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Abstract

The simulation of multivariate data is often necessary for assessing the performance

of multivariate analysis techniques. The random generation of multivariate data

when the covariance matrix is completely or partly specified is solved by different

methods, from the Cholesky decomposition to some recent alternatives. However,

many times the covariance matrix has to be generated also at random, so that

the data simulation spans different situations from highly correlated to uncorre-

lated data. This is the case when assessing a new multivariate analysis technique

in Montercarlo experiments. In this paper, we introduce a new algorithm for the

generation of random data from covariance matrices of random structure, where

the user only decides the data dimension and the level of correlation. We will illus-

trate the application of this algorithm in several relevant problems in multivariate

analysis, namely the selection of the number of Principal Components in Princi-

pal Component Analysis, the evaluation of the performance of sparse Partial Least

Squares and the calibration of Multivariate Statistical Process Control systems. The

algorithm is available as part of the MEDA Toolbox v1.1 1

1 Available at https://github.com/josecamachop/MEDA-

Toolbox/releases/tag/v1.1
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1 Introduction

When a new multivariate technique for data analysis is developed, there is the

need to test its performance on a wide set of data structures in Montecarlo

experiments. Sometimes the structure of the data is established a priori to a

certain extent, like when the data is simulated according to specific analyti-

cal instruments [1] or well known industrial processes [2]. In other cases, the

technique to be assessed may be applied to data of very different structure.

For instance, take the case of the algorithms for the dimensionality selection

in PCA or PLS. Such an algorithm needs to be tested on a general perspec-

tive, without making assumptions on the data generation procedure, or more

specifically on the correlation structure.

While the generation of random data when the covariance matrix is completely

or partly specified is solved by different methods [3,4,6], there is no established

approach to generate random data from randomly generated covariance ma-

trices to perform Montecarlo experiments. In this paper, we propose such an

approach. We will show that the proposed algorithm, named simuleMV, can

be very useful in a broad set of problems that are relevant for the research

community. In particular, we will illustrate its use in the selection of the

number of PCs in PCA using cross-validation, the comparison of performance

between sparse and normal versions of PLS and the calibration of Multivariate

Statistical Process Control systems for anomaly detection.

The rest of the paper is organized as follows. Section 2 introduces the methods

Email address: josecamacho@ugr.es, tel: +34 958 248898, fax: +34 958

240831 (José Camacho).
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for data simulation from a known covariance matrix. Section 3 discusses the

problem of data simulation for random covariance. It ends with the definition

of the proposal of this paper. Section 4 evaluates this solution and Section 5

presents some application case studies. Section 6 presents the conclusions of

the work.

2 Simulation of random data when the covariance is known

Let us define Σ as the covariance matrix for data generation, and X ∼ N(0, I)

as a random matrix. The goal pursued by the approaches introduced in this

section is the generation of a data matrix Y from X but with covariance matrix

Σ.

The traditional approach for data generation following this definition is based

on the Cholesky Decomposition (CD) of Σ in the product of a lower triangular

matrix and its conjugate transpose:

Σ =
CD

CCT (1)

where C is lower triangular. Then, Y can be obtained from C and X:

Y = XCT (2)

As a result of this equation, as the sample covariance of X is closer to its

population covariance, i.e. the identity matrix I, the sample covariance of Y

will be closer to Σ.

The CD approach, however, has a number of drawbacks. First, it can only

be applied to non-singular (positive definite) covariance matrices, which is a
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severe limitation in chemometric studies. Second, the procedure is limited to X

with population covariance I. However, it might be interesting to modify the

distribution of the elements in X in order to introduce certain features in Y ,

like clusters and outliers. Doing so while maintaining a population covariance

equal to I is a problem as challenging as the one treated in this paper. Last, and

probably the least important, the CD approach provides data matrices which

covariance matrix only approximates Σ. Stated otherwise, with the CD we can

impose a certain population covariance to Y , but not a sample covariance.

