
Group-wise Partial Least Square Regression

José Camacho1,∗

University of Granada

Edoardo Saccenti2,∗∗

Wageningen University and Research

Abstract

This paper introduces the Group-wise Partial Least Squares (GPLS) regression.
GPLS is a new Sparse PLS (SPLS) technique where the sparsity structure is
de�ned in terms of groups of correlated variables, similarly to what is done in
the related Group-wise Principal Component Analysis (GPCA). These groups
are found in correlation maps derived from the data to be analyzed. GPLS is
especially useful for exploratory data analysis, since suitable values for its meta-
parameters can be inferred upon visualization of the correlation maps. Following
this approach, we show GPLS solves an inherent problem of SPLS: its tendency
to confound the data structure as a result of setting its metaparameters using
standard approaches for optimizing prediction, like cross-validation. Results are
shown for both simulated and experimental data.

Keywords: Sparsity, Partial Least Squares, Sparse Partial Least Squares,
Group-wise Principal Component Analysis, Exploratory Data Analysis

1. Introduction

Modern studies are characterized by the generation of large quantity of data
such in the case of genomics, proteomics and metabolomics experiments [1].
However it is widely recognized that usually only a limited number of variables
or of groups of variables are relevant to the problem being studied [1]. The
challenge is to isolate the informative variables from the non-informative part,
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the latter consisting of variables showing random variation, not relevant sys-
tematic variation or accounting for technical variability such as sampling and
measurement error.

Exploratory data analysis plays a critical role in the analysis of large data
sets. One of the most used tools for data exploration is certainly Partial Least
Squares (PLS) regression [2, 3] given its ability for dealing with those situations
where the number of variables is much larger than the number of observations,
which are often encountered in modern experiments. However, in PLS all vari-
ables are included in the model and this complicates model interpretability.

One possible solution is to use a PLS approach where some of the model
parameters (such as the regression coe�cients) are forced to zero. This is the
realm of sparse methods, �rst introduced in the context of multiple linear re-
gression [4]. This idea was later incorporated in PLS regression, usually by
�ltering out variables from the model obtained from the full data or imposing
some sort of penalty (such as the LASSO) on model parameters while building
the model. However, the sparsity induced by these approaches is closer in phi-
losophy to variable selection than to exploratory data analysis: the main goal is
to improve prediction performance by discarding a subset of predictor variables.

Due to its de�nition and �tting strategy, Sparse PLS (SPLS) presents sev-
eral shortcomings that, to the best of our knowledge, have not been discussed
elsewhere. First, SPLS shares with PLS a fundamental limitation that com-
plicates the interpretation of the model: the same latent variable (LV) may
include several sources of variability while the same source of variability may
span the subspace of several LVs [5]. This same problem motivated the intro-
duction of rotation methodologies in Principal Component Analysis. Second,
a purely prediction-driven calibration while imposing simplicity may oversim-
plify the structure in the data, yielding a model where some predictors related
to the response are in fact discarded. We will show these problems in the ex-
perimental part of this paper. As a result, when the goal is data exploration,
sparse methodologies may not be the best choice. This is particular relevant in
biological applications where for instance the interest is into retrieving groups
of variables (as genes or metabolites) which are related to a given phenotypic
trait with the aim of gaining knowledge into molecular mechanisms rather than
optimizing prediction performance.

The idea of group-wise simplicity was adopted in the so called simplivariate
models [6, 7] which aim to describe informative variation, under the assumption
that a given biological or biochemical problem is not represented by all measured
variables but only by a few variables or subsets of variables. These models
aim to retain the comprehensiveness of a multivariate model together with the
simplicity of interpretation of a univariate one. Related extensions of SPLS
to group penalties, like the group LASSO, have also been de�ned [8]. In this
approach, the penalties a�ect to prede�ned groups of variables, so that solutions
are found that activate or deactivate all variables in the groups. From a similar
perspective, Group-wise principal component analysis (GPCA) [9] was recently
proposed as an exploratory tool. In GPCA, sparsity is de�ned in terms of
groups of correlated variables found in correlation maps obtained from the data
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to be analyzed. Each component contains non-zero loadings for a single group of
correlated variables, which simpli�es the interpretation according to the previous
de�nition of group-wise simplicity. GPCA di�ers from equivalent group lasso
PCA variants in the fact that only one group of variables can be active in a
single LV and in the way meta-parameters are tuned. Reference [9] shows the
advantages for data interpretation of this approach over sparse and group sparse
PCA variants.

