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Abstract: The antioxidant capacity and the phytochemical composition of two by-products from
beeswax recycling processes were recently investigated. The aim of the present work was to
evaluate the efficacy of one of these by-products, MUD1, against the oxidative stress induced by
2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) in human dermal fibroblast (HDF) cells.
After a preliminary viability assay, the protective effect of MUD1 was investigated through the
measurement of apoptosis level, the reactive oxygen species (ROS) and nitrite (NO2

−) production,
the level of protein and lipid biomarkers (carbonyl groups, total glutathione and thiobarbituric
acid-reactive substance) of oxidative damage, and the measurement of antioxidant enzymes activities
(glutatione peroxidase, glutathione reductase, glutathione transferase, superoxide dismutase and
catalase). The obtained results showed that MUD1 exerted protective effects on HDF, increasing
cell viability and counteracted the oxidative stress promoted by AAPH-treatment, and improved
mitochondria functionality and wound healing capacities. This work shows the antioxidant effects
exerted by beeswax by-products, demonstrating for the first time their potential against oxidative
stress in human dermal fibroblast cells; however, further research will be necessary to evaluate their
potentiality for human health by more deeply in vitro and in vivo studies.
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1. Introduction

The reduction of the energy and water consumption, and in a residual way, the recovery
of energy from waste represent the actual main goal of the food industry [1]. For this reason,
investment in research, new production systems and recovery technologies for the recycle of food
waste biocomponents, are becoming an urgent need [1]. The development of these strategies can
lead to numerous advantages, such as the valorization of bioactive molecules that could be used in
the food chain or for medicinal purposes. Some examples are represented by collagen derived from
fish (e.g., skin, bones, and fins), seaweed or plants [1]. In this context, the products derived from
honey production such as beeswax, propolis, pollen, venom and royal jelly are attracting attention
of the scientific community, due to their interesting nutritional composition [2,3], which could have
a potential impact on biomedicine. In particular, beeswax and its derivatives have been recognized
for their antibacterial properties and traditionally used for the treatment of wounds, burns, psoriasis,
and topic dermatitis [4]. According to the European food safety authority, beeswax is accepted for its
safety and can also be used as a glossing, flavoring, preserving or supplementing agents for food [5].
It is estimated that approximately 30 kg of honey yielded 1 kg of wax, so the use of the latter could
have a significant economic impact [3]. In addition, a recent study from our group highlighted
the proximal, nutritional, and phenolic content as well as the antioxidant capacity of two beeswax
recycling by-products (MUD1 and MUD2). We also demonstrated their anticarcinogenic effects in
human hepatocellular carcinoma (HepG2) cells [2]. Both derivatives—although to a greater extent
MUD1—induced cytotoxic effects in this cell line by reducing cell viability, increasing reactive oxygen
species (ROS) generation, and deteriorating mitochondrial functionality, thanks to the phytochemical
contents [2].

Oxidative stress represents the main cause of most common chronic diseases including
inflammation, cardiovascular diseases, diabetes, metabolic syndrome, and cancer [6]; in recent years,
numerous studies have demonstrated that dietary antioxidants from plant foods represent an efficient
strategy to counteract this condition, and can be considered a useful tool for the maintenance of human
health status and well-being conditions [7–10]. On the experience of our previous reports [7–10] and the
antioxidant potential of MUD1 (it presents 1435.66 ± 71.78 mg/100 g and 295.84 ± 14.80 mg/100 g of
Total phenolic content and total flavonoids content, respectively) [2], in the present study we evaluated
the efficacy of beeswax by-products, MUD1, as a potential therapeutic agent against oxidative damage
induced by 2,2′-aszobis(2-amidinopropane) dihydrochloride (AAPH) in Human Dermal Fibroblasts
(HDF). HDF are considered an excellent model system to study several aspects of cell physiology, and
are widely used to evaluate the in vitro effect of substances of interest in the prevention of oxidative
damage caused by different agents [8,11]. We hypothesized that if beeswax byproducts, such as the
potent antioxidant MUD1, could protect HDF cells from oxidative damage induced by AAPH, they
could be considered as potential therapeutic agents used to speed up wound healing in patients
suffering from chronic diseases. To quantify the direct protective effects of MUD1 against ROS damage
by AAPH on HDF cells, we measured the cell viability, apoptosis rate, ROS and NO2

− levels, and
the biomarkers of oxidative damage to biomolecules (i.e., proteins and lipids). Moreover, to assess
the indirect effects of MUD1 protecting against ROS damage by AAPH on HDF cells, we measured
the activity antioxidant enzymes, the mitochondria functionality, and the wound healing capabilities.
To the best of our knowledge this is the first study that investigates the protective effect of beeswax
by-products on AAPH-induced damage in the HDF cell line.