Two recent approaches propose an improved alternative to the CD. On the

one hand, Arteaga and Ferrer [3] proposed two methods for data generation

with an exact sample covariance. The first method takes as input the com-

plete covariance matrix Σ, while the second method is run from a subset of

eigenvalues of Σ. The first method is referred to as randnm, and it is the one of

interest in this paper. It is based on three steps. First, it performs a Singular

Value Decomposition (SVD) of Σ:

Σ =
SV D

V DV T (3)

where, as a result of Σ being a covariance matrix, V contains the eigenvectors

of Σ and D is a diagonal matrix containing the eigenvalues.

Then, it generates random matrix X and performs the QR Decomposition on

it:

X =
QR

QRT (4)

where Q is an orthogonal matrix and R an upper triangular matrix.
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Finally, matrix Y is obtained as:

Y =
√
N − 1QSV T (5)

where N is the number of rows of X and S is the root square element-wise of

diagonal matrix D, so that D = SS.

On the other hand, Camacho et al. [4] presented the ADICOV algorithm,

similar to randnm in philosophy but of broader application and with the ad-

ditional property that Y is the least squares approximation of X with sample

covariance matrix Σ. A first difference of ADICOV with respect to randnm

is that X is not internally generated, but an input to the algorithm. This is

appropriate to extend the approximation to data sets which are not normally

distributed, for instance for X with specific features like outliers and clusters

[5]. Another difference is that ADICOV generalizes the approximation to spe-

cific subspaces, like those identified with PCA or PLS. It should be noted that

extending randnm to mimic this features is straightforward.

For the sake of simplicity, we will discuss a simplified version of ADICOV

where Y follows Σ in the original space. The first step of ADICOV is an

EigenDecomposition of Σ, equivalent to the first step in randnm:

Σ =
ED

V DV T (6)

Again, V contains the eigenvectors of Σ and D is a diagonal matrix containing

the eigenvalues.

Then, the Polar Decomposition (PD) is performed over matrix XDV T . This

can be done by performing a SVD and retaining the row-wise and column-wise
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eigenvectors:

XDV T =
SV D

UpDpV
T
p (7)

Pp = UpV
T
p (8)

being Pp the first factor of the PD. Then, matrix Y follows:

Y =
√
N − 1PpSV

T (9)

Recall that this is a simplified version of ADICOV. The original version per-

forms several projections between the original space and the subspace of

choice.

To understand the differences among the CD, randnm and ADICOV, we can

perform a number of simple simulations. We generate 100 repetitions of data

sets of dimension n× 100, for n = {10, 100, 1000}, and compare the methods

in terms of three figures of merit:

• SSE in Covariance: The sum-of-squares of the difference/error (SSE) be-

tween Σ and the covariance of Y

• SSE in Data: The SSE between X and Y

• The computation time

Results are shown in Fig. 1.

Fig. 1(a) presents the SSE in Covariance in logarithm scale. It shows that both

ADICOV and randnm yield exact solutions, that is, Y has a sample covariance

matrix equal to Σ, while CD takes Σ as its population matrix. However, the

main limitation of the CD is the fact that when data are not full rank (e.g. for
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Fig. 1. Comparison of the Cholesky Decomposition, randnm and ADICOV in the

simulation of data: Sum-of-squares on error (SSE) in Covariance (a), SSE in Data

(b) and computation time in seconds (c). Values shown are average values from 100

repetitions.

10 observations in Fig. 1(a)), CD cannot be even used, while ADICOV and

randnm still provide exact solutions.

Fig. 1(b) shows the SSE between X and the generated Y for the different

methods. ADICOV performs the closest approximation in the quadratic sense,

since it was designed specifically for that. Note that this is not necessary an

interesting feature, since X is mainly a source of randomness to generate Y

and we are not particularly interested on a least squares approximation on X.

In any case, differences are minor.
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Finally, Fig. 1(c) compares the methods in computation time. The CD takes

the fastest computation, and randnm is faster than ADICOV for large dimen-

sional data. Still, all methods are very fast.

