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Abstract: Progress in nanotechnology has enabled us to open many new fronts in biomedical research
by exploiting the peculiar properties of materials at the nanoscale. The thermal sensitivity of certain
materials is a highly valuable property because it can be exploited in many promising applications,
such as thermo-sensitive drug or gene delivery systems, thermotherapy, thermal biosensors, imaging,
and diagnosis. This review focuses on recent advances in thermo-sensitive nanomaterials of interest
in biomedical applications. We provide an overview of the different kinds of thermoresponsive
nanomaterials, discussing their potential and the physical mechanisms behind their thermal response.
We thoroughly review their applications in biomedicine and finally discuss the current challenges
and future perspectives of thermal therapies.
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1. Introduction

The synthesis of materials at the nanoscale and their use in biomedical applications is now
increasingly directed towards providing function for the design of precise engineered systems [1,2].
In the last two decades, the nanomedicine field has been experiencing an unprecedented expansion
in the development of novel nanomaterials designed for improving the diagnosis, monitoring,
and treatment of several diseases [3–6]. Among the disparities in the diversified approaches to
nanomaterial, environmental stimuli such as temperature, pH, ionic strength, electric, or magnetic
field, and so forth have drawn greater awareness to novel ‘smart’ materials fabrication [7,8].
Smart nanomaterials represent one of the most interesting and exciting classes of materials for
use as therapeutic platforms in various biomedical fields [9,10]. Specifically, thermo-sensitive
nanomaterials stand out for their ability to target pre-selected sites in response to a change in
the temperature. This makes them strong candidates to achieve minimally invasive therapeutic
interventions [11,12]. The conduction of heat is one of the fundamental energy transport mechanisms
in nature. Thermal properties of nanomaterials depend on many factors that are usually considered
insignificant in normal materials. In particular, things such as surface properties, interfacial structures,
and quantum size or classical size effects all determine thermal transport in nanomaterials in a
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significant way, leading to carrier scatterings and localization that are otherwise absent or are not
obviously evident in normal materials [13,14].

The literature is vast, with exponential growth in the number of articles demonstrating advances
in synthesis, characterization, and application of different thermo-sensitive nanoparticles (NPs) [15,16].
Among the wide variety of NPs reported in the literature, magnetic NPs (MNPs), superparamagnetic
iron oxide NPs (SPIONs), gold NPs (AuNPs), liposomes, and thermo-sensitive polymers-based NPs
such as micelles and nanogels have gained an increased relevance when biomedical applications
are envisioned.

Thermo-sensitive nanocarriers are very promising materials for drug delivery systems, analytical
and diagnostic devices, and thermal therapy. Nanodelivery vehicles possess distinct advantages over
conventional drug delivery methods [17]. Firstly, due to their small size, NPs are able to bypass
biological barriers, such as cell membranes and the blood-brain barrier, allowing greater concentrations
of therapeutics to be delivered. Secondly, nanocarriers can be functionalized with active targeting
agents to allow selective delivery, minimize side effects, and limit the wastage of drugs. Thirdly,
when the nanocarriers reach maximum acculturation in the required sites, the carried drugs can initiate
triggers for non-invasive delivery of therapeutic agents [18]. Temperature is a typical example of
non-invasive “triggers” at the diseased site. With greater understanding of the difference between
normal and pathological tissues and new advances in material fabrication, there is a highly promising
use of thermo-sensitive nanocarriers for controlled drug delivery in the future [19].

The field of thermal therapy has been growing tenaciously in the last few decades. The application
of heat to living tissues has produced a host of well-documented genetic, cellular, and physiological
responses that are being researched intensively for medical applications, particularly for diagnosis
and treatment of solid cancerous tumors using image guidance. It is thought that tumor tissue is
more hypoxic, more acidic, and nutrient-deficient, as compared to normal tissues [20]. These traits
may render some cancer cells more sensitive to heat. However, the overexpression of heat shock
proteins has also been observed in some cancers (e.g., breast, endometrial, ovarian cancer, etc.) [21].
These proteins may then make cancer cells more resistant to heat-based therapies than expected, so the
effects of thermal therapy are not general in all types of cancer [22]. Traditional hyperthermia has
been used in combination with chemotherapy and/or radiation therapy for the eradication of a variety
of cancer types in several clinical trials [23,24]. In traditional hyperthermia, the region of the body
containing the disease is heated to ~40–45 ◦C, several degrees above physiological temperature (37 ◦C).
Sustained temperatures above 43 ◦C cause necrosis of cancer cells, which are more heat sensitive
than normal tissue. A major problem with the conventional hyperthermia methods is the difficulty
of heating a local tumor region (the target) to the desired temperature without significant damage
to the surrounding normal tissue. High temperatures above 43 ◦C can kill a large number of tumor
cells, but normal tissues are also severely damaged under these conventional hyperthermia treatments.
Therefore, the development of novel hyperthermia systems that are able to discriminate between the
target and the surrounding normal tissues is required. Nanotechnology is expected to have great
potential to revolutionize current hyperthermia methods [25]. The controlled application of thermal
energy to living tissues has proven to be a great challenge, leading to the development of many
sophisticated pre-clinical and clinical devices and treatment techniques.

In this review, we describe the recent advances in nanomaterials that respond to temperature,
which is an easy external stimulus to apply. Specifically, we focused on the synthesis, properties and
functionalization of thermoresponsive nanomaterials (i.e., NPs) and their main biomedical related
applications; drug delivery, thermal therapy, and diagnostic devices. This includes consideration of
mechanisms of thermal response. We thoroughly review their applications in current biomedicine
challenges and future perspectives.
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2. Thermosensitive Nanomaterials: Synthesis, Properties and Functionalization

Thermosensitive nanomaterials constitute a particular kind of smart material with special importance
in biomedical applications. In most cases, it is the polymeric nature of the nanomaterial that drives its
thermoresponsive character, although liposomes have also been reported to be thermosensitive [19].
The most frequently used thermoresponsive polymers are hydrogels. The thermoresponsive character
of the polymeric constituent is either based on a critical solution behavior or a shape memory
characteristic [26]. In this review, we will focus on the discussion of the first study case.

2.1. Physical Mechanism: Critical Solution Behavior

Polymers of interest in this review exhibit a critical solution behavior as a result of temperature
dependent polymer-polymer and polymer-solvent interactions. At a critical solution temperature (CST)
the polymer solution undergoes separation from one phase to two phases in a transition associated with
a volumetric change in the polymer between extended and compacted coil states [27,28]. This change
is associated with the temperature dependent solvation of the polymer and the inversion of the free
energy of the polymer-solvent system [26]. The fact that many physical properties dramatically change
at the CST is behind the vast number of biomedical applications of these materials. For convenience,
one can distinguish between negative and positive thermosensitive polymers [27].

Negative thermosensitive polymers have a lower critical solution temperature (LCST). Below the
LCST the polymer swells in the solution. Here, the enthalpy term related to the hydrogen bonding
between the polymer and the water molecules dominates, and therefore, is responsible for the polymer
swelling. Above the LCST, the polymer contracts. Here, the entropy term related to hydrophobic
interactions dominates, and therefore, is responsible for the polymer contraction. The LCST is an
entropically driven effect. A model example of a polymer with LCST is a polyalkylacrylamide,
specifically Poly(N-isopropyl acrylamide) (PNIPAm) in water. Below the LCST, PNIPAm chains are
soluble in water because of the existence of hydrogen bonds between the polymer (amide groups) and
water molecules. Above the LCST, the hydrogen bonds between water and the PNIPAm fail and water
molecules are expelled from the polymer network. This particular polymer has an LCST of 32 ◦C.
However, it can be tuned incorporating hydrophilic or hydrophobic moieties in the polymer structure.
An early paper by Feil et al. [29] demonstrated that the LCST of PNIPAm can be controlled by simply
varying the monomer composition. By and large, when PNIPAm is copolymerized with hydrophilic
monomers (e.g., acrylamide or acrylic acid), the LCST increases [30,31]. However, when PNIPAm is
copolymerized with hydrophobic monomers (e.g., N-tert-butyl acrylamide), the LCST decreases [32,33].
Many other examples on the change in LCST for a wide range of modified copolymers can be
found in Table 1 in the paper by Liu et al. [34]. An increase of the LCST, when copolymerized
with acrylamide, up to 45 ◦C has been reported when 18% of acrylamide is incorporated in the polymer.
In contrast, a decrease of the LCST, when copolymerized with N-tert-butyl acrylamide, down to
10 ◦C has been reported when 40% of N-tert-butyl acrylamide is incorporated in the polymer [35].
Chen et al. [31] fabricated poly (N-isopropylacrylamide-co-acrylamide) with different feed ratios by
radiation polymerization using Co60 γ-rays. In their paper, they describe a larger than 10 ◦C change
when increasing the molar percentage of the copolymer from 3 to 16.