2. Results and Discussion

2.1. MUD1 Treatments Reduced AAPH-Mediated ROS Production and NO2
− Accumulation

According to our recently published results that showed that MUD1 contains high content
in fiber, protein, carbohydrate, polyphenol and flavonoid, and presents antioxidant properties [2],
we decided to test the efficacy of MUD1 against AAPH-induced stress in HDF cells. The measurement
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of intracellular ROS production represents a very useful tool for the evaluation of oxidative stress
promoted by AAPH [11,12]. The accumulation of ROS can result in the hyperactivation of the
inflammatory response, tissue damage, and oxidative stress phenomena [13]. In the present work,
the protective effect of MUD1 on AAPH-induced ROS production was highlighted when applied at
250 µg/mL and 750 µg/mL (Figure 1). In HDF cells, MUD1 treatment reduced ROS production
compared to the control group. In cells pre-treated with MUD1 and stressed with AAPH, this
reduction became significant (p < 0.05) at all MUD1 applied concentrations. Nitric oxide (NO) is
widely considered an important regulatory and effector molecule with different biological functions
and it represents a fundamental component involved in many physiological and pathophysiological
processes [13,14]. As reported in Figure 1, MUD1 was able to reduce the level of NO derivative
nitrite production compared to untreated cells (p < 0.05). AAPH-treatment significantly increased
NO2

− accumulation (p < 0.05), which was efficiently counteracted by MUD1 pre-treatment, restoring
also in this case, levels similar to a control group at 750 µg/mL. Similar effects were obtained when
Manuka honey was used as a therapeutic agent against AAPH induced oxidative stress in HDF
cells by reducing intracellular ROS production and NO2

− accumulation [11]. Also, pre-treatment
with strawberry extracts have been demonstrated to counteract the oxidative damage induced by
different chemical and biological agents such as hydrogen peroxide [15], ultraviolet radiations [16],
and lipopolysaccharide [7,8].
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Figure 1. Reactive oxygen species (ROS) production (red bars) and NO2− level (blue bars) in human 
dermal fibroblast (HDF) cells treated with different concentrations of MUD1 (250–750 µg/mL) for 24 
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2.2. Regulation of Apoptosis Level by MUD1 

The augment of ROS production could be related to the induction of apoptosis, a process that 
leads to many biochemical and morphological modifications, such as cell shrinkage, nucleosomal 
degradation, chromatin condensation, and the activation of caspases [17]. Our results demonstrated 
that MUD1 treatment improved HDF viability, increasing the number of live cells and lowering the 
amount of dead cells at all concentrations applied especially in the presence of APPH (Figure 2). At 
the same time, AAPH treatment significantly increased the number of apoptotic cells (p < 0.05), while 
MUD1 extracts significantly (p < 0.05) reduced this amount at the both concentrations applied. At 
750 µg/mL the quantified apoptosis rate was comparable to the untreated group either when applied 
alone than when applied before incubation with AAPH (Figure 2). These results are similar with 
those reported for Manuka honey that in HDF significantly (p < 0.05) reduced the AAPH induced 
apoptosis rate for neutralizing the oxidative damage [11]. 

Figure 1. Reactive oxygen species (ROS) production (red bars) and NO2
− level (blue bars) in human

dermal fibroblast (HDF) cells treated with different concentrations of MUD1 (250–750 µg/mL) for 24 h,
AAPH (10 mM) for 24 h and with different concentrations of MUD1 and then with AAPH. Data are
expressed as mean values ± SD. Columns belonging to the same set of data with different superscript
letters are significantly different (p < 0.05).

