
UN
CO

RR
EC

TE
D

PR
OO

F

Information Fusion xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Information Fusion
journal homepage: www.elsevier.com

Fusing information from tickets and alerts to improve the incident resolution process
Saeed Salah, Gabriel Maciá-Fernández, Jesús E. Díaz-Verdejo⁠⁎

Department of Signal Theory, Telematics and Communications - CITIC, University of Granada, c/ Periodista Daniel Saucedo Aranda, s/n Granada 18071, Spain

A R T I C L E I N F O

Keywords:
Quality of service
Data analysis
Network management systems
Alert correlation
Ticket-alert correlation

A B S T R A C T

In the context of network incident monitoring, alerts are useful notifications that provide IT management staff
with information about incidents. They are usually triggered in an automatic manner by network equipment
and monitoring systems, thus containing only technical information available to the systems that are generating
them. On the other hand, ticketing systems play a different role in this context. Tickets represent the business
point of view of incidents. They are usually generated by human intervention and contain enriched semantic
information about ongoing and past incidents. In this article, our main hypothesis is that incorporating tickets
information into the alert correlation process will be beneficial to the incident resolution life-cycle in terms of
accuracy, timing, and overall incident’s description. We propose a methodology to validate this hypothesis and
suggest a solution to the main challenges that appear. The proposed correlation approach is based on the time
alignment of the events (alerts and tickets) that affect common elements in the network. For this we use real alert
and ticket datasets obtained from a large telecommunications network. The results have shown that using ticket
information enhances the incident resolution process, mainly by reducing and aggregating a higher percentage
of alerts compared with standard alert correlation systems that only use alerts as the main source of information.
Finally, we also show the applicability and usability of this model by applying it to a case study where we ana-
lyze the performance of the management staff.

1. Introduction

Nowadays, IT Service Management (ITSM) [1] tasks constitute a
heavy burden on the management staff of modern telecommunication
networks, as these networks become larger and more complex in terms
of the diversity and the criticality of the services that they offer to cus-
tomers. In addition to that, IT management is now a business-oriented
service rather than just a process for network/systems management.
This means that IT services are adopted according to their contributions
to the required business processes. For this reason, network experts are
always trying to find efficient strategies to quickly solve network inci-
dents and improve the network uptime to comply with committed Ser-
vice Level Agreement (SLA).

ITSM adopts the Information Technology Infrastructure Library
(ITIL) framework [2], which is a widely accepted industry standard
that is defined as the best practice in managing information technol-
ogy services and providing infrastructure, development and operations
for identifying, planning, delivering and supporting IT services for busi-
ness. Incident Management (IM) is one of the main processes defined in

ITIL. Citing the ITIL terminology, an incident can be defined as “an un-
planned interruption of an IT service or reduction in the quality of an IT ser-
vice. Failure of a configuration item that has not yet impacted service is also
an incident” [3].

Typically, alerts are the main source of information used by manage-
ment staff to derive the existence of incidents. Alerts in the network are
collected by monitoring systems, which are intended to warn staff in
network operation and management centers. The sensitivity of today’s
monitoring systems leads a huge amount of alerts being triggered per
day, which overwhelms management staff. This issue makes it advisable
to use and develop additional systems to reduce this quantity of alerts.
Alerts correlation [4–7] is the primary technique employed to handle
this problem.

Alternately, Incident Ticketing Systems (ITSs), also known as Ser-
vice Desks as referred to by the ITIL terminology, are a primary tool
used by management staff to track and report ongoing and resolved in-
cidents. ITSs store records called tickets, which can be created either
automatically by an ITS in response to receiving alerts or manually by
humans. In the latter case, tickets can be created from two different
sources: (1) by the help desk staff in response to receiving customers’

⁎ Corresponding author.
Email addresses: sasalah@staff.alquds.edu (S. Salah); gmacia@ugr.es (G. Maciá-Fernández); jedv@ugr.es (J.E. Díaz-Verdejo)

https://doi.org/10.1016/j.inffus.2018.01.011
Received 14 February 2017; Received in revised form 18 December 2017; Accepted 14 January 2018
Available online xxx
1566-2535/ © 2017.

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

calls regarding some problems in the resources, and (2) by the manage-
ment staff, from the observed alerts but also from other symptoms and
even due to some feedback from other technicians at different locations.

Although many of the records in ITSs contain semantically rich in-
formation related to incidents, to the best of our knowledge, only lim-
ited efforts have been devoted to the inclusion of this information in the
alert correlation procedure [8,9]. As the bulk of the tickets in ITSs are
created manually, they are ideal candidates for the addition of further
semantic information and human knowledge, both from the manage-
ment staff and from the users of the services (through help desk staff),
into the alert correlation procedure.

It is worth mentioning that in this work we are not concerned with
specific algorithms that extract information from natural language in
tickets but to show that they contain additional information that can
be used to correlate them with alerts. In our experiments we show that
the approach works even with a quite simplistic approach. As it will be
shown later, both datasets have some specificities that make this corre-
lation hard to be performed. Yet, despite these specificities, both sources
of information intersect in several ways, as they contain technical infor-
mation about ongoing incidents, including human-expert information in
tickets. In the case study we present, every ticket is characterized by
several tenths of features, and we show that only some of them con-
tain technical information that is useful for the alert-ticket correlation
process.

The potential benefits from this are threefold: (i) from the IT user
perspective, the proposed methodology can enhance the user expecta-
tions regarding IT service quality by speeding up the incident resolution
process; (ii) from the IT management perspective, better event correla-
tion rates would be obtained, i.e., a larger and more reliable reduction
in the number of alerts. This last benefit enhances the incident detec-
tion accuracy and reduces False Positives (FPs). Finally, (iii) from the
decision making perspective, managers would receive more accurate in-
formation with regard to the real incidents that occur in the network
and their descriptions. This potentially improves incident management
cycles, as it provides a more accurate feedback on the Quality of Service
(QoS) in the incident management process, and shows how the different
teams involved in the process behave.

In this article, our main contribution is to show that incorporating
the information found in tickets into the alert correlation system signif-
icantly improves the correlation of the events, and thus the overall inci-
dent resolution process. For this, we propose a methodology to correlate
tickets and alerts (events in the system) based on an intentionally simple
algorithm, as our purpose is to show that even with a simple correlation
criterion, the contribution of tickets to the correlation process is benefi-
cial for both management and decision making processes. The proposed
correlation approach is based on the time alignment of the events (alerts
and tickets) that affect common elements in the network. Thus, the algo-
rithm groups together all the events related to the same incident in what
we call representative events, that summarize all the information from the
grouped elements. Ideally, at the end of the algorithm execution, a sin-
gle representative event per incident is provided.

We evaluate the proposal with a real dataset from a company that
is in charge of the operation and management of a corporate network
that provides services to a regional government. The network serves mil-
lions of habitants from many public sectors, such as education, health
and civil, among others, and includes a help desk center that gener-
ates tickets directly from end users complaints. Furthermore, we show
the applicability and usefulness of the proposed solution by applying
it in two scenarios: first, in the alert correlation process, especially
for reducing and aggregating a larger number of related alerts. Sec-
ond, in assessing the performance of the management staff in terms

of their speed, accuracy and the efficiency achieved by the different
management groups in the entire incident resolution process.

The structure of the article is as follows. First, a review of the re-
lated work is summarized in Section 2. Then, a basic model for event
correlation is presented in Section 3. Based on this model, a com-
plete system for ticket-alert correlation is proposed and discussed in
Section 4. A thorough explanations of the proposed ticket-alert correla-
tion model, the arising challenges and the suggested solutions are pro-
vided in Section 5. The correlation model is experimentally tested and
evaluated through a case study utilizing the dataset taken from a real
management company in Section 6. Some applications of the proposed
model are listed in Section 7. Finally, in Section 8, we draw various con-
clusions and provide insights into further works.

2. Related work

Despite the large amount of research effort that has been carried out
in the alert correlation field [10–15], this is still an active research area
in both NMS and IT security. This is mainly because the efficiency and
robustness of the used models and the proposed algorithms vary from
system to system, but none of them have thus far succeeded in provid-
ing an optimal solution to this problem in terms of reducing the number
of alerts to a single alert per incident [16–18].

The information considered during the alert correlation process can
derive from many different sources of information [19], e.g., topological
information that provides an accurate representation of the monitored
network as a set of links and nodes [20,21]. In particular, the repre-
sentation of the location of nodes and the connectivity and direction of
the existing links are of particular relevance. Network topology infor-
mation usually contains extensive details about the network and equip-
ment structure, such as switches, routers, and servers; configuration pa-
rameters, such as IP addresses and their matchings to names, subnets or
virtual LANs; and host information, such as OS type and open services.

Many of the alert correlation techniques adopt expert rules and sim-
ilarity-based correlation methods [22–26], aiming to reduce the total
number of alerts by aggregating them using their similarities. The main
assumption behind similarity-based techniques is that similar alerts tend
to have the same root causes or similar effects on the monitored system.
How to define similarity measures is a critical performance issue for
such techniques. To answer this question, several similarity measures
have been used by many researchers [27–29]. The aim is to define a
suitable similarity function for each attribute observed in the alerts be-
cause attributes may have different weights and effects on the overall
correlation process.

Some authors have applied data mining methods for alert correlation
analysis, such as association rules mining [30–33], incremental frequent
mining [34], and sequential pattern mining [35,36]. Their aim is to au-
tomate the process of finding meaningful activities and interesting fea-
tures from training datasets and build a knowledgebase that can be used
for the alert correlation process in real-time. The main drawback of this
approach is the heavy load imposed on the system to build models that
dynamically adapt to new conditions.

Alternately, some research efforts, such as those in [37–39], have
noted the importance of ticket correlation for incident resolution, claim-
ing that the latter can be extended with advanced functions to enhance
the incident resolution process, as the information in the tickets is re-
lated to incidents generated by events that have already been identi-
fied as network failures, and as such, some related alerts should exist.
Other efforts, such as those in [40–42], use ITSs for several purposes,
such as studying and characterizing the nature and causes of routing
changes and the observed instability. In these references, the authors
use simple ticket preprocessing operations to reduce the total number

2

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

of tickets before correlating them. However, they do not deeply analyze
the ITS, and the correlation of the tickets is not targeted at reaching one
ticket per incident.

In another research line, in [43] the authors proposed an intrusion
detection model that leverages contextual information to create attack
prediction models driven by database and graph mining techniques. The
proposed approach automatically identifies and queries flows to gen-
erate semantic links among alerts raised in response to suspicious ac-
tivities. It consists of two main phases: the preprocessing phase, which
leverages previous flows to create a flow classification model, called Se-
mantic Link Network (SLN); and the prediction phase, which occurs at
run-time and takes incoming flows as inputs, and produces an initial
prediction of whether they are suspicious or benign. Despite the main
contribution of our work not being targeted at modeling the process as-
sociated to an attack, considering context-aware correlation approaches
like the one presented in this work has some beneficial outcomes to our
approach and might be used as an insight for future improvements or a
confirmation on the existence of profitable semantic information.

To the best of our knowledge, despite its potential for obtaining var-
ious useful statistical measures to study the nature of incidents and their
effects on network stability [44,45], no efforts have been devoted to the
use of information from the tickets in the alert correlation process itself
(joint correlation), targeted at increasing the percentage of reduction in
the number of alerts and the significance of the resulting events.

Finally, despite the availability of a large number of monitoring tools
such as Logstash [46], Splunk [47], and Sumo Logic [48], which are
mainly designed to assist in storing and analyzing log files from the
point of view facilitating the management process, we did not find spe-
cific solutions to the challenges described in this article.

In summary, the aim of this work is different than that of the cited
references. The proposed method is expected to produce a final set of
incidents that more accurately represent the real incidents in the net-
work when compared with standard alert correlation systems that only
use the alerts as the main source of information.

3. Basic model for event correlation

Before discussing the ticket-alert correlation process in more detail,
we introduce various terminologies in this section and provide a brief
overview of the basic event correlation model that we use as a basic
building block for the correlation process. As will be shown, this basic
model is intentionally simple because its main purpose is just to serve
as a basic criterion upon which our ticket-alert correlation proposal is
built. As previously discussed, the main goal of this article is showing
that even when the underlying correlation algorithm is simple, the con-
tribution of tickets to the alert correlation process is substantial.

In a first step, we consider both the appearance of alerts in the NMS
and the generation of tickets in the ITS system as generic events. This
way, whenever an incident takes place in a monitored network, a set of
different events related to that incident appear. Let us denote as I (see
Table 1 for a summary of the notation) the set of m different events (e.g.,
alerts or tickets) that appear as a consequence of an incident occurring
in a network: I = {e1,e2,…,em}.

Every event e⁠i has a different duration, spanning from the instant of
its creation or appearance, which we call the event creation time, to
the instant at which this event finishes or is resolved, which we call the
event resolution time, .

In addition, every event e⁠i is associated with one or more elements
of the network, which we call the affected elements of that event. For
example, in a “node down” alert, the node of the network that has
gone down is the affected element of that event. Note that an event
could have several affected elements. For example, if a ticket is created

Table 1
List of acronyms and symbols with their descriptions.

Acronym/symbol Description

FOD Forward offset delay
BOD Backward offset delay
SoI Start of incident
EoI End of incident
A⁠R Representative alert
T⁠R Representative ticket
A⁠P Set of alerts after preprocessing
T⁠P Set of tickets after preprocessing
A⁠C Set of alerts after correlation
T⁠C Set of tickets after correlation
D⁠i Event ith description
E⁠i Set of affected elements for event ith
I Set of incidents

Event ith creation time
Event ith resolution time

e⁠R Representative event
I⁠actual Number of real incidents
I⁠A Number of incidents extracted from alert dataset
I⁠T Number of incidents extracted from ticket dataset
t⁠CT Ticket creation time
t⁠RT Ticket resolution time

due to the failure of several nodes in a network, all of them are really
the affected elements for that event. In general, we will say that every
event e⁠i will have a set of affected elements, E⁠i, which is a list of the dif-
ferent identifiers of the network elements, applications, services, etc. af-
fected by the incident described in that event. An identifier here could
be an IP address, a node name, a service name, etc.

Furthermore, every event e⁠i is also specified by an event description,
D⁠i, which is usually a free text field describing the event, its effects on
the network, and/or the root cause of its appearance.

Normally, when an incident occurs in a network, many different
alerts and tickets (events in general) are generated. Here, it is desir-
able that an ideal event correlation algorithm provides a single event
for this incident that contains all of the semantic information extracted
from the set of related alerts and tickets. Thus, we are first interested
in the correlation of all the events that belong to an incident I so that
a single event can represent the entire incident. We refer to this sin-
gle event as the representative event for incident I, e⁠R. To be coherent
with the description of the set I, the duration of the event e⁠R should
span from the earliest event creation time from the events in I to the
last event resolution time observed in the set of events for that incident.
Fig. 1 shows an example of this definition, where a set of m events be

Fig. 1. Correlation of m events belonging to the same incident into a representative event.

3

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

longing to the incident I are represented by a single representative event
e⁠R.

Note that in realistic scenarios, the duration of the representative
event might not match the real incident duration, mainly due to the fact
that when the incident starts, a delay could occur before the first event
appears; and the same could occur when the incident finishes, that is, it
would be usual to have a delay between the end of the incident and the
closing (resolution) of a ticket. Thus, we define a Forward Offset Delay,
FOD, as the delay between the real start of the incident (SoI) and the
time at which the first event appears. In addition, we define a Backward
Offset Delay, BOD, i.e., the delay between the real end of the incident
(EoI) and the closing time of all the related events. Note that BOD could
take a negative value in the case that the last event ends before the in-
cident. As an example, if we consider the events to be tickets that are
manually created and closed by a member of the management staff, it
could happen that the member believed an incident had finished while
it was actually still active. In this case, the member would close the
ticket (the end of the event), thus assigning to BOD a negative value.
These two measures will be relevant for the proper handling of events
that occur near in time, as they are related to the time misalignments
between the real incident and its perceived effects. We consider them in
the ticket-alert correlation algorithm proposed in Section 5.

3.1. Tickets vs. alerts

Despite the fact that we generally consider both tickets and alerts
as events, it is important to highlight that there are relevant differences
among them and, thus, some challenges appear when trying to combine
both.

The main difference between alerts and tickets appears in the na-
ture of the information they contain, mainly due to the own manage-
ment process. Alerts are automatically triggered by network equipments
and systems and, thus, they incorporate automated information. On the
other hand, tickets are normally generated by humans, either when a
service desk call is received, or when the management staff receives any
kind of notification about ongoing incidents. This implies that tickets
will incorporate human expert knowledge, while alerts will not. Note
that even in the case that tickets are automatically generated when
alerts arrive, operators are usually allowed to add expert information.

While it is expected that alerts should be usually associated with
tickets, in realistic scenarios we may have alerts without related tickets
and vice versa. To clarify this point consider an example from the intru-
sion detection field where a Web server is a victim of a low-rate denial
of service (DoS) attack [49,50]. This type of attacks succeeds to defeat
application servers only by sending them low-rate traffic in an intelli-
gent way, and can easily bypass detection mechanisms, so no alert is
generated by these traffic monitoring systems. In this case, as no alert is
created in the system, the incident could remain undetected even when
using alert correlation. Yet in this scenario, any Web user might de-
nounce the unavailability of the Web server by calling the service desk.
There, an operator would open a corresponding ticket. As a result, we
do not expect to have related alerts for every created ticket. In this re-
gard, we have explored real datasets (See Section 6) and found some
relevant properties that strongly suggest that they are separated sources
with different information.

Furthermore, as tickets and alerts are generated following different
processes, they contain different information. Some of the challenges
that appear when dealing with the information in both tickets and alerts
are:

• Information structure: Information contained in alerts is usually struc-
tured. This is due to the fact that it is automatically generated

by the monitoring systems. On the other hand, many of the informa-
tion contained in tickets is not structured, as it is manually generated
and maintained by humans.

• Timing information: Alerts are automatically triggered by monitoring
systems that are reactive enough to quickly respond and rapidly gen-
erate alerts. Thus, the delay between the beginning of an incident and
the first alert creation time is almost negligible. Whereas, in ITS, and
especially for those tickets that need human intervention, a perceiv-
able and even significant delay in ticket creation can appear. Thus,
these timing offsets introduce a real challenge when trying to corre-
late alerts and tickets. As it will be shown in Section 5, we argue that
alerts contain more accurate timing information about incident life-
times than tickets.

• Semantic information: Since a ticket contains many free text fields,
ticket creators and those that manage them feel free to describe the
incident, its possible causes and the solutions applied to solve it in
more detail. Therefore, tickets are expected to provide better informa-
tion than alerts with regard to identifying and describing the actual
incidents that occur in a network.

• Preprocessing steps: Both datasets may contain duplicated or redun-
dant records. The processes applied to filter and remove these records
are different as they present different field types, even including
non-structured data in the case of tickets. Furthermore, unlike the
alert dataset, the ticketing system is a multipurpose system that can
be used not only for incident resolution, but also to register informa-
tive data for administrative issues such as scheduled maintenance or
system update. This implies different preprocessing criteria and con-
stitutes a big challenge when trying to filter out alerts and tickets not
directly related to incidents.

As will be shown in Section 5, applying the basic event correlation
model that follows for both tickets and alerts is not straightforward, and
the proposed correlation algorithm considers these challenges in its de-
sign.

3.2. Basic correlation method

Suppose now that we have a set of m events and that we do not have
any information about the incidents they are related to. We are inter-
ested in obtaining the same number of representative events as that of
the incidents that originated those events. To achieve this in this basic
model for event correlation, we assume the following hypothesis:

Two events that (i) have a similar description or have an affected ele-
ment in common, i.e., are related to the same network nodes, and (ii)
happen simultaneously in time will likely belong to the same incident.

Mathematically, the first condition, i.e., the similarity in the descrip-
tion or the affected elements of two events e⁠i and e⁠j, can be described by
the following expression:

(1)

while the second condition, i.e., the simultaneous occurrence of two
events e⁠i and e⁠j, is given by

(2)

Note that the conditions E⁠i ∩ E⁠j and D⁠i ∩ D⁠j represent the intersection
of two text-free fields. Although there exist many alternatives to deter-
mine a metric to decide if an intersection is present [51], we have opted
for a very simple model to justify that, even in these conditions, the in-
clusion of tickets provides benefits. In case of the condition E⁠i ∩

4

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

E⁠j, as will be detailed in Section 6, every list E⁠i is built by mining
text-free fields and searching node identifiers present in a predefined
list. Thus, two fields E⁠i and E⁠j intersect when they contain at least one
identifier in common. Regarding the condition D⁠i ∩ D⁠j, we have included
this condition in the model for the sake of completeness. However, to
make our approach as simple as possible, we do not truly apply it in
our experiments such that no comparison of free text fields regarding
descriptions is conducted at all. That said, a more advanced algorithm
could be selected from the proposed solutions for text mining in the lit-
erature [51].

In our basic correlation algorithm, if the above two rules are fulfilled
by any group of events, we conclude that they are all related to the same
incident, and we simply aggregate them into one representative event,
e⁠R, having the following properties (see Fig. 1):

(3)

(4)

(5)

(6)

Note that we join all of the descriptions D⁠i of the different events and
the set of event-affected elements, E⁠i, as we consider that any informa-
tion in one of the events in an incident will complement the information
provided in other events in the same incident.

4. Ticket-alert correlation system

Fig. 2 shows the proposed ticket-alert correlation system. It mainly
consists of three modules: a module for ticket correlation, another for
alert correlation and the last for ticket-alert joint correlation.

The ticket correlation module is represented in the upper part of
the figure. A set of raw tickets, T⁠R, obtained from the ITS is entered as
an input to the ticket preprocessing phase to normalize and extract only
relevant tickets, as will be explained next. The resulting processed set,
T⁠P, is then passed through a ticket correlation phase, which, based on
the basic model for event correlation explained in Section 3, produces a
new set of representative tickets, T⁠C. Every representative ticket, which is

Fig. 2. Proposed architecture for the ticket-alert correlation system.

ideally expected to represent a single incident, contains the summary of
a group of correlated tickets.

The lower part of Fig. 2 represents the alert correlation module.
Here, a set of raw alerts, A⁠R, usually triggered by a monitoring system, is
entered as input to an alert preprocessing phase to normalize and extract
only relevant alerts, as will be explained next. The resulting processed
set, A⁠P, is then passed through an alert correlation phase, also based on
the basic model for event correlation (Section 3), to produce a new set,
A⁠C, which is the final set of representative alerts. Every representative
alert is expected to ideally represent a single incident, containing a sum-
mary of the information provided by a group of correlated alerts.

Finally, the right-hand side of Fig. 2 represents the ticket-alert corre-
lation module. Here, the outputs of the alert and ticket correlation mod-
ules, A⁠C and T⁠C, are entered as inputs, and the processing is performed
according to the correlation model presented in Section 5. The aim is to
produce a final set of incidents, I, that will more accurately represent
the real incidents in the network compared with methods that only ac-
count for alert correlation. In the following subsections, we provide a
more detailed discussion regarding each module separately.

4.1. Ticket correlation module

The inputs for this module are the tickets obtained from an ITS data-
base. ITSs are considered essential tools for tracking resolution activ-
ities associated with incidents in corporate networks. Each record in
an ITS represents a ticket that has information related to an incident.
Normally, an incident is perceived by the management staff by observ-
ing events generated by monitoring software or by receiving customers’
complaints. These events, called tickets, contain information such as
Node IDs (affected elements in our basic event correlation model), which
are identifiers of the main network element/s or service/s affected by
the incident reported in the ticket; ticket timestamps, such as ticket cre-
ation and resolution times; and incident description fields (descriptions in
our basic event correlation model), such as an incident summary, a
worklog history and a solution description containing all the procedures
used to solve the incident. Tickets may also contain fields storing admin-
istrative information, such as the management groups involved in the
resolution process, along with their contact information, among things.

In this module, the tickets are first introduced in a ticket preprocessing
phase. The aim is to extract only relevant tickets, or tickets related to real
network incidents. It is worth noting here that ITSs are used as dual-task
systems: they can be used for purposes other than registering incidents’
lifecycles. For example, they are normally used to record other adminis-
trative and maintenance tasks, e.g., programmed work in the network or
availability of a new software release. Therefore, because not all tickets
are created as a consequence of actual network incidents, we might say
that some tickets are informative. Thus, we first normalize the data and
obtain in a proper format the different tickets’ fields that are relevant
from the point of view of incident solving and remove the remaining
information in every ticket. Second, we discard malformed tickets, that
is, tickets having some incoherent values, as well as informative tickets.
To discern which tickets are informative, a common method is to use a
pre-defined list of keywords and pattern-matching techniques.

The output of the ticket preprocessing phase is fed as an input to
the ticket correlation phase. This process is well studied in our previous
work [52]. Essentially, we apply our basic event correlation algorithm
(See Section 3) with several adaptations. In a first step, we obtain the
main affected element of every ticket, usually clearly stated in a field
called “Node ID” in ticketing systems, and make the correlation consid-
ering all the tickets that have only this affected element. In a second

5

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

step, we obtain more information regarding affected elements from other
tickets’ fields related to the description of the incident, such as worklogs
and solution descriptions. In [52], we show that this leads to a consid-
erable improvement in the incident resolution process in terms of accu-
racy, timing, and incident description.

4.2. Alert correlation module

Alerts are usually generated by network elements and obtained by
management platforms, e.g., syslog or HP OpenView, using manage-
ment protocols, such as SNMP. Each alert is a short message with a
specific textual format defined by equipment vendors and is generated
as an external manifestation of a potential failure or disorder occurring
in a piece of equipment of the managed network or system. Typically,
alerts contain the same relevant information as that described in our ba-
sic model presented in Section 3, such as (i) affected element identifier,
e.g., node ID and interface ID, (ii) the timing information of the alert,
i.e., the creation and resolution times, and (iii) a description of the fault,
i.e., the root cause and the severity of the alert. Moreover, alerts may
provide information with different detail levels, such as specific data re-
garding the status of the devices and their configurations or higher level
details with aggregated information gathered from several alerts.

Alerts are first passed to a preprocessing phase, with the aim of select-
ing only relevant alerts: alerts related to relevant incidents. It is worth
mentioning here that today’s monitoring systems trigger a huge amount
of so-called normal-behavior alerts in response to daily operational tasks
that are not really related to real network incidents, i.e., maintenance
activities, software updates, etc. Thus, to filter nonrelevant alerts, we
use a pre-defined list of keywords and some pattern matching tech-
niques. In the experimental section we provide more details about this
process.

The output of the preprocessing phase is fed into an alert correlation
phase. Here, a similar approach to that followed in the ticket correlation
phase is utilized: we use the basic event correlation model (Section 3)
in two steps. First, we only consider alerts that are related to a single
affected element, and in a second step, we incorporate those alerts that
are related to a list of several affected elements. These last alerts are nor-
mally generated by intermediate network elements that really correlate
several of them and generate a new alert with the summarized informa-
tion.

Note that this module is very similar to the ticket correlation mod-
ule. It is remarkable to say that traditionally, this is the only module that
has been implemented in network alert correlation systems, and a large
amount of research effort has been devoted to studying it [5,7,9,10,19].
In our case, we are not as interested in refining this module as in evalu-
ating whether the incorporation of tickets’ information would improve
the alert correlation process. For this reason, and for ease, we have
opted for this implementation.

4.3. Ticket-alert correlation module

This module works with the information provided by both the alert
and ticket correlation modules. As previously explained, we are mainly
interested in evaluating whether introducing this module would result
in a benefit in the correlation process.

Our intuition is that the tickets can introduce relevant information
in the procedure, incorporating human knowledge and significance to
the events. An example of a scenario revealing this is depicted in Fig. 3.
In the first timeline, we can observe the result from an alert correlation
process, where three clusters of alerts are summarized in three repre-
sentative alerts: A⁠R1, A⁠R2 and A⁠R3. The second timeline represents the
output from the ticket correlation process, where a single representa

Fig. 3. Example of alert aggregation using the proposed model.

tive ticket, T⁠R, has been obtained. The third timeline represents the du-
ration of the incident that generated the different events (alerts and tick-
ets).

Note that the alerts in this incident appear intermittently, which
makes the correlation process consider that they are not overlapped in
time and are thus not likely to belong to the same incident. However,
the existence of tickets makes it possible to observe the concurrence in
time between the three groups of alerts and tickets, thus allowing the
correlation of all of them to represent a single incident.

We can further clarify this example by using a real scenario with
alerts and tickets taken from the dataset that we analyze below in
Section 6. Fig. 4 shows the set of alerts after preprocessing (24 alerts)
that are considered in this example. These alerts are triggered by two
different network nodes, namely NIX1-FORTIGATE and
AVPN-CEIC-039, with 20 and 4 alerts, respectively. The basic alert
correlation operations that we applied here are able to group this
set of alerts into five clusters (3 for NIX1-FORTIGATE, and 2 for
AVPN-CEIC-039) based on the timing and some topological informa-
tion (basically Node ID). The first 13 alerts are overlapped in time and
have the same common Node ID (NIX1-FORTIGATE). Thus, they are
grouped into one representative alert aggregating all of them (Cluster
1). The next 5 are also grouped into a single ”event” that represents
this group (Cluster # 2); finally, the last 2 are treated in the same way
(Cluster # 3). Regarding the alerts generated by node AVPN-CEIC-039,
the correlation method generates 2 clusters (# 4 and # 5). Thus,
the output after alert correlation would be composed of five groups
of aggregated alerts. Fig. 5 shows the corresponding ticket for this
set of alerts after preprocessing and extracting the useful features. As
we will discuss in Section 6, it is

Fig. 4. A snapshot of the set of alerts considered in the example.

6

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

Fig. 5. A snapshot of the ticket considered in the example.

worth noting that in the considered ticketing system, every ticket is
characterized by 273 different fields. Thus, only the relevant fields are
shown in Fig. 5. Observing the ticket, it is clear that this information in-
tersects with that from alerts in several fields, e.g., Node ID, Description,
Interface ID, and timing information.

Therefore, as a primer solution, we could use these fields to correlate
both sources of information as shown in Fig. 6. In this figure, we draw
over time the ticket and the considered 24 alerts. In the upper time-
line we draw the ticket lifetime considering both creation and resolu-
tion times. In the second timeline we draw the 24 alerts and show their
overlapping periods and the five created clusters after applying the ba-
sic event correlation model (see Section 3.2). Without considering ticket
information, the basic event correlation model would create five uncor-
related clusters of alerts despite being related to the same incident. This
is due to the fact that in real scenarios like the example it is usual to
have unpredictable time gaps between alerts that make it hard to guess
their relationship. Besides, it is hard to correlate alerts coming from dif-
ferent network nodes. In our case, by incorporating the ticket informa-
tion we observe that the five alert clusters overlap with the ticket, and
consequently we can consider that they belong to the same incident. The
final number of events to be considered in this example is then reduced
to 1 instead of 5, which supports the idea that using the ticket makes it
possible to correlate them together (see incident timeline in Fig. 6).

This illustrative example gives clear indications of the beneficial out-
comes provided to both technical and decision-making staff. For ex-
ample, from the point of view of efficiency, having a single incident
with more information might reduce the resolution time. From an audit
perspective, having more realistic information about the real incidents
solved by management staff will help in the decision-making process.

Fig. 6. A graphical time representation of the alerts, the ticket, and the generated inci-
dent.

5. Ticket-alert correlation model

To apply the basic event correlation model suggested in Section 3 to
correlate both tickets and alerts, it is important to first understand the
specificities of both tickets and alerts (see Section 3.1) and then properly
design a correlation algorithm able to handle the associated challenges.
In the following, we first discuss the specific issues to be taken into ac-
count and then suggest our proposal for the correlation algorithm.

• Tickets provide better semantic information than alerts
Although tickets can be automatically generated by the NMS (auto-
matic tickets), they are usually generated manually by the members
of the staff, either as a response to alerts or from customers’ com-
plaints. Every ticket represents a complete record of an incident to be
used by the management team during the incident management life-
cycle.
Normally, tickets contain more semantic information about the inci-
dents than alerts. First, every ticket contains many free text fields,
which are used by ticket creators and resolvers to clearly describe
the incident, its possible causes and the solutions applied to solve it.
In alerts, these fields are normally automatically generated by net-
work facilities, and thus the semantic information is very restricted
to a list of possible values. Second, tickets are generated by humans
only when alert events are considered so important that a record of
an incident is needed. For example, the appearance of alerts regard-
ing non-production services, alerts generated by low-priority nodes in
a network, or warning alerts of low-priority should not cause the cre-
ation of tickets, as these events should not be considered as incidents.
Thus, tickets are expected to provide better information than alerts
with regard to identifying the actual number of incidents that occur
in a network. If we assume that the number of incidents derived from
a ticket correlation process is I⁠T, the number of incidents noted by
an alert correlation process is I⁠A, and the number of real incidents is
I⁠actual, we expect to have the following relation:

(7)

For this reason, we show in our correlation algorithm that we pay
more attention to tickets when deciding the number of incidents.

• Alerts provide better temporal information than tickets
In contrast with our higher confidence in the semantic information
contained in tickets, we claim that the temporal information found in
them is less trustworthy than that provided by alerts. This is because
in the ITS system, a large number of tickets are created or closed man-
ually by the management staff; thus, their responsiveness is not as fast
as in the alert management system where alerts are generated auto-
matically in a few milliseconds when an event is perceived. Thus, to
determine the beginning and end times of an incident, we consider
the timestamps provided by alerts to be the best approximations.
Going back to Fig. 2, in which we show the complete system, note
that instead of considering both tickets and alerts as general events
and applying our basic event correlation algorithm to the complete
set, we separate both into two processes. This will allow us to deter-
mine and identify the number of different incidents (and their seman-
tic information) from the ticket correlation process and adjust their
temporal information from the feedback provided by the alert cor-
relation process. In summary, the output of ticket correlation is re-
fined with the alert correlation output to adjust the time information
of the incidents noted by tickets.

• Dealing with border effects and the existence of consecutive incidents

7

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

As previously mentioned, it is expected to have some temporary mis-
alignments between the start and end of an incident and the opening
and closing times of the associated ticket(s) due to, presumably, hu-
man response times. This effect has been included in the basic cor-
relation model through the parameters FOD and BOD. At first sight
(Fig. 7), the problem with these two delays is that it is possible to ex-
clude or include events related or not really related, respectively, to
the ongoing incident in the representative event and, therefore, in the
incident as perceived after the correlation process. As depicted in the
example in Fig. 7, depending on whether the first event in the events
line is an alert or a ticket, it is even possible for the appearance of two
different incidents at the beginning, while two different incidents can
be merged at the end. In contrast, it is also possible for the staff mem-
bers to prematurely close a ticket if they have the perception that the
problem is solved, thus making BOD negative. In this case, it is highly
probable that another ticket truly related to the same incident will ap-
pear after some delay. In fact, this is exactly the former situation in
the case that the first event in the event line is a ticket.
To handle this situation, our main argument is that there is a high
probability that potentially correlated events that occur in the prox-
imities of other representative events really belong to the same inci-
dent. This way, the simultaneity condition –Eq. (2)– used to merge
events is relaxed by considering FOD and BOD as thresholds to con-
sider alerts and tickets in the proximity as included in the same inci-
dent.
From the point of view of the correlation method, the major impact
is expected to arise from the “orphan” alerts, that is, from that alerts
at the beginning or end of an incident that are not assigned to it due
to the border effects. Therefore, some experimental tuning is needed
to estimate the values for both FOD and BOD. Obviously, this is ad-
dressed in the experimental setup.
Nevertheless, the scenario can become a bit more complex when con-
secutive incidents appear. The problem is how to discriminate be-
tween any two consecutive incidents having some properties in com-
mon, i.e., how to correctly separate events that could correspond to
both incidents or even decide that both incidents are the same and
should be merged. To clarify this point, we show an example in Fig. 8.
Here, we assume that we have two truly consecutive incidents, I⁠1 and
I⁠2, each one starting and ending at the instants shown in the incidents
timeline. We also have a sequence of events, each one starting and
ending as shown in the events timeline. Furthermore, we assume that
each of these events is related to either I⁠1 or I⁠2. If we apply the basic
event correlation model suggested in Section 3, we obtain two rep-
resentative events, e⁠R1 and e⁠R2, as shown in the third timeline (Rep.
events), which, at the same time, will be considered the incidents from
our point of view.

Fig. 7. Potential effects of FOD and BOD on the correlation results.

Fig. 8. Example showing the problem of directly applying the basic event correlation
model to two consecutive incidents.

If we look carefully at this example, we observe that some events are
discarded from the correlation process and are not correlated simply
because they do not overlap with any other event. We can assume
that the non-overlapped events belong to other different incidents, in
which case we would have up to seven different incidents, far more
than the actual two incidents.
Thus, directly applying the basic event correlation model in this ex-
ample would lead to inaccuracies, especially when alert events are
considered because, as mentioned above, alerts may appear earlier
than tickets and might not overlap with them, and they may not be
considered in the correlation process.
In addition, note that there is another problem when consecutive in-
cidents are considered as in our example. We must select the specific
incident, if any, to which the events in between belong. In our exam-
ple, there are three events between eR1 and eR2. The choice of assign-
ment between event-incident modifies the duration of both incidents,
thus affecting the accuracy of the system.

5.1. Ticket-alert correlation algorithm

To handle all of the above issues, we modify the basic correlation
model to consider non-overlapped subsets of tickets and alerts as ex-
plained before. As shown in Fig. 1, FOD and BOD will be used as ex-
tra delay thresholds so that an event is correlated to a representative
event, e⁠R, that is active in the time interval [t⁠CT, t⁠RT] if that event satis-
fies Eq. (1), that is, if it satisfies the similarity criteria and is active in
the interval

(8)

Note that, with the expansion of the intervals with FOD and BOD, it
might happen that the extended intervals of two consecutive incidents
sharing some affected element overlap. In this case, two operations are
considered: (i) any potentially related event falling in these intervals
will be assigned to the nearest-in-time representative event, and (ii) the
incidents will be merged only if, after adding the in-between events,
they are overlapping. Thus, extended intervals are not considered valid
for merging incidents simply based on the new limits.

It is obvious that the selection of the values of FOD and BOD directly
affects the performance of the correlation algorithm. In Section 6, we
show how to experimentally determine optimal values for these para-
meters and how they affect the overall results.

In summary, we propose an algorithm (Listing 1) that starts from
an empty list of incidents and consists of two iterations. First, it takes
every representative ticket from the correlated tickets set, T⁠C, each of
which is considered to represent different incidents. It is worth noting
that as a result of the ticket correlation, none of those tickets are over-
lapped in time. For each incident (or representative ticket), the differ-
ent model parameters are extracted (creation and resolution times, af-
fected elements and descriptions). Then, it searches for correlated rep

8

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

Listing 1. Ticket-alert correlation algorithm.

resentative alerts. Thus, every representative ticket has a list of corre-
lated alerts assigned to it, and the temporary limits (SoI and EoI) of the
incidents are revisited according to the new information. Second, after
extracting a tuple of correlated tickets and alerts, in the second itera-
tion, the algorithm takes every correlated ticket and its associated list of
correlated alerts and searches for other tickets having at least one alert
in common. The target of this step is to join the representative tickets
that resulted in being overlapped after adding the alerts in the first step.
All matched tickets are aggregated into a single one including all the in-
formation from the entire group. Finally, SoI and EoI are determined by,
respectively, taking the first of the creation times of any of the alerts in
the correlated set or the ticket creation time (line 42) and the last of the
resolution times of any of the alerts or the ticket resolution time (line
43).

The final output is a set, S⁠I, of k incidents, such that
SI = {I1,I2,I3,…,Ik}, being a single incident I = {TC,AC,TE,TD}, where T⁠C
and A⁠C are the subsets of correlated tickets and alerts for this incident,
respectively, T⁠E is the list of affected elements, and T⁠D is the description
of the incident. This set S⁠I is the estimation of the actual incidents rep-
resented by all the events (tickets and alerts).

6. Experimental results

In this section we present the experimental assessment of the pro-
posal using datasets of tickets and alerts captured in a real production
network. According to the main target of the paper, our purpose is to
check the usefulness of the joint use of tickets and alerts in the event
correlation procedures. For this, we must tune the parameters related to
the potential misalignments between incidents, tickets, and alerts tim-
ing information, i.e. BOD and FOD, in order to obtain the set of repre-
sentative events for the available dataset.

On the other hand, two questions have to be addressed to assess the
results: (1) whether the original events combined in each representative
event are really associated to that representative, and (2) whether all
the events associated to an incident are included in the representative
event. The answer to these questions is not straightforward due to the
lack of a ground truth to account for each class. Therefore, we devel-
oped a strategy in three steps, as described in Section 6.2, to address
these questions.

9

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

6.1. Real scenario: Dataset and preprocessing

The scenario considered is the network, event data and procedures
handled by a management company with which we are collaborating.
This company is in charge of the supervision, from a management point
of view, of the operation of the corporate network providing services to
the regional government. Thus, the supervised network serves millions
of habitants from many public sectors, such as education, health and
civil. The topology of the network resembles the organizational struc-
ture of the government and thus uses a hierarchical approach.

As previously mentioned, the handling of alerts and tickets inside the
company is performed by two different departments: a technical depart-
ment, which is in charge of the effective supervision of the network and,
subsequently, the alerts; and a service desk, which attends the requests
and complaints from customers. In what follows, we refer to the tech-
nical department as MS (Management Staff) and to the Service Desk as
SD. Both departments have the capability to create tickets, although, as
previously mentioned, MS do it mainly as a response to alerts generated
by some network failures or after receiving some feedback from other
sources, whereas SD will create tickets from end-user complaints. This
is an important fact from the point of view of the current work, as it is
expected that many of the tickets created by MS have some pointers to
the alerts triggering them, while the tickets created by SD can provide
richer information regarding the ongoing incidents but no pointers to
technical details or alerts is expected.

The data gathered in this scenario are the set of alerts and tickets
in the system during a period of six months spanning from October 1,
2013, to the end of March, 2014. It is important to note that no infor-
mation regarding the topology, apart from a list of nodes and links clas-
sified by MS as critical for the operation of the network, is considered.

The information included in each alert is presented in a fixed struc-
tured format (Fig. 9), which is mapped to the elements in the model
(Section 3). It is relevant to mention that the affected element name
(Object ID in the alert dataset) presents a hierarchical structure that fits
with the topological counterpart. Alternately, tickets are far more com-
plex because they also include additional information related to incident
tracking and solution and various free text fields. Nevertheless, it is easy
to map some of these fields to the elements in the model.

A major inconvenience from this raw dataset that conditions the
manner in which the experiments are to be carried out is the lack of
a “ground truth,” i.e., a set of labeled incidents with their correspond-
ing alerts and tickets is not available. Furthermore, and as expected, we
manually found that not all of the tickets/alerts are related to real in-
cidents and that some of the tickets present incoherent or null values
in relevant fields. These types of alerts/tickets were removed during the
preprocessing step, for which we set up some rules, mainly based on
keyword detection, after some consultations with the staff at the com-
pany.

The lack of labeled data can introduce some confusion in the inter-
pretation of the results, as not all the real alerts are to generate tickets
because the MS can consider them nonrelevant at a given time. In fact,
alerts in NMS are usually classified according to their severity and/or

Fig. 9. Example of an alert format taken from the alert dataset.

criticality. Thus, not all of the alerts present the same effects on the sta-
bility of the managed system, and MS is prone to ignore or postpone the
creation of a ticket for non-critical alerts, especially if they are busy try-
ing to solve an incident with higher priority. As a consequence, even if
the number of tickets was accurate, not all of the alerts would be cor-
related to a ticket, i.e., to an incident, which could be interpreted as a
failure in the proposed method.

To address this situation, we have checked the performance of the
correlation method with a special subset of events, that is, we only con-
sider relevant incidents. By relevant incidents, we refer to those that af-
fect the operation of the network in a critical way and that, conse-
quently, must present associated tickets. According to the company’s
technical procedures, there are two situations in which an alert should
mandatorily trigger a ticket from MS: critical alerts, which are those truly
affecting critical elements, and massive alerts, which are alerts automat-
ically generated by the NMS as a response to a large number of alerts
from topologically related elements in the network. The first situation
is identified by using a list of network nodes (the critical ones) and the
type of critical alerts (i.e., NodeDown, InterfaceDown) such that a critical
alert in a critical node should generate a ticket by MS. Therefore, the
main criterion for measuring the performance of the proposed correla-
tion procedure can be stated as

All relevant alerts should be assigned to a ticket.
Thus, during the preprocessing phase the relevant alerts are extracted,

and the tickets related to critical nodes are identified. To correlate the
tickets (Section 4.1), we adopt the same methodologies proposed in
our previous work [49] to preprocess and correlate tickets that have
the same root causes. As a result, a set of representative tickets, T⁠C, ar-
guably composed of a single ticket per network incident, is obtained. For
the alert database, the processed alerts are entered into the correlation
phase (Section 4.2), in which the proposed alert correlation model is ap-
plied to obtain the set of representative alerts, A⁠C. Similar to the ticket
case, a two-step procedure is used for alert correlation. In the first step,
the correlation is applied to critical alerts. Then, massive alerts are also
considered. Both datasets are the input for application of the ticket-alert
correlation model presented in Section 5.

Some relevant figures for both the tickets and the alerts used dur-
ing the phases previous to the joint ticket-alert correlation are provided
in Table 2. The first row ‘Total number of records’ represents the size
of raw datasets taken from the IT management company. ‘Mean num-
ber of affected elements/record’ provides the number of officeIDs found
in each record. To extract this number, we applied pattern matching
methods to obtain the list of affected elements for every event (ticket
or alert). ‘Number of records after preprocessing’ represents the remain-
ing number of records after the preprocessing step, mainly filtering out
void/spamming events. ‘Number of relevant records’ gives the number
of records that contain at least one critical officeID. As previously ex-
plained, these are the records used to assess the system. ‘Number of
representatives (before joint correlation)’ is the number of represen-
tative events in each correlated set after the first step of the correla
Table 2
Number of records in the dataset and results for the independent correlation of alerts and
tickets.

Database Alerts Tickets

Total number of records 1,703,662 9612
Mean number of affected elements/record 1.15 1.42
Number of records after preprocessing 913,042 8105
Number of relevant records 7436 520 (348 MS /

172 SD)
Number of representatives (before joint
correlation)

3022 256 (194 MS/
62 SD)

Mean number of records / repr. set 2.46 2.03

10

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

tion, that is, before applying the ticket-alert correlation module, i.e., the
number of alerts/tickets considered independent. Finally, the last row of
the table provides the average number of records for each representa-
tive one.

6.2. Evaluation of the system

The evaluation of the performance of the proposed method is not
straightforward because, as previously stated, the dataset lacks a ground
truth in which the existing incidents are related to their corresponding
alerts and tickets. Thus, despite some figures of merit being obtained,
a strategy to assess the results should be designed. A trivial approach
would be to manually label the dataset, or a part of it, to properly check
the obtained correlations. However, even if an expert could manually
handle that huge volume of data, the process would be prone to errors
because it is frequently difficult to determine, even for an experienced
manager, what the real incidents are from the limited information in
the alerts and tickets and whether they are related. Therefore, other ap-
proaches should be explored.

Alternately, as explained in Section 5, it is necessary to consider
some “border effects” in the correlation procedure due to potential mis-
alignments between the real timing of an incident and its manifestation
in tickets and alerts, probably due to the humans involved not being re-
active enough. To handle this, the model uses two tunable parameters:
FOD, that is, the maximum accepted time from the appearance of the
first alert of an incident and its corresponding ticket; and BOD, that is,
the maximum accepted time from the end of the incident and the clos-
ing of the ticket. Obviously, these two parameters should be adjusted
during the experimentation, which introduces an additional degree of
complexity for evaluating the proposal.

Therefore, we developed a strategy in three steps with different tar-
gets: first, we assessed the precision of the correlation, in terms of the
number of correctly correlated elements; second, we analyzed the po-
tential impact of varying FOD and BOD, which is somehow related to
the recall; and, finally, we manually explored the reasons for portions
of the alerts and tickets not being correlated. The first step is related to
question (1), while the second and third are related to question (2).

6.2.1. Precision estimation
Once the alerts and the tickets have been independently correlated

(See Table 2), we proceeded with the joint correlation of the obtained
representatives for alerts and tickets. As previously mentioned, we as-
sume that every critical incident should be univocally related to a final
representative ticket. Therefore, in the next discussions, we refer to an
incident as a representative ticket after the joint correlation.

In this regard, given the set of representative events and the events
(alerts and/or tickets) associated to them, the precision of the corre-
lation, P, can defined as the rate between the number of events cor-
rectly associated to any of the representative events (TP) against the to-
tal number of events associated to any of the representative events (
TP + FP), being FP the number of events incorrectly associated to any
of the representative events, that is, P = TP/(TP + FP).

In a first step, we varied FOD from 0.025 to 256 h, obtaining a
slightly different number of incidents for each value of FOD and differ-
ent numbers of alerts and tickets associated to each of the incidents. At
this point, the problem is to assess whether all of the alerts and tickets
that have been correlated into a representative ticket are truly related to
that incident. Due to the lack of a ground truth, validating these results
is not straightforward. To overcome this issue, we estimated the preci-
sion of the correlation by manually inspecting many samples and apply-
ing the knowledge and rules of thumb provided by the company man-
agement team, which helped us during this procedure. Furthermore, for
the cases that were not sufficiently clear for us, we obtained additional
feedback from the company.

Consequently, for validation purposes, a set of 100 randomly cho-
sen incident samples, together with their correlated tickets and alerts, is
considered and studied manually. The result of the analysis is depicted
in Fig. 10, which shows the number of false positives, in terms of in-
cidents for which we found inappropriately assigned events, as a func-
tion of the value for FOD. It is relevant to mention that for values of
FOD between 2 and 16 h, we found that 99 of the 100 samples were
undoubtedly classified as correctly correlated. The remaining sample is
not a clear case, as there is not enough information in the ticket and the
alerts to decide whether they are really related or not. Thus, assuming
the worst case, there is a single error in 100 samples, providing an esti-
mated value of 99% of a posteriori accuracy, that is, 99% of the found
correlations are correct at those operation points. This result suggests to
using a value of FOD lower than 2 h. As will be noted in the next sub-
section, the greater the value of FOD, the greater the percentage of cor-
related elements. Therefore, we select 1 h for FOD.

To confirm the validity of these results, we complemented the in-
spection with another check. For this, we evaluated various indicators
for the timings of the incidents, as shown in Table 3. In this regard, as
explained in Section 5, one of the most conflictive cases for the correla-
tion was related to consecutive incidents affecting the same network ele-
ments. To be more confident about the results and have insight into this
particular case, we can consider the delay between the first appeared
alert for each incident and the closing time of the previous ticket, if any,
including any of the affected elements in the incident, that is, the inter-
val to the previous potentially related ticket. As shown in Table 3, the
mean value for this magnitude is 33.3 h., which is significantly greater
than the selected value for FOD. This can be interpreted as a clear indi-
cation that the first appeared alert is related to the current incident and
not to a previous one for the selected FOD value of 1 h.

6.2.2. Joint correlation results
Another relevant parameter to evaluate the performance of the sys-

tem is the recall, defined as recall = TP/(TP + FN), where TP is the
number of events that are correctly correlated to any representative
event and FN is the number of events that are incorrectly kept uncorre-
lated to any representative event. Under the assumption that every rel

Fig. 10. Number of incorrectly correlated incidents (false positives) for different values of
FOD.

Table 3
Mean values for some variables for the correlated subset (FOD=1 h.).

Ticket lifetime 58.8 h
Incident lifetime 81.4 h
Number of rep. alerts/ sample 5.5
Number of alerts/rep. alert 4.8
Interval to previous potentially related ticket 33.3 h

11

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

evant incident should generate at least one ticket and that all the rele-
vant alerts should be associated to an incident, FN is equal to the num-
ber of alerts not being correlated to a representative event.

However, similar to the case of the estimation of the precision, both
FOD and BOD may play an important role in the percentage of corre-
lated elements. Simply stated, if FOD (or BOD) is sufficiently large, all
of the alerts and tickets related to a common element may end up cor-
related, thus providing an artificially high value for the recall.

To evaluate this effect, a series of experiments were carried out by
varying the values of FOD and BOD. It is worth mentioning that these
experiments were made in parallel with those described in the previous
section, all of them mainly targeted at tuning the system. The percent-
age of alerts correlated to incidents as a function of the values of FOD
and BOD is presented in Fig. 11. As shown and as expected, as FOD or
BOD increases, the percentage of correlated alerts does as well, which
would imply that the greater FOD/BOD is, the better the correlation
is. However, this might be an erroneous conclusion, as large values for
FOD/BOD would merge together independent incidents involving some
common affected element. Alternately, having long delays is not reason-
able in ticket creation (FOD) for critical incidents. Regardless, the figure
shows that there is no relevant influence from the value of FOD in the
results for FOD below 64 h. This was somehow expected because the de-
lay in the closing of the last ticket should be associated with a lack of
related alerts, not the presence of them. The behavior in relation to BOD
is similar.

These results, together with the analysis of the tickets/alerts that re-
sulted in inappropriate merges (correlation errors), as described in the
previous subsection, made us select FOD=BOD=1 h.

The correlation results taking into account only the tickets created
by MS are listed in Table 4. As shown, approximately 80% of the rep-
resentative tickets and 46% of the representative alerts potentially re-
lated to relevant incidents are correlated. Furthermore, if we consider

Fig. 11. Percentage of correlated alerts at different values for FOD and BOD.

Table 4
Correlation results considering only tickets created by the MS group.

Alerts Tickets

Number of raw input elements 7436 348
Number of representatives (before joint
correlation)

3022 194

Number of representatives correlated by joint
correlation

1391
(46.0%)

154
(79.4%)

Number of raw elements correlated (after joint
correlation)

5228
(70.3%)

294
(84.5%)

the initial non-correlated tickets and alerts, up to 70.3% of the alerts
and 84.5% of the tickets are correlated. For the tickets, this means that
84.5% of them are truly related to relevant incidents (there exist associ-
ated critical alerts), which provides no further information on the qual-
ity of the correlation itself, as the remaining 15.5% could be related to
the critical nodes they refer to but not to a critical episode. In fact, we
ended up with 40 tickets not correlated to any alert, which deserves a
posterior analysis. Alternately, having only 46.0% of the relevant repre-
sentative alerts be correlated to a ticket is, at first sight, not a very good
result, although it represents an advance that no other similar system
has achieved. Therefore, this result requires deeper analysis to find the
potential causes for such a figure, which is addressed next.

6.2.3. Analysis of the non-correlated alerts
Although the effectiveness of the proposed technique in terms of im-

properly correlated events has been shown to be high –question (1)–,
approximately half of the representative relevant alerts are not assigned
to a ticket –question (2)–, which requires further analysis. According to
the protocols in use at the company, all of the considered alerts should
have generated tickets from MS. This incoherency can be initially attrib-
uted to the fact that the proposed method is not accurate enough. How-
ever, an improper application of that policy or some problems with the
staff could also explain it. Therefore, we analyzed those non-correlated
alerts in search of some explanation for them not triggering tickets. For
this we considered two potentially influential factors: the alert durations
and inter-arrival delays of alerts having the same affected element.

The analysis of the duration of the non-correlated alerts provided the
results shown in Fig. 12. As a first conclusion, we observed that a sig-
nificant percentage of them present a short duration, which also implies
that they are shown as active in the management console for a short
time. This finding motivated us to further analyze those alerts. With the
help of the MS, we reached to the conclusion that a short duration alert
can be considered irrelevant and that the dedication of the staff to other
tasks can also hide them, thus not generating tickets from MS. In fact,
up to 64.3% of the uncorrelated alerts can be attributed to this effect
if we consider a threshold of 10 mins for their durations, which seems
reasonable for the MS.

To continue with the analysis, for alerts that have durations greater
than 10 mins, we analyzed the inter-arrival delay between consecutive
alerts having the same affected element to see if they are created close
in time or if there is a time gap between them. Fig. 13 shows the his-
togram of the inter-arrival delays. We found that more than 80% of
them were repeated within a period greater than 2 days, that is, most
of them appear and, despite its long or short duration, no additional
alert related to the same affected element appears in at least two days.
This means that the alert is scaling down in the list of active alerts on

Fig. 12. Histogram for the duration of the non-correlated alerts.

12

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

Fig. 13. Interarrival delay between consecutive non correlated alerts having the same af-
fected element.

the management console. Therefore, we conclude that the lack of an as-
sociated ticket can be possibly attributed to the existence of a “window
of opportunity” for the creation of the tickets. Thus, if an alert does not
trigger a ticket within a given period and it is not repeated, it is likely
it will not trigger a ticket at all. After consultation, MS confirmed this
observation.

Additionally, and besides the above conclusion for the last subset, we
found that approximately 68.8% of the non-correlated alerts included
names for affected elements not conforming to the naming conventions
in use. After consulting with the staff, we were informed that these types
of elements, despite being classified as critical ones, have special func-
tions that are not being used by other nodes. Thus, the MS do not usu-
ally open tickets for those types of affected elements. That is, we were
initially provided with an inaccurate list of critical nodes.

As a resume, Fig. 14 summarizes the results from the assessment of
both correlated and non-correlated alerts. It is worth mentioning that
if we accept that alerts lasting less than 10 mins are prone to being ig-
nored, only 10.6% of the initial alerts remain uncorrelated due to un-
known reason. Considering those with names conforming to the critical
nodes list, the percentage of non-correlated critical alerts is considerably
reduced to 7.3% with the proposed method.

6.2.4. Analysis of the non-correlated tickets
As shown in Table 4, there exist 40 representative tickets that are

not correlated to any representative alert after applying the joint cor-
relation. This is an unexpected result, as it is supposed that all these
tickets are opened by technical staff as a response to abnormal events
in critical nodes, which implies the appearance of critical alerts. Similar
to the alerts, these tickets have been found to have some insights into
the potential causes for them not being correlated. In this analysis, the
original dataset of alerts, as provided by the corporation, is also consid-
ered to check for any potential problem during the preprocessing and

Fig. 14. Distribution of the number of raw alerts among the different assessment criteria.

later phases of the procedures. Nevertheless, as in the previous cases,
manual inspection is not trivial because the available information from
tickets and alerts can be inconclusive or even incomplete.

The manual analysis of these 40 tickets provided up to 9 different
potential causes (Fig. 15):

1. Maintenance. These tickets are generated during maintenance opera-
tions in some elements of the network, both programmed and un-pro-
grammed. No associated alerts are found in the alert dataset, proba-
bly because they are filtered out during the maintenance procedures.

2. Massive. These tickets are related to massive failures in ADSL con-
nections at critical officeIDs although no associated MASSIVE alert is
present in the alert dataset. The free text fields in the ticket refer to
NodeIDs that are not critical, and thus they are not included in the
alert dataset.

3. No alert. No associated alert is found in the alert dataset for the ticket
duration or its vicinity, despite the NodeIDs being critical.

4. Border. Tickets generated at the beginning of the observation period
(first 2 days) with no associated alert in the dataset. Some of them
even refer to alerts and previous tickets outside of the observation
period.

5. Non-critical officeID. The value for the officeID refers to one of the
non-conforming names, so it should not be considered a critical offi-
ceID.

6. Non-critical alert. There exists at least one alert related to this ticket,
but it is not a critical reason. Thus, the alerts were removed during
preprocessing.

7. Handling error. The NodeID for this ticket is wrong. The incident is
not truly related to that NodeID.

8. User-initiated. Although these tickets come from MS, some of them
are generated as a response to phone calls from the technicians at
different locations. No alerts are observed, and most of them are re-
lated to internal problems at the location, e.g., a local email server
not responding.

9. Too much delay. There exist alerts potentially related to these tick-
ets, but they are placed outside the considered FOD or BOD.

As a result, we can conclude that 28 of these tickets (user-initiated,
non-critical alert, non-critical officeID, maintenance, handling error and
massive) should have been filtered out because they are not opened as
a response to the observation of critical alerts by the MS. Alternately,
border tickets can obviously be attributed to an experimental limitation
related to the observation period. Furthermore, the lack of correlation
for the no alert class cannot be attributed to the correlation method, as

Fig. 15. Results from the analysis of the uncorrelated tickets.

13

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

no related alerts are found. This could be due to a problem with the ac-
quisition of the alert dataset. Finally, the 2 tickets in the too much de-
lay class are clearly related to the limitations of the proposed method to
handle events when the creation of the tickets is not responsive enough.

In summary, from the set of 348 initial tickets, 2 are not properly
correlated by the proposed method due to its limitations, 38 are not cor-
related due to the lack of related information in the alert dataset due to
different reasons, and 308 are correctly correlated.

7. Applications

Finally, we discuss and evaluate two possible applications of the pro-
posed method. Two major contributions can be identified: improvement
of alert correlation, and provision of some insights into evaluating the
efficiency of the management team handling network incidents.

7.1. Alert reduction

The results regarding the capabilities of the ticket-alert correlation
provided in Section 6.2 are a clear indicator of the potentialities of the
proposed method. As shown in Table 4, there is a large reduction in the
number of alert representatives, that is, in the number of different alerts
after alert clustering when including the information from the tickets.
In fact, 1391 of the initial 3022 representative alerts after alert correla-
tion are associated with 194 incidents; that is, those 1391 representative
alerts are merged into 194 representative ones through the joint corre-
lation, with an average of 7.17 representative alerts per incident. There-
fore, the final alert set to consider contains only 1825 alerts (those rep-
resentative alerts not correlated by joint correlation plus the 194 newly
correlated representatives), that is, half of the original correlated set and
1/4 of the original number of alerts. Furthermore, the analysis of the
alerts that could not be correlated evidences a low confidence in their
relevance.

These results confirm our intuition regarding related alerts not over-
lapped in time (Fig. 3) and the inclusion of additional relationships cre-
ated by tickets. Therefore, we conclude from this interesting finding that
incorporating ticket information into the alert correlation process will
definitely help in reducing a higher percentage of related alerts.

Nevertheless, it is important to note that we have not yet used the
full potentiality of the system, as the tickets from SD have not been used
during the assessment of the method. The information in these tickets
can be far more significant than that in the MS tickets because they in-
corporate the end users’ perceptions of the incident.

Alternately, if we consider the tickets related to both MS and SD,
we might check whether SD systems play an important role in the in-
cident-solving process by applying the correlation algorithm to tickets
created by both the MS and SD groups.

The results, shown in Table 5, evidence that the proposed correla-
tion model is able to correlate tickets from SD at a similar percentage
as that for tickets from MS and that the inclusion of these tickets im-
proves the results. In particular, there is a 6.8% increase in the percent-
age of raw correlated alerts, and more importantly, the number of cor
Table 5
Correlation results for relevant tickets created by both the MS and SD groups.

Alerts Tickets

Number of raw input elements 7436 520
Number of representatives (before joint
correlation)

3022 256

Number of raw elements correlated (after joint
correlation)

5734
(77.1%)

436
(83.8%)

Number of representatives correlated 1683
(55.7%)

189
(73.8%)

related incidents rises from 154 to 189. This means that SD is not only
creating redundant tickets, as would be a priori expected, but also gen-
erating tickets for incidents not acknowledged by the technical staff.

Therefore, we can conclude that: i) SD systems are meaningful to
assist in the incident-solving problem and are not just a call center for
handling customer calls and complaints; and ii) the proposed method
is able to incorporate relevant information, which is not available from
any other source, into the correlation process, thus improving the qual-
ity of the results and reducing the number of elements in the output.

7.2. Measuring staff efficiency

A second good candidate application for our system is in providing
some insight into how to assist with and evaluate the efficiency of the
management team in the incident resolution process. The proposed sys-
tem might help decision-makers in answering several questions related
to the quality of the management, such as the following: How fast/ac-
curate is the staff? Do all the working shifts and management groups
behave the same way?

As an example, consider the case in which the operator is interested
in a measure of the reaction time of the management team, a group of
persons or even an individual member of the staff in dealing with inci-
dents; e.g., we need to measure how much time the management team
needs to open a ticket for an ongoing incident. We can measure the de-
lay between the first appeared alert and the first ticket creation time
of an incident. In this case, we obtained an average value of 1.27 h.
However, if we need to measure how much time the management team
needs to close a ticket for an already resolved incident, we can measure
the delay between the first resolved alert and the last resolved ticket re-
lated to an incident. In our case, the mean value for this magnitude is
132.3 h, which is certainly a large value. Similarly, other measures from
the model can be used and interpreted.

Another example is related to the assessment of the performance of
the working shifts. Because the number of persons in charge of the man-
agement uses is not the same for all shifts and the workload is usually
different, the analysis of the correlated alerts and tickets for the differ-
ent working shifts can reveal relevant information. In particular, the an-
alyzed company considers three working shifts in a day: the morning
shift (MorS), from 7:00 AM to 15:00 PM; the afternoon shift (AS), from
15:00 PM to 23:00 PM; and the night shift (NS), from 23:00 PM to 7:00
AM. Furthermore, the characteristics of the working shifts change dur-
ing weekends or holidays. The analysis of non-correlated relevant alerts
as a function of the working shift is summarized in Table 6. As shown,
there exist differences in the working shift regarding the distributions
of incidents (alerts) and the percentage of non-correlated alerts. During
MorS and AS shifts, the percentage of non-correlated alerts is not in con-
sonance with the percentage of existing alerts. In fact, it seems that AS
is less responsive to alerts than MorS and NS, which can imply a short-
age in personnel. The opposite occurs for RS.

8. Conclusions and future work

Our main contribution in this article is to show that leveraging the
information provided by incident tickets is relevant to increase the ef-
ficiency of the usual incident management process in a corporate net-
work. To achieve this target, we have proposed a methodology to in

Table 6
Distribution of the number of alerts over working shifts.

working shifts % of relevant alerts % of non-correlated alerts

MorS 50.6 33.6
AS 16.9 29.9
NS 32.5 36.5

14

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

corporate incident-related semantic information, coming in the form of
tickets created by users and management staff, into an alert database
that contains incident-related information from a network perspective.
Adding human knowledge and relevance into the process enhances the
quality of the discovery of incidents. Also, our findings showed that in-
corporating such types of information in the alert correlation process in-
crease the alert reduction rate, and consequently speed up the diagnos-
ing process. Furthermore, this rate is increased even more when consid-
ering tickets created by Service Desk systems. At the same time, the pro-
posed methodology is based on simple elements and reasoning, making
its application in a real NMS, by both management staff and decision
makers, almost straightforward. Finally, we conclude that any new good
solution for the alert correlation problem should consider such kind of
expert information in its design.

8.1. Limitations

Although the lightweight approach proposed here can relate alerts
and tickets together and hypothesize about possible relationships be-
tween them, it is limited in several ways. First, the main assumption
behind this approach is that it correlates the timely overlapped tickets
and/or alerts and does not cover the non-overlapped sets beyond the
time thresholds, BOD and FOD. Besides, the approach treats any two si-
multaneous different incidents that affect a common resource as a single
one and thus a single representative event will be generated. Second, the
algorithm used for the initial alert correlation is really simple and also
based in temporary relationships and node identity similarities. This is
by choice, as the focus was on demonstrating that tickets can help to
improve the correlation. The proposed method can be easily adapted to
consider any of the available alert correlation methods for this module,
and even for the ticket correlation module, with the only limitation be-
ing that timestamps are required at the output. Third, the similarity and
filtering criteria used for alerts and tickets depend on various rules and
a list of human-provided keywords that may depend on the considered
network.

8.2. Future work

Once the relevance of including the tickets in the correlation proce-
dures is shown, the next steps should be targeted at improving the effi-
ciency of the entire system. For this, as noted in the previous paragraph,
two major issues can be addressed: improving the elementary corre-
lation modules by using state-of-the-art methods and including new
sources of information, e.g., topological, that complement the similarity
function to set relationships between the events.

Acknowledgments

This work has been partially supported by Spanish MICINN through
project TIN2014-60346-R.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.inffus.2018.01.011.

References

[1] E. Marilly, O. Martinot, H. Papini, D. Goderis, Service level agreements: a main
challenge for next generation networks, Proceedings of the 2nd European Confer-
ence on Universal Multiservice Networks (ECUMN), 2002297–304.

[2] The office of government commerce (OGC). IT infrastructure library (ITIL), 2016
Available at http://www.itil-officialsite.com/. (accessed: 11.12.2016).

[3] The Office of Government Commerce (OGC). Service Operation, IT Infrastructure
Library version 3 (ITIL v3), Technical report, The Stationary Office, 2007. (ac-
cessed 11.12.2016).

[4] G. Jakobson, M.D. Weissmann, Alarm correlation, IEEE Netw. 7 (6) (1993) 52–59.
[5] F. Valeur, G. Vigna, C. Kruegel, R.A. Kemmerer, A comprehensive approach to in-

trusion detection alert correlation, IEEE Trans. Dependable Secure Comput. 1 (3)
(2004) 146–169.

[6] J. Hu, H. Chen, T. Liu, H. Tseng, D. Lin, C. Yang, C.E. Yeh, Implementation of
alarm correlation system for hybrid networks based upon the perfSONAR Frame-
work, Proceedings of the International Conference on Advanced Information Net-
working and Applications Workshops (WAINA’10), 2010893–898.

[7] D.S. Kim, H. Shinbo, H. Yokota, An alarm correlation algorithm for network man-
agement based on root cause analysis, Proceedings of the 13th International Con-
ference on Advanced Communication Technology (ICACT’11), 20111233–1238.

[8] L. Lewis, G. Dreo, Extending trouble ticket systems to fault diagnostics, IEEE Netw.
7 (6) (1993) 44–51.

[9] R. Costa, N. Cachulo, P. Cortez, An intelligent alarm management system for
large-scale telecommunication companies, Proceedings of the 14th Portuguese
Conference on Artificial Intelligence (EPIA’09), 2009386–399.

[10] V. Holub, T. Parsons, P. O’Sullivan, J. Murphy, Run-time correlation engine for
system monitoring and testing, Proceedings of the 6th IEEE International Confer-
ence on Autonomic Computing (ICAC-INDST ’09), 200943–44.

[11] S. Klinger, S. Yemini, Y. Yemini, D. Ohsie, S. Stolfo, A coding approach to event
correlation, Proceedings of the 4th International Symposium on Integrated Net-
work Management, 1996266–277.

[12] A. Valdes, K. Skinner, Probabilistic alert correlation, Proceedings of the 4th Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID),
200154–68.

[13] S. Dadkhah, M.R. KhaliliShoja, H. Taheri, Alert correlation through a multi compo-
nents architecture., Int. J. Electr. Comput. Eng. 3 (4) (2013) 46–466.

[14] M. Bateni, A. Baraani, Time window management for alert correlation using con-
text information and classification, Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5
(11) (2013) 9–16.

[15] J. Yu, Y.V. Ramana Reddy, S. Selliah, S. Kankanahalli, S. Reddy, V. Bharadwaj,
TRINETR: an intrusion detection alert management systems, Proceedings of the
13th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), 2004235–240.

[16] J.H. Bellec, M.T. Kechadi, Towards a formal model for the network alarm correla-
tion problem, Proceedings of the 6th International Conference on Simulation, Mod-
eling and Optimization (SMO’06), 2006458–463.

[17] S. Salah, G. Maciá-Fernández, J.E. Díaz-Verdejo, A model-based survey of alert cor-
relation techniques, Comput. Netw. 57 (5) (2013) 1289–1317.

[18] S.A. Mirheidari, S. Arshad, R. Jalili, Alert correlation algorithms: a survey and tax-
onomy, Lect. Notes Comput. Sci. 8300 (2013) 183–197.

[19] T. Chyssler, S. Nadjm-Tehrani, S. Burschka, K. Burbeck, Alarm reduction and corre-
lation in defense of IP networks, Proceedings of the13th IEEE Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
2004229–234.

[20] P. Calyam, M. Dhanapalan, M. Sridharan, A. Krishnamurthy, R. Ramnath, Topol-
ogy-aware correlated network anomaly event detection and diagnosis, J. Netw.
Syst. Manag. 22 (2) (2014) 208–234.

[21] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, J. Yates, G-RCA: a generic root cause
analysis platform for service quality management in large IP networks, IEEE/ACM
Trans. Netw. 20 (6) (2012) 1734–1747.

[22] G. Jakobson, W.M. D., Real-time telecommunication network management: ex-
tending event correlation with temporal constraints, Proceedings of the 4th Inter-
national Symposium on Integrated Network Management (IEEE/IFIP),
1995290–301.

[23] S.H. Ahmadinejad, S. Jalili, Alert correlation using correlation probability estima-
tion and time windows, Proceedings of the International Conference on Computer
Technology and Development (ICCTD’09), 2, 2009170–175.

[24] K. Julisch, Clustering intrusion detection alarms to support root cause analysis.,
ACM Trans. Inf. Syst. Secur. 6 (4) (2003) 443–471.

[25] M. Xiao, Y. Yang, Z. Du, Ontology based alarm correlation technology in
TD-SCDMA network, J. Comput. Inf. Syst. 9 (3) (2013) 933–940.

[26] Y. Chen, J. Lee, Autonomous mining for alarm correlation patterns based on
time-shift similarity clustering in manufacturing system, Proceedings of the Inter-
national Conference on Prognostics and Health Management (PHM’11), 20111–8.

[27] K. Lee, J. Kim, K. Kwon, Y. Han, S. Kim, DDOs attack detection method using clus-
ter analysis, J. Expert Syst. Appl. 34 (3) (2008) 1659–1665.

[28] H.O. Mynit, P. Meesad, Incremental learning algorithm based on support vector
machine with mahalanobis distance (ISVMM) for intrusion prevention, Proceedings
of the 2nd International Conference on Intelligent Computation Technology and
Automation, 2, 200925–28.

[29] M. Siraj, M.A. Marrof, S.Z.M. Hashim, Intelligent alert clustering model for net-
work intrusion analysis., Int. J. Adv. Soft Comput. Appl. 1 (2009) 33–48.

[30] T. Li, X. Li, Novel alarm correlation analysis system based on association rules min-
ing in telecommunication networks, Inf. Sci. (Ny) 180 (16) (2010) 2960–2978.

[31] W. Jian, L.X. Ming, A dynamic mining algorithm of association rules for alarm cor-
relation in communication networks, Proceedings of the 3rd IEEE/Create-Net Inter-
national Conference on Communication System Software and Middleware (COM-
SWARE’08), 2008799–802.

[32] J. Wu, X. Li, Communication network alarm correlation based on multi-dimen-
sional fuzzy association rules mining, Proceedings of the 2nd International Confer-
ence on Electric Information and Control Engineering (ICEICE’12), 1,
2012439–443.

[33] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, Proceedings of
the 20th International Conference on Very Large Databases, 1994487–499.

[34] R. Sadoddin, A. Ghorbani, Real-time alert correlation using stream data mining
techniques, Proceedings of the 20th International Conference on Innovative Appli-
cations of Artificial Intelligence, 3, 20081731–1737.

15

UN
CO

RR
EC

TE
D

PR
OO

F

S. Salah et al. Information Fusion xxx (2018) xxx-xxx

[35] K. Yamanishi, Y. Maruyama, Dynamic syslog mining for network failure monitor-
ing, Proceedings of the 11th ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, 2005499–508.

[36] H. Sizu, Z. Xianfei, Alarms association rules based on sequential pattern mining al-
gorithm, Proceedings of the 5th International Conference on Fuzzy Systems and
Knowledge Discovery, 2008556–560.

[37] G. Dreo, V. Robert, Using master tickets as a storage for problem solving expertise,
Proceedings of the 4th IFIP/IEEE International Symposium on Integrated Network
Management IV, 1995328–340.

[38] D. Johnson, NOC Internal integrated trouble ticket system, Funct. Specif. Wishlist
(1992). RFC 1297.

[39] A. Medem, R. Teixeira, N. Feamster, M. Meulle, Determining the causes of intrado-
main routing changes, Technical report, UMIACS University (2009).

[40] N. Feamster, H. Balakrishnan, Detecting BGP configuration faults with static analy-
sis, Proceedings of the 2nd International Conference on Symposium on Networked
Systems Design and Implementation (NSDI), 2, 200543–56.

[41] D. Turner, K. Levchenko, J.C. Mogul, S. Savage, A.C. Snoeren, On failure in man-
aged enterprise networks, HP Labs (2012). HPL-2012-101.

[42] L. Tang, T. Li, L. Shwartz, F. Pinel, G. Grabarnik, An integrated framework for opti-
mizing automatic monitoring systems in large IT infrastructures, Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 20131249–1257.

[43] A.F. AlEroud, G. Karabatis, Queryable semantics to detect cyber-attacks: a
flow-based detection approach, IEEE Trans. Syst. Man Cybern.: Syst. 99 (2016)
1–17.

[44] A. Medem, R. Teixeira, N. Feamster, M. Meulle, Joint analysis of network incidents
and intradomain routing changes, Proceedings of the International Conference on
Network and Service Management (CNSM), 2010198–205.

[45] R. Potharaju, N. Jain, C. Nita-Rotaru, Juggling the jigsaw: towards automated
problem inference from network trouble tickets, Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Implemenentation, 2013127–141.

[46] Logstash., 2016, Available at https://www.elastic.co/products/logstash. (accessed:
11.12.2016).

[47] Splunk., 2016,. Available at https://www.splunk.com/. (accessed: 11.12.2016).
[48] L. Sumo, 2016, Available at https://www.sumologic.com/. (accessed: 11.12.2016).
[49] G. Maciá-Fernández, J.E. Díaz-Verdejo, P. García-Teodoro, Mathematical model for

low-rate dos attacks against application servers, IEEE Trans. Inf. Forensics Secur.
4.3 (2009) 519–529.

[50] G. Maciá-Fernández, J.E. Díaz-Verdejo, G.-T. Pedro, Evaluation of a low-rate dos at-
tack against application servers, Comput. Secur. 27.7 (2008) 335–354.

[51] F.N. Patel, N.R. Soni, Text mining: a brief survey, Int. J. Adv. Comput. Res. 2 (4)
(2012) 243–248.

[52] S. Salah, G. Maciá-Fernández, J.E. Díaz-Verdejo, L. Sánchez Casado, A model for in-
cident tickets correlation in network management, J. Netw. Syst. Manag. 1 (24)
(2016) 57–91.

16

	
	
	