In this paper we propose Group-wise PLS, an extension of GPCA in the PLS
setting. GPLS aims to model data under a group-wise simplicity approach where
every component account for a group of correlated variables that are related with
the response. This approach is especially suitable for exploratory data analysis.
Like other chemometrics approaches aimed at improving data interpretation,
for instance multi-block [10, 11] or orthogonal [12] extensions of PLS, GPLS is
not de�ned to improve the prediction performance of PLS (or SPLS). However,
there is a non-negligible link between the prediction capability of a regression
model and our con�dence on its appropriateness. For this reason, whilst not
the main goal, we study the prediction performance of GPLS in comparison to
that of PLS and SPLS in the supplementary materials attached to the paper.

The rest of the paper is organized as follows. We begin in Section 2 with a
motivation example to illustrate the concept of group-wise sparsity. In Section
3 we introduce the GPLS approach. Section 4 describes the materials and
methods used in the experimental sections. The performance of the methods is
assessed by means of simulations and on experimental data in Section 5 and 6,
respectively. Section 7 presents the conclusions of the work.

2. A motivating example

As a motivating example consider a simulated data set where the response
y is related only to a subset of highly correlated predictors in X, speci�cally
the �ve �rst variables (denoted as X1−5 in Equation (1)), while the remaining
predictors are not related to the response:

X1−5 = 0.1 ·∆ + x115 (1)

y = 0.1 · δ +

5∑
i=1

xi

where values in ∆ and δ are drawn following a normal distribution with 0 mean
and variance 1 and 15 is a vector of ones of size 1× 5.

This is a simple case of group-wise sparsity which is commonly encountered:
think for example of NMR spectra where di�erent peaks, corresponding to the
same molecule, are expected to exhibit a correlated behavior or when only a
small subset of metabolites or genes is related to a phenotypic trait.

The simulated data sets are generated using the simuleMV algorithm [13]
which allows the simulation of data matrices with di�erent level of correlation
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among the predictor variables. Speci�cally, the algorithm allows the genera-
tion of data with a randomly generated covariance/correlation matrix. For each
simulation scheme data were simulated with low, medium and high correlation
level among the predictor variables (correlation level in simuleMV of 5, 7 and
9, respectively). We restricted ourselves to simulate 20 × 100 data sets for the
predictor variables, which is a typical size in chemometrics data sets. The corre-
lation maps with low, medium and high correlation among predictors variables,
are shown in Figure 1. A subset of highly correlated variables formed by the
�rst �ve variables is present in the three correlation maps but the overall corre-
lation structure among the predictors is di�erent in the three cases. In the case
of low correlation (Figure 1 panel A) only the �rst �ve predictor variables are
correlated, while in the high correlation case (Figure 1 panel C) the variables in
the group are correlated with many other predictor variables which in turn will
be correlated with the response, following a more complex model than the one
actually expressed in Equation (1).

Let us focus on the low correlation data set. When a standard PLS regression
model with 1 latent variable (LV) is �tted to the data all variables contribute
to the prediction (see Figure 2 at the top). The application of a sparse PLS
approach (in this case the Sparse PLS method by Lê Cao [14], see Section 4.1)
greatly simpli�es the regression coe�cients (see Figure 2 at the bottom). This
sparse PLS model has also greater prediction ability than the standard PLS
model (Q2 = 0.74 versus Q2 = 0.46 of the normal PLS model), which complies
with the dogma that introducing in the model variables that are not relevant
to the response reduces the predicting power of the model. This di�erence in
prediction cannot be corrected by considering more components in the PLS
model (not shown).

This example illustrates that i) even in very sparse data PLS introduces
spurious information in the model and that ii) since sparsity is pursued with
the aim of enhancing prediction, this can oversimplify the real structure in the
data. Since the �rst �ve variables in the X-block are highly correlated, only one
of them may constitute a good prediction model. In this speci�c case, due to
random variability induced in the data set, the SPLS model with one prediction
variable even outperforms a model with the �ve true predictors. However for
data exploration this behavior is not desirable since relevant information is left
out the model and this is may also be crucial when biochemical or biological
interpretation is pursued.

