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6 CONTENTS



Chapter 1

Introduction and results

This Thesis is articulated around the analysis of some mathematical models based
on partial differential equations (PDEs) of kinetic type arising in various phenomena
related to Astrophysics and Biology.

What does a kinetic PDE mean? Kinetic models provide statistical descriptions of
systems constituted by a large number of interacting particles. The aim is to incorporate
at the transport PDE level of description the microscopic properties of interaction
between particles, which must be deduced from first principles. At this point there is
also an interesting controversy between models supported on basic interaction laws and
phenomenological models (usually describing macroscopic quantities). In this sense, a
kinetic description provides an intermediate scale between the microscopic and the
macroscopic pictures. The range of applicability is quite wide and flexible enough to
admit many different entities to be qualified as particles, ranging from the biggest
systems that we can imagine (galaxies and the Universe itself) to very small ones
in which quantum effects may become important, like systems composed by atomic
particles. Also, the word ’particle’ includes individuals that have the capacity of taking
decisions: vehicles in traffic flow or cells in biology. On the other hand, their versatility
allows to describe a number of different interactions with the PDE system, as, for
instance, long range interactions like gravitational or electrostatic potentials, short
range interactions like aggregation or coagulation processes, or even diffusive effects.
Another remarkable aspect is the possibility of deriving new models by performing
hydrodynamic macroscopic limits from the kinetic PDE, either of diffusive parabolic
type (low–field regime) or of hyperbolic type (high–field regimes), that incorporate
the properties of the microscopic level —see for example [104, 105, 167, 178, 179].
The effects of one or other choice are fundamental for the qualitative properties of the
transport by (parabolic or hyperbolic) fluxes of geometrical structures, fronts, patterns,
etc. In this context a natural question arises: What kind of description is better suited
to study a concrete physical reality? This might be regarded as one of the leading ideas
of this Memory.

One of the main conceptual aspects concerning this Thesis is the discussion on mo-
deling small fluctuations, stemming from the interactions not included initially in the
system, without having the dynamics of the system (patterns, fronts, special configura-
tions, singularities, etc) destroyed (vanishing). Parabolic and hyperbolic macroscopic
limits are the two apparently dissociated ways dealing with this problem in the lite-
rature. These approaches are associated with the concepts of diffusion and dispersion
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respectively. The Thesis also concerns with a kind of intermediate situation: the flux–
limited corrections, that induce a behavior closer to hyperbolic than to usual linear
parabolic (Fokker–Planck) effects. Then the solutions involved in systems with this
kind of terms contain features from both approaches such as finite velocity of propaga-
tion or regularizing effects in the interior of their supports.

This Memory has two well differentiated parts. In the first one we analyze the va-
rious concepts of dispersion in the framework of the dynamics of classical or relativistic
Vlasov matter, giving examples and necessary and sufficient conditions for dispersion,
coagulation or the apparition of stationary spatial configurations or breathing modes.
This part connects a variety of concepts and is much less technical that the second
one concerned with the analysis of a flux–limited system motivated by the transport
of morphogens. The reader can freely choose the starting point of the reading without
worrying to be lost, as from both a mathematical and a descriptive point of view the two
parts are quite independent. The Thesis schedule is based on the journey connecting
the microscopic to the macroscopic (mathematical) levels of description.

Let us briefly describe the precise contents of this Memory. The first part is con-
cerned with kinetic descriptions including only long range interactions (save the last
chapter of this part, which adds also some short-range interactions to the models). We
will see that this scenario allows for a wealth of possibilities and consequently for a very
rich dynamics. Depending on the macroscopic parameters of the initial conditions, a
wide range of configurations such as spatial patterns, breathing modes, dispersive dy-
namics and even more complex phenomena may show up. We will provide explicit
examples of all these as soon as we proceed with the concrete systems. These struc-
tures may even be robust (like stable stationary configurations or solitons) and need
not be still. Such a feature must not be overlooked, as we have lots of examples in
the real world that match this description: tumor dynamics, galactic dynamics or dark
matter halos, to name only a few that will attract our attention in this Memory.

Therefore it is important to keep in mind that we can model a wide spectrum of
dynamics using hyperbolic equations that are able to describe dispersive behavior in
some regimes. We may enlarge our possibilities if we allow for other types of interaction
in our kinetic hyperbolic models; as an example, we will deal in the last chapter of the
first part of this Memory with the case of hyperbolic systems that include coagulation
(formation of aggregates) mechanisms too.

A very important ingredient concerns the use of diffusive terms in our equations.
These terms are related to some form of stochasticity, either because an explicit model
is unknown or because there are too many factors to be taken into account that would
make the model much more complex. The point being that, if we know that these
uncontrollable variables have a small influence on the real phenomena, we want it to
be the same for our equations.

Not any form of stochasticity is valid for any problem, as a matter of fact this choice
is a crucial question. We are well aware that usual (linear) diffusion related to Brow-
nian motion (white noise) will smooth everything out and this sort of uniformization
mechanism could destroy in many cases most of the structure we would be interested in
for the type of problems mentioned above. This is the case if we add a Fokker-Planck
type term to the kinetic equations that describe the evolution of self-gravitating sys-
tems under long range interactions. Here, a recurrent theme arises: the confrontation
of dispersion against diffusion, which lies in the heart of many of the topics that we
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are going to deal with. Dispersive behavior seems to be compatible with other complex
structures that kinetic descriptions can bear: the invariances (conservation laws) of
the system are preserved and can coexist with the presence of steady configurations,
for instance. This need not be the case for standard (linear Fokker–Planck) diffusive
mechanisms, that do not preserve the physically meaningful quantities and tend to spoil
the whole dynamics, no matter the smallness of their contribution. In fact, the tails of
the Gaussian distribution are the only structures that survive to the dynamics even if
being initially very small.

As we will require our models to be able to preserve macroscopic (indeed physically
observable) structures, this motivates the search for alternative diffusion mechanisms.
Such diffusions have to be necessarily nonlinear. Many of these have been investigated
in the physical and mathematical literature; we will be interested in the class of diffusion
mechanisms that enjoy the additional property of providing finite speed of propagation
(as in the case of kinetic transport equations). Porous media type equations provide this
kind of descriptions, although the speed of propagation is not intrinsic to the general
laws governing the observable phenomena at a microscopic level of description, rather
it depends on the initial configuration. An approach that fulfills these requirements
is that of flux limitation, which will be the subject of the second part of this Mem-
ory. These models allow for robust structures like propagating fronts and introduce
new phenomena such as singular traveling waves; we will see some of these features in
action in the form of macroscopic models. In fact, the results contained in this Thesis
together with those of [200] prove that the application of these arguments to model the
transport of morphogens implies that the unphysical diffusion is eliminated and that
we can induce the preservation of the dynamical structures such as propagating fronts
or biological responses to them, that are in perfect qualitative agreement with exper-
imental results. On the other hand, there are various recent efforts trying to deduce
flux–limited terms from first microscopic principles, from which we can mention here
the hyperbolic limits of a kinetic system for the case of a flux–limited chemotaxis sys-
tem [40] or the diffusion arising from stochastic processes related with mean curvature
fluxes. The qualitative differences between a linear diffusion equation and a flux-limited
one allowing propagation of fronts can be seen on Figure 1.1.

To summarize, on one hand we will have transport equations to study dispersive
behavior and steady states in Astrophysics, that we will also use to study the long
time dynamics of populations; their character is mostly hyperbolic. On the other hand
we meet the flux limited equations, exhibiting a mixture of parabolic and hyperbolic
behavior, that will be used to study the transport of morphogenes in the embryo. These
equations can also have a role in Astrophysics, as an alternative to Fokker–Planck
equations.

In the following we detail the sort of problems to be studied, the mathematical
models to be used and the obtained results.

1.1.1 Self-gravitating systems

In this memory, several kinetic models that are used to describe self-gravitating systems
are studied. Needless to say, in so doing we will always work in three spatial dimensions.
We focus on the long time behavior of their solutions as well as on certain properties of
their steady state solutions. This will have several applications in the field of galactic



4

t = 0.3

10.90.80.70.60.50.40.30.20.10

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t = 0.075

10.90.80.70.60.50.40.30.20.10

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t = 0.9

10.90.80.70.60.50.40.30.20.10

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t = 0.6

10.90.80.70.60.50.40.30.20.10

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t = 1.2

10.90.80.70.60.50.40.30.20.10

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

t = 1.05

10.90.80.70.60.50.40.30.20.10

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 1.1: Evolution for a mixed problem on heat conduction. Non-zero Neumann boundary
conditions are imposed on the left end and “zero Dirichlet” conditions are imposed on the right
end; the initial data is zero in both cases. All physical constants have been set to one. The
green plot corresponds to the solution associated with the usual heat equation, the red one to
the solution associated with the relativistic heat equation (see Chapter 6 for an explanation on
the model and the boundary conditions). These graphics will be included in [70].



1. Introduction and results 5

dynamics. Indeed, we present a direct application of some of these ideas to one of the
hottest topics in Astrophysics nowadays: the modeling of dark matter halos.

In this paragraph we are going to introduce several mathematical models that are
widely used to describe self-gravitating systems. The type of objects that we have in
mind are galaxies, big clusters of galaxies and even dark matter halos. What these
systems share in common is that they are composed of a large number of individual
entities, or particles (say the stars of a galaxy, galaxies itself when regarded in a cluster
of galaxies and so on and so forth), evolving under gravitational interactions. It turns
out that these general features are also shared by some other, very important physical
systems, like gases or plasmas; the only difference being that the laws of interaction are
of a different nature. We shall see that kinetic theory provides a common framework
in which all these systems can be studied on an equal footing.

It is reasonable to assume that galaxies are approximately in a steady state at
the present time, meaning that actually they vary so slowly that in our time scale we
might regard them as static objects (physicists call this metastable states or metastable
equilibria). Thus a representation in terms of static models seems a coherent approach
to their study. This encourages us to find and analyze stationary solutions for our
(kinetic) models. It is also interesting to study how do dynamical solutions evolve into
such states and to study if a given configuration can indeed wander around or evolve
into such states, or show on the contrary a very different behavior. Once we have
presented the models we will focus on the long time behavior for their solutions and on
certain properties of their steady states solutions.

A first naive approximation would be to model self-gravitating systems as clusters
of point masses evolving under gravitational interactions. That is, an N-body problem.
It is widely known that this mathematical model cannot be solved analytically, but
there is a more important difficulty, more of a practical than of a theoretical nature.
Typically the number of particles composing these systems is enormous, so there is no
way and certainly no desire to keep track of this overwhelming quantity of information.

This first attempt is abandoned in favor of more sophisticated models and less
ambitious goals: the description of the gross dynamical behavior might be enough for
most purposes. To make such theoretical predictions continuous models are better
suited than discrete ones; in particular the most widely used in this setting are kinetic
models.

Indeed, the goal of kinetic theory in its general setting is the description of gases
at an intermediate scale between the microscopic and the hydrodynamical ones. These
cover a broad range of interesting applications, for gases are, loosely speaking, systems
with a large number of particles which are described at a statistical level. For these
problems a description of the position and the velocity of each particle is irrelevant, but
the description of the system itself cannot be reduced to the computation of an average
velocity at a given position in a concrete time instant (as it would be with fluid-type
models). We want to take into account more than one possible velocity at each point
and thus the description has to be done at the level of phase space.

So now we look for a statistical description of our system, in terms of a so-called
distribution function, which depends on the time t and the coordinates of phase space
(x, v) —for the case of relativistic models is better to shift to (x, p), being p the momen-
tum. The actual value of this function on a particular point accounts for the probable
number of particles in an infinitesimal volume around that point in phase space. Keep
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in mind that macroscopic information in enclosed in this mathematical object, despite
how complicated it might be. We only have to know how to extract it and this will be
detailed for each of the models that we are going to consider.

As we already said, there are a number of kinetic descriptions of self-gravitating
systems, which obviously depend on the type of effects that we want to take into account
and the ones that we prefer to neglect. But all of them share some common principles.
First of all, the main object is the distribution function f(t, x, v) which describes the
statistical evolution of the ensemble of particles. Thus, two basic requirements are
that this function should be non-negative and locally integrable over phase space in
order that its physical interpretation given in the previous paragraph be meaningful. A
second central issue is to give a law for the evolution of the distribution function. Here
is where differences between models come into play, but all the equations encoding the
laws of evolution for f stem from the same principle: the so-called Vlasov’s equation. It
states that the material (total) derivative of f equals the rate of change along particle
paths in phase space. We shall denote this rate of change by C(f). Such a change is
related to short range interactions. Here we can include collisions between particles
—in a broad sense— or coagulation among them, which give rise typically to bilinear
terms; we can also consider fragmentation effects, which can be encoded using linear
terms.

Now let us compute the material derivative of f . Under the domain of classical
mechanics Newton’s law states that for particle trajectories the derivative of the position
is the velocity and the derivative of the velocity equals the force that is being exerted
on the particle, let’s say F —all this has to be modified in a suitable way if we want
to consider relativistic models. Then the material derivative of f can be written as

Df

Dt
=

df

dt
+ v ·∇xf + F ·∇vf

and thus Vlasov’s equation reads

∂f

∂t
+ v ·∇xf + F ·∇vf = C(f).

Depending on the type of long range interactions F and on the type of right hand sides
C(f) we obtain different models; we are going to consider some of these in turn.

1.1.2 The classical case

We study first the classical Vlasov–Poisson system, which describes in an statistical way
a big cluster of collisionless particles evolving via self-generated gravitational potential
φ(t, x) according to Newton’s law of gravitation. The distribution function f(t, x, v) of
the ensemble and its density function

ρ(t, x) =
�

R3
v

f(t, x, v) dv

satisfy (with G = 1) 




∂tf + v ·∇xf−∇xφ ·∇vf = 0

∆xφ= 4πρ.
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The dynamics of solutions to this system are studied in Chapter 2, focusing mainly on
dispersive behavior. This is done through a detailed study of the long time behavior
of the density function. There are several ways in which a solution can exhibit such
dispersive behavior and we focus on strong or normed dispersion, what we call total
and partial dispersion —two notions that quantify the quantity of mass that a solution
looses to infinity— and statistical dispersion (unlimited growth of the variance for the
density function). It turns out that the occurrence of any of them is closely tied to
certain macroscopic parameters of the systems under study: the mass M , the linear
momentum Q and the energy H, defined by

M =
�

R6
f dvdx, Q =

�

R6
v f dvdx,

and
H =

1
2

�

R6
|v|2f dvdx− 1

8π

�

R3
|∇xφ|2dx = Ekin − Epot,

which are conserved quantities. We give several examples of each dispersive behavior
throughout Chapter 2, using some constructions of outgoing shells of matter and sui-
table modifications. The relation between these concepts is also clarified. We have the
following result:

Proposition 1 Let f be a regular solution of the Vlasov–Poisson system. Then the
following assertions are equivalent:

1. f is strongly dispersive.

2. f is totally dispersive.

3. the potential energy vanishes as t →∞.

Moreover, if any of the above holds then f satisfies the inequality

H ≥ Q2

2M
.

Besides, if f is totally or partially dispersive then it is statistically dispersive too.

Next we study the fastest rates that are allowed for strong dispersion, recovering
(with different proofs) and extending the results in [87] about this issue. The improved
result claims that (Proposition 2.3.3)

�ρ(t)�p ≥ C(1 + t)−
3(p−1)

p for t � 1, p ∈]1,∞].

We also complement the results in [87] about the occurrence of statistical dispersion
whenever H > Q

2

2M
by analyzing the limiting case H = Q

2

2M
that was not dealt with

there. We conclude that statistical dispersion also turns up in this case, with a rate
which is generically at least linear in time (Proposition 2.3.8). Examples showing that
there do exist statistically dispersive solutions having H < Q

2

2M
are also given; as in

this regime there do exist non-dispersive solutions like steady states for instance, the
dynamics under H < Q

2

2M
seems to be much more intricate and deserves lot of future
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work. As an example of this, we construct solutions that while being dispersive remain
in the stability basin of stable steady states.

Then we test all this machinery with Kurth’s solutions [136], which are the most
famous examples of time-dependent solutions for the Vlasov–Poisson system, as they
can be described almost explicitly. Finally we treat also two other classes of solutions
that exhibit interesting dynamical behavior: time-periodic solutions (for which we show
the relation H < − Q

2

2M
among their macroscopic parameters —Proposition 2.3.12) and

virialized solutions. For the latter we generalize the virial theorem for N -body systems
[177] to the continuous setting in Lemma 2.3.13, relating the virial identity to a certain
growth condition on the system (namely, that its spatial variance grows in time strictly
slower than t2).

1.1.3 Relativistic generalizations

When relativistic effects become important the Vlasov–Poisson system ceases to be
a reliable model; then other models have to be used. The model which is currently
accepted to be the right generalization of the Vlasov–Poisson system is the Einstein–
Vlasov system, where the Poisson law is replaced with a coupling to Einstein’s equations
of General Relativity. The resulting system is far from being completely well under-
stood, and consequently what is commonly done for the sake of analyzing it is to reduce
it to situations with symmetry (or to deal with simpler relativistic generalizations).

The spherically symmetric Einstein–Vlasov system in Schwarzschild coordinates
takes the form (in units G=c=1)

∂tf + eµ−λ
v�

1 + |v|2
·∇xf −

�
λt

x · v
r

+ eµ−λµr

�
1 + |v|2

� x

r
·∇vf = 0,

e−2λ(2rλr − 1) + 1 = 8πr2h ,

e−2λ(2rµr + 1)− 1 = 8πr2prad ,

being

prad(t, r) =
�

R3

�x · v
r

�2
f

dv�
1 + |v|2

the radial pressure,

h(t, r) =
�

R3

�
1 + |v|2fdv

the energy density and λ, µ the metric potentials —in the sense that the metric is
completely determined by these two functions. This formulation is studied in Chapter
3.

The relevant macroscopic parameters of a solution to the spherically symmetric
Einstein–Vlasov system are the ADM mass (or energy) H and the total rest mass M ,
defined by

H =
�

R3

�

R3

�
1 + |v|2 f dvdx, M =

�

R3

�

R3
eλf dvdx.

These are constant for regular solutions. Another quantity that turns up to be impor-
tant is the central redshift, defined by Zc := e−µ(0) − 1. It is the redshift of a photon
emitted from the center of the galaxy, and does not need to remain constant during
evolution.



1. Introduction and results 9

We prove a very general virial identity for solutions to this system (Lemma 3.4.1);
then we particularize it to steady states and obtain an identity connecting some of their
macroscopic parameters. The result is the following.

Proposition 2 Let f be a static, compactly supported solution of the spherically sym-
metric Einstein–Vlasov system with ADM mass H, rest mass M and central redshift
Zc. Then the following inequality holds true

Zc ≥
����
M

H
− 1

���� .

We also study two particular classes of steady states. For Jeans type steady states
(static solutions depending on conserved quantities along geodesics, see Chapter 3 for
a precise definition) with radius R we show the inequality

eµ(0) ≤ min
�

1,
M

H

� �
1− 2H

R
,

while for static shells with inner radius R1 we show that

R1 ≤
18H

ln
���M

H
− 1

�� + 1
� .

Another relativistic generalization of the Vlasov–Poisson system that we tackle in
this memory is the Norsdtröm–Vlasov system, which constitutes an unphysical model
that nevertheless incorporates some features of General Relativity Theory (by means
of an scalar theory of gravitation) and is more tractable than the full Einstein–Vlasov
system. Thus it constitutes a nice laboratory system. We write it as

∂tf +
p�

e2φ + |p|2
·∇xf −∇x

��
e2φ + |p|2

�
·∇pf = 0,

∂2
t φ−∆xφ = −e2φ

�

R3
f

dp�
e2φ + |p|2

.

The function φ determines the metric of the underlying spacetime and thus can be
thought as a potential. The local energy and momentum of a solution (f, φ) are defined
respectively as (i = 1, 2, 3)

h(t, x) =
�

R3

�
e2φ + |p|2 f dp +

1
2
(∂tφ)2 +

1
2
|∇xφ|2,

qi(t, x) =
�

R3
pif dp− ∂tφ ∂iφ ,

where ∂i denotes the partial derivative along xi. The total energy and the total mo-
mentum

H =
�

R3
h(t, x) dx, Q =

�

R3
q(t, x) dx

are conserved quantities during evolution. Moreover, solutions of the Nordström–Vlasov
system satisfy the conservation of the total rest mass

M =
�

R3
ρ(t, x) dx =

�

R6
f(t, x, v) dxdp.

We study several features of this system in Chapters 2 and 3. In the former we
prove a dispersion estimate in terms of the local energy h:
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Proposition 3 Let (f, φ) be a solution of the Norsdtröm–Vlasov system with mass M ,
energy H and momentum Q. Assume that

H2 −HM − |Q|2 > 0.

Then, there exist a time instant t0 and positive constants 0 < C1 < C2 such that the
spatial variance ∆x(t) of the unitary energy density function,

∆x(t) =
�

R3
|x− h̄(t)|2 h(t, x)

H
dx, where h̄(t) =

�

R3
x

h(t, x)
H

dx,

satisfies
C1t

2 ≤ ∆x(t) ≤ C2t
2 ∀t > t0 .

In the latter we establish an identity (Lemma 3.2.1) that holds for dynamical solutions
of this system and then we restrict it to steady states, obtaining that the energy of
regular steady states is bounded by their mass (Theorem 3.2.2), a property that makes
a clear parallel with the fact that H < 0 for static solutions to the Vlasov–Poisson
system. In fact, this result motivated the one in Proposition 2.

1.1.4 Study of dark matter halos

The first conceptual block of this memory (almost all the first part), dedicated to
the modeling of self-gravitating systems, concludes with an application of the Vlasov–
Poisson system to the modeling of dark matter halos, in Chapter 4. These are spherical
structures surrounding each galaxy made up of some kind of exotic matter that cannot
be detected by direct measurements. We only feel their presence by their gravitational
effects, which are indeed very strong, for it is believed that they contribute with 9
out of 10 parts to the overall mass of the configuration. Although this paradigm has
several detractors it is a mainstream in present day Astrophysics and lots of efforts have
been dedicated to the construction of models for the density profiles of these objects.
These come usually under two major trends: phenomenological models (fitting to data)
and numerical simulations. The Navarro–Frenk–White density profile [164] is the most
popular among those originated by the latter, while the Isothermal [109] and Burkert
[58] profiles are good representatives of the former. None of these models has finite
radius, which is not physically reasonable. Even more controversial is the fact that
models originated by numerical simulations predict an infinite value for the density
profiles at the center.

We propose to generate density profiles for dark matter halos using a three-parame-
tric family of static solutions to the Vlasov–Poisson system: the isotropic polytropes.
These models have a strong theoretical background supporting them (ranging from the
very time-honored equation that originates them, passing through fine scaling proper-
ties, to thermodynamical theories that hold in a much broader setting than ours —but
still under debate in the physical community) and are also relatively easy to handle.
We compare them with the models that we commented on earlier using a least square
criterion. A very good agreement is obtained once the parameters are tuned properly:
we obtain errors of the order of 3%. Moreover, the analytical foundation of our models
allows us to perform an expansion around the origin and suggests a formula (equation
(6.4)) for dark matter density profiles in the very center, which cures the unphysical
divergence of the numerical simulations in the core region.
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1.1.5 Asymptotic behavior of a coagulation model

The first part of this memory concludes with Chapter 5, where we will be concerned
with a kinetic coagulation model describing two species of particles (typically molecules
or cells). The particles can be in two states: a “free” state where they simply move with
a given velocity or an aggregated state where they do not move anymore. The sticking
together, coagulation, aggregation or adhesion into a cluster, of particles, whether
they are cells, lipid droplets, proteins, etc, is of fundamental importance in biological
and biotechnological processes, see [1, 92, 100, 217] for instance. This is the primary
motivation for the model that we study.

The distribution function for the free particles is denoted by f and the density
function of stuck particles is represented by ρ. As a model for the above situation in d
dimensions we consider the following system of equations:

∂f

∂t
+ v ·∇xf = −f(t, x, v)

�

Rd
α(v, v�)f(t, x, v�) dv� − β(v)ρ(t, x)f(t, x, v) (1.1)

∂ρ

∂t
=

�

R2d
α(v, v�)f(t, x, v�)f(t, x, v) dv�dv + ρ(t, x)

�

Rd
v

β(v)f(t, x, v) dv (1.2)

supplied with initial data 0 ≤ f0(x, v) ∈ L1(R2d) and 0 ≤ ρ0(x) ∈ L1(Rd
x).

The functions α(v, v�) and β(v) are collision or coagulation kernels and give the
probability that two free particles with velocities v and v� will coagulate (for α) or
one free particle with velocity v will coagulate with a stuck particle (for β). These
collision kernels will be nonnegative and they will satisfy a domination property, which
is motivated by physical considerations (this is explained in Chapter 5): there exists a
constant C > 0 such that

α(v, v�) ≤ C|v − v�|a, β(v) ≤ C|v|a, for some a ∈ R. (1.3)

We focus mainly on the study of the large time asymptotics for this model. It is
obvious from the equations that the mass related to the population of free particles
may only decrease and the mass of the population related to coagulated particles can
only increase. Hence the main issue as t → +∞ is whether all free particles will finally
coagulate or if some of them remain free. We show that this depends only on the
strength of the interactions (i.e. the value of a). The analysis is based on precise
dispersion estimates for kinetic equations. We also show that the distribution of free
particles exhibits self-similar behavior for long times. Our results are summarized in
the following

Theorem 1 Assume that the kernels α, β are non-negative, satisfy (1.3) and a+d > 0.
For any 0 ≤ f0 ∈ L1(Rd

x × Rd
v) and 0 ≤ ρ0 ∈ L1 ∩ L∞(Rd

x) such that for some η > 0
there holds that

f0(x, v) ≤ C

1 + |v|max{a,0}+d+η
, for a.e. (x, v) ∈ Rd

x × Rd

v,

there exists a weak solution of the system (1.1)–(1.2) with initial data f(0, x, v) = f0 and
ρ(0, x) = ρ0. If this weak solution can be approximated strongly in L∞(0, T, L1(Rd

x ×
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Rd
v) × L1(Rd

x)) by a sequence of smooth solutions then this weak solution is unique.
Moreover, there exists a function g∞(x, v) such that

���f(t, x, v)− g∞
�x

t
, t(v − x

t
)
���� → 0 as t →∞

in the norm of W−1,1(Rd
x, L1(Rd

v)). Furthermore,

• if a > 1− d (or a > 1 if d = 1) and f0 and ρ0 are compactly supported in x, the
amount of mass

�
R2d f(t, x, v) dxdv is bounded from below by a positive constant

independently of time.

• if −d < a ≤ 1− d, the amount of mass
�

R2d f(t, x, v) dxdv is strictly positive for
all times but converges to zero as t goes to infinity.

1.1.6 A flux-limited model to the transport of morphogenes

The last part of this memory is devoted to the study of the transport of morphogenes
in biological systems. This is a classical problem since the pioneering works by Turing
[225], Meinhardt [101, 157], Wolpert [234] and Lander [139], who focus the question as a
main problem in the understanding of the transport of proteins via signaling pathways:
Do morphogen gradients arise by diffusion?

We focus on a more concrete problem: the study of the dynamics of the Sonic
Hedgehog (Shh) morphogenetic function, which plays a very important role in the
evolution of some transcription factors and in cellular differentiation in the embryonic
neural tube. These phenomena are of capital importance in Developmental Biology.
For instance, within the central nervous system the development of the early vertebrate
ventral neural tube [130] and of the brain [198] depend on Shh signaling. Shh signaling
has also an important role in tumor formation: the deregulation of the Shh pathway
leads to the development of various tumors, including those in skin, prostate and brain
[196].

There do exist mathematical models to study this problem [202], but from our
point of view their recourse to diffusion mechanisms in this context is not realistic.
We propose, as a suitable modification to solve this caveat, to suppress the diffusive
mechanisms and to use a flux limiter instead; all of this is explained in detail in Chapter
6.

Then, our purpose in the second part of this memory is to analyze a mixed initial-
boundary value problem associated with a nonlinear flux–limited reaction–diffusion
system for the concentration of Shh, u(t, x), given by






∂u

∂t
= (a(u, ux))

x
− f(t− τ, u(t, x)) u(t, x) + g(t, u(t, x)), in ]0, T [×]0, L[

−a(u(t, 0), ux(t, 0)) = β > 0 and u(t, L) = 0 on t ∈]0, T [

u(0, x) = u0(x) in x ∈]0, L[ ,

with
a(z, ξ) := ν

|z|ξ�
z2 + ν2

c2
|ξ|2

,
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where f stands for the concentration of transmembrane receptors in the cells, g repre-
sents the concentration of the complex binding the morphogen to the receptor, and the
dependence on u is given through a coupling with a system of seven ODEs modeling
the rates of change of the concentrations of the proteins participating in the signaling
pathway coming from the biochemical cascade inside the cells, see [200]. The meaning
of the physical constants c, ν, τ is explained in Chapter 6.

We try to give some insight on this biological problem, and to proceed we study as
a first step a simplified model without source terms. This is done in Chapter 6 using
nonlinear semigroup theory. Our simplified model reads






∂u

∂t
= (a(u, ux))

x
in ]0, T [×]0, L[ ,

−a(u(t, 0), ux(t, 0)) = β > 0 and u(t, L) = 0 on t ∈]0, T [ ,

u(0, x) = u0(x) in x ∈]0, L[ .

(1.4)

Nevertheless, it is a simple matter to realize (this is also supported by numerical si-
mulations) that the Dirichlet boundary condition has to be weakened to a boundary
condition resembling that of the obstacle problem. This reflects the fact that traveling
fronts will eventually hit the boundary and persist after that, see Figure 1.1. The
precise formulation of these facts can be found in chapter 6.

The use of semigroup theory would yield mild solutions for our problem, but our
concern here is to characterize them in more operative terms. We will use the theory
of nonlinear semigroups to provide a suitable approximating scheme to the parabolic
problem. In this setting, we analyze the related elliptic problems and construct the
associated semigroup so as to generate a sequence of approximate solutions that are
seen to converge to a reasonable solution of the parabolic equation. We are also able
to prove uniqueness of “reasonable” (we call them bounded entropy) solutions to the
parabolic equation. Namely we prove much more, as a contraction principle holds; this
is obtained using a suitable adapted variant of Kruzkov’s doubling variables technique.
These results are summarized in the following

Theorem 2 For any initial datum 0 ≤ u0 ∈ L∞(]0, L[), there exists a unique bounded
entropy solution u of (1.4) in QT =]0, T [×]0, L[ for every T > 0. Moreover, if u(t),
u(t) are bounded entropy solutions of (1.4) in QT =]0, T [×]0, L[ corresponding to initial
data u0, u0 ∈ L∞(]0, L[)+ respectively, then

�(u(t)− u(t))+�1 ≤ �(u0 − u0)+�1 for all t ≥ 0.

In particular, we have uniqueness of bounded entropy solutions for (1.4).

In the course of this study we have also determined a stationary profile (Proposition
6.6.2) to which all solutions of this model seem to converge. The speed of propagating
fronts is also analyzed, and we find that the incoming signal propagates precisely with
speed c.



14 1.2. About notation

1.2 About notation

We hope that most of our notation is standard, anyway we explain it in detail here.
Our function spaces concern always objects with range in the real numbers. Let Ω
be a domain. Lp(Ω) stands for the usual Lebesgue spaces, with norms � · �Lp(Ω), or
� · �p when the domain is clear from the context; p� denotes the exponent which is
conjugate to p. W 1,p(Ω) are the standard Sobolev spaces, sometimes we use W 1,2 =
H1. Concerning spaces of classical functions we have Ck

c (Ω), 0 ≤ k < ∞ for k-
times compactly supported differentiable functions with continuous derivatives, Ck

b
(Ω)

for continuous and bounded derivatives, D(Ω) is the space of infinitely differentiable
functions with compact support and D�(Ω) the space of associated distributions. Partial
derivatives are often indicated by ∂x or (·)x. Finally, M(Ω) denotes the space of
bounded Radon measures. Conventions like L1(Ω)+ mean that the members of the
corresponding space are non-negative in the sense provided by that space. Topological
duals are denoted as L1(Ω)∗, except for the cases of distributions and Sobolev spaces
(here the standard notation W−1,p is used). Duality pairings are indicated by � , �.

The N -dimensional Lebesgue measure is either denoted by LN or dx depending on
the context. Dirac measures concentrated on a point x are always represented by δ(x).
The remaining notational conventions related to measure theory that we shall use are
detailed in the corresponding Appendix.

About elementary functions: ln denotes the usual logarithm in base e, ln10 will be
used for logarithms in base 10, the hyperbolic sine and cosine will be written as sh and
ch. The sing function sign0(x) values -1 if x < 0, 0 if x = 0 and 1 if x > 0. The
positive part of a function is f+(x) = max{f(x), 0}; sometimes we use f+ for the same
purpose.

The symbols H,M,Q will be used in the first part of the memory to represent
macroscopic parameters. We warn the reader that the meaning of these symbols is
different for each of the models that we are going to consider.

In the context of the geometry of R3, | · | is the usual modulus of a vector. Given
two vectors x, y the notation x ∧ y represents the usual vector product in R3 and x · y
stands for their scalar product (sometimes we even write simply x y). SO(3) denotes
the group of rotations in R3.

When dealing with special and general relativity we stick to Einstein’s convention:
the sum over repeated indexes is always understood. Greek indices always run from 0
to 3; Latin indices run form 1 to 3. A Lorentzian metric is usually denoted by g, but
η stands for the Minkowsky metric. We follow the (−+ ++) convention on signature.

We also have some miscellaneous notations: ↑ and ↓ for monotone sequences, ∗
for convolution products, ∂ for the boundary operator; sup and inf are for the usual
supremum and infimum. Open and closed intervals are denoted as ]a, b[ and [a, b]
respectively. The characteristic function of a set Ω is denoted by χΩ. In particular,
sign+

0 (x) = χ]0,+∞[. Notations like [u ≥ a] and the obvious variants indicate level
sets like {x ∈ Ω/u(x) ≥ a}. The essential support of a set Ω is indicated by supp Ω.
Composition of mappings is denoted by f ◦ g. We will use the notation f ∼ g to mean
that there exist two positive constants c1, c2 such that c1g ≤ f ≤ c2g.

Some physical conventions are also used. G is the gravitational constant and c the
speed of light in vacuum unless otherwise specified. We use kpc and Mpc to refer to
kilo and mega parsecs; M⊙ is the mass of our Sun.
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The symbol C is always used to denote generic constants. These may change form
line to line, or even within the same line. A notation like C(a, b, . . .) indicates that the
constant C depends on the specified quantities.
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Chapter 2

Dynamical behavior for
gravitational kinetic models

In this chapter we shall study several dynamical features that solutions to kinetic models
exhibit. We will focus for the most part of it on solutions that for large times exhibit
some sort of dispersive behavior. The examples considered in the following sections
show that solutions of the Vlasov–Poisson system may disperse in several different
ways. Another goal of the present chapter is to study the relations between these
various concepts of dispersion. The corresponding program for the relativistic models
is much less developed, nevertheless we are able to give some hints on the long time
behavior for solutions to the Nordström–Vlasov system. The results of this chapter are
contained in [61] and [67].

This chapter is organized as follows. First we describe in Section 2.1 the Vlasov–
Poisson system and review the theory about it that has been developed up to date.
In Section 2.2 we introduce several concepts of dispersion for a mass distribution—not
necessarily originated by the Vlasov–Poisson system— and give some examples. In
Section 2.3 we specialize our study to the case of the Vlasov–Poisson system. We give
necessary or sufficient conditions for the existence of various types of dispersive solu-
tions. Then we test all these material with explicit solutions in Paragraph 2.3.3. For
completeness we also briefly discuss in Paragraph 2.3.5 a related notion, namely that
of virialized solutions. Time periodic solutions are also discussed. Paragraph 2.3.6 con-
tains some concluding remarks, open problems and interpretations of our results. One
of the main ideas is that although the solutions to the Vlasov–Poisson system could
have unbounded velocities, the system is able to reproduce the physically correct rates
of dispersion when regarded in the appropriate way. Next we pass to a handy relativis-
tic generalization of the Vlasov–Poisson system: the Nordström–Vlasov system. We
introduce it in detail in Section 2.4. The last section is a gathering of what is known up
to date about the dynamical behavior for solutions to the Nordström–Vlasov system.
The study of conserved quantities and behavior under physically meaningful transfor-
mations is more or less standard, although it has been never performed explicitly; our
results about dispersive behavior are of a more tentative nature and much more effort
has to be done in this direction to obtain plenty satisfactory results.

17
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2.1 The Vlasov-Poisson system

2.1.1 Description of the model

The Vlasov–Poisson system (VP for short) is widely used in Astrophysics [48, 80] to
model gravitational ensembles composed by a large number of particles (the stars of a
galaxy for instance). The assumptions on the ensemble are that collisions and external
forces are negligible and no relativistic effects are present. Later on we shall consider
some models that take into account relativistic effects; as regards to collisions, it can
be justified that these play no role whenever dealing with astrophysical systems like
galaxies (note however that they become important for some types of astrophysical
systems, like globular clusters or rich clusters of galaxies [48]). Indeed, the word collision
in this setting refers more to close encounters than to actual collisions. That is, an
event causing a significant deviation of the stellar trajectories during an encounter.
Estimating the so-called relaxation time it can be deduced that collisions in the above
sense can be neglected when describing a galaxy [48, 80]. To simplify the exposition
we will always refer to galaxies hereafter but keep in mind that we can consider also
other types of self-gravitating systems; we will come back to this in Chapter 4.

In this framework the dynamics of the galaxy is described by the distribution func-
tion in phase space f = f(t, x, v), which gives the probability density to find a star at
time t ∈ R in the position x ∈ R3 with velocity v ∈ R3. The mass density ρ = ρ(t, x)
of the ensemble is given by

ρ(t, x) =
�

R3
f(t, x, v) dv. (1.1)

We denote by Lq either Lq(R6) or Lq(R3) in what follows, depending on the function
under consideration, e.g. f(t) ≡ f(t, ·, ·) or ρ(t) ≡ ρ(t, ·). For notational simplicity we
assume that the stars have all the same mass m and fixed units such that m = G = 1.
The gravitational potential φ = φ(t, x) generated by the galaxy solves the Poisson
equation

∆xφ = 4πγρ, lim
|x|→∞

φ = 0, ∀ t ∈ R, (1.2)

where the boundary condition at infinity means that the system is isolated, and γ = 1
for the moment. A few words are in order in connection with the use of Poisson’s law:
it implies that we are dealing with a mean-field theory. Meaning that fluctuations in
the gravitational potential, which is created by the stars collectively, are smoothed out.
Our way of describing the system allows us to cope with this fact, for the importance
of these fluctuations for the motion of a given star (due mostly to neighboring stars)
diminishes as the number of distant stars the potential is averaged over increases. That
is, stars move under the influence of the mean potential generated by all the stars of
the galaxy.

The assumption that the stars interact only by gravity leads to the Vlasov equation:

∂tf + v ·∇xf −∇xφ ·∇vf = 0. (1.3)

The system (1.1)–(1.3), together with a function f0(x, v) representing the initial con-
figuration, is the Vlasov–Poisson system. The solution of (1.2) is given by the formula

φ(t, x) = − γ

4π

�

R3

ρ(t, y)
|x− y| dy, (1.4)
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whence the Vlasov–Poisson system is equivalent to the non-linear Vlasov equation ob-
tained by replacing the formula for φ in (1.3).

This system of equations has become quite a standard to model galaxies. If we want
to model an ensemble of point particles interacting via self-generated repulsive electric
potential we change to γ = −1. The comparison of both versions is often fruitful, and
several features are common to both systems, as we are going to see.

Note that div(v, ∇xφ(t, x)) = 0 formally in phase space, so that the associated flux
in phase space is measure-preserving, if we are able to give it a sense. This is, in case
that the following system, known as the characteristic system,






d

dt
X(t; s, x, v) = V (t; s, x, v)

X(s; s, x, v) = x
d

dt
V (t; s, x, v) = −∇xφ(t, X(t; s, x, v))

V (s; s, x, v) = v

has a (unique) solution. In that case we can define a solution of Vlasov’s equation by
means of

f(t, x, v) = f0 (X(0; t, x, v), V (0; t, x, v)) .

Such formula —pure transport in phase space— has several important consequences.

2.1.2 Conserved quantities and invariances

Since the characteristic flow of the Vlasov equation preserves the Lebesgue measure,
then all Lq norms of f are preserved:

�f(t)�Lq = constant , for all 1 ≤ q ≤ ∞ . (1.5)

In particular, the mass M of a solution

M =
�

R6
f dvdx

is conserved during evolution. Another very important macroscopic quantity is the
energy of a solution, given by

H =
1
2

�

R6
|v|2f dvdx− γ

8π

�

R3
|∇xφ|2dx

= Ekin − γEpot.

It can be showed that this is a conserved quantity at least for smooth solutions. Like-
wise, the total linear momentum Q and angular momentum Ω,

Q =
�

R6
v f dvdx, Ω =

�

R6
x ∧ v f dvdx, (1.6)

are conserved quantities.
This system is invariant under temporal and spatial translations. It is also invariant

with respect to the action of a given rotation in position and velocity space simultane-
ously. The invariance of Vlasov–Poisson by (time dependent) Galilean transformations
is the property that, given u ∈ R3 and the transformation of coordinates

Gu : t� = t, x� = x− ut, v� = v − u, (1.7)
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then fu(t, x, v) = f(t�, x�, v�) and φu(t, x) = φ(t�, x�) solve the system (1.1)–(1.3) if
and only if (f, φ) does. The physical interpretation of this fact is that all inertial
observers/reference frames are equivalent; the Galilean transformations give the rules
to carry all the relevant information from a given frame to any other frame. Note
that Q can be made to vanish with a suitable Galilean transformation; the resulting
reference frame is at rest with respect to the center of mass of the distribution, which
is defined as

cρ(t) = M−1
�

R3
x ρ dx. (1.8)

This particular invariance of the system plays a very important role: whenever we are
to define dynamical concepts, if we want them to be physically reasonable we have to do
it in such a way that all the inertial observers/reference frames agree when deciding if
these features are present or not. We don’t want to include spurious effects (instability,
dispersion) that are mere artifacts of a description under a particular frame and can
be cured when passing to an appropriate reference frame.

An important role in our discussion is played by spherically symmetric solutions of
the Vlasov–Poisson system. A solution of Vlasov–Poisson is spherically symmetric if
f(t, Ax,Av) = f(t, x, v) for all rotations A ∈ SO(3). If this happens to be so for f0

then this property is preserved during evolution. The potential induced by a spherically
symmetric solution is a function of the radial variable r = |x| only and indeed we have
the representation formula

∂rφ =
4π

r2

�
r

0
λ2ρ(t, λ) dλ. (1.9)

Clearly, the center of mass of spherically symmetric solutions is at r = 0.
Another class of symmetries that has been exploited sometimes is that of cylindri-

cally symmetric solutions. These are such that f(t, Ax,Av) = f(t, x, v) for all rotations
A ∈ SO(3) that leave the (say) third axis fixed. Again, if we start with a cylindrically
symmetric initial data this property is preserved during evolution.

2.1.3 The Cauchy problem

The issue of existence, uniqueness and regularity of solutions to this system has been
extensively studied in the mathematical literature during the last decades and this
problem is by now well understood. For the sake of completeness we will review here
all the steps that were performed up to this date. The first local existence result is
that of [137]. A local existence and uniqueness result for smooth, compactly supported
initial data, together with a continuation criterion were contained in [32], see [180] for
a clearer exposition. His results state that a solution ceases to exist essentially as soon
as its velocity support becomes unbounded. That is, the solution exists as long as

sup{|v|/(x, v) ∈ supp f(s), 0 ≤ s < t} < ∞ (1.10)

Some years passed before a general global existence result was obtained, but in the
meantime some breakthroughs and a better understanding of the problem were achieved.
Namely, [119, 121] obtained several equivalent forms of the continuation criterion that
would become important later. Several global existence results for particular types of
special initial data were also obtained during that years: first for spherically symmetric
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solutions by [32], later for cylindrically symmetric solutions by [120] and also for small
initial data by [31]. Moreover, the case of nearly symmetric plasmas was treated by
[208]. These results remain important nowadays as they give more information on the
solution than the general existence theory.

In the spherically symmetric case it can be shown that the increase in velocity, that
is, the quantity

sup{|V (s, 0, x, v)− v|, 0 ≤ s ≤ t, x, v ∈ R3}

is bounded by a constant which depends only on the initial datum. For the case of
cylindrically symmetric data that quantity is bounded by a constant times t. This
issue is much more involved in the general case. For small data solutions, there hold
the estimates

�ρ(t)�∞ ≤ C(1 + t)−3, �∇xφ�∞ ≤ C(1 + t)−2.

These bounds were extended to the derivatives of the density in [124]. Here it is stated
that

�Dkρ(t)�∞ ≤ C(1 + t)−3−k.

For the case of nearly spherically symmetric plasmas we have the following decay rates
[208]

�ρ(t)�∞, �∇xρ(t)�∞ ≤ C(1 + t)−3, �∇xφ�∞ ≤ C(1 + t)−2,

that refine the ones given in [122] for symmetric plasmas. It should be noted that
the results in [208] do not imply that the solutions remain nearly symmetric during
evolution.

Another important direction was explored by [123], who succeeded in showing the
existence of global weak solutions for the VP system under some integrability assump-
tions and the finiteness of the kinetic energy. Their result has several drawbacks, being
the most important the fact that they are not able to guarantee uniqueness nor conser-
vation of energy. The existence of weak solutions for the repulsive case was discovered
ten years before [28] (again, uniqueness and conservation of energy cannot be assured,
only boundness for the initially finite energy).

Finally a global classical theory (meaning data and solutions in C1
c (R6)) was ob-

tained in 1989. There were two equivalent approaches to this question that coexisted
in time. The first one is due to [152]; the authors ensure global existence by means
of the control of high velocity moments of the solution. The authors give also some
sufficient conditions to guarantee uniqueness, which hold in a larger class than that of
classical solutions. Estimates on velocity moments have been improved later in [99];
spatial moments are treated in [73]. The second approach to the global classical theory
is that of controlling the size of the velocity support of a solution launched by a smooth
initial datum. This problem was first solved in [174] and subsequently sharpened and
clarified in [209], [233] and finally [118]. The upshot is that for any smooth, compactly
supported initial datum, the radius of the velocity support grows at most with a linear
rate (well, this is not completely true, but is almost true: the best rate available today
is that of [118], which is t ln

11
14 t).

After these results a suitable theory for the Cauchy problem with smooth, com-
pactly supported initial data is founded, but still there are some caveats. Some partial
refinements have been obtained later: uniqueness for compactly supported solutions
with integrability conditions [192], uniqueness for solutions whose density is bounded



22 2.1. The Vlasov-Poisson system

[153] and existence and uniqueness of a weak solution for bounded and compactly
supported initial data [240].

2.1.4 Long time behavior

Very little is known on the time asymptotics of the Vlasov–Poisson system in the
gravitational case (γ = 1). On the contrary, the large time behavior of solutions to
the Vlasov–Poisson system is relatively simple in the case of electrostatic interaction
among the particles (γ = −1). All solutions exhibit a (strong or Lq-norm) dispersive
character [125, 172], as there holds the estimate

�ρ(t)�5/3 ≤ C(1 + t)−1/2.

A slightly different statement concerning dispersive behavior is given in [102]. The
results in [73] about allowed dispersion rates mustn’t be overlooked.

In the gravitational case the dynamics is more intricate: there exist (stable or
unstable) steady states, periodic solutions (breathers) and (fully or partially) dispersive
solutions. Most of these possibilities were already exemplified by the explicit solutions
found in [136], some have been discovered later. For the applications in Astrophysics
it would be desirable to have a classification of the possible asymptotic behavior of
solutions in terms of relations between quantities preserved by the evolution (such as
the energy and the mass). This is clearly a very difficult—may be impossible—task,
but in this chapter we show that partial answers in this direction can be given for the
Vlasov–Poisson system.

One of the first works in this direction was [33], dealing with spherically symmetric
systems. More recently we have the results of [87], in which a dispersion regime for the
solutions is identified. This constitutes one of the starting points for the present inves-
tigation. The issue of self-similar solutions is treated in [163], through no completely
satisfactory answer is reached. The self-similar behavior for small data solution on the
long time run is investigated in [124].

2.1.5 About steady states

There are two general strategies to construct stationary solutions for the Vlasov–Poisson
system. The first one is to choose a plausible distribution function and then solve
Poisson’s equation to determine the spatial structure of the associated model. The
second is to proceed the other way around: start with a specified density function and
try to figure out the distribution function (Eddington’s inversion formula and related
procedures [48]). We won’t discuss the second method here.

The construction of static solutions for the Vlasov–Poisson system following the first
idea can be done in two ways. Firstly, by choosing a particle density f which depends
only on quantities that are conserved along the characteristics of the time independent
Vlasov equation; with this choice the Vlasov equation is automatically satisfied and
the problem is reduced to that of proving an existence theorem for the non-linear
elliptic equation obtained by replacing f in the Poisson equation. So far this ‘direct’
method was used mostly in the spherically symmetric case (see however [212]), where
by the Jeans theorem [35] all solutions of the time independent Vlasov equation can be
expressed in terms of the particles energy and angular momentum. More precisely:
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Theorem 2.1.1 (Jeans theorem) Any stationary solution of the Vlasov–Poisson sys-
tem depends on the phase space coordinates only through integrals of motion.

Concerning the use of this result, let us recall the following classical integrals of motion
(conserved quantities along particle trajectories):

• the local energy E = 1
2 |v|

2 + φ(x), in the case of a time independent potential φ.

• the components of the angular momentum L = x ∧ v, in the case of a radial
potential φ. Let us denote F = |L|2.

• the third component of the angular momentum if the potential φ is invariant
under rotations about the third axis, and so forth.

• the Jacobi integral EJ = 1
2 |v|

2 + φ(x) − 1
2 |ω ∧ x| for steadily rotating potentials

φ with angular momentum ω = (0, 0, w).

A second method to construct steady states of the Vlasov–Poisson system is by
minimizing the energy (or a related) functional subject to suitable constraints. The
choice of the functional and/or the constraints selects the type of steady state to be
constructed. The advantage of the variational method on the direct method is that
the former automatically proves a stability property for the steady state. We refer
to [111, 180, 184, 188, 206] and references therein for several works on the construction
and stability of steady states of the Vlasov–Poisson system.

2.2 Dispersive behavior

In this section we introduce several concepts of dispersion for regular mass distributions.
By a regular mass distribution of total mass M we mean a non-negative C1 function
ρ(t, x) such that ρ(t, ·) has compact support and �ρ(t)�1 = M (independent of time t).
This terminology is consistent with the one used for solutions of the Vlasov–Poisson
system: the mass distribution ρ defined by (1.1) is regular whenever f is regular.

These definitions work nicely in Newtonian settings, as they are closely tied to
the Galilean invariance. For relativistic systems things are not that easy since Lorentz
invariance mixes up space and time; other ways of defining dispersion have to be found.

2.2.1 Strong dispersion

Definition 2.2.1 A regular mass distribution ρ is said to be strongly dispersive if there
exists q > 1 such that the limit

lim
t→∞

�ρ(t)�Lq exists and is zero. (2.11)

Obviously, strong dispersion is a Galilean invariant concept. For the Vlasov–Poisson
system in the plasma physics case, that is, γ = −1, it was proved in [125, 172] (see also
[102]) that all solutions are strongly dispersive, with (2.11) being verified for q ∈]1, 5/3].
Namely,

�ρ(t)�5/3 ≤ C(1 + t)−1/2
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and the claimed decay for the rest of the norms is obtained by interpolation. In the
gravitational case, examples of strongly dispersive solutions are those constructed in
[31] for small initial data, see also [124]. For these solutions there holds the estimate

ρ(t, x) ≤ C(1 + |t|+ |x|)−3 ,

for a positive constant C, which clearly implies strong dispersion.

2.2.2 Total and partial dispersion

The next types of dispersive solution that we are going to discuss use the notion of
“concentration function of a measure” introduced by Lévy [146] and applied by P.-L.
Lions in the proof of the concentration-compactness Lemma [151].

Definition 2.2.2 A regular mass distribution ρ is said to be totally, respectively par-
tially dispersive, if and only if the limit

M(R) = lim
t→∞

sup
x0∈R3

�

|x−x0|<R

ρ(t, x) dx, (2.12)

exists and
M∞ = lim

R→∞
M(R) (2.13)

satisfies M∞ = 0, respectively M∞ ∈]0, M [.

Remark 2.2.3 Of course, it is possible that M(R) could not be well defined for all
R (e.g. when ρ(t) is time periodic). Whenever it exists, M(R) is a bounded non-
decreasing function and therefore the limit (2.13) is well defined. Moreover M∞ ∈
[0, M ].

It is clear that strong dispersion implies total dispersion. Moreover, total disper-
sion is equivalent to the vanishing property in the concentration-compactness theory,
see [151]; precisely, a mass distribution ρ is totally dispersive if and only if the limit

lim
t→∞

sup
x0∈R3

�

|x−x0|<R

ρ(t, x) dx exists and is zero, ∀R > 0. (2.14)

An important physical property of (2.14) is that it is invariant by Galilean transforma-
tions, unlike the decay of the mass (or energy) over a ball with arbitrary radius,

�

|x|≤R

ρ dx → 0, as t →∞ , ∀R > 0, (2.15)

which has also been used as definition of dispersion for evolution type equations (in-
cluding non-linear Vlasov equations), see [102, 218] for instance. Thus for example,
according to our definition of total dispersion, a static (i.e., time independent) solu-
tion which is “put in motion” by a Galilean transformation is not to be regarded as a
dispersive solution (whereas it would be so according to (2.15)).
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Example 2.2.4 As an example of totally dispersive solution of the Vlasov–Poisson
system, consider a spherically symmetric shell of matter with internal radius R1(t)
and—possibly infinite—external radius R2(t) (this example was first introduced in [10]).
Let r = |x| and w = x·v/r, the radial velocity variable. Now suppose that in the support
of f0 it is verified that

inf{w, w ∈ supp f0} >

�
2M

R1(0)
, (2.16)

where M is the total mass, i.e., initially the particles are moving outwardly with suf-
ficiently high speed. Using that in spherical symmetry the maximal force experienced
by a particle is bounded by M/r2, see (1.9), we find that, along the characteristics of
the Vlasov equation,

d

dt

�
1
2
w2 − M

r

�
= w ẇ +

M

r2
ṙ = w

�
ẇ +

M

r2

�
,

which is positive in the time interval [0, T [ in which w > 0, i.e., as long as the shell
keeps moving outwardly. It follows that

w(t)2 > w(0)2 − 2M

r(0)
> inf

supp f0
w2 − 2M

R1(0)
:= W > 0,

where for the last inequality we use (2.16). This implies that T = ∞, that is, the shell
moves outwardly for all future times. Moreover, W > 0 is a uniform lower bound on
the radial momentum, which entails

R2(t) > R1(t) > R1(0) + Wt. (2.17)

We claim that, because of (2.17), the solution under consideration is totally disper-
sive. We shall achieve this by proving that the potential energy vanishes in the limit
t → ∞, which for a solution of Vlasov–Poisson is equivalent to total dispersion, see
Proposition 2.3.1 in the next section. Thanks to the rotational symmetry we have the
representation (1.9), which allows to estimate the potential energy as

Epot(t) =
1
2

�

R3
|∇xφ|2dx =

1
2

�

R3

�
4π

r2

�
r

0
λ2ρ(t, λ) dλ

�2

dx

= 32π3
�

R2(t)

R1(t)

1
r2

��
r

0
λ2ρ(t, λ) dλ

�2

dr

≤ 2π

�
R2(t)

R1(t)

M2

r2
dr ≤ 2πM2

R1(t)

and the claim follows.

For the next result we denote by d(A, B) the distance of the sets A, B ⊂ R3:

d(A, B) = inf{|x− y| , x ∈ A , y ∈ B}.

Lemma 2.2.5 Let ρ be a partially dispersive regular mass distribution. Then, for
any given ε > 0 there exist tn

n−→ ∞ and two sequences of non-negative L1 functions
ρn

1 , ρn

2 : R3 → R+, such that ρ(tn) ≥ ρn

1 + ρn

2 and
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a) �ρ(tn)− (ρn

1 + ρn

2 )�1 ≤ ε;

b) |�ρn

1�1 −M∞| ≤ ε , |�ρn

2�1 − (M −M∞)| ≤ ε;

c) d(suppρn

1 , suppρn

2 ) →∞, as n →∞.

d) There exists a sequence of vectors yn ∈ R3 and 0 < R∗
(ε) such that ρn

1 = 0, for
|x− yn| > R∗

(ε).

Remark 2.2.6 The conditions a)-c) define the dichotomy property of the mass dis-
tribution ρ in the concentration-compactness Lemma, see [151]. Condition d) is also
consequence of the same result, although this was not pointed out in [151]; for the
sake of completeness we shall give here the proof of Lemma 2.2.5. In our context, the
relevance of the extra condition d) arises from the fact that it prevents the system from
being strongly dispersive, as we will see in Section 2.3.3.

Proof. The following proof is adapted from [151]. Owing to (2.14), along any sequence
tn

n−→∞ we have
lim

n→∞
sup

x0∈R3

�

|x−x0|<R

ρ(tn, x) dx = M(R).

Since M(R) →M∞ ∈]0, M [, for all ε > 0 we can find R∗ = R∗
(ε) such that, for all n

sufficiently large,

sup
x0∈R3

�

|x−x0|<R∗
ρ(tn, x) dx ∈]M∞ − ε,M∞ + ε[ .

Moreover there exists yn ∈ R3 such that
�

|x−yn|<R∗
ρ(tn, x) dx ∈]M∞ − ε,M∞ + ε[ .

Finally, we can find a sequence Rn

n−→ ∞ and a subsequence of times—still denoted
tn—such that

sup
x0∈R3

�

|x−x0|<Rn

ρ(tn, x) dx ∈]M∞ − ε,M∞ + ε[ ;

The functions ρn

1 = ρ(tn)χ{Byn (R∗)} and ρn

2 = ρ(tn)χ{R3\Byn (Rn)} are easily seen to
satisfy the properties a)-d). ✷

2.2.3 Statistical dispersion

We shall now discuss another Galilean invariant concept of dispersion, which was in-
troduced in [87]. Define the statistical dispersion operator in space by

�(∆x)2� :=
1
M

��

R3
|x|2ρ(t, x) dx− 1

M

��

R3
xρ(t, x) dx

�2
�

.

Up to a mass normalization, the statistical dispersion operator coincides with the sta-
tistical variance of the density mass function and, consequently, it is a measure of the
dispersion of such distribution. Note also that

�(∆x)2� =
�

R3
|x− cρ(t)|2

ρ

M
dx
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and therefore the statistical dispersion operator coincides with the moment of inertia
of the mass distribution with respect to the center of mass.

Definition 2.2.7 A regular mass distribution ρ is said to be statistically dispersive if
and only if

sup
t>0
�(∆x)2� = +∞.

Remark 2.2.8 The above definition differs slightly from that given in [87], where
statistical dispersion is defined by the condition limt→∞�(∆x)2� = +∞.

Statistical dispersion is the weakest concept of dispersion among those introduced
so far.

Proposition 2.2.9 If a regular mass distribution is totally or partially dispersive, then
it is statistically dispersive. In particular, total dispersion implies that limt→∞�(∆x)2� =
+∞.

Proof. We prove first that total dispersion implies limt→∞�(∆x)2� = +∞. Fix R > 0
arbitrarily and write

M =
�

|x−cρ(t)|≤R

ρ dx +
�

|x−cρ(t)|>R

ρ dx

≤ sup
x0∈R3

�

|x−x0|≤R

ρ dx +
�

|x−cρ(t)|>R

ρ dx.

Assume the solution is totally dispersive. Then by (2.14) there exists t0 = t0(R) such
that, for all t > t0,

sup
x0∈R3

�

|x−x0|≤R

ρ dx <
M

2
.

Thus for t > t0,

�(∆x)2� ≥ R2

M

�

|x−cρ(t)|>R

ρ dx ≥ R2

2
,

which yields the claim. To prove that partial dispersion implies statistical dispersion
we use the dichotomy property of partially dispersive solutions, see Lemma 2.2.5. Let
tn, ρn

1 , ρn

2 satisfy the properties of Lemma 2.2.5. Then

�(∆x)2�(tn) ≥
�

suppρ
n
1

|x− cρ(tn)|2ρn

1 dx +
�

suppρ
n
2

|x− cρ(tn)|2ρn

2 dx

≥ d(cρ(tn), suppρn

1 )2�ρn

1�1 + d(cρ(tn), suppρn

2 )2�ρn

2�1
≥ C

�
d(cρ(tn), suppρn

1 )2 + d(cρ(tn), suppρn

2 )2
�
.

Finally, by the triangle inequality,

�(∆x)2�(tn) ≥ d(suppρn

1 , suppρ2n)2 →∞, as tn →∞.

✷
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Example 2.2.10 We give now an example of solution to the Vlasov–Poisson system
which is partially (and therefore statistically) dispersive but not strongly dispersive.
This example is a modification of the fully dispersive shell considered before, in which
a static, spherically symmetric configuration with given mass M0 is located in the
interior of a shell with mass m (alternatively, the interior part may consist of a static
shell [183], leaving a neighborhood of the origin empty, or a spherically symmetric
periodic solution, such as the one found by Kurth [136], see also Paragraph 2.3.3).
Since the potential inside the shell is constant, the static configuration in the interior
will persist as long as the shell is moving outwardly. This again will be verified under
condition (2.16), which now reads

inf{w, w ∈ supp f0
shell} >

�
2(M0 + m)

R1(0)
.

Then we have

(M0 + m)�(∆x)2� =
�

{R1(t)>|x|}
|x|2ρ dx +

�

{R1(t)≤|x|}
|x|2ρ dx ≥ R1(t)2m.

By (2.17), this gives a growth of the spatial variance of order t2. Partial dispersion also
follows immediately by (2.17).

2.3 Dynamical behavior for the Vlasov–Poisson system

Hereafter we assume that f is a non-trivial global classical solution of the Vlasov–
Poisson system such that, at any fixed time t, f has compact support in the variables
(x, v) (however this assumption can be substituted by suitable decay conditions on the
variables (x, v) or by requiring only that f has bounded moments in these variables
up to a sufficiently high order). We shall refer to these solutions as regular solutions.
It is well known that for any initial datum 0 ≤ f0 = f|t=0 ∈ C1

c (R6), there exists a
unique global regular solution of the Vlasov–Poisson system, see Paragraph 2.1.3 in the
present chapter.

2.3.1 Strong and total dispersion

Recall that strong dispersion implies total dispersion. Indeed we shall now prove that
these two concepts of dispersion are equivalent for the Vlasov–Poisson system. Let

Ekin =
1
2

�

R6
|v|2f dvdx, Epot =

1
8π

�

R3
|∇xφ|2dx

and note that
Ekin −

Q2

2M
=

1
2

�

R6
|v −Q/M |2 f dvdx > 0. (3.18)

The main result relating strong and total dispersion in the attractive case is the follo-
wing.

Proposition 2.3.1 Let f be a regular solution of the Vlasov–Poisson system (γ = ±1).
Then the following assertions are equivalent:
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1. f is strongly dispersive.

2. f is totally dispersive.

3. Epot → 0, as t →∞.

Moreover, if any of the above holds then f satisfies the inequality

H ≥ Q2

2M
.

Remark 2.3.2 The same result holds for time sequences; that is, along any sequence
tn →∞ the property

lim
n→∞

�ρ(tn)�p = 0

is equivalent to

lim
R→∞

lim
n→∞

sup
x0∈R3

�

|x−x0|<R

ρ(tn, x) dx = 0

and this is in turn equivalent to

lim
n→∞

Epot(tn) = 0.

Finally if this holds then necessarily the energy of the initial datum is greater or equal
to Q

2

2M
.

Proof. We only prove the result for γ = +1, later we comment on γ = −1. By (3.18),

H >
Q2

2M
− Epot ,

and the last claim follows by letting t →∞. Let us prove the equivalence of the three
statements:

1. =⇒ 2. Clear.
2. =⇒ 3. Fix R > 0 and rewrite the potential energy as 2Epot = I1 + I2 + I3, where

I1 =
� �

|x−y|≤1/R

ρ(t, x)ρ(t, y)
|x− y| dxdy,

I2 =
� �

1/R<|x−y|≤R

ρ(t, x)ρ(t, y)
|x− y| dxdy,

I3 =
� �

|x−y|>R

ρ(t, x)ρ(t, y)
|x− y| dxdy.

Using the Young inequality, see [147], the first integral is bounded as

I1 ≤ C�ρ(t)�25/3

��

|x|≤R−1
|x|−5/4dx

�4/5

≤ CR−7/5 ;

we recall that �ρ(t)�5/3 ≤ C for regular solutions of the Vlasov–Poisson system, see for
instance [180]. For I3 we use that

I3 ≤
M2

R
.
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Finally

I2 ≤ R

�

|x−y|≤R

ρ(t, x)ρ(t, y) dxdy ≤ MR sup
y∈R3

�

|x−y|≤R

ρ(t, x) dx = R εR(t),

where, by (2.14), εR(t) → 0, as t →∞, for all R > 0. Collecting,

2Epot ≤ C
�
R−1 + R−7/5

�
+ R εR(t).

Taking the limit t →∞ and then R →∞ concludes the proof.
3. =⇒ 1. We recall from [125] the following interpolation inequality

�ρ�5/3
5/3 ≤ Ct−2

��

R6
|x− tv|2f(t, x, v) dxdv

�
(3.19)

and the pseudoconformal law for the attractive case

d

dt

�

R6
|x− tv|2f(t, x, v) dxdv =

d

dt

�
t2

4π
�∇xφ(t)�22

�
− t

4π
�∇xφ(t)�22.

Integrating we get
�

R6
|x− tv|2f dxdv −

�

R6
|x|2f0 dxdv =

t2

4π
�∇xφ(t)�22 −

�
t

0

s

4π
�∇xφ(s)�22 ds, (3.20)

so that

0 ≤ t−2
�

R6
|x− tv|2f dxdv ≤ t−2

�

R6
|x|2f0 dxdv +

1
4π
�∇xφ(t)�22 , (3.21)

and the r.h.s. converges to zero by hypothesis, which in combination with (3.19) con-
cludes the proof. ✷

The first part in Proposition 2.3.1 was already known in the electrostatic case, as it
was proved in [125] and [172] (see also [102]) that all solutions are strongly dispersive.
More precisely, recall that

�ρ(t)�5/3 ≤ C(1 + t)−1/2

and we also have
Epot(t) ≤ C(1 + t)−1.

Being all solutions strongly dispersive, it does not make any sense to study partial
dispersion in this setting.

In the gravitational case not all solutions are strongly dispersive, as there exist
static solutions. Examples of strongly dispersive solutions are those constructed in [31]
for small initial data. As we have seen, these solutions verify the estimate

ρ(t, x) ≤ C(1 + |t|+ |x|)−3 ,

for a positive constant C, which clearly implies strong dispersion. Apart from this
result, no sufficient condition on the initial datum is known which ensures that a solution
will exhibit strongly dispersive behavior.



2. Dynamical behavior for gravitational kinetic models 31

Moreover, it was proved in [73] that for the electrostatic case no solution can violate
the following bounds on dispersion rates:

�ρ(t)�p ≥ C(1 + t)−
3(p−1)

p , p ∈]1,∞].

This was first generalized (with the same bounds) to the attractive setting in [87], but
neither the case p = ∞ nor the case H = 0 were covered. We consider these limiting
cases in the following proposition, recovering also the results in [87] with a different
proof.

Proposition 2.3.3 The following statements hold for regular solutions to the attractive
Vlasov–Poisson system:

1. Strongly dispersive solutions verify that there exists some R > 0 large enough such
that

lim inf
t→∞

�

|x|≤Rt

ρ(t) dx > 0. (3.22)

2. For any strongly dispersive solution we can find a t∗ > 0 such that for t > t∗ the
following inequality is satisfied:

�ρ(t)�p ≥ C(1 + t)−
3(p−1)

p , p ∈]1,∞].

3. For any solution that is not strongly dispersive there exist C > 0 and a sequence
of times tn →∞ such that

�ρ(tn)�p ≥ C, ∀n ∈ N, p ∈]1,∞].

Furthermore, for any solution with H < 0 (and thus not strongly dispersive) we
have that

�ρ(t)�p ≥ C, ∀t ≥ 0, p ∈]1,∞].

Remark 2.3.4 Although the first point is included here only to help in the proof of
the second one, it has some interest on its own. It ensures that at least some part of
the system won’t spread faster than linearly in time. We will come back to these ideas
in Section 2.3.6.

Proof. It follows essentially the lines of that in [73]. The first statement is proved by
contradiction, i.e., assume that there exists a sequence tn ↑ ∞ such that

�

|x|≤Rtn

ρ(tn) dx −→ 0. (3.23)

Now we notice that�

|x|≤Rtn

v2f(tn, x, v) dxdv

≤ 2
�

|x|≤Rtn

�
v − x

tn

�2

f(tn, x, v) dxdv + 2
�

|x|≤Rtn

�
x

tn

�2

f(tn, x, v) dxdv

≤ 2
t2n

�

|x|≤Rtn

(tnv − x)2f(tn, x, v) dxdv + 2R2
�

|x|≤Rtn

ρ(tn) dx

≤ 2
�

1
t2n

�

R6
x2f0(x, v) dvdx + 2Epot(tn)

�
+ 2R2

�

|x|≤Rtn

ρ(tn) dx,
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where last estimate is due to the pseudoconformal law (3.20). By strong dispersion,
limt→∞ Epot(t) = 0 and so, using (3.23), we get that

�

|x|≤Rtn

v2f(tn, x, v) dxdv → 0 as n →∞.

So that

lim
n→∞

�

|x|≥Rtn

v2f(tn, x, v) dxdv = lim
n→∞

�

R6
v2f(tn, x, v) dxdv

= lim
n→∞

��

R6
v2f0(x, v) dxdv − 1

4π

�

R3
|∇xφ(0, x)|2 dx +

1
4π

�

R3
|∇xφ(tn, x)|2 dx

�

thanks to the conservation of energy. As the potential energy vanishes in the limit we
have

lim
n→∞

�

|x|>Rtn

v2f(tn, x, v) dxdv =
�

R6
v2f0(x, v) dxdv − 1

4π

�

R3
|∇xφ(0, x)|2 dx = 2H.

Also thanks to (3.23)
�

|x|>Rtn

ρ(tn) dx →
�

R6
f0(x, v) dxdv = M as n →∞.

Now, estimating in the opposite direction,
�

2
�

|x|>Rtn

v2f(tn, x, v) dxdv

� 1
2

≥
��

|x|>Rtn

�
x

tn

�2

f(tn, x, v) dxdv

� 1
2

−
�

2
�

|x|>Rtn

�
x

tn
− v

�2

f(tn, x, v) dxdv

� 1
2

≥ R

��

|x|>Rtn

f(tn, x, v) dxdv

� 1
2

−
�

2
t2n

�

R6
x2f0(x, v) dvdx + 4Epot(tn)

� 1
2

.

Taking limits when n →∞ yields

2
√

H ≥ R

��

R6
f0(x, v) dxdv

� 1
2

which is a contradiction if R > 0 is chosen big enough.
To prove the second point we combine the first one with the following inequality

�

|x|≤Rt

ρ(t) dx ≤ �ρ(t)�p(Rt)
3(p−1)

p .

The result is readily obtained.
The third statement is essentially that of Proposition 2 of [87]. ✷

Remark 2.3.5 The second point above holds also for time sequences: if there is a
sequence tn →∞ such that �ρ(tn)�p converges to zero, we can repeat the proof above

to show that �ρ(tn)�p ≥ C(1 + tn)−
3(p−1)

p for n large enough.
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2.3.2 Statistical dispersion

In [87] a sufficient condition for statistical dispersion was established (see also [27]).
The proof uses

M
d2

dt2
�(∆x)2� = 2H + 2Ekin − 2

Q2

M
, (3.24)

which is proved by direct calculation and holds for both values of γ. The precise result
is the following:

Proposition 2.3.6 Regular solutions of the attractive Vlasov–Poisson system which
satisfy the condition H > Q

2

2M
are statistically dispersive. Moreover, there exist con-

stants C1, C2 > 0 such that, for all sufficiently large times,

C1t
2 ≤ �(∆x)2� ≤ C2t

2 .

Proof. First we rewrite (3.24) as

M
d2

dt2
�(∆x)2� = 4H − 2

Q2

M
+ 2Epot , (3.25)

Using that Epot ≥ 0 and integrating in time twice we get

�(∆x)2�(t) ≥ �(∆x)2�(0) +
�

d

dt
�(∆x)2�

�

t=0

t +
2
M

�
H − Q2

2M

�
t2 ,

where �
d

dt
�(∆x)2�

�

t=0

=
2
M

�

R6
x · (v −M−1Q)f0(x, v) dxdv. (3.26)

The bound from below follows immediately. To prove the upper bound, we recall—
see [87, 180] for instance—that the potential energy satisfies the bound

Epot ≤ C
�

Ekin ,

where the positive constant C depends only on M = �f(t)�1 and �f(t)�∞ = �f0�∞.
Thus

Ekin − C
�

Ekin −H ≤ 0,

which in the case of non-negative total energy H gives immediately a uniform upper
bound on the kinetic energy:

Ekin ≤
�

1
2

�
C +

�
C2 + 4H

��2

(3.27)

and therefore the potential energy is uniformly bounded as well. Using this in (3.24)
it follows that �(∆x)2� ≤ C2t2 and the proof is complete. ✷

As in the repulsive case the energy is always nonnegative, the following is an immediate
corollary of (3.24), although never before stated explicitly. Obviously the first part is
implied by the results in [125], [172].

Proposition 2.3.7 Any regular solution to the repulsive Vlasov–Poisson system is sta-
tistically dispersive. Moreover, there exists constants C1, C2 > 0 such that, for all
sufficiently large times,

C1t
2 ≤ �(∆x)2� ≤ C2t

2 .
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We point out that, for the case of the linear transport equation, �(∆x)2� behaves
like t2 for every solution, see the Appendix.

The threshold Q2/(2M) that appears in Propositions 2.3.1 and 2.3.7 represents the
kinetic energy of a point mass at the center of mass having the same mass of the whole
system. Next we are going to give some insight into the dispersion rates for the case
H = Q2/(2M).

Proposition 2.3.8 Regular solutions with H = Q
2

2M
in the attractive case disperse

statistically. Furthermore:

1. If there is some t∗ > 0 such that
�

t∗

0

�
Ekin(τ)− Q2

2M

�
dτ +

�

R6

�
x · v − Q

M

�
f0 dv dx > 0

(in particular if
�

R6(x ·v−Q/M)f0 dv dx is positive) then there exists some C > 0
such that

�(∆x)2� ≥ Ct for t > t∗.

2. Otherwise, along any time sequence tn → +∞ such that Epot(tn) → 0 we have
the estimate

�(∆x)2�(tn) ≥ C

�
t−2
n

�

R6
|x|2f0 dv dx + 2Epot(tn)

�−1

,

where the constant C > 0 depends only on the initial datum.

Proof. Integrating once in (3.24) we get that

M

2
d

dt
�(∆x)2� =

�

R6

�
x · v − Q

M

�
f0 dx dv +

�
t

0

�
Ekin(τ)− Q2

2M

�
dτ. (3.28)

Note that Ekin(t) > Q2/2M and then the first point is proved. Thus the only case left
to study is

0 <

� ∞

0

�
Ekin(τ)− Q2

2M

�
dτ ≤ −

�

R6

�
x · v − Q

M

�
f0 dx dv < +∞.

We are going to show that the solution is also dispersive under this assumption.
The integrability of Ekin − Q

2

2M
as a function of time assures that we have lots of

sequences tn →∞ such that

lim
n→∞

Ekin(tn) =
Q2

2M

and so
lim

n→∞
Epot(tn) = 0

as the energy of the system is precisely Q2/2M .
We recall from [125] that

�ρ(t)�5/3
5/3 ≤ Ct−2

��

R6
|x− tv|2f(t, x, v) dv dx

�
.
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Using the pseudoconformal law we show —by (3.21)— that

�ρ(tn)�5/3
5/3 ≤ C

�
t−2
n

�

R6
|x|2f0 dv dx + 2Epot(tn)

�
:= ϕ(tn).

Thus, we get that
�

|x−cp(tn)|≤R(tn)
ρ(tn) dx ≤ (

4π

3
)

2
5 R(tn)

6
5 �ρ(tn)� 5

3
≤ (

4π

3
)

2
5 R(tn)

6
5 ϕ(tn)

3
5

for any function R(t). Choose R(tn) = 31/3
M

5/6

π1/323/2 ϕ(tn)−
1
2 and so

�

|x−cp(tn)|≤R(tn)
ρ(tn) dx ≤ M

2
.

Then we can decompose

M =
�

|x−cp(tn)|≤R(tn)
ρ(tn) dx +

�

|x−cp(tn)|>R(tn)
ρ(tn) dx

≤ M

2
+

�

|x−cp(tn)|>R(tn)
ρ(tn) dx,

so that
�(∆x)2� ≥ R(tn)2

M

�

|x−cp(tn)|≥R(tn)
ρ(tn) dx ≥ R(tn)2

2
→ +∞.

✷

Remark 2.3.9 The previous result can be regarded as the fact that if the behavior
of the kinetic energy is not too chaotic then the spatial variance grows linearly in time.
To illustrate this, consider for simplicity the case Q = 0, in which the total energy
is zero. Whenever the kinetic energy is integrable in time, it is very likely —but not
always true, as some pathological counterexamples can be constructed with the aid of
an enumeration of Q— that for some sequence tn that is linear as a function of n we
could have

lim
n→∞

Ekin(tn)
1/n

= 0

and then, following the ideas of the previous proof, a statement like

lim
n→∞

1
n

sup
t≤n

�(∆x)2� > 0,

would be true.

The next result about the borderline case says that, if not all the mass of the system
is lost to infinity then dispersion takes place at the highest possible rate. The proof is
straightforward once a proper way of stating that the system is not strongly dispersive
is found.

Proposition 2.3.10 Consider a regular solution of the gravitational Vlasov–Poisson
system with H = Q

2

2M
. Then, if for a.e. � ∈ [0, 1[ there exist constants c� > 0 such that

lim inf
n→∞

Epot(n + �) > c�,

we have that �(∆x)2� ∼ t2.
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Proof. First reduce the situation to the case Q = 0, no generality is lost. As H = 0 in
this setting, the lower bound for the potential energy assures that

�
t

0
Ekin(τ) dτ ≥ [t]

� 1

0
c� d�,

being [t] the integer part of t, and inserting this into (3.28) concludes the proof. ✷

The conclusion of Proposition 2.3.10 can be observed in the following example, con-
sidering an outgoing shell surrounding a spherically symmetric steady state with zero
total energy.

Example 2.3.11 At this point it is interesting to reconsider the example of the shell
surrounding a static configuration introduced at the end of Section 2.2. Say that the
inner part of the solution has mass M0 and that the surrounding shell has mass m
and initial inner radius R1. Our previous computations show that the escape threshold
associated with this configuration is

�
2(M0 + m)

R1
,

see (2.16), so that any particle with initial radial momentum greater than this threshold
will escape towards infinity. We shall now prove that it is possible to obtain an escaping
shell even when the total energy of the system is negative. Note that the total energy
H consists of the energy E0 of the interior part plus the kinetic energy of the shell
minus the potential energy of the shell (the interaction energy has negative sign and
as a consequence the term contributing to the potential energy can be disregarded).
Neglecting the last negative term and estimating above the kinetic energy of the shell
we get

H < E0 +
1
2
m sup

shell
|v|2 ,

where the supremum is taken in the support of the shell at time t = 0. The interior part
has energy E0 < 0, since it is static (cf. (1.1) in Chapter 3); thus in order to have the
whole shell escaping to infinity while the total energy of the system remains negative
we must choose the initial radial velocities for all the particles in the shell according to

2(M0 + m)
R1

< inf
shell

w2 < inf
shell

|v|2 < sup
shell

|v|2 <
−2E0

m
.

This can be done if m is strictly contained in the interval between zero and the value
1
2 [−M0 +

�
M2

0 − 4E0R1]. For bigger values of m we have no guarantee that the total
energy can be kept negative.

The previous example shows us that:

• There are solutions that are partially (therefore statistically) dispersive with H <
Q2/2M , so that there is no simple way to extend the results of Propositions 2.3.6
and 2.3.8. By Proposition 2.3.1, these solutions cannot be totally dispersive.
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• We know that spherically symmetric solutions with H > 0 disperse statistically
with a dispersion rate of t2 (equivalently their spatial support spreads with a
velocity of order t). We will see in Paragraph 2.3.3 that for solutions with H = 0
this needs not to be the case. On the other hand the previous example shows
that there are solutions with H ≤ 0 which also statistically disperse with a rate
t2. So there is no evident relation between the admissible rates of dispersion and
the sign of the energy.

• There is no lower limit for the fraction of total mass of the system that is lost to
infinity for a partially dispersive system.

• Using these ideas we can also show that there exist dispersive solutions as ”close”
as desired to a stable steady state. More precisely, given a polytropic steady state
(see [206] for details and notation) with mass M , polytropic index µ and L1+µ

−1-
norm J , which is stable in the sense of [206], we can find solutions as described
above that are partially dispersive and that remain in the stability region of the
polytrope. (This is not a contradiction since the quantity of mass that is lost
to infinity is almost negligible.) These solutions correspond to initial data of the
following type. Starting from the given polytrope we construct — using scaling
techniques— a second polytrope having mass M −m and L1+µ

−1-norm J − j, for
m, j positive and small. Then we add an outer shell of mass m and L1+µ

−1-norm
less or equal to j. We choose m, j in order that all the computations in Example
2.3.11 remain valid and that the total energy of the solution is as close as desired
to the energy of the original polytrope. Then we can invoke the stability criterion
in [206]. Using ODE’s terminology, we have proved that these steady states are
stable but not asymptotically stable.

2.3.3 Kurth’s solution

Here we shall exemplify the findings of the previous paragraph by considering an explicit
class of spherically symmetric solutions to the Vlasov–Poisson system found by Kurth
in [136] (see also [33, 123, 180]). The main idea of this model is to find a solution whose
associated density is of the form

ρ(t, x) = (4π/3)−1ϕ(t)−3χ{|x|<ϕ(t)} (3.29)

where the function ϕ is interpreted as the radius of the system. This function ϕ solves
the following ODE

ϕ3ϕ�� + ϕ = 1,

subject to the initial condition ϕ(0) = 1. We get solutions to the Vlasov–Poisson system
exhibiting different types of behavior depending on the prescribed value of ϕ�(0):

• If ϕ�(0) = 0, the solution is static;

• If 0 < |ϕ�(0)| < 1, the solution is periodic in time;

• If |ϕ�(0)| ≥ 1, the solution is strongly dispersive.



38 2.3. Dynamical behavior for the Vlasov–Poisson system

Let us relate the above classification in terms of ϕ�(0) with the values of the energy
H. Note first that the associated distribution function f can be chosen to be spherically
symmetric so that Q = 0. Doing so, we have

f(x, v) =
3

4π3

�
1−

����
x

ϕ(t)

����
2

− |ϕ(t)v − ϕ�(t)x|2 + |x ∧ v|2
�−1/2

+

· χ{|x∧v|<1} .

The energy of Kurth’s solutions is given by, see [123],

H =
3
5

�
(ϕ�)2 + ϕ−2 − 2ϕ−1

�
=

3
5
(ϕ�(0)2 − 1).

Moreover M = 1, which follows integrating (3.29). Thus

• If H = −3/5 (⇔ ϕ�(0) = 0), the solution is static (this steady state is studied in
[35]).

• If −3/5 < H < 0 (⇔ 0 < |ϕ�(0)| < 1), the solution is time periodic.

• If H ≥ 0 (⇔ |ϕ�(0)| ≥ 1), the radius of the system goes to infinity and, by (3.29),
ρ → 0 in Lq, for all q > 1, i.e., the solution is strongly (and therefore also totally)
dispersive. When H = 0 (⇔ |ϕ�(0)| = 1), we have �(∆x)2� ∼ t4/3. When H > 0
(⇔ |ϕ�(0)| > 1), we get �(∆x)2� ∼ t2, in agreement with Proposition 2.3.6.

Let us prove the latter claim. First we show that �(∆x)2� ∼ ϕ(t)2. Since the solution
under study is spherically symmetric, we have

�(∆x)2� =
�

R3
|x|2ρ(x) dx = 4π

�
4π

3

�−1

ϕ(t)−3
�

ϕ(t)

0
r4 dr =

3
5
ϕ(t)2.

Thus we reduce the problem to find out the large time behavior of the function ϕ.
Following Kurth [136], if |ϕ�(0)| = 1 we have that

ϕ(t) =
1
2
(1 + v(t)2) ,

where v(t) solves

v(t) +
1
3
v(t)3 = 2

�
t +

2
3

�
.

For t big enough the term v(t)3 dominates and then ϕ(t) ∼ t2/3. If |ϕ�(0)| > 1, we have
that

ϕ(t) =
|ϕ�(0)|ch(v(t))− 1

|ϕ�(0)|2 − 1
,

where v(t) solves

v(t)− |ϕ�(0)|sh(v(t)) = (|ϕ�(0)|− 1)3/2(t− t0)

(t0 depends on |ϕ�(0)|). For t big enough |sh(v(t))| dominates |v(t)|, and we infer that
|v(t)| ∼ ln t, which entails ϕ(t) ∼ t.

Note that the solution with H = 0 (there are two of them actually) is the only known
example of statistically dispersive solution for which statistical dispersion takes place
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at a slower rate than t2 and for which the support spreads slower than t. Also the rate
for strong dispersion is slower than for the other examples considered in this chapter.
Taking a closer look to the trajectories reveals that these are strongly oscillatory (like
in a forced harmonic oscillator).

This special solution highlights also the role of condition d) in Lemma 2.2.5. For
we can surround this “slowly dispersing” solution with a strongly dispersive shell con-
figuration, and the resulting solution verifies a), b) and c) but not d), and happens to
be totally but not partially dispersive, see previous Remark 2.2.6.

2.3.4 Time periodic solutions

Not so much is known about time periodic solutions to the Vlasov–Poisson system. The
first example of such solutions is that of Kurth (see the previous paragraph). Later
several steadily rotating solutions have been constructed. First we have those on [184],
which are cylindrically symmetric and indeed static (the mean velocity field is non-
vanishing but thanks to the symmetry the density profile remains static), obtained as
deformations via the implicit function theorem of spherically symmetric steady states.
Then came those in [212], which are also axially symmetric but obtained using Jeans’
theorem and the Jacobi integral. We have also the examples of time periodic solutions
given in [34]; many of them are not even cylindrically symmetric, opposed to the ones
that we already commented on. The reason that they are not so interesting is that
these models represent systems with infinite mass.

We can give a fairly easy condition on macroscopic parameters for a time periodic
solution to exist:

Proposition 2.3.12 Time periodic solutions of the Vlasov–Poisson system satisfy H <

− Q
2

2M
.

Proof. The result follows from the dilation identity

d

dt

�

R6
x · vf(t) dxdv = H + Ekin

which can be proved by direct computation. We integrate it over a period T to get

0 = HT +
�

T

0
Ekin dt.

Using (3.18) we conclude the proof. ✷

2.3.5 Virialized solutions

It is a classical result in Astrophysics that bounded systems of self-gravitating particles
roughly in equilibrium verify that the time average of the kinetic energy of the ensemble
equals twice the time average of its potential energy. This statement and some of its
variants and particularizations go under the name of “virial theorems” (cf. [48, 177,
207], for instance), and are common tools in Astrophysics. We shall comment here on
the connection between the notion of virialized solutions of the Vlasov–Poisson system
and our preceding results.
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In this paragraph we shall only consider solutions such that Q = 0, i.e., the reference
frame is chosen at rest with respect to the center of mass of the system, as we did in
the proof of Proposition 2.3.8. Following [177] we shall say that a solution of the
Vlasov–Poisson system is virialized if and only if

lim
t→∞

1
t

�
t

0
H + Ekin(τ) dτ = 0. (3.30)

Note that solutions with H > 0 cannot be virialized in this sense. In fact, it is a
straightforward consequence of the inequality (3.18) that virialized solutions of the
Vlasov–Poisson system must necessarily satisfy H ≤ 0. Examples of virialized solutions
are Kurth’s solutions with energy H ≤ 0. The notion of virialized system is usually
applied in Astrophysics only in the case of bounded N -body systems, but, as pointed
out in [177], strict boundedness is not necessary (Kurth’s solution with energy H = 0
shows that also in the case of Vlasov–Poisson, the support of a virialized solution
can spread out to infinity). Then we regard virialized systems as apparently bounded
systems, i.e., systems that disperse so slowly that in our time scale they appear to be
bounded and in equilibrium.

The following proposition extends the result in [177], which is valid for N -body
systems, to the continuous setting; note that the diameter of the N -body system used
in [177], is replaced by the statistical dispersion operator �(∆x)2�.

Lemma 2.3.13 Let f(t) be a given solution of the Vlasov–Poisson system with Q = 0.
Then the following statements hold true:

1. If f(t) is virialized then limt→∞
�(∆x)2�

t2
= 0.

2. If limt→∞
�(∆x)2�

t2
= 0 and limt→∞

1
t

�
t

0 H+Ekin(τ) dτ exits, then f(t) is virialized.

Proof. The proof is a straightforward application of L’Hôpital’s rule (as formulated in
[195]) and of(3.24). ✷

The existence of the limit in (3.30) can be guaranteed under some of the most frequent
situations: spherical symmetry [33] — his result in that setting gives more information
than ours—, periodicity in time (including static solutions of course) and whenever
Ekin(t) has a limit as t →∞.

2.3.6 Summary and open problems

The main results of this chapter and the following one concerning the Vlasov–Poisson
system are summarized in Table 2.1. Completing the entries marked with a question
mark would lead to a considerable extension of the results presented here and of our
understanding of the large time behavior of the Vlasov–Poisson system in the gravita-
tional case. For the sake of completeness we gather here the dispersion rates which are
known for examples of solutions to the Vlasov–Poisson system.

• Small data solutions in the attractive case [31] have �∇xφ�∞ ∼ t−2 and �ρ(t)�∞ ∼
t−3.

• All the examples of outgoing shells and modifications of them considered in this
section have �(∆x)2� ∼ t2. The radius of the system grows linearly in time.
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Dispersive behavior Necessary Sufficient Example

Strong Dispersion H ≥ Q2/2M ? Example 2.2.4
(VP)↑ ↓

Total Dispersion H ≥ Q2/2M ? Kurth’s H ≥ 0
↓

Statistical Dispersion ? H ≥ Q2/2M
↑ (VP) ↓ ?

Partial Dispersion ? ? Example 2.2.10

Other solutions

Static Solutions H < 0 – Kurth’s H = −3
5

Periodic Solutions H < −Q2/2M – Kurth’s H ∈]− 3
5 , 0[

Virialized Solutions H ≤ 0 – Kurth’s H = 0

Table 2.1: Main results proved for the Vlasov–Poisson system and open problems.

• Kurth solutions [136] with H > 0 verify Epot ∼ t−1, �ρ(t)�∞ ∼ t−3 and �(∆x)2� ∼
t2 . The radius of the system grows linearly in time.

• Kurth solutions [136] with H = 0 have Epot ∼ t−2/3, �ρ(t)�∞ ∼ t−2 and
�(∆x)2� ∼ t4/3. The radius of the system grows like t2/3.

• In the electrostatic case, Epot ∼ t−1 and �ρ(t)�5/3 ∼ t−3/5 [125, 172].

The Vlasov–Poisson system is based on classical (i.e., non-relativistic) mechanics.
Thus, it allows in principle that particle velocities become unbounded (and this is a
paramount issue when stating existence results, as we commented on paragraph 2.1.3
on the present chapter). In relativistic mechanics particles cannot travel faster than
the speed of light. As a consequence, a self-gravitating system cannot expand faster
than linearly in time. Although the Vlasov–Poisson system does not take into account
any relativistic effect, it is able to reproduce the same spreading rates if these features
are averaged in a suitable sense.

A first result supporting these ideas is (3.22). It says that if we look at the natural
spreading scale we will find that at least part of the system is trapped within the
physically relevant region in position space.

The lower bounds for strong dispersion given in Proposition 2.3.3 are also consistent
with a linear rate of spreading. Consider for instance a system which has a constant
density function which is supported in a ball of linearly expanding radius; conservation
of mass forces the system to satisfy �ρ(t)�∞ ∼ t−d, being d = 3 the dimension of position
space. We actually have some examples of such systems: the Kurth solutions [136] with
positive energy. For other norms of the density function, the reasonable fastest rates
of strong dispersion should never surpass the ones for the linear transport equation
(see the Appendix). These rates can be obtained by interpolation with �ρ(t)�1 = M ,
compare with [73]. They coincide with the ones given in Proposition 2.3.3.

The strongest evidence supporting the idea that the Vlasov–Poisson system is able
to reproduce the correct spreading rates is the result in Proposition 2.3.6. It shows that
the spatial variance is able to rule out the adequate outliers —like particles with un-
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bounded velocities— so that in an averaged sense spreading systems expand generically
linearly in time and never faster than that.

Finally, Proposition 2.3.8 shows that apparently there is no sub-diffusive regime for
expanding systems (the case of strictly negative energy is still open).

All this evidence supports also the following claim: it seems very convenient in
most scenarios to demand finite spatial variance from the initial datum. All our results
require this hypothesis, but this fact is hidden in our definition of “regular solution”.
Thus, a physically meaningful class in which the initial value problem for Vlasov–
Poisson system could be studied is that of smooth initial data with finite kinetic energy
and finite spatial variance.

Next we want to comment on one of the open problems stated in Table 2.1. It seems
natural that if a solution disperses statistically, then this solution is loosing some mass
to infinity, which causes the increase of the variance of the system. If this were true
then the concepts of partial and statistical dispersion would be equivalent. But maybe
this is not the case.

The following shows that this problem is not that easy. There is an infinite family of
steady states with finite mass, infinite radius and unbounded spatial moments. These
steady states are polytropes of the form f(x, v) = (−E)3k+7/2

+ F k; here E is the particle
energy and F the particle angular momentum squared (see Chapter 3 for a detailed
explanation). For fixed k the resulting steady state has unbounded spatial moments
of order greater or equal to 2 + 4k. Moreover, the Plummer/Schuster model, corres-
ponding to k = 0, is stable [110]. Then, it could happen that a solution starting close
to this steady state qualifies as statistically dispersive without loosing mass to infinity.
Nowadays we are unable to rule out this possibility.

2.4 The Nordström–Vlasov system

2.4.1 Description of the model

When relativistic effects become important the Vlasov–Poisson no longer provides an
adequate description of self-gravitating matter; its role is taken by the Einstein–Vlasov
system. No wonder that the Einstein–Vlasov system is much more complicated than
Vlasov–Poisson’s. Serious difficulties arise from the character of the Einstein equations,
which are essentially hyperbolic and highly non-linear even in the absence of sources,
from the equivalence of all the coordinate systems in General Relativity and from the
fact that in the Einstein theory of gravitation, the space-time is not given in advance
but is itself part of the solution of the equations. All these features make it extremely
difficult to analyze the solutions of the Einstein equations coupled to any kind of matter
model. Besides, the usual reduction to spherical symmetry rules out one of the most
interesting new features of General Relativity, which is the propagation of gravitational
waves, since this restriction forces the spacetime to be static outside the support of the
matter.

In this section we are going to propose a simpler —although unphysical— model in
which the dynamics of the matter is still described by the Vlasov equation but where
the gravitational forces between the particles are now supposed to be mediated by a
scalar field. These has some advantages; the resulting model is more affordable from
the mathematical point of view and it can be treated without recourse to symmetry
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assumptions, so that it constitutes a good toy model. Also the coupling of the kinetic
equation to a scalar gravitation theory allows for the propagation of gravitational waves,
a feature that we cannot afford nowadays for the full Einstein–Vlasov system. For this
reason, this model may represent a comparatively easier framework where to study the
effects of the gravitational radiation on the dynamics of a many particles system.

We will refer to this scalar model as the Nordström–Vlasov system (NV for short),
since the scalar gravitation theory which we use to describe the interaction among
the particles reduces, in a particular frame, to the one introduced by Nordström in
[168]. The model will describe the collective motion of collisionless particles interacting
by means of their own self-generated gravitational forces, under the condition that
the dynamics of the gravitational field is described in accordance to a simple scalar
gravitation metric theory.

By “scalar gravitation metric theory” we mean a theory in which the gravitational
forces are mediated by a scalar field φ and the effect of such forces is to induce a cur-
vature in the space-time. It is also assumed that the scalar field modifies the otherwise
flat metric only by a rescaling. Therefore the metric in this theory will be conformally
flat, that is given by

gµν = A2(φ)ηµν , (4.31)

where A is a strictly positive function and, adopting Cartesian coordinates, ηµν =
diag(−1, 1, 1, 1). As we already know, the condition that the particles make up a
collisionless ensemble in the space-time is carried out by requiring that the particle
density be a solution of the Vlasov equation on a curved spacetime (we will elaborate
this further in Chapter 3 when describing the Einstein–Vlasov system). This equation
is equivalent to postulate that the function f is constant on the geodesic flow of the
metric (4.31).

In [168], the Finnish physicist Gunnar Nordström proposed a relativistic scalar
theory of gravitation which was based on a nonlinear wave equation for φ as field
equation. Following that spirit, we write down what we call the Nordström–Vlasov
system, presented in the formulation used in [66]:

∂tf +
p�

e2φ + |p|2
·∇xf −∇x

��
e2φ + |p|2

�
·∇pf = 0, (4.32a)

∂2
t φ−∆xφ = −e2φ

�

R3
f

dp�
e2φ + |p|2

. (4.32b)

Here f = f(t, x, p) ≥ 0 and φ = φ(t, x). The physical interpretation of a solution (f, φ)
is the following: the spacetime is the Lorentzian manifold (R4, g = e2φη), whereas
f is the kinetic distribution function of particles (here we are thinking of the stars
of a galaxy) moving along the geodesic curves of the metric g. The motion along
geodesics reflects the condition that gravity is the only interaction among the particles.
The system has been written in units such that 4πG = c = 1, where G is Newton’s
gravitational constant and c the speed of light. The mass of particles has also been
normalized to 1. For further details about the deduction of the model, reader is urged
to consult [59, 63].
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2.4.2 The Cauchy problem and related results

It should be noted that not only an initial datum f0 for the kinetic equation is required,
we have to prescribe also initial data φ0 and φ1 = ∂tφ0 for the wave equation. It is
known that f0 ∈ C1

c (R3), φ0 ∈ (C3
b
∩H1)(R3) and φ1 ∈ (C2

b
∩ L2)(R3) suffices, but let

us review the results concerning the study of the Cauchy problem.

The model under consideration was introduced in [59], where the existence of a wide
class of spherically symmetric steady states of finite radius was proved. The Cauchy
problem for this system was first considered in [64]; the authors state a local existence
result for regular initial data together with a continuation criterion in the same spirit
of that for the Vlasov–Poisson system (1.10). This criterion was improved in [65], as
a part of the proof of existence of weak solutions that conserve mass. Meanwhile, this
criterion was further improved in [63]. The purpose of that paper was to study the
limit c → ∞; an expansion for c � 1 was performed and as a result the fact that in
the limit c →∞ one recovers the Vlasov–Poisson system in the gravitational case was
obtained. The issue of classical solutions was taken up again in [9], which establishes
global existence for spherically symmetric initial data such that a lower cutoff in the
modulus of the angular momentum is introduced. We have also the results in [98] for
the case of small initial data, assuring global existence and decay rates for large t. The
definitive answer can be found in [60], where an existence and uniqueness result for
compactly supported initial data was proved.

As regards the long time behavior we recall the results in [98] and the dispersive
estimate contained in [66] concerning the conformal energy. Static solutions for this
model are studied in [59] and [66]. In the second reference we can find an orbital
stability result for a certain class of (polytropic) steady states, together with a related
virial theorem.

2.5 Dynamical behavior for the Nordström–Vlasov sys-
tem

This section gathers most of what is known nowadays about the dynamical behavior
of solutions to the Nordström–Vlasov system. We begin with the study of conserved
quantities and the set of transformations that leave the system invariant. We are
very interested in describing how does the system behave under the action of Lorentz
transformations, whose role in Special Relativity is parallel to that of the Galilean
transformations in the classical setting: again, these are the mathematical realization
of the fact that all inertial observers are equivalent. The section concludes with a
tentative and non-optimal dispersion result for the solutions to the Nordström–Vlasov
system.
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2.5.1 Conserved quantities and Lorentz transforms

The local energy, momentum and stress tensor of a solution (f, φ) of (4.32) are defined
respectively as (i, j = 1, 2, 3)

h(t, x) =
�

R3

�
e2φ + |p|2 f dp +

1
2
(∂tφ)2 +

1
2
|∇xφ|2,

qi(t, x) =
�

R3
pif dp− ∂tφ ∂iφ ,

τij(t, x) =
�

R3

pi pj�
e2φ + |p|2

f dp + ∂iφ ∂jφ +
1
2
δij

�
(∂tφ)2 − |∇xφ|2

�
,

where ∂i denotes the partial derivative along xi. These quantities are related by the
conservation laws

∂th +∇x · q = 0, ∂tqi + ∂jτij = 0, (5.34)

Upon integration, the previous identities lead to the conservation of the total energy
and of the total momentum:

H(t) =
�

R3
h(t, x) dx = constant, Q(t) =

�

R3
q(t, x) dx = constant.

Moreover, solutions of the Nordström–Vlasov system satisfy the conservation of the
total rest mass:

M(t) =
�

R3
ρ(t, x) dx = constant,

which is obtained by integrating the local rest mass conservation law

∂tρ +∇x · j = 0, ρ =
�

R3
f dp, j =

�

R3

p�
e2φ + |p|2

f dp. (5.35)

The system (4.32) satisfies the fundamental property of Lorentz invariance. Pre-
cisely, let (t�, x�) be a system of coordinates in Minkowski space obtained from (t, x) by
a Lorentz boost, that is

t� = u0t− u · x, x� = x− u t +
u0 − 1
|u|2 (u · x)u,

where u is a fixed vector in R3 and u0 =
�

1 + |u|2. The inverse Lorentz transformation
is obtained by exchanging u with −u, that is

t = u0t
� + u · x�, x = x� + u t� +

u0 − 1
|u|2 (u · x�)u, (5.36)

which we shorten by (t, x) = Lu(t�, x�). Define the field φu in the new coordinates by

φu(t�, x�) = φ ◦ Lu (t�, x�).

Introduce the new momentum variable

p� = p− u
�

e2φ(t,x) + |p|2 +
u0 − 1
|u|2 (u · p)u
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or, inverting,

p = p� + u
�

e2φ(t,x) + |p�|2 +
u0 − 1
|u|2 (u · p�)u. (5.37)

We shall write (t, x, p) = Lu(t�, x�, p�) to shorten the set of transformations (5.36)-(5.37).
Finally, define the distribution function in the new variables as

fu(t�, x�, p�) = f ◦ Lu (t�, x�, p�).

In the language of special relativity, one says that f and φ transform like scalar func-
tions under Lorentz transformations. The Lorentz invariance of the Nordström–Vlasov
system means that the pair (f, φ) solves the system (4.32) in the coordinates (t, x, p)
if and only if (fu, φu) satisfies the same system in the coordinates (t�, x�, p�). Thus,
in particular, also the mass-energy-momentum of (fu, φu) is conserved along the time
evolution,

M [fu] = constant, H[fu, φu] = constant, Q[fu, φu] = constant.

The conservation laws (5.34) can be expressed in a more concise form as

∂µTµ

ν = 0, µ, ν = 0, . . . , 3, x0 = t, (5.38)

where Tµν is the stress-energy tensor, whose components are given by

T00 = −h, T0i = −qi , Tij = τij .

Indexes are raised and lowered with Minkowski’s metric ηµν = diag(−1, 1, 1, 1). In
particular xi = xi and x0 = −x0. Upon multiplying the conservation law (5.38) by a
vector field ξµ = ξµ(t, x), integrating on a compact spacetime region Ω with piecewise
differentiable boundary ∂Ω and applying the divergence theorem we obtain the integral
identity �

∂Ω
Tµ

νξ
νnµdσ =

�

Ω
Tµ

ν∂µξνdtdx, (5.39)

where nµ denotes the exterior normal vector field to the boundary ∂Ω and dσ the
invariant volume element thereon. Let

Ω = [0, T ]×BR(0), R, T > 0, BR(0) = {x ∈ R3 : |x| ≤ R}, SR = {x : |x| = R}

and dSR the invariant volume measure on SR. Under suitable decay conditions at
infinity, the integral in the right hand side of (5.39) converges when R → ∞, which
gives the identity

��

R3
T 0

νξ
ν dx

�T

0

=
1
2

�
T

0

�

R3
TµνLξηµν dxdt, (5.40)

where [g(t)]T0 = g(T )−g(0), for all functions of t, Lξ denotes the Lie derivative operator
along the vector field ξ and

Lξηµν = ∂µξν + ∂νξµ .

This provides a complementary approach to the study of conserved quantities for the
system, that can be used to give some insight on dynamical properties of its solutions
too. Conserved quantities are recovered using vector fields ξµ that induce isometries.
That is, Lξηµν = 0, i.e., ξ is a Killing vector field of Minkowski spacetime. This
choice yields the conservation of the integral quantity in the left hand side of (5.40).
Minkowski’s spacetime admits ten independent Killing vectors:
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• Time translations have as infinitesimal generator ξ0 = 1, ξi = 0 and lead to the
conservation of energy, under the decay condition

lim
R→∞

�

[0,T ]×S(R)
qi

xi

R
dtdSR = 0.

• Spatial translations are obtained with the choice ξ0 = 0, ξi = 1 for a given
i ∈ {1, 2, 3} and ξj = 0 for j �= i.This yields invariance of linear momenta

�
R3 qi dx

if the decay condition

lim
R→∞

�

[0,T ]×S(R)
xjτji dtdSR = 0

is satisfied. All together assures the conservation of the total momentum Q.

• Spatial rotations are related to the infinitesimal generators ξ0 = 0, ξi = 0, ξj =
−xk, ξk = xj for (i, j, k) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1))}. For instance, the vector
field ξ0 = 0, ξ1 = −x2, ξ2 = x1, ξ3 = 0 gives the conservation of

�

R3
x1q2 − x2q1 dx

under the decay condition

lim
R→∞

�

[0,T ]×S(R)
−x2

R
xiτi1 +

x1

R
xiτi2 dtdSR = 0.

This leads to the conservation of the angular momentum vector

Ωi =
�

R3
(xjqk − xkqj) dx = constant, (i, j, k) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1))}

• Lorentz boosts have ξ0 = xi, ξi = −t for a given i ∈ {1, 2, 3} and ξj = 0 for j �= i
as generators, which lead to the conservation of the total spin vector

Si =
�

R3
(h xi − qit) dx = constant, ∀i = 1, 2, 3 .

We can use also vector fields that are not Killing in (5.40) and obtain other types of
information. For instance, the action under spatial homoteties (generated by ξ0 =
0, ξi = xi for a given i ∈ {1, 2, 3} and ξj = 0 for j �= i) will be studied as a particular
case in Chapter 3.

For future usage we shall need the relation between the mass-energy-momentum
of (f, φ) and of (fu, φu), which is derived in the following Lemma. In the language
of Special Relativity, it states that M transforms like a scalar function, whereas the
quadruple (H,Q) transforms like a four-vector under Lorentz transformations.

Lemma 2.5.1 For all u ∈ R3,

M [fu] = M [f ] , (5.41a)

H[fu, φu] =
�

1 + |u|2 H[f, φ]−Q[f, φ] · u, (5.41b)

Q[fu, φu] = Q[f, φ]−H[f, φ]u +
u0 − 1
|u|2 (u ·Q[f, φ])u. (5.41c)
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Proof. Since the mass-energy-momentum of both pairs (f, φ) and (fu, φu) is conserved,
it is sufficient to prove the relations (5.41) for the initial value of M(u) := M [fu],
H(u) := H[fu, φu] and Q(u) := Q[fu, φu]. We restrict ourselves to prove the invariance
of the total mass, the proof for the other transformations being similar. We shall need
that, by (5.37), �

e2φ(t,x) + |p�|2 = u0

�
e2φ(t,x) + |p|2 − u · p

or, inverting, �
e2φ(t,x) + |p|2 = u0

�
e2φ(t,x) + |p�|2 + u · p�. (5.42)

In order to prove (5.41a) we write

M(u) =
�

R3

�

R3
fu(0, x�, p�) dx�dp� =

�

R3

�

R3
f ◦ Lu(0, x�, p�) dx�dp�

=
�

R3

�

R3
f

�
u · x�, x� + u0 − 1

|u|2 (u · x�)u, p�

+u
�

e2φu(0,x�) + |p�|2 +
u0 − 1
|u|2 (u · p�)u

�
dx�dp�.

Next we make the change of variable

x = x� +
u0 − 1
|u|2 (u · x�)u, p = p� + u

�
e2φu(0,x�) + |p�|2 +

u0 − 1
|u|2 (u · p�)u.

The Jacobian of this transformation is given by

J =
�u · p� +

�
e2φu(0,x�) + |p�|2�

e2φu(0,x�) + |p�|2
,

where �u = u/u0. Using (5.37) and (5.42) we obtain

J =

�
1− �u · p�

e2φu(0,x�) + |p|2

�−1

.

Since the volume measure transforms as dx�dp� = J−1dxdp, we obtain

M(u) =
�

R3

�

R3
f(�u · x, x, p)

�
1− �u · p�

e2φ(bu·x,x) + |p|2

�
dxdp

=
�

R3
(ρ(�u · x, x)− �u · j(�u · x, x)) dx,

where ρ and j are defined by (5.35). Taking the partial derivative ∂ui of the previous
expression we get

∂uiM(u) =
�

R3
(∂tρ ∂ui(�u · x)− (∂ui�uk)jk − �uk∂tjk∂ui(�u · x)) (�u · x, x) dx

=
�

R3
(−∂ui(�u · x)(∂xkjk + �uk∂tjk)− (∂ui�uk)jk) (�u · x, x) dx

= −
�

R3
(∂ui(�u · x)∂xk [jk(�u · x, x)] + (∂ui�uk)jk(�u · x, x)) dx

= 0,
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where we used the continuity equation

∂tρ +∇x · j = 0 (5.43)

to pass from the first to the second line and integration by parts to pass from the third
to the last line. Thus we obtained that ∇uM(u) = 0, i.e., M(u) = M(0), which yields
the claim on the invariance of the total rest mass. ✷

2.5.2 A dispersion estimate

Nowadays we lack of a widely accepted definition of dispersion in relativistic settings;
this is partially due to the fact that the concepts that work finely in the classical setting
are not Lorentz invariant when translated into this new situation. Thus, the search for
a physically meaningful concept of dispersion for relativistic models like the NV system
remains as a very challenging problem. Meanwhile classical ideas can be used to try
to give some insight into this problem, and this is the route that we follow in this
paragraph. Our plan is to borrow in some way the concept of statistical dispersion and
to be able to give sufficient conditions for its occurrence, following the strategy that
we used with the Vlasov–Poisson system. As a first step in so doing, we define the
conformal energy as

EC(t) =
�

R3
|x|2h(t, x) dx

for classical solutions. Making a parallel with the case of the Vlasov–Poisson system,
we prove the following result (we stress again the fact that this is a partial and non-
optimal result —we will explain later—, that could nevertheless constitute a first step
to study this problem).

Theorem 2.5.2 There exists a constant t0 > 0, depending only on bounds on the
initial data, such that the following holds: if the initial data are regular and satisfy
H > M then

EC(t) ≥ (H −M) t2,

for all t > t0. If H = M , then
EC(t) ≥ 2Q0 t,

again for t > t0, provided Q0 > 0, where

Q0 =
�

R3
(x · q(0, x)− φ0φ1) dx.

Proof. This was already treated in [66] but we include the proof for completeness.
By the first of (5.34) we have

d

dt
EC = 2

�

R3
x · q dx, (5.44)

whence, using the second equation in (5.34),

d2

dt2
EC = 2

�

R3
Tr(τij) dx. (5.45)



50 2.5. Dynamical behavior for the Nordström–Vlasov system

Here Tr(τij) denotes the trace of the tensor τij which is given by

Tr(τij) =
�

R3

|p|2�
e2φ + |p|2

f dp− 1
2
(∇xφ)2 +

3
2
(∂tφ)2.

It follows that one can rewrite (5.45) as

d2

dt2
EC = 2H + 2Q(∂tφ,∇xφ)− 2

�

R3
µ(t, x) dx, (5.46)

where µ is minus the right hand side of

∂2
t φ−∆xφ = −e2φ

�

R3
f

dp�
e2φ + |p|2

. (5.47)

and Q is the quadratic operator

Q(∂tφ,∇xφ) =
�

R3

�
(∂tφ)2 − (∇xφ)2

�
dx.

By means of the identity (∂tφ)2 = ∂t(φ∂tφ)− φ∂2
t φ and using (5.47) we have

�
t

0
Q(∂tφ,∇xφ) ds =

�
t

0

�

R3
µ φ dx ds +

1
2
∂t

�

R3
φ2 dx−

�

R3
φ0φ1 dx. (5.48)

From (5.44), (5.46) and (5.48) we obtain

EC(t) = EC(0)−
�

R3
φ2

0 dx +
�

R3
φ2 dx + 2Q0t + Ht2

+2
�

t

0

�
s

0

�

R3
µ (φ− 1) dxdτds. (5.49)

Using the simple lower bound ξ− 1 ≥ −e−ξ, which holds for all ξ ∈ R, the last term in
(5.49) is bounded from below by

−2
�

t

0

�
s

0

�

R3

�

R3

f eφ

�
e2φ + |p|2

dpdxdτds ≥ −Mt2. (5.50)

Substituting into (5.49) we finally obtain

EC(t) ≥ EC(0)− �φ0�2L2 + 2Q0t + (H −M)t2,

which yields the claim.
✷

At this point, we propose as a dispersion measure the spatial variance of the unitary
energy density function, h(t, x)/H, i.e.

∆x(t) =
�

R3
|x− h̄(t)|2 h(t, x)

H
dx where h̄(t) =

�

R3
x

h(t, x)
H

dx

Let us observe that this coincides with the statistical variance of a probability function,
a well known dispersion tester (but obviously not Lorentz invariant in this setting, so
that our results are of a totally tentative nature). The next result proves a time growth
estimate for large time of this quantity under appropriate condition between mass,
energy and momentum.
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Proposition 2.5.3 Let (f, φ) be a regular solution with mass M , energy H and mo-
mentum Q. Assume that

H2 −HM − |Q|2 > 0. (5.51)

Then, there exist a time instant t0 > 0 and positive constants 0 < C1 < C2 such that

C1t
2 ≤ ∆x(t) ≤ C2t

2 ∀t > t0 .

Proof. Thanks to the conservation laws (5.34) we can prove that

h̄(t) = h̄(0) + t
Q

H
,

which allow us to compute the variance in an equivalent way

∆x(t) =
�

R3
x2 h

H
dx− |h̄|2 =

�

R3
x2 h

H
dx− |Q|2

H2
t2 + 2h̄(0) · Q

H
t− |h̄(0)|2 .

Using Theorem 2.5.2 we can deduce that

∆x(t) ≥ H −M

H
t2 − |Q|2

H2
t2 + 2h̄(0) · Q

H
t− |h̄(0)|2 .

which concludes the proof. ✷

We argue that condition (5.51) is not optimal —that threshold is not Lorentz
invariant— and maybe it could be possible to change it by:

H2 −M2 − |Q|2 > 0, (5.52)

which is a Lorentz invariant condition. According to the transformation law of the total
momentum Q (Lemma 2.5.1), the Lorentz transformation that makes Q to vanish, i.e.
that moves the reference frame to the center of mass system1, is the transformation Lu

with u = Q/
�

H2 − |Q|2. The energy of the transformed solution is minimal and values�
H2 − |Q|2. If we apply Theorem 2.2.2 to the new solution (fu, φu) the dispersion

condition (5.51) reduces to:

H[fu, φu]−M [fu] > 0,

that written in terms of the original solution f, φ becomes into (5.52) thanks to the fact
that |Q[f, φ]| ≤ H[f, φ]. Yet we are not able to show that, if (fu, φu) is a dispersive
solution in the sense of Proposition 2.5.3, then any Lorentz Transformation of this one
would also be dispersive, as it is the case for the Vlasov–Poisson system.

1
To be more precise, this is called the center of momentum system. In Relativity there is no general

acceptance on the concept of center of mass.
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Chapter 3

Properties of static solutions

3.1 Introduction and main results

In this chapter we shall investigate certain conditions (called mass-energy bounds or
virial inequalities) required for the existence of steady states to the relativistic models
so far considered. It is well known in fact that static solutions of the Vlasov–Poisson
system, which correspond to equilibrium configurations of a galaxy, have negative en-
ergy. The same property cannot of course be true for the relativistic models, since the
energy in the latter case is always positive. We seek for extensions of this fact to the
relativistic setting.

Now we give a brief explanation on how we prove our main results. As a first step
we employ the vector fields multipliers method to the local conservation laws for the
Nordström–Vlasov and the Einstein–Vlasov system to establish a virial identity which
has to be satisfied by all time dependent solutions. These identities are of independent
interest and could be useful to derive space-time (Morawetz type) estimates for the
evolution problem. The virial identities restricted to time independent solutions give
rise, after applying some simple bounds on the moments of the distribution f , to the
virial inequalities (2.3) and (4.29). The results of this chapter can be found in [62].
Before considering the relativistic models in detail we present the role of the virial
identities in the case of steady states to the Vlasov–Poisson system.

3.1.1 The classical case: Vlasov–Poisson system

A galaxy in equilibrium can be assumed to be described by steady states solutions of
the Vlasov–Poisson system. We distinguish between two types of steady states: static
solutions and traveling steady states. The formers are defined as time independent
solutions of the Vlasov–Poisson system and have total momentum Q = 0. A solution f
is a traveling steady state (with total momentum Q �= 0) if f ◦ Gu, where u = Q/M , is
a time independent solution of the Vlasov–Poisson system (i.e., a static solution). Our
interest on traveling steady states is motivated by the fact that their energy provides
a lower limit for the energy of totally dispersive solutions, as stated in Proposition
2.3.1 of Chapter 2. Moreover, the non-linear stability theorems proved for the Vlasov–
Poisson system consider the traveling steady states as possible perturbations of a static
equilibria, see [66, 180, 206] and references therein.

A fundamental property shared by all static solutions of the Vlasov–Poisson system

53
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is that of having negative energy. The proof goes as follows. Any sufficiently regular
solution of the Vlasov–Poisson system satisfies the dilation identity:

d

dt

�

R3

�

R3
x · v f dvdx = H + Ekin ,

as it follows by direct computation. If f is a static solution, then the previous identity
implies the virial relation H = −Ekin, which yields that

H < 0, for static solutions of the Vlasov–Poisson system. (1.1)

For traveling steady states, we just apply to (1.1) a Galilean transformation with u =
Q/M and we obtain

H <
|Q|2

2M
, for traveling steady states of the Vlasov–Poisson system. (1.2)

Our purpose in this chapter is to extend these fundamental inequalities to the relativis-
tic case.

3.2 The Nordström–Vlasov case

In the case of the Nordström–Vlasov system, the generalization of (1.1) is that the
energy of regular steady states is bounded by their mass, i.e.

H ≤ M. (2.3)

Furthermore, the counterpart to (1.2) for traveling steady states is
�

H2 − |Q|2 ≤ M.

Moreover the equality sign could only hold for steady states with unbounded support.
We also remark that the bound H < M , which holds for all regular and compactly
supported static solutions of the Nordström–Vlasov system, is crucial in the proof of
orbital stability of the polytropic steady states established in [66].

These results will be proved in paragraph 3.2.2, after a suitable virial identity for
time-dependent solutions is established.

3.2.1 Virial identities for time dependent solutions

We pointed out in Chapter 2 that the local conservation laws for the Nordström–Vlasov
can be used to deduce the following integral identity:

�

∂Ω
Tµ

νξ
νnµdσ =

�

Ω
Tµ

ν∂µξνdtdx, (2.4)

being ξµ = ξµ(t, x) a vector field, Ω a compact spacetime region with piecewise differen-
tiable boundary ∂Ω, nµ denoting the exterior normal vector field to the boundary and
dσ the invariant volume measure thereon. We claimed there that this identity provides
a mean not only to study the conserved quantities of the system, but to deduce some
other properties of its solutions; here we will pursue such an application.
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The identities obtained from (2.4) upon a specific choice of the vector field multiplier
go under the general name of virial identities. We prove here one that applies to
regular asymptotically flat solutions. By this we mean that f ∈ C1([0,+∞[×R6),
φ ∈ C2([0,+∞[×R3) ∩ L∞

loc
([0,+∞, L2(R3)), the mass and energy are finite and

lim
R→∞

�

SR

h(t, x)dSR = 0, ∀ t ∈ R. (2.5)

By ω we shall denote the outward unit normal to SR = {x : |x| = R}, and dSR stands
for the invariant volume measure on SR. Moreover we denote by χ(r), r > 0, a function
that satisfies:

χ ∈ C2 , χ� ∈ L∞ ,
χ

r
∈ C2 ∩ L∞ . (2.6)

Lemma 3.2.1 Let

I(t) =
�

R3
χ(r)

�
q · ω − r−1φ ∂tφ

�
dx, r = |x| .

For all regular asymptotically flat solutions of (4.32) the following identity holds:

dI
dt

=
�

R3
χ� h dx +

�

R3

χ

r
e2φ(φ− 1)

�

R3

f�
e2φ + |p|2

dpdx

+
�

R3

�χ

r
− χ�

� �
|ω ∧∇xφ|2 +

�

R3

|ω ∧ p|2 + e2φ

�
e2φ + |p|2

f dp

�
dx

− 1
2

�

R3

χ��

r
φ2dx. (2.7)

Proof. In (2.4) we use Ω = [0, T ]×B(R), where B(R) = {x : |x| ≤ R} and

ξµ : ξ0 = 0, ξi = χ(r)ωi .

We obtain
��

B(R)
χ(r)q · ω dx

�T

0

=
�

T

0

�

S(R)
χ(r)τijω

iωjdSRdt

+
�

T

0

�

B(R)

��
χ� − χ

r

�
τijω

iωj +
χ

r
δijτij

�
dx dt, (2.8)

where for any function g(t) we denote [g(t)]T0 = g(T )−g(0). Using the bound |τijωiωj | ≤
3h and (2.5) we get

�����

�

S(R)
χ(r)τijω

iωjdSR

����� ≤ 3�χ�∞
�

S(R)
h dSR → 0, R →∞.

Then, letting R →∞ in (2.8) we obtain

��

R3
χ(r)q · ω dx

�T

0

=
�

T

0

�

R3

��
χ� − χ

r

�
τijω

iωj +
χ

r
δijτij

�
dx dt,
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whence
d

dt

�

R3
χ(r)q · ω dx =

�

R3

��
χ� − χ

r

�
τijω

iωj +
χ

r
δijτij

�
dx.

We compute

δijτij =
�

R3

|p|2f dp�
e2φ + |p|2

+
3
2
(∂tφ)2 − 1

2
|∇xφ|2

and
τijω

iωj =
�

R3

(ω · p)2f dp�
e2φ + |p|2

+ (ω ·∇xφ)2 +
1
2
[(∂tφ)2 − |∇xφ|2] .

Hence

d

dt

�

R3
χ(r)q · ω dx =

�

R3

χ

r

��

R3

|p|2f dp�
e2φ + |p|2

+
3
2
(∂tφ)2 − 1

2
|∇xφ|2

�
dx

+
�

R3

�
χ� − χ

r

� ��

R3

(ω · p)2f dp�
e2φ + |p|2

+ (ω ·∇xφ)2 +
1
2
[(∂tφ)2 − |∇xφ|2)

�
dx.

Using that |ω ∧ y|2 = |y|2 − |ω · y|2 holds for all vectors y ∈ R3, we can rewrite the
previous equation as

d

dt

�

R3
χ(r)q · ω dx =

�

R3

χ

r
((∂tφ)2 − |∇xφ|2) dx−

�

R3
χ�

�

R3

e2φf dp�
e2φ + |p|2

dx

+
�

R3
χ�h dx +

�

R3

�χ

r
− χ�

� ��

R3

|ω ∧ p|2f dp�
e2φ + |p|2

+ |ω ∧∇xφ|2
�

dx. (2.9)

Moreover, using the field equation (4.32b) for φ and integrating by parts twice, we find

d

dt

�

B(R)

χ

r
φ ∂tφ dx =

�

B(R)

χ

r

�
(∂tφ)2 − |∇xφ|2 − φ

�

R3

e2φf dp�
e2φ + |p|2

�
dx

+
1
2

�

B(R)
∆

�χ

r

�
φ2 dx +

�

S(R)

χ

r
φ ω ·∇xφ dSR

− 1
2

�

S(R)
ω ·∇

�χ

r

�
φ2dSR . (2.10)

Applying the Cauchy-Schwartz inequality, the regularity of the solution and the as-
sumptions on χ, we obtain

�����

�

S(R)

χ

r
φ ω ·∇xφ dSR

����� ≤ C�φ�L2(S(R))�∇xφ�L2(S(R))

≤ C

��

S(R)
h(t, x) dSR → 0, R →∞,

and
�����

�

S(R)
ω ·∇

�χ

r

�
φ2dSR

����� =
1
R

�

S(R)

���χ� −
χ

r

��� φ2dSR ≤
C

R
,
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where C is a constant independent from R. Thus taking the limit R → ∞ in (2.10)
we get

− d

dt

�

R3

χ

r
φ ∂tφ dx =−

�

R3

χ

r

�
(∂tφ)2 − |∇xφ|2 − φ

�

R3

e2φf dp�
e2φ + |p|2

�
dx

− 1
2

�

R3
∆

�χ

r

�
φ2 dx. (2.11)

The quantity ∆
�

χ

r

�
is nothing but χ

��

r
. The sum of (2.9) and (2.11) yields the desired

result. ✷

3.2.2 Virial inequalities for steady states

As in the Vlasov–Poisson case, we distinguish between two types of steady states.
Static solutions, which are defined as time independent solutions of the Nordström–
Vlasov system, and traveling steady states, which are defined as solutions f(t, x, p)
such that f ◦ Lu, where u = Q/

�
H2 − |Q|2, is a time independent solution of the

Nordström–Vlasov system (i.e., a static solution). For static solutions one has Q = 0,
whereas Q �= 0 for traveling steady states. Note that for static solutions (that vanish
at infinity) the field is determined by f through a non-linear Poisson equation. Thus
when we refer to a steady state solution we mean simply the distribution function f .
The main goal of this paragraph is to prove the following property of steady states to
the NV system.

Theorem 3.2.2 Let f be a static regular asymptotically flat solution of the NV system.
Then

H ≤ M. (2.12)

Traveling steady states satisfy
�

H2 − |Q|2 ≤ M. Moreover, equality in (2.12) implies
that the support of the static solution is unbounded.

Remark 3.2.3 Note that in the case of the Vlasov–Poisson system the supremum of
the steady states energy coincides with the infimum energy of totally dispersive time
dependent solutions. The analogous statement for the Nordström–Vlasov system is
currently not known, due to the difficulties in defining a Lorentz invariant concept of
total dispersion.

Proof. The statement on traveling steady states follows by applying the Lorentz
transformation Lu with u = Q/

�
H2 − |Q|2 to the inequality for static solutions, thus

it suffices to prove the latter. To this purpose consider a function χ that, in addition
to (2.6), satisfies

χ

r
− χ� ≥ 0, χ�� ≤ 0. (2.13)

Next we observe the simple inequality y− 1 ≥ −e−y, with equality if and only if y = 0.
Using

φ− 1 ≥ −e−φ (2.14)

in the identity (2.7) we obtain

dI
dt
≥

�

R3

�
χ�h− χ

r
ρ
�

dx.
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In particular, for time independent solutions we have
�

R3

�
χ�h− χ

r
ρ
�

dx ≤ 0. (2.15)

Let R > 0 and consider the function χ(r) = χR(r) given by

χ(r) =
�

r for r � R ,

3R− 3R
2

r
+ R

3

r2 for r > R .

This function satisfies the properties (2.6) and (2.13). The left hand side of (2.15)
becomes

�

R3

�
χ�h− χ

r
ρ
�

dx =
�

B(R)
(h− ρ) dx +

�

B(R)c

�
χ�h− χ

r
ρ
�

≥
�

B(R)
(h− ρ) dx− C

��

B(R)c
h dx +

�

B(R)c
ρ dx

�

=
�

B(R)
(h− ρ) dx + ε(R), (2.16)

where ε(R) → 0 as R → ∞. Thus, assuming H > M , there exists R0 > 0 such that
ε(R) < (H −M)/4 and

�
B(R)(h− ρ) dx > (H −M)/2, for all R > R0, whence

�

R3

�
χ�h− χ

r
ρ
�

dx >
1
4
(H −M) > 0,

which contradicts (2.15). This concludes the proof of (2.12). To prove that the strict
inequality holds for static solutions with compact support, we observe that in the latter
case the field φ never vanishes in the support of f (it is strictly negative) and thus the
stronger inequality φ − 1 > −e−φ holds instead of (2.14). Thus also the inequality
in (2.15) is strict. Since the last member of (2.16) goes to zero for R → ∞ when
H = M , the claim follows. ✷

Theorem 3.2.2 improves a similar result proved in [66] in two aspects. Firstly, in [66]
the fact that the strict inequality holds for compactly supported steady states was
overlooked. Secondly the result presented here requires less decay than the inequality
proved in [66] and therefore applies to more general steady states. In particular, this
result allows to remove some technical hypothesis in the stability result obtained in [66].

3.3 The spherically symmetric Einstein–Vlasov system

We remark that the Vlasov–Poisson system ceases to be valid as a physical model when
the particles (stars) move with large velocities (of the order of the speed of light) or in
the presence of very massive galaxies, since then relativistic effects become important.
Typical relativistic effects are the redshift of the luminous signals emitted by a galaxy
and the formation of black holes. The model which is currently accepted to represent
the physically correct relativistic generalization of the Vlasov–Poisson system is the
Einstein–Vlasov system, which we shall introduce now, where Poisson’s equation is
substituted by Einstein’s equations of General Relativity. The Vlasov–Poisson system
is recovered in the limit c →∞ [186]. As compared to the Vlasov–Poisson system, the
Einstein–Vlasov system is far more complicated and less understood.
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3.3.1 Description of the model

Let us first formulate the Einstein–Vlasov system (EV for short) in general local co-
ordinates; for more details, consult [181], a detailed derivation of this system can be
found in [90]. Let M be a four-dimensional spacetime manifold with local coordinates
xα. On M a Lorentz metric is given so that the four-dimensional line element is given
by

ds2 = gαβdxαdxβ.

The metric determines the Christoffel symbols by means of

Γα

βγ
=

1
2
gαδ (∂xβgγδ + ∂xγgβδ − ∂xδgβγ)

and given these we can write down the geodesics equations

dXα

dτ
= Pα,

dPα

dτ
= −Γα

βγ
P βP γ .

These are the general relativistic counterpart of Newton’s equations of motion and in
particular describe the motion of particles and light rays which are subject only to the
effects of gravity, as represented by the metric gαβ. Here τ is an affine parameter of the
geodesics corresponding to proper time. The phase space on which the particle density
is to be defined is an appropriate subset of the tangent bundle TM , coordinated by
(xα, pα), where pα denotes the coordinate basis components of tangent vectors. Then
the Vlasov equation reads

pα∂xαf − Γα

βγ
pβpγ∂pαf = 0.

It is easily seen that the quantity gαβpαpβ is conserved along solutions of the geodesics
equations. In case of timelike geodesics this corresponds to the conservation of the rest
mass of the particles; we will consider only particles with rest mass 1. To do so choose
coordinates such that

ds2 = g00(dx0)2 + gabdxadxb.

The requirement that our particles have rest mass 1 restricts the distribution function
f to

PM = {gαβpαpβ = −1, p0 > 0}, (3.17)

a seven-dimensional submanifold of the tangent bundle. It can be coordinated by
(x0, xa, pb), the component p0 depending on the others via

p0 =
�
−g00

�
1 + gabpapb.

The coordinate x0 can be thought of as a timelike coordinate; we rename it t := x0. In
terms of coordinate time, the geodesic equations transform to

dXa

dt
=

P a

P 0
,

dP a

dt
= − 1

P 0
Γα

βγ
P βP γ .

In this way Vlasov’s equation for f , now defined on PM and written as a function of
(t, xa, pb), reads

∂f

∂t
+

pa

p0
∂xaf − 1

p0
Γα

βγ
pβpγ∂paf = 0. (3.18)
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As in the Newtonian case now we are to couple Vlasov’s equation to the field equation,
here Einstein’s equation

Gαβ = 8πTαβ,

where the Einstein tensor Gαβ is a second-order differential expression in the metric
gαβ and the energy momentum tensor represents the matter content of the spacetime
and is determined by f . More precisely, for our collisionless kinetic matter model we
have

Tαβ =
�

pαpβf |g|1/2 dp1dp2dp3

−p0
,

|g| denotes the determinant of the metric; indices are lowered and raised using the
metric gαβ and its inverse gαβ . The coupling of Einstein’s equation to the Vlasov
equation is referred to as the Einstein–Vlasov system.

This model is very interesting from the physical point of view. One of the main
reasons for this interest is concerned with the issue of the choice of the matter model
in General Relativity. We could describe matter as a perfect fluid or as dust, for
instance, but these matter models suffer a serious drawback: they develop singularities
(even in the Newtonian case) that have nothing to do with General Relativity —like
formation of shocks. This breakdown of the matter model might prevent the extension
of the solution, maybe up to genuine spacetime singularities, that are the ones we
are interested in. Opposed to this, the current results tend to indicate that for the
collisionless gas matter model these nasty features won’t turn up, so that any singularity
in the solutions must be due to truly relativistic effects.

Present-day mathematical techniques do not allow to cope with the mathematical
complexity of the Einstein–Vlasov system as it stands. Imposing some kind of symmetry
to the solutions reduces the difficulty of the problem and for the spherically symmetric
case the resulting system is considerably simpler, although still being quite complicated.

We are going to introduce the Einstein–Vlasov system in this simplified setting. To
obtain an even simpler formulation we will pass to certain non-canonical coordinates
on momentum space (to an ortonormal frame instead of a reference frame). We define

va = pa + (eλ − 1)
x · p
r

xa

r
,

the inverse transform being

pa = va + (eλ − 1)
x · v

r

xa

r
.

The function f will be spherically symmetric in the sense that f(t, x, v) = f(t, Ax,Av),
for all A ∈ SO(3). Then, the spherically symmetric Einstein–Vlasov system in Schwarz-
schild coordinates is given by the following set of equations (in units G = c = 1, which
is the standard choice in this field):

∂tf + eµ−λ
v�

1 + |v|2
·∇xf −

�
λt

x · v
r

+ eµ−λµr

�
1 + |v|2

� x

r
·∇vf = 0, (3.19)

e−2λ(2rλr − 1) + 1 = 8πr2h, (3.20a)

e−2λ(2rµr + 1)− 1 = 8πr2prad , (3.20b)
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λt = −4πreλ+µq, (3.20c)

e−2λ

�
µrr + (µr − λr)(µr +

1
r
)
�
− e−2µ (λtt + λt(λt − µt)) = 4πptan , (3.20d)

where

h(t, r) =
�

R3

�
1 + |v|2fdv, prad(t, r) =

�

R3

�x · v
r

�2
f

dv�
1 + |v|2

,

q(t, r) =
�

R3

x · v
r

fdv, ptan(t, r) =
�

R3

���
x ∧ v

r

���
2
f

dv�
1 + |v|2

.

The functions prad and ptan are the radial and tangential pressure; h is the energy
density and q the local momentum density1. As usual, f ≥ 0 is the distribution function
of particles (stars) in the phase space in the coordinates t ∈ R, x ∈ R3, v ∈ R3. We
saw that the variable v is not the canonical momentum of the particles, the latter
being denoted by p in the previous sections. For a function g = g(t, r), r = |x|, we
denote by gt and gr the time and radial derivative, respectively. By abuse of notation,
g(t, r) = g(t, x) for any spherically symmetric function. The functions λ, µ determine
the metric of the space-time according to

ds2 = −e2µdt2 + e2λdr2 + r2dω2, (3.21)

where dω2 is the standard line element on the unit sphere. The system is supplied with
the boundary conditions

lim
r→∞

λ(t, r) = lim
r→∞

µ(t, r) = λ(t, 0) = 0, (3.22)

which define the asymptotically flat solutions (meaning that we are considering isolated
systems) with a regular center, and the initial condition

0 ≤ f(0, x, v) = f0(x, v), f0(Ax, Av) = f0(x, v), ∀A ∈ SO(3).

We also remark that the equation

λr + µr = 4πre2λ(h + prad), (3.23)

follows by (3.20a)-(3.20b); by (3.23) we have λr + µr � 0 and so, by (3.22),

0 � λ + µ � µ(0, t). (3.24)

The ADM mass (or energy) H and the total rest mass M of a solution to the
spherically symmetric Einstein–Vlasov system are defined by

H =
�

R3

�

R3

�
1 + |v|2 f dvdx, M =

�

R3

�

R3
eλf dvdx (3.25)

and are constant for regular solutions (the other two conserved quantities that were
considered in the previous section, the linear momentum Q and angular momentum

1
This differs from the standard notation for the Einstein–Vlasov system.
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Ω, are identically zero in the present context by spherical symmetry). Related to the
ADM mass we have the quasi-local mass, defined by

m(t, r) = 4π

�
r

0
s2h(t, s) ds =

r

2

�
1− e−2λ

�
, (3.26)

where we used (3.20a). Thus limr→∞ m(t, r) = H.
For later convenience, we recall that the non-zero Christoffel symbols for the me-

tric (3.21) are given by

Γ0
00 = µt , Γ0

0a = µr

xa

r
, Γ0

ab
= e2(λ−µ)λt

xaxb

r2
,

Γa

00 = e−2(λ−µ)µr

xa

r
, Γa

0b
= λt

xaxb

r2
,

Γc

ab
= λr

xcxbxa

r3
+

1− e−2λ

r

�
δc

b
− xbxc

r2

�
xa

r
.

Note also that |g| = e2λ+2µ is the determinant of the metric.
The stress-energy tensor Tµν for Vlasov matter in spherical symmetry is given by

T 00 = e−2µh, T 0a = e−λ−µq
xa

r
, (3.27a)

T ab = e−2λprad xaxb

r2
+

1
2
ptan

�
δab − xaxb

r2

�
(3.27b)

and satisfies the conservation law

∇µTµν = 0. (3.28)

Here ∇µ stands for the covariant derivative. These identities (3.28) are a consequence
of the Vlasov equation alone, see [90].

3.3.2 The Cauchy problem and related results

The first thing that we want to state clearly is the fact that the existence and uniqueness
of global regular solutions to the Cauchy problem for the system (3.19)–(3.20) is open
for general initial data. (The very definition of what do we mean by Cauchy problem in
the general setting is fairly complicated, see [5] for instance; the difficulties come from
the fact that the spacetime is not given in advance but is itself part of the solution.
Once we stick to a fixed set of coordinates the Cauchy problem can be understood in
the usual way.) Let us trace back the developments around this question.

Of paramount importance is the result of [79] stating local solvability without any
symmetry assumption, but a clear mechanism for the continuation or breakdown of the
solution is lacking. The next important result for our model is that of [185], ensuring
local existence of classical solutions in Schwarzschild coordinates, a continuation cri-
terion analogous to that for the Vlasov–Poisson system (1.10) and global existence of
solutions related to small initial data, which exhibit dispersive behavior. The mecha-
nism that prevents a solution from existing globally in Schwarzschild coordinates was
better understood thanks to the results in [189], which entail that this failure must be
due to the apparition of a singularity at the very center of the system. Thus global
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existence can be ensured as long as the distribution of matter stays away from the
origin. This spirit was captured in [10], where global existence for outgoing shells of
matter was proved for the spherically symmetric Einstein–Vlasov system in maximal
areal coordinates (which coincide with Schwarzschild coordinates for static solutions).
The results in [8] try also to give some insight into this very complicated question, that
is not completely understood yet.

The theory about steady states is under development still, too. Several families
of steady states were constructed in [182, 187] relying mostly on the polytropic ansatz
(this will be explained in Section 3.5). Later these results were extended to include also
a family of static shell solutions [183]. The next interesting result was that in [188],
giving a sufficient condition for a steady state solution to be compactly supported.
Meanwhile, the first preliminary studies for the stability issue were performed by [231];
this question has not improved much since and remains one of the most challenging
open problems for the Einstein–Vlasov system, which is of capital importance from the
physical point of view. Another striking result obtained by the time is that of [210],
which entails the failure of the natural analog of Jeans’ theorem in the Einstein–Vlasov
setting. Heuristics here tell that we can construct some strange steady states that
are not globally functions of invariants of motion starting with a static configuration
constituted by concentric and disjoint shells, removing some of the outer rings of matter
and matching the result with the exterior Schwarzschild solution. These multi-peaked
shells consisting on various disjoint rings of matter were further investigated in [12],
together with a series of related topics such as the Buchdahl inequality and radius-mass
spiral diagrams for steady states.

Partially due to the fact that the mathematical understanding of this system seems
out of our reach, at least with the present-day techniques, a series of numerical studies
have been devised. Let us mention here that in [11] concerning the stability of steady
states and the investigation of critical collapse performed in [190]. A classical work
about numerical relativity for kinetic models is [214].

3.4 The Einstein–Vlasov case

Throughout this section we assume that f is a regular solution of (3.19)-(3.20) in the
sense defined in [185]. In particular, f(t, x, v) is C1 and has compact support in (x, v),
for t ∈ [0, T ], and for any T > 0. For regular solutions, the metric coefficients are C2

functions of their arguments.
We will derive an inequality that involves not only the energy (ADM mass, H) and

the mass (rest mass, M) of the steady state, but also the central redshift Zc:

Zc ≥
����
M

H
− 1

���� . (4.29)

Let us comment on the connections of this result with the theory so far developed for
the Einstein–Vlasov system. The metric of the space-time for spherically symmetric
static solutions of the Einstein–Vlasov system is determined, following the notation in
Paragraph 3.3.1 of the present chapter, by two functions λ(r) ≥ 0 and µ(r) ≤ 0 of
the radial variable. The central redshift is defined in terms of the second one at the
origin by Zc := e−µ(0) − 1. It is the redshift of a photon emitted from the center of the
galaxy. The estimate (4.29) can thus be seen as an upper bound for µ(0). Similarly, the
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celebrated Buchdahl’s inequality in General Relativity [228] can be seen as an upper
bound on the metric component λ(r) for spherically symmetric steady states of the
Einstein-matter equations. A quite general version of the Buchdahl inequality was
proved recently in [6] and reads

sup
r≥0

�
1− e−2λ(r)

�
≤ 8

9
, or equivalently sup

r≥0
λ(r) ≤ ln3 . (4.30)

For static shells the Buchdahl inequality is equivalent to a lower bound for the external
radius. We will show that estimate (4.29) leads to an upper bound on the internal
radius. We refer to [12] for an analytical/numerical investigation of the Buchdahl
inequality in the context of the spherically symmetric Einstein–Vlasov system.

We do not know whether, as for the Vlasov–Poisson and the Nordström–Vlasov
system, the inequality (4.29) could also be related to the problem of stability of spheri-
cally symmetric static solutions. This is a difficult question to answer, since the stability
problem for the Einstein–Vlasov system is still poorly understood. However it is worth
noticing that heuristic and numerical studies [214, 238, 239] indicate that the regime
of stability of compact galaxies is indeed characterized by the central redshift and the
fractional binding energy (defined as 1−H/M). Moreover it was conjectured that the
binding energy maximum along a steady state sequence signals the onset of instabili-
ty. There are several numerical studies on the problem of stability for the spherically
symmetric Einstein–Vlasov system; we refer to [11, 12, 190].

A last basic comment on (4.29) is that, as opposed to the inequalities that hold
for steady states of the Vlasov–Poisson and the Nordström–Vlasov system, the bound
(4.29) contains a quantity, the central redshift, which is not preserved along time de-
pendent solutions. It is therefore not clear whether one can interpret (4.29) as the exact
analog of the mass-energy inequalities for the steady states of the Vlasov–Poisson and
Nordström–Vlasov system.

3.4.1 Virial identities for time dependent solutions

To begin with we derive an integral identity for the spherically symmetric Einstein–
Vlasov system as we did in Lemma 3.2.1 for the Nordström–Vlasov system, i.e., using
the vector fields multipliers method. Actually, the identity in Lemma 3.4.1 below is
valid not only for the Einstein–Vlasov system, but for all matter models in spherical
symmetry. This is due to the fact that equation

∇µTµν = 0, (4.31)

which is the starting point for deriving the integral identity, must be satisfied by all
matter models for compatibility with the Einstein equations.

Multiplying the conservation law (4.31) by a vector field ξµ, integrating on a com-
pact spacetime region Ω with piecewise differentiable boundary ∂Ω and applying the
divergence theorem we obtain the integral identity

�

∂Ω
Jµηµ dσg =

�

Ω
Tµν∇µξν dg, (4.32)

where ηµ is the normal covector related to the boundary, Jµ = Tµ
νξν = Tµνξν is the

current associated to the vector field ξµ and ∇µξν = ∂µξν − Γσ
µνξσ is the covariant
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derivative of the vector field. Moreover dg is the invariant volume element on the
spacetime and dσg the invariant volume element induced on ∂Ω.

Lemma 3.4.1 Assume that (h, q, prad, ptan) satisfy the compatibility condition2 (4.31),
where Tµν is the stress-energy tensor (3.27). In addition, we assume that h(t, ·), q(t, ·),
prad(t, ·), ptan(t, ·), have compact support. Given any smooth function χ(t, r) in W 1,∞

loc
and any solution of (3.20) define

I(t) =
�

R3
χ q(t, r) dx.

Then the following integral identity is verified:

dI
dt

=
�

R3

�
eµ−λprad ∂χ

∂r
− eµ−λχ

�
hµr + pradλr −

ptan

r

�
+ q

�
∂χ

∂t
− 2χλt

��
dx. (4.33)

Proof. In (4.32) we use

ξ0 = 0,

ξi = χ(t, r)
xi

r
.

After a long but straightforward computation we obtain

Tµν∇µξν = e−2λprad ∂χ

∂r
+e−λ−µq

∂χ

∂t

− χ

�
e−2λhµr + 2qλte

−λ−µ + e−2λpradλr − ptan e−2λ

r

�
.

We will choose Ω to be the coordinate image of a cylinder [0, T ]×B(R). In this fashion,
we have that

�

Ω
Tµν∇µξν dg =

�
T

0

�

|x|≤R

�
eµ−λprad ∂χ

∂r
− eµ−λχ

�
hµr + pradλr −

ptan

r

�

+ q

�
∂χ

∂t
− 2χλt

��
dxdt. (4.34)

Now we compute the corresponding boundary integral in (4.32). First, the current
reads

J0 = qχe−λ−µ ,

Ja = e−2λpradχ(r)
xa

r
.

Next we write ∂Ω = A1 ∪A2 ∪A3, where

• A1 = {t = T, |x| ≤ R}. The outer unit normal is eµ(r,T )dt; the induced metric is
e2λ(r,T )dr2 + r2dω2, the volume element is e2λ(r,T ) dx.

• A2 = {t = 0, |x| ≤ R}. The outer unit normal is −eµ(r,0)dt; the induced metric is
e2λ(r,0)dr2 + r2dω2, the volume element is e2λ(r,0) dx.

2
In the case of a perfect fluid, the compatibility condition (4.31) is the system of Euler equations.
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• A3 = {0 < t < T, |x| = R}. The outer unit normal has the form −eλ(t,R) x
i

R
dxi.

The metric is ds2 = −e2µ(t,R)dt2 + R2dω2, the volume element is e2µ(t,R)dSRdt,
where dSR is the surface element on the sphere of radius R.

Summing up we get
�

∂Ω
Jµηµ dσg =

�

|x|≤R

q(T, r)χ(T, r) dx−
�

|x|≤R

q(0, r)χ(0, r) dx

−
�

T

0

�

|x|=R

ptan(t, R)χ(t, R)eµ(t,R)−λ(t,R) dSR dt. (4.35)

Having assumed that the matter quantities are compactly supported in the variable r,
the boundary integral vanishes in the limit R →∞, whereas the other integrals remain
bounded3. Thus in the limit we obtain

��

R3
qχ dx

�T

0

=
�

T

0

�

R3

�
eµ−λprad ∂χ

∂r

−eµ−λχ

�
hµr + pradλr −

ptan

r

�
+ q

�
∂χ

∂t
− 2χλt

��
dxdt,

which is the integral version of (4.33). ✷

We shall now derive a particular case of the identity (4.33). First let us choose

χ = e2λF (r),

for a smooth function F . We have ∂tχ = 2λte2λF (r) and then ∂tχ− 2χλt = 0. In this
way equation (4.33) implies —recall the notation [g]T0 = g(T )− g(0)—

��

R3
qe2λF dx

�T

0

=
�

T

0

�

R3
eµ+λ

�
pradF � + F

�
λrp

rad − hµr +
ptan

r

��
dxdt. (4.36)

Note now that, using (3.23), (3.20b) and (3.26),

λrp
rad − hµr = prad(λr + µr)− µr(prad + h) = (λr + µr)

�
prad − µre−2λ

4πr

�

= − m

4πr3
(λr + µr).

Then (4.36) becomes
��

R3
qe2λF dx

�T

0

=
�

T

0

�

R3
eµ+λ

�
pradF � + ptan F

r
− F

r

m(λr + µr)
4πr2

�
dxdt. (4.37)

For the integral in the right hand side we use that

−
�

T

0

�

R3
eµ+λ

F

r

(λr + µr)m
4πr2

dxdt = −
�

T

0

� ∞

0

deλ+µ

dr

F

r
m drdt

=
�

T

0

� ∞

0

d

dr

�
Fm

r

�
eλ+µ drdt−HT

�
lim

r→∞

F (r)
r

�
.

3
Of course the compact support condition can be replaced by a suitable decay assumption.
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This leads to
��

R3
qe2λF dx

�T

0

= −HT

�
lim

r→∞

F (r)
r

�

+
�

T

0

�

R3
eλ+µ

�
pradF � + ptan F

r
+ h

F

r
+

m

4πr2

d

dr

�
F

r

��
dxdt. (4.38)

Finally for F (r) = r we obtain

��

R3
qe2λr dx

�T

0

= −HT +
�

T

0

�

R3
eλ+µ

�
prad + ptan + h

�
dxdt. (4.39)

3.4.2 Virial inequalities for steady states

The existence of steady states solutions to the Einstein–Vlasov system is well under-
stood, we refer to [12, 95] and the references therein. The identity (4.39) restricted to
steady states implies

H =
�

R3
eλ+µ(ptan + prad + h) dx. (4.40)

The fundamental identity (4.40) can be proved directly using the Einstein equations for
static spherically symmetric spacetimes, see [6, 7]. Our derivation has two advantages.
Firstly, we obtained (4.40) as a special case of a more general identity which holds
for time dependent solutions, see Lemma 3.4.1. Secondly, the technique of the vector
fields multipliers, which we used to derive (4.40), can also be used on spacetimes which
are not spherically symmetric and therefore our argument could be useful to prove
generalizations of (4.40) for solutions with less symmetry. This identity leads naturally
to a bound on the central redshift

Zc = e−µ(0) − 1 ∈ [0,+∞[

in terms of the mass-energy of the static solution. We consider only static solutions of
the spherically symmetric Einstein–Vlasov system.

Proposition 3.4.2 Let f be a static solution of the spherically symmetric Einstein–
Vlasov system with compact support. Then the following inequality holds true

eµ(0) ≤






H

M
if H ≤ M

H

2H−M
if H ≥ M

i.e Zc ≥
����
M

H
− 1

���� . (4.41)

Proof. Since µ is increasing, µ(r) ≥ µ(0) and so
�

R3
eλ+µ(prad + ptan + h) dx ≥ eµ(0)

�

R3
eλh dx ≥ Meµ(0) .

Using this in (4.40) gives

eµ(0) ≤ H

M
. (4.42)
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Moreover

prad + ptan + h = h +
�

R3

�x · v
r

�2
f

dv�
1 + |v|2

+
�

R3

���
x ∧ v

r

���
2
f

dv�
1 + |v|2

= 2h +
�

R3

�
|v|2�

1 + |v|2
−

�
1 + |v|2

�
f dv = 2h−

�

R3
f

dv�
1 + |v|2

Thus, since λ + µ � µ(0) and eµ ≤ 1 ≤ eλ,
�

R3
eλ+µ(prad + ptan + h) dx ≥ eµ(0)(2H −M)

and so by (4.40),

eµ(0) ≤ H

2H −M
, when

H

M
>

1
2

. (4.43)

The result follows from (4.42) and (4.43) and taking into account that

H

M
≤ H

2H −M

is satisfied in the case 1
2 < H

M
≤ 1. ✷

3.4.3 Shells and Jeans’ type steady states

Let R be the radius support of the steady state. Using that µ is negative and increasing
and that the steady state matches the Schwarzschild solution at r = R we obtain the
bound

eµ(0) ≤ eµ(R) =
�

1− 2H

R
. (4.44)

The inequality (4.44) can be combined with (4.41) to obtain an upper bound on eµ(0)

in terms of R, H and M .
Now, we consider briefly an important class of steady states, namely the Jeans type

steady states (see [231]). For these steady states the distribution function f has the
form

f(x, v) = ψ(E,F ), where E = eµ
�

1 + |v|2 , F = |x ∧ v|2. (4.45)

Since the particles energy E and the angular momentum F are conserved quantities, the
particle density (4.45) is automatically a solution of the Vlasov equation. The existence
of Jeans type steady states is then obtained by replacing the ansatz f = ψ(E,F ) into
the (time independent) Einstein equations and proving existence of global solutions for
the resulting system of ODEs. We refer to [184] where this procedure is carried out for
a large class of profiles ψ; moreover the Jeans type steady states constructed in [184]
all have compact support and satisfy that

∃E0 ∈]0, 1[ such that ψ = 0, for E ≥ E0. (4.46)

Thus E0 is the maximum particle energy in the ensemble. The property (4.46) is
necessary in order that the distribution function (4.45) be asymptotically flat and with
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finite energy. For Jeans type steady states one obtains a new estimate on eµ(0) in a
straightforward way:

H =
�

R3

�

R3

�
1 + |v|2f dvdx =

�

R3

�

R3
e−λ−µeµ

�
1 + |v|2eλf dvdx ≤ E0

eµ(0)
M,

whence
eµ(0) ≤ E0

M

H
. (4.47)

In fact, for Jeans’ type solutions we have [184]

E0 =
�

1− 2H

R

and thus, combining (4.47) with (4.44) we conclude that for Jeans’ type steady states
the inequality

eµ(0) ≤ min
�

1,
M

H

� �
1− 2H

R

hods.
Consider now the case of a static shell [183]. Let f be a static shell solution of the

spherically symmetric Einstein–Vlasov system with inner radius R1 and outer radius
R2. Using (3.20b) we can write µ(0) as follows

µ(0) = −
� ∞

0
e2λ

�m

r2
+ 4πrprad

�
dr

= −
� ∞

0

1
1− 2m/r

�m

r2
+ 4πrprad

�
dr.

By Buchdahl’s inequality (4.30), the identity (3.26) and the bound prad ≤ h, we obtain

µ(0) ≥ −9
� ∞

R1

�m

r2
+ 4πrprad

�
dr

≥ −9
� ∞

R1

�
H

r2
+ 4πrh

�
dr

≥ −9H

R1
− 9

R1

� ∞

R1

4πr2h dr

= −18H

R1
.

Now we use the upper estimates on µ(0) of the Proposition 3.4.2 to find

µ(0) = ln
�

1
Zc + 1

�
≤ ln

�
1��M

H
− 1

�� + 1

�
.

Combining both estimates we obtain

R1 ≤
18H

ln
���M

H
− 1

�� + 1
� ,

i.e., the inner radius of a static shell with given ADM energy and rest mass cannot be
arbitrarily large.
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3.5 The polytropic models

We close the chapter introducing explicit examples of static solutions to the models
so far considered, to which the theory that we developed in the previous paragraphs
applies. This story originates with the Vlasov–Poisson system, as several ideas from
celestial mechanics concerning integrals of motion had a suitable translation that has
proven very fruitful to the construction of steady configurations. Later these mecha-
nisms were brought to the relativistic domain.

The Vlasov–Poisson system admits lots of static solutions, so there is chance to
balance the advantages and disadvantages of each over the overwhelming catalog at
our disposal [180]. Maybe the most popular family of such steady states is that of
spherical polytropes. They are reasonable simple solutions and easy to deal with,
yet they are realistic enough to give good approximations to certain self-gravitating
systems. Not only in these aspects lies their importance, as most of the mathematical
theory for static solutions has been developed around the findings that were made for
these special solutions. Besides, they have provided the first insight into the topic
of static solutions in kinetic relativistic models, a departure point from where more
general approaches try to develop themselves.

Needless to say, the knowledge about polytropic solutions is much more mature in
the Vlasov–Poisson system than in the relativistic models. We will start our discussion
precisely there.

3.5.1 The classical case

The polytropic family of stationary solutions to the Vlasov–Poisson system can be
obtained either by the Jeans theorem or by variational arguments. In the notation
stated after Jeans theorem (Theorem 2.1.1 in Chapter 2), they are given by the formula

f(x, v) = ϕ(E,F ) = c(E0 − E)µ

+F k (5.48)

The exponents have to verify µ, k > −1 and µ + k + 3
2 ≥ 0 in order that the models

be locally integrable. Obviously c > 0 for the sake of non-negativity. Finally, E0 ≤ 0
is a cut-off energy. This fairly easy structure can be brought in an straightforward
manner to the relativistic models, and there is some chance that this ansatz produces
static solutions for these models also; we will comment on this later. Returning to
the Vlasov–Poisson case, let us point out that this solutions are spherically symmetric
and induce radial density profiles. They are (locally) isotropic if k = 0. Their density
functions vanish at the origin if k �= 0. They have finite mass if µ ≤ 3k +7/2 and finite
radius if µ < 3k + 7/2; we will consider models of finite mass only.

These models are solutions to the Vlasov–Poisson system in the sense that they
verify the Jeans theorem, thus the distribution function is constant along the charac-
teristic curves. To see to what extent does the theory of existence of weak solutions
in [123] apply, we study the integral regularity and the finiteness of the kinetic energy
of the polytropic distribution functions. We begin first with the simpler case in which
k = 0.

For µ ∈ [0, 7/2] the distribution functions belong to (L1 ∩ L∞)(R6) and have finite
kinetic energy. If µ < 0 then the distribution functions belong to Lp(R6) for 1 ≤ p <
−1/µ; they have finite kinetic energy if µ > −1. Thus the theory in [123] does not apply
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for µ ≤ −11
12+3

√
5
∼= −0.7007. For the general case, the distribution function belongs for

sure to all Lp(R6) spaces such that 2kp > −1 and µp > −1, being a sufficient condition
for the finiteness of the kinetic energy that 2k > −1 and µ > −1. Whenever these
estimates are enough to define a weak solution we get a posteriori that these models
launch a unique solution [153] as their density profiles are bounded (this follows from
the analysis of Emden–Fowler’s equation, see below).

We will focus mainly in the classical range µ ∈]−1, 7/2], k = 0. Thus our pretended
models conform a three-parametric family (depending upon c, E0 and µ). This includes
the well-known Plummer/Schuster model [48]

ρ(r) =
�

1 +
r2

3

�− 5
2

which corresponds to the borderline case (with respect to finiteness of mass and radius)
µ = 7/2.

Now we pass to different considerations, namely the stability of all these solutions.
This problem is important, because reasonable physical models for stellar equilibria
must not be unstable, as the smallest deviation from the mathematical model would
cause the system to evolve away from the model to some quite different configuration.
There are numerical evidences that whenever k �= 0 some polytropes may be unstable
[114]. On the contrary, several theoretical studies on this matter have been developed
for the case k = 0 and the upshot is that these polytropes are stable in several senses:

• spectral/linear stability for µ ≥ 0 [25].

• stable for the mass function distance against spherically symmetric perturbations,
0 < µ ≤ 3/2 [232].

• stable for the energy-Casimir distance in the range 0 ≤ µ ≤ 7/2 [87, 110].

• stable for the L1 distance in the range 0 < µ < 7/2 [206].

The mathematical methods here involved point to nonstandard thermodynamics. As
an aside, these polytropic solutions are prime examples of the application of a paradigm
called “q-statistics”. We shall elaborate on this, but we warn the reader that these to-
pics are pretty controversial and there is a very strong debate in the physical community
about the validity and applicability of them.

As we have justified, present day galaxies can be assumed to be described by sta-
tionary solutions of the Vlasov–Poisson system. A natural question that arises then is
the following: Can we derive the structure of galaxies from the principle of maximum
(or minimum) entropy? Here we enter into very subtle issues —we urge the reader to
consult [48]— that are better discussed introducing the notion of coarse-grained distri-
bution function, denoted by f . Its value at any phase-space point (x, v) is the average
value of f in some specified small volume centered on (x, v). This function f does not
satisfy any interesting equation but it is empirically measurable and we expect that it
resembles f when the averages are made over sufficiently small volumes.

Being f constant along trajectories it is fairly obvious that its Boltzmann entropy
(and in fact any functional depending on f , these are sometimes called Casimirs if
convex) remains constant during evolution. But this is not so for f ! Physicist have



72 3.5. The polytropic models

taken advantage on this fact to develop a theory of stellar relaxation to an equilibrium
configuration. Under that theories, such configurations are usually assumed to be
the result of appropriate relaxation processes (phase mixing, violent relaxation [150]).
These processes are characterized by a loss of memory about the initial conditions of the
system (we stress again the fact that we are taking about f , this loss of memory cannot
affect the solutions of the Vlasov–Poisson system, in virtue of the representation formula
for the solutions). The usefulness of this theoretical construction is to justify that the
maximization-of-the-entropy approach is worth to be used to give some insight into the
complicated question consisting on deciding to which equilibrium state will settle down
a given galactic system. But when we are to perform actual computations we cannot
afford to do it with f and we are forced to use f instead.

The first attempt is somehow disappointing: maximization of the Boltzmann en-
tropy −f log f under mass and energy constrains leads to the distribution function
of the isothermal sphere [150], a model with infinite mass and energy. Indeed, we can
always increase the Boltzmann entropy of a self-gravitating system by increasing its de-
gree of central concentration (see [48]). We might conclude that Boltzmann’s entropy
is not the appropriate tool to deal with this problem.

A suitable generalization of the Boltzmann entropy is nowadays available [224].
A whole nonextensive statistics can be build upon this objects, which share with
Boltzmann’s entropy the fundamental properties of positivity, equiprobability and irre-
versibility. The main theorems of Maxwell–Boltzmann statistics —the central limit
theorem in particular— admit deep generalizations in this landscape. Its applications
concern systems that, in one way or another, exhibit scale invariance.

How does this class of new entropies, denoted by Sq, appear? Consider two subsys-
tems A and B such that

Sq(A + B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B),

being q a real parameter measuring the degree of nonextensivity. Nonlocality or long-
range interactions are introduced by the multiplicative term, accounting for correlations
between the subsystems A and B. This behavior can be obtained by setting

Sq = k
1−

�
W

i=1 pq

i

q − 1
,

W being the number of microstates, pi the probability of each and k the Boltzmann
constant (Boltzmann’s entropy is recovered for q = 1). In our kinetic framework we
have

Sq =
k

q − 1

�
f − f q dxdv

Note that, mathematically speaking, this is just a standard Lq-norm! Anyway, [175]
showed that the polytropic distribution functions (case of polytropic index k = 0
only) are obtained maximizing such entropies under mass and energy constraints, being
µ = (q − 1)−1. Independently, during the last years, [87, 110, 206, 232] derived the
nonlinear stability of polytropes by obtaining them as minima of variational problems
involving in one way or another the functional

�
f1+ 1

µ dxdv; the form of the func-
tional to be minimized in order to obtain the polytropic profiles was also known for the
mathematical community.
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This game can be played even further and further. From the mathematical point
of view, technique is more or less mature so that we have a wide catalog relating what
functional to minimize in order to obtain a certain prefixed steady state [110, 180].
From the physicists’ side, recourse to all kind of convex functionals as exotic entropies
seems to be justified [222].

All these q-thermodynamical issues have to do with the concepts of scale inva-
riance and self-similarity. The polytropic profiles have a very convenient behavior
under rescaling, that we detail now. Set α = E0 − φ(0). Successive application of the
transformations y(r) = E0 − φ

�
(ccµ)−1/2r

�
and y(r) = 1

α
y

�
α−1/4−µ/2r

�
lead us to the

fact that all density profiles induced by an isotropic polytropic model can be reduced
to an universal expression of the form

ρ(r) = ρ0y(sr)µ+ 3
2 , (5.49)

where y solves the normalized Emden–Fowler’s equation





1
r2 (r2y�(r))� = −

�
y(r))µ+ 3

2
+

y(0) = 1
y�(0) = 0

being ρ0 and s free parameters in correspondence with α and c.
The following discussion constitutes itself a proof for this statement; for future

usage we include here also the gravitational constant G. Although we won’t require it
we discuss also the case k �= 0 since it poses no additional complications and might be
useful elsewhere.

Note that our choice of f —the polytropic ansatz— only ensures that it satisfies
the kinetic equation and it remains to check that the spatial density associated with
the model solves indeed the remaining semilinear Poisson’s equation which specifies the
potential φ. We detail here how is this coupling performed. In fact, integrating (5.48)
over velocity space we find

�

R3
v

f(x, v) dv = ρ(r) =
c cµ

4π G
r2k

�
E0 − φ(r)

�µ+k+ 3
2

+
,

where cµ = 2k+ 7
2 π2Gβ(µ + 1, k + 3

2)β(1
2 , k + 1) and β is the usual beta function. For

this ansatz, Poisson’s equation reads

1
r2+2k

(r2φ�)� = c cµ

�
E0 − φ(r)

�µ+k+ 3
2

+

with initial conditions φ(0) = φ0, φ�(0) = 0. This is what we call Lane–Emden–Fowler’s
equation. The transformation y(r) = E0 − φ((c cµ)−

1
2+2k r) leads us to the initial value

problem �
1

r2+2k (r2y�(r))� = −(y(r))µ+k+ 3
2

+

y(0) = α = E0 − φ(0) > 0 , y�(0) = 0.

We can rescale once more by means of y(r) = 1
α
y(α

− 1
2−µ−k

2k+2 r) so as to get the normalized
equation �

1
r2+2k (r2y�(r))� = −(y(r))µ+k+ 3

2
+

y(0) = 1 , y�(0) = 0.
(5.50)
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Thus, E0 − φ(r) = α y

�
α

1
2+µ+k

2k+2 (c cµ)
1

2+2k r

�
.

3.5.2 The relativistic case

The polytropic ansatz is also used to construct steady solutions to kinetic relativistic
models. For the case of scalar gravity it was shown in [59] that the natural generaliza-
tion of Jeans’ theorem holds. Namely, any spherically symmetric solution depends on
the coordinates through the local energy and the modulus of the angular momentum
squared. This gives great support for the use of the polytropic ansatz; in this way we
define the family of polytropes as

f(x, p) =
�

E0 − E

c

�µ

+

F k, E =
�

e2φ(x) + |p|2, F = |x ∧ p|2.

Here µ > −1, k > −1/2, c > 0 and 1 > E0 > 0 are constants. E is the local or particle
energy and as usual (·)+ stands for the positive part. These solutions were shown to
have finite radius [59] for µ < k + 3/2. In the isotropic case k = 0 they are orbitally
stable for 0 < µ < 2 [66].

Although Jeans’ theorem does not hold for the Einstein–Vlasov system [210], the
polytropic ansatz provides still a handy family of static solutions. The quantities E =
eµ(r)

�
1 + |v|2 (particle energy) and F = |x ∧ v|2 (angular momentum squared) are

conserved along characteristics. Then we let

f(x, v) = (E − E0)k

+F l

for E0 ≥ 0 and l > −1/2, k > −1. That they do define actual static solutions for the
Einstein–Vlasov system was first proved in the case of isotropic pressure l = 0 [187],
then extended to the general case in [182]. They are for sure compactly supported
whenever k < 3l + 7/2. The stability theory for these models is not yet satisfactory
(see however [231]).



Chapter 4

Application to the modeling of
dark matter halos

4.1 The problem of missing matter

There are several empirical evidences pointing out the fact that, either present day
galaxies must be much more massive than what we think from the estimates available
from light emissions, or that the widely accepted laws of the physics of gravitation
must have some strange caveat. During the last decades the majority of the Astro-
physical community took party for the first alternative as an explanation to this series
of paradoxes; the problem seems to be that there are lots of matter in each galaxy that
cannot be detected directly by means of any known measurement technique nowadays
available.

Maybe the most quoted evidence of the above-mentioned phenomenon is that given
by the rotation curves of spiral galaxies. These are functions relating the velocity of
the stars to their distance to the galactic center; reviews on rotation curves are given
in [36, 215]. The fact here is that observations contradict the Keplerian prediction for
the shape of rotation curves of galaxies: instead of decreasing asymptotically to zero
as the effect of gravity wanes, these curves remains flat, showing the same velocity at
increasing distances from the bulge. Astronomers call this phenomenon the “flattening
of galaxies’ rotation curve”. Some possible explanations that have been suggested are:

• Presence of dark matter

• Modified Newtonian Dynamics (MOND theory)

• Influence of the magnetic field.

The present-day paradigm sticks to the first explanation, which is the most accepted
interpretation of the flat rotation curve of spiral galaxies, even if other scenarios cannot
be disregarded, see [36] for an extensive review. For instance, a combination of some
of the above possibilities and even the use of General Relativity (see for instance [155],
although the present paradigm states that dark matter halos are basically Newtonian
structures; particles conforming them are slow and hence “cold”) cannot be completely
neglected. We use the term dark matter (maybe a more illustrative name could have
been “hidden matter”) to denote any form of matter whose existence is inferred solely

75
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from its gravitational effects. It is believed to be set in spherical structures surrounding
each galaxy, conforming 9 out of 10 parts of the total mass of the system (as inferred
from the available rotation curves), that are given the name Cold Dark Matter halos
(CDM for short).

The rotation curves paradox is related to the use of the virial theorem. It is more
or less customary to assume that a gravitationally bounded system is roughly in equi-
librium. In this way the time averages of kinetic and potential energy can be assumed
to be close to their current values. If we are able to measure the speed of a representa-
tive set of objects of our system we can give a tentative value for its kinetic energy, a
value that we assumed to be close to the time average of the kinetic energy. Then we
use the virial theorem to compute the potential energy of our system; if we get strong
discrepancies with the sum of the contributions of the masses of visible particles to the
overall potential we can claim that we are missing something (and this “something” we
call dark matter). There are even more paradoxes that point to the existence of dark
matter halos. The reader can consult for instance [48] for other contradictory facts.

It is widely accepted that CDM halos exist. This was already found in the early
analytical calculations focused on the scale free nature of the gravitational collapse,
see for example [109, 229]. Cosmological N-body simulations (being the seminal works
by Navarro, Frenk and White —abridged in the sequel as NFW— [164, 165] the most
representative) also have given very strong support to the fact that galaxies could be
surrounded by an extended massive dark matter halo. The existence of dark matter in
the Universe has been supported by the space mission WMAP observing CMB (Cosmic
Microwave Background) [115]. The so called NFW profiles, giving the density function
of these halos as a function of the distance to the center of the visible galaxy, are
found to be universal, which means that they hold for a very large span of scales of
dark halos, ranging from dwarf galaxies (few kiloparsecs) to rich cluster of galaxies
(several megaparsecs). See for instance the results of the “Millenium” simulation with
10 billion particles [46]. Other possibilities are the so called “Isothermal non-singular”
[109] profile and Burkert’s [58] profile, among many others. These three profiles will
be addressed in this chapter, as they are completely representative for the plethora
of models that have been proposed up to this time. The results of this chapter are
contained in [68].

4.2 Some existing models for spherical halos

There are mainly two sources for the different proposals of CDM density profiles that
have been made up to date. These are, first, the numerical simulations of N-body
problems, and second, fittings to data —like rotation curves of some representative
galaxies.

The most popular model coming from N-body simulations is the Navarro–Frenk–
White (NFW) density profile [164], given by

ρ(r) =
ρ0(c)�

r

rs

��
1 + r

rs

�2 .
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Here c is a concentration parameter, ρ0(c) is given by

ρ0(c) =
100H2

4πG

c3

ln(1 + c)− c

1+c

—being H the Hubble constant—, rs = rv
c

is a scale radius (gives the scale in which
the profile changes shape) and rv the “virial radius”. This virial radius is defined as
the radius of a sphere such that the portion of the system there enclosed satisfies the
virial theorem; it is approximated by the following fix-up convention: rv � r200, where
r200 is the radius of the sphere such that the mean density of the enclosed mass equals
200 times the critical density of the Universe ρcrit = 3H

2

8πG
. With this fix-up, we have

d ln(ρ)
d lnr

(r = rs) = −2.

We will regard this profile in an equivalent way, as

ρNFW(r) =
ρ0

r

R0

�
1 + r

R0

�2 , (2.1)

where ρ0 and R0 are constants. A bunch of related models consisting mainly on slight
modifications of this power law have been published since its apparition (see [159] for
instance).

Concerning models for CDM halos coming from observations, we have for instance
the Isothermal non singular [109]

ρI(r) =
ρ0�

1 + r2

R
2
0

� (2.2)

(where R0 is a constant —defining the core radius— and ρ0 is the density at the center)
and the Burkert profile [58]

ρB(r) =
ρ0

�
1 + r

R0

� �
1 +

�
r

R0

�2
� . (2.3)

Here R0 and ρ0 have the same meaning as in the Isothermal profile.
NFW profiles seem to explain very reasonably the dark matter distribution in clus-

ters as demonstrated by weak lensing observations (e.g. [117]) and by X-ray observa-
tions (e.g. [211]). In galaxies, the agreement between simulations and observations is
still under debate. The rotation curve of spiral galaxies is the main observational tool
to look for this agreement. CDM models do not satisfactorily explain the Tully–Fisher
relation [166] and even have difficulties to produce large disks [97]. Probably, the ex-
planation of rotation curves without considering magnetic fields could be unrealistic
[37, 38]. On the other hand, as discussed below, the steep rise of rotation velocity in
the central part has been claimed to be incompatible with the simulation outputs.

The above models have some obvious drawbacks: infinite radius, infinite mass and
infinite density at the center. It could be argued that the first two are not that serious,
as we can introduce an artificial cutoff for the density function —this could be even
something to be encouraged when dealing with all the phenomenological models above,
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anyway we will come back to this later. But the third point is much more delicate and
deserves some discussion.

It is a fact that the resolution of numerical simulations avoids giving firm predictions
in the central parts of galaxies (≥ 1 kpc) and these simulations have a complex dynamics
there. In particular, if we define the slope in a log-log plot of density versus radius as
γ = −d ln ρ

d ln r
, the NFW profile gives γ0 = γ(r = 0) = 1, while the Isothermal and

Burkert profiles give γ0 = 0. Observations also seem to suggest lower or vanishing
values. Values of γ0 > 0 correspond to “cuspy” halos, as the density becomes infinite
for r = 0. Values of γ0 = 0 correspond to halos with core, being the core a region in
which the density is nearly constant.

An infinite value for the density seems to be unphysical, which implies γ0 ≤ 0, and
continuity arguments (in the first derivative) clearly indicate γ0 = 0 at the very center.
Near this inner region with size less than the spatial resolution of the simulations, the
NFW profiles must break down and converge to a function with dρ/dr(r = 0) = 0.

Of particular interest are the low surface brightness galaxies (LSB) as the contri-
bution of the stellar component is so low than these galaxies are assumed to be dark
matter dominated. In [50, 51, 52] it has been found γ0 = 0.2±0.2 for LSB galaxies and
shown that even considering the influence of non-circular motions, asymmetries and off
sets between optical and dynamical centers, the values close to vanishing are incom-
patible with NFW halos. These effects can indeed be very large. Non-circular motions
are very large even in normal non-active galaxies (e.g. [74]) as shown by bidimensional
spectroscopy.

For high surface brightness, the results in [203, 204] also found this incompatibility
between rotation velocities and cuspy simulated halos. In our galaxy, [47] also concluded
that cuspy halos are inconsistent with observational data. It is worthy to be reminded
that the early interpretation of rotation curves in terms of dark matter determinations
adopted the hypothesis of maximum disc, see [39], i.e. assumed that the contribution of
dark matter was negligible in the center, and the results were considered as acceptable.
More recently, [171] found that the dynamic of bars also favors the maximum disc
hypothesis, with no need of dark matter in the very center. Clearly, these holes in
the center are inconsistent with cusps. However, the present situation remains unclear.
[112] found γ0 between 1 (as in NFW) and zero, see [159, 160]. Observational studies like
that in [219] and others showed that rotation curves are not manifestly inconsistent with
γ0 = 1. Another indirect interesting way was shown by [116], introducing constraints a-
rising from the radial velocity dispersion and obtained γ0 ≤ 0.58. Therefore, there are at
present large discrepancies about if the central dynamics of spirals are in contradiction
with cuspy halos: Cusps or cores?

Numerical codes based on cold dark matter produce central cuspy density profiles
of the type ρ(r) proportional to rα. The value of α varies from α = −1 (for NFW
profiles [164, 165]) to α = −1.5 [57, 159, 160]. This in clear contrast with observations
based on the rotation curve of spiral galaxies, which require a core with a constant
density or slightly decreasing with r, i.e. with α close to zero. This is particularly
clear in the case of dwarf and low surface brightness spiral galaxies, see for example
[49, 51, 52, 154, 156], but the discrepancy is as well observed in normal spirals [203,
204]. Cusps are also inconsistent with observations in our galaxy [47]. We refer to
[51] for a detailed discussion about this discrepancy. The numerically obtained cuspy
profiles could be considered unacceptable from the physical point of view, as the density
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becomes infinite at the very center, even if the mass converges. This infinite value is not
directly obtained, but is the result of fitting as the resolution in the numerical outputs
is not large enough. This fact is discussed later as our approach does not have this
limitation.

Another unphysical output from NFW halos is that they have no end. NFW halos
even give ρ ∼ r−3 for large radii, which means that the halo mass does not converge and
becomes indeterminate. The same can be said for Burkert’s halos. Isothermal halos
give ρ ∼ r−2 for r → ∞, thus the same kind of problems persist. On the contrary,
in the enormous family of steady state solutions to the Vlasov–Poisson system we can
find models with a wide variety of large but finite radii. Certainly, halos are not ideal
isolated systems. [149] considered DM halos inhabiting high density environments and
provided strong confirmation of tidal truncations. Tidal stripping of halos in clusters
has been studied by [29]. Weak lensing observations provide typical truncation radius
of 185 kpc, see [117]. But on theoretical grounds, also isolated halos should have finite
size and finite mass. In [205] it has been provided values of the order of 250 kpc from
observational rotation curves. The highest values are provided by analysis of satellite
galaxies of around 400 kpc [236]. We will adopt, as a tentative value, 300 kpc.

4.3 A kinetic theory approach

Our aim here is to give some insight into the controversy between N-body simula-
tions and observational models of cold dark matter halos by considering polytropic gas
spheres associated to the Vlasov–Poisson system. The polytropic profiles have been
proposed to model a wide variety of concrete applications in different fields, see for
example [77, 223, 227]. Nevertheless, the use of polytropes is under discussion in some
areas, even in the context of dark matter halos [94]. Concerning this point, we will
compare our results here with those of [94] at the end of the chapter.

Our study confirms the results obtained by simulations in a very wide range of
galactocentric radii. We provide density CDM profiles in very good agreement with
both numerical (NFW) and other observational results with errors less than 3%. Then,
polytropic density profiles provide a complementary scenario where simulations and
observations might be unified. With this approach our resulting polytropic model can
then be used to make predictions on the behavior of the CDM halos in those regions
in which the N-body simulations models cannot produce detailed results, i.e. near the
center ≤ 1 kpc (due to resolution limitations) and at the rim (as halos cannot have
infinite extent). This provides complementary information where other models present
difficulties to make predictions. Our opinion is that with the use of polytropic models in
the study of DM a complementary tool is at our disposal for considering more detailed
and realistic halos by using recent and future observations.

This approach is by no means new, not even in the field of dark matter halo mo-
deling. [155] indeed showed that the radial pressure and mass density approximately
satisfy a polytropic relation, as it is the case for different classes of stars, from main se-
quences to relativistic and non relativistic degenerate stars. [175, 220, 221] applied Tsa-
llis Statistical Mechanics to self-gravitating systems. [76] considered the gravitational
stability of polytropic spheres and studied the particular case of stars. The polytropic
distributions can be obtained (as we saw in Chapter 3) from the constrained optimiza-
tion of Tsallis’s q-entropy under physically meaningful constraints, see for example
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[175, 206]. We also refer to [176], a review on astrophysical applications of the q-
thermostatistical formalism to self-gravitating many-body models. [237] showed that
this formalism is favored over gaseous spheres. [135] also points out the possibility
of employing polytropic systems to model CDM, but their study focuses mainly on
thermodynamical aspects.

Last but not least, as CDM particles are collisionless, CDM halos constitute ideal
systems for the generalized kinetic theory to be applied, with a highly abstract mathe-
matical handling for which the polytropic approach can provide useful results. Keep in
mind also that the contribution of the dark matter to the overall structure is believed
to be about 90− 95% of the total matter content, while visible baryonic matter (stars
and gas) is clustered in galactic discs. Then, as a first approximation it is reasonable to
consider the gravitational field of a galaxy as that of its dark matter halo, while visible
matter can be though of as ‘test particles’ in this field. That’s why we shall model dark
matter only.

We claim that the strength of our approach lies in its flexibility. Here we have re-
stricted ourselves to the simplest case —namely that of spherically symmetric halos—,
but our theoretical framework can be extended to cover many more cases, such as ellip-
tical configurations, which are also in good agreement with recent observations [113].
Once the appropriate solution of the Vlasov–Poisson system is chosen, the required
numerical calculations are much more affordable than an N-body simulation, and we
have several tools to discuss all relevant stability issues. Using a power-law ansatz, this
approach leads to the Lane–Emden–Fowler’s equation and subsequently to polytropic
systems. It is the balance between their good properties (such as their stability, the
thermodynamical theories supporting them —still under debate, so this has to be taken
carefully— or their behavior under rescaling) and their relative simplicity what makes
them a convenient choice to fit the observational data.

Let us remind here that the applications of q-statistics concern systems that, in
one way or another, exhibit scale invariance (a feature which is closely related to the
universality of NFW profiles [165]). Recall also that equation (5.49) in Chapter 3 shows
the crucial fact that every isotropic polytropic density profile can be reduced to an easy
and useful canonical form,

ρpoly(r) = ρ0y(sr)µ+ 3
2 ,

where y is the solution to the normalized Emden–Fowler’s equation (5.50) of exponent
µ and ρ0, s are free parameters in correspondence with c, α = E0 − φ(0) by means of

ρ0 =
ccµ

4πG
αµ+ 3

2 , s = (ccµ)
1
2 α

1
4+µ

2 .

This canonical form of the polytropic densities justifies even more the polytropic choice
because the above self-similarity property of the density profiles includes the idea of
universality of CDM halos in the sense explicitly expressed in [165].

The polytropic ansatz can be extended to a wider class of solutions such that ρ(x) =
h(E0−φ(r)), where the function h might not be a power law [35]; this is in accordance
with Jeans’ theorem. To perform the previous scalings we must be able to compare
h(y(r)) with h(λy(r)) for any positive real number λ. Thus we must postulate an
homogeneity property of the form h(λy(r)) = g(λ)h(y(r)) for λ ≥ 0 and g : R+ → R+.
If h is assumed to be regular, then this relation implies that h is a power law. As
a consequence, only power laws of the particle energy can be normalized to have a
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density profile that fulfills the conditions ρ(0) = 1 and ρ�(0) = 0 (so that they relate
the parameters ρ0, R0 in the same way as the observational models, Isothermal and
Burkert’s).

A final comment would be that we restricted ourselves to use the polytropic models
with k = 0. This was mainly justified by the fact that the models with k �= 0 have
zero density at the origin. But they could be useful in a number of situations, as there
are some cases (LSB) in which an absence of dark matter at the center is claimed.
The properties under rescaling and the theory that we are going to develop can be
generalized easily to this case (see Chapter 3).

4.4 Generic fitting procedure

Note that many —if not all— of the models for density profiles of CDM halos proposed
in the literature can be written as r �→ aρ(br), where a and b are constants with
precise dimensions and ρ is an universal function of the radius that can be regarded
as a normalized density profile. If we try to recover this property for a density ρ(x) =
h(E0 − φ(r)) we should be able to perform the previous scalings; in particular we
must be able to compare profiles with densities induced by polytropical models, i.e.,
with expressions as cρ(dr), being ρ the normalized profile arising from the integration
of the normalized Emden–Fowler’s equation (µ held fixed at this stage) and c, d our
free parameters. Given that we want to focus on a range of radii I = [r0, r∞], the
comparison criterion (least squares) will be given by

��aρ(br)− cρ(dr)
��2

L2(I)
=

a2

b

�
b·r∞

b·r0

�
ρ(y)− c

a
ρ

�
d

b
y

��2

dy.

Introduce the new fitting parameters h = c

a
, k = d

b
to reformulate our problem as

min
h,k>0

�
b·r∞

b·r0

�
ρ(y)− hρ(ky)

�2
dy.

Expanding and minimizing in h we find that our problem reduces then to

min
k>0






�
b·r∞

b·r0

ρ(y)2 dy −

��
b·r∞
b·r0

ρ(y)ρ(ky) dy
�2

�
b·r∞
b·r0

ρ(ky)2 dy





.

To search for optimal k, we differentiate and impose numerically equality to zero.
Due to the great size of the constants above in the NFW case, it is more convenient

to search for the relative error, which we will take as the following adimensional quantity
��aρ(br)− cρ(dr)

��2
L2(I)��aρ(br)

��2
L2(I)

.

Up to this point µ was kept fixed, and this recipe produces the best polytrope among
the class of exponent µ. To conclude, we must check which exponent µ in the admissible
range ]− 1, 7/2] yields the best results.
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Table 4.1: Unrestricted fits to NFW’s profile

Virial radius c Virial mass Relative error cpoly
(1)

(kpc) (×1012M⊙)
177 19.230 0.319 0.0206624 4.03295
172 17.543 0.293 0.0219044 4.45049
193 12.195 0.414 0.0275006 6.49123
209 21.739 0.525 0.0191086 3.52726
348 16.666 2.425 0.0226281 4.69939
342 14.084 2.301 0.0251543 5.60226
394 14.705 3.519 0.0244842 5.35748
354 8.064 2.552 0.0351619 9.78656

(1) Height at the origin is given by cpoly
100H

2

4πG

c
3

ln (1+c)− c
1+c

.

4.5 Numerical results

To perform our fittings we have only considered profiles with µ ≤ 7/2. Values higher
than 7/2 could produce better fittings but the halo mass becomes infinity.

1. Fits to NFW profiles in a wide range of radii: we pick up the first eight profiles
(out of 19, these happen to be those which give rise to the least massive halos of
the sample) that adjust the N-body simulations of [164] to compare them against
the whole, three-parametric, family of polytropes in the range comprised between
the virial radius over 100 and the virial radius itself. Here

ρ(r) =
1

r(1 + r)2
, a =

100H2

4πG

c3

ln (1 + c)− c

1+c

, b =
c

rv

,

H stands for a Hubble constant of 50 km s−1 Mpc−1, rv is the corresponding
virial radius, and c the fitting parameter (we changed slightly their notation in
order to avoid confusion with computations performed in previous paragraphs).
We observe that the higher the exponent µ, the smaller the relative error (Ta-
ble 4.1). Thus, the best fitting is fulfilled with µ = 7/2, which corresponds to the
Plummer/Schuster model. The relative errors are of orders comprised between
2% and 3.5% (see Fig. 4.1) .

2. Fits to NFW profiles assuming bounded halos: as before, but we impose an upper
bound on the radius of 300 kpc, which rules out Plummer/Schuster’s profile. We
see that for µ held fixed the obtained profile reaches the maximum radius prefixed
(Table 4.2). This fact can be used to obtain numerically the best exponents.
These are around µ = 3.2 for our sample; in any case, the relative error is of
order 2% or 3%, and differs from those given by the Plummer/Schuster model
only in the third decimal (see Fig. 4.2).

The predictions at the origin arise from the numerically determined height at the
origin combined with the expansion around zero of the solutions to the normalized



4. Application to the modeling of dark matter halos 83

10 20 30 40 50 60
kpc

1

2

3

4

5

Figure 4.1: NFW’s profile corresponding to a virial radius of 172 kpc and a virial mass of
29.3 · 1010 M⊙ (dashed line) plotted against Plummer/Schuster’s density profile (bold line),
normalized scale in y-axis. NFW’s density profile is not represented in the central region (from
the origin to the virial radius over 100).

Table 4.2: Fits to NFW’s profile with truncation radius of 300 kpc

Virial radius c Virial mass Best exponent Relative error cpoly
(2)

(kpc) (×1012M⊙)
177 19.230 0.319 3.33428 0.021223 4.01223
172 17.543 0.293 3.33413 0.022476 4.42845
193 12.195 0.414 3.29355 0.028275 6.45623
209 21.739 0.525 3.31307 0.019728 3.50559
348 16.666 2.425 3.17289 0.023811 4.65328
342 14.084 2.301 3.16183 0.026423 5.54897
394 14.705 3.519 3.11952 0.025913 5.29882
354 8.064 2.552 3.09269 0.036896 9.69161

(2) Height at the origin is given by cpoly
100H

2

4πG

c
3

ln (1+c)− c
1+c

.
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Figure 4.2: NFW’s profile corresponding to a virial radius of 342 kpc and a virial mass of
230.1·1010 M⊙ (dashed line) plotted against the polytropic model corresponding to µ = 3.16183
(bold line), normalized scale in y-axis. NFW’s density profile is not represented in the central
region (from the origin to the virial radius over 100).

Emden–Fowler’s equation (cf [83]):

yµ(r) ∼ 1− r2

3!
+ (µ + 3/2)

r4

5!
+

�
5(µ + 3/2)− 8(µ + 3/2)2

� r6

3 · 7!
,

and thus for the normalized density profile we have that ln ρ ∼ (µ+3/2)(1−r2/3!),
so that γ(r) ∼ µ+3/2

3 r close to the origin —the notation ∼ in this paragraph is
not that explained in the introduction but the usual one pertaining two functions
that are asymptotic.

3. Isothermal: we compare the normalized (a = b = 1) Isothermal density profile
with ours for r ∈ [0,∞] and again we find that the error diminishes for increasing
exponent µ (Table 4.3), so that the Plummer/Schuster model is the one that gives
the best fitting with finite mass. The corresponding relative error is of order 1%
(see Fig. 4.3).

4. Burkert: in the same vein as before, we compare the normalized (a = b = 1)
Burkert’s density profile with ours for r ∈ [0,∞] and the behavior is the same: as
the exponent grows the error diminishes (Table 4.3). Again Plummer/Schuster’s
profile is the bounded mass profile that yields the best fitting, with a relative
error of order 1% (see Fig. 4.4).

4.6 Conclussions

We have shown that a unified theory of cold dark matter halos based on collisionless
polytropes is a powerful complementary method for studying galactic and cluster halos.
We confirm the results obtained by numerical simulations (NFW universal profiles) but
other profiles (Isothermal and Burkert) cannot be disregarded. Once the agreement
between our results and the N-body simulations is established, we are able to explore
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Table 4.3: Fits to phenomenological models
Isothermal Burkert
Exponent Relative error Exponent Relative error

3.5 0.011816 3.5 0.010159
3.4 0.012010 3.4 0.010323
3.3 0.012213 3.3 0.010494
3.2 0.012426 3.2 0.010675
3.1 0.012650 3.1 0.010865
3.0 0.012886 3.0 0.011065
2.9 0.013131 2.9 0.011276
2.8 0.013390 2.8 0.011150
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Figure 4.3: Isothermal density profile (dashed line) plotted against the density profile arising
from Plummer/Schuster’s model (bold line). Both profiles are normalized in density and radius.

complementary problems out of the range of validity of simulations. We are able to
investigate the polytropic solutions for finite mass and size halos and, mainly, we are
able to find the profiles in the inner region where simulations are limited by resolution
problems. We therefore provide the shape of the profile in the ≤ 1 kpc-region to which
NFW-profiles must converge.

There is a very wide family of solutions of the Vlasov–Poisson system and here
we have restricted ourselves to consider solutions for steady-state spherical systems in
which the phase space distribution function does not depend on the angular momentum.
In convenient cases this distribution function depends on the power µ of the energy of
the particles, and this exponent characterizes the member of the family which is used
as a free parameter.

For finite mass but unbounded halos it is found that the exponent µ that better
reproduces the NFW-profiles has the value µ = 7/2 which exactly corresponds to
Plummer/Schuster profiles. Values lower than 7/2 give higher errors. Values higher
than 7/2 do not provide finite total mass. Of particular interest is the case in which
we establish a maximum radius for the halo. Several observations can be used to
determine that halos have finite size and radius, in particular gravitational lenses, x-
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ray observations and those based in interactions of halos belonging to galaxy clusters.
We have adopted a tentative value of 300 kpc for this radius. In this case the profile does
not match the Plummer/Schuster profile but we obtain µ � 3.2 for the best agreement
with the NFW profiles.

In this case, we are able to deal with realistic halos that a) have finite size and
volume, b) have finite density at r=0, c) have a vanishing slope at r=0, and d) coincide
with NFW-profiles for r higher than the resolution length in the simulation.

We reproduce the plot of this profile for this unexplored region and expand the
density as a function of the exponent µ and of the galactocentric radius. A very simple
formula for the profile of the very inner region, ignoring third order terms, would be

ρ(r) ∼ ρ0

�
1−

�
r

R0

�2
�µ+3/2

, (6.4)

R0 and ρ0 being constants (here ∼ means again “being asymptotic to”).
Previous discussions on the inner region density profile have concentrated on the

function γ defined as γ = −d ln ρ/d ln r. We obtain for this function γ ∼ µ+3/2
3 r.

Therefore, γo = γ(r = 0) = 0 as should be expected from continuity arguments in the
very center.

One of the major interests of using this mathematical technique is that we can
provide results in the inner region ≤ 1 kpc region (see Fig. 4.5). This is important
because a) we complement the well known and widely accepted universal profiles at
larger radii and b) we explore a region in which a comparison can be made with the
rotation curve of spiral galaxies. For this comparison much further effort must be done
in the future as it is necessary to introduce realistic baryonic disk and bulge, galactic
components of great importance to establish the rotation curve in the inner galaxy.

The conclusion in [94] assuring that polytropes do not properly describe the inner
part of simulated halos is based on the approximation of the NFW profile by polytropes
fixing in a concrete point the value of the density together with its derivative (obtained
from the NFW numerical results). Then, going back towards the inner part of the halo
an error of one order of magnitude is obtained, which induces the authors to justify their
conclusion. In spite of the experimental data do not corroborate the behavior of the
NFW results near the centre of the halo, we can modify the criteria of the approximation
given in [94] by the (least squares) L2–approach, performed in the region where they
focus, and we obtain for their sample of experiments a very good fitting in the inner
part of the halo, see Fig. 4.6. This shows that the fittings presented in [94] can be
improved if the fitting criterium is chosen carefully enough, thus calling into question
partially the conclusion there. Note that Figure 4.6 is plotted in logarithmic scale which
distorts small differences at large radii. This logarithmic scale choice differs from the
one used in the other figures in this chapter and this is motivated by what was done in
[94].

The polytropic solutions that have provided a large insight in the knowledge of
stellar interiors can be applied to dark matter halos even more realistically as they
perfectly match the condition of collisionless particles.
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Figure 4.4: Burkert’s density profile (dashed line) plotted against the density profile arising
from Plummer/Schuster’s model (bold line). Both profiles are normalized in density and radius.
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Figure 4.5: NFW’s profile corresponding to a virial radius of 342 kpc and a virial mass of
230.1 · 1010 M⊙ (dashed line, long dashes) is plotted in the core region against the least squares
fits corresponding to the following families: 1) the polytropic model with µ = 3.16183 (bold
thick line), 2) the Plummer/Schuster model (dotted line), 3) the Isothermal profile (dashed line,
short dashes) and 4) Burkert’s profile (bold thin line). Normalized scale in densities is used.
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Figure 4.6: ln 10(ρ/ρ(rs)) plotted against ln 10(r/rs) in the range [0.1rs, 10rs] —recall that
rs = rv/c for the NFW model— for the NFW profile (solid line) and the least square fits by
polytropic profiles of exponents 1/2 (grey), 3/2 (green), 7/2 (blue), 9/2 (purple), 17/2 (violet),
15 (pink) and 498.5 (red). Notice that as the exponent increases so do the fitting curves in the
“outer” region: for instance the Plummer/Schuster model corresponds to the third exponent of
the sample and to the curve that crosses the axis close to 0.5.



Chapter 5

Asymptotic behavior of a kinetic
coagulation model

5.1 Introduction

In this chapter we will be concerned with a kinetic coagulation model describing two
species of particles (molecules or cells for instance); one of them remains still and thus
constitutes a short of background density, while the other species moves freely and
interacts with itself and the stuck species. As an outcome of this new aggregates may
be formed. Thus, the kinetic model that we present here constitutes an example in
which short-range interactions are included successfully in the equations to give an
account for phenomena others than the ones considered in previous chapters.

The models representing coagulation phenomena can be classified according to the
chosen scale of description. Microscopic descriptions try to represent the evolution of
a finite set of individual particles, the Smoluchowski–type models are typical examples
in this context, see [91] and references therein. Mean-field (mesoscopic) models are
concerned with the evolution of the number of particles of each possible size, and
not that of the individual particles; these descriptions are valid when the number of
particles is sufficiently high. Mesoscopic models may or may not include the spatial
distribution of the particles, [2, 141]. On the other hand, macroscopic models describe
the evolution of some macroscopic quantities, which represent some kind of average of
the microscopic properties of the system (such as the mean cluster size), [142, 144].

We study in this chapter a kinetic model. Those approaches to the phenomenon
of coagulation and fragmentation, take into account the effects of the movement and
trajectories of the particles; see for example [4, 30, 89, 128, 129] for other studies of
kinetic models for coagulation or fragmentation.

Many physical phenomena consist of a great number of small particles that can
stick together in some way to form aggregates or new particles of larger size. At the
same time big particles could split into smaller ones. This occurs in multiphase fluids,
in many examples of phase change, in the behavior of aerosols with liquid or solid
particles suspended in a gas and in crystallization in colloids, among other examples in
this context, for example [1, 88, 100, 148, 201, 230].

The sticking together, coagulation, aggregation or adhesion into a cluster, of parti-
cles, whether they are cells, lipid droplets, proteins, etc., is of fundamental importance
in biological and biotechnological processes. This is the primary motivation for the

89
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model that we study.
For example, in animals, small cells called platelets cluster at the site of an in-

jury to the skin or blood vessels. Also, during the development of an embryo, space
between aggregated cells decreases and cell-to-cell contact increases. Other example
of this process can be found in cell aggregation by Chemotaxis or in flocculation of
sticky phytoplankton cells into rapidly sinking aggregates, which has been invoked as
a mechanism explaining mass sedimentation of phytoplankton blooms in the ocean. In
the biological explanation of this context appear surface ligands that mediate cell-to-
cell adhesion or any molecule involved in cellular adhesive phenomena such as in liver
cell adhesion molecule and neural cell adhesion molecule. Experimental observations
show that cell aggregation in suspension promoted cell survival and proliferation, in
particular it has been demonstrated a correlation between tumor cell aggregation in
suspension and cell growth.

The interaction forces between particles ultimately determine the stability and rhe-
ological properties of any system, and in many biological cases the principal adsorbed
component that mediates these interaction forces is a protein.

Coagulation and aggregation phenomena have been the object of many studies in the
recent years, both in physics and mathematics [88, 143]. For applications in physics,
one typically assumes that the coagulation of two particles preserves the total mass
and total momentum. However there are cases where the last is not true. The prime
example that we have in mind is the dynamics of some cells in biology; for instance
endothelial cells, but it is a very common phenomenon in biology. Those cells may
move freely when they are alone. However they may also join with other cells of the
same kind and then may not move any more. In particular endothelial cells compose
blood vessels, once they are combined with other endothelial cells, and hence do not
move [92, 217].

The aim of this chapter is to propose a suitably modified coagulation model, taking
distinct states for the particles or cells into account. A first state corresponds to free
particles that, consequently, have velocities v and will require to consider the density in
the phase space. A second state represents the coagulated particles that are fixed and
thus only have a density in the physical space. We introduce the two corresponding
densities

f : [0, T ]× Rd

x × Rd

v → R+ representing free particles

ρ : [0, T ]× Rd

x → R+ representing coagulated or stuck particles.

It of course remains to explain how those quantities evolve in time. For free particles,
we assume that each one moves with its velocity that does not change (as long as it
remains free). This is a simplification and more realistic models should consider how
this velocity may change (influence of chemoattractants, stochastic jumps...). As we
focus mainly on the coagulation phenomenon, this assumption is however reasonable.

Free particles may move freely, interact one with another and coagulate. They may
also meet already coagulated particles, interact and combine with them. For stuck
particles, the situation is simpler. They do not move and may therefore only interact
with free particles that occupy the same position in space.

We consequently consider the following system of equations:

∂f

∂t
+ v ·∇xf = −f(t, x, v)

�

Rd
α(v, v�)f(t, x, v�) dv� − β(v)ρ(t, x)f(t, x, v) (1.1)
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∂ρ

∂t
=

�

R2d
α(v, v�)f(t, x, v�)f(t, x, v) dv�dv + ρ(t, x)

�

Rd
v

β(v)f(t, x, v) dv (1.2)

supplied with initial data 0 ≤ f0(x, v) ∈ L1(R2d) and 0 ≤ ρ0(x) ∈ L1(Rd
x).

The functions α(v, v�) and β(v) are collision or coagulation kernels and give the
probability that two free particles with velocities v and v� will coagulate for α or one
free particle with velocity v will coagulate with a stuck particle for β.

The collision kernels α(v, v�), β(v) are nonnegative. In most physical situations they
behave polynomially; moreover by Galilean invariance, α should essentially depend on
the relative velocity of two particles v − v�. For these reasons we assume that they
satisfy the following domination property: there exists a constant C > 0 such that

α(v, v�) ≤ C|v − v�|a, β(v) ≤ C|v|a, for some a ∈ R. (1.3)

Note nevertheless that some of the results that we shall present here can be gen-
eralized to abstract kernels (only integrability conditions and dependence on v − v�

assumed), even measure-valued kernels.
In some biological situations, coagulation between two cells touching each other

would always occur. This would correspond to a = +∞ and would lead to a sort of
sticky particles dynamics. Even in dimension 1, the analysis of such models is quite
difficult (see for instance [53]) and especially so for the modified models that one would
obtain in this case.

The main result in the chapter is the characterization of the asymptotic behavior
depending on a. It is obvious from the equations that the mass associated to the
population of free particles may only decrease and the mass associated to the population
of coagulated particles may only increase. Hence the main issue as t → +∞ is whether
all free particles finally coagulate or if some of them remain free. We show that this
depends only on the strength of the interactions (i.e. the value of a). The analysis is
based on precise dispersion estimates for kinetic equations.

With respect to classical kinetic coagulation models, the existence and uniqueness
theory is quite simple as a priori estimates are obtained in a standard way. It is
nevertheless included for the sake of completeness.

We may summarize the results of the chapter with the following

Theorem 5.1.1 Assume that the integral kernels are non-negative, satisfy (1.3) and
a + d > 0. For any 0 ≤ f0 ∈ L1(Rd

x × Rd
v), 0 ≤ ρ0 ∈ L1 ∩ L∞(Rd

x) and such that for
some η > 0 there holds that

f0(x, v) ≤ C

1 + |v|max(a,0)+d+η
, for a.e. (x, v) ∈ Rd

x × Rd

v, (1.4)

there exists a weak solution of the system (1.1)–(1.2) with initial data f(0, x, v) = f0 and
ρ(0, x) = ρ0. If this weak solution can be approximated strongly in L∞(0, T, L1(Rd

x ×
Rd

v) × L1(Rd
x)) by a sequence of smooth solutions then this weak solution is unique.

Moreover, there exists a function g∞(x, v) such that
���f(t, x, v)− g∞

�x

t
, t(v − x

t
)
���� → 0 as t →∞

in the norm of W−1,1(Rd
x, L1(Rd

v)). Furthermore,
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• if a > 1− d (or a > 1 if d = 1) and f0 and ρ0 are compactly supported in x, the
amount of mass

�
R2d f(t, x, v) dxdv is bounded from below by a positive constant

independently of time.

• if −d < a ≤ 1− d, the amount of mass
�

R2d f(t, x, v) dxdv is strictly positive for
all times but converges to zero as t goes to infinity.

These results were the subject of [69]. Existence and uniqueness are dealt with in the
second section, where we also explain what do we mean by weak solution. The traveling
wave form of the solution is proved in the last section. Section 5.3 investigates the issue
of vanishing free particles.

The non-negativity of the kernels and the condition (1.3) will be assumed (with
C = 1) for the rest of the chapter, with no further mention.

5.2 Existence and Uniqueness

In this section we state our concept of solution and prove existence and uniqueness
under certain decay assumptions for the initial data and for the integral kernels.

Definition 5.2.1 A weak solution of the system (1.1)–(1.2) in the time interval [0, T ]
is a pair of nonnegative functions f ∈ L∞([0, T ], L1 ∩ L∞(Rd

x × Rd
v)),

ρ ∈ L∞([0, T ], L1(Rd
x)) with initial data 0 ≤ f0(x, v) ∈ L1(Rd

x × Rd
v) and 0 ≤ ρ0(x) ∈

L1(Rd
x) and which satisfies the following weak formulation:

−
�

T

0

�

Rd
x

�

Rd
v

∂ϕ

∂t
f dtdxdv −

�

Rd
x

�

Rd
v

ϕ(0, x, v)f0(x, v) dxdv

−
�

T

0

�

Rd
x

�

Rd
v

v ·∇xϕf dtdxdv

= −
�

T

0

�

Rd
x

�

Rd
v

ϕf

��

Rv�

α(v, v�)f(t, x, v�) dv� + β(v)ρ(t, x)

�
dtdxdv

and

−
�

T

0

�

Rd
x

∂ψ

∂t
ρ dxdt−

�

Rd
x

ψ(0, x)ρ(0, x) dx

=
�

T

0

�

Rd
x

ψ(t, x)ρ(t, x)
�

Rd
v

β(v)f(t, x, v) dv dtdx

+
�

T

0

�

Rd
x

ψ(t, x)
�

Rd
v

�

Rv�

α(v, v�)f(t, x, v)f(t, x, v�) dv�dvdxdt,

for every ϕ ∈ D([0, T [×Rd
x × Rd

v) and every ψ ∈ D([0, T [×Rd
x).

A-priori estimates will show that for initial data in an appropriate class the property
∂tf ∈ L∞([0, T ], W−1,1(Rd

x, L1(Rd
v))) holds, so that the statement f(0, x, v) = f0(x, v)

makes sense. To give a meaning for ρ(0, x) = ρ0(x) is easier, because this holds in
L1(Rd

x).
We need to introduce some extra notation:
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Definition 5.2.2 The density function associated with the population f is given by

ρf (t, x) =
�

Rd
v

f(t, x, v) dv.

Definition 5.2.3 The total mass of the system is represented by the quantity

M =
�

Rd
x

�

Rd
v

f(t, x, v) dxdv +
�

Rd
x

ρ(t, x) dx

We explain here some conventions that will be used in the chapter. We will use B(r)
to refer to a ball centered at the origin with radius r. The space on which this ball
is considered will either be clear from the context or indicated by a proper subscript.
B(r)c denotes the complement of such a ball in its corresponding space. We use |A| to
represent the Lebesgue measure of a set A.

The following stability result essentially implies the existence result in Theorem
5.1.1 (as the approximation of our system does not pose any problem)

Theorem 5.2.4 Consider a > −d. Assume that f0 ∈ L1(Rd
x × Rd

v),
ρ0 ∈ L1 ∩ L∞(Rd

x) and that for some � > 0 the following bound is verified:

f0(x, v) ≤ C

1 + |v|max{a,0}+d+�
a.e. (x, v) ∈ Rd

x × Rd

v. (2.5)

Then, any sequence {(fn, ρn)} of smooth solutions to (1.1)–(1.2) converges weakly in
any Lp([0, T ]× Rd

x × Rd
v), 1 ≤ p ≤ ∞, to a weak solution (f, ρ) of (1.1)–(1.2).

Remark 5.2.5 The assumptions are quite reasonable from the point of view of appli-
cations to physics or biology. They imply that

(1 + |v|�)f0 ∈ L∞(Rd

x × Rd

v) ∩ L1(Rd

v, L
∞(Rd

x)).

The way in which the existence result is stated is not completely sharp. This can be
seen tracking carefully the proof. We could also use a more technical proof and sharpen
the result even more, lowering the integral regularity which is required for the initial
data. Generally speaking the less we ask for f0, the more we have to demand from
ρ0, and vice versa. However the corresponding assumptions are not easy to state; we
prefer to restrict to this non optimal form of the result.

Proof. First we outline the proof for the case a ≥ 0, then we explain the modifications
that are needed for the case a < 0.

Note that introducing the characteristics curves for (1.1), which are straight lines
indeed, we get a representation of f(t, x, v) as

f(t, x, v) = f0(x− vt, v)m(t, x, v),

with m ∈ [0, 1] a damping factor. This shows that f(t) is nonnegative if f0 is, and we
also get some a priori estimates as a consequence. These are gathered here.

Lemma 5.2.6 For any 0 < t < T and any solution of (1.1)–(1.2), the following
estimates hold:
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1. f(t, x, v) ≤ f0(x− vt, v).

2. �f(t)�Lp(Rd
x×Rd

v) ≤ �f0�Lp(Rd
x×Rd

v), 1 ≤ p ≤ ∞.

3. �ρf (t)�Lp(Rd
x) ≤ �f0�L1(Rd

v ,Lp(Rd
x)), 1 ≤ p ≤ ∞.

4.
�

R2d
α(v, v�)f(t, x, v�)f(t, x, v) dv�dv ∈ L∞([0, T ]× Rd

x).

5.
�

Rd
v

β(v)f(t, x, v) dv ∈ L∞([0, T ]× Rd

x).

Proof. Estimate 2 follows from 1 ; estimate 3 follows from 1 and Minkowsky’s
inequality. To prove 4, we recall that for a given a > 0 there exists a constant
C = 2max{0, a−1} > 0 such that |v − v�|a ≤ C(|v|a + |v�|a). Using this fact,

�

Rd
v

�

Rd
v�

|v − v�|af(t, x, v)f(t, x, v�) dvdv�

≤ 2C

�

Rd
v

�

Rd
v�

|v|af(t, x, v)f(t, x, v�) dvdv�

≤ C�ρf�∞
�

Rd
v

|v|af0(x− vt, v) dv,

where we used 3 to ensure the finiteness of �ρf�∞. Using then (2.5) we conclude the
proof of 4. The one for 5 is similar. ✷

Next, we integrate the equation (1.2) and knowing that f(t) is nonnegative we infer
that ρ(t) has also this property if it does initially. At this stage it is then meaningful
to introduce the total mass of the system M , which is conserved during the evolution
for classical solutions and therefore trivially non-increasing in the general case.

The conservation of mass shows that ρ(t) ∈ L1(Rd
x) uniformly in time. If we prove

that ρ(t) is bounded in some Lp(Rd
x) space we can show in the usual way the convergence

of all the linear terms involved in the weak formulation. Indeed, we can get an estimate
for ρ in L∞([0, T ] × Rd

x), as (1.2) is readily integrated and then estimates 4 and 5 of
Lemma 5.2.6 allow to deduce it.

The last point to prove the stability result is to show the convergence of the product
terms. We recall here an useful result which can be found in [75]. Here T denotes the
transport operator, the left hand side of (1.1).

Lemma 5.2.7 Suppose that {gn} ⊂ L1(]0, T [, L1
loc

(Rd
x × Rd

v)) is weakly relatively com-
pact, and that {T gn} is weakly relatively compact in L1

loc
(]0, T [×Rd

x×Rd
v). Then, if {ψn}

is a bounded sequence in L∞(]0, T [, L∞
loc

(Rd
x ×Rd

v)) that converges a.e., then
�

gnψn dv
is strongly compact in L1(]0, T [, L1

loc
(Rd

x)).

We describe here how to deal with one of the product terms. We can estimate the
corresponding difference
�����

�
T

0

�

Rd
x

ψ(t, x)
�

Rd
v×Rd

v�

α(v, v�)
�
f(t, x, v)f(t, x, v�)− fn(t, x, v)fn(t, x, v�)

�
dvdv�dxdt

�����
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using terms like
�����

�
T

0

�

Rd
x

ψ(t, x)
�

(Bv(R)×Bv� (R))c
α(v, v�)fn(v)fn(v�) dvdv�dxdt

�����

and �
T

0

�

Rd
x

|ψ(t, x)| supv∈Bv(R)|fn(v)|

×
�

Bv(R)

�����

�

Bv� (R)
α(v, v�)fn(v�) dv� −

�

Bv� (R)
α(v, v�)f(v�) dv�

����� dvdxdt,

where for the sake of simplicity we have omitted the dependence on x as this does not
cause confusion. The aim is to make these quantities less than any given � > 0. To
control terms as the first one, we use a parameter R > 0 and estimate as follows:

�

(Bv(R)×Bv� (R))c
α(v, v�)fn(v)fn(v�) dvdv�

≤
�

(Bv(R)×Bv� (R))c
α(v, v�)

(|v|2 + |v�|2)r/2

(|v|2 + |v�|2)r/2
fn(v)fn(v�) dvdv�

≤ 1
Rr

�

Rd
v

�

Rd
v�

α(v, v�)
��

|v|2 + |v�|2
�r

fn(v)fn(v�) dvdv� ≤ C

Rr
.

This works thanks to (2.5), for r > 0 suitably small. Then, we choose Rr = 2
�
C�ψ�1

and we can force this type of terms to be smaller than �/2.
It remains to show that the terms involving velocity averages over a compact set can

also be made as small as wanted. To use the averaging results it suffices to show that
T fn is uniformly in L1+�([0, T ], L1

loc
(Rd

x×Rd
v)) for some � > 0 and in this way we avoid

concentration phenomena —thus Dunford–Pettis theorem applies. To do so, notice
that we already know that fn, ρn ∈ L1 ∩ L∞. The integral

�
Rd

v�
α(v, v�)f(t, x, v�) dv� is

then bounded a.e. (t, x). Finally, β(v)f(t, x, v) belongs to L∞([0, T ]× Rd
x, Lp(Rd

v)) for
any p > 1, as thanks to (2.5) we get

(β(v)fn(t, x, v))p ≤
�

C|v|a

1 + |v|a+d+�

�p

≤
�

C

1 + |v|d+�

�p

.

The rest of the product terms can be handled with slight variations of the arguments
sketched above.
The case a < 0: to proceed we introduce for the remaining of the section the notation

q := d/|a|,

which comes from the fact that | · |−|a| ∈ Lq
w(Rd). Basic facts about weak Lebesgue

spaces can be found in [42, 147]. The main differences with the previous case are the
following:

• The estimates 4 -5 of Lemma 5.2.6 are proved in a different way. For 4 we use
the Hardy–Littlewood–Sobolev inequality [216], combined with suitable spatial
regularity. This would require

f0 ∈ L
2q

2q−1 (Rd

v, L
∞(Rd

x)), (2.6)
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which by interpolation is always true as thanks to (2.5) our initial datum f0

belongs to L∞(Rd
x×Rd

v)∩L1(Rd
v, L

∞(Rd
x). Note that 2q

2q−1 = 2d

2d+a
. The estimate

5 is dealt away combining Hölder’s inequality with a layer-cake-type argument.
More precisely:

Lemma 5.2.8 Let g ∈ L1(Rd) ∩ Lp(Rd), with p > q�. Define

e(p, q) =
(p�)2

q − p�(1− p�)
.

Then, for any λ ∈ Rd, we have
�

Rd

|g(x)|
|x− λ||a|

dx ≤ C(p, q)�g�1−e(p,q)
1 �g�e(p,q)

p .

The use of this result to obtain the estimate 5 requires

f0 ∈ (L1 ∩ L
d

d+a+δ)(Rd

v, L
∞(Rd

x))

for some δ > 0 suitably close to zero. This is again implied by (2.5) and f0 ∈
L∞(Rd

x × Rd
v). Note that the hypothesis (2.6) is contained in this one and these

in turn are implied by the assumptions in Theorem 5.2.4.

• To have the convergence of the product terms the procedure is different. First
of all, we use Lemma 5.2.7 or a similar result (the ones in [86, 103, 127] for
instance) to prove the convergence for a regularized kernel. Secondly we show
that the integral against the difference between the regularized kernel and the
non regularized one tends to 0 as the parameter of regularization tends to 0 and
this uniformly in n. This is easily implied by the uniform bounds on fn.

✷

5.2.1 Uniqueness

We have uniqueness in the class of weak solutions that can be approximated by classical
solutions in L∞(0, T, L1(Rd

x × Rd
v)× L1(Rd

x)), thanks to the following result.

Proposition 5.2.9 Any weak solution of (1.1)–(1.2) which is limit of classical solu-
tions and satisfies the assumptions of Theorem 5.2.4 is unique.

Proof. We consider two solutions (f1, ρ1), (f2, ρ2). Since those are the limits of clas-
sical solutions, justifying the computations performed below is easy: consider them as
classical solutions and simply pass to the limit at the end.

Let us introduce the functions g = f1 − f2 and h = ρ1 − ρ2. We will conclude
uniqueness with a Grönwall argument applied to the integral of |g| + |h|. First we
compute an equation for g.

∂tg + v ·∇xg =− g(t, x, v)
�

Rd
v�

α(v, v�)f1(t, x, v�) dv�

− f2(t, x, v)
�

Rd
v�

α(v, v�)g(t, x, v�) dv�

− h(t, x)β(v)f2(t, x, v)− β(v)g(t, x, v)ρ1(t, x).
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We use this to obtain an equation for
�
|g| dxdv. To do so, an equation for d

dt

�
φn(g) dxdv

is computed first, being φn a suitable smooth approximation of the sign function —a.e.
convergent and matching ±1 outside a compact set containing the origin—, and then
we pass to the limit on that equation. Thus, we get

d

dt

�
|g(t, x, v)| dxdv = −

�

Rd
x

�

Rd
v

�

Rd
v�

|g(t, x, v)|α(v, v�)f1(t, x, v�) dv�dvdx

−
�

Rd
x

�

Rd
v

�

Rd
v�

f2(t, x, v)α(v, v�)g(t, x, v�)sign [g(t, x, v)] dv�dvdx

−
�

Rd
x

�

Rd
v

β(v)ρ1(t, x)|g(t, x, v)| dxdv

−
�

Rd
x

�

Rd
v

h(t, x)β(v)f2(t, x, v)sign [g(t, x, v)] dxdv.

Then we compute an equation for h,

∂th =
�

Rd
v

�

Rd
v�

α(v, v�)f1(t, x, v�)g(t, x, v) dvdv�

+
�

Rd
v

�

Rd
v�

α(v, v�)f2(t, x, v)g(t, x, v�) dvdv�

+

��

Rd
v

β(v)f2(t, x, v) dv

�
h(t, x) + ρ1(t, x)

��

Rd
v

β(v)g(t, x, v) dv

�
,

so that, doing as before, we find

d

dt

�

Rd
x

|h(t, x)| dx =
�

Rd
x

�

Rd
v

�

Rd
v�

α(v, v�)f1(t, x, v�)g(t, x, v)sign[h(t, x)] dxdvdv�

+
�

Rd
x

�

Rd
v

�

Rd
v�

α(v, v�)f2(t, x, v)g(t, x, v�)sign[h(t, x)] dxdvdv�

+
�

Rd
x

�

Rd
v

|h(t, x)|β(v)f2(t, x, v) dxdv

+
�

Rd
x

�

Rd
v

β(v)g(t, x, v)ρ1(t, x)sign[h(t, x)] dxdv.

Adding both we get to

d

dt

��

Rd
x

�

Rd
v

|g(t, x, v)| dxdv +
�

Rd
x

|h(t, x)| dx

�

≤ 2
�

Rd
x

�

Rd
v

�

Rd
v�

f2(t, x, v)α(v, v�)|g(t, x, v�)| dxdvdv�

+ 2
�

Rd
x

�

Rd
v

|h(t, x)|β(v)f2(t, x, v) dxdv.

In case that a < 0 we use Lemma 5.2.8 to show that
�

Rd
x

�

Rd
v

|h(t, x)|β(v)f2(t, x, v) dxdv ≤ C

�

Rd
x

|h(t, x)| dx
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and likewise
�

Rd
x

�

Rd
v

�

Rd
v�

f2(t, x, v)α(v, v�)|g(t, x, v�)| dxdvdv� ≤ C

�

Rd
x

�

Rd
v�

|g(t, x, v�)| dxdv�.

Whereas if a > 0 we achieve the same inequality for the β-integral using the compact
support in velocities. The same can be done for the α-integral if the velocity sup-
ports of the solutions under consideration are compact, so that α(v, v�) can be majored
independently of v�, which is the case. ✷

5.3 Large time behaviour

The aim of this section is to investigate the behavior of the solution for large times.
From the very form of the equations of the model we can see that f will lose mass
progressively, which in principle will be transferred to the population ρ. The issue that
we address here is the following: Does the species f eventually vanish completely, thus
transferring all its mass to ρ, or some of this mass is going to be lost to infinity? Under
some decay assumptions on the initial data we will show that this is not so for the
range a ∈]1 − d,+∞], while the total transfer of mass is achieved in infinite time for
powers a ∈]− d, 1− d].

We use the notation

M(t) =
�

Rd
x

�

Rd
v

f(t, x, v) dxdv

for the mass carried by the species f . We will typically need some compactness as-
sumptions on the initial data. Compactness may be assumed in space or in velocity
and we introduce the following set of notations and possible assumptions:

supp ρ0
f
⊂ B(R) for some R < ∞. (3.7)

∪x∈Rd
x
suppv f0 ⊂ B(V ) for V := ess sup{|v|/f0(x, v) > 0} < ∞. (3.8)

supp ρ0 ⊂ B(R̃) for some R̃ < ∞. (3.9)

5.3.1 The non-vanishing case: bounded velocity supports.

We start by the simplest case with bounded compact support in space and velocity.
This will be extended in the next subsection but for the sake of a better understanding
we present the main arguments (some dispersive inequalities) in this simplified setting.
This section is devoted to the proof of the following statement:

Proposition 5.3.1 For a + d > 1, assume that ρ0 ∈ L1 ∩ L∞(Rd
x), that

f0 ∈ (L1 ∩ L∞)(Rd
x × Rd

v) and verifies the hypotheses (3.7)–(3.9). Then, for each
weak solution of (1.1)–(1.2) associated to this class of initial data and such that it
can be approximated by smooth solutions in L∞t (0,∞, L1(R2d) × L1(Rd

x)), there exists
a constant C = C(f0, ρ0) > 0 such that the total mass associated to f satisfies

M(t) ≥ C ∀t ≥ 0.
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The upshot is that a certain amount of particles starting with velocities high enough
do not get trapped. The proof of the above statement is done through a series of lemmas.

The following result yields some basic useful information:

Lemma 5.3.2 Assume that |supp ρ0
f
| < +∞. Then, the measure of the set {v ∈

Rd, f(t, x, v) > 0} decreases in time like t−d, pointwise in x. This implies

ρf (t, x) ≤
|supp ρ0

f
|�f0�∞

td
. (3.10)

Furthermore, for each pair z = (v, x, t) and z� = (v�, x, t) such that f(z) > 0 and
f(z�) > 0, we have |v − v�| ≤ 2R

t
.

Proof. Indeed, a particle starting from a position x0 with a velocity v reaches the
position x at time t if and only if x = x0 + tv. Thus, we have that

v =
x− x0

t
∈

x− supp ρ0
f

t
,

the latter being a set of measure |supp ρ0
f
|t−d. ✷

The estimate (3.10) shows that all the local mass associated to f will eventually
vanish; the question is how much of this is going to be transferred to ρ and how much
is going to be lost to infinity. As a common framework to deal with this problem,
the assumptions of Proposition 5.3.1 will be implicitly taken for granted in all the
statements to follow in this section.

To proceed we introduce particular fractions of mass M�, which account for the
contribution of particles with non-vanishing velocities. These masses are going to be
non-vanishing for large times if this is true for short times. We do not take care of the
remaining part of the initial mass. Define accordingly

M�(t) =
�

Rd
x

�

|v|>�

f(t, x, v) dxdv.

It can be readily shown that this function satisfies the following equation:

dM�

dt
= −

�

Rd
x

�

|v|>�

�

Rd
v�

α(v, v�)f(t, x, v)f(t, x, v�) dxdvdv�

−
�

Rd
x

�

|v|>�

β(v)ρ(t, x)f(t, x, v) dxdv = −I − II.

(3.11)

The basic estimate for M� is the following.

Lemma 5.3.3 The function M� satisfies

dM�(t)
dt

≥ − C

ta+d
M�(t)− C�ρ�L∞(Ω)M�(t),

with Ω = {x ∈ Rd/∃|v| > �, s.t. f(t, x, v) > 0}. Furthermore, this function does not
vanish in finite time.
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Proof. To deal with the integral I in (3.11), note that we only have to estimate it in
the following set of velocities: {v, v� ∈ Rd such that v − v� ∈ 2

t
supp ρ0

f
}. We can use

that a + d > 0 to write
�

{v�/v−v�∈ 2
t supp ρ

0
f}
|v − v�|a dv� ≤ |Sd−1|

� 2R
t

0
ra+d−1 dr =

|Sd−1|
a + d

(2R)a+d

ta+d

and then we get the estimate

I ≤
�

Rd
x

�

|v|>�

�

Rd
v�

|v − v�|af(t, x, v)f(t, x, v�) dxdvdv�

≤ �f0�∞
�

Rd
x

�

|v|>�

��

{v�/v−v�∈ 2
t supp ρ

0
f}
|v − v�|a dv�

�
f(t, x, v) dvdx

≤ �f0�∞
a + d

|Sd−1|(2R)a+d

ta+d
M�(t).

To treat the integral II we notice that the integral with respect to x is actually com-
puted over the set Ω. Then, if a ≥ 0

II ≤ V a�ρ(t)�L∞(Ω)M�(t)

and if a < 0,
II ≤ �−|a|�ρ(t)�L∞(Ω)M�(t),

which in both cases concludes the proof of the differential inequality.
Finally, the later claim follows from the rough estimates

dM�

dt
≥ −(2V )a�ρf�∞(t)M�(t)− V a�ρ�∞(t)M�(t)

if a ≥ 0 and
dM�

dt
≥ −C(f0)M�(t)− (�)−|a|�ρ�∞(t)M�(t)

if a < 0, where Lemma 5.2.8 has been used. ✷

In order to control the factor �ρ�L∞(Ω), we also need to estimate the terms appearing
in the right hand side of (1.2).

Lemma 5.3.4 The function ρ(t, x) satisfies the following inequality:
∂ρ

∂t
(t, x) ≤ C

ta+2d
+

C

ta∗
ρ(t, x),

with a∗ = min{d, a + d}.

Proof. The fact that a + d > 0 allows us to estimate�

Rd
v

�

Rd
v�

|v − v�|af(t, x, v)f(t, x, v�) dv�dv

≤ �f0�∞
�

Rd
v

�

{v�/v−v�∈ 2
t supp ρ

0
f}
|v − v�|a dv�f(t, x, v) dv

≤ �f0�∞|Sd−1|
� 2R

t

0
ra+d−1 dr

�

Rd
v

f(t, x, v) dv

≤ |Sd−1|
a + d

(2R)a+d

ta+d
�f0�∞

|supp ρ0
f
| �f0�∞

td
= �f0�2∞

|supp ρ0
f
|(2R)a+d

a + d

|Sd−1|
ta+2d

,
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so that �

Rd
v

�

Rd
v�

α(v, v�)f(t, x, v)f(t, x, v�) dv�dv ≤ C

ta+2d
. (3.12)

Next, if a ≥ 0 we find
�

Rd
v

β(v)f(t, x, v) dv ≤ V a

�

Rd
v

f(t, x, v) dv ≤ C

td
,

whereas if a < 0 we have
�

Rd
v

|v|af(t, x, v) dv =
�

|v|≤1/t

|v|af(t, x, v) dv +
�

|v|>1/t

|v|af(t, x, v) dv

≤ |Sd−1|�f0�∞
� 1/t

0
ra+d−1 dr + t|a|

�

Rd
v

f(t, x, v) dv

≤ |Sd−1|�f0�∞
(a + d)ta+d

+
C

ta+d
,

where in both cases we have used (3.10). Summing up,
�

Rd
v

β(v)f(t, x, v) dv ≤ C

ta∗
. (3.13)

✷

Now we go to the core of our method of proof.

Lemma 5.3.5 Given t0 > 2R/V , if V > � ≥ 2R

t0
the sets {(x, v)/|x| ≤ R + V t0} and

supp f(2V t0/�, ·, ·) ∩ {(x, v)/|v| > �} are disjoint.

Proof. Any pair (x, v) ∈ {|x| ≤ R + V t0} ∩ supp f(2V t0/�, ·, ·) satisfies the relation
2V t0|v|/�−R ≤ R + V t0, and then |v| ≤ R

t0
+ �

2 . ✷

In the next result we obtain some control over the size of the support of ρ(t). This
result is the principal technical difference between the case that we are considering here
and the non-compactly supported one.

Lemma 5.3.6 Whenever t > τ = max{ R̃−R

V
, 0}, we have that supp ρ(t) ⊂ B(R + V t).

Proof. Integrating (1.2) we deduce that

supp ρ(t) ⊂ supp ρ0 ∪ (∪τ≤t supp ρf (τ)) .

✷

Integration of the inequality for ρ, given by Lemma 5.3.4, yields the estimate

ρ(t, x) ≤ ρ(t0, x) exp
��

t

t0

C

τa∗
dτ

�
+

�
t

t0

C

τa+2d
exp

��
t

τ

C ds

sa∗

�
dτ.

If we consider it in the range t0 > τ and |x| > R + V t0 we get rid of the first term.
From now on we set

t0 := �t/(2V ) > τ
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(the range of t is restricted accordingly) and thus

ρ(t, x) ≤
�

t

�t/(2V )

C

τa+2d
exp

��
t

τ

C ds

sa∗

�
dτ,

so that

ρ(t, x) ≤ C(2a+2d−1 − 1)
a + 2d− 1

1
ta+2d−1

exp
�

C(2a
∗−1 − 1)

a∗ − 1
1

ta∗−1

�
.

We shall substitute this estimate into the inequality granted by Lemma 5.3.3, with
Lemma 5.3.5 assuring that Ω does not include the region |x| ≤ R + V t0. We are left
with

dM�

dt
(t) ≥ − C

ta+d
M�(t)−

C

ta+2d−1
exp

�
C

ta∗−1

�
M�(t).

After integration in time,

M�(t) ≥ M�(t0) exp

�
−

�
t

t0

C

τa+d
+

Ceτ
1−a∗

τa+2d−1
dτ

�
.

If we show that the above integral is convergent we can perform the limit t → ∞ to
obtain that M� does not vanish. Simply note that for τ big enough

C

τa+d
+

Ceτ
1−a∗

τa+2d−1
≤ C

τa+d
.

So that, as a + d− 1 > 0,

exp

�
−

�
t

t0

C

τa+d
+

Ceτ
1−a∗

τa+2d−1
dτ

�
≥ exp

�
C

�
1

ta+d−1
− 1

ta+d−1
0

��
.

Meaning that

M�(∞) ≥ M�(t0)exp

�
− C

ta+d−1
0

�
,

or that the total mass, which is larger than M�, may not vanish.
Finally notice that the restrictions concerning the time for the above arguments to

be valid are:

• t ≥ 4RV

�2
to assure the applicability of Lemma 5.3.5.

• t > 2V τ

�
to be able to control the growth of the supports of both species in an

easy way.

It is always possible to work in this range as no mass may vanish in finite time.

5.3.2 Non-vanishing case: unbounded velocity supports.

Here we extend the result of the previous section in order to allow unbounded velocities.
As a consequence compactness in velocity will be replaced by a more precise decay
assumption.

Only the case d > 1 will be considered for the moment; we defer the special case
d = 1 to the next subsection.
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Proposition 5.3.7 Assume a + d > 1 and that for some η > 0 we have

f0(x, v) ≤ C

1 + |v|max(a,0)+d+η
a.e. (x, v) ∈ Rd

x × Rd

v. (3.14)

We also assume that the compact support conditions (3.7) and (3.9) hold. Then, for
any weak solution of (1.1)–(1.2) given by Theorem 5.2.4, there exists a constant C =
C(f0, ρ0) > 0 such that

M(t) ≥ C ∀t ≥ 0.

Note that the assumptions imply that f0 ∈ L1 ∩ L∞(Rd
x × Rd

v) and that f0 ∈
L1(Rd

v, L∞(Rd
x)). The rest of the section is devoted to prove this statement. The

assumptions of Proposition 5.3.7 are implicitly taken for granted in all the intermediate
lemmas.

It is still easy to check that no mass may vanish in finite time.

Lemma 5.3.8 The functions M� do not vanish in finite time.

Proof. Set for any k > 1

M�,k�(t) :=
�

Rd
x

�

k�>|v|>�

f(t, x, v) dxdv.

Choose a number k > 1 such that M�,k�(0) > 0. Then the same proof as in Lemma
5.3.3 with V = k� ensures that the function M�,k�(t) does not vanish in finite time.
Thus, being M�(t) ≥ M�,k�(t) the statement follows. ✷

Let us turn to the crucial estimates in large times. It first goes along the same lines
as for the case with full compact support.

Lemma 5.3.9 The function M� satisfies

d M�

dt
≥ − C

ta+d
M� − C M�(t) sup

|x|≥t�/2
(1 + |x|)max(a,0) ρ(t, x)

for t > 2R/�.

Proof. Let us start with the integral II in (3.11). Consider first the case a ≥ 0. As f0

is compactly supported in x, whenever f > 0 then v ∈ B(x/t, R/t) and the following
chain of estimates

�

Rd
x×{|v|>�}

β(v) ρ(t, x) f(t, x, v) dx dv ≤
�

Rd
x×{|v|>�}

|v|a ρ(t, x) f(t, x, v) dx dv

≤ C

ta

�

Rd
x×{|v|>�}

(R + |x|)a ρ(t, x) f(t, x, v) dx dv

holds. Since |v| ≥ � any particle with such speed issuing form a point x0 occupies at
time t a position x that verifies |x−x0| ≥ �t. If t > 2R/�, then |x| ≥ �t

2 . Thus, we have
�

Rd
x×{|v|>�}

β(v) ρ(t, x) f(t, x, v) dx dv ≤ C M�(t) sup
|x|≥t�/2

(1 + |x|)a ρ(t, x).
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In the case a < 0, one simply has
�

Rd
x×{|v|>�}

β(v) ρ(t, x) f(t, x, v) dx dv

≤
�

Rd
x×{|v|>�}

|v|a ρ(t, x) f(t, x, v) dx dv

≤ �a

�

Rd
x×{|v|>�}

ρ(t, x) f(t, x, v) dx dv

≤ �a M�(t) sup
|x|≥t�/2

ρ(t, x).

Combining both, one gets in every case
�

Rd
x×{|v|>�}

β(v) ρ(t, x) f(t, x, v) dx dv

≤ C M�(t) sup
|x|>t�/2

(1 + |x|)max(a,0) ρ(t, x).

The control of I follows the line of the case with compact support in velocity. Again if
f(t, x, v) > 0 and f(t, x, v�) > 0 then |x−vt| ≤ R and |x−v�t| ≤ R so that |v−v�| ≤ 2R/t
and

I ≤ C

�

Rd
x

�

|v|>�

f(t, x, v)
�

v�∈B(v,2R/t)
|v − v�|a dv� dv dx ≤ C

td+a
M�.

✷

So now we have to exhibit some decay for the x moment of ρ that appears in Lemma
5.3.9. We start with a technical result that will prove useful in the sequel.

Lemma 5.3.10 The estimate
�

Rd
v

|v|af(t, x, v) dv ≤ C

td
.

is verified for a.e. |x| ≥ � t/2 and for t > 4R/�.

Proof. Note that since f0 is compactly supported in x, in case that f(t, x, v) > 0 then
|x− vt| ≤ R. So that v ∈ B(x/t, R/t) holds under these circumstances. In particular,
if |x| ≥ � t/2 then |v| > �/4 for t large enough (t > 4R/� indeed).

That means that in the case a < 0 we will have |v| > �/2 + |v|/2 and so |v|a <
(�/2 + |v|/2)a. Obviously if a > 0 then |v|a ≤ (� + |v|)a. Consequently,

�

Rd
v

|v|af(t, x, v) dv ≤
�

B(x/t,R/t)
|v|af0(x− vt, v) dv

≤ C sup
v∈Rd

(� + |v|)a f0(x− vt, v)
�

B(x/t,R/t)
dv ≤ C

td
.

This holds also when a > 0, as |v|a ≤ (� + |v|)a in this case, being the supremum finite
thanks to (3.14). ✷

Next we bound ρ in terms of the quadratic terms of the equation.
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Lemma 5.3.11 The following inequality

ρ(t, x) ≤C

�
t

0

�

Rd
v�×Rd

v

α(v, v�)f(τ, x, v)f(τ, x, v�) dvdv� (3.15)

holds for any |x| > � t/2 and t > 2R

�
.

Proof. If |x| > � t/2 then we know that x is not in the initial support of ρ0 for t > 2R

�

and the integration of (1.2) gives

ρ(t, x) =
�

t

0

�

Rd
v�×Rd

v

α(v, v�)f(τ, x, v)f(τ, x, v�) dvdv�

× exp

��
t

τ

�

Rd
v

β(v)f(s, x, v) dvds

�
dτ.

A direct application of Lemma 5.3.10 yields the estimate
�

Rd
v

β(v)f(s, x, v) dv ≤
�

Rd
v

|v|a f(s, x, v) dv ≤ C

sd
.

So finally we have
�

t

τ

�

Rd
v

β(v)f(s, x, v) dvds ≤ C

for τ ≥ 1. To control the integration between 0 and τ , one simply uses that the integral�
Rd

v
|v|af(s) dv is bounded for any value of s. This is due to (3.14) and the fact that

a > −d. Therefore the lemma is proved. ✷

Now we are to estimate the integral term in (3.15). The following result does the
job.

Lemma 5.3.12 The estimate
�

Rd
v

�

Rd
v�

|v − v�|af(t, x, v)f(t, x, v�) dvdv� ≤ C(R)
|x|kta+2d−k

× �(1 + |v|)k/2f0(x− vt, v)�2
L∞(Rd

x×Rd
v)

holds true for any k ≥ 0.

Proof. Use the bound f ≤ f0(x− vt, v) and the compact spatial support of f0 to get
|x| ≤ |x− vt|+ |v| t ≤ R + |v| t and hence

|x|k
�

Rd
v

�

Rd
v�

|v − v�|af(t, x, v)f(t, x, v�) dvdv�

≤ C

�

|v−v�|≤C/t

|v − v�|a (R + |v| t)k/2 f(t, x, v)(R + |v�| t)k/2 f(t, x, v�) dvdv�.
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This is in turn dominated by

C tk
�

|v−v�|≤C/t

|v − v�|a (1 + |v|k/2) f(t, x, v)(1 + |v�|k/2) f(t, x, v�) dvdv�

≤C tk �(1 + |v|k/2) f(t)�L∞(Rd
x×Rd

v)

�

Rd
v

(1 + |v|k/2) f(t, x, v) dv

×
�

|v−v�|≤C
t

|v − v�|a dv�.

Using Lemma 5.3.10 we finally arrive to

|x|k
�

Rd
v

�

Rd
v�

|v − v�|af(t, x, v)f(t, x, v�) dvdv�

≤ Ctk

ta+d
�(1 + |v|k/2) f(t)�L∞(Rd

x×Rd
v)

�

Rd
v

(1 + |v|k/2) f(t, x, v) dv

≤ C

ta+2d−k
�(1 + |v|k/2) f(t)�2

L∞(Rd
x×Rd

v)

✷

Combining Lemmas 5.3.11 and 5.3.12, we find that

ρ(t, x) ≤ C

� 1

0

�

Rd
x×Rd

v

|v − v�|af(τ, x, v) f(τ, x, v�) dv dv� +
�

t

1

C dτ

|x|k τa+2d−k

holds for |x| > � t/2 and t large enough. The first term is easy to bound: we use again
Lemma 5.3.12, with the choice k = 2d+a. By means of (3.14) and taking into account
that a > 1− d, there exists some δ > 0 in order to have

� 1

0

�

Rd
x×Rd

v

|v − v�|af(τ, x, v) f(τ, x, v�) dv dv�

≤ C

|x|2d+a
�(1 + |v|)d+a/2 f0�L∞(Rd

x×Rd
v) ≤

C

|x|d−1+δ
.

When computing the supremum over |x| > � t/2 we will have the inequality

(1 + |x|)max(a,0)ρ(t, x) ≤ C

|x|k−max(a,0)
+

C

|x|d−1
≤ C

|t|k−max(a,0)
+

C

|t|d−1+δ

as long as a + 2d− k > 1, for some δ > 0. Inserting this in Lemma 5.3.9 gives

d M�

dt
≥ − C

ta+d
M� −

C

td−1+δ + tk−max(a,0)
M�, (3.16)

which, as before, shows that M� does not vanish for large times. Indeed the only
constraint on k − a is k − a < 2d − 1 and one may therefore always have k − a > 1.
Since we also have d − 1 + δ > 1, the second coefficient is always integrable in time.
This is enough to conclude, as Lemma 5.3.8 assures that M� does not vanish in finite
time.
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The case d = 1

The proof in the previous section can cover also the case d = 1 when some minor
changes are introduced, which we indicate here briefly. We can prove the following
result:

Proposition 5.3.13 Assume that a > 1 and (3.14) for d = 1, together with the com-
pact support hypotheses (3.7) and (3.9). Then, for any weak solution of (1.1)–(1.2)
constructed in Theorem 5.2.4, there exists a constant C = C(f0, ρ0) > 0 such that

M(t) ≥ C ∀t ≥ 0.

We describe below a brief sketch of the modifications required for the proof given
in the previous section to work in the present context.

The proof of Lemma 5.3.9 can be modified to give, in this case d = 1, the following
result.

Lemma 5.3.14 The function M� satisfies

d M�

dt
≥ − C

ta+1
M� − C M�(t) t−a sup

|x|≥�/2 t

(R + |x|)a ρ(t, x),

for t > 2R/�.

We come back to (5.3.11), which we write as

ρ(t, x) ≤ C t

� 1

0

�

Rv�×Rv

α(v, v�)f(τ, x, v)f(τ, x, v�) dvdv�dτ

+C t

�
t

1

�

Rv�×Rv

α(v, v�)f(τ, x, v)f(τ, x, v�) dvdv�dτ

for |x| > � t/2. When inserted into the inequality of Lemma 5.3.14, we find that we
have to compute the supremum of the following quantity:

Ct

�
|x|
t

�a � 1

0

�

Rv�×Rv

α(v, v�)f(τ, x, v)f(τ, x, v�) dvdv�dτ

+Ct

�
|x|
t

�a �
t

1

�

Rv�×Rv

α(v, v�)f(τ, x, v)f(τ, x, v�) dvdv�dτ.

That is, we are dealing with

C

�
|x|
t

�a

t|x|−k0

� 1

0

dτ

τa+2−k0
+ C

�
|x|
t

�a

t|x|−k∞

�
t

1

dτ

τa+2−k∞

where Lemma 5.3.12 was applied twice. To conclude, we need k∞ < a+1 and k0 > a+1
to assure integrability while k∞, k0 > max{a, 2} for compensating the factors in front
and getting an overall decay better than t−1. These conditions are compatible only if
a > 1. The choices k∞ = max{a, 2}+ δ, k0 = a + 1 + δ for δ > 0 suitably close to zero
conclude with the proof.
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5.3.3 The vanishing case

In this section we study what happens in the complementary regime −a ∈ [d − 1, d[.
The main result is

Proposition 5.3.15 Assume −a ∈ [d − 1, d[ and that there exists some k > 0 such
that �

Rd
x

�

Rd
v

(1 + |x|k + |v|k)f0(x, v) dxdv < +∞.

Then, for each weak solution of (1.1)–(1.2) given by Theorem 5.2.4, we have that

lim
t→∞

M(t) = 0.

Remark 5.3.16 This result shows that there occurs a total transfer of mass from f
to ρ. Precise minimal rates of convergence for M(t) are given in the proof for the case
of smooth solutions. But note that to assure that M(t) does not vanish in finite time
some extra decay assumptions are needed; for instance (1.4) would do — use the proof
of Lemma 5.3.8.

Proof. Suppose first that f0 satisfies (3.7) and (3.8). Then this implies that the
support of ρf (t) lies within B(R + V t). Using Jensen’s inequality we get

�

Rd
x

ρf (t, x)2 dx ≥

��

Rd
x

ρf (t, x) dx

�2

|Sd−1|(R + V t)d
.

Recalling the differential inequality (3.11) we get

dM(t)
dt

≤ −
�

Rd
x

�

Rd
v

�

Rd
v�

|v − v�|−|a|f(t, x, v)f(t, x, v�) dxdvdv�

≤ − t|a|

(diam supp ρ0
f
)|a|

�

Rd
x

�

Rd
v

�

Rd
v�

f(t, x, v�)f(t, x, v) dxdvdv�

= −Ct|a|
�

Rd
x

ρf (x)2 dx,

where we have used Lemma 5.3.2, being diam the diameter of a set. Combining with
the previous, we obtain the estimate

dM(t)
dt

≤ −C
t|a|M(t)2

(R + V t)d
.

This implies logarithmic decay of M(t) in the case d = 1 + |a|, and a power decay at
the rate td−1−|a| if d < 1 + |a| < d + 1. In both cases the mass finally vanishes.

For the general case, we introduce a parameter V and perform the following de-
composition of the initial datum:

f0 = g0
V + f0

V = g0
V + f0(x, v)χ{|x|≤V }χ{|v|≤V }.
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The evolution of the solution is decomposed accordingly:

f(t) = gV (t) + fV (t) = gV (t) + f(t, x, v)χ{|x|≤V }χ{|v|≤V }.

Note that
�

Rd
x×Rd

v

g0
V dxdv =

�

Rd
x×Rd

v

|x|k + |v|k

|x|k + |v|k g0
V dxdv

≤ 1
V k

�

Rd
x×Rd

v

(|x|k + |v|k)f0 dxdv ≤ C

V k
.

The mass associated to gV (t) does not increase: this follows from the fact that the
function gV (t) satisfies the equation

∂tgV + v ·∇xgV = −gV (t, x, v)
�

Rd
v�

α(v, v�)f(t, x, v�) dv� − β(v)ρ(t, x)gV (t, x, v).

This implies that �

Rd
x×Rd

v

gV (t, x, v) dxdv ≤ C

V k
.

On the other hand, we can repeat with the function fV (t) what we did before, obtaining

MfV (t) ≤ C

1
M(f0

V )
+

R t
0

τ |a|
(1+τ)d

dτ

V |a|+d

.

To conclude we optimize in V . In case that d < |a|+ 1 the mass decays at least like t

to the power of k(d−|a|−1)
d+|a|+k

. In the borderline case d = |a| + 1 the mass decays as least
as log t to the power of −k

|a|+d+k
. We recover the rates of the compactly supported case

if we can allow infinite moments for the initial datum. ✷

5.4 Self-similar solutions

The aim of this section is to show that the solution f can be approximated by a function
of the self-similar variables y = x

t
, w = t(v − x

t
) for large times. More precisely:

Proposition 5.4.1 Assume that a + d > 0, f0 ∈ (L1 ∩ L∞)(Rd
x × Rd

v) and that the
compact support hypothesis (3.7) is verified. If a > 0 assume also that

f0(x, v) ≤ C

1 + |v|a a.e. (x, v) ∈ Rd

x × Rd

v. (4.17)

Then, for each weak solution of (1.1)–(1.2), given by Theorem 5.2.4, there exists a
function g∞(x, v) such that

�f(t, x, v)− g∞(x/t, t(v − x/t))� → 0, as t →∞,

in the norm of W−1,1(Rd
x, L1(Rd

v)).
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The rest of the section outlines a proof for this statement. To begin with, let us
introduce the function g defined by f(t, x, v) = g(t, x

t
, t(v − x

t
)), or, in an equivalent

way, g(t, y, w) = f(t, ty, y + w

t
). We have to prove that g has a limit as t → +∞. The

function g satisfies the following equation:

∂g

∂t
+

w

t2
∇yg =− g(t, y, w)

�

Rd
w�

α

�
w

t
,
w�

t

�
g(t, y, w�)

td
dw�

− 1
t2

ρ̄(t, y)g(t, y, w)β
�
y +

w

t

�
,

(4.18)

with ρ(t, x) = 1
t2

ρ̄(t, x

t
). Now we can prove that g(t) is a Cauchy sequence in the space

Wx,v := W−1,1(Rd
x, L1(Rd

v)), that is, for the norm

�g(t)�Wx,v = sup
∆

�

Rd
x×Rd

v

ϕ(x, v) g(t, x, v) dx dv,

with ∆ = {ϕ ∈ D(Rd
x × Rd

v)/|ϕ| ≤ 1, |∇xϕ| ≤ 1}.
Lemma 5.4.2 For 0 < s < t, the following estimate holds

�g(t)− g(s)�Wy,w ≤ |s− t|
�

1
ts

+
1

ta+d
+

1
ta∗

�
C(R, d, a, f0, M),

being a∗ = min{a + d, d}.

Proof. We compute
�

Rd
x×Rd

v

ϕ (g(t, x, v)− g(s, x, v)) dxdv

=
�

Rd
y×Rd

w

ϕ (g(t, y, w)− g(s, y, w)) dydw

=
�

Rd
y×Rd

w

ϕ(y, w)
�
g(t, y, w)− g(t, y +

w

s
− w

t
, w)

�
dydw

+
�

Rd
y×Rd

w

ϕ(y, w)
�
g(t, y +

w

s
− w

t
, w)− g(s, y, w)

�
dydw = I + II

The first term is handled as follows:

I =
�

Rd
y×Rd

w

g(t, y, w)
�
ϕ(y, w)− ϕ(y − w

s
+

w

t
, w)

�
dydw

≤ �∇yϕ�L∞(Rd
y×Rd

w)

�
g(t, y, w)|w| |s− t|

|ts| dydw

= �∇yϕ�L∞(Rd
y×Rd

w)

|s− t|
|ts|

�
|w|f(t, ty, y +

w

t
) dydw.

So, thanks to (3.7) we get

I ≤�∇yϕ�L∞(Rd
y×Rd

w)

|s− t|
ts

�
|tw − y|f(t, y, w) dydw

≤�∇yϕ�L∞(Rd
y×Rd

w)

|s− t|
ts

�

Rd
r×Rd

w

|r|f0(r, w) drdw

≤CM
|s− t|

ts
.
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To deal with the second term, we introduce the function φ(τ) = g(τ, y + w

s
− w

τ
, w).

Notice that φ(t) = g(t, y + w

s
− w

t
, w) and φ(s) = g(s, y, w). Evaluating (4.18) at points

of the form (t, y + w

s
− w

t
, w), multiplying by ϕ(y, w) and integrating we get

∂

∂t

�

Rd
y×Rd

w

ϕ(y, w)φ(t) dydw

= −
�

Rd
y×Rd

w

ϕ(y, w)φ(t)
�

Rd
w�

α(w/t, w�/t)
td

g(t, y +
w

s
− w

t
, w�) dydwdw�

+
�

Rd
y×Rd

w

ϕ(y, w)
1
t2

φ(t)ρ(t, y +
w

s
− w

t
)β(y + w/s) dydw = A + B.

Then we write

II =

�����

�

Rd
y×Rd

w

ϕ(y, w)φ(t) dydw −
�

Rd
y×Rd

w

ϕ(y, w)φ(s) dydw

�����

≤ |t− s| sup
θ∈[s,t]

�����

�
∂

∂t

�

Rd
y×Rd

w

ϕ(y, w)φ(t) dydw

�

t=θ

����� .

Thus if we bound |A| and |B| we are done. Recalling that g(t, y, w) = f(t, ty, y + w

t
),

we have

|A| ≤C�ϕ�L∞(Rd
y×Rd

w)

�

Rd
y×Rd

w×R�dw
g(t, y +

w

s
− w

t
, w)

× g(t, y +
w

s
− w

t
, w�)

|w − w�|a

td+a
dydwdw�

=�ϕ�L∞(Rd
y×Rd

w)

�

Rd
y×Rd

w×R�dw
f(t, ty +

tw

s
− w, y +

w

s
)

× f(t, ty +
tw

s
− w, y +

w�

s
)
|w − w�|a

td+a
dydwdw�.

To continue we change variables inside the integral by means of r = ty+ tw

s
−w, z = y+w

s

and z� = y + w
�

s
. In particular, |w − w�| = s|z − z�|. In the case d = 1, the Jacobian

matrix of the mapping (y, w, w�) �→ (ty + tw

s
− w, y + w

s
, y + w

�

s
) is




t t/s− 1 0
1 1/s 0
1 0 1/s





In the general case each entry corresponds now to a diagonal block of size d and all the
elements equal to the corresponding one-dimensional entry. Then the inverse Jacobian
reduces to sd; to see this, transform the matrix in order to have the second and third
blocks of the first column equal to zero. Thanks to (3.7) we can use Lemma 5.3.2 and
performing along the same lines of (3.12) we deduce

|A| ≤ �ϕ�L∞(Rd
y×Rd

w)

�

Rd
r×Rd

z×Rd
z�

f(t, r, z)f(t, r, z�)
1

td+a
sd|s(z − z�)|a drdzdz�

≤ �ϕ�L∞(Rd
y×Rd

w)

�

Rd
r×Rd

z×Rd
z�

f(t, r, z)f(t, r, z�)|z − z�|a drdzdz�

≤ C(R, d, a, f0)
ta+d

�

Rd
r×Rd

z

f(t, r, z) drdz ≤ C(R, d, a, f0)M
ta+d

.
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On the other hand,

B =
�

Rd
y×Rd

w

ϕ(y, w)f(t, ty +
tw

s
− w, y +

w

s
)ρ(t, ty +

tw

s
− w)β

�
y +

w

s

�
dydw.

We change to the new variables z = y + w

s
, r = ty + tw

s
− w inside the integral. The

Jacobian of the mapping (y, w) �→ (y + w

s
, ty + tw

s
− w) is 1 (transform to have a zero

block in the left lower corner). Then,

|B| ≤ C�ϕ�L∞(Rd
y×Rd

w)

�

Rd
r×Rd

z

f(t, r, z)|z|aρ(t, r) drdz

≤ �ϕ�L∞(Rd
y×Rd

w) sup
r

��

Rd
z

f(t, r, z)|z|a dz

��

Rd
r

ρ(t, r) dr.

If a < 0 we estimate like in (3.13) to get

|B| ≤ CM

ta∗
.

In the case a ≥ 0 we claim that
�

Rd
z

f(t, r, z)|z|a dz ≤ C

ta

uniformly in r and then we get exactly the same type of estimate. ✷

The previous claim relies on the following technical result, which covers a slightly
more general situation than needed: we assume compact support in x and the decay
condition (4.17).

Lemma 5.4.3 Whenever the condition

f0(x, v) ≤ C

1 + |x|d+� + |v|k a.e. (x, v) ∈ Rd

x × Rd

v

is fulfilled for some � > 0 and some k > 0 the following estimate is verified:
�

Rd
v

|v|kf(t, x, v) dv ≤ C

td
.

Proof. Just follow the chain of inequalities:
�

Rd
v

|v|kf(t, x, v) dv ≤
�

Rd
v

|v|kf0(x− vt, v) dv ≤
�

Rd
v

sup
ξ∈Rd

|ξ|kf0(x− vt, ξ) dv

≤ 1
td

�

Rd
x

sup
ξ∈Rd

|ξ|kf0(x, ξ) dx ≤ 1
td

�

Rd
x

sup
ξ∈Rd

C|ξ|k

1 + |ξ|k + |x|d+�
dx ≤ 1

td

�

Rd
x

C dx

1 + |x|d+�
.

✷

As a consequence there exists a function g(∞, y, w) such that g(t) → g(∞) in the norm
of W−1,1(Rd

y, L
1(Rd

w)) and that �g(∞) − g(t)�Wy,w ≤ C

t
. But note that, being 1 the

Jacobian of the mapping (x, v) �→ (x/t, t(v − x/t)), we have that

�g(∞, y, w)− g(t, y, w)�Wy,w = �f(t, x, v)− g(∞, x/t, t(v − x/t))�Wx,v .

Thus we can get from the self-similar variables to the original ones. We have proved
that

�f(t, x, v)− g(∞, x/t, t(v − x/t))�W (x,v) → 0 as t →∞.



Chapter 6

An evolution model to the
transport of morphogenes

The purpose of this chapter is to give further insights into the modeling of the dynamics
of morphogenic functions, which is a very important theme of research in developmen-
tal Biology. Presently the available models rely on linear diffusive mechanisms that
some recent experimental findings call into question. Our proposal is to substitute the
diffusive mechanisms of these models by a non-linear, flux-limited diffusion mechanism,
which in our opinion gives a more accurate description of the phenomena under con-
sideration. To present our results we will take first a short detour into the realm of
flux-limited diffusion equations, that will serve to motivate our perspective about the
biological problem and to state clearly what are the mathematical ideas behind these
equations at the same time. Meanwhile the biological problem that we are interested in
will be explained in detail. Only then will we proceed with the concrete mathematical
model for the problem in question. The results of this chapter are contained in [13]
and [70].

6.1 Introduction to flux-limited diffusion equations

This story is best understood if we trace it back to the deduction of the heat equation
as a model for heat conduction. This “classical” theory of heat conduction arises from
the pioneering works of J. Fourier [96]. He postulated the following relation between
the heat flux q and the temperature u

q(t, x) = −k∇u(t, x),

which was named Fourier’s law afterwards. In combination with the equation that
encodes the conservation of energy

∂tu + divxq = 0,

J. Fourier obtained the linear parabolic heat equation

∂tu = k∆u.

This was later reinterpreted in terms of Brownian motion and originated the theory of
linear diffusion equations. One of the most important drawbacks of this model is that of
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114 6.1. Introduction to flux-limited diffusion equations

its infinite propagation speed (although, this gap is only present at the continuous level,
the Brownian motion of a finite collection of particles does not exhibit this feature).
This is easily seen from the representation formula for the solutions of the initial value
problem in RN , namely the convolution in space of the initial datum with the heat
kernel

u(t, ·) = Gt ∗ u0, (1.1)

being

Gt(x) =
1

(4πkt)
N
2

e
−|x|2
4kt .

This causes that any non-negative initial datum that is compactly supported becomes
everywhere positive for any later time. This feature of the heat equation and related
diffusion (Fokker–Planck) models makes them physically unrealistic. Another way in
which these models might not be the best suited in certain circumstances is that they
introduce an instantaneous smoothing on the initial configuration; this is again easily
deduced form (1.1). In particular, any initial discontinuity like a shock is instanta-
neously dissolved.

Several attempts have been tried in order to have a mathematical theory that can
correct the infinite speed of propagation that comes with Fourier’s theory. Here we are
interested in a promising approach that was started by P. Rosenau and coworkers [193].
Their idea is to modify the heat equation considering a flux-limited diffusion process
(to keep it simple we consider one spatial dimension)

∂tu = [G(ux)]x.

The related flux is q = −G(ux); conditions are imposed on the function G in order that
the flux be a monotone function of the gradient which saturates at a finite value, no
matter the size of the gradients. In practical terms, using such a device we impose ad
hoc the maximum speed of propagation. This is a way out to our problem, as we can
impose that the maximum free speed in a given medium be that of sound (or that of
light, depending on the context).

Let us follow closely a more concrete proposal given in [194]. To obtain a flux q that
saturates as the gradients become unbounded he related u and q through the velocity
v, defined by the relation

q = uv.

For the heat equation we would get

v = −k
ux

u
,

so that if |ux/u| ↑ ∞ then so will v, which is the type of phenomena that we want to
correct. Rosenau proposed the alternative relation

k
ux

u
=

−v�
1− v2

c2

,

being c the speed of sound. This forces v to stay in the subsonic regime, and the speed
of sound is only approached if |ux/u| ↑ ∞. We are led to

q = uv =
−kux�

1 + (kux
cu

)2
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Bringing this new flux into the conservation of energy equation, we arrive at the fol-
lowing modification of the heat equation:

∂tu =



 kuux�
u2 + k2

c2
u2

x





x

. (1.2)

The equation (1.2) has been obtained in a number of different ways. For instance,
Y. Brenier derived it using Monge–Kantorovich’s mass transport theory [54] and he
named it as the relativistic heat equation (although it isn’t an actual relativistic gen-
eralization of the usual heat equation). Nowadays there are several attempts to try to
deduce it from microscopic principles, let us mention those of macroscopic hyperbolic
limits [40] and stochastic processes related to mean curvature flow.

As Brenier points out, equation (1.2) is one among several flux limited diffusion
equations used in the theory of radiation hydrodynamics [158]. For instance, another
slightly different proposal is that of J.R. Wilson (unpublished, see [158]). He suggests
that

q = −νu
ux

u + ν

c
|ux|

, (1.3)

being ν a constant representing a kinematic viscosity. The associated diffusion equation
is

∂tu = ν

�
uux

u + ν

c
|ux|

�

x

;

the reader can see that it formally interpolates between the standard heat equation
(when c →∞) and the diffusion equation in transparent media with constant speed of
propagation c

∂tu = c

�
u

ux

|ux|

�

x

,

which is obtained in the limit ν → ∞. This features can also be deduced from the
formula for the flux (1.3): in the limit ν → ∞ it becomes q = −c u ux

|ux| , while in the
regime c →∞ we get q = −νux, the flux associated with the usual heat equation. The
relativistic heat equation shares also these features. Analogous formulas have been
proposed for the study of mass diffusion in liquids [235] and the study of charge ca-
rriers in sub micrometer electronic devices [161]. Other models of nonlinear degenerate
parabolic equations with flux saturations have been introduced in [78, 81, 194], for
instance.

To summarize, the idea is to modify the flux formula of diffusion theory in such
a way that the correct limit behaviors that we want to reproduce and the fact that
the flux cannot violate causality are obtained. Let us mention in passing that the
same type of behavior could be obtained using the porous media equation [226]; for the
applications we have in mind this model is not so well suited, due to the fact that the
speed of propagation depends on the particular initial datum rather than on intrinsic
properties of the particles.

These models have been used in the study of heat and mass transfer in turbulent
fluids [45]; they also appear in the study of radiation transfer related to astrophysical
systems [158], to name a few areas. Our motivation comes from the transport of
morphogenes in biological systems and we will comment on this in Section 6.2.
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A general class of flux limited diffusion equations and the properties of the rela-
tivistic heat equation have been studied in a series of papers [18, 19, 20, 21, 22, 23, 24],
where the well-posedness of the Cauchy, the Neumann and the Dirichlet problem for
the relativistic heat equation and related models is proved. These works constitute the
starting point for our research.

6.2 The biological problem: setting and main results

The driving idea behind this chapter is to contribute with some new ideas to the
modeling of the dynamics of Sonic Hedgehog morphogenetic function, as a mean to
study its consequences on the evolution of some transcription factors and on cellular
differentiation in the embryonic neural tube. Since the discovery of the Drosophila
Hedgehog (Hh) mutation and gene, Hh signalling has been found to play multiple roles
in development, homeostasis and disease (reviewed in [126, 162]).

Let us give some hints about the biological motivation of this problem. In ver-
tebrates the Hh family comprises three proteins which act as secreted, intercellular
factors that affect cell fate, differentiation, survival, and proliferation in the developing
embryo and in many organs at one time or another. Sonic Hedgehog (Shh) is the most
broadly expressed member of the Hh family. Within the central nervous system, the
development of the early vertebrate ventral neural tube [130] and of the later dorsal
brain [198] depends on Shh signaling. In the early neural tube, it is proposed to act as
a morphogen to specify ventral fates.

Shh signaling has also an important role in tumor formation: the deregulation
of the Shh pathway leads to the development of various tumors, including those in
skin, prostate and brain [196]. Recent findings in developmental genetics afford an
alternative way to think of solid cancer that contrasts with the single cell focus derived
from molecular and cell biology and their emphasis on the cell cycle and the concepts
of gene mutations [196, 199]. In this context, cancer is interpreted as a patterning
disease, in which cells are playing out abnormal developmental programs. Thus, in
tumorigenesis and in embryogenesis, patterning signals and pathways play critical roles.

Recently, a mathematical model that analyzes the Shh signaling network within
the early chick neural tube has been proposed [138, 202], with the main purpose of
investigating temporal effects of morphogen transport and intracellular signaling. Let
us describe it briefly in this paragraph. The model employs a reaction-diffusion equa-
tion to describe spatial transport of Shh, as suggested in [139]. In [202] morphogen
transport and Shh signaling pathway in responding cells are represented by a set of
differential equations. The idea is to analyze the morphogenetic patterning of the
vertebrate embryonic neural tube along the dorsoventral axis. This axis represents
a natural privileged direction for the description of Shh propagation. Actually, the
system is symmetric with respect to this axis and this justifies the reduction to one
dimension. The basic ingredients employed to construct the equations are Fick’s second
law and the law of mass action. The first is applied to describe Shh diffusion from the
floor plate source along the dorso-ventral axis, in one spatial dimension. The law of
mass action, valid for single step reactions, states that the rate of a chemical reaction is
proportional to the concentration of the participating molecules. It is used to describe
the rate of change in the concentrations of the various proteins involved in the Shh
signaling pathway. All chemical reactions are considered to be reversible and to have
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already reached a stationary state during tissue patterning. To summarize, the model
consists of a partial differential equation describing Shh diffusion inside the neural tube
and of seven ordinary coupled differential equation representing temporal evolution of
protein concentrations. All the variables thus depend on both time and space.

Despite the reaction terms that are present in the equation for the evolution of
Shh concentration, the predictions obtained by this model show the typical behavior
corresponding to a diffusive transport mechanism. These results do not reproduce the
experimental observation that Shh is able to exert a long range action in specifying
the ventral progenitor cell pattern [55, 107]. Actually it has been shown that this
morphogen can signal over a range of at least 15-20 cell diameters. This means that
progenitor cells situated at distance up to 300 microns from the morphogen source are
exposed to a Shh concentration sufficient to trigger the activation of the transduction
pathway and induce phenotype switch. Furthermore, numerous studies have pointed
out that not only the quantity of morphogen is relevant to determine cell response, but
also the duration of exposure [84, 170], consistent with a transient mixed phenotype in
central cells [197].

From the biological point of view, although the existence of morphogens and their
action is no longer in doubt, their transport mechanism and the process of formation
of their concentration gradient is still under debate [44, 140]. The model presented in
[202] is not able to reproduce a fundamental feature of the Shh pathway: the long-
range signaling activity of this morphogen, for instance up to 15-20 cell diameters in
the chick neural tube [55] or of Hh in the fly imaginal disc [108]. Furthermore, as all
the models based on reaction-diffusion equations, it involves unphysical spreading out
of the morphogen to all the precursor cell field soon after the secretion.

These facts motivate our approach to the problem trying to overcome the difficulty
of an infinite speed of propagation of the signal transmission by proposing a new model
with a non-linear diffusion mechanism with finite speed of propagation. In this way,
the system behaves more like an hyperbolic system than a linear parabolic model.

Modeling transport mechanism using diffusion equations implies a general problem:
the introduction of an unphysical spreading of the morphogen to all the precursor cell
field soon after secretion. If the morphogen propagates too fast within the neural tube,
along the dorso-ventral axis, its concentration gradient decreases too quickly to be able
to induce cell phenotype switch. One of the main reasons why the model presented
in [202] encounters difficulties in representing the long range signaling property of Shh
resides in the features of the linear diffusion mechanism, in particular the infinite speed
of propagation of the Shh signal. As a consequence, the cells in the neural tube receive
instantaneously the information and this is a problem since, as we have commented
before, not only the amount of morphogen matters, but also the time of exposure.
Actually it seems reasonable to overcome this difficulty in this type of model, even
when the diffusion is coupled with reaction terms in the equation. We thus propose
to modify the usual Fick’s second law employed to explicate morphogen propagation
pretty much in the same way that Fourier’s law is modified to obtain the relativistic
heat equation instead of the classical heat equation. This modification would allow
to control the spreading of the morphogen along the neural tube without having to
introduce accessory mechanisms limiting the diffusion.

This proposal of ours leads us to analyze a mixed initial-boundary value problem
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associated with a nonlinear flux–limited reaction–diffusion system






∂u

∂t
= (a(u, ux))

x
− f(t− τ, u(t, x)) u(t, x) + g(t, u(t, x)), in ]0, T [×]0, L[

−a(u(t, 0), ux(t, 0)) = β > 0 and u(t, L) = 0 on t ∈]0, T [,

u(0, x) = u0(x) in x ∈]0, L[,
(2.4)

being

a(z, ξ) := ν
|z|ξ�

z2 + ν2

c2
|ξ|2

,

where the boundary conditions must be interpreted in a weak sense —which will be
explained later on— and the functions f and g are nonlinear with respect to u and
depend on u through a coupling system of ordinary differential equations. Recall that
ν represents a kinematic viscosity and c stands for the maximum speed allowed. The
parameter τ represents a delay in the process of signaling pathway cell internaliza-
tion. The analysis of a simplified version of these models is the main purpose of the
present chapter. In addition to the biological or physical motivations, the mathemati-
cal analysis of this equation poses several difficulties, making even more interesting its
study, such as the existence and evolution of fronts as well as the study of its finite
speed of propagation, the related lack of regularity and the set-up of an appropriate
functional framework to give a meaning to the differential operator and the boundary
conditions. To deal with this mathematical problems we need to combine and extend
the applicability of different techniques coming from parabolic and hyperbolic contexts
such as Crandall-Liggett’s theorem, Minty–Browder’s technique, the entropy concept
of solution and the method of doubling variables due to S. Kruzhkov.

Our main result concerning (2.4) with f = g = 0 is the following:

Theorem 6.2.1 For any initial datum 0 ≤ u0 ∈ L∞(]0, L[) there exists a unique
bounded entropy solution u of (2.4) in QT =]0, T [×]0, L[ for every T > 0 such that
u(0) = u0.

The rest of the chapter is structured as follows. First we will take a detour to explain
with detail the mathematical problems and techniques related to these models in an
intuitive way; this will serve as a bridge before we proceed to our concrete problem.
Section 6.4 serves to introduce all the tools needed to develop the theory: a suitable
integration by parts formula, lower semi-continuity results and a functional calculus, in
order to be able to give a sense to the differential operator. In Section 6.5 we discuss the
associated elliptic problem: we define what a solution is, and then we prove existence
and uniqueness of such a solution. Next, this material is used to define an accretive
operator and construct a nonlinear semigroup, which accounts for solving our problem
(2.4) in a mild sense; all this is the content of Section 6.6. In Section 6.7 we prove that
the mild solution previously constructed can be characterized in more operative terms,
as a so-called entropy solution —a concept which is also introduced in that section—.
Then we prove a comparison criterion which in particular entails uniqueness of entropy
solutions, thus proving Theorem 6.2.1.
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6.3 The mathematics behind the heuristics

A broad class of evolution problems of the form

∂u

∂t
= div a(u,∇u)

have been studied in [16, 17] and in [18, 19, 20, 21, 22, 23], under several restrictions for
the operator a(u,∇u) (basically to be the derivative of a convex function with linear
growth as |∇u| → ∞). The mathematical theory developed to perform this study is
presently quite involved. The purpose of this section is to illustrate the heuristics that
motivate all the subtleties of the theory; we will have to readapt them later for the
study of the model presented in the next section. To this aim it will be instructive to
restrict ourselves to a reference problem among the previous class. We will consider the
Cauchy problem for a concrete equation —rescaling to one all physical constants—,

∂u

∂t
= div

�
|u|∇u�

u2 + |∇u|2

�
in [0, T [×RN (3.5)

with non-negative initial data; arguments can be suitably adapted to cover domains
other than RN . Although, a(u,∇u) will be a shorthand for the operator enclosed in
the divergence still.

The strategy to study these equations falls under the standard paradigm: propose
a sequence of approximating problems that you are able to cope with and then try to
pass to the limit in some way keeping as much information as you can. For the purpose
of this section we will proceed as we had a sequence of smooth solutions to the very
equation (3.5) and try to figure out what is to be expected for the limit.

We start wondering about uniqueness. This question poses no problem at a formal
level, as we are going to see. Given two solutions u1, u2 we subtract both equations,
multiply by sign0(u1 − u2) and integrate in the whole RN , thus obtaining

d

dt

�

RN
|u1 − u2| dx =

�

RN
sign0(u1 − u2)

d

dt
(u1 − u2) dx

=
�

RN
sign0(u1 − u2)div [a(u1,∇u1)− a(u2,∇u2)] dx.

Integrating by parts we get to

d

dt

�

RN
|u1 − u2| dx = −2

�

RN
δ(u1 − u2)∇(u1 − u2)(a(u1,∇u1)− a(u2,∇u2)) dx

= −2
�

[u1=u2]
(∇u1 −∇u2)(a(u1,∇u1)− a(u1,∇u2)) dx

and the monotonicity properties of a(u, ·) allows us to conclude that the above quantity
has a well defined sign, so that

�

RN
|u1(t, x)− u2(t, x)| dx ≤

�

RN
|u1(0, x)− u2(0, x)| dx ∀t > 0.

This contraction principle yields uniqueness as a particular consequence, but we have
“proved” much more than that. It is even possible to substitute the absolute values by
the positive part above.
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The monotonicity properties of these operators stem from the convexity of the
associated Lagrangian. Namely, the class of operators and Lagrangians studied in
[16, 17, 18, 19, 20, 21, 22, 23] is such that

a(z, ξ) = ∇ξF (z, ξ), being ξ �→ F (z, ξ) a convex function.

So that
F (z, ξ1)− F (z, ξ2) ≥ ∇ξF (z, ξ2) · (ξ1 − ξ2)

and
F (z, ξ2)− F (z, ξ1) ≥ ∇ξF (z, ξ1) · (ξ2 − ξ1).

Adding both we obtain

(∇F (z, ξ1)−∇F (z, ξ2)) · (ξ2 − ξ1) ≥ 0

or, in an equivalent way,

(∇u1 −∇u2) · (a(z,∇u1)− a(z,∇u2)) ≥ 0.

To construct a real uniqueness proof from these computations is a much harder
task. Let us mention in passing that there is no clear way to get these computations
to work in any other Lp space. For instance in the L2 case we would get

1
2

d

dt

�

RN
(u1 − u2)2 dx = −

�

RN
∇(u1 − u2) (a(u1,∇u1)− a(u2,∇u2)) dx

and it’s by no means clear what should we do to cope with the right hand side.

6.3.1 About a priori estimates

First of all, let us point out the fact that several explicit solutions for a related model,
the diffusion equation in transparent media

ut = div
�

u
Du

|Du|

�
,

are known [22]. The solutions we are talking about consist in spherically symmetric
solutions that are radially evolving fronts expanding at constant speed. This implies
that we cannot hope to get regular solutions in general. That is, presumably u ∈ BVx

(this will be recovered again from the abstract framework) but ut /∈ L1. For the above
mentioned solutions ut is a Radon measure, but this not need to be the case in general.
In fact, the parabolicity of the problem is so weak when |∇u| → ∞ that the resulting
limit equation is hyperbolic and propagates initial singularities. The results in [21]
support these ideas.

Let us derive formally some a priori estimates for the solutions of the equation.

• Non-negativity is obtained multiplying the equation by u− = −min{u, 0} and
integrating, so that

�

RN
u−

∂u

∂t
dx = −

�

RN
∇u−

|u|∇u−�
u2 + |∇u|2

dx
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and then �

RN
(u−(t))2 dx ≤

�

RN
(u−(0))2 dx

Thus, we are entitled to remove the absolute values in the numerator of a(u,∇u)
hereafter.

• Direct integration of the equation shows that
�

RN u(t) dx is preserved during
evolution.

• Multiply the equation by up−1, p > 1 and integrate:
�

RN
up−1 ∂u

∂t
dx = −(p− 1)

�

RN
up−2∇u

u∇u�
u2 + |∇u|2

dx

and so �

RN
u(t)p dx ≤

�

RN
u(0)p dx

By semicontinuity properties, the same holds for p = ∞.

• A regularity estimate. Multiply the equation by u and integrate to get
�

RN
u

∂u

∂t
dx = −

�

RN

u(∇u)2�
u2 + |∇u|2

dx ≤
�

RN
u2 dx−

�

RN
u|∇u| dx (3.6)

(this inequality will occupy us for some time, we defer the discussion to the next
paragraph) which we recast as

1
2

�
T

0

�

RN
|∇u(t)2| dxdt ≤ (T + 1)

�

RN
u(0)2 dx.

This poorer-than-expected estimate is related to the degeneracy provoked by the
presence of the factor u (rather than ∇u naked) in the numerator of a(u,∇u). As
no lower bound for the solution is known, this spoils the regularity of the solution
close to the zeroth level set: only a BV estimate for u2 is available in the limit,
instead of a BV estimate for u, which could be the thing to be expected from the
linear growth of the Lagrangian with respect to the gradient. This motivates the
use of truncation functions.

To have a correct derivation of these formal estimates would require to multiply
the equation by the very solution —or a suitable truncation— and to be able to give
a rigorous meaning to this operation. Even in the more favored case of having that
div a(u,Du) is a Radon measure this would require to integrate such a measure against
BV functions. We can solve this problem arguing that div a(u,Du) does indeed define
an element of BV (RN )∗, as a(u,Du) is bounded. Then Anzellotti’s results [26] can be
used in order to integrate by parts under such framework. More precisely, his results
allow to give a meaning to the pairing zDu of a vector field z against the derivative of
a function u, being z ∈ {ψ ∈ L∞(RN , RN )/div ψ ∈ Lp(RN )} and u ∈ (BV ∩ Lp

�)(RN ),
for 1 ≤ p ≤ N and N ≥ 2. Time dependence has to be included, so what we will really
have is div a(u,Du) ∈ (L1(0, T, BV (RN )))∗ and we will be able to use test functions in
L1(0, T, BV (RN )); Anzellotti’s theory has to be extended to the time-dependent case.
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Assume then that we are able to integrate by parts, for the sake of obtaining a priori
estimates or whatsoever. Being the expected regularity for the solutions that poor,
what meaning is attached to a(u,Du)? The main problem here is how to give a sense
to Du that works nicely with the nonlinear context where it appears. The essential
properties that we will be interested in are really only a few. Basically we want to
regard a(u,Du) as an almost everywhere defined function, that coincides a.e. with the
limit of the regular objects a(u,∇u) and that enables us to say that |a(u,∇u)| ≤ C|u|.
This last property entitles us to transfer the integrability properties of the solution u
to the limit of smooth objects a(u,∇u) and so to be able to use Anzellotti’s results
for partial integration. Such a handy meaning for Du can be borrowed from [41]. If
u ∈ BV (RN ) we use ∇u to give a meaning to a(u,Du), if u is of bounded variation
only after truncation we can use a procedure like the one in [41] to manufacture the
analog of the Radon–Nikodym derivative for this class of functions. Anyway, the thing
to be remembered is that we do not consider any information coming from the singular
parts of the derivative when giving a meaning to a(u,Du); this loss of information is
treated later using entropy inequalities.

Once we have all these tools at our disposal, we can see that a priori estimates will
be obtained multiplying the equation by some truncation of the solution T (u); then
the crucial abstract fact that enables us to derive some information is the property
that a(u,∇u)∇T (u) ≥ 0, as the reader may check in the previous computations. The
extension of this fact to the non-smooth setting is one of the central issues, as it is not
completely clear how to deal with the singular parts of the derivative of T (u).

6.3.2 Functional calculus I: the mechanism that provides regularity

Now we elaborate on the inequality in (3.6). This is where the properties of the La-
grangian function are crucial in order to get an estimate on ∇u. It comes from the fact
that convexity yields the inequality

a(z, ξ)(η − ξ) ≤ F (z, η)− F (z, ξ).

Taking η = 0 gives
a(z, ξ)ξ ≥ F (z, ξ)− F (z, 0).

As we previously pointed out we can obtain the relation
�

RN
uut dx = −

�

RN
a(u,∇u)∇u dx

and then the previous inequality would lead to
�

RN
F (u,∇u) dx +

�

RN
uut dx ≤

�

RN
F (u, 0) dx.

Assuming that a priori estimates are good enough to control the difference
�

RN F (u, 0) dx−�
RN uut dx we would obtain the following regularity estimate for our solution u:

�

RN
F (u,∇u) dx < ∞.

No wonder that these computations can be valid only for regular solutions, and it
is very likely that we won’t be that lucky. Nevertheless it will go through for the
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approximated problems. So that we are confronted to the question of giving a meaning
to the expression F (u,∇u) in the presence of non-smooth functions while retaining an
inequality like

a(u,∇u)∇u ≥ F (u,∇u)− F (u, 0) (3.7)

in the extended setting. It turns out that a suitable extension of the object F (u,∇u)
to our non-smooth setting can be obtained with recourse to the relaxed energy func-
tionals introduced by Dal Masso for functions of linear growth [82]. Then we get a
generalization of the inequality (3.7) that works properly in this setting:

F (u,DT (u)) ≤ a(u,Du)DT (u) + F (u, 0)LN in the sense of measures.

The derivation is just a passage to the limit in the inequality satisfied by the smooth
approximations, as one of the crucial advantages of Dal Masso’s extension is the fact
that the resulting object F (u,DT (u)) is lower semicontinuous in L1(RN ).

6.3.3 The Minty-Browder method

We will encounter a very delicate problem when passing to the limit of the approxi-
mations in the highly nonlinear expression that constitutes the operator a(u,∇u). No
doubt that we can ensure that the related sequence of approximating operators has
a limit in some sense, but the central issue here is the following: Can we assure that
the limit operator retains the a(u,∇u) structure? For a problem like ours this can be
solved in an affirmative sense exploiting the monotonicity properties of our differential
operator. The related device is known as Minty–Browder’s method; we will describe
briefly how does it work, in the framework of a Hilbert space.

Assume that we have an equation for q involving a nonlinear operator a(q) and to
study it we construct a sequence of approximating problems in a Hilbert space H with
solutions qn that converge to a solution q of the limit problem. The sequence given by
a(qn) will have a limit in some sense that we call ξ. The issue is to prove that ξ = a(q)
indeed. The operator a(q) is assumed to be monotone, meaning that

(a(p)− a(q)) · (p− q) ≥ 0 ∀p, q ∈ H.

Thanks to this property we will have an inequality like

(a(qn)− a(p)) · (qn − p) ≥ 0 for p ∈ H

for the approximating problems. Then we have to be able to assure that in the limit
we will retain this structure, that is,

(ξ − a(p)) · (q − p) ≥ 0 for p ∈ H.

Choose now p = q − tv, being t ∈ R and v ∈ H, so that

(ξ − a(q − tv)) · (tv) ≥ 0.

Divide the previous by t and let t → 0. If the operator a(q) is continuous on finite
dimensional subspaces we will get to

(ξ − a(q)) · v ≥ 0.

Replacing v by −v we conclude that ξ = a(q), equality holding in the sense provided
by the underlying space.
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6.3.4 Functional calculus II: Kruzkov’s method for uniqueness

At the beginning we sketched the idea that uniqueness could be obtained multiplying
the equation by a suitable regularization Tn(u1−u2) of the sign of the difference of two
solutions. Now that we have given some hints about the solutions of this equation we
can see that this approach is condemned to failure. This time the computation would
read

�

RN
Tn(u1 − u2)

∂

∂t
(u1 − u2) dx =

−
�

RN
T �

n(u1 − u2)∇(u1 − u2)(a(u1,∇u1)− a(u2,∇u2)) dx

and some difficulties arise pretty soon. First, we have no guarantee that u1 − u2 is
of bounded variation after truncation, which seems to be the minimal regularity to be
able to perform calculus in our setting.

Second, we would like to use the monotonicity to conclude that the right hand side
is non-positive, but in the present form it cannot be applied: the first argument in both
a(·, ·) terms is not the same yet, despite the fact that T �

n(u1 − u2) approaches a Dirac
delta. Nevertheless we could expand the expression in its four factors, but two of them
do not have a definite sign. So that a(u1,∇u1)DTn(u1−u2) and a(u2,∇u2)DTn(u1−u2)
do not have an a priori definite sign.

And, maybe the most important drawback, the fact that we may be confronting a
Dirac measure against presumably non-continuos functions does not disappear by the
mere fact that we have regularized the sign function.

Kruzkov’s method of doubling variables provides a way out to the third point, as the
problem of pointwise convergence is relaxed to a problem concerning L1 convergence.
In this way we can regard the method as some short of regularizing device. We are
going to see that it solves also the other caveats that we noticed.

The idea is to regard both solutions as functions of different variables, say (t, x) and
(s, y) for instance. So that a kind of decoupling is performed and we don’t have to rely
on issues of the combined regularity of u1−u2, for instance. We mean that if l ∈ R, we
retain the desired properties for some carefully chosen truncations T (u(x)− l) (that is,
regularity and the fact that a(u1, Du1)DT (u1 − l) ≥ 0 —but this is a long story that
deserves an explanation, soon we will come to that), which is now a meaningful object,
while the parameter l can be used to bring in the other solution. We only identify the
variables to return to Tn(u1(x) − u2(x)) once we have control over all the superfluous
terms that arise due to this maneuver.

The set-up of the procedure is as follows: we multiply each equation (with decoupled
variables) by a suitable test function φS(ui)T (ui), i = 1, 2, we integrate in the chosen
variables and use some functional calculus in order to integrate by parts. After that
we integrate in the mute variables and then subtract both resulting equations. The
test functions that we shall use are made up of three factors. First, φ is a smooth
function that approximates a Dirac measure, evaluated in the difference of variables,
say (t − s, x − y). This allows to give a meaning to the dualities and also to fuse the
decoupled variables once it is possible (basically, once we get rid of all the gradients
in the computations). The second factor S(ui) is an approximation to the sing0 or
sing+

0 function of the difference of both solutions. As variables are decoupled, one of
the solutions is regarded only as a truncation parameter as long as we do not fuse the
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variables, thus allowing the use of regularity and positivity properties. The third factor
T (ui) is required to stay away from the degeneracy of ui at zero, a feature that S(ui)
cannot always guarantee —precisely where one of the solutions vanishes; its use could
be disregarded if we knew that the solutions are of bounded variation [16, 17].

We need to set up a functional calculus that is able to give a meaning to expressions
like

a(ui, Dui))D(S(ui)T (ui)) = S(ui)a(ui, Dui)DT (ui) + T (ui)a(ui, Dui)DS(ui),

that we will encounter while developing the previous program. To do so we observe
that defining

Jq(r) =
�

r

0
q(s) ds

we have the relations

S(ui)a(ui, Dui)DT (ui) = a(ui, Dui)DJT �S(ui),

S(ui)a(ui, Dui)DT (ui) = a(ui, Dui)DJT �S(ui)

and in this way written we pass from three to two factors, having also a functional form
that falls under the framework of Anzellotti’s results.

6.3.5 The entropy inequalities

If we try to continue with that computations on the previous paragraph we encounter
new difficulties pretty soon. At a formal level we have that

a(u,Du)DJT �S(u) = S(u)a(u,DT (u))DT (u). (3.8)

It’s almost like what we started with, S(u)a(u,Du)DT (u), but the fact that the trun-
cation function has also “shifted” inside a(u, ·) is crucial, as it provides a sign for the
quantity in (3.8). Recall that many formal estimates that we commented on previously
rely on the fact that

a(u,∇u) ·∇u ≥ 0,

or even
a(u,∇T (u)) ·∇(T (u)) ≥ 0.

Indeed, a(u,∇T (u)) · ∇u = a(u,∇T (u)) · ∇(T (u)) when it has a sense, as the factor
∇T (u) restricts the support accordingly.

In the non-smooth setting (3.8) is no longer true, and we are going to show why.
Recall that we said that we neglect all the information coming from the singular part
of the derivative of u in order to give a meaning to a(u,Du), and thus this information
is not included when we write down the distributional formulation of the equation. In
some situations it is useful to try to restore as much information as we can, and this
is the role played by the entropy inequalities, that keep track of the behavior of the
singular parts of Du. The necessity for this is clearly seen if we continue with the
computations on Kruzkov’s procedure. Sloppy writing shows that

S(ui)a(ui, Dui)DT (ui) = S(ui)a(ui,∇ui)(∇T (ui) + DsT (ui))
=S(ui)a(ui,∇T (ui))∇T (ui) + S(ui)a(ui,∇ui)DsT (ui) ≥ S(ui)a(ui,∇ui)DsT (ui)



126 6.4. Preliminaries

and we would be very pleased to ensure the non-negativity of that quantity, but it’s clear
that we cannot “complete the square” with ∇ui. Good news are that we can prove that
for a nice class of solutions to our problem that quantity above is non-negative indeed.
This statement and variants of it constitute what we will call “entropy inequalities”.
They are crucial for the proof of uniqueness (which as a consequence holds by now only
for the class of solutions that fulfill them) and for certain details of the development of
the existence theory, as regularity of the solutions or identification of the operator in
the limit using Minty–Browder’s technique.

6.4 Preliminaries

We refer the reader to the Appendices for a brief survey on non-linear semigroup theory,
vector integration and functions of bounded variation in dimension 1, which will appear
recurrently in the present chapter. All the notation related to these topics is explained
in the corresponding Appendix. Contrary to the general picture sketched in Section
6.3, we will take definite advantage of working in dimension 1.

6.4.1 An integration by parts formula

Given z ∈ W 1,1(]0, L[) and u ∈ BV (]0, L[), by zDu we mean the Radon measure in
]0, L[ defined as

�ϕ, zDu� :=
�

L

0
ϕzDu ∀ϕ ∈ Cc(]0, L[).

The following integration by parts formula will be used repeatedly in the sequel.

Lemma 6.4.1 If z ∈ W 1,1(]0, L[) and u ∈ BV (]0, L[), then
�

L

0
zDu +

�
L

0
u(x)z�(x) dx = z(L)u(L−)− z(0)u(0+).

Proof. Note first that if u ∈ BV (]0, L[) then u ∈ L∞(]0, L[), which gives a sense to the
integral

�
L

0 u(x)z�(x) dx. To proceed we take the approximating sequence {un} given
by Theorem C.1.3 in the Appendix. Let us see that

lim
n→+∞

�
L

0
z(x)u�n(x) dx =

�
L

0
zDu. (4.9)

For any given � > 0 we can find an n ∈ N big enough so that we can have

|Du|
�
]0, 1/n[

�
]L− 1/n, L[

�
< �.

Let ϕ ∈ D(]0, L[) be such that 0 ≤ ϕ ≤ 1 in ]0, L[ and ϕ(x) = 1 for all x ∈]1/n, L−1/n[.
Then,

����
�

L

0
z(x)u�n(x) dx−

�
L

0
zDu

���� ≤
����
�

L

0
ϕ(x)z(x)u�n(x) dx−

�
L

0
ϕzDu

����

+
�

L

0
(1− ϕ(x))|z(x)u�n(x)| dx +

�
L

0
(1− ϕ)|zDu|.



6. An evolution model to the transport of morphogenes 127

Now, integrating by parts, by the Dominate Convergence Theorem we get

lim
n→+∞

�
L

0
ϕ(x)z(x)u�n(x) dx

= − lim
n→+∞

�
L

0
ϕ�(x)z(x)un(x) dx− lim

n→+∞

�
L

0
ϕ(x)z�(x)un(x) dx

= −
�

L

0
ϕ�(x)z(x)u(x) dx−

�
L

0
ϕ(x)z�(x)u(x) dx

= −
�

L

0
(ϕz)�(x)u(x) dx =

�
L

0
ϕzDu

For the last step we used that Du is a Radon measure and ϕz ∈ Cc(]0, L[)). On the
other hand,

lim sup
n→+∞

�
L

0
(1− ϕ(x))|z(x)u�n(x)| dx ≤ �z�∞

�

]0,1/n[∪ ]L−1/n,L[
|u�n(x)| dx ≤ ��z�∞

(see Lemma C.1.6 in the Appendix). Then
�

L

0
(1− ϕ)|zDu| ≤ ��z�∞.

Since � > 0 is arbitrary, (4.9) follows. Finally, by (4.9) and integrating by parts we
have

�
L

0
zDu = lim

n→+∞

�
L

0
z(x)u�n(x) dx

= − lim
n→+∞

�
L

0
z
�(x)un(x) dx + z(L)u(L−)− z(0)u(0+)

= −
�

L

0
z
�(x)u(x) dx + z(L)u(L−)− z(0)u(0+).

✷

6.4.2 Properties of the Lagrangian

We define for z, ξ ∈ R
a(z, ξ) :=

ν|z|ξ�
z2 + ν2

c2
|ξ|2

. (4.10)

We assume a(z, 0) = 0 for all z ∈ R. Then a(z, ξ) = ∂ξF (z, ξ), being the Lagrangian

F (z, ξ) :=
c2

ν
|z|

�
z2 +

ν2

c2
ξ2.

By the convexity of F in the ξ-variable,

a(z, ξ)(η − ξ) ≤ F (z, η)− F (z, ξ) for all z, ξ, η ∈ R (4.11)

In what follows we will use M as a generic constant whose purpose is always to denote
a bound on the L∞-norm of the solutions. Its value may change from line to line, or
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even within the same line. A notation like M(a, b, . . .) means that the constant M
depends upon the specified quantities.
Note that we have

c|z||ξ|− c2

ν
z2 ≤ a(z, ξ)ξ ≤ cM |ξ| for all z, ξ ∈ R, |z| ≤ M. (4.12)

First inequality in (4.12) comes after setting η = 0 in (4.11). Moreover, using (4.11)
again it is easy to see that

(a(z, ξ)− a(z, ξ̂)) (ξ − ξ̂) ≥ 0 (4.13)

for any (z, ξ), (z, ξ̂) ∈ R× R, |z| ≤ M and

(a(z, ξ)− a(ẑ, ξ̂)) (ξ − ξ̂) ≥ −C|z − ẑ| |ξ − ξ̂| (4.14)

for any (z, ξ), (ẑ, ξ) ∈ R× R, |z|, |ẑ| ≤ M . Finally, we have

a(z, ξ) η ≤ c|z||η| for all ξ, η, z ∈ R. (4.15)

6.4.3 A functional calculus

We introduce the following notation to ease the way in which our functional calculus
will be written: for any function q let Jq(r) denote its primitive, i.e.,

Jq(r) =
�

r

0
q(s) ds.

We are going to give a sense to the expressions F (u, u�) and a(u, u�)u� for functions of
bounded variation. For this we rely in dal Masso’s theory of relaxed energy functionals
of functionals with linear growth with respect to the gradient [82]. The general setting
is this: Assume that f : R × R → [0,∞[ is a continuous function convex in its second
variable such that

0 ≤ f(z, ξ) ≤ C(1 + |ξ|) ∀(z, ξ) ∈ R× R, |z| ≤ M. (4.16)

for some constant C ≥ 0 which may depend on M . Given f(z, ξ), we define its recession
function as

f0(z, ξ) = lim
t→0+

tf

�
z,

ξ

t

�
.

We assume that f0(z, ξ) = ϕ(z)ψ0(ξ), with ϕ Lipschitz continuous and ψ0 homo-
geneous of degree 1. Then, working as in [18], if for a fixed function φ ∈ Cc(]0, L[) we
define the operator Rφf : BV (]0, L[) → R by

Rφf (u) :=
�

L

0
φ(x)f(u(x), u�(x)) dx +

�
L

0
φ(x)ψ0

�
Du

|Du|

�
|DsJϕ(u)|, (4.17)

we have that Rφf is lower semi-continuous respect to the L1-convergence.
For instance, we discuss here for future usage one of the cases we are mostly interested
in: define θ(z) = c|z|; note that F 0(z, ξ) = θ(z)ψ0(ξ), with ψ0(ξ) = |ξ|. Therefore,

RφF (u) :=
�

L

0
φ(x)F (u(x), u�(x)) dx +

c

2

�
L

0
φ(x)|Ds(u2)|
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is lower semi-continuous in BV (]0, L[) respect to the L1-convergence. This construction
gives a meaning to the formal expression F (u, u�).

Next we move on to the task of giving a meaning to a(u,Du)Du. For this we shall
consider the function h : R× R → R defined by

h(z, ξ) := a(z, ξ) · ξ.

Note that
h(z, ξ) ≥ 0 ∀ξ, z ∈ R. (4.18)

We will make use of the following property:

h0(z, ξ) = F 0(z, ξ) ∀ξ, z ∈ R. (4.19)

Under the present circumstances we can give a meaning to a(u, u�)u� as an operator
Rφh : BV (]0, L[) → R, regarding u� as the Radon–Nikodym derivative and consequently
a(u, u�) as a function. We will come back to the precise meaning of a(u, u�) in the next
paragraph.

There is also need to introduce functionals that can take into account the boundary
values, as it is known that for the Dirichlet problem (see [23]) the boundary data is not
taken pointwise in general. The following result is a particular case of Theorem 2.4 in
[23].

Theorem 6.4.2 Let f be verifying (4.16) and such that its recession function factorizes
as f0(z, ξ) = ϕ(z)|ξ|, being ϕ Lipschitz continuous. Let also φ ∈ C([0, L])+ be given.
Then, the functional F0

φf
: BV (]0, L[) −→ R defined by

F0
φf

(u) := Rφf (u) + φ(L) |Jϕ(u)(L−)|

is lower semi-continuous with respect to the L1−convergence.

We will require the following specialized result.

Corollary 6.4.3 Let S = S(z) be a Lipschitz function. Let also φ ∈ C([0, L])+ be
given. The functionals F0

φSF
, F0

φF
: BV (]0, L[) −→ R are lower semi-continuous with

respect to the L1−convergence.

6.4.4 Spaces of truncated functions and associated calculus

As already pointed out in Chapter 6.3, the degeneracy of the equation close to zero
forces us to use cutoff functions in order to retain some regularity for the solutions.
The tools devised to this aim are detailed here.

We need to take into account the following truncation functions. For a < b, let

Ta,b(r) := max{min{b, r}, a}.

We denote Tk = T−k,k. Given l ∈ R, we shall also consider the truncation functions
T l

a,b
(r) := Ta,b(r)− l. We define the following sets of truncations:

Tr := {Ta,b : 0 < a < b}, T + := {T l

a,b
: 0 < a < b, l ∈ R, T l

a,b
≥ 0}.



130 6.4. Preliminaries

Consider the function space

TBV +(]0, L[) :=
�
u ∈ L1(]0, L[)+ : T (u) ∈ BV (]0, L[), ∀ T ∈ Tr

�
;

we want to give a sense to the Radon–Nikodym derivative u� of a function u belonging
to TBV +(]0, L[). Using chain’s rule for BV-functions (see, for instance, [3]), and with
a similar proof to the one given in Lemma 2.1 of [41], we obtain the following result.

Lemma 6.4.4 For every u ∈ TBV +(]0, L[) there exists a unique measurable function
v :]0, L[→ R such that

(Ta,b(u))� = vχ[a<u<b] L1 − a.e., ∀ Ta,b ∈ Tr. (4.20)

Thanks to this result we define u� for a function u ∈ TBV +(]0, L[) as the unique
function v which satisfies (4.20). This notation will be used throughout in the sequel.
Notice that with this result at hand the object a(u, u�) has a sense as a function a.e.
defined, for any u ∈ TBV +(]0, L[).
The notation ∂x will also be used in the case of functions of several variables (say t
and x), for the same purposes, whenever there is some risk of confusion. Note also
that this concept of derivative reduces to the case of the Radon–Nikodym derivative
for function of bounded variation, or to the ordinary derivative of smooth functions,
then this notation coincides with the standard one.

Sometimes it will be handy to consider a more general class of truncation functions.
We denote by P the set of Lipschitz continuous function p : [0,+∞[→ R satisfying
p�(s) = 0 for s large enough. We recall the following result ([14], Lemma 2).

Lemma 6.4.5 If u ∈ TBV +(]0, L[), then p(u) ∈ BV (]0, L[) for every p ∈ P such that
p(r) = 0 in a neighborhood of r = 0. Moreover, with the above notation [p(u)]� =
p�(u)u� L1-a.e.

The following straightforward consequence will be useful to deal with products of trun-
cation functions, a situation that we will encounter when using Kruzkov’s method to
prove uniqueness.

Corollary 6.4.6 Let S ∈ P+ and T = T a

a,b
. Given u ∈ TBV +(]0, L[), then

T (u), S(u)T (u), JT �S(u), JTS�(u) ∈ BV (]0, L[).

Moreover,
D(S(u)T (u)) = DJT �S(u) + DJTS�(u)

and hence, if z ∈ W 1,1(]0, L[),

zD(T (u)S(u)) = zDJT �S(u) + zDJTS�(u).

As regards boundary values, we will define for u ∈ TBV +(]0, L[)

u(0+) := lim
n→∞

T 1
n ,n

(u)(0+) and u(L−) := lim
n→∞

T 1
n ,n

(u)(L−).

It is easy to see that the above limits exist [23].
Now we are going to extend the definition of the functionals Rφf from the BV

setting to this TBV setting, allowing to deal with expressions as F (u,DT (u)) and
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a(u, u�)DT (u). For technical reasons related to Kruzkov’s doubling variable procedure,
we also need to give a meaning to F (u,DT (u))S(u) and a(u, u�)DT (u)S(u). Consider to
this purpose f as in (4.16). For u ∈ TBV +(]0, L[), φ ∈ Cc(]0, L[) and T = Ta,b− l ∈ T +

with l ∈ R, we introduce the functional

R(φf, T )(u) := Rφf (Ta,b(u)) +
�

[u≤a]
φ(x)(f(u(x), 0)− f(a, 0)) dx

−
�

[u≥b]
φ(x)(f(u(x), 0)− f(b, 0)) dx.

We have that R(φf, T )(·) is lower semicontinuous in TBV +(]0, L[) with respect to the
L1-convergence.

Given S ∈ P+, T ∈ T + and u ∈ TBV +(]0, L[), we define the following Radon
measures in ]0, L[,

�F (u,DT (u)), φ� := R(φF, T )(u), �FS(u,DT (u)), φ� := R(φSF, T )(u),

�h(u,DT (u)), φ� := R(φh, T )(u), �hS(u,DT (u)), φ� := R(φSh, T )(u),

for φ ∈ Cc(]0, L[). Using (4.17) and (4.19), we compute





F (u,DT (u))s = c

2

��Ds(T (u))2
�� = h(u,DT (u))s,

h(u,DT (u))ac = h(u, (T (u))�),

FS(u,DT (u))s = |DsJSθ(T (u))| = hS(u,DT (u))s

hS(u,DT (u))ac = S(u)h(u, (T (u))�).

(4.21)

6.5 The Elliptic Problem

Our way to solve the problem





∂u

∂t
= (a(u, ux))

x
in ]0, T [×]0, L[

−a(u(t, 0), ux(t, 0)) = β > 0 and u(t, L) = 0 on t ∈]0, T [,

u(0, x) = u0(x) in x ∈]0, L[

(5.22)

rests in the following idea: proceed with a discretization of the time derivative, so that

u(t + ∆t)− u(t)
∆t

∼ (a(u(t + ∆t), u(t + ∆t)x))
x
,

fix then a time step ∆t, use it to construct a grid on [0, T ], assign the “value” ui to the
i-th point of the grid according to the rule

ui − ui−1

∆t
= (a(ui, (ui)x))

x
,
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and finally use the resulting collection of “values” to approximate the actual solution.
Semigroup theory gives the abstract foundations to this schematic procedure. So, given
v ∈ L1(]0, L[), we are interested in the following abstract problem:






− (a(u, u�))� = v in ]0, L[

−a(u, u�)|x=0 = β > 0, u(L) = 0,
(5.23)

where a is given by (4.10). Note that the time step with its precise physical dimensions
is not present in this abstract framework. We introduce the following concept of solution
for problem (5.23).

Definition 6.5.1 Given v ∈ L1(]0, L[), we say that u ≥ 0 is an entropy solution of
(5.23) if u ∈ TBV +(]0, L[) and a(u, u�) ∈ C([0, L]) both satisfy the following conditions:

v = −Da(u, u�) in D�(]0, L[),

−a(u, u�)(0) = β, and a(u, u�)(L) = −cu(L−). (5.24)

h(u,DT (u)) ≤ a(u, u�) DT (u) as measures ∀T ∈ T + (5.25)

hS(u,DT (u)) ≤ a(u, u�) DJT �S(u) as measures ∀S ∈ P+, T ∈ T +. (5.26)

As the absolutely continuos parts coincide thanks to (4.21), the condition (5.25) can
be rewritten as h(u,DT (u))s ≤ [z DT (u)]s, and thus it is equivalent to

c

2
|Ds((T (u))2)| ≤ z DsT (u) as measures ∀T ∈ T +. (5.27)

Also we have that (5.26) can be rewritten as hS(u,DT (u))s ≤ [z DJT �S(u)]s, and is
equivalent to

|Ds(JSθ(T (u)))| ≤ z DsJT �S(u) as measures ∀S ∈ P+, T ∈ T +. (5.28)

A particular consequence —see (4.18)— is that

a(u, u�)DT (u), a(u, u�)DJT �S(u) ≥ 0. (5.29)

Remark 6.5.2 Let us point out that the definition of solution uses some sloppy con-
ventions. The pointwise-defined function a(u, u�) as it stands might not be continuous,
but nevertheless it belongs to W 1,1(]0, L[). We will denote by z its continuous re-
presentative and we will shift from one to the other without warning. This won’t be
misleading, as both have the same boundary values in the sense of traces. Meaning
that any time we are to deal with pointwise values of a(u, u�) it will be in the sense of
traces. As an illustration of this we will prove here a lower bound for the solutions at
the left end of the interval.

The first boundary condition reads formally as

ν
u(0)u�(0)�

u(0)2 + ν2

c2
|u�(0)|2

= −β.

Taking absolute values we would obtain that c u(0) ≥ β. But as we have stated before
plain evaluation at x = 0 might be nonsense. To derive this estimate in the right way
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we have to deal with boundary traces. Since |a(u, u�)| ≤ c|u| follows from (4.10) , we
may take traces on this inequality and thanks to (5.24) we find that

u(0+) ≥ β

c
> 0. (5.30)

We introduce now the main result of this section.

Theorem 6.5.3 For any 0 ≤ f ∈ L∞(]0, L[) there exists a unique entropy solution
u ∈ TBV +(]0, L[) of the problem






u− (a(u, u�))� = f in ]0, L[

−a(u, u�)|x=0 = β > 0, u(L) = 0,
(5.31)

which satisfies �u�∞ ≤ M(β, c, ν, �f�∞). Moreover, let u, u be two entropy solutions of
(5.31) associated to f, f ∈ L1(]0, L[)+, respectively. Then,

�
L

0
(u− u)+ dx ≤

�
L

0
(f − f)+ dx.

The rest of the section is devoted to the proof of this statement.

6.5.1 Existence of entropy solutions

We begin considering a family of approximating problems and showing a-priori esti-
mates for them. Let 0 ≤ f ∈ L∞(]0, L[). For every n ∈ N, consider

an(z, ξ) := a(z, ξ) +
1
n

ξ.

As a consequence of the results about pseudo-monotone operators in [56] we know that
∀n ∈ N there exists a unique un ∈ W 1,2(]0, L[) such that un(L) = 0 and

�
L

0
unv dx +

�
L

0
a(un, u�n)v� dx +

1
n

�
L

0
u�nv� dx− βv(0) =

�
L

0
fv dx (5.32)

for all v ∈ W 1,2(]0, L[), v(L) = 0.

Lemma 6.5.4 The functions un are non-negative ∀n ∈ N.

Proof. In fact, taking v = u−n = −min{un(x), 0} in (5.32), we get
�

L

0
unu−n dx +

�
L

0
a(un, u�n)(u−n )� dx +

1
n

�
L

0
u�n(u−n )� dx = βu−n (0) +

�
L

0
fu−n dx ≥ 0.

Now, �
L

0
u�n(u−n )� dx = −

�

[un<0]
((u−n )�)2 dx ≤ 0

and �
L

0
a(un, u�n)(u−n )� dx = −

�

[un<0]

ν|un|((u−n )�)2�
u2

n + ν2

c2
|u�n|2

dx ≤ 0.
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Hence,

0 ≤
�

L

0
unu−n dx = −

�
L

0
(u−n )2 dx

and Lemma 6.5.4 holds. ✷

Now we give a bound for the boundary values of the sequence un at zero.

Lemma 6.5.5 The sequence {un(0)} is bounded. More precisely, given any � ∈]0, 2[
such that c

2

ν
+ �

2 > 1, the following bound holds:

0 ≤ un(0) ≤

�
2c

ν�(2− �)
�f�2 +

4c β

ν(2− �)
. (5.33)

Proof. Taking v = un in (5.32), we get
�

L

0
u2

n dx +
�

L

0
a(un, u�n)u�n dx +

1
n

�
L

0
((un)�)2 dx = βun(0) +

�
L

0
fun dx. (5.34)

Then, dropping nonnegative terms and performing Young’s inequality with weights,
�

L

0
u2

n dx ≤ βun(0) +
�

L

0
fun dx ≤ βun(0) +

�

2

�
L

0
u2

n dx +
1
2�

�
L

0
f2 dx

and we get �
L

0
u2

n dx ≤ 1
�(2− �)

�
L

0
f2 dx +

2
2− �

β un(0). (5.35)

Taking into account (4.12) we have

u�na(un, u�n) ≥ c un|u�n|−
c2

ν
u2

n.

Now we can write un|u�n| = 1
2 |(u

2
n)�| as u2

n ∈ W 1,1(]0, L). Then, from (5.34), we obtain
�

L

0

c

2
|(u2

n)�| dx+
�

L

0

((un)�)2

n
dx ≤

�
L

0

�
c2

ν
− 1

�
u2

n dx+
�

L

0
fun dx+βun(0). (5.36)

We use also Young’s inequality with the same weights as before on the right hand side
of (5.36), thus getting

c

2
un(0)2 =

����
�

L

0

c

2
(u2

n)� dx

���� ≤
�

L

0

c

2
|(u2

n)�| dx

≤
�

c2

ν
− 1 +

�

2

� �
L

0
u2

n dx +
1
2�

�
L

0
f2 dx + βun(0)

or

un(0)2 ≤
�

2c

ν
+

�− 2
c

� �
L

0
u2

n dx +
1
c �

�
L

0
f2 dx +

2β

c
un(0).

Now we substitute (5.35) in the previous and we arrive to

un(0)2 ≤ 2c

ν�(2− �)

�
L

0
f2 dx +

4c β un(0)
ν(2− �)

.
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Then, we have

u2
n(0)− 4c β

ν(2− �)
un(0)− 2c

ν�(2− �)

�
L

0
f2 dx ≤ 0,

from where we deduce that for all n ∈ N,

0 ≤ un(0) ≤ 1
2



 4c β

ν(2− �)
+

��
4c β

ν(2− �)

�2

+
8c

ν�(2− �)
�f�22





and (5.33) follows. ✷

By (5.36) and Lemma 6.5.5, we get

c

2

�
L

0
|(u2

n)�| dx +
1
n

�
L

0
((un)�)2 dx ≤ C ∀n ∈ N. (5.37)

Lemma 6.5.6 The sequence {un : n ∈ N} is uniformly bounded in L∞(]0, L[).

Proof. By (5.33), we know that

M = max {�f�∞,max{un(0) : n ∈ N}} < +∞.

Then, taking as test function in (5.32) v = (un −M)+, we get

�
L

0
un (un −M)+ dx +

�
L

0
a(un, u�n)

�
(un −M)+

��
dx

+
1
n

�
L

0
u�n

�
(un −M)+

��
dx− β (un(0)−M)+ =

�
L

0
f (un −M)+ dx.

As the fourth term of the left hand side vanishes and the second and third ones are
non negative, we arrive to

�
L

0
un (un −M)+ dx ≤

�
L

0
f (un −M)+ dx.

Hence

0 ≤
�

L

0

�
(un −M)+

�2
dx ≤

�
L

0
(f −M) (un −M)+ dx ≤ 0,

and consequently, un(x) ≤ M for almost all x ∈ [0, L] and all n ∈ N. Then, since un is
non-negative, we get

�un�∞ ≤ max {�f�∞,max{un(0) : n ∈ N}} < +∞ (5.38)

and Lemma 6.5.6 holds. ✷

Lemma 6.5.7 The sequence {un} is uniformly bounded in TBV +(]0, L[). Further-
more, there exists a function 0 ≤ u ∈ TBV +(]0, L[) ∩ L∞(]0, L[) such that (up to
subsequence) un → u a.e. and strongly in L1(]0, L[).
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Proof. By Lemma 6.5.6, extracting a subsequence if necessary, we may assume that un

converges weakly in L2(]0, L[) to some nonnegative function u as n → +∞. Moreover,
by (5.38), we have that 0 ≤ u ∈ L∞(]0, L[). On the other hand, estimates so far show
that u2

n ∈ W 1,1(]0, L[) uniformly in n. Thus u2 ∈ BV (]0, L[) and hence by virtue of the
chain rule u ∈ BV if we stay away from the zeroth level set, as we can compose with
a Lipschitz function and the square root function is so out of a neighborhood of zero.
We put this in more precise terms below.

Consider 0 < a < b. By means of the coarea formula and (5.37), we have
�

L

0
|(Ta,b(un))�| dx =

�
b

a

��Dχ[un≤t]

��(]0, L[) dt =
�

b

a

��Dχ
[u2

n≤t2]

��(]0, L[) dt

=
�

b
2

a2

��Dχ
[u2

n≤s]

��(]0, L[)
ds

2
√

s
≤ 1

2a

�
L

0
|(u2

n)�| dx ≤ C

a
.

This estimate entails equicontinuity properties for the sequence {un}, as we are going
to show. Let now h > 0 be given; we are going to use the previous estimate with b > M
and a =

√
h. Consider the set

H = {x ∈ [0, L]/x + h ∈ [0, L] and un(x + h), un(x) ≥
√

h}.

Then �

H

|un(x + h)− un(x)| dx ≤ C|h|√
h

while �

[max{0,−h},min{L−h,L}]\H
|un(x + h)− un(x)| dx ≤ 2

√
hL.

We have proved that
� min{L−h,L}

max{0,−h}
|u(t, x + h)− u(t, x)| dx ≤ |h|

1
2 max{2L, C}

uniformly in n for any h ∈ R. Together with Lemma 6.5.6 we can invoke the Frechet–
Kolmogorov theorem to get that {un} is strongly compact in L1(]0, L[), as desired.
Using the above estimate on the gradients we obtain that u ∈ TBV +(]0, L[). ✷

Since |a(un, u�n)| ≤ c|un|, by Lemma 6.5.6 we get that

a(un, u�n) � z as n →∞, weakly∗ in L∞(]0, L[). (5.39)

By assumption we have that

a(un, u�n) = c unb(un, u�n)

with |b(un, u�n)| ≤ 1 (independent of n), �un�∞ ≤ M and un → u a.e. as n →∞. So,
we may assume that

b(un, u�n) � zb

weakly∗ in L∞(]0, L[) as n →∞ and

z = c u zb, with �zb�∞ ≤ 1. (5.40)
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On the other hand, by (5.37),

1
n

u�n → 0 in L2(]0, L[). (5.41)

Given φ ∈ D(]0, L[), taking v = φ in (5.32) we obtain

�
L

0
unφ dx +

�
L

0
a(un, u�n)φ� dx +

1
n

�
L

0
u�nφ� dx =

�
L

0
fφ dx

Letting n → +∞, having in mind (5.39) and (5.41), we obtain

�
L

0
(f − u)φ dx =

�
L

0
zφ� dx,

that is,
f − u = −Dz, in D�(]0, L[) (5.42)

and (as f − un � f − u in L2(]0, L[))

(an(un, u�n))� � Dz weakly in L2(]0, L[).

Note that by (5.42), we have z ∈ W 1,p(]0, L[) for 1 ≤ p ≤ ∞ and Dz = z
�. The next

step is to identify the object z.

Lemma 6.5.8 The functions z(x) and a(u(x), u�(x)) coincide for a.e. x ∈]0, L[.

Proof. We use Minty–Browder’s technique. Let 0 < a < b, let 0 ≤ φ ∈ C1
c (]0, L[) and

let g ∈ C2([0, L]). When we write T �
a,b

we shall mean χ]a,b[. By (4.13), we have that

�
L

0
φ[a(un, u�n)− a(un, g�)](un − g)�T �

a,b
(un) dx ≥ 0.

Note that introducing suitable terms added and subtracted we might write

�
L

0
φa(un, u�n)(un − g)�T �

a,b
(un) dx =

�
L

0
φan(un, u�n) (Ta,b(un)− g)� dx

− 1
n

�
L

0
φ u�n (Ta,b(un)− g)� dx +

�
L

0
φa(un, u�n) g�

�
1− T �

a,b
(un)

�
dx,

which, using integration by parts and the fact that φ u�n[Ta,b(un)]� is nonnegative, is
less or equal than

−
�

L

0

�
an(un, u�n)

��
φ (Ta,b(un)− g) dx−

�
L

0
(Ta,b(un)− g)an(un, u�n)φ� dx

+
1
n

�
L

0
φ u�n g� dx +

�
L

0
φa(un, u�n) g�

�
1− T �

a,b
(un)

�
dx.
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Thus, using that φ (Ta,b(un)− g) converges strongly in L2(]0, L[) thanks to the domi-
nated convergence,

lim
n→+∞

�
L

0
φa(un, u�n)(un − g)�T �

a,b
(un) dx

≤−
�

L

0
z
� φ (Ta,b(u)− g) dx−

�
L

0
(Ta,b(u)− g) zφ� dx

+ cM�g��∞
�

L

0
φ

�
1− T �

a,b
(u)

�
dx

=�zD (Ta,b(u)− g) , φ�+ M�g��∞
�

L

0
φ

�
1− T �

a,b
(u)

�
dx

On the other hand, let us denote

Ja(x, r) :=
�

r

0
a(s, g�(x)) ds,

Ja�(x, r) :=
�

r

0
∂x[a(s, g�(x))] ds =

�
r

0

∂a

∂ξ
(s, g�(x))g��(x) ds

and observe that

[Ja(x, Ta,b(un(x)))]� =a
�
Ta,b(un(x)), g�(x)

�
u�n(x)T �

a,b
(un(x)) + Ja�(x, Ta,b(un(x)))

=a
�
un(x), g�(x)

�
u�n(x)T �

a,b
(un(x)) + Ja�(x, Ta,b(un(x))).

As the map z �→ ∂a
∂ξ

(z, ξ) is continuous for fixed ξ, the a.e. convergence of un implies
that

Ja� (x, Ta,b(un(x))) → Ja� (x, Ta,b(u(x))) a.e.

and we also have that

Ja (x, Ta,b(un(x))) → Ja (x, Ta,b(un(x))) strongly in L1(]0, L[).

This later claim follows form a dominated convergence, since |Ja(x, r)| ≤ cMr and
another dominated convergence justifies that Ja (x, Ta,b(un(x))) → Ja (x, Ta,b(un(x)))
almost everywhere. It follows that

[Ja(x, Ta,b(un(x)))]� � D[Ja(x, Ta,b(u(x)))] weakly∗ as measures,

for an uniform bound in L1(]0, L[) of the above sequence is obtained on the aid of the
coarea formula and the fact that g�� is bounded (see Proposition C.1.5 in the Appendix).

Consequently, we have

lim
n→+∞

�
L

0
φa(un, g�)(un − g)�T �

a,b
(un) dx

= lim
n→+∞

�
L

0
φ

�
[Ja(x, Ta,b(un(x)))]� − Ja�(x, Ta,b(un(x))

�
dx

− lim
n→+∞

�
L

0
φa(un, g�)g�T �

a,b
(un) dx

=�D [Ja(x, Ta,b(u(x)))]− Ja�(x, Ta,b(u(x))), φ� −
�

L

0
φa(u, g�)g�T �

a,b
(u) dx,
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as a(un, g�) → a(u, g�) almost everywhere. Then we obtain

0 ≤�zD (Ta,b(u)− g) , φ�+ M�g��∞
�

L

0
φ

�
1− T �

a,b
(u)

�
dx

+
�

L

0
φa(u, g�)g�T �

a,b
(u) dx

− �D [Ja(x, Ta,b(u(x)))]− Ja�(x, Ta,b(u(x))), φ�

for all 0 ≤ φ ∈ C1
c (]0, L[). This means that, as measures,

0 ≤
�
a(u, g�)g�T �

a,b
(u) + M�g��∞

�
1− T �

a,b
(u)

��
L1

+ zD (Ta,b(u)− g)−D [Ja(x, Ta,b(u(x)))] + Ja�(x, Ta,b(u(x)))L1.

Now we compute

Dac

x [Ja(u1, u2)] =∇Ja(u1, u2)
(u1, u2)

∂x
={Ja�(u1, u2),a(u2, g

�(u1))} · {1, (Ta,b(u(x)))�}
=Ja�(x, Ta,b(u(x))) + a(Ta,b(u(x)), g�(x))[Ta,b(u(x))]�

using the chain rule for BV functions ([3], Theorem 3.96), being u1(x) = x and u2(x) =
Ta,b(u(x)). Then we deduce that the absolutely continuous part of

−D [Ja(x, Ta,b(u(x)))] + Ja�(x, Ta,b(u(x)))L1

is
−a(u, g�)(Ta,b(u))� L1

and thus, comparison of the absolutely continuous parts leads to

z (Ta,b(u)− g)� − a(u, g�)(Ta,b(u))� + a(u, g�) g�T �
a,b

(u) + cM�g��∞
�
1− T �

a,b
(u)

�
≥ 0.

If x ∈ [a < u < b], this reduces to
�
z− a(u, g�)

�
(u− g)� ≥ 0,

which holds for all g ∈ C2([0, L]) and all x ∈ Ω ∩ [a < u < b], where L1(]0, L[\Ω) = 0.
Being x ∈ Ω ∩ [a < u < b] fixed and ξ ∈ R given, we find a function g as above such
that g�(x) = ξ. Then

(z(x)− a(u(x), ξ)) (u�(x)− ξ) ≥ 0, ∀ξ ∈ R.

By an application of Minty–Browder’s method in R, these inequalities imply that

z(x) = a(u(x), u�(x)) a.e. on [a < u < b].

Since this holds for any 0 < a < b, we obtain equality a.e. on the points of ]0, L[
such that u(x) �= 0. Now, by our assumptions on a and (5.40) we deduce that z(x) =
a(u(x), u�(x)) = 0 a.e. on [u = 0]. We have proved Lemma 6.5.8.

✷

From Lemma 6.5.8 and (5.42) it follows that

f − u = −a(u, u�)�, inD�(]0, L[)
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Lemma 6.5.9 The flux −a(u, u�) verifies the Neumann condition at x = 0.

Proof. Let w ∈ W 1,1(]0, L[) such that w(L) = 0 and consider wk ∈ W 1,2(]0, L[) with
wk(L) = 0 for all k ∈ N, wk → w pointwise and w�

k
→ w� in L1(]0, L[). Taking in (5.32)

wk as test function and letting n → +∞, we get
�

L

0
u wk dx +

�
L

0
zw�

k
dx− βwk(0) =

�
L

0
fwk dx.

Then, letting k → +∞ we arrive to
�

L

0
u w dx +

�
L

0
zw� dx− βw(0) =

�
L

0
fw dx. (5.43)

Fixed w ∈ BV (]0, L[) such that w(L−) = 0, let wm ∈ W 1,1(]0, L[) with wm(L) = 0,
wm(0) = w(0+) and such that wm → w in L1(]0, L[). Taking in (5.43) wm as test
functions and integrating by parts we get
�

L

0
(f − u)wm dx =

�
L

0
z w�

m dx− βw(0+) = −
�

L

0
z
�wm dx− w(0+)(z(0) + β).

Letting m → +∞, the right hand side becomes
�

L

0
z
�w dx− z(0)w(0+)− βw(0+) =

�
L

0
w(f − u) dx− z(0)w(0+)− βw(0+);

recall that z ∈ W 1,p(]0, L[) for 1 ≤ p ≤ ∞, and that f − u = z
� holds in any Lp(]0, L[).

On the other hand, this coincides with

lim
m

�
L

0
(f − u)wm dx =

�
L

0
(f − u)w dx,

from where we get 0 = −z(0)w(0+)− βw(0+) and we are done, since −a and −z leave
the same trace at the origin. ✷

Lemma 6.5.10 Let S ∈ P+, T ∈ T + and φ ∈ C1([0, L]), φ ≥ 0, with φ(0) = 0. Then
�

L

0
φF (u,DT (u)) + φ(L)

c

2
|(T (u))2(L−)|

≤
�

L

0
φ zDT (u) +

�
L

0
φF (u, 0) dx

−φ(L)T (u)(L−) + φ(L)|Jθ(T (0))|

(5.44)

and �
L

0
φFS(u,DT (u)) + φ(L) |JθS(T (u)(L−))|

≤
�

L

0
φ zDJT �S(u) +

�
L

0
φS(u)F (u, 0) dx

−φ(L)z(L)JT �S(u(L−)) + φ(L) |JθS(T (0))| .

(5.45)
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In particular,

F (u,DT (u)) ≤ zDT (u) + F (u, 0)L1 as measures in ]0, L[. (5.46)

FS(u,DT (u)) ≤ zDJT �S(u)) + S(u)F (u, 0)L1 as measures in ]0, L[. (5.47)

Proof. We will only prove (5.45), the proof of (5.44) being similar. Let 0 ≤ φ ∈
C1([0, L]) with φ(0) = 0. Since F0

φSF
is lower semicontinuous with respect to the

L1-convergence (Corollary 6.4.3), letting n →∞ we obtain
�

L

0
φFS(u,DT (u)) + φ(L) |JθS(T (u)(L−))|

≤ lim inf
n→∞

�
L

0
φS(un)F (un, T (un)�) dx + φ(L) |JθS(T (0))|

≤ lim sup
n→∞

�
L

0
φS(un)F (un, T (un)�) dx + φ(L) |JθS(T (0))|

By the convexity (4.11) of F and using that a(un, T (un)�)T (un)� = a(un, u�n)T (un)�, we
have

�
L

0
φS(un)F (un, T (un)�) dx

≤
�

L

0
φS(un)a(un, T (un)�)T (un)� dx +

�
L

0
φS(un)F (un, 0)dx

=
�

L

0
φa(un, u�n)(JT �S(un))� dx +

�
L

0
φS(un)F (un, 0)dx.

Now we take v = JT �S(un)φ as test function in (5.32)) and we obtain
�

L

0
φa(un, u�n)(JT �S(un))� dx +

1
n

�
L

0
φ u�n(JT �S(un))� dx

=
�

L

0
(f − un)JT �S(un)φ dx−

�
L

0
JT �S(un)a(un, u�n)φ� dx− 1

n

�
L

0
JT �S(un)u�nφ� dx.

Letting n →∞ we get

lim sup
n

�
L

0
φa(un, u�n)(JT �S(un))� dx ≤

�
L

0
φ(f − u)JT �S(u) dx−

�
L

0
JT �S(u)zφ� dx

=
�

L

0
φ zDJT �S(u)− φ(L)z(L)JT �S(u(L−)).

Finally,
�

L

0
φFS(u,DT (u)) + φ(L) |JθS(T (u))(L−)| ≤

�
L

0
φ zDJT �S(u)

+ φ(L) |JθS(T (0))|− φ(L)z(L)JT �S(u(L−)) +
�

L

0
φS(u)F (u, 0) dx

and (5.45) holds. ✷
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Lemma 6.5.11 The entropy inequalities (5.25) and (5.26) hold.

Proof. Using (5.46) and the computations in (4.21) it follows that

h(u,DT (u))s ≤ (z DT (u))s.

Thanks to (4.21) again,
(zDT (u)))ac = h(u,DT (u))ac

and (5.25) holds.
By virtue of (5.47) and (4.21) we have

zDJT �S(u)) ≥ z(JT �S(u))� + (FS(u,DT (u)))s = hS(u,DT (u))

and we obtain (5.26). ✷

Lemma 6.5.12 The Dirichlet condition a(u, u�)(L) = −cu(L−) holds.

Proof. Firstly, observe that by (5.40) we have

|z(L)| ≤ c u(L−).

Then, it is enough to prove the lemma in the case u(L−) > 0. In that case, again by
(5.40) and having in mind that z is continuous in [0, L], we have

z(L) = cu(L−)ξ, with |ξ| ≤ 1. (5.48)

Given T ∈ T+, we consider S := Tm−1 ∈ P+ for m > 1. Taking singular parts over
x = L in (5.45) we have

|JθT m−1(T (u))(L−)| ≤ −z(L)JT m−1T �(u)(L−) + |JθT m−1(T (0))| . (5.49)

Consider now T = Td,d� with 0 < d ≤ u(L−) ≤ �u�∞ ≤ d�. Using (5.48), the inequality
(5.49) particularizes to

c

2
dm+1 +

c

m + 1
�
um+1(L−)− dm+1

�
≤ c

2
dm+1 − c

m
ξ u(L−) (um(L−)− dm)

and letting d → 0+ we have

c

m + 1
um+1(L−) ≤ − c

m
u(L−)ξum(L−).

Then, since u(L−) > 0, we get m

m+1 ≤ −ξ for all 1 < m. Therefore, since |ξ| ≤ 1, we
have ξ = −1. Consequently, using (5.48) we finish the proof. ✷

6.5.2 Proof of uniqueness

Let u, u be entropy solutions of (5.31) associated with f, f ∈ L1(]0, L[)+, respectively.
Let ρn be a mollifiers in R with support in ]− L, L[ and let ψ ∈ D(]0, L[). We define

ξn(x, y) := ρn(x− y)ψ
�

x + y

2

�
.
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We will use the notation T = T a

a,b
, being b > a > 2� > 0. We also need to consider

truncation functions of the form

S�,l(r) := T�(r − l)+ = Tl,l+�(r)− l ∈ T +

and

Sl

�(r) := Tl−�,l(r) + �− l = −T�(l − r)+ + � ∈ T +.

We set u = u(y) and u = u(x). If we denote z(y) = a(u(y), ∂yu(y)) and z(x) =
a(u(x), ∂xu(x)), we have

u− z
� = f and u− z

� = f in D�(]0, L[).

Then, multiplying the first equation by T (u(y))S�,u(x)(u(y))ξn(x, y), the second by
T (u(x))Su(y)

� (u(x))ξn(x, y) and integrating by parts, we obtain

�
L

0
u(y)T (u(y))T�(u(y)− u(x))+ξn(x, y) dy

+
�

L

0
ξn(x, y)z(y)Dy[T (u(y))S�,u(x)(u(y))]

+
�

L

0
T (u(y))S�,u(x)(u(y))z(y) ∂yξn(x, y) dy

=
�

L

0
f(y)T (u(y))T�(u(y)− u(x))+ξn(x, y) dy

(5.50)

and

−
�

L

0
u(x)T (u(x))

�
T�(u(y)− u(x))+ − �

�
ξn(x, y) dx

+
�

L

0
ξn(x, y)z(x)Dx[T (u(x))Su(y)

� (u(x))]

+
�

L

0
T (u(x))Su(y)

� (u(x))z(x) ∂xξn(x, y) dx

= −
�

L

0
f(x)T (u(x))

�
T�(u(y)− u(x))+ − �

�
ξn(x, y) dx

(5.51)

All the boundary terms have vanished because for n big enough the x-supports of
ρn(x− y) and ψ((x + y)/2) are disjoint when y = 0, L or vice versa.
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We integrate (5.50) in x and (5.51) in y. Then we add both identities to obtain
�

L

0

�
L

0
[u(y)T (u(y))− u(x)T (u(x))]T�(u(y)− u(x))+ξn(x, y) dxdy

+�

�
L

0

�
L

0
(u(x)− f(x))T (u(x))ξn(x, y) dxdy

+
�

L

0

��
L

0
ξn(x, y)z(y)Dy[T (u(y))S�,u(x)(u(y))]

�
dx

+
�

L

0

�
L

0
T (u(y))S�,u(x)(u(y))z(y) ∂yξn(x, y) dydx

+
�

L

0

��
L

0
ξn(x, y)z(x)Dx[T (u(x))Su(y)

� (u(x))]
�

dy

+
�

L

0

�
L

0
T (u(x))Su(y)

� (u(x))z(x) ∂xξn(x, y) dxdy

=
�

L

0

�
L

0
[f(y)T (u(y))− f(x)T (u(x))]T�(u(y)− u(x))+ξn(x, y) dxdy.

(5.52)

Let I denote all the terms at the left hand side of the above identity, but the first one.
We defer the proof of the following statement to the end of the section.

Lemma 6.5.13 The following inequality is satisfied

1
�
I ≥o(�)−

�
L

0

��
L

0
ξn(x, y)z(x)DxT (u(x))

�
dy

+
1
�

�
L

0

�
L

0
T�(u(y)− u(x))+(T (u(y))z(y)− T (u(x))z(x))

× (∂xξn(x, y) + ∂yξn(x, y)) dxdy,

where o(�) denotes an expression such that o(�) → 0 as � → 0.

By the above lemma, dividing (5.52) by � and letting � → 0 we obtain
�

L

0

�
L

0
[u(y)T (u(y))− u(x)T (u(x))]sign+

0 (u(y)− u(x))ξn(x, y) dxdy

+
�

L

0

�
L

0
sign+

0 (u(y)− u(x))[T (u(y))z(y)− T (u(x))z(x)]ψ�
�

x + y

2

�
ρn(x− y) dxdy

≤
�

L

0

�
L

0
[f(y)T (u(y))− f(x)T (u(x))]sign+

0 (u(y)− u(x))ξn(x, y) dxdy

+
�

L

0

��
L

0
ξn(x, y)z(x)DxT (u(x))

�
dy.

Notice that we used the identity

∂xξn(x, y) + ∂yξn(x, y) = ρn(x− y)ψ�
�

x + y

2

�
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when dealing with the second term above. Letting n →∞, we find

�
L

0
[u(x)T (u(x))− u(x)T (u(x))]sign+

0 (u(x)− u(x))ψ(x) dx

+
�

L

0
sign+

0 (u(x)− u(x))[T (u(x))z(x)− T (u(x))z(x)]ψ�(x) dx

≤
�

L

0
[f(x)T (u(x))− f(x)T (u(x))]sign+

0 (u(x)− u(x))ψ(x) dx

+
�

L

0
ψ(x)z(x)DT (u(x)).

Taking now a sequence ψm ↑ χ]0,L[, ψm ∈ D(]0, L[) in the above formula, we have

�
L

0
[u(x)T (u(x))− u(x)T (u(x))]sign+

0 (u(x)− u(x)) dx

+ lim
m→∞

�
L

0
sign+

0 (u(x)− u(x))(T (u(x))z(x)− T (u(x))z(x))ψ�m (x) dx

≤
�

L

0
[f(x)T (u(x))− f(x)T (u(x))]sign+

0 (u(x)− u(x)) dx

+
�

L

0
z(x)DT (u(x)).

(5.53)

Now we deal with the second term in the above expression. As sign+
0 (u − u)T (u) ∈

BV (]0, L[) [23], integration by parts yields

lim
m→∞

�
L

0
sign+

0 (u(x)− u(x))[T (u(x))z(x)− T (u(x))z(x)]ψ�m (x) dx

= − lim
m→∞

�
L

0
ψm(x){z(x)D[sign+

0 (u(x)− u(x))T (u(x))]

− z(x)D[sign+
0 (u(x)− u(x))T (u(x))]}

+ lim
m→∞

�
L

0
ψm(x){sign+

0 (u(x)− u(x))T (u(x))z�(x)

− sign+
0 (u(x)− u(x))T (u(x))z�(x)} dx

and thus

=−
�

L

0
sign+

0 (u(x)− u(x))T (u(x))z�(x) dx−
�

L

0
z(x)D[sign+

0 (u(x)− u(x))T (u(x))]

+
�

L

0
sign+

0 (u(x)− u(x))T (u(x))z�(x) dx +
�

L

0
z(x)D[sign+

0 (u(x)− u(x))T (u(x))]

= [z(0)T (u(0+))− z(0)T (u(0+))] sign+
0 (u(0+)− u(0+))

− [z(L)T (u(L−))− z(L)T (u(L−))] sign+
0 (u(L−)− u(L−)).
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Therefore, (5.53) becomes
�

L

0
[u(x)T (u(x))− u(x)T (u(x))]sign+

0 (u(x)− u(x)) dx

+ [z(0)T (u(0+))− z(0)T (u(0+))] sign+
0 (u(0+)− u(0+))

− [z(L)T (u(L−))− z(L)T (u(L−))] sign+
0 (u(L−)− u(L−))

≤
�

L

0
[f(x)T (u(x))− f(x)T (u(x))]sign+

0 (u(x)− u(x)) dx +
�

L

0
z(x)DT (u(x)).

Dividing by b > 0 and letting a → 0+ and b → 0+ in this order, we obtain
�

L

0
(uχ[u>0] − uχ[u>0])sign+

0 (u− u) dx

+
�
z(0)sign+

0 (u(0+))− z(0)sign+
0 (u(0+))

�
sign+

0 (u(0+)− u(0+))

−
�
z(L)sign+

0 (u(L−))− z(L)sign+
0 (u(L−))

�
sign+

0 (u(L−)− u(L−))

≤
�

L

0
(fχ[u>0] − fχ[u>0])sign+

0 (u− u) dx + lim
b↓0

1
b

�
lim
a↓0

�
L

0
zDT (u)

�
.

(5.54)

By virtue of (5.30) and the fact that z(0) = z(0) = −β �= 0, we have that the
second term in (5.54) vanishes. On the other hand, since z(L) = −cu(L−) and
z(L) = −cu(L−), the third line in (5.54) is nonnegative. Consequently,

�
L

0
(uχ[u>0] − uχ[u>0])sign+

0 (u− u) dx

≤
�

L

0
(fχ[u>0] − fχ[u>0])sign+

0 (u− u) dx− lim
b↓0

1
b

�
lim
a↓0

�
L

0
zDT (u)

�
.

(5.55)

To continue we rely on the following auxiliary result:

Lemma 6.5.14 There holds that f = 0 a.e. on [u = 0] and f = 0 a.e. on [u = 0].

Proof. Let 0 ≤ φ ∈ D(]0, L[) be and let a, � > 0. We multiply f − u = −z
� by

T a
a,a+�(u)φ ∈ L∞(]0, L[) and integrate by parts. Having in mind (4.18), we obtain

�
L

0
(f − u)T a

a,a+�(u)φ dx =
�

L

0
zφDT a

a,a+�(u) +
�

L

0
zφ�T a

a,a+�(u) dx

≥
�

L

0
zφ�T a

a,a+�(u) dx,

where we also used (5.29). Dividing by � and letting � → 0+, we get
�

L

0
(f − u)χ[u>a]φ dx ≥

�
L

0
zφ�χ[u>a] dx.

Hence
�

L

0
(f − u)χ[u≤a]φ dx =

�
L

0
(f − u)φ dx−

�
L

0
(f − u)χ[u>a](x)φ dx

≤
�

L

0
(f − u)φ dx−

�
L

0
zφ�χ[u>a] dx =

�
L

0
zφ�χ[u≤a] dx.
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Then, since z = 0 in [u = 0], letting a → 0+ we have
�

L

0
fχ[u=0]φ dx =

�
L

0
(f − u)χ[u=0]φ dx ≤ 0,

for all 0 ≤ φ ∈ D(]0, L[). It follows that fχ[u=0] = 0 a.e. in ]0, L[. Similarly, fχ[u=0] = 0
a.e. in ]0, L[ and Lemma 6.5.14 holds. ✷

Thanks to this Lemma we have

lim
b→0

1
b

�
lim
a→0

�
L

0
zDT (u)

�

= − lim
b→0

1
b

lim
a→0

�
z(0)T (u(0+))− z(L)T (u(L−)) +

�
L

0
T (u)z� dx

�

= − lim
b→0

1
b

�
z(0)T0,b(u(0+))− z(L)T0,b(u(L−)) +

�
L

0
T0,b(u)z� dx

�

= −z(0)sign+
0 (u(0+)) + z(L)sign+

0 (u(L−))−
�

L

0

χ[u>0]z
� dx

= −z(0)sign+
0 (u(0+)) + z(L)sign+

0 (u(L−))−
�

L

0
z
� dx

= z(0)
�
1− sign+

0 (u(0+))
�

+ z(L)
�
sign+

0 (u(L−))− 1
�

= 0,

where we also used (5.30) and (5.24).
Then, it follows from (5.55) that
�

L

0
(uχ[u>0] − uχ[u>0])sign+

0 (u− u) dx ≤
�

L

0
(fχ[u>0] − fχ[u>0])sign+

0 (u− u) dx.

Hence, using Lemma 6.5.14 again, we obtain
�

L

0
(u− u)+ dx ≤

�
L

0
(f − f)sign+

0 (u− u) dx ≤
�

L

0
(f − f)+ dx.

This concludes the proof of the uniqueness part of Theorem 6.5.3. ✷

6.5.3 Proof of Lemma 6.5.13

Recall that u, z are always functions of y and u, z are always functions of x. From now
on we shall work with more concise expressions. In order to do so, we shall omit the
arguments of u, z, u and z except in some cases where we find it useful to remind them.
We decompose I = I1 + · · ·+ I5 in the obvious way.

Now, since u− f = z
� and T (u(x))ξn(x, y) belongs to L1(]0, L[) as a function of x,

we have

I1 = �

�
L

0

�
L

0
z
�T (u)ξn dxdy.

Note also that

I5 = −
�

L

0

�
L

0
T (u)T�(u− u)+z∂xξn dxdy + �

�
L

0

�
L

0
T (u)z∂xξn dxdy.
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Moreover,

I3 −
�

L

0

�
L

0
T (u)T�(u− u)+z ∂xξn dxdy

=
�

L

0

�
L

0
T (u)T�(u− u)+z ∂yξn dxdy −

�
L

0

�
L

0
T (u)T�(u− u)+z ∂xξn dxdy

=
�

L

0

�
L

0
T�(u− u)+ [T (u)z ∂yξn − T (u)z ∂xξn] dxdy.

At this point we substitute the above expressions and we also add and subtract the
terms

� �
T�(u−u)+T (u)z ∂xξn dxdy and−

� �
T�(u−u)+T (u)z ∂yξn dxdy. All together

reads

I = �

�
L

0

�
L

0
z
� T (u)ξn dxdy + �

�
L

0

�
L

0
T (u)z ∂xξn dxdy

+
�

L

0

��
L

0
ξnzDy[T (u)S�,u(x)(u)]

�
dx +

�
L

0

��
L

0
ξnzDx[T (u)Su(y)

� (u)]
�

dy

+
�

L

0

�
L

0
T�(u− u)+[T (u)z− T (u)z] (∂xξn + ∂yξn) dxdy

+
�

L

0

�
L

0
T (u)T�(u− u)+z ∂yξn dxdy −

�
L

0

�
L

0
T (u)T�(u− u)+z ∂xξn dydx

Integrating by parts the above expression can be written as

− �

�
L

0

��
L

0
ξnzDxT (u)

�
dy

+
�

L

0

��
L

0
ξnzDy[T (u)S�,u(x)(u)]

�
dx +

�
L

0

��
L

0
ξnzDx[T (u)Su(y)

� (u)]
�

dy

+
�

L

0

�
L

0
T�(u− u)+[T (u)z− T (u)z] (∂xξn + ∂yξn) dxdy

−
�

L

0

�
L

0
ξnzT (u)Dy[T�(u− u)+] dx dy +

�
L

0

�
L

0
ξnzT (u)Dx[T�(u− u)+)] dydx

Using the product functional calculus (Corollary 6.4.6) and rearranging a bit we get

I =− �

�
L

0

��
L

0
ξnzDxT (u)

�
dy

+
�

L

0

��
L

0
ξnzDy[JT �S�,u(x)

(u)]
�

dx +
�

L

0

��
L

0
ξnzDx[J

T �S
u(y)
�

(u)]
�

dy

+
�

L

0

��
L

0
ξnzDy[JTS

�
�,u(x)

(u)]
�

dx +
�

L

0

��
L

0
ξnzDx[J

T (Su(y)
� )�

(u)]
�

dy

−
�

L

0
T (u)

��
L

0
ξnzDy T�(u− u)+

�
dx +

�
L

0
T (u(y))

��
L

0
ξnzDxT�(u− u)+

�
dy

+
�

L

0

�
L

0
T�(u− u)+[T (u)z− T (u)z] (∂xξn + ∂yξn) dxdy

=I1 + I2 + I3,
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where I1 denotes the sum of the first three terms, I2 denotes the sum from the fourth
to the seventh terms and I3 denotes the last term.

First we estimate I1. Let us consider the second and third terms in I1. Since

hS�,u(x)
(u,DT (u)) ≤ zDyJT �Su(x)

(u)

thanks to (5.26), using (5.29) we have

�
L

0

��
L

0
ξnzDyJT �S�,u(x)

(u)
�

dx ≥ 0.

In the same way, �
L

0

��
L

0
ξnzDx[J

T �S
u(y)
�

(u)]
�

dy ≥ 0.

Hence,

I1 ≥ −�

�
L

0

��
L

0
ξnzDxT (u)

�
dy. (5.56)

Now let us deal with I2. We could deal with the first two integrals here in the same
way as before, but it will be better not to get rid of them that soon. Let us write

I2 = I2(ac) + I2(s)

where I2(ac) contains the absolutely continuous parts of I2 while I2(s) contains its
singular parts. First we estimate the absolutely continuous part:

Lemma 6.5.15 There holds that

1
�
I2
2 (ac) ≥ o(�),

where o(�) denotes an expression such that o(�) → 0 as � → 0.

Proof. Note that

I2(ac) =
�

L

0

�
L

0
ξnT (u) z ∂yT�(u− u)+ dydx−

�
L

0

�
L

0
ξnT (u) z ∂y T�(u− u)+ dydx

−
�

L

0

�
L

0
ξnT (u) z ∂xT�(u− u)+ dxdy +

�
L

0

�
L

0
ξnT (u) z ∂x T�(u− u)+ dxdy.

This can be rearranged as

I2(ac) =
�

L

0

�
L

0
ξn(zT (u)− zT (u))

�
∂yT�(u− u)+ + ∂xT�(u− u)+

�
dxdy

=
�

L

0

�
L

0
ξn(z− z)T (u)(∂yT�(u− u)+ + ∂xT�(u− u)+) dxdy

+
�

L

0

�
L

0
ξnz(T (u)− T (u))(∂yT�(u− u)+ + ∂xT�(u− u)+) dxdy

=:A1 + A2.
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Let us estimate A1. First, observe that

∂yT�(u− u(x))+(y) = χ{0<u(y)−u(x)<�}(x, y)∂yu(y) = χ]u(x),u(x)+�[(u(y))∂yu(y)

and

∂xT�(u(y)− u)+(x) = −χ{0<u(y)−u(x)<�}(x, y)∂xu(x) = −χ]u(x),u(x)+�[(u(y))∂xu(x).

Taking the previous into account

A1 =
�

L

0

�
L

0
ξn(z− z)T (u)(∂yu− ∂xu)χ]u(x),u(x)+�[(u) dxdy

≥ −Cb

�
L

0

�
L

0

χ[u≥a]ξn
χ]u(x),u(x)+�[(u) |u− u| |∂yu− ∂xu| dxdy

where (4.14) was used.
Now, observe that 0 ≤ u(y)−u(x) ≤ � and u(y) ≥ a imply the fact that u(x) ≥ a−�.

Hence,

A1 ≥ −Cb�

�
L

0

�
L

0

χ[u≥a]χ[u≥a−�]ξn
χ[0≤u−u≤�]|∂yu− ∂xu| dxdy.

The present lower bound is not trivial as χ[u≥a−�]∂xu and χ[u≥a]∂yu both belong to
L1(]0, L[) of its respective variable. To justify this, we use for instance Lemma 6.4.5

to rewrite χ[u≥a]∂yu as
�
T �u�∞

a (u(y))
��

, which is the Radon–Nikodym derivative (or

density) of D
�
T �u�∞

a (u(y))
�

with respect to the Lebesgue measure L1, hence integrable
against it. Similarly

|A2| =
����
�

L

0

�
L

0
ξnz(T (u)− T (u))(∂yu− ∂xu)χ[u(x),u(x)+�](u) dxdy

����

≤ cM

�
L

0

�
L

0
ξn

χ[u≥a]χ[u≥a]χ[0≤u−u≤�]ξn|u− u| |∂yu− ∂xu| dxdy

≤ cM�

�
L

0

�
L

0
ξn

χ[u≥a]χ[u≥a]ξn
χ[0≤u−u≤�] |∂yu− ∂xu| dxdy

≤ cM�

�
L

0

�
L

0
ξn

χ[u≥a]χ[u≥a]ξn
χ[0≤u−u≤�](|∂yu|+ |∂xu|) dxdy.

On recourse to the coarea formula we can estimate for instance
�

L

0

�
L

0

χ[u≥a]χ[u≥a]ξn
χ[0≤u−u≤�] |∂yu| dx dy

≤ �ψ�∞�ρn�∞
�

L

0

χ[u≥a]

��

{y∈]0,L[/u(x)≤u(y)≤u(x)+�}
|∂yu| dy

�
dx

≤ �ψ�∞�ρn�∞
�

L

0

χ[u≥a]

��
u(x)+�

u(x)
Per([u ≥ λ]) dλ

�
dx

≤ �ψ�∞�ρn�∞
�

L

0

χ[u≥a]o(�) dx ≤ o(�),
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where o(�) denotes an expression such that o(�) → 0 as � → 0 (note that λ �→ Per([u ≥
λ]) ∈ L1

loc
(]0,+∞[) because u ∈ TBV (]0, L[)+). The point here is that, although �ρn�∞

is not uniformly bounded in n, the limit with respect to � will be taken in first place.
Alternatively, note also that [0, L] and even [u > a] are of finite measure; the limit with
respect to a goes after the one for �.

The other three terms are dealt away in the same fashion. The condition a > 2� is
crucial to be able to use the coarea formula in all the cases. Thus

1
�
A1 ≥ −Co(�)

and
1
�
|A2| ≤ o(�).

Hence,
1
�
I2(ac) ≥ o(�). (5.57)

✷

Next we estimate the singular part:

Lemma 6.5.16 There holds that

1
�
I2(s) ≥ o(�),

where o(�) denotes an expression such that o(�) → 0 as � → 0.

Proof. Let us set I2(s) = I2(1, s) + I2(2, s), where

I2(1, s) :=
�

L

0

��
L

0
ξnzD

s

y[JTS
�
�,u(x)

(u)]
�

dx −
�

L

0

��
L

0
ξnT (u) zDs

y T�(u− u)+
�

dx

and

I2(2, s) :=
�

L

0

��
L

0
ξnzD

s

x[J
T (Su(y)

� )�
(u)]

�
dy +

�
L

0

��
L

0
ξnT (u) zDs

xT�(u− u)+
�

dy.

Note that using (5.28) we have

zDs

yJTS
�
�,u(x)

(u) ≥
��Ds

yJTθ(S�,u(x)(u))
�� =

��Ds

yJTθ(T�(u(y)− u(x))+)
�� =

��Ds

yJTθ(u�)
��

(5.58)
where u�(x, y) = Tu(x),u(x)+�(u(y)). Also by (4.15) we have

z(x)Ds

yT�(u− u(x))+ ≤ θ(u(x))|Ds

yu�|. (5.59)

First we deal with I2(1, s). Since the integrand of the first term is positive and the
support of T (u) is contained in [u ≥ a] we can restrict the domains of integration
accordingly in order to bound I2(1, s) from below by means of

�

[u≥a]

��
L

0
ξnzD

s

yJTS
�
�,u(x)

(u)
�

dx −
�

[u≥a]

��
L

0
ξnT (u) zDs

y T�(u− u)+
�

dx,
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which is in turn bounded from below —use (5.58) and (5.59)— by
�

[u≥a]

��
L

0
ξn

��Ds

yJTθ(u�)
��
�

dx−
�

[u≥a]

��
L

0
ξnT (u)θ(u)|Ds

yu�|
�

dx

=
�

[u≥a]

��
L

0
ξnT (u�)θ(u�)|Dc

yu�|
�

dx−
�

[u≥a]

��
L

0
ξnT (u)θ(u)|Dc

yu�|
�

dx

+
�

[u≥a]

��

Ju�

ξn

1
(u�)+(y)− (u�)−(y)

�� (u�)+(y)

(u�)−(y)
T (s)θ(s) ds

�
|Dj

yu�|
�

dx

−
�

[u≥a]

��
L

0
ξnT (u)θ(u)|Dj

yu�|
�

dx =: J1 + J2.

Here J1 denotes the sum of the first and second terms of the above expression and J2

the sum of the third and fourth terms. We used that

Dj (JTθ(u�)) =
JTθ(u+

� )− JTθ(u−� )
u+

� − u−�
Dju�

(chain rule for BV functions; recall that Ju� denotes the jump set of u�) and

JTθ(u+
� )− JTθ(u−� ) =

�
u
+
�

0
T (s)θ(s) ds−

�
u
−
�

0
T (s)θ(s) ds =

�
u
+
�

u
−
�

T (s)θ(s) ds.

Note also that

Dc

y(u�) = Dc

y[Tu(x),u(x)+�(u(y))] = T �
u(x),u(x)+�

(ũ)Dc

yu(y) = χ]u(x),u(x)+�[(ũ(y))Dc

yu(y),

being ũ the good representative.
Now, since T and θ are Lipschitz continuous, we have

|J1| ≤
�

L

0

��

[u≥a]
ξn|T (u�)θ(u�)− T (u)θ(u)||Dc

yu�|
�

dx

≤c�ψ�∞�ρn�∞
�

[u≥a]

��
L

0
|u� − u|χ[u(x),u(x)+�](u)|Dc

yu|
�

dx

≤��ψ�∞c�ρn�∞
�

[u≥a]

��

{y∈]0,L[ : u(x)<u(y)<�+u(x)}
|Dc

yu|
�

dx,

being c the Lipschitz constant of Tθ. Using the coarea formula, we obtain

|J1| ≤ �M�ψ�∞�ρn�∞
�

L

0

χ[u≥a]

��
u(x)+�

u(x)
Per({u(y) ≥ λ}) dλ

�
dx,

which yields
1
�
|J1| ≤ o(�). (5.60)

In order to deal with |J2| let us shorten the expressions introducing

J(u�, y) =
1

(u�)+(y)− (u�)−(y)
.



6. An evolution model to the transport of morphogenes 153

Working in a similar way as before, we bound |J2| from above by means of
�

[u≥a]

��

Ju�

ξnJ(u�, y)

�� (u�)+(y)

(u�)−(y)
|T (s)θ(s)− T (u(x))θ(u(x))| ds

�
|Dj

yu�|
�

dx

which is itself bounded above by

��ψ�∞C�ρn�∞
�

L

0

χ[u≥a]

��
u(x)+�

u(x)
Per({u(y) ≥ λ}) dλ

�
dx.

For this last step we used that if s ∈](u�)−(y), (u�)+(y)[ then |s−u(x)| ≤ �. This shows
that

1
�
J2 ≥ o(�).

Collecting all these facts, we obtain
1
�
I2(1, s) ≥ o(�).

In a similar way we prove that
1
�
I2(2, s) ≥ o(�).

Hence
1
�
I2(s) ≥ o(�).

✷

Both lemmas in combination yield
1
�
I2 ≥ o(�).

Collecting all the estimates so far, we have the inequality

1
�
I ≥ o(�)−

�
L

0

��
L

0
ξnzDxT (u)

�
dy +

1
�
I3

and the lemma is proved.

6.6 Semigroup solution

Definition 6.6.1 (u, v) ∈ Bβ if and only if 0 ≤ u ∈ TBV +(]0, L[), v ∈ L1(]0, L[) and
u is the entropy solution of problem (5.23).

From Theorem 6.5.3 it follows that the operator Bβ is T -accretive in L1(]0, L[) and
verifies

L∞(]0, L[)+ ⊂ R(I + λBβ) for all λ > 0. (6.61)

In order to get an L∞-estimate of the resolvent we need to find the steady state solution,
that is, the function uβ which is the entropy solution of the problem






−
�
a(uβ, u�

β
)
��

= 0 in ]0, L[

−a(uβ, u�
β
)|x=0 = β > 0 and uβ(L) = 0.

(6.62)
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Proposition 6.6.2 There is a non-increasing function uβ ∈ C1(]0, L[) that is an en-
tropy solution of the stationary problem (6.62). This solution verifies that uβ ≥ β

c
and

(uβ)�(L−) = −∞. Moreover, there exists a constant M := M(c, β, ν, L) such that

�uβ�∞ ≤ M.

Proof. We seek for regular solutions. Integrating (6.62) over ]0, L[ we find that
a(uβ, u�

β
)(L) = −β. Now, if uβ has to fulfill the weak Dirichlet condition a(uβ, u�

β
)(L) =

−cuβ(L−) then we must have uβ(L−) = β/c. We will follow this prescription hereafter.
If uβ is a solution of the problem (6.62), we have

−
�
a(uβ, u�

β
)
�� = 0 ⇐⇒ ν

uβu�
β�

u2
β

+ ν2

c2
(u�

β
)2

= −β a.e. x ∈]0, L[.

Then we must assume that u�
β

< 0 (note also that the previous relation ensures that
|u�

β
| ≥ β

ν
). In this way uβ is greater than β/c everywhere. Hence we obtain

u�
β

= −
β uβ

ν

�
u2

β
−

�
β

c

�2
.

Thus, we get that uβ satisfies the ordinary differential equation

u�
β

�
u2

β
−

�
β

c