According to the results, we can conclude that both ADICOV and randnm

outperform the Cholesky Decomposition for the generation of random data at

the expense of an affordable increase of computation time.

3 Simulation of random data when the covariance is unknown

As motivated in the introduction, when simulating random data, there are

many situations in which we also need to generate the covariance matrix of the

data at random. In such cases, the procedures discussed previously cannot be

directly used. Arteaga and Ferrer also studied this problem in [6], providing

a solution to compute the covariance matrix by fixing the variances and a

subset of the eigenvalues and covariances. Still, this approach does not provide

means to draw variances, covariances and eigenvalues to perform Montecarlo

experiments, something that deserves future investigation. Here we explore a

different approach.

One direct approach to generate the covariance at random is to draw all the

coefficients in the covariance matrix as iid samples, e.g. from a normal or a

constant distribution. An obvious drawback of this approach is that the re-

sulting matrix may not be semidefinite positive. While this would render the

CD useless, the use of the SVD and the ED in randnm and ADICOV, re-

spectively, get around this problem, substituting the non-semidefinite positive

matrix generated at random by a semidefinite positive counterpart. In the case
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of the SVD, only the third factor in the decomposition in eq. (3) is computed,

and it is assumed to be equal to the first factor. Thus, if matrix Σ̃ =
SV D

UDV T

is drawn as iid samples, it is replaced by Σ = V DV T . In the case of the ED,

matrix Σ̃ =
ED

V DV −1 drawn as iid samples is replaced by Σ = V DV T . As

a result, this naive approach for random covariance generation can be used

with ADICOV or randnm, since the SVD in eq. (3) and the ED in eq. (6),

respectively, transform the non-semidefinite positive matrix in a suitable one.

Figure 2 shows the result of applying the naive simulation approach using

ADICOV and a constant distribution in [−1, 1] to draw the random covariance

coefficients. Similar results where obtained for randnm. The results include

different numbers of variables and observations in the simulated matrix Y . It

should be noted that although the data is obtained from a randomly simulated

covariance matrix, we assess the results in terms of the distribution of the

coefficients in the true–semidefinite positive–correlation matrix, after the ED

in ADICOV and a convenient normalization between -1 and 1. In particular,

two figures of merit are used: the number of high correlation coefficients, whose

absolute value is above 0.8 (number of Absolute Coefficients above 0.8 or

#AC > 0.8) and the Mean Absolute Coefficient (MAC). Diagonal correlation

coefficients (equal to 1) are not taken into account for both values. Those

figures are useful to evaluate whether we are capable or not to simulate data

sets with different level of correlation among the variables. In Figure 2, three

subfigures are shown for 10, 100 and 1000 observations in Y , respectively. The

abscissa shows the number of variables, from 2 to 1000. The figures at the top

show the #AC > 0.8 while the figures at the bottom show the MAC.

The figure let us draw several conclusions about the suitability of the naive

simulation approach. On the one hand, we cannot obtain high correlation
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Fig. 2. Evolution of the correlation induced by the naive approach in terms of the

number of variables. At the top, number of coefficients with absolute value above

0.8 (#AC > 0.8). At the bottom, mean absolute coefficient (MAC).

coefficients using this approach exception made on a reduced set of dimen-

sions. This is because high correlation coefficients impose strong structural

constrains in the covariance matrix. Consider the simple following example:

if variable A is highly correlated to variables B and C, B and C need also to

be correlated to a certain extent. This short of structural constraints are very

unlikely to be met in a random generation of the correlation coefficients like

in the naive approach. The result is that most high correlation coefficients are

discarded in the ED (or SVD) to obtain a valid, semidefinite positive, covari-

ance matrix, and the naive simulation approach tends to yield data sets of low

correlation. On the other hand, the level of correlation depends on the dimen-

sion of Y , i.e. the number of observations and variables. This is of course an

undesirable property, since we would like to be able to generate different levels

of correlation for different dimensions in the resulting matrix, that is, decou-

pling dimension and correlation level. For that, we need a different simulation

approach.