To overcome this limitation we introduce here the Group-wise partial least
square regression (GPLS) where sparsity is introduced in terms of groups of
correlated predictor variables related to the response.

3. Group-wise partial least square regression

The group-wise PLS takes as input a set of K (possibly overlapping) groups
S1, S2, . . . Sk, . . . SK of correlated variables that are obtained from a M × M
correlation map M computed from the data. In principle, M can be any square
symmetric matrix describing mutual relationships among the M variables. In
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the GPLS algorithm we use a missing-data approach to construct this matrix
which has the advantage of reducing the noise in the computation of the cor-
relations. Details are given in Section 3.2; the mij elements of M are given by
Equation (5).

The S1, S2, . . . Sk, . . . SK groups of correlated variables are determined using
the group identi�cation algorithm (GIA) proposed in [9] and available in the
MEDA toolbox [15]. Brie�y, let be mi,j ∈ [−1, 1] the i, j-th element of M and
|γ| < 1 a threshold on the correlation values. The group Sk is built in such a
way that all variables in Sk satisfy the conditions

∀ i, j ∈ Sk → |mij | > γ (2)

and
∀ j 6∈ Sk / ∃ i ∈ Sk → |mij | ≤ γ (3)

indicating that if the j-th variable is not in group Sk, it has a correlation mag-
nitude ≤ γ with at least one of the other variables in the group. This is equiva-
lent to de�ne groups of variables with maximum cardinality where all variables
within the group present a correlation larger than γ in absolute value.

3.1. The GPLS algorithm

The GPLS algorithm consists of a set of nested PLS models together with a
suitable de�ation procedure. Given the data matricesX(N×M) andY(N×O),
the procedure is based in the �rst Kernel PLS algorithm proposed in [16], that
makes use of matrices X and XTY and only de�ates the latter:

Step 1: Initialize:

C = XTY

B = I

where I is the identity matrix.
Step 2: For each latent variable (LV) a from 1 to A

Step 2.1: For each group Sk in the set of groups S
Step 2.1.1: Create Ck from C setting elements out of Sk to zero.

Ck = C

cklm = 0, ∀l 6∈ Sk
Step 2.1.2: Compute wk, the �rst eigenvector of (Ck)TCk.
Step 2.1.3: Compute the corresponding scores as:

rk = Bwk

tk = Xrk
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Step 2.2: Choose the coe�cients of latent variable a from the group capturing
the most correlation with Y.

k∗ = argmax
k

(corr(tk,Y))

wa = wk∗ , ra = rk
∗
, ta = tk

∗

Step 2.3: Perform the de�ation steps:

qa = (ra)TC/((ta)T ta)

pa = (ta)TX/((ta)T ta)

C = C− pa(qa)T ((ta)T ta)

B = B(I−wa(pa)T )

Step 3: Obtain the regression coe�cients:

Bgpls = RA(QA)T

The GPLS algorithm �rst computes the weights and scores of K PLS models
of 1 LV, each of them considering only the set of variables corresponding to one
of the groups S1, S2, . . . Sk, . . . SK . From these, it chooses the one capturing
the largest correlation with Y, discarding the rest. Using the coe�cients of this
LV, XTY is de�ated and B recomputed.

3.2. De�ning the correlation map

As discussed, we �rst apply GIA to a given correlation map and then com-
pute the GPLS model using the previous algorithm. Following [9], we use a
technique referred to as the missing-data for exploratory data analysis (MEDA)
[5] to construct the map. MEDA consists in a post-processing step after the
PLS factorization to infer the relationships among variables using missing data
imputation [17, 18]. The elements of the MEDA map M can be expressed as
[19]:

mij =
{
2xT

i xj − (xAi )
TxAj

}
·
abs

{
(xAi )

TxAj
}

σ2
xi
σ2
xj

(4)

where σ2
xn

stands for the variance of the n-th variable in X and

xAi = xiR
APA

6



and RA(M ×A) and PA(M ×A) are the coe�cients of a standard PLS model
with A latent variables. This equation can be simpli�ed considering that(

xAi
)T
xAj = xT

i x
A
j

with the advantage of a more straightforward interpretability:

mij =

{
xT
i xj + (eAi )

TeAj
}
· abs

{
xT
i xj − (eAi )

TeAj
}

σ2
xi
σ2
xj

(5)

where eAi is the vector of residuals for the i-th variable in the PLS model for
the A latent variables.

