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Abstract: The broad number of health benefits which can be obtained from the long-term consumption
of olive oil are attributed mainly to its phenolic fraction. Many olive oil phenolics have been studied
deeply since their discovery due to their bioactivity properties, such as Hydroxytyrosol. Similarly,
in the last decade, the special attention of researchers has been addressed to Oleocanthal (OC).
This olive oil phenolic compound has recently emerged as a potential therapeutic agent against
a variety of diseases, including cancer, inflammation, and neurodegenerative and cardiovascular
diseases. Recently, different underlying mechanisms of OC against these diseases have been explored.
This review summarizes the current literature on OC to date, and focuses on its promising bioactivities
against different disease-targets.
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1. Introduction

The Mediterranean diet is characterized by a high consumption of olive oil, which plays a central
role in the health benefits of the diet [1,2]. In fact, extra virgin olive oil (EVOO) in the Mediterranean
region has long been associated with lower occurrences of certain chronic diseases, such as cancer
incidence and cardiovascular mortality [3], as well as neurodegenerative dementias and Alzheimer
disease [2–6]. The major components of olive oil are the fatty acids, of which the monounsaturated
fatty acid (MUFA) oleic acid represents from 55% to 83% of the total fatty acids, polyunsaturated
fatty acids (PUFA) from 4% to 20%, and saturated fat acids (SFA) from 8% to 14%. Other minor
components of olive oil constitute from 1% to 2% of the total content, and are divided into two groups:
i) the unsaponifiable fraction that could be extracted with solvents after the saponification of the oil,
which contains squalene, triterpenes, sterols, tocopherol, and pigments, and ii) the soluble fraction
that includes phenolic compounds [7].

Historically, the health benefits of virgin olive oil intake were attributed to the antioxidative
properties of monounsaturated fatty acids (MUFAs), particularly oleic acid [5,6,8]. However,
several seed oils (including sunflower, soybean, and rapeseed) containing high quantities of MUFAs
are ineffective in beneficially altering chronic disease risk-factors [9,10].

A substantial number of investigations examined the biological functions of olive oil,
suggesting phenolic compounds as being the beneficial constituents [2,11]. Those compounds found
in EVOO have also been shown to bear antioxidant, anti-inflammatory, and anti-thrombotic activities;
nevertheless, the exact mechanism of action remains unknown [5].
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Although the cultivar, ripening stage, and geographic origin of olive and olive-tree irrigation can
modulate the polyphenolic composition [12], the main phenolic compounds reported in EVOO are
summarized in Table 1.

Table 1. Main phenolic groups and phenolic compounds identified in extra virgin olive oil (EVOO).

Polyphenolic Groups Characteristics Phenolic Compounds References

Phenolic acids
Based on the chemical structure of C6–C1
for benzoic acids and C6–C3 for cinnamic

acids derivatives

gallic acid, vanillic acid, caffeic acid,
syringic acid, o-coumaric acid,

protocatechuic acid, p-hydroxybenzoic
acid, sinapic acid

[13]

Phenolic alcohols Showing a hydroxyl group attached to an
aromatic hydrocarbon group hydroxytyrosol, tyrosol [14]

Secoiridoids Characterized by the presence of either
elenolic acid or elenolic acid derivatives

Oleuropeinaglycone,
demethyloleuropein, ligstrosideaglycone,

nuzenide
[13,15]

Hydroxy-isocromans Constituted by
3,4-dihydro-1H-benzo[c]pyran derivatives

1-(3-methoxy-4-hydroxy)phenyl-6,7-
dihydroxyisochroman,

1,phenyl-6,7-dihydroxy-isochroman
[13,16,17]

Flavonoids

Characterized by two benzene rings
joined by a linear three carbon chain.

Sometimes glycosilated.
They can be further divided into flavones

and flavanols

apigenine, luteoline, (+)-taxifoline, rutin,
luteolin-7-glucoside, glycosides of

delphinidin
[16]

Lignans The structure is based on aromatic
aldehydes condensation

pinoresinol (P), 1-acetoxypinoresinol,
hydroxypinoresinol [18]

Tyrosol, hydroxytyrosol, and their secoiridoid derivatives represent around 90% of the total
phenolic content of EVOO, which usually reaches concentration ranges between 100 and 300 mg/kg in
EVOO [19,20], although concentrations as high as 500–1000 mg/kg have also been observed [21].

Dietary intake of olive oil polyphenols has been estimated to be around 9 mg, within 25–50 mL of
olive oil per day, where at least 1 mg of them is derived from free tyrosol and hydroxytyrosol, and 8 mg
are related with secoiridoid derivatives [22], in which oleocanthal (OC) is included, which is a popular
and interesting phenolic compound whose beneficial bioactive functions are here reviewed.

2. Oleocanthal

Montedoro et al. (1993) described the first isolation of secoiridoids from EVOO [19]
(Figure 1). These secoiridoids comprise, in addition to OC, other important minor constituents
which are implicated in the organoleptic properties of olive oils, including bitterness, pungency,
and astringency [18].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 15 
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Nevertheless, OC was subsequently identified by Busch and colleagues at Unilever Research
and Development [18]. Concerning this fact, the structure of OC was assigned to both groups,
employing a series of 1D and 2D NMR experiments [20,23] in conjunction with comparison to data in
literature [19].

OC usually comprises about 0.02% by weight of EVOO [24], representing therefore about 10% of
the total phenolic compounds [25,26]. However, OC concentration must be dependent on the olive
variety and/or climatic conditions, since OC concentrations higher than 10% of the total phenolic
compounds have also been described [27,28].

Chemically, OC is the elenolic acid ester of the common olive phenolic alcohol tyrosol [29] and is
the principal molecule responsible for this pharyngeal pungency when EVOO is ingested [20,23].

That pungency was believed to signal potentially harmful compounds in our food,
but consumption of many compounds eliciting this sensation, such as cinnamaldehyde and capsaicin,
is also linked to decreased risks of cancer and degenerative and cardiovascular diseases [30,31].
However, unlike cinnamaldehyde, capsaicin, gingerol, and most known chemical irritants, OC does
not significantly irritate the oral cavity; instead, the sting is restricted to the upper airways and is
often accompanied by throat-clearing and coughing [2]. Those authors showed that OC activates
the ion channel hTRPA1 ex vivo, and its ability to excite the trigeminal nervous system depends on
functional TRPA1 in sensory neurons. In perceptual studies in humans, Peyrot des Gachonset al. (2011)
observed that OC triggers irritation in the throat and nasal cavities with high potency compared with
the anterior tongue, concluding that the high specificity of OC for the TRPA1 receptor and its restricted
expression pattern characterizes the unusual pungency of extra-virgin olive oil [2].

3. Biological Effects of Oleocanthal

Despite hydroxytyrosol being described as the most potent phenolic antioxidant of olive oil and
olive-mill waste water, which stimulated research on its potential role in cardiovascular protection [32],
literature describes OC as the major phenolic compound in extra-virgin olive oil with broad functional
and health benefitsthrough its capacity to interact with different specific disease targets, as is
reviewed below.

3.1. Anti-Inflammatory Properties of Oleocanthal

OC’s anti-inflammatory properties was its first biological function described by
Beauchamp et al. (2005) [23]. The hypothesis of those authors began with the similar pungencies
found in both OC and solutions of the non-steroidal anti-inflammatory drug (NSAID), ibuprofen [33].
That idea made the authors think that pungency could be an indicator of similar pharmacological
activities. Indeed, they observed that OC exhibited dose-dependent inhibition of the inflammatory
cyclooxygenase enzymes COX-1 and COX-2 in vitro, and was more potent in inhibiting these
inflammatory enzymes at equimolar concentrations in comparison to ibuprofen [23,34,35].
Beauchamp et al. (2005) also reported that 25 mM OC inhibited 41–57% of COX activity in comparison
to 25 mM ibuprofen, which inhibited 13–18% COX activity in vitro [23].

COX enzymes have their proinflammatory effectstriggered through the synthesis of
prostaglandins and thromboxane (Figure 2), both starting from arachidonic acid [36,37].
That metabolism consists in the prostaglandin (PG) PGH2production via PGE synthase (PGES).
PGH2 is a precursor of different prostanoids, including PGE2, PGI2, PGD2, PGF2α, and thromboxane
(TXA2) [38]. Finally, prostanoids exert the inflammation process when they act on their receptors
located on the surface of target cells to function [39].

Other inflammatory processes include the actuation of 5-lipoxygenase. This pro-inflammatory
enzyme catalyzes the first steps in the biosynthesis of proinflammatory leukotrienes, and is therefore
considered a promising drug target for the treatment of inflammatory diseases, such as asthma and
allergic rhinitis [40]. These authors showed the importance of OC, as well as oleacein, for inhibiting
5-lipoxygenase through both antioxidant properties and the chelation of iron present in the active site
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of the enzyme [41]. Despite these properties being described for the most phenolic compounds [42],
Vougogiannopoulou et al. (2014) demonstrated that both OC and oleaceinoffered better inhibition of
5-lipoxygenase [41].

Although OC constitutes approximately 10% of the total phenolic component of EVOO [25],
this amount seems to be enough to contribute to the ability of olive oil phenolics to modify bodily
physiological functions, potentially reducing risks for inflammatory disease [23].
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3.2. Oleocanthal and Inflammatory Arthropathies

Osteoarthritis (OA) is the most common rheumatic disease and is a major cause of physical
disability for elderly patients. It is characterized by progressive degradation that involves chondrocytes,
cartilage, and other joint tissues, such as subchondral bone and the synovial membranes [33,43–45].
The OA aetiology is actually not completely understood [44]; nevertheless, ageing [46], female sex [46],
obesity [47], or mechanical stress [48] are identified as OA risk factors.

The involvement of toll-like receptors (TLRs) in the innate immune response, as well as in the
exacerbation of the inflammatory response and joint destruction in arthritis, has been postulated [49].
Concretely, the expression of TLR4 in cartilage increases throughout the development of OA [47].

Ligands for several of the TLRs have been identified, and usually correspond with microbial
constituents, such as lipopolysaccharide (LPS), and also include nonbacterial products, such as Hsp-70
and fatty acids [49,50]. Ligand recognition by TLRs provokes a strong activation of pro-inflammatory
cytokines, production of nitric oxide (NO), and up-regulation of costimulatory molecules which trigger
the inflammatory process [51].

Despite nonspecific treatments for OA, such as NSAIDs and corticosteroids, they do not change
the course of the disease and are even associated with adverse effects [45,47]. OC recently emerged
as a potential therapeutic weapon for the treatment of inflammatory degenerative diseases because
it blocks TLR4-dependent iNOS (inducible nitric oxide synthase) induction and TLR4 signaling by
mouse chondrocytes [35].

On the other hand, nitric oxide (NO) is a highly reactive free radical and signaling molecule
that plays a key role in inflammation, and is considered as a pro-inflammatory mediator that
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induces inflammation due to its over-production in abnormal situations [44,52]. Chondrocytes from
patients with OA produce increased levels of NO, compared with those from healthy individuals [53].
Scotece et al. (2012) highlighted that OC suppresses lipopolysaccharide (LPS)-induced nitric oxide
(NO) production in cultured J774 macrophages, and inhibits nitric oxide synthase gene expression [35].
Furthermore, these authors described that OC also inhibits expressionof the cytokines MIP-1α
(macrophage inflammatory protein-1α) and IL-6 (interleukin-6), which are mediators of inflammation
in rheumatic disease connected with OA in J774 murine macrophages and ATDC5 murine chondrocytes
respectively, as well as the secretion of both cytokines in ATDC5 cells [35]. Because OC did not have
any cytotoxic effect on J774 or ATDC5 chondrocyte cells [35,45], literature postulates that OC is a potent
anti-inflammatory therapeutic agent for future treatment of arthritis or other inflammatory diseases.

3.3. Oleocanthal as Anti-Alzheimer Agent

Neurodegenerative diseases, including Alzheimer’s, are characterized by an increase of β-amyloid
peptide oligomerization (Aβ), known as amyloid-derived diffusible ligands (ADDLs), which are
a toxic species responsible for neurodegeneration [54], as well as abnormally hyperphoshorylatedtau
proteins, causing neurofibrillary degeneration and therefore neuron cell death [55]. Several clinical
studies highlight the use of non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of
Alzheimer’s disease [56–58]. Indeed, ibuprofen and foods rich in polyphenols have been shown to
attenuate the production of ADDLs and reduce tau proteins’hyperphosphorilation in animal models
of Alzheimer’s disease [59–63].

Due to the similar anti-inflammatory properties in ibuprofen and OC, Pitt et al. (2009) investigated
the ability of OC also being an anti-Alzheimer agent [62]. These authors found that not only does OC
disrupt Aβ oligomerization and therefore modify the state of ADDLs, it also has a neuro-protective
effect in which OC appears to allow synapse-bound ADDLs to be more accessible to antibodies,
thereby enhancing Alzheimer disease immunotherapy [62]. Similarly, Li et al. (2009) examined the
neuroprotective effects that OC may possess [5]. Interestingly, these authors observed the in vitro
inhibition of tau proteins’ fibrillization caused by OC when other NSAIDs, including ibuprofen,
failed [5,62]. To this point, Abuznait et al. (2013) and Qosa et al. (2015) researched further into the
beneficial effects of OC against Alzheimer’s disease, and reported its ability to induce the genes’
expression of P-glycoprotein (P-gp) and the LDL lipoprotein receptor-related protein-1 (LRP1) [63,64].
Both P-gp and LRP1 are the major Aβ transport proteins, and are responsible for amyloid clearance
(Figure 3B). Similar results have been described in mouse models when OC was supplied with
donezepil, a specific acetylcholinesterase inhibitor used for treatment of Alzheimer’s disease [65].

On the other hand, OC exhibited nonspecific covalent interaction with isomer 441 of the tau
protein (tau-441), inducing a conformational rearrangement that could explain the antifibrillogenic
ability of OC and could also account for a downregulation of the abnormal hyperphosphorylation of
tau proteins [66]. A detailed analysis of the reactive profile of OC towards the tau protein—specifically,
to fragment K18 of the tau protein—has been performed under biologically relevant conditions,
giving new insights into the mechanism of interaction at the molecular level, such as the dependency
of the temperature reaction and time of contact between the OC and tau [67].
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3.4. Oleocanthal as Anticarcinogenic Agent

Several studies have reported different ways in which OC induces apoptosis and inhibits the
migration, angiogenesis, and metastasis of cancerous cell lines originating from hepatocellular
cancer [68], prostate cancer [68,69], human melanoma [70], non-melanoma skin cancer, [71],
colorectal carcinoma [72], and breast cancer [73]. Although few in vivo studies have been reported on
these thus far (Table 2), literature describes various interesting cancer targets for OC, being the main
phenylethanoid studied for both the c-MET and hepatocyte growth factor (HGF).

The MET proto-oncogene encodes for the receptor tyrosine kinase, c-MET. Expression of
c-MET is essential for embryonic development and tissue repair [76,77]. The hepatocyte growth
factor (HGF) is the only known ligand for the c-MET receptor and is expressed mainly in cells of
mesenchymal origin [78]. HGF and c-Met action is providential for tissue development by stimulating
mitogenesis, morphogenesis, migration, and organization of 3D tubular structures, like renal tubular
cells, cell growth, and angiogenesis [79,80]. However, several studies reported that deregulation or
improper activation of the HGF/Met signaling pathway can promote cytoskeletal changes, leading to
the acceleration of proliferation, angiogenesis, motility, and survival and invasive/metastatic abilities
of many cancer cells [81].

Given the implications of c-Met for leading to the cancer-cell abilities previously listed,
Elnagar et al. (2011) suggested the potential c-Met inhibitor of OC in silico due toits excellent
binding affinity towards c-Met crystal structures [82]. In addition, antiproliferative, anti-migratory,
and anti-invasive activities of OC were evaluated in vitro in different cancer cells such as MCF7
(nonmetastatic human breast cancer cells), MDA-MB-231 (highly metastatic human breast cancer cells),
and PC-3 (human prostate cancer cells). That interesting study by Elnagar et al. (2011), of which results
were subsequently confirmed in vivo by Akl et al. (2014), revealed the dose-dependent ability of OC
to inhibit the proliferation, migration, angiogenesis, and invasion of the epithelial human breast and
prostate cancer cell lines through the inhibition of c-Met phosphorylation [68,82].
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Table 2. Characteristics of selected in vivo studies showing anti-cancer effects of oleocanthal.

Animal
Model Damaging Agent Treatment Duration Oleocanthal

Cancer Target Effects Reference

Nude mice

Injection of
5 × 106 A375 cells

in 200 µl of PBS.
Human

melanoma

Oleocanthal
or DMSO 15
mg/kg/day

1 week

Signal
transducerand

activator of
transcription 3

(STAT3)

Significant decrease of
tumor size.

Ki-67 and CD31,
markers of proliferation

and angiogenesis
respectively, were

significantly decreased

[74]

Athymic nude
mice

Injection of
1 × 106

MDA-MB-231/GFP
cells

Human breast
cancer

Oleocanthal
or DMSO 5
mg/kg/day

4 weeks HGF and c-Met

Reduction of 60% in
tumor growth.

Ki-67 and CD31
markers were

significantly decreased

[68]

Male BALB/c
athymic nude

mice

Injection of
4 × 106

HCCLM3-luc cells
in

150 µL of PBS
Human

hepatocellular
Carcinoma

Oleocanthal
or DMSO 5

or 10
mg/kg/day

5 weeks

Signal
transducerand

activator of
transcription 3

(STAT3)

Tumor gross reduction
Ki-67 marker was

decreased
Increasing of apoptotic

cells in a dose
dependent manner

[69]

Fertilized
chicken eggs

Injection of
2 × 106 HT-29

cells
Human colon

carcinoma

Oleocanthal
or saline
solution

(50 µg/mL)

3 days

Cyclooxygenase-2
(COX-2) and
Adenosine

Monophosphate-
activated Protein
Kinase(AMPK)

HT-29 cells inhibition
AMPK significantly

induced
[75]

Female
athymic

nude mice

Injection of
1 × 107 BT-474

cells
Human luminal

breast cancer

Oleocanthal
or DMSO 5

or 10
mg/kg/day

>8 weeks Estrogen receptors
α (ERα)

Significant reduction in
tumor growth and

volume
[73]

Similar in vivo results of human hepatocellular carcinoma and human melanoma have recently
been reported by Pei et al. (2016) and Gu et al. (2017), respectively [69,74]. Both scientific groups
observed the inhibition of cancer cell migration by OC using a lung metastasis model. Interestingly,
Pei et al. (2016) and Gu et al. (2017) described the potential of OC to block the activity, localization,
and transcriptional activity of a novel cancer target, STAT3 [69,74]. In both hepatocellular carcinoma
and human melanoma cancers, the STAT3 transcription factor leads to the survival, proliferation,
invasion, and angiogenesis of human carcinoma by regulating the subsequent expression of target
cancer genes involved [69,70,74]. Furthermore, in melanoma, STAT3 is constitutively activated and the
high expression of phosphorylated STAT3 (p-STAT3) is associated with melanoma progression, and is
required to enhance the invasive ability of cancer [82,83].

Gu et al. (2017) furthered the study about the effects of OC on STAT3 target genes,
including myeloid leukemia cell differentiation (Mcl-1), vascular endothelial growth factor (VEGF),
B-cell lymphoma-extra large (Bcl-xL), and matrix metalloproteinase-2 and -9 (MMP-2/9) genes [74].
They highlighted that OC inhibited the migration and invasion of A375 and A2058 human melanoma
cell linesby downregulating the expression of MMP-2/9 [74] by the ability of OC to induce apoptosis
in melanoma cells by inhibiting the expression of Bcl-xL and Mcl-1 [74] and reducing the expression of
VEGF in melanoma cells, suggesting that the anti-angiogenesis effect of OC on melanoma is associated
with VEGF inhibition [74].

Cusimano et al. (2017) reached similar conclusions as Pei et al. (2016) after OC treatment
in different hepatocellular cell lines (HepG2, Huh7, Hep3B, and PLC/PRF/5) [84]. Moreover,
they explored the in vitro OC ability to induce apoptosis of colorectal carcinoma in HT29 and SW480
cell lines [84]. However, those authors highlighted the dose-dependent capability of OC through
inducing the expression of another cancer target, γH2AX, a marker of DNA damage, and increasing
intracellular ROS production, causing mitochondrial depolarization of cancer cells [84].
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Cutaneous Squamous Cell Carcinoma (cSCC) is an aggressive non-melanoma skin cancer,
which originates from the spinous layer with a high probability of developing metastasis, and is
responsible for most deaths associated with non-melanoma skin cancer [71]. The epidermal growth
factor (EPG) is key when binding to its cognate receptor EGFR for leading to the activation of
RAS/MEK/ERK and PI3K/Akt/mTOR pathways, and these play a key role in the molecular
pathogenesis of cSCC [71,85]. In this regard, Polini et al. (2018), recently observed the in vitro
effect of OC, among other phenolics, on the human epidermoid carcinoma cell line, A431 [71].
OC highly induced dose-dependent apoptosis on A431 cells after 72h of incubation through reducing
the expression levels of B-Raf, phosphorylated-AKT (p-Akt), and phosphorylated ERK (p-Erk) targets,
probably due to the changes induced by OC on Hsp-90 chaperone [85].

Furthermore, literature shows other different targets where OC can induce cancer cells death.
In this sense, LeGendre et al. (2015) described novel anti-proliferative cancer cell properties
of OC by inducing the lysosomal membrane permeabilization (LPM) target, which inhibits
the acid sphingomyelinase and causes destabilization between proteins required for lysosomal
membrane stability in cancer cells [72]. Permeabilization of lysosomes in cancerous cells
causes the release of lysosomal hydrolytic enzymes into the cytosol, which leads to apoptosis
(via mitochondrial outer membrane permeabilization and caspase activation) or necrosis (via cytosolic
acidification) [86]. Moreover, it has been reported that luminal breast cancers (Luminal A,
Luminal B, Triple negative/basal-like and HER2 type) are characterized by the expression of estrogen
receptors [87], which are associated with a higher risk of local recurrence and metastasis [87,88].
In this regard, Ayoub et al. (2017) recently demonstrated that OC treatment suppressed growth of both
luminal A and B breast cancer cell lines in a dose-dependent manner and retained its antiproliferative
activity in luminal breast cancer cells in which cell growth was inhibited in media containing estradiol,
as well as in mitogen-free media [72]. These novel features of OC were demonstrated through its
ability to downregulatethe estrogen receptors in BT-474 breast cancer cells both in vitro and in vivo,
and by suppressing the growth of hormone-dependent breast cancer [73].

In addition, OC also induced significant inhibition of the mammalian target of rapamycin (mTOR)
of which abnormal activation supports the proliferation of breast cancer cells [89] among other cancers
and neurologic diseases [90,91]. Despite mTOR having a crucial role in integrating signals from energy
homeostasis, metabolism, stress response, and cell cycle [92], its abnormal activation is also involved
in other pathogeneses, such as Alzheimer’s disease, where it increases the development of amyloid
beta (Aβ) and tau proteins [90]. Furthermore, hyperactivation of the mTOR pathway by excessive food
consumption is thought to be a critical factor which underlies diabetes [93]. Therefore, results described
by Khanfar et al. (2015) reinforce the importance of OC as a therapeutic agent against Alzheimer’s
disease and diabetes through its effects on the mTOR target [88].

On the other hand, Khanal et al. (2011) described the in vitro and in vivo anticarcinogenic
effects of OC over adenosine monophosphate-activated protein kinase (AMPK) in HT-29
colon cancer cells [75]. AMPK is an interesting therapeutic target for cancer, well-known
for its involvment in human cancer-cell apoptosis [94]. Although the literature shows that
5′-aminoimidazole-4-carboxamide-1-D-ribonucleoside (AICAR), metformin, and other phytochemicals,
such as genistein, epigallocatechin gallate, and capsaicin, induce AMPK activation [95],
Khanal et al. (2011) pointed out that in addition to activating AMPK, OC suppressed COX-2 expression
and ledto the DNA fragmentation of HT-29 colon cancer cells, inducing their apoptosis [75].
Several studies have labeled the Hsp-90 chaperone as an important cancer target [96,97]. Hsp-90 is
a key regulator of proteostasis under both physiological and stress conditions in eukaryotic cells.
Hsp-90 chaperone is involved in many cellular processes beyond protein folding, which includes
DNA repair, development, the immune response, and neurodegenerative disease, but it is also
an essential chaperone crucial for the maturation of proteins such as Raf-1, ErbB2, actin, tubulin,
and Cdk4, involved in cancer growth [97,98]. Also concerning this, Margarucci et al. (2013) suggested
that OC can mediate both Hsp-90-ATPase activity inhibition and changes in the oligomerization of
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chaperones inducing cancer-cell inhibition [96]. Although those authors regrettably reported the
inactivity of OC as an expression regulator of the Hsp-90 chaperone, Voiculescu et al. (2016), as well
as Margarucci et al. (2013) proposed changes in the oligomerization of the Hsp-90 chaperone by OC,
such as a mechanism to induce cancer-cell apoptosis [85]. Further studies are needed to clarify the role
of OC on the Hsp-90 target.

3.5. Cardioprotective Effects of Oleocanthal

In the literature, there is currently only one study about the protective effects of OC against
atherosclerotic cardiovascular disease (ACD). ACD is a chronic inflammatory disease initiated by
endothelial damage and promoted by a number of cell types to include platelets [99].

In this regard, Agrawal et al. (2017) recently described that consumption of 40mL OC-rich EVOO
(310mg of OC/kg oil) for one week increased the anti-platelet effects in healthy men aged between
20 and 50 years [100]. Although the extent of the response may be influenced by individual metabolism
and/or diet, these beneficial effects best correlated with OC intake which reduced collagen-stimulated
maximum platelet aggregation [100].

4. Future Prospects

Much evidence supports the protective effects of OC against a variety of major diseases. OC can
offer interesting and different health benefits for a diverse series of illnesses. However, further in vivo
studies in animal models and human trials should be designed to advance the research on OC’s health
benefits, as well as to explore its beneficial effects on other diseases, such as obesity and metabolic
syndrome, as have been described for other phenolic compounds.

Given that the concentration of OC usually comprises about 0.02% by weight of EVOO [24],
some authors doubt the bioactivity of OC [25]. Although it is hard to determine the minimal dose for
the biological effects of polyphenols in humans, further study on the concentration of OC, as well as
its bioavailability, metabolism, and biological effects will be required.

Despite enrichment of OC in EVOO currently being applied, further efforts must be made to
design novel, high-yield methods which allow OC to be obtained for future use in pharmacology.
Some synthesis and extraction methods have already been described [6,101]; nevertheless, they are
quite tedious, expensive, and have shown low OC yields.

In conclusion, the Mediterranean diet being regarded as a healthy one is directly relatedto its
inclusion of EVOO. However, not all benefits can be assumed to be by OC, since different olive oil
constituents have been characterized as being functional compounds, such as hydroxytyrosol, tyrosol,
and oleuropein, among others. However, the pleiotropic bioactivities that OC promote go further than
what the phenolics listed above can exhibit. Promising expected results will trigger the use of OC as
a therapeutic agent in the near future.
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Abbreviations

Aβ β-amyloid peptides oligomerization
ADDLs Amyloid-derived diffusible ligands
EVOO Extra virgin olive oil
HGF Hepatocyte growth factor
LMP Lysosomal membrane permeabilization
mTOR Mammalian target of rapamycin
MUFA Monounsaturated fatty acid
NO Nitric oxide
NSAID Non-steroidal anti-inflammatory drug
OA Osteoarthritis
OC Oleocanthal
PG Prostaglandin
PUFA Polyunsaturated fatty acids
SFA Saturated fat acids
TLRs Toll-like receptors
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