Still, we can make an interesting observation from the results of Figure 2: the

level of correlation is mainly influenced by the numbers of observations. Thus,

all figures present higher levels of correlations for lower numbers of observa-
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tions (leftmost values in the bar plots). This makes sense considering that for

a fixed number of variables in Y , we can reduce the rank in this matrix by re-

ducing the number of observations. Imposing a low rank in Y is equivalent to

imposing a high the level of correlation of the variables. Therefore, correlation

can be made linked to the number of observations. We will use this connection

between level of correlation and number of observations in a new simulation

procedure.

3.1 Linking correlation level with the number of observations

From here onwards we will restrict ourselves to the use of ADICOV for data

simulation, though randnm could have been used instead. In Figure 3, the

average and standard deviation of the absolute correlation coefficients of a

correlation matrix drawn from the naive simulation approach are shown for

different numbers of observations and variables in Y . The standard deviation

behaves very much like the average. Taking advantage of this fact, for every

single number of observations we can find a number of variables for which

the level of correlation in Y is similar, both in average and dispersion, when

generated with the naive approach. Therefore, understanding (modeling) the

non-linear relationship among number of observations, number of variables

and level of correlation illustrated in Figure 3, we can design an algorithm

where the same level of correlation can be applied for different dimensions in

Y .

Of course, we want to completely decouple the dimension in Y from the correla-

tion level, so that in the resulting algorithm the user can specify the dimension

of Y , N observations and M variables, and the correlation level L. For that, a
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Fig. 3. Mean (a) and standard deviation (b) of the absolute value of the correlation

coefficients using the naive simulation approach.
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Fig. 4. Correlation levels (measured as the mean absolute coefficient (MAC) in

Σ) in terms of the number of observations and variables: (a) linear scale and (b)

logarithmic scale.

straightforward procedure is to perform two consecutive ADICOV runs. The

first ADICOV run is performed to generate a data set Z, which number of

observations depends on the correlation level desired, taking advantage of the

linkage aforementioned between correlation level and number of observations.

The covariance matrix of Z, Σ, is then used in the second run to generate Y ,

now with the number of observations specified by the user. The first step is

the challenge we need to address, since the second one is already solved, as

discussed in Section 2.
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Considering that the covariance matrix Σ is of dimension M ×M , and that

both M and the level of correlation L are user specified, the first step in the

simulation algorithm needs to identify the number of observations in Z to

yield Σ with the desired correlation level. Figure 4 shows in both linear and

logarithmic scale how this function looks like for different correlation levels,

specified as different values of the MAC in the correlation matrix associated

to Σ. Note correlation levels can be defined according to different features of

the correlation matrix associated to a given covariance matrix. The MAC is

just a possible choice we have used in this paper.

Figure 4 shows that the number of observations and the correlation level are

inversely related, which means that topmost curves are those for a lower cor-

relation in Σ. Furthermore, we can see that there is a non-linear relationship

between the three factors N , M and L. The number of observations in Z for

a given correlation level can be approximated by a logarithmic function in the

variables. The functions for different levels range from a logarithmic shape to a

flat shape, which can be obtained by raising the logarithm to a power inversely

related to the correlation level, in particular an exponential decay seems to

be a good choice for that. Finally, when the number of variables is very low,

e.g. 10, the number of observations is linearly related to the correlation level.

Considering all these features, we propose the following model to determine

the number of observations in Z, noted as λ, from a user specified correlation

level L:

λ = x1 · (x2 − L) ·
(

log(M)

log(x3)

)x4 e(−x5L)

(10)

where L is defined as an integer in [1, 10], and x1 to x5 are model parameters

we can fit from the data shown in Figure 4. The correlation level L was defined
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as an integer to simplify the model identification and posterior use, where the

ten possible levels correspond to the MAC values in Fig. 4(a). Thus, there is a

non-linear relationship between L and the corresponding MAC values that is

adequate from a practical point of view, yielding ten levels of correlation that

span the interval between no correlation and complete correlation.