This approach has the substantial advantage of �ltering out the noise in the
computation of correlations, reducing the risk of including spurious or chance
associations among variables as often is the case in high dimensional data [20, 7].

3.3. Metaparameter selection
To obtain a GPLS model, suitable values for the number of LVs, A, in the

MEDA step and for parameter γ in GIA need to be determined. If the goal
is exploratory data analysis, γ and A can be obtained by visual inspection of
the MEDA map, following the GPCA approach [9] which is consistent with the
exploratory data analysis philosophy. Some hints on how to do this are included
in Section 6. This is a main di�erence with sparse approaches like SPLS, where
metaparameter selection is driven by prediction optimization.

However, if the goal is to obtain a GPLS predictive model and asses its per-
formance, the meta-parameters A and γ can be selected using a double cross-
validation approach. In this case, GPLS is a simple variant of SPLS but it
might provide good predictive results when the structure of the data is sparse
in the sense of a GPLS model, i.e. when data presents one or more groups
of correlated predictor variables related to the response. We stress here that
GPLS is not proposed for increase prediction, but to enhance data understand-
ing and interpretation. However, these two di�erent goals can be considered to
be interrelated: a number of experiments where the prediction performance of
GPLS is compared to that of SPLS and PLS can be found in supplementary
materials. We intentionally did not present and discuss these results in the main
body of the paper to avoid the misleading message that the GPLS algorithm is
introduced to achieve better prediction models.

It should be noted that the number of LVs in the �nal GPLS model can
be di�erent to A in MEDA and larger than the number of groups identi�ed by
GIA, since the data corresponding to each of the groups may be of rank higher
than one. In this paper, we assume GPLS has A LVs for both interpretation
and prediction results.

4. Material and Methods

4.1. SPLS
Given its excellent performance we choose the sparse PLS algorithm by Lê

Cao et al. as a representative of SPLS in this paper. The algorithm starts by
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solving the PLS problem using singular value decomposition [21]. Given X and
Y, the matrix

C = XTY (6)

of rank r can be written as

C = GDUT

where the matrices G (N × r) and U (L × r) are orthonormal and D is r × r
diagonal containing the sk singular values with k = 1, 2, . . . , r. In this setting
the loading vectors pk and qk for X and Y are the �rst singular vectors gk and
uk of G and U, respectively. Since the loadings can be interpreted as a measure
of the relative importance of the variables in the model [22], variable selection is
performed by penalizing both loadings vectors pk and qk as in sparse principal
component analysis [23]. The optimization problem to arrive to the sparse PLS
solution is:

argmin
p,q

‖C− pqT‖2F + λ1‖p‖1 + λw‖q‖1 (7)

where the solution is found by the soft-thresholding gλ(x) = sign(x) (|x| − λ)+
applied to the current (non-penalized) least squares estimates.

The SPLS according to Equation (7) needs the optimization of two meta-
parameters: λ1 and λ2. However a more practical and equivalent alternative is
to select the number of non zero components of the loadings Nx and Ny [14].
In this paper we restrict ourselves to set Nx, so that only loadings in the x-
block are sparse. Consistently with PLS practice [24], the optimal number of
latent variables A and the number of on non-zero loadings Nx is selected using
a double cross-validation approach. The goodness-of-prediction index used is:

Q2 = 1− PRESSA,Nx

PRESS0
(8)

where PRESSA,Nx is the prediction error computed when Nx and A LVs are
considered in the SPLS model.

4.2. Experimental data sets

The performance of GPLS and SPLS was investigated using two publicly
available experimental data sets.

Slurry-Fed Ceramic Melter. This data set provided with the PLS-toolbox
[27] consists of 450 observations on 21 variables corresponding to a vitri�cation
process. The �rst 20 variables correspond to temperatures collected in two
vertical thermowells. Variables 1 to 10 are taken from the bottom to the top in
thermowell 1, and variables 11 to 20 from the bottom to the top in thermowell
2. Variable 21 is the level of molten glass.