The introduction of amino groups to PNIPAm chain raises the LCST and slows down the phase
transition [36].

Within the family of PNIPAm polymers one can find many others such as: poly(N,N-
diethylacrylamide) (LCST ≈ 26–35 ◦C), poly(N-CL)-1-hydroxymethyl) propylmethacrylamide
(LCST ≈ 30◦C) and poly(dimethylamino ethylmethacrylate) (LCST ≈ 50 ◦C) [27].

There are other LCST polymers of interest today [37], for instance Poly(N-vinylcaprolactam),
poly(N-vinlycaprolactam) (LCST ≈ 25–35 ◦C), poly[2-(dimethylamino)ethyl methacrylate]
(LCST ≈ 50 ◦C) and poly(ethylene glycol), which is also called poly(ethylene oxide) (PEO)
(LCST ≈ 85 ◦C). Note that PNIPAm presents a lower biocompatibility and larger hysteresis in its
phase transition if compared to other polymers such as oligo(ethylene glycol) methacrylate [38].
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Positive thermosensitive polymers have an upper critical solution temperature (UCST). Below the
UCST, the polymer contracts in the solution while above the UCST the polymer swells. The UCST
is an enthalpically driven effect. Typical examples of polymers with UCST are poly(acrylic acid),
polyacrylamide or poly(acrylamide-co-butylmethacrylate) [39]. They are most commonly prepared
from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (Pluronics, Tetronics,
Poloxamer).

Undoubtedly, LCST polymers are of far more interest in biomedical applications than their
UCST counterparts.

2.2. Synthesis of Thermoresponsive Polymeric Particles

Polymeric particles can be prepared starting from monomers, polymers, or macrogels [40].
Most frequently, the synthesis starts from vinyl monomers that can be nonionic, anionic or cationic.
Another possibility to synthesize polymeric particles is to start from polymer solutions that are emulsified
and later crosslinked, or mixed with oppositely charged polymer solutions to form colloidal polyelectrolyte
complexes. Finally, microgels can also be fabricated by mechanically grinding a macrogel.

In terms of the particle formation mechanism, Pelton and Hoare [40] distinguish three different
approaches: Homogeneous nucleation, emulsification, and complexation (Scheme 1).
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2.2.1. Homogeneous Nucleation

In this case, the polymer particles are obtained by starting from a homogeneous solution that at
least contains one soluble monomer and a cross-linker. For the successful formation of the particles, it is
necessary that the resulting polymer is insoluble in the carrier. In this category, we distinguish three
different types of polymerization: (i) Emulsion polymerization: the monomer is present as a suspension
of large droplets and surfactants play the role of stabilizing the primary particles reducing the size of
the grown particle [41]. (ii) Surfactant-free emulsion polymerization (or «precipitation polymerization»)
is similar to the emulsion polymerization route without the use of surfactants. The approach was
inspired by the surfactant-free emulsion polymerization of styrene [42]. (iii) Microgel formation from
dilute polymer solutions: the starting point is a polymer solution. For example, this approach has been
demonstrated to be successful with PNIPAm [43] and diblock copolymers [44]. Another possibility is
to mix polymer solutions having different charges to form complexes.
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The use of more than one monomer provides further functionality to the polymer particles
allowing, for instance, the fabrication of core-shell structures with monomers having different reactivity.
Another possibility is to use emulsion polymerization in a two-step process, provided that nucleation
occurs only in the first step and in the second step the first-stage particles are used as seeds for
the second-stage.

A typical example of emulsion polymerization is that of McPhee et al. [41]. They prepared aqueous
dispersions of PNIPAm by dispersing a copolymerization of NIPAM with methylenebis-acrylamide in
the presence of a surfactant (sodium dodecyl sulfate).

A classic example of surfactant-free emulsion polymerization is that of Pelton and
Chibante [45] They prepared microgels by free radical polymerization of NIPAM, acrylamide,
and N,N′-methylenebisacrylamide. N,N′-methylenebisacrylamide was added to give cross-links and
acrylamide was used to increase the LCST of the copolymers. The initiator was potassium persulfate.

An example of microgel formation from dilute polymer solutions is that of Kuckling et al. [43].
They used a photo-crosslinking technique to fabricate nanogels with a temperature responsive core and
pH responsive arms. They used graft terpolymers synthesized from NIPAAm, poly(2-vinylpyridine)
macromonomers and chromophore monomer based on dimethylmaleimide.

2.2.2. Emulsification

Emulsification involves the dispersion and then polymerization of hydrophilic monomers,
normally in aqueous solution, in a nonaqueous continuous phase. The emulsifiers employed
typically provide the droplets of a steric stabilization mechanism and are different from those of
the more conventional oil-in-water emulsion polymerization processes. This is because the electrostatic
stabilization mechanism is not effective [46]. Briefly, in the first stage, a pregel solution is emulsified
(typically in oil). The pregel can be either a monomer or a polymer solution. Next, the droplets
are polymerized and/or crosslinked into the polymeric particle. This kind of polymerization is also
typically called «inverse emulsion polymerization» or «miniemulsion polymerization». In some cases,
the droplets suffer a homogeneous polymerization while in other cases new particles nucleate within
the emulsion droplet. A typical example is that of Landfester et al. [47]. They prepared microgels made
of polyacrylic acid using cyclohexane (as the oil phase) and water in the dispersed monomer phase.

Chen et al. [48] studied the kinetic behavior of acrylamide in an emulsification process.
The polymerization rate was proportional to the monomer concentration. Increasing the content
of the crosslinking agent lead to more monodisperse particles.

The Vincent group [49] used an emulsification approach to fabricate micron-sized microgels
on poly-N-isopropylacrylamide. In the synthesis, NIPAm, N-N′-methylenebisacrylamide and the
initiator were dissolved in water droplets and later dispersed in heptane (where NIPAm and
N-N′-methylenebisacrylamide are weakly soluble). The stabilizer used was a poly(hydroxy stearic
acid)-poly(ethylene oxide)-poly(hydroxy stearic acid) block copolymer.

Another more recent approach is the use of microfluidic devices [50]. Using microfluidic devices
the monodispersity of the particles is significantly improved.

2.2.3. Complexation

In this case, two dilute and water-soluble polymers are first mixed to form colloidal polyelectrolyte
complexes. In these particular syntheses, one of the polymers must be clearly in excess with respect to
the other. An example is described in Feng et al. [51]. They report an investigation into polyelectrolyte
complex formation between poly(vinyl amine) and carboxymethyl cellulose. Interestingly, the mean
particle size of the complexes was rather insensitive to the mixing ratio. Despite being rather simple,
there are two important drawbacks of this method: Resulting microgels are typically polydisperse and
in order to be colloidally stable soluble polymer must be in excess. This excess polymer is difficult
to separate.
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Undoubtedly, the most frequently used method is emulsion polymerization. However, minor
modifications allow us to incorporate additional functionalities to the polymeric structure. For instance,
seeded polymerization can be used to form a skin layer and introduce shape anisotropy. The pioneering
papers describing the synthesis of PNIPAm microgels used precipitation polymerization reactions [45].
More recently, interest has focused on the fabrication of composite multifunctional microgels such
as core-shell microgel particles [52,53]. In a conventional drug delivery application, the mechanism
behind the de-swelling process plays a key role. In this context, the chemical composition of the
shell does have an important influence. Since the shell is typically involved in the initial stages of the
de-swelling process, its chemical composition does have an important influence. Gan and Lyon [54]
demonstrated that the core-shell architecture strongly affects the kinetics of the phase transition.
Hollow microgels can be easily obtained starting with core-shell structures and simply dissolving the
core [52].

