then infected with trypomastigotes of the Pan4 strain (j), cells infected only with TcT of T. cruzi Pan4 (k)

and cells only incubated with EVs of TcT of T. cruzi Pan4 (l). Black arrows illustrate some Vero cells infected with T. cruzi. The values are the

mean percentages ± SEM. Tukey-Kramer test, p<0.0001 (���); Ns: non-significant differences.

https://doi.org/10.1371/journal.pntd.0007163.g001
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Fig 2. Cell permeabilization of Vero and HL-1 cells by EVs of T. cruzi Pan4. A cell-viability assay to evaluate the entry of α-sarcin in Vero cells

after the incubation with EVs of T. cruzi using MTT was performed (A). Cells were incubated with T. cruzi EVs for 2 h, washed, and then

incubated with the toxin α-sarcin for 4 h. The MTT cell viability assay was performed at 24 h of the incubation with EVs, following the

manufacturer’s instructions. Cells treated only with α-sarcin, EVs and untreated cells were used as controls. The cell monolayers incubated with

EVs, α-sarcin or both are shown in B; a) control Vero cells; b) Vero cells treated with EVs for 2 h; c) cells treated with α-sarcin (20 μM) for 4 h; d)

cells treated with EVs for 2 h and then treated with α-sarcin (20 μM) for 4 h. The cell cultures were examined at 24 h of the treatment. Low

magnification fields were taken in order to show the overall effect of the different treatments on the cell culture. Permeabilization was also

evaluated in HL-1 mouse cardiomyocyte cells (C); a) HL-1 mouse cardiomyocyte cells incubated with T. cruzi EVs for 2 h, fixed in a solution of

paraformaldehyde/glutaraldehyde for 1 h and incubated with the anti-β2-adrenergic receptor antibody (antiβ2R); b) HL-1 mouse cardiomyocyte

cells not incubated with the EVs, fixed with paraformaldehyde/glutaraldehyde for 1 h and incubated with the anti-β2R (control); c) HL-1 mouse

cardiomyocyte cells not incubated with the EVs, fixed with paraformaldehyde/glutaraldehyde for 1 h and permeabilized in a solution of NP-40 in
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fluorescence intensity started to decrease. At this point, it is possible to observe a different pat-

tern of distribution of the fluorescence, with the appearance of a more granulated cytoplasm.

The calcium ionophore A23187 was used as the control for the assays of the cells incubated

in the medium containing Ca2+ and Mg2+ and prompted a 64.80-fold rise in the fluorescence

levels at 25 min. The cAMP phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX)

was used as the control for the induction of ion output from the intracellular Ca2+ deposits to

the cytoplasm and prompted a 2.37-fold rise in the fluorescence levels at 10 min.

EVs of T. cruzi disrupt the actin cytoskeleton

The analysis of the effect of the EVs of T. cruzi Pan4 over the actin cytoskeleton is shown in Fig

4A, 4B and 4C. The disorganization of the actin filaments was visible in the cells showing

greater globular actin (GA) from 15 min up to 120 min after the treatment with EVs (Fig 4A,

4B and 4C). On the other hand, vimentin appeared to withdraw from the areas in the cyto-

plasm where the actin is disorganized and concentrated in the parts of the cytoplasm where

GA is less patent. The morphology of the treated cells appeared to be altered and filopodia (F)

were visible, giving a dendritic aspect to the cell. These effects were reversible 24 h after the

treatment; both the cytoskeleton images and the morphology of the cells incubated with EVs

were similar to that of the control cells not treated with EVs.

EVs of T. cruzi arrest of the cell cycle in phase G0/G1

The influence of the EVs of T. cruzi Pan4 on Vero cells cycle was analysed with Vero cells pre-

viously synchronized in the S phase and treated as described in Methods. The changes in the

cell cycle were analysed by flow cytometry 2 and 8 h after the addition of the EVs. Fig 5A

shows the percentage of cells in the different phases of the cell cycle. At 8 h after the addition

of the EVs, the percentage of cells increased at phases G0/G1 and decreased at phase S.

Fig 5B and 5C show the results of the levels of the protein of retinoblastoma (pRb) in its

phosphorylated and non-phosphorilated states, in the cells treated with EVs of T. cruzi Pan4

and the untreated control cells. The protein expression increased for the phosphorylated pRb

from the first minutes of the interaction of the EVs with the cells, reaching the maximum

phosphorylated state at 15 min of the interaction and declining to values similar to those of the

control cells at 60 min of treatment.