NMR data (NMR). This data set contains NMR spectral pro�les (noisy ex-
periments, 416 bucketed spectral variables at 0.02 ppm width) measured on the
plasma samples of 206 subjects together with HDL (high density lipoproteins)
independently measured with a biochemistry assay. The data are described in
[25, 26] and available at www.ebi.ac.uk/metabolights/MTBLS147.
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4.3. Software

The Group-wise PLS algorithm is available in the MEDA Toolbox [15] at
github.com/josecamachop/MEDA-Toolbox. PLS has been performed through
the kernel implementation [16]. Sparse PLS has been performed using the ap-
proach of [14], with the algorithm implementation used in [28].

All mentioned routines and corresponding single and double cross-validation
algorithms can be found in the MEDA Toolbox for proper reproducibility of
results. The code to reproduce the simulation results is given as Supplementary
material.

5. Performance of Group-wise PLS on simulated data

We go back to the motivation example introduced in Section 2 and presented
in Figure 1: Panel A shows the MEDA map (see Equation (5)) calculated for this
simulated data set, where the group of �ve highly correlated variables is evident.
To select that group of variables and analyze it with the GPLS approach, we
only need to set γ (see Equations (2) and (3)) to the appropriate value, which
can be done upon inspection of the MEDA map consistently with the philosophy
of exploratory analysis. For this particular case we set γ = 0.4 and by doing so
we are able to select that particular group of variables of interest. Together with
this group the GIA procedure may select other groups of variables, in this case
of cardinality one since some variables may show a variance higher than γ. This
de�nes a set of S1, S2, . . . , Sk possibly overlapping groups of variables that are
then passed to the GPLS algorithm. In this case we �t the model with one latent
variable. The corresponding regression coe�cients are shown in Figure 3. The
GPLS algorithm is able to fully recover the original data structure avoiding the
oversimpli�cation introduced by the SPLS approach in Figure 2. In GPLS the
sparsity is controlled by setting the threshold on the strength of the relationship
among variables rather than by setting a priori the number of non-zero elements
as in SPLS. Since we can select the correlation threshold upon inspection of the
map, this approach is more coherent with the goal of data exploration. On the
contrary, in SPLS we need to relay on the metaparameter that minimizes the
prediction error, and this has the risk of confounding part of the structure in
the data.

In Figure 4 we repeat the same experiment for high correlation, with the map
in Figure 1 panel C. Recall that in this case there are many variables that are
correlated with the subset of predictor variables, and therefore to the response.
Again, SPLS oversimpli�es the structure while GPLS includes those many more
variables, o�ering a more accurate representation of the data structure. In this
example, PLS presents a good result in terms of prediction. In general, as shown
in the Supplementary Materials, we expect sparse methodologies to outperform
common PLS only in the low correlation setting [13].
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6. Performance of Group-wise PLS on experimental data

Let us start with the Slurry-Fed Ceramic Melter data. Figure 5 panel A
presents the MEDA map of 4 LVs from this data showing how some temper-
atures of both thermowells are correlated. Also, as expected, there is speci�c
correlation within each thermowell for close sensors. Upon the inspection of the
correlation map we select γ = 0.6 as plausible value to decide on the number
and size of the possibly overlapping sets of correlated variables.

The resulting GPLS model with 4 LVs is compared (weights and regression
coe�cients, β) to a 4 LVs SPLS model (where the number of non-zero loadings
is selected by double cross-validation) in Figure 6. In the GPLS model, each
LV is restricted to a single source of variability: latent variables 1 to 3 capture
the inter-correlation between thermowells while LV 4 is restricted to the intra-
correlation in one of the thermowells. On the contrary, SPLS provides a model
which is sparse but where everything is mixed: each LV contains information
from di�erent sources of variability; this also makes the regression coe�cients
of SPLS to be less sparse than those of GPLS. This shows that �tting model
metaparameters to optimize prediction implies the risk of confounding the true
structure in the data. Both models, however, yield similar performance in terms
of prediction, as shown in Figure 7 panel A where a scatter plot of the predicted
vs measured response is presented.