2.3. Hybrid Particles: Incorporation of Magnetic Field and/or Infrared Radiation Sensitivity

Thermoresponsive nanomaterials of interest today are those that respond to other stimuli as well
as to temperature. With this in mind, additional stimuli responsive characteristics (e.g., magnetic)
must be coupled to the inherent thermal response [19]. Two of particular interest concerns the response
to magnetic fields and near infrared radiation. In order for the nanomaterials to exhibit such a
response, either (magnetic) iron oxide or gold is respectively incorporated in the form of NPs to the
polymer matrix.

The most common routes to incorporate magnetic and infrared functionality in hybrid particles are
as follows [26,40]:“(i) Mixing NPs and polymer particles in suspension. The point here is that the NPs
must adhere to the polymer and be small enough to penetrate the polymer (see ref [55] for magnetic
NPs and [56] for AuNPs). (ii) Polymer first methods. In this case, thermoresponsive polymeric
particles are prepared first to serve as a seed in the precipitation of NPs (see Reference [57] for a
general description, Reference [58] for magnetic NPs, and Reference [59] for AuNPs) (iii) Nanoparticle
first methods. Magnetic iron oxide/AuNPs are fabricated first, followed by the polymerization of
thermoresponsive polymers onto the surface of the NPs (see Reference [60] for magnetic NPs and
Reference [61] for AuNPs).”

2.3.1. Magnetic Field: Iron Oxides

Magnetic moieties do not necessarily need to be iron oxides. Pure metals such as Fe, Co, and Ni
are magnetically superior. However, Fe oxidizes easily in the presence of oxygen and water, Ni is
toxic to the body and Co typically introduces coercivity in the magnetic response (i.e., the material
remains magnetized in the absence of magnetic fields). As a result, iron oxides (such as magnetite
and maghemite) are typically preferred because of their low toxicity and stronger magnetic response
compared to other metal oxides.

Either a bottom-up or top-down approach can be used for the synthesis of magnetic NPs [62].
The bottom-up approach is, by far, the most frequently used and among these, the co-precipitation
method is the preferred choice to fabricate magnetic NPs. Essentially, ferric and ferrous salts are
mixed together in an alkaline media under inert atmosphere. The size, shape and composition of the
resulting particles strongly depends on the Fe2+/Fe3+ ratio, temperature and salts used. As magnetite
particles are prone to oxidize, they are typically treated with iron (III) nitrate for their transformation
to maghemite, which is now chemically stable.

Other approaches to fabricate magnetic NPs are as follows: Thermal decomposition of
organometallic compounds in organic solvents [63], microemulsion approaches [64], and hydrothermal
techniques [65].

Magnetic NPs (below 150 nm for magnetite [66]) are superparamagnetic and therefore, tend to
aggregate easily unless properly stabilized. For this, the NPs are typically charged, functionalized with
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citrate ions or covered with surfactants or polymers to provide the repulsion necessary to overcome
interactive attraction forces such as van der Waals and magnetostatics.

2.3.2. Infrared Radiation: Gold

A recent review describes the different routes to fabricate thermoresponsive gold-based NPs [67].
They classify the thermoresponsive NPs on the basis of the disposition of AuNPs in the polymer
matrix as: hybrid microspheres, hybrid microgel rings, core-shell hybrid microgels, core-shell-hybrid
microgels, and yolk-shell hybrid microgels.

Thermoresponsive NPs made of Au are typically fabricated using the following two approaches.
One possibility is to use precipitation polymerization at a temperature where the polymer is
contracted [68,69]. Another possibility is to use inverse emulsion polymerization techniques in
water/oil emulsions [70].

Currently, «polymer first» methods are clearly preferred in the fabrication of hybrid Au
microgels. Some examples are as follows: Raula et al. [71] described a synthesis route for
the surface functionalization of Au NPs with PNIPAm. The protocol involved the use of
reversible-addition-fragmentation chain-transfer (RAFT) polymerization. Wang et al. [72] described
the synthesis of PNIPAm + Au composites. The procedure consisted first of the fabrication of
PNIPAm gels containing Au-reactive functional groups (thiols) within the polymer side chains.
In a second step, the AuNPs are formed in the PNIPAm template by complexation of Au3+ ions
and thiol groups. More recent approaches are those of Suzuki et al. [73] and Shi et al. [74].
Suzuki et al. [73] prepared cationic polymeric particles using aqueous free radical precipitation
polymerization from N-isopropylacrylamide and 3-(methacrylamino) propyl-trimethylammonium
chloride as monomers. The fabricated microgel particles served as templates to synthesize Au
nanoparticles in the cationic sites. Shi et al. [74] synthesized poly(NIPAM-co-methacrylic acid)
microgels by surfactant-free emulsion polymerization. Then, thiol-functionalized microgels were
obtained by the 1-ethyl-3-(3-(dimethylamino)-propyl) carbodiimide hydrochloride (EDAC)-mediated
amide bond formation between the carboxyl groups in the microgel and amine groups of
2-aminoethanethiol. Finally, hybrid microgels were obtained by in-situ reduction of an Au precursor.

2.3.3. Functionalization

Hybrid thermoresponsive NPs are interesting for many applications dedicated to microactuators,
sensors, and bioseparation. They are also of great interest in biomedicine. In this context, they are
extensively used in hyperthermia, drug/gene delivery, and tissue engineering applications [75].
For this aim, first the responsive NPs must be chemically linked to the polymer matrix. This is not a
trivial task because the pores within the polymer matrix are of similar size to the particles. Second,
thermoresponsive NPs must be functionalized to yield multifunctional nanoparticles with enhanced
efficacy, while simultaneously reducing side effects, due to properties such as targeted localization
in tumors and active cellular uptake [76]. Typically, carboxyl and amine groups are incorporated in
the structure and frequently carbodiimide chemistry is used [40]. These approaches include surface
initiated polymerizations, electrojet encapsulation, and ionic coupling of chitosan to surfactant groups
attached to magnetite [77]. In active targeting applications, the coupling of a specific ligand on
the particles is necessary for the NPs to be recognized by the cells at the disease site. For instance,
in cancer applications the surface is functionalized with folic acid and targeted at the tumor cells that
over-express folate receptors. In another application, non-viral vectors based on thermoresponsive
NPs can be complex, with DNA for effective gene transfection [78]. In general, the NPs must be PEG
coated and exhibit a positive surface charge for passive targeting applications. The reason for this is
that these NPs are expected to accumulate preferentially in tumors for a long duration because of the
enhanced permeability and retention (EPR) effect [19].
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2.4. Properties

Major characteristics of thermoresponsive NPs are a consequence of their small size [79]. NPs of
interest in biomedicine typically have a size between 100 nm and 200 nm [80]. For instance,
these materials exhibit a large specific surface area (inversely proportional to the diameter of the
particles) hence containing a large number of sites for adsorption and desorption processes. Moreover,
due to their small size, these NPs are capable of diffusing within the carrier over long distances.
Furthermore, physical changes occur rapidly at the CST because the relaxation time of the volumetric
change is proportional to the square of the nanoparticle radius [81].

Monodispersity in particle size is typically desired in applications. Currently, available
synthesis routes provide highly monodisperse NPs, with very low polydispersity indexes [79].
The polydispersity index is given by the ratio of weight-average diameter to number-average diameter.
Interestingly, a good monodispersity results in sharp changes to the physical characteristics at the CST.
There are many different techniques to ascertain the size, shape and inner structure in thermoresponsive
NPs; light scattering is a well-known technique to explore the change in volume at the CST. In the
case of LCST polymers, the scattering is weak below LCST, while the particles scatter in nearly all
incident light above LCST. Light scattering is in some cases complemented by electrophoretic mobility
measurements. Diffusive light scattering is very frequently employed to study the temperature
sensitivity of thermoresponsive NPs. Small-angle neutron scattering (SANS) and small-angle X-ray
scattering (SAXS) are also frequently used to study the phase behavior of microgel particles at different
length scales [53]. Atomic force microscopy, also in the solvated stated, and electron microscopy are
other widely used techniques to study the morphological characteristics of the NPs. For instance,
cryo-TEM has been employed to investigate the morphology and the volume transition of core-shell
microgels by Ballauf and Lu [53].