Discussion

The cell-invasion process of T. cruzi has been widely studied. Numerous mechanisms are

known to be involved in preparing the cell to induce the endocytosis of trypomastigotes into

non-phagocytic cells [31–36] and among the natural agents that induce massive entry and cel-

lular infection are the EVs secreted by trypomastigotes.

EVs from trypomastigotes of the Pan4 strain were first isolated in 2016, when de Pablos

et al. confirmed that the C-terminal region of MASPs proteins is present in the EVs secreted

by the trypomastigotes derived from tissue-culture cells [18]. Following the methodology

described above using differential centrifugation and then Nanoparticle Tracking analysis, we

obtained an homogeneous population of EVs under our experimental conditions. Also, the

yield was higher than that of other authors using others strains or forms of the parasite. Trocoli

10 mM citric acid (pH 6) prior to the incubation with the antiβ2R; d) HL-1 mouse cardiomyocyte cells incubated with T. cruzi EVs for 2 h, fixed

with paraformaldehyde/glutaraldehyde for 1 h, permeabilized in a solution of NP-40 in 10 mM citric acid (pH 6) and incubated with the

(antiβ2R) (control). The values are the mean percentages ± SEM. Tukey-Kramer test, p<0.0001 (���); Ns: non-significant differences.

https://doi.org/10.1371/journal.pntd.0007163.g002
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Fig 3. Analyses of the intracellular Ca2+ mobilization in Vero cells incubated with EVs of T. cruzi. Cells were incubated with Fluo4-AM, washed, and then

incubated with EVs of T. cruzi, with examination every 5 min using confocal microscopy. When the cells were incubated in a culture medium with Ca2+ and Mg2+,

the fluorescence levels progressively increased up to 3.83 ± 0.62 times the initial values as soon as 10 minutes of the interaction (red line). At the same time point,

when the cells were incubated with EVs in a culture medium depleted of Ca2+, there was an increase of 1.40 ± 0.39 times in the fluorescence levels when compared to

the time 0 (blue line). Also, when the cells were incubated with 2.5 μM EDTA, a calcium chelator, there was a 1.69 ± 0.01 increase in the fluorescence levels at 10 min

of incubation, when the fluorescence intensity started to decrease and it was possible to observe a more granulated pattern of fluorescence in the cytoplasm (black

line). The calcium ionophore A23187 and the cAMP phosphodiesterase inhibitor IBMX were employed as the positive controls of the experiment. A23187 prompted

a 64.80-fold rise in the fluorescence levels at 25 min and IBMX prompted a 2.37-fold rise in the fluorescence levels at 10 min of incubation.

https://doi.org/10.1371/journal.pntd.0007163.g003
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Torrecilhas et al. (2009) employed 5 μg of protein from 1x105 trypomastigotes of the Y strain

[15]. Garcia Silva et al. (2014) have reported a protein yield of the vesicular fraction of 1.2 μg

per 1x1010 epimastigotes from the DM28c strain [14]. In our case, we found 12 μg of protein of

EVs after the incubation of 1x107 trypomastigotes of the Pan4 strain for 5 h at 37˚C in the cul-

ture medium for the release of EVs.

To track the time course of the effect of EVs in increasing cell parasitism, we performed

infections at different times after incubating the cells with EVs and we found that the cells are

still susceptible to increased parasitism at least for 8 h after the treatment (p<0.0001). How-

ever, 24 h after the incubation with the EVs, the percentage of infected cells in the treated and

non-treated cultures were similar (S2B Fig). On the other hand, we observed that increasing

amounts of EVs can increase the percentage of infected cells with sigmoidal kinetics, reaching

a maximum of 89% infected cells (0.5 μg/mL) and ED50 of 0.38 μg/mL, a dose that was

employed in subsequent experiments. In 2014, Garcia Silva et al. observed that the treatment

with small amounts of EVs (160 ng) can prevent cells from appearing oversaturated in a tRNA-
Glu-derived 50 halves visualization analysis by FISH [14]. In the same study, the authors deter-

mined that 30 min after the treatment of cells with EVs, a diffuse fluorescent cytoplasmic

pattern appeared, which becomes granular after 2 h of treatment. Regarding the interaction

and posterior infection of the cells after the treatment with the EVs, Cestari et al. (2012) pre-

incubated Vero cells for 30 min before adding the trypomastigotes of the Sylvio X10/6, DTU I

strain [17]. This reflects that the incubation conditions with respect to the amount of EVs used

and the incubation time vary among the different research groups, and it should be taken into

account that the conditions selected by a researcher do not necessarily correspond to the con-

ditions of a natural infection [14].