Now let us investigate the sensitivity of GPLS to the meta-parameters. In
Figure 8 we can see three examples of inadequately chosen meta-parameters:
Panel B shows the case when the number of latent variables A is underestimated
when de�ning the MEDA map and γ is maintained to 0.6. The corresponding
MEDA plot is shown in Figure 5 panel B. We can see that part of the correlation
structure in the data is missing in the MEDA plot due to the underestimation,
but this does not a�ect the resulting GPLS model in this example. In general,
we may consider that the overestimation of A is less harmful than the underes-
timation, see detailed results in [5]. In Figure 8 panel B we show the case when
A = 4 but γ is underestimated. The resulting GPLS model is less sparse, but
still we maintain one source of variability per LV. However, in other examples,
the underestimation of γ may lead to include several sources of variability in
a single LV. To avoid this problem, the analyst should always check that the
resulting loadings are coherent with the structure seen in the MEDA plot. In
panel C of Figure 8 we show the opposite case, when γ is too high. Then, the
GPLS misses part of the structure that we can see in the original MEDA plot.
Again, by inspecting the MEDA plot we can always check whether the choice
of γ is adequate.

As a second example we consider the NMR-HDL data sets. Here the problem
is to predict the HDL concentration in blood from the full NMR spectra while
selecting for HDL related NMR peaks. The MEDA map for this data set is
shown in Figure 5 panel B. Upon inspection of the map we select γ = 0.9 as
input for the GPLS algorithm. Also in this case SPLS model parameters are
set by double cross validation. The regression coe�cients for the PLS, SPLS
and GPLS models are given in Figure 9. GPLS produces a sparser model than
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SPLS and selects only variables belonging to the region relevant for HDL signals
in the NMR spectrum, with variables corresponding to ppm in the region 0.45-
1.00, 1.13-1.45, 1.51-1.69, 1.87-2.2 ppm as reported in previous publications [25].
In particular the larger regression coe�cient correspond to 0.84 ppm bucket
comprising the LDL CH3 signal. Both models yield similar performance in
terms of prediction, as shown in Figure 7 panel B.

7. Conclusions

We have presented here a new algorithm for sparse partial least squares
modeling referred to as Group-wise PLS, which is a PLS extension of the re-
cently proposed Group-wise Principal Component Analysis. GPLS is based on
two steps: i) identi�cation of groups of correlated variables in correlation maps
obtained from the data and. ii) the �tting of group-wise models where each
latent variable corresponds only to one group of variables. The main advantage
of GPLS in comparison to other sparse variants is that the choice of metaparam-
eters can be decided upon data visualization. This approach is more coherent
with exploratory data analysis than using techniques to optimize prediction,
which are the state-of-the-art in the PLS setting. This makes the Group-wise
PLS algorithm well suited for data exploration avoiding problems arising in
standard PLS and other sparse variants.
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Figure 1: MEDA maps for the motivating example (see Equation (1)) with di�erent levels of
correlation in the X-block. A) low correlation, B) medium correlation and C) high correlation.
See text for more details.

13



Figure 2: Weights for the �rst latent variable for the PLS and SPLS regression models for
simulated data in the motivating example with low correlation. See Equation (1) and Figure
1 panel A for the corresponding MEDA map.

Figure 3: Weights for the �rst latent variable in the GPLS regression model for simulated
data with low correlation in the motivating example. See Equation (1) and Figure 1 panel A
for the corresponding MEDA map.

Figure 4: First latent variable from PLS, SPLS and GPLS regression models for simulated
data with high correlation in the motivating example. See Equation (1) and Figure 1 panel
C for the corresponding MEDA map.
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Figure 5: MEDA maps for the experimental data sets. A and B) Slurry-Fed Ceramic Melter
data for 4 LVs and 1 LV; C) NMR HDL data.
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Figure 6: Weights for the �rst four latent variables (LVs) and regression coe�cients (β) for
the Sparse PLS and Group-wise PLS models for the Slurry-Fed Ceramic Melter data.

16



Figure 7: Predicted vs measured values of the response for the SPLS and GPLS models for
the A) Slurry-Fed Ceramic Melter data and B) NMR data.
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Figure 8: Weights (�rst 4 Latent variables (LV)) and regression coe�cients (β) for the GPLS
model for the Slurry-Fed Ceramic Melter data obtained using di�erent model parameters.
The �rst column corresponds to a model using 1 latent variable to de�ne the MEDA map
and γ = 0.6. The second and third columns correspond to a model using 4 latent variables to
de�ne the MEDA map and γ equal to 0.2 and 0.9, respectively.

Figure 9: Regression coe�cients (β) for the �rst 3 Latent variables (LV) for PLS, SPLS
and GPLS regression models on the NMR-HDL data set. The NMR intensity pro�le (in
arbitrary units (a.u) is given as a reference; peaks are normalized to the maximum intensity
for visualization.
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