2.2. Regulation of Apoptosis Level by MUD1

The augment of ROS production could be related to the induction of apoptosis, a process that
leads to many biochemical and morphological modifications, such as cell shrinkage, nucleosomal
degradation, chromatin condensation, and the activation of caspases [17]. Our results demonstrated
that MUD1 treatment improved HDF viability, increasing the number of live cells and lowering the
amount of dead cells at all concentrations applied especially in the presence of APPH (Figure 2).
At the same time, AAPH treatment significantly increased the number of apoptotic cells (p < 0.05),
while MUD1 extracts significantly (p < 0.05) reduced this amount at the both concentrations applied. At
750 µg/mL the quantified apoptosis rate was comparable to the untreated group either when applied
alone than when applied before incubation with AAPH (Figure 2). These results are similar with those



Int. J. Mol. Sci. 2018, 19, 2842 4 of 14

reported for Manuka honey that in HDF significantly (p < 0.05) reduced the AAPH induced apoptosis
rate for neutralizing the oxidative damage [11].
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Figure 2. Live (blue bars), dead (red bars), and apoptosis (green bars) levels in HDF cells treated with
different concentrations of MUD1 (250–750 µg/mL) for 24 h, AAPH (10 mM) for 24 h and with different
concentrations of MUD1 and then with AAPH. Data are expressed as mean values ± SD. Columns
belonging to the same set of data with different superscript letters are significantly different (p < 0.05).

2.3. MUD1 Treatment Reduced Protein and Lipid Biomarkers of Oxidative Stress

In order to quantify the oxidative damage in the HDF cells after treatment with AAPH and/or
MUD1, lipid peroxidation and protein carbonyl formation, common markers of lipid and protein
oxidation, respectively, were evaluated. Lipid peroxidation is a free radical-mediated chain reaction,
which can be stopped through enzymatic means or by free radical scavenging by antioxidants [18].
Some diagnostic tests are available for quantification of the end-products of lipid peroxidation,
being the thiobarbituric acid-reactive substance (TBARS) assay the most commonly used. Meanwhile,
the production of carbonyl groups represents an early event in oxidative stress, and can be efficiently
used to measure the accumulation of protein oxidative damage [19]. In addition to lipid peroxidation
and protein carbonyl formation, total glutathione (GSH) level is another important marker of oxidation,
since it plays an important role in maintaining the normal reduced state of cells and strongly counteracts
the harmful effects of oxidative stress and detoxifying xenobiotics [20].

As reported in Figure 3, MUD1 treatments reduced protein carbonyl content and increased GSH
levels compared to untreated cells, while HDF subjected to AAPH treatment showed a remarkable
protein damage (p < 0.05). Pre-treatment with MUD1 improved the levels of AAPH-induced protein
damage, obtaining values similar to the control groups with MUD1 at 750 µg/mL and 250 µg/mL,
for GSH and protein carbonyl content, respectively. Similar results were obtained in case of lipid
oxidation (Figure 3): MUD1 extract significantly lowered TBARS level in respect to the control group
(p < 0.05), exerting positive effects also before the oxidative stress induced by AAPH, in when applied
at 250 µg/mL and 750 µg/mL (p < 0.05). Our findings are in agreement with previous studies reporting
the capacity of different natural bioactive compounds or food extract in increasing the levels of GSH in
different stressed models [7,8,14,18].
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Figure 3. TBARS level (red bars), Protein carbonyl content (blue bars) and GSH (green bars) in HDF
cells treated with different concentrations of MUD1 (250–750 µg/mL) for 24 h or AAPH (10 mM) for 24
h and with different concentrations of MUD1 and then with AAPH. Data are expressed as mean values
± SD. Columns with different superscript letters are significantly different (p < 0.05).