The polymer particle charge is also important. It can be determined using conductometric and
potentiometric titration [82]. Through electrophoretic mobility measurements, it is also possible to
obtain information on the surface charge density [83]. The electrophoretic mobility is also strongly
sensitive to the swelling behavior of the polymer particle. When the swelling is slow the mobility
becomes high because the effective surface charge is large.

Another important property of these nanoparticles is their thermoresponsive character. It is
well known that cancer cells are more susceptible to heat due to their immature vascular system,
in contrast to healthy cells that are capable of removing heat more efficiently [77]. As a consequence,
immersion baths and heated blankets were used in the past with this aim [84]. With the advent of
thermoresponsive NPs, however, heating can be localized in the target cells maximizing therapeutic
potential and avoiding complications coming from side effects [19,77].

A very convenient way to heat these particles and therefore the surrounding tissue is by using
either magnetothermal or photothermal therapy, involving magnetic fields or near-infrared radiation,
respectively. This is so because biological tissues are transparent to electromagnetic fields and infrared
radiation. Traditionally, thermal and external stimuli responses (e.g., magnetic and optical) are
independently tuned [26].

Traditionally, thermal and external stimulus responses (e.g., magnetic and optical) are
independently tuned [26]. However, nowadays it is possible that the thermal response of the NPs can
be controlled by their magnetic/optical properties and vice-versa. This makes it possible to combine
therapies in cancer treatment, for instance, involving localized (in space and time) heating (i.e.,
magnetic/photo hyperthermia) (magnetic hyperthermia [85]; photo hyperthermia [86]), drug/gene
delivery (drug delivery [87]; gene delivery [88]), and also tissue engineering [19,37].
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3. Biomedical Applications of Thermal-Nanomaterials

3.1. Analytical and Diagnostic Devices

3.1.1. Thermal-Nanomaterials as Diagnostic Devices

Thermo-sensitive materials (metal-based NPs, thermo-sensitive polymers, thermochromic
dyes and thermoresponsive nanocomposites) have been investigated for analytical and diagnostic
applications, especially in the field of biosensing. Biosensors combine a biorecognition element such as
enzymes, nucleic acids, aptamers, etc., with a transducer component that converts the biochemical
event into a measurable signal. In the case of thermal biosensors, thermal changes are measured.
The interesting phenomenon of thermochromism by which some nanomaterials reversibly switch color
as a response to a thermal stimulus is very promising for biosensing. The color-temperature responses
may involve the generation or disappearance of color or variations in hue or depth, which can occur
very gradually or involve a sudden switch. Some results have been reported in literature, claiming
potential in this field, though real applications of this phenomenon in biomedicine are still missing.
In line with this, it is worth mentioning the revision work reported by Avella-Oliver and collaborators.
This review shows significant bibliographic references that support the potential of thermochromism in
biorecognition assays and plots a scenario for new advances [89]. In recent years some new approaches
have been reported exploiting chromo-switchable properties of some nanomaterials. Harrington
W.N. and co-workers designed a photoswitchable multicolor probe consisting of a thermochromic
dye and absorbing magnetic NPs. Light-dark states and spectral shifts in adsorption were reversibly
photoswitched by controllable photothermal heating of the NPs (Figure 1). The probes revealed a high
contrast sufficient for their visualization in cells and deep tissue, and thus, they could be potentially
used in multimodal cellular diagnostics [90].
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Figure 1. (a) Laser-induced temperature-dependent decrease of thermochromic dye (TCD) absorption
(“light” to “dark” state transition) during laser heating of embedded magnetic NPs (MNPs).
(b) Laser-induced temperature-dependent shift in the TCD absorption maximum (blue-shift color).
(c) Schematic of switching from “light” to “dark” state in monocolor TCD-NP probe. (d) Schematic
of switching color state in a two color TCD-NP probe. Reproduced with permission from [90].
Copyright Springer Nature Limited, 2016.
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Plasmonic NPs combined with materials responsive to temperature have received attention
because of their potential applications in drug delivery [91,92], which will be discussed in the
next section, and sensing. PNIPAm, the popular temperature-responsive polymer that undergoes a
reversible phase transition when heated above its LCST, has been extensively used as a scaffold to
control the distance and coupling of plasmonic NPs. Different approaches have been followed: Coating
of NPs with PNIPAm, synthesis of the NPs in situ inside PNIPAm matrix or tethering the NPs onto the
surface of PNIPAm spheres. This control of the structural parameters of plasmonic nanostructures
is critical for their applications, especially in spectroscopy and biosensing [93]. The combination of
PNIPAm with gold nanosystems is the most commonly studied (Figure 2).

The greatest significant challenge for these thermoresponsive nanocomposites is to achieve fast
responses. In this context, Ding and collaborators recently showed the preparation of AuNP@PNIPAm
NPs with increased and faster temperature-induced plasmon resonance shifts compared to that
previously reported [94,95], resulting in reversible switching of the optical properties of the Au NPs
and holding great potential for temperature sensors [96]. Zhang et al. reported the preparation of
Au nanorods (Au NR) and PNIPAm composites with fast thermal/optical response and high heating
rate by a traditional electrospinning technique presenting potential applications in smart sensors [97].
Hembury and collaborators showed a synthetic pathway that combined gold nanoclusters with
thermo-sensitive diblock copolymers of poly(ethylene glycol) (PEG) and PNIPAm to form a new
class of gold-polymer, micelle-forming, hybrid NP [98]. The thermo-sensitive polymers enhanced
the native fluorescent signal of Au NPs. This nanocarrier, based on the temperature-dependent,
self-assembly of gold nanoclusters within a polymeric micelle core, showed great promise toward
bioassays, nanosensors, and fluorescent live-imaging applications.
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Figure 2. Examples of Au-PNIPAm based thermosensitive nanosystems (a) Schematic
representation and TEM image of Au nanorods (NRs)–PNIPAm microgel hybrids and the
corresponding thermoresponsive behavior (b) TEM image of PNIPAm–Au composite (c) TEM
image of AuNRs/PNIPAm electrospun fibers. (d) Schematic representation and TEM image
of Au-thermosensitive polymer (PEG-PNIPAm) nanohybrids. Reproduced with permission
from [94,95,97,98]. Copyright American Chemical Society, 2015, 2014, 2017, 2018.

PNIPAm has also been used in combination with silver NPs because of their high affinity [99,100].
A novel reconfigurable nanocomposite has been recently published, holding promising applications in
bio-imaging and color changing technologies. It has been fabricated by incorporating plate-like silver
nanoprisms into PNIPAm microspheres and it exhibits a wider range of spectral features and color
tenability by changing the size and the loading ratio of the nanoprisms [101].
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In the field of cancer diagnosis, new tools are needed in order to identify tumor behavior and
improve the treatments. Dual-emission hydrogel NPs have gained much attraction due to the potential
they display in biological imaging and detection. The development of a strongly and independently
pH-and temperature responsive PNIPAm based hydrogel has been recently reported. In this case,
instead of NPs, a red emission pH independent and a blue emission pH dependent molecule with
similar excitation wavelengths were inserted in the core and the shell of the hydrogel, respectively.
Photoluminescence intensities of the hydrogel NPs showed a linear temperature response (the two
emissions), and the blue emission molecule a linear pH response, thus exhibiting different emission
colors inside cancer (lower pH) or normal cells. This promises applications for detecting or tracing
cancer cells [102]. Moreover, proteases play an important role in cancer; therefore diagnostics that
provide information on their activity and function are needed. In this context, thermo-sensitive
NPs have been used to design a protease activity nanosensor that can be remotely activated by
alternating magnetic fields (AFM) at the site of disease [103]. The nanosensor was composed by
thermo-sensitive liposomes and co-encapsulated magnetic NPs and functionalized protease substrates
and was used to measure tumor protease activity in vivo. The authors of the work demonstrated that
this diagnostic tool can identify differences in protease profiles across two in vivo human colorectal
cancer xenograft models.