It has been demonstrated in vitro (in non-phagocytic cells and monocytes), as well as in
vivo, that EVs of T. cruzi increase the number of infected cells [15,17,37–38]. Under our exper-

imental conditions, cells pretreated with EVs of T. cruzi Pan4 registered infection percentages

of over 3.5-fold higher than for cells infected without the prior incubation with the EVs. The

parasitization index (number of parasite per cell) was also two-fold that of the parasitization

index of the control infected cells without prior treatment. In 2009, Trocolli Torrecilhas et al.

reported that T. cruzi trypomastigotes invade 5-fold more susceptible cells when these were

preincubated with purified parasite EVs [15]. Cestari et al. (2012) also demonstrated that

THP-1 derived plasma membrane vesicles (ectosomes) could simultaneously induce an

increase in Vero cell invasion [17]. This invasion was dose dependent, non-specific for parasite

strain or eukaryotic cell line, and dependent on the parasite infective stage. We also proved

that the increase in parasitization is specific to T. cruzi trypomastigotes but non-specific for

the parasite strain and that the incubation of cells with EVs from another trypanosomatid spe-

cies or those from eukaryotic cells didn´t increased the percentages of parasitization.

The interaction EVs-cell and the latter activity of EVs appears to depend on their binding

through lectins to the plasma membrane and on a presumably enzymatic protein activity,

Fig 4. Disruption of the actin cytoskeleton and formation of filopodia in Vero cells incubated with EVs of T. cruzi.
Vero cells were incubated with EVs of T. cruzi Pan4 during different time points (A). The disruption of the actin

filaments is observed since 15 minutes of treatment of the cells with EVs, the formation of filopofia is more evident at

30 min of treatment (�); a) Vero cells incubated with EVs of T. cruzi Pan4 for 15 min; b) Vero cells incubated with EVs

of T. cruzi Pan4 for 30 min. Vero cells incubated with the supernatant of the EVs purification medium (c) and Vero

cells without the EVs treatment (d) were employed as controls of the experiment. A magnification is shown in B; a)

Vero cells incubated with EVs of T. cruzi Pan4 for 15 min; b) Vero cells incubated with EVs of T. cruzi Pan4 for 30

min. In this magnification, white arrows indicate the disorganization of actin filaments and F the formation of

filopodia in the cells. The disruption of the actin cytoskeleton in Vero cells incubated with EVs of T. cruzi for 120 min

is shown in C; a) and b) Vero cells incubated with EVs of T. cruzi Pan4 for 120 min and c) Vero cells without the

incubation with EVs.

https://doi.org/10.1371/journal.pntd.0007163.g004
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given that the thermal and chemical treatments of EVs with trypsin, proteinase K, and sodium

periodate drastically reduced parasitism of the cells with which they interacted. During the

adhesion and invasion process of T to the host cells, a number of glycosylated molecules are

expressed on the surface of the parasite. Examples include mucins, trans-sialidases, MASPs

and the gp85 family of proteins [35]. Glycosylated proteins have also been detected in EVs by

proteomic analyses [9,39] some with important activities and biological significance, such as

trans-sialidases (TS/SAPA, TC85, gp82, gp90, CRP) [40], cruzipain [41], gp63, MASPs [42],

and other types of mucins [43]. As these proteins are located on the surface of the EVs, they

can bind specifically to the proteins in the plasma membrane and this would explain why the

reduction of the carbohydrates of the EVs after the sodium periodate treatment can affect the

binding of EVs to the surface of the cells. On the other hand, some of these glycoproteins have

enzymatic activities essential for the interaction of trypomastigotes during the invasion process

and maybe in the interaction of EVs with the plasma membrane.