2.4. MUD1 Treatment Improved the Endogenous Antioxidant Defence System

Different studies indicated that honey and other natural bioactive compounds are able to
modulate the activity of diverse antioxidant enzymes, reducing the damage induced by AAPH
in HDF cells [11,21]. Under physiological conditions, the balance between prooxidant and antioxidant
compounds moderately favors prooxidants, thus inducing a slight oxidative stress, requiring the
intervention of endogenous antioxidant systems of the organism [22]. Redox homeostasis of the
cell is assured by its complex endogenous antioxidant defense system, which includes endogenous
antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx),
non-enzymatic compounds and low molecular weight scavengers, like uric acid, coenzyme Q,
and lipoic acid [23]. The results obtained in our works are in line with these previous data: MUD1
treatment was able to increase the enzymatic activity of GPx, glutathione reductase (GR) and
glutathione trasferase (GST) in different doses, obtaining a significant difference in respect to the
control group at doses of 250 µg/mL for GR and GST (p < 0.05) and at 750 µg/mL for GPx (p < 0.05)
(Figure 4a). Similar results were obtained for SOD and catalase (Figure 4b). In all the different enzymes,
AAPH treatment determined a significant reduction (p < 0.05) of enzymatic activities, which were
efficiently counteracted by MUD1 treatment in a dose-dependent manner (Figure 4). These results
confirm the hypothesis that AAPH causes oxidative damage, decreasing antioxidant enzymes activities
since the reservoir is depleted to counteract the damage. Otherwise MUD1 reduced the AAPH effect,
improving the enzyme activities and decreasing the induced damage.
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A/rotenone, two common inhibitors of electron transport chain. Sequential injections of these 
compounds calculates basal respiration, maximal respiration, ATP production, proton leak, spare 
respiratory capacity, and non-mitochondrial respiration. Basal respiration is mainly regulated by the 
parallel re-entry pathways through the ATP synthase and proton leak. Oligomycin inhibits the ATP 
synthase and residual respiration is related to the proton leak. The addition of an appropriate 
concentration of the protonophore 2,4 DNP determines a high artificial proton conductance into the 
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Figure 4. Glutathione peroxidase (GPX), glutathione reductase (GR), glutathione trasferase (GST) (a)
and superoxide dismutase (SOD) and catalase (b) activities cell in HDF cells treated with different
concentrations of MUD1 (250–750 µg/mL) for 24 h or AAPH (10 mM) for 24 h and with different
concentrations of MUD1 and then with AAPH. Data are expressed as mean values ± SD. Columns
with different superscript letters are significantly different (p < 0.05).

2.5. Effect of MUD1 Treatment on OCR and ECAR

The electron transport chain in the mitochondria represents the most important site of ROS
production [19]. According to the result found by ROS analysis, we evaluated the mitochondria
dysfunction in HDF cells, by assessing oxidative phosphorylation and glycolysis: the first one acts
as a major source of adenosine triphosphate (ATP) in almost all aerobic organisms, while glycolysis
breaking down glucose produces pyruvate with two ATPs in the cytoplasm [24]. Figure 6a shows
the oxygen consumption rate (OCR) trend of the different tested groups, in relation to the molecules
applied: oligomycin, an inhibitor of ATP synthase, 2,4-Dinitrophenol (2,4 DNP), an uncoupling agent
between the electron transport chain and oxidative phosphorylation, and antimycin A/rotenone, two
common inhibitors of electron transport chain. Sequential injections of these compounds calculates
basal respiration, maximal respiration, ATP production, proton leak, spare respiratory capacity,
and non-mitochondrial respiration. Basal respiration is mainly regulated by the parallel re-entry
pathways through the ATP synthase and proton leak. Oligomycin inhibits the ATP synthase and
residual respiration is related to the proton leak. The addition of an appropriate concentration of
the protonophore 2,4 DNP determines a high artificial proton conductance into the membrane. This
maximal respiration is now owned by the electron transport chain activity and/or substrate delivery.
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The increased respiratory capacity above basal respiration represents the maximal respiratory capacity.
In the end, inhibitors of the electron transport chain were injected: antimycin A/rotenone that block
complex III and I, respectively. In this way, any residual respiration is non mitochondrial and needs
to be removed from the other rates [25]. Starting from the baseline values of OCR, AAPH treatment
strongly reduced the oxygen consumption in respect to the control group (Figure 5a). On the contrary,
MUD1 treatment improved the mitochondrial respiration, increasing the OCR level in respect to the
control and also neutralizing the depressive effect exerted by AAPH. The response to the inhibitor was
the same for all the tested groups. Taking into account the maximal respiratory capacity (Figure 5b),
MUD1 treatment efficiently improved this value: in particular, pre-treatment with MUD1 at 750 µg/mL
before the AAPH incubation significantly contrasted the reduction of maximal respiratory capacity
evoked by AAPH (p < 0.05). Since the maximal respiratory capacity indicates the maximum rate
of respiration that cells can achieve in conditions of high energy demand, an augmentation of this
parameter implies that cells are capable of rapidly oxidizing substrates (sugars, fats, amino acids) so
that they can face this metabolic challenge. In previous studies our group has shown that other food
matrices rich in antioxidant compounds are also capable of stimulating mitochondrial functionality
in vitro [11,15] and in vivo [26].
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Figure 5. OCR (a) and maximal respiratory capacity (b) in HDF cells treated with different
concentrations of MUD1 (250–750 µg/mL) for 24 h, AAPH (10 mM) for 24 h and with different
concentrations of MUD1 and then with AAPH. Data are expressed as mean values ± SD. Columns
belonging to the same set of data with different superscript letters are significantly different (p < 0.05).