3.1.2. Thermal-Nanomaterials as Current Imaging Tests Enhancers

Imaging techniques for the in vivo non-invasive diagnosis such as positron emission tomography
(PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI),
and near infrared fluorescence (NIRF) have made enormous advances in the last decades. Moreover,
some types of NPs, used as contrast agents, can significantly improve the resolution of these diagnostic
modalities. Improving non-invasive monitoring methods is particularly desirable since current
methods of evaluating cell treatments typically involve destructive or invasive techniques, such as
tissue biopsies. Some non-invasive methods such as MRI and positron emission tomography (PET),
which rely heavily on contrast agents, lack the specificity or resident time to be a viable option for cell
tracking. Single photon emission computed tomography (SPECT) allows non-invasive determination
of in vivo biodistribution of radiotracers at picomolar concentrations. Using specific radiolabelled
probes to obtain functional information with high sensitivity about molecular processes is possible.
SPECT images have limited spatial resolution and lack anatomical details for reference, making the
precise localization of lesions difficult.

New contrast agents for imaging enhancement would facilitate non-invasive monitoring of
treatments, allowing simultaneous dynamic imaging of structure and function, and directly provide
information on pharmacokinetics and metabolism of drugs. Additionally, they can reduce the overall
scan time, avoid multiple anesthesia sessions, and prevent errors associated with coregistration.
Moreover, nanomaterials can be used for not only imaging the physical location of cells, but also
providing information on the biological state of cells [104]. Many types of NPs are under investigation
as potential contrast agents for in vivo imaging such as MNPs, for instance, SPIONs [105,106] and
AuNPs. In a recent publication, Zhou and collaborators have demonstrated the use of acetylated
polyethylenimine (PEI)-entrapped AuNPs (Ac-PE-AuNPs) for precise diagnosis of hepatic carcinoma
using negative computed tomography imaging [107]. Magnetically responsive nanosystems present
great potential in cancer therapy since MRI can be performed for diagnosis and magnetic guidance
under a permanent magnetic field, which can be exploited for tumor targeting. Furthermore,
these NPs and some other hybrid nanoassemblies containing thermo-responsive polymers present
thermoresponsive behavior, and thus, they are used as multifunctional systems that combine
therapeutic and diagnostic capabilities (the so-called theranostics). These nanosystems will be reviewed
in Section 3.4.
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3.2. Thermo-Sensitive Cargo Delivery

In thermal medicine, the procedure of raising the temperature has been used alone to kill cancer cells or
as an adjuvant treatment to make surgery or chemotherapy more effective. Raised temperature can provide
direct damage, and furthermore, trigger drug or gene release of loaded thermo-sensitive nanocarriers.

Among stimuli-responsive strategies, thermoresponsive drug delivery is one of the most
investigated, especially in oncology research. In response to temperature, at least one component of
the nanocarriers experiences a change in the properties, triggering the release of the load. Ideally,
thermo-sensitive nanomaterials should retain the drug at body temperature (37 ◦C) and deliver it
within the locally heated tumor (40–42 ◦C) [92].

Thermo-sensitive polymers have been extensively exploited for the synthesis of thermal
responsive nanosystems. In the following, we review some examples of different thermo-sensitive
nanocarriers investigated in the last five years for the release of different drugs after stimulation
with temperature.

3.2.1. Liposomes

Thermo-sensitive liposomes are composed of lipid membranes that undergo phase transitions
(from a gel to a liquid phase) in response to heating, at a characteristic phase transition temperature
(Tc). Upon heating, the mobility of the lipid head groups, which were ordered and condensed in the gel
phase, increases. At the Tc, the hydrocarbon chains switch configuration and the membrane becomes
permeable, presenting solid lipid domains and liquid lipid domains. At temperatures higher than Tc,
lipids move freely and the bilayers become fully fluidized. During this transition phase, the load of the
liposomes is able to leak out.

Non thermo-sensitive liposomes can be sensitized to temperature by functionalizing them with
temperature-responsive polymers that disrupt the membrane in response to heating. Such polymers
can also enhance the response to temperature of thermo-sensitive liposomes. Temperature-sensitive
polymers experience a sharp coil-to-globule transition and phase separation at a LCST or an
UCST [108,109] (Figure 3).
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with permission from [108]. Copyright Elsevier, 2013.
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To date, thermo-sensitive liposomes for the delivery of doxorubicin (ThermoDox, Celsion) are the
most advanced and effective temperature-activated nanocarriers available [110]. Currently, in phase
III clinical study, ThermoDox showed a 2.1-year improvement to the overall survival in patients
affected with hepatocellular carcinoma. Other liposomal carriers have been recently designed and
investigated in vitro and in vivo. Mild hyperthermia was used to effectively trigger release of cisplatin
from thermo-sensitive liposomes in the vasculature of a human model of triple-negative breast cancer
(MDA-MB-231 and MDA-MB-436) resulting in a significant tumor growth delay [111]. The liposomes
used in this study had a lipid phase transition temperature of 41.5 ◦C and demonstrated their efficiency
in a previous work on mice bearing subcutaneously-implanted ME-180 cervical tumor [112].

Likewise, in another study by Yoon et al. cisplatin was successfully encapsulated in a
thermo-sensitive liposomal formulation in order to selectively treat 4T1 murine triple negative breast
cancer via photothermal heating. The thermo-sensitive lipid selected was 1,2-Dipalmitoyl-sn-glycero-
3-phosphocholine, which has a phase transition of around 41 ◦C, in order to minimize thermal damage
to the body. The loading efficiency was maximized in the formulation called CL16 and exhibited greater
therapeutic outcomes, both in vitro and in vivo [113]. Lv et al. reported a hyaluronic acid-paclitaxel
(HA-PTX) prodrug and marimastat (MATT)-loaded thermo-sensitive liposomes for the dual targeting
of the tumor microenvironment and breast cancer cells [114]. In this research, they combined the effect
of MATT, which avoids metastases by inhibiting enzymes such as collagenases, gelatinases, and matrix
metalloproteinases, with the effect of the antitumor drug docetaxel. Thermo-sensitive liposomes were
loaded with MATT and assembled with HA-PTX in a multifunctional nanoplatform. The nanocarriers
released their payloads after mild hyperthermia treatment at 42 ◦C and docetaxel entered the cancer
cells via CD44 receptor mediation in 4T1 tumor-bearing BALB/c mice.

3.2.2. Micelles

Thermo-responsive polymers have been used to synthetize polymeric micelles that can release
the cargo in response to temperature. They are formulated through a self-assembly process using
amphiphilic block-copolymers that spontaneously assemble into a core-shell structure in an aqueous
environment. The polymers, at either a LCST or an UCST, experience a phase transition that induces
collapse of the micelle and the consequent cargo release.

Thermo-sensitive polymers, such as PNIPAm, pluronics (PEG-b-PPO-b-PEG, triblock copolymers
of polypropylene oxide [PPO] middle blocks flanked by polyethylene glycol [PEG] blocks),
and poly(hydroxypropyl methacrylamide-lactate) (p(HPMAm-Lacn)) are among the most frequently
studied. Temperature-responsive micelles have been extensively studied in the past years for
their applications as drug delivery systems in cancer therapy. Some formulations have reached
clinical trials after showing promising results both in vitro and in vivo. Fathi and collaborators
synthetized chitosan micelles grafted with PNIPAm as temperature-sensitive moiety and oleic
acid as hydrophobic monomer. Micelles were targeted with folic acid and loaded with erlotinib,
a tyrosine kinase inhibitor [115]. The micelle solution was transparent at 25 ◦C, which was below
the LCST (35 ◦C). However, with an increased temperature to 37 ◦C, the solution became opaque
and around 90% of the loaded drug molecules were released within 48 h, demonstrating the
thermoresponsive behavior of the self-assembled micelles. In a recent study, a biocompatible,
degradable and thermo-sensitive amphiphilic polymer PNIPAm-co-poly[ethylene glycol] methyl
ether acrylate)-block-poly(epsilon-caprolactone) was synthetized and used to produce self-assembled
thermo-sensitive micelles loaded with the chromophore cyanine dye IR-780 and heat-shock protein
(HSPs, cause of thermotolerance in cancer cells) inhibitors [116]. The controlled drug release during
laser irradiation and change of temperature was demonstrated both in vitro and in vivo in a human
colorectal adenocarcinoma cell line.
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3.2.3. Core-Shell Nanodevices

Thermoresponsive core-shell nanosystems are a unique class of materials widely studied for drug
delivery applications. In general, the thermoresponsive molecule is located on the surface and the core
can be constituted by either a hard metallic (gold, magnetic) or a soft (dendrimers, chitosan NPs, silica
NPs, nanogels) nanoparticle.