It has been reported that the infection with some type of viruses lead to a permeabilization

mechanism where the plasma membrane allows the entry of some high molecular weight mol-

ecules such as α-sarcin (16.8 KDa) [44–46], toxin that lacks a membrane receptor, unlike other

toxins that affect the protein synthesis and are internalized via endocytosis [45,47]. The same

effect was observed incubating cells with EVs of trypomastigotes of T. cruzi, as our results

demonstrate that they can permeabilize Vero and HL-1 cell lines. Cell counts with trypan blue

24 h after the preincubation of cells with EVs and subsequent incubation with α-sarcin regis-

tered as much as 76.10% mortality. The control cells incubated only with α-sarcin, only with

EVs, and without either showed percentages of cell death of 16.90%, 17.23%, and 15.56%,

respectively. The percentages of mortality (100 - % of viability in Fig 2) of the cells using MTT

were 62.64% in the case of the cells previously incubated with EVs and 9.90% in cells incubated

only with the toxin. In 1990, Castanys et al. have reported that infective metacyclic forms of T.

cruzi secrete a glycoprotein involved in cell permeabilization that enabled the entrance of mol-

ecules such as α-sarcin [24].

Permeabilization was also evaluated in HL-1 cardiac muscle cells with confocal microscopy,

using an antibody directed to an epitope of the β2-adrenergic receptor located in the intracyto-

plasmic region of the receptor anchoring. In this experiment, fluorescence was detected in the

cytoplasm of cells previously incubated with EVs and in cells not treated with EVs but permea-

bilized with the detergent NP-40. This permeabilization may be the result of changes in the cell

membrane that allow the direct entry of the antibodies into the cytoplasm or by a transient dis-

organization of the membrane, capable of exposing the antigens present in inside the cell, with

consequent exposure to the immune system. The presence of autoantibodies against β-adren-

ergic receptors in the serum of chagasic patients has been reported [48–51], although authors

have related such emergence to the recognition of exposed parts in the membrane due to cross

reactivity to ribosomal acidic proteins P0 of the parasite [52]. A study related to the recogni-

tion of epitopes of the β-adrenergic receptors inserted into the inner side of the membrane by

autoantibodies would be necessary to confirm the possible hypothesis that the permeabiliza-

tion of the cardiac cells by the parasitic EVs lead to the exposure of these receptors to the

immune system and then elicit the production of autoantibodies.

Fig 5. Arrest of the cell cycle by EVs of T. cruzi Pan4. Vero cells were incubated with EVs of T. cruzi Pan4 for 1 h, and then washed and incubated for 2 and 8 h,

when the flow cytometric analyses were performed (A). At 8 h it is possible to observe an increase in the percentage of cells at phases G0/G1 and a decrease in the

percentage of cells at phase S. The phosphorylation of the pRb in Vero cells incubated with EVs of T. cruzi Pan4 (B) and the expression of the non-phosphorilated pRb

in Vero cells incubated with EVs of T. cruzi Pan4 were also evaluated (C). The values are the mean percentages ± SEM. Tukey-Kramer test, p<0.0001 (���); Ns: non-

significant differences.

https://doi.org/10.1371/journal.pntd.0007163.g005
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The recognition and the invasion processes of the trypomastigotes to the host cells involve

molecules over the surface of both the trypomastigote and the host cell. A ligand-receptor rec-

ognition occurs and generates in both a series of events that raises the intracellular Ca2+ levels

due to the mobilization of the ions from the endoplasmic reticulum and the mitochondria

[53–57]. This boost in calcium levels is also responsible for higher cAMP levels [58], facilitating

the release of EVs and their later fusion with the plasma membrane [59]. The treatment of

Vero cells with EVs of T. cruzi Pan4 raised cytoplasmic Ca2+ levels and to determine the kinet-

ics and origin of these Ca2+ ions, we treated cells with EVs and studied the result every 5 min

under confocal microscopy. From 5 min of the treatment, fluorescence intensified in both cul-

ture media (with and without calcium). This implies that the contact of Vero cells with EVs

raises cytoplasmic Ca2+ levels that could come both from the intracellular deposits of calcium

and the extracellular medium. The fluorescence pattern detected resembles the one in control

cells treated with the xanthine IBMX for the Ca2+ mobilization from the intracellular deposits

[60] or when the cells were incubated with the ionophore A23187 [61], a compound that

allows Ca2+ to enter cells from the culture medium.