We prefer the type of model in eq. (10) to a purely data-based model (e.g.

a neural network) with the hope that the log-exp structure observed in the

data will work better in extrapolation. After some fitting trials, we decided

to use three different models, one for L = {1, 2, 3}, one for L = {4, 5, 6, 7}

and one for L = {8, 9, 10}. This results in a model with 15 parameters we

need to fit. In Figure 5(a) the true λ values from Figure 3 are represented

against the estimated ones with the model in eq. (10). Using this model, our

simulation algorithm can estimate the correct number of observations in Z for

given values of L and M . Figure 5(b) shows the resulting model surface.
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3.2 Algorithm SimuleMV

The SimuleMV algorithm is described below. First, if L is set to 0, the identity

matrix is used as covariance matrix of Y . Otherwise, the number of observa-

tions in Z, λ, is estimated from the fitted model (Figure 5(b)). For brevity,

we represented a single model, instead of the ensemble of three local mod-

els. Note model parameters are hardcoded to the algorithm, that is, there are

actual values for parameters xi. Then, using a common random generator,

we obtain matrix Xλ,M and run ADICOV from it and using an identity ma-

trix as covariance. This yields matrix Z, with the desired level of correlation.

The covariance matrix Σ is then obtained from Z to run a second ADICOV,

obtaining matrix Y .
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Inputs:

N : number of observations.

M : number of variables.

L: correlation level.

Algorithm:

if L > 0

λ = x1 · (x2 − L) ·
(
log(M)
log(x3)

)x4 e(−x5L)

Xλ,M ∼ N(0M , IM)

Z = ADICOV (IM , Xλ,M)

Σ = 1
λ−1
· ZT · Z

XN,M ∼ N(0M , IM)

Y = ADICOV (Σ, XN,M)

else

Y = ADICOV (IM , XN,M)

One comment is in due regarding the simuleMV implementation. The rela-

tionship in equation (10) to obtain a suitable value for λ was identified using

the naive approach. However, the simuleMV algorithm does not use this ap-

proach, since the first ADICOV call is based on the identity matrix, instead

of a random covariance matrix. This has a particular effect on the simulation

result, as illustrated in Figure 6, where the explained variability in terms of

the number of PCs is shown for one hundred repetitions of the simulation of

a 100× 10 data set. In Figures 6(a) and 6(c), we show the result of using the
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identity matrix in the first ADICOV call of simulaMV. When this is done, the

curve of explained variance is highly repetitive and close to a straight line until

we reach a point where no more significant PCs are found. This specific vari-

ance distribution is the price to pay of using a single parameter, L, to control

the correlation in the data, though the repetitive nature is quite convenient. If

instead of the identity matrix a random matrix is used, Figures 6(b) and 6(d),

the explained variance curves show an exponential decay and they are more

variable, reducing the control we have on the result. To see this, compare the

results for L=5 and L=7. Using the identity matrix, the curves for different

L do not overlap. Thus, we tightly control the result with user parameter L.

However, when using a random matrix several of the curves for L=5 and L=7

overlap for the first PCs, which reflects that we can obtain very similar data

sets for different values of L–an undesirable result. It should be noted that al-

though simuleMV remains very repetitive in the curve of explained variance,

the generated data sets are random, and therefore the generated variability

is suitable for Montecarlo experiments. Furthermore, it is always possible to

add random noise drawn from N(0, r · I), with r the noise level, in case one

desires to avoid rank deficient data matrices.

Figure 6 also reflects that the behaviour of simuleMV can be mimicked using

an approach like that in [6] by fixing the distribution of the eigenvalues. The

expected benefit would be that we may be able to simulate more complex

variance distributions in the eigenvalues and study their effect on the general

correlation. The price to pay is that user control would probably require more

than parameter L. Thus, we could add more degrees of freedom, but also more

complexity of use.