Among the hard metallic NPs, gold nanodevices are the most used due to their photo-inducible
heat-generating properties as a consequence of localized surface plasmon resonance (SPR).
The heat generated on the surface of the plasmonic NPs causes the thermoresponsive polymer
to collapse and the release of the drug. Fathi and co-workers recently designed chitosan
copolymer-gold hybrid NPs loaded with erlotinib (ETB), which was released from the nanosystem
in a thermo-responsive manner thanks to the temperature-responsiveness of chitosan copolymer
composed of (poly(N-isopropylacrylamide)-co-oleic acid)-g-chitosan ((PNIPAm-co-OA)-g-CS) that
presented an LCST of around 36 ◦C. The successful cytotoxicity investigation in A549 cells validated
their potential as an effective anticancer drug carrier [117]. Au NPs were combined in another study
with the copolymer Poly (NIPAAm-co-AAm) that was used to create a collapsible thermo-sensitive
nanoshell, which exposed targeting ligands (integrin β1) upon NIR irradiation, enabling cell
binding. This nanodevice, which exploited the photothermal properties of Au NPs to control
NP binding to cell, could be used for targeted photothermal therapy and drug delivery [118].
Magnetic NPs have also been used in combination with different thermoresponsive polymers
for drug delivery. Gui and collaborators designed a complex nanodevice constituted of Fe3O4

NPs/CdTe quantum dots dual-embedded mesoporous silica nanocomposites (MQ-MSN) as cores
and P(N-isopropylacrylamide)-graft-Chitosan microgels (PNIPAm-g-CS) as shells. The carriers,
which possessed outstanding magnetism/fluorescence/thermo/pH-sensitivity, were loaded with
the anticancer drug adriamycin (ADM) that was released in a temperature dependent manner above
the LCST retaining anticancer activity in HepG2 cells [119].

Soft materials like dendrimers have been extensively investigated for the synthesis of
thermo-sensitive core-shell NPs. Elastin-mimetic dendrimers were synthetized by conjugating
Val-Pro-Gly-Val-Gly repeats, an elastin-like peptide was used as temperature-sensitive biomaterial,
to a polyamidoamine (PAMAM) dendrimeric core, though the phase transition temperature presented
by the system (48 ◦C) has to be optimized for biomedical applications [120]. The combination of
two dendrimers in the same nanodevice resulted in being more efficient in terms of temperature
responsiveness. Oligo (ethylene glycol) (OEG) side chains show attractive thermo-sensitive
behavior because their LCST can be tuned from 33 to 64 ◦C. A thermo-sensitive codendrimer
PAMAM-co-OEG (PAG) by decorating fourth-generation PAMAM with the second generation OEG
dendron was synthetized. This system exhibited high drug (methotrexate) loading capacity and
temperature-dependent drug release presenting an LCST of 38.2 ◦C [121].

3.2.4. Hydrogels

In recent years, thermoresponsive hydrogels are one of the most intensively investigated
thermo-sensitive materials for biomedical applications such as drug delivery and tissue engineering
and repair. Temperature-sensitive polymer based hydrogels have an LCST above which they undergo
transition from a solution to a gel state, forming three-dimensional cross-linked polymeric networks.
Injectable biodegradable hydrogels that can form gels in situ have been widely used for biomedical
applications, such as cell/drug delivery as well as tissue engineering since they can provide a sustained
and controlled delivery to the target site.

When particles with nanometric sizes are obtained during the hydrogel synthesis, the systems
are called nanogels, however, various forms of gels have been studied [122]. Figure 4 shows a
schematic representation of the different dimensions and appearances of hydrogels synthetized by
click chemistry, a useful approach in forming gels owing to its high reactivity, superb selectivity,
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mild reaction conditions, and bio-orthogonal feature, though physical and chemical crosslinking
methods, mini-emulsion techniques, as well as self-assembly are also important approaches.

Due to the impact of hydrogels on thermo-sensitive biomedical applications, we will review both
nanosized hydrogels and hydrogels with other forms and dimensions that are used as thermo-sensitive
platforms for the transport of different types of NPs or cells.
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Several natural polymers that demonstrate thermally sensitive properties have been used for
the synthesis of hydrogels such as polysaccharides (cellulose, chitosan and xiloglucan) [123–125]
and proteins (gelatin) [126]. Different polymers such as poly(ethylene glycol)-poly(3-caprolactone)-
poly(ethylene glycol) [127], poly n-isopropylacrylamide/polyacrylic acid (PNIPAm/PAA) [128],
poly(D,L-lactide)-block poly(ethylene glycol)-block-poly(D,L-lactide) (PDLLA-PEG-PDLLA) [129],
poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) [130],
and PNIPAm-based hydrogels have also been reported in drug delivery [131–133] (see Table 1).

Maiti et al. developed a chemically cross-linked poly-N,N′-dimethyl aminoethyl methacrylate
(PDMAEMA) smart nanogel loaded with both an anticancer drug, doxorubicine, and a radioisotope,
13I-labeled albumin, for enhanced chemo-radioisotope therapy. The nanogel in solution form was
injected into the tumor where it was transformed into a gel at body temperature. This thermogelling
behavior led to the sustained release of the drug and the retention of the radionuclide within the tumor
achieving excellent therapeutic in vivo results in mice bearing 4T1 tumors [134]. A novel water in
water thermo-nanoprecipitation technique for the synthesis of thermoresponsive nanogels composed
of dendritic polyglycerol (dPG) and linear thermoresponsive polyglycerol (tPG) as building blocks was
recently published. The nanogel was used as a carrier of etanercept (ETR), a protein approved for the
treatment of psoriasis and arthritis by subcutaneous injection. Nanogels were topically administered
to inflammatory skin equivalents or tape striped human skin, resulting in temperature triggered and
efficient ETR delivery and anti-inflammatory effects [135].
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Table 1. Thermo-sensitive polymers used for the synthesis of hydrogels.

Thermo-Sensitive Polymers Characteristics Some Applications

Poly(ethylene glycol)-poly(3-caprolactone)-
poly(ethylene glycol) (PCEC)

High gel strength, slow
degradation rate and
availability in powder
form

Sustained release of
bevacizumab in glaucoma
filtering surgery. Release of
paclitaxel for treatment of
cervical cancer

Poly n-isopropylacrylamide/polyacrylic
acid (PNIPAm/PAA)

Display tunable
properties. In slightly
acidic conditions,
the LCST decreases with
increase in PAA content

Variety of molecular
switching and drug
delivery applications
where responses to small
pH changes are relevant

Poly(D,L-lactide)-block poly(ethylene
glycol)-block-poly(D,L-lactide)
(PDLLA-PEG-PDLLA)

Ability to increase the
solubility of hydrophobic
compounds, extended
release of payloads,
biodegradability,
excellent safety profile

Multidrug (paclitaxel,
rapamycin and 17-AAG
heat shock protein
inhibitor) release for
treatment of ovarian cancer.
In combination with black
phosphorous as a
photothermal platform for
postsurgical treatment of
cancer. Release of growth
factors for skin wound
healing

Poly(ethylene oxide)-b-poly(propylene
oxide)-b-poly(ethylene oxide)
(PEO-PPO-PEO)

Improvement in
solubility, stability,
release and
bioavailability of drugs

Sustained release of drugs
for vaginal application.
Oral drug delivery. Release
of nitric oxide for
accelerating wound
healing

Thermal responsive microgels can carry a drug [136,137] or drug-loaded NPs [138,139].
The combination of various drugs in a single microgel can be achieved by encapsulating them directly in
the hydrogel [140] or by designing hydrogel composites such as the dual drug loaded thermo-sensitive
hydrogel composite recently published by Xu and co-workers [141]. In this study, the anti-tumor effect
of the combination of cisplatin-containing thermo-sensitive hydrogel and paclitaxel-loaded polymeric
micelles in a single composite (called PDMT) was investigated in an in vivo cervical cancer model.
Methoxypoly(ethylene glycol)–poly(caprolactone) (MPEG-PCL) was used for the synthesis of the
micelles and Poly(ethylene glycol)-poly (epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG)
for the hydrogel. PDMTs were effective in inhibiting tumor growth and prolonging the survival time
of treated mice.