It has been demonstrated in different types of eukaryotic cells that the intracellular levels of

calcium induce an asymmetric distribution of phospholipids in the plasma membrane by the

activation of the enzymes scramblase and floppase. Then, phosphatidylserine and phosphati-

dylethanolamine are exposed in the outer side of the membrane and contribute to the activa-

tion of Ca2+-dependent proteases, followed by the release of EVs [62]. The exposure of anionic

phospholipids to EVs strengthens the fusogenic properties of these vesicles, which could be a

prerequisite for the release of the EV content. This could mean that the higher intracellular cal-

cium levels and the changes in the distribution of phospholipids could explain the permeabili-

zation induced in the host cell after the treatment with the EVs of T. cruzi, allowing the

entrance of a toxin of ~17 kDa such as α-sarcin. Moreover, increases in intracellular Ca2+

could trigger a greater release of EVs from the cells exposed to the parasite [3,17,63], as more

calcium prompts a strong response of EV release in other cell lines [64–65].

Calcium ions also contribute to the reorganization of the cytoskeleton through the activa-

tion of cytoplasmic proteins such as calpain and gelsolin. These proteins cut the actin cytoskel-

eton protein network, allowing membrane budding and removing capping proteins at the end

of the actin filaments [66–67]. A disruption in actin filaments and vimentin at the time of the

invasion of cells with trypomastigotes has been demonstrated [68–69] using drugs like cyto-

chalasin B and latrunculin, which affect the cytoskeletal structure and functions and, therefore,

the entrance of the parasite in non-phagocytic cells [32–33,70]. It has been mentioned that the

increase in intracellular Ca2+ leads to a rapid and transient reorganization of host-cell microfil-

aments, including the disassembly of the actin cytoskeleton, which is important for the entry

of T into the host cells [71–73]. Studying the gene-expression changes caused by microvesicles

of T. cruzi epimastigotes of the DM28c strain in mammalian host cells, Garcia Silva et al.

(2014) observed an induction of a broad response, including the modification of the host-cell

cytoskeleton and the extracellular matrix [74]. In fact, the regulation of actin cytoskeleton is

one of the pathways identified as being affected by EV treatment in the profile of transcriptome

changes [74]. Noting increased fluorescence in cells incubated with EVs in the presence of

Fluo-4AM, we suspected that these changes in the Ca2+ mobilization induced by EVs could

directly affect the actin cytoskeleton, as happens when the parasite begins to invade the host

cell. Our results showed a clear disruption of host-cell actin from 15 min after the incubation

with EVs, an effect that remains at 120 min but not 24 h after the treatment with EVs. Ferreira

et al. (2006) indicated that different strains of Mt of T. cruzi can invade host cells through both

actin cytoskeleton-dependent and independent routes, by engaging different surface molecules

for attachment while triggering different signal-transduction pathways [34]. For example,
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host-cell invasion by the strain CL Mt, mediated mainly by the surface molecule gp82, is asso-

ciated with F-actin disassembly whereas the G strain is gp35/50-mediated invasion by strain G

depends on target-cell actin cytoskeleton [34,75].

The analysis of the cell cycle events revealed how at 8 h after the addition of the EVs the per-

centage of cells in each of the cycle phases significantly differed when compared to control val-

ues, showing an arrest of the cell cycle in the G0/G1 phases. Previous observations regarding

the in vitro life cycle of T. cruzi in cultured cells demonstrated a low cell-division rate among

cells infected with the parasite [76–78]. In this regard, Ca2+ may be responsible for the cell

cycle changes, as they act as second messengers in the control of the cell cycle. Thus, Ca2+/cal-

modulin activate the complex CDK4/cyclin D1, which regulates the protein of Retinoblastoma

(pRb1), the main inhibitor of the DNA synthesis [79]. From our results, it is evident that the

phosphorylation of the protein Rb takes place from the first few min of the EVs/cell interac-

tion. Here, phosphorylated pRb increased rapidly, while in the cells without the treatment with

EVs no such change was detected (Fig 5B and 5C). However, at 60 min of treatment with EVs,

these increases in phosphorylation returned to normal levels. This apparently arrested synthe-

sis, preventing the cells from entering phase S of the cycle. Moreover, a series of “calcium sen-

sors” present in the cell cytoplasm, such as the stromal interaction molecule 1 (STIM1), is

involved in the progression of mitosis. Cells lacking this protein may arrest the cells in phases

G0/G1, as occurred in our experiments. This implies that this protein is required for the pro-

gression of the cells in the phase of DNA synthesis or phase S [80]. The arrest of cells in the

G0/G1 phases exerted by EVs of T. cruzi Pan4 was possibly caused by increased expression of

cyclin-dependent kinase inhibitor p21 and the subsequent decrease of phosphorylated protein

(pRb) [81]. The higher intracellular calcium levels were also involved in cell-cycle events. In

fact, the indirect role of high levels of calcium in cell arrest in these phases has been examined

by Wu et al. (2006) [82], who employed capsaicin and blocked the cell cycle in the previous

phase of DNA synthesis. This effect was reversed with BAPTA, an intracellular Ca
2+

chelator.

Together with the rises of intracellular calcium levels, and because of these high levels, these

researchers have recently questioned the role of actin networks nucleated by the complex

Arp2/3 in the signalling events necessary for the progression of the cell cycle in non-trans-

formed cells [82–83] and demonstrated that Arp2/3 is not able to act as a sensor for the start of

the phase S in the cell cycle per se, such as the actin filaments. Previous studies have shown

that the use of cytochalasin B at very low doses detains the cell cycle in phases G0/G1 as in our

experiments with EVs while the inhibitors that act in the polymerization of actin stopped the

cell cycle before the cytokinesis [84–86].

In conclusion, it has been shown that the incubation of cells with EVs of TcT of T. cruzi
Pan4 strain induce a number of changes in the host cells that include 1) a change in cell perme-

ability, and 2) higher intracellular levels of Ca2+ that can alter the dynamics of the actin cyto-

skeleton and arrest the cell cycle at G0/G1 prior to the DNA synthesis necessary to complete

mitosis. In the end, these changes induced by the EVs aid their invasion of host cells, augment

the percentage of cell parasitization, and possibly cause some characteristic manifestations of

Chagas disease.

Supporting information

S1 Fig. Evaluation of the isolation procedure of EVs of T. cruzi. TEM images show the vari-

ety of sizes of EVs of TcT of T. cruzi Pan4 strain (A). The presence of cruzipain, trans-sialidase

and MASPs (SP) in these EVs was also evaluated by Western blotting (B); a) detection of cruzi-

pain in EVs of tripomastigotes of T. cruzi Pan4 (1) and in a lysate of trypomastigotes of T.

cruzi Pan4 (2); b) detection of trans-sialidase (mAb 39) in a lysate of trypomastigotes of T.
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cruzi Pan4 (1) and in EVs of tripomastigotes of T. cruzi Pan4 (2); c) detection of MASPs (SP)

in EVs of tripomastigotes of T. cruzi Pan4. NTA (C) and DLS (D) of EVs of T. cruzi Pan 4

strain, DLS of EVs of Crithidia mellificae (E) and DLS of EVs of the 3T3 cell line (F) are also

included.

(TIF)

S2 Fig. Optimization of EV-cell incubation conditions and invasion assays. Vero cell parasit-

ization after the incubation with different doses of EVs of T. cruzi Pan4 was evaluated and the

maximum increase in this percentage was achieved when 0.50 μg/mL of EVs were employed

(A). The ED50 was calculated and employed in the incubation of the cells with EVs. These cells

were subsequently infected with trypomastigotes at different time points and the parasitization

percentages were calculated (B). Pictures a) and b) from this Figure show Vero cells incubated

with EVs prior to the infection with TcT of the Pan4 strain and stained with Giemsa. Picture c)

corresponds to the control cells infected with TcT without the previous treatment of cells with

EVs. Additionally, the percentages of parasitization of Vero cells incubated with T. cruzi EVs

submitted to thermal (C) and chemical treatments (D) were also calculated. The thermal treat-

ment appeared to “inactivate” the EVs, as no increase in the percentage of parasitization was

detected. In the case of the cells incubated with the chemically-treated EVs, the percentage of

parasitization was also lower compared to the percentage of the cells incubated with EVs with-

out treatment. Tukey test, p<0.0001 (���); Ns: non-significant differences.

(TIF)
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