In Fig. 7, an illustrative example of use of SimuleMV is shown. The SimuleMV
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Fig. 6. Percentage of captured variance of the PCs for a 100× 10 data.

algorithm is available with the MEDA Toolbox v1.1 at https://github.com/josecamachop/MEDA-

Toolbox/releases/tag/v1.1

4 Performance results

The performance of SimuleMV is evaluated in Figure 8. It can be seen that

SimuleMV provides an adequate simulation procedure, that decouples the

desired correlation level from the dimension of the simulated matrix. Still,

there are some structural limitations, highlighted in light color. For instance,

a simulated matrix with dimension 10 × 100 cannot be full rank–or more

accurately, its covariance cannot be full rank. Therefore, we cannot simulate

a 10× 100 matrix with correlation level 0. Note this is an structural constrain
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Fig. 7. Correlation maps for different values of L for a 100× 100 data set.

that has to be met, and not a limitation of SimuleMV. As a matter of fact,

the number of observations, in the example 10, provides a minimum value

for the attainable level of correlation. Thus, a 10 × 100 matrix cannot be

simulated for correlation levels below 6, since for levels below 6 the number of

observations in Z according to our model would be larger than 10. We added

a warning message in the algorithm for incompatible input parameters. We

can see in Figure 8 that these incompatible parameters are only found for fat

data matrices, which cannot be full rank.

Figure 9 shows the results of SimuleMV in terms of the number of variables,

for comparison with Figure 2 of the naive simulation approach. Exception

made on Figure 9(a), which corresponds mainly to unfeasible parameters,

the rest of the figures show that SimuleMV yields quite stable correlation

levels independently of the number of variables or observations. Regarding

the independence with the number of variables, we can see that all figures are

almost flat. Regarding the independence with the number of observations, we
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Fig. 8. Evolution of the correlation induced by SimuleMV in terms of the correlation

level. At the top, number of coefficients with absolute value above 0.8 (#AC > 0.8).

At the bottom, mean absolute coefficient (MAC).

can see that Figures 9(d) and 9(g), Figures 9(b), 9(e) and 9(h) and Figures

9(c), 9(f) and 9(i) are almost identical. Still, there are some artifacts, but we

believe that with the model fitted, SimuleMV results are adequate from a

practical perspective.

Finally, Figure 10 shows the percentage of variance captured by the first PC in

terms of the correlation level. It can be seen that by modifying the correlation

level, we explore the complete range of possibilities: from the first PC capturing

a 100% of the variance (L = 10) to the first PC capturing approximately
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Fig. 9. Evolution of the correlation induced by SimuleMV in terms of the num-

ber of variables. At the top, number of coefficients with absolute value above 0.8

(#AC > 0.8). At the bottom, mean absolute coefficient (MAC).

(1/rank(X))% for minimum L value.

5 Examples of application

In the following we discuss three examples of application of SimuleMV.
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Fig. 10. Percentage of captured variance of the first PC in terms of the correlation

level.

5.1 Cross-validation in PCA

The selection of the number of PCs in PCA in general and using cross-

validation (CV) in particular has been a matter of research in chemometrics

for several decades [7–9]. A main CV algorithm is the element-wise k-fold

(ekf) CV [8,10] and its fitting counterpart, the column-wise k-fold (ckf) [11].

Both ekf and ckf provide an error curve whose minimum identifies the best

choice in the number of PCs.

Although a lot of theoretical work has been done on these algorithms and
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Fig. 11. PRESS curves by ekf for different correlation levels.

potential variants, see for instance [9,12], they are not well understood yet. We

can gain a nice picture of the behavior of the methods using SimuleMV. Figures

11 and 12 compare the performance of ekf and ckf for several data dimensions
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Fig. 12. PRESS curves by ckf for different correlation levels.

and correlation levels. We used the ekf and ckf implementations in the MEDA

Toolbox [13]. We can see that, although the minimums are located in the same

numbers of PCs, the ckf provides simpler curves, much easier to understand.
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In particular, ckf seems to be more suitable for the automatic selection of

PCs, because the curves do not present several local minimums. If we also

consider that ckf is much faster, because the observation-wise k-fold operation

is skipped, then ckf might be preferred to ekf on a general basis. If we focus

now on ckf , Figure 12, we can see that the selected number of PCs is inversely

proportional to the correlation level, as expected: high correlation levels lead

to a reduced set of high variance components. Also, we can see from the regular

shapes, in particular in Figure 12(b), that the profiles are mainly determined

by the factors considered in SimuleMV : dimension and level of correlation.

This agrees with theoretical studies [9,11].

Although this was only an example, the potentiality in the use of SimuleMV

for CV studies is clear. Following this approach we can investigate further

developments of algorithms for dimensionality selection in PCA and other

models.

5.2 Multivariate Statistical Process Control

A lot of research in chemometric journals has been devoted to anomaly detec-

tion using Multivariate Statistical Process Control (MSPC) [14–18]. There are

still many controversial issues, like for instance the dimensionality selection,

the use of PCA, PLS, or non-linear counterparts, the procedure for diagnosis,

etc. Again, SimuleMV can be useful for this type of research. Take the example

in Figure 13, where we simulated 100 calibration observations, and normal and

anomalous test sets, for different numbers of variables and correlation levels.

The calibration data were simulated with the simuleMV algorithm. Test data

were simulated with ADICOV using the covariance matrix of the calibration
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data. Anomalous data were obtained for 3 times the variance of normal data.

In all cases, 3 PCs were intentionally selected without a proper justification,

in order to see whether this non-justified way of determining the number of

PCs affects the performance of MSPC. It can be seen that although we did

not follow an appropriate procedure for PCs selection, the MSPC methodol-

ogy is fairly robust, with a low number of false positives and negatives. The

theoretical control limits used [19] work very well provided the number of

observations is sufficient. However, if the number of observations is low, lets

say 10, we see a different picture, see Figure 14. The D-statistic control limit

is overestimated by far, and the 3 PCs model tends to overfit, which can be

seen in the fact that normal test data present clearly higher Q-statistics than

their calibration counterparts. Again, we can see that the use of SimuleMV is

useful for understanding the behavior of a MSPC system.

5.3 Comparison of PLS and SPLS

In the last example we investigate the differences between standard PLS and

the sparse PLS variant developed in [20], kindly provided by Dr. Ewa Szyman-

ska [21]. One controversial result in SPLS studies is whether it can outperform

PLS only in interpretation or also in prediction performance [20,22]. Figure

15 shows a straightforward example to check this. In all cases, we used data of

size 20× 100 for the X-block, obtained from SimuleMV, and a single response

variable y was simulated from the first variable in X plus a low noise level.

Clearly, this is a favorable situation for SPLS, similar to the example used

in [23]. Figure 15 compares the medians of the goodness-of-prediction (Q) by

double cross-validation with PLS and SPLS models, for 100 repetitions. Ac-
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Fig. 13. Experiments on Multivariate Statistical Process Control in PCA with 100

calibration observations. Calibration data is shown as circles in red, normal test

data as squares in green and anomalous test data as triangles in blue.

cording to the results, PLS needs of a high correlation level to find adequate

models, while SPLS does not have such restriction. Again, SimuleMV can be

very useful to further investigate the behavior of sparse models.

6 Conclusion

In this paper we present SimuleMV, a new algorithm for random data sim-

ulation where the user can specify the size of the data to simulate and the
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Fig. 14. Experiments on Multivariate Statistical Process Control in PCA with 10

calibration observations. Calibration data is shown as circles in red, normal test

data as squares in green and anomalous test data as triangles in blue.
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Fig. 15. Q Index of double cross-validation in PLS and SPLS for different correlation

levels.

correlation level desired. This algorithm is designed to evaluate the perfor-

mance of new multivariate analysis techniques. Its application was illustrated

in several relevant problems in multivariate analysis, namely the selection of

the number of Principal Components in Principal Component Analysis, the

evaluation of the performance of sparse Partial Least Squares and the calibra-

tion of Multivariate Statistical Process Control systems.
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