Heat sensitive hydrogels carrying drugs, NPs or cells have been extensively investigated for
their application in tissue engineering and regeneration. Recently, vascular endothelial growth factor
(VEGF)-loaded poly (lactic-co-glycolic acid) (PLGA)-NPs embedded thermo-sensitive gels have been
used to promote bladder tissue regeneration in a rabbit model exhibiting favorable performance [142].

Thermo-responsive hydrogels have shown great potential for bone tissue regeneration.
Rosuvastatin-loaded chitosan/chondroitin sulfate NPs incorporated into a thermo-sensitive hydrogel
provided positive results in vitro [143] and methylcellulose hydrogel containing bioactive calcium
phosphate NPs showed a higher new bone formation in vivo than the pure hydrogel in a rabbit calvaria
defect model [144].

There are many [145–148] in vitro and in vivo studies demonstrating the effectiveness of hydrogels
for central nervous system (CNS) regeneration. Their three-dimensional porous structure is commonly
used to load and deliver drugs and growth factors (such as heparin) or they can be injected, successfully
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inducing bridging of post-traumatic cystic cavities in the spinal cord, as demonstrated by Hong
and collaborators. They studied an imidazole-poly (organophosphazenes) (I-5) hydrogel with
thermo-sensitive sol-gel transition behavior for the treatment of cystic cavities that develop following
injuries to the brain or spinal cord in a clinically relevant rat spinal cord injury model. The dynamic
interaction of the hydrogel with the inflammatory cells induced extracellular matrix remodelling to
stimulate tissue repair. An improved coordinated locomotion that was accompanied by preservation
of myelinated white matter and motor neurons and an increase in axonal reinnervation of the lumbar
motor neurons were observed.

Moreover, other thermo-sensitive hydrogels have been investigated as candidates for cardiac
regeneration therapy [149,150]. A system based on thermo-sensitive hydrogel and oxygen releasing
microspheres was developed for the delivery of oxygen to heart tissue [151]. The system was able
to continuously release oxygen for four weeks leading to a significant increase in cardiac function
of infarcted rats. Furthermore, different kinds of hydrogels have been developed for skin wound
dressings [152–154].

Cartilage repair is a great challenge due to the limited capacity for self-healing. Hydrogels
with smart sol-gel response for altering environmental temperature have been investigated to
promote cartilage regeneration. For instance, a transforming growth factor (TGF)-β1-loaded
poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) (PCEC) hydrogel was fabricated
and studied, which demonstrated it to be biodegradable and capable of in vivo cartilage
repair [155]. Moreover, the regeneration of hyaline-like cartilage with reduced fibrous tissue
formation in vivo was achieved by Liu and co-workers by increasing the phenylalanine content
into a poly(L-alanine-co-L-phenylalanine)-block-poly(ethylene glycol)-block-poly(L-alanine-co-L-
phenylalanine) (PAF-PEG-PAF) thermo-sensitive hydrogel encapsulating bone marrow mesenchymal
stem cells (BMMSCs). The increased phenylalanine unit content resulted in an enlarged pore size
and enhanced mechanical strength [156]. These features provided better permeability and cell-cell
communication, nutrient transportation and cell proliferation, migration, and differentiation that lead
to better regeneration of cartilage tissue with reduced fibrous tissue formation (Figure 5).
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3.2.5. Polymersomes

Polymer vesicles, also known as polymersomes, are composed of amphiphilic block copolymers
that self-assemble into NPs with a hollowed morphology. Due to this vesicular structure, they can
encapsulate different loads (such as drugs, peptides and genes) within the hydrophilic hollow
or the hydrophobic shell. When temperature-sensitive polymers are used for the preparation of
polymersomes, the polymeric drug delivery formulations will be endowed with thermo-sensitive
properties and the load will be released after temperature stimulation. Bixner et al. designed
magnetic polymersomes by self-assembly of the amphiphilic block copolymer poly(isoprene-b-N-
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isopropylacrylamide) (PI-b-PNIPAm) with hydrophobic SPIONs. Water soluble dye calcein was
encapsulated in the lumen of the vesicles. Magnetic heating of the embedded SPIONs induced a
reversible structural change in the polymersome membrane and the hydrophilic compound could
be released [157]. In a different study, thermoresponsive diblock copolymers of PEO45-b-PtNEAn
were prepared and used to synthetize the polymersomes by direct heating of the copolymer solution
above the critical aggregation temperature. These aggregates were stable at pH 7.4, but dissociated
quickly under mildly acidic conditions resulting in the release of doxorubicin and FITC-labelled
lysozyme, which were loaded in the hydrophobic shell and the inner cavity of the polymersomes,
respectively [158].

3.3. Thermal Therapy

Local hyperthermia is a treatment in which the temperature of the tumor is increased more than
other adjacent healthy tissues. In general, the temperature is increased to 40–45 ◦C, which causes
cell damage, and therefore cancer cells become more sensitive to the effects of radiation and
anticancer drugs. The methods used for the generation of hyperthermia are microwave [159],
ultrasound [160], magnetic [161], near-infrared (NIR) laser, known as photo-thermal therapy
(PTT) [162], and radiofrequency [163]. NPs have been investigated as conduits for generating
hyperthermia in order to improve uniformity and target specificity of heat in a non-invasive or
minimally invasive manner [164]. The most common NPs studied for thermal therapy are MNPs,
SPIONs and AuNPs.

Au NPs were investigated to evaluate any synergetic effects of mitoxantrone (MX) and microwave
(MW) hyperthermia for the treatment of melanoma. Cell survival was significantly decreased in MX
chemotherapy and MW hyperthermia dual treatment compared to the control group [159].

Tissue can be heated through the absorption of ultrasound, which results in acoustic to thermal
energy conversion. In order to reduce the ultrasound power or sonication time, and thus, the damage
of the surrounding healthy tissues, nanosensitizers can be used since they increase the attenuation and
dissipation of the acquired acoustic energy in the form of heat within the tumor area. The efficiency of
ultrasound hyperthermia was experimentally and theoretically investigated for anti-cancer treatments
by using MNPs in a tissue-mimicking phantom using an ultrasound system [160]. MNPs resulted in
being good candidates for sonosensitizing materials in the case of ultrasound-induced hyperthermia.

MNPs are also able to convert energy from an alternating magnetic field to heat, primarily through
internal dipole rotation and physical particle rotation, known as Neel and Brownian relaxations,
respectively [165,166]. The effects of magnetic hyperthermia induced by two different formulations
of biocompatible SPIONs have been studied in breast and pancreatic cancer xenografts in mice,
demonstrating an effective tumor growth reduction [167]. A formulation of MNPs loaded with
doxorubicin and functionalized with N6L, a molecule that targets a nucleolin-receptor complex
overexpressed at the cell surface of tumor cells, was synthetized by Kossatz et al. in order to
refine and improve magnetic hyperthermia therapy [168]. The thermally responsive nanosystem
selectively targets and successfully eliminates breast cancer cells in vivo thanks to the combined effect
of chemotherapy and hyperthermia.

As for the other methods for the generation of hyperthermia, the efficiency of radiofrequency
(RF)-based therapy can be significantly enhanced by using sensitizers that accumulate in the tumor
area and absorb RF radiation power to heat cancer cells. In this case, the nanosensitizers are
electrically-conductive NPs that can produce Joule heating through the RF-induced electrical currents
over the NP volume [169]. The NPs that provide the strongest absorption of RF radiation are
gold [170,171] and carbon nanomaterials [172]. Tamarov and co-workers studied crystalline silicon
based nanomaterials (porous silicon-based (PSi) NPs and laser-ablated Si NPs) as sensitizers for
RF-induced therapy [163]. Mice were inoculated with lung carcinoma (3LL) cells and treated with the
silicon based particles prior to RF exposure. An increase of 20–25% in the lifetime of the mice after the
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intratumoral injection of both types of NPs was observed. Despite silica NPs having much weaker
electrical conductivity than gold NPs, they demonstrated better heating rates.

In photo-thermal therapy (PTT), the photo-sensitizer agents convert the light photon energy
absorbed into heat. This method often used light beams with wavelengths in the NIR window
(650–900 nm) since maximum tissue penetration is gained. As photothermal agents, a range of metallic and
carbon-based NPs with enhanced NIR absorption and high photo stability have been employed [173–177].
However, the heating effect is higher when the beam energy is close to the plasmon frequency of the
administered nanosystems. Thus, noble metal NPs such as gold nanostructures with different shapes
and gold-based nanoconjugates with different coating molecules that show SPR behavior in the NIR
range have been reported [162,178,179].

3.4. Theranostics

In nanomaterial-mediated thermal medicine, it is possible to combine imaging that allows for
diagnostics and therapy into a single theranostic platform. A broad range of nanomaterials and
combinations of different types of imaging (MRI, thermo-acoustic, NIR, thermal, and multimodal
imaging) and treatments (drug/gen delivery, heat treatment, chemo and thermo-dual therapy) have
been investigated in recent years (Figure 6).

MNPs are among the most studied NPs for the design of thermal theranostics since they
represent a tool by being contrast agents for MRI-guided thermoablation of tumors [180,181].
A theranostic nano-platform based on magnetic polydopamine (PDA) coated with hyaluronic
acid-methotrexate conjugates and loaded with doxorubicin was synthetized for chemo-photothermal
treatment (PTT) of 4T1 tumor-bearing mice. PDA was used as a versatile shell for effective loading
of doxorubicin to achieve controlled release and PTT simultaneously. The drug was released from
the platform in physiological conditions responding to pH and NIR laser and the active targeting,
through magnetic/methotrexate/hyaluronic acid, of the cancer cells increased the cytotoxicity of
the tumor cells. NIR fluorescence/MR imaging could be applied to monitor the distribution of the
nanosystems [182]. Guo et al. studied a magneto liposome-based theranostic system in which a
fluorescent dye Cy5.5, doxorrubicin and MNPs were encapsulated in the bilayer of the liposomes
in order to achieve a dual-imaging effect and dual thermo and chemotherapy treatment of cervical
cancer. The nanoplatform exhibited temperature sensitivity and responsiveness to AFM and laser
simultaneously, which produced hyperthermia triggered drug release and magnetic active targeting.
Moreover, the treatment could be monitored in real time by fluorescence and MRI [183].

Due to the strong SPR, gold nanomaterials are capable of imaging using techniques like
luminescence and computed tomography and at the same time they are potent absorbing agents
for converting photons into local heating, as discussed in the previous sections. Thus, they have also
been extensively investigated as theranostic platforms for both diagnosis and treatment [184,185].
Shi and collaborators reported an activatable theranostic nanosystem based on activatable aptamer
probes (AAPs) and Au@Ag/Au NPs for in vivo cancer imaging and guided photothermal therapy
in the NIR window. S6 was the aptamer used against A549 cancer cells, showing excellent target
recognition ability. The results suggested that the theranostic nanoprobe could be effectively applied
for image-guided combined chemotherapy and PTT [186].

Other types of nanomaterials have been investigated as theranostic systems such as micelles [187],
liposomes [188,189], nanogels [190], polymer-based NPs [191], quantum dots [192], silica-based
NPs [193], black phosphorous-based materials [194], graphene-based materials [195], and so on.
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Figure 6. Examples of thermosensitive theranostic nanosystems (a) Schematic illustration of the
preparation of Fe3O4-PNIPAm yolk-shell nanocomposites and NIR-trigger drug release. (b) Schematic
illustration of theranostic functionalities of methotrexate (MTX) modified thermo-sensitive
magnetoliposomes (MTX-MagTSLs) loaded with a fluorescent dye Cy5.5 and doxorubicin (Dox). They
can achieve dual-imaging effect and provide an appropriate laser irradiation region to release Dox under
AMF (c) Schematic illustration of a tumor-targeted CuS-based theranostic micelle for combination
chemotherapy, photothermal therapy, and photoacoustic imaging. Reproduced with permission
from [181,183,187]. Copyright Elsevier, 2017, 2018. Copyright American Chemical Society, 2017.

A new and promising theranostic approach to tumor imaging and therapy is based on
the microwave-pulse induced thermoacoustic (TA) effect, which is based on the conversion of
microwave-pulse energy into heat by microwave absorbing agents. The shockwaves produced by
the thermal expansion can be acquired by an ultrasound transducer and reconstructed to form TA
images. Wen and collaborators have recently studied human serum albumin (HSA) functionalized
superparamagnetic iron oxide nanoparticles (HSA-SPIO) as a theranostic nanosystem with potential
application for MRI, TA imaging, and treatment of tumors [196]. The authors intravenously injected
HSA-SPIO in 4T1 tumor-bearing mice that were localized by MRI. TA imaging was used to indicate
HSA-SPIO accumulation in the tumor region that was irradiated with high-energy microwave pulses
for treatment. A remarkable inhibition of the tumor growth in HSA-SPIO treated mice was observed
(Figure 7).
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4. Future Challenges and Perspectives

Temperature sensitive nanomaterials are considered significantly important alongside other
stimulus sensitive (pH, light, etc.) nanosystems and they have been widely explored in biomedical
applications, but there are still some challenges to face.

One important challenge to overcome, which expands into all nanomaterials, is the clearance
and accumulation of NPs in off-target organs such as the liver and spleen. A major reason for the
unsuccessful transfer of nanomaterials into the target is that NPs fail to adequately overcome biological
barriers and might be sequestrated by cells of the mononuclear phagocytic system, leading to a
non-specific distribution that negatively affects the diagnosis and treatment of the tumors. When
generating the hyperthermia, it is not possible to target the energy applied to a subset of NPs, and thus,
collateral damage in healthy organs while treating cancer cannot be avoided.

In particular, MNPs and hydrogels are among the most commonly thermoresponsive NPs used
but present some inconveniences that have to be optimized. MNPs are used as both imaging probes for
MRI and as therapeutic agents for magnetic hyperthermia, but the dose of particles required for heating
is relatively high and produces saturation of the MRI transverse relaxation time. Thermo-sensitive
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hydrogels used for cardiac tissue engineering among other applications, however, their ability to mimic
native mechanical and electrical properties of the myocardium has to be improved [197]. One of the
most widely used polymers for the design of thermal nanomaterials, PNIPAm, presents an LCST close
to body temperature and thus is very appealing for biomedicine applications. Despite this advantage,
it is non-biodegradable and therefore it has to be copolymerized with other molecules such as PEG or
polysaccharides in order to increase its biocompatibility.

On the other side, the use of temperature-sensitive nanocarriers presents enormous advantages.
They can provide direct damage of the cells, and hence, the anticancer drug concentration, that in
classical chemotherapeutic treatment has to be applied at high doses, thus generating toxicity, can
be reduced.

Future directions of thermoresponsive nanomaterials could be their application in the treatment
of chronic diseases that need regular doses of the drug to be administered, such as diabetes and the
combination of different materials for the multi-modal treatment of cancer. Multiresponsive NPs to
different stimuli (light, pH, enzyme, mechanical forces, etc.) could improve the efficiency in both
diagnostics and therapeutics. UCST polymers have been under-utilized so far. Future research might
be directed to study those polymers that could provide flexibility in designing new thermoresponsive
platforms for biomedical applications.
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