With regard to the glycolytic pathway, starting from the baseline values of the extracellular
acidification rate (ECAR), we observed that AAPH treatment remarkably increased the ECAR value,
which was reduced through MUD1 treatment (Figure 6a). Furthermore, in this case different molecules
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were applied: rotenone, glucose, and 2-deoxyglucose (2-DG). As previously indicated rotenone blocks
complex I, in this way any effect of mitochondria respiration was averted. The second injection was
a saturating concentration of glucose. The cells utilize the glucose injection and catabolize it through
the glycolytic pathway to pyruvate, producing ATP, NADH, water, and protons. The extrusion of
protons into the surrounding medium causes a rapid increase in ECAR. The final injection was 2-DG,
a glucose analog, that inhibits glycolysis through competitive binding to the first enzyme in the
glycolytic pathway, glucose hexokinase. The resulting decrease in ECAR confirms that the ECAR
produced in the experiment is due to glycolysis, and the difference between ECAR value after glucose
injection and the final 2-DG value represent the maximal respiratory capacity [27]. As shown in
Figure 6a, the response to the inhibitor was the same for all the tested groups. Finally, looking at
the glycolytic capacity (Figure 6b), MUD1 treatment reduced this value significantly at 750 µg/mL
(p < 0.05). AAPH treatment efficiently raised the value (p < 0.05), which was lowered after MUD1
pre-treatment at 750 µg/mL (p < 0.05). Our results are in agreement with other published data that
showed a significant decrease in ECAR values in lipopolysaccharide (LPS)-treated RAW macrophages
after Manuka honey treatment in a dose-dependent way [28], as well as in LPS-treated HDF cells after
polyphenol-rich fruits treatment [8].
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Figure 6. Extracellular acidification rate (ECAR) (a) and glycolytic capacity (b) in HDF cells treated
with different concentrations of MUD1 (250–750 µg/mL) for 24 h, AAPH (10 mM) for 24 h and with
different concentrations of MUD1 and then with AAPH. Data are expressed as mean values ± SD.
Columns belonging to the same set of data with different superscript letters are significantly different
(p < 0.05).
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2.6. MUD1 Promotes Tissue Repair by Fibroblast Migration and Wound Closure

Numerous studies have highlighted the capacity of honey in healing chronic wounds in humans
and animals [28–31]. This property can be related to the antibacterial capacity of honey and other
mechanisms related to its physical properties, such as pH, and to its immunostimulatory and
anti-inflammatory effects [32,33]. Recent studies investigated the properties of honey, in repairing
tissue through nitric oxide production, promoting migration, and enhancing wound closure in HDF
cells treated with AAPH [11]. On the contrary, in the colon cancer cell model, honey exerted its positive
effects reducing cell migration and invasion [27]. The wound scratch assay is a simple, economical,
and highly sensitive method to determine cell migration in vitro; it is particularly useful for examining
the effects of cell to cell connection and cell to matrix interactions, as well as imitate cell movement
during wound healing in vivo.

In the present work a pre-treatment with MUD1 for 24 h slightly promoted scratch wound closure
when compared to the control group, at both concentrations (Figure 7a,b). Treatment with AAPH
significantly affected (p < 0.05) the migration of HDF and wound closure activity, while MUD1
pre-treatment was able to reduce this negative effect, restoring values similar to the control at
750 µg/mL. These results confirm that MUD1 promotes tissue repair by favoring cell migration and it
could be used in the topical treatment of wounds, although future in vivo studies would be necessary.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  9 of 14 

 

2.6. MUD1 Promotes Tissue Repair by Fibroblast Migration and Wound Closure 

Numerous studies have highlighted the capacity of honey in healing chronic wounds in 
humans and animals [28–31]. This property can be related to the antibacterial capacity of honey and 
other mechanisms related to its physical properties, such as pH, and to its immunostimulatory and 
anti-inflammatory effects [32,33]. Recent studies investigated the properties of honey, in repairing 
tissue through nitric oxide production, promoting migration, and enhancing wound closure in HDF 
cells treated with AAPH [11]. On the contrary, in the colon cancer cell model, honey exerted its 
positive effects reducing cell migration and invasion [27]. The wound scratch assay is a simple, 
economical, and highly sensitive method to determine cell migration in vitro; it is particularly useful 
for examining the effects of cell to cell connection and cell to matrix interactions, as well as imitate 
cell movement during wound healing in vivo.  

In the present work a pre-treatment with MUD1 for 24 h slightly promoted scratch wound 
closure when compared to the control group, at both concentrations (Figure 7a,b). Treatment with 
AAPH significantly affected (p < 0.05) the migration of HDF and wound closure activity, while 
MUD1 pre-treatment was able to reduce this negative effect, restoring values similar to the control at 
750 µg/mL. These results confirm that MUD1 promotes tissue repair by favoring cell migration and 
it could be used in the topical treatment of wounds, although future in vivo studies would be 
necessary. 

 
Figure 7. Scratch wound closure (a) in HDF cells treated with different concentrations of MUD1 (250–
750 µg/mL) for 24 h or AAPH (10 mM) for 24 h and with different concentrations of MUD1 and then 
with AAPH. Data are expressed as mean values ± SD. Columns with different superscript letters are 
significantly different (p < 0.05). Representative images illustrating the migration of HDF cells into 
the scratch wound during different treatments exposure (b). Scale bars = 100 µm 

3. Materials and Methods 

All chemicals and reagents were bought from Sigmae-Aldrich Chemical Company 
(Sigma-Aldrich, St. Luis, MO, USA). 
  

Figure 7. Scratch wound closure (a) in HDF cells treated with different concentrations of MUD1
(250–750 µg/mL) for 24 h or AAPH (10 mM) for 24 h and with different concentrations of MUD1 and
then with AAPH. Data are expressed as mean values ± SD. Columns with different superscript letters
are significantly different (p < 0.05). Representative images illustrating the migration of HDF cells into
the scratch wound during different treatments exposure (b). Scale bars = 100 µm

3. Materials and Methods

All chemicals and reagents were bought from Sigmae-Aldrich Chemical Company (Sigma-Aldrich,
St. Luis, MO, USA).
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3.1. Sample Collection and Preparation

The combs were collected and subjected to a heating process by steam during the recycling process
of the wax honeycombs. A fraction with organic and inorganic waste was isolated from wax (MUD1),
which included pollen, molting debris of baby bees, etc. Five samples of MUD1 were randomly
harvested from total MUDs and subjected to hydrophilic extraction, as previously reported [34]
by diluting 1 g of MUD1 in 10 mL of distilled water and filtered through Minisart filter of 45 µm
(PBI TInternational).

3.2. Cell Culture and Treatments

Adult skin HDF were obtained by GIBCO® Invitrogen cell (Waltham, MA, USA), plated into
a T-75 flasks and cultured as previously reported [7]. Cells were treated with (i) Dulbecco’s Modified
Eagle Medium (DMEM) only (ctrl group); (ii) MUD1 hydrophilic extract for 24 h at 250 and 750 µg/mL;
(iii) AAPH for 24 h at 10 mM; (iv) MUD1 for 24 h at 250 and 750 µg/, and then with AAPH 10 mM
for 24 h. The combination of dose/time MUD1 treatments was chosen according to our preliminary
cytotoxic study. The dose/time treatment of AAPH was chosen according to our previous studies [11].

3.3. TALI® ROS Concentration Assay

The ROS intracellular levels determination was performed using the CellROX® Orange reagent
(Invitrogen, Life Technologies, Milan, Italy) according to the manufacturer’s instructions, as previously
reported by our group [24]. Each treatment was performed in three replicates and the final results
were reported as a fold increase compared to the control.

3.4. Determination of Nitrite Production

NO2
− in cell culture media was determined by the Griess method [35]. Each treatment was

carried out in three replicates and the final results were expressed as a fold increase in respect to
the control.

3.5. Apoptosis Detection

Apoptosis was assessed by the Tali™ apoptosis assay kit (Invitrogen™, Life Technologies,
Monza, Italy), which uses Annexin V Alexa Fluor™ 488 (Invitrogen™, Life Technologies, Monza, Italy)
and propidium iodide (Invitrogen™, Life Technologies, Monza, Italy) to differentiate cells as live, dead,
or apoptotic as previously indicated [24]. Each treatment was performed in three replicates and the
final results were reported as a fold increase compared to the control.

3.6. Measurements of the Protein and Lipid Oxidative Damage

For the measurement of protein and lipid oxidative damage, each HDF was treated as previously
reported [36–39]. Each sample was analyzed in three replicates and the final results were expressed as
a fold increase in respect to the control.

3.7. Antioxidant Enzyme Activities

HDF cells were incubated with a RIPA buffer on ice for 5 min and the lysate analyzed for
the antioxidant enzyme activities of GPx, GR, GST, SOD, and catalase as previously reported by
Giampieri et al. [40]. Each treatment was carried out in three replicates and the final results were
expressed as a fold increase in respect to the control.

3.8. Determination of Mitochondrial Respiration and Extracellular Acidification Rate in Cells

XF-24 Extracellular Flux Analyzer was employed to evaluate in real-time OCR and ECAR,
as previously indicated [8,25].
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3.9. In Vitro Skin Fibroblast Migration and Proliferation Assay

HDF cells were seeded into 12-well plate and assessed as previously reported [11,41].
The experiments were made in triplicate and five representative images were made for each wound at
randomly chosen points.

3.10. Statistical Analysis

STATISTICA software (Statsoft Inc., Tulsa, OK, USA) were used to perform the statistical analysis.
Data were subjected to one-way ANOVA analysis of variance for mean comparison, and significant
differences among different treatments were calculated according to HSD Tukey’s multiple range test.
Data are reported as mean ± SD. Differences at p < 0.05 were considered statistically significant.

4. Conclusions

The research of a new life for by-products, before they become waste, is the new goal of the
food processing industry. In this study we confirmed and underlined the important antioxidant
effects of beeswax by-products, which are mainly related to their phenolic contents, and in particular
to flavonoids, as we have previously reported [2]. It is widely accepted that these compounds are
able to exert many healthy effects, and the antioxidant capacity is one of the most well-known and
studied properties in different experimental models; reported for quercetin and its glycosides, raw
honey on Cu2+-induced oxidative stress in HepG2 cells [42,43], LPS-stimulated RAW 264.7 cells [44,45],
strawberry anthocyanins on AAPH-, and LPS-induced stress on human dermal fibroblasts [8,21].
In the present work, we showed for the first time the protective effect of beeswax by-products against
oxidative damage induced by AAPH in HDF cells. An improvement of oxidative status and antioxidant
defenses was detected; simultaneously an enhancement of mitochondria functionality and wound
healing properties were also marked. The results obtained can represent an interesting starting point
for the development of new functional foods based on beeswax by-products. Future studies that
investigate the molecular mechanisms involved in these antioxidant properties must be performed,
both through in vitro and in vivo models.
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Abbreviations

2,4 DNP 2,4-Dinitrophenol
2-DG 2-deoxyglucose
AAPH 2,2′-azobis(2-amidinopropane) dihydrochloride
ABB annexin binding buffer
DMEM Dulbecco’s Modified Eagle Medium
ECAR extracellular acidification rate
HDF human dermal fibroblast
HepG2 human hepatocellular carcinoma
GPx glutathione peroxidase
GR glutathione reductase
GSH glutathione
GST glutathione trasferase
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NO nitric oxide
NO2

− nitrite
OCR oxygen consumption rate
PBS phosphate-buffered saline solution
ROS reactive oxygen species
SOD superoxide dismutase
TBARS thiobarbituric acid-reactive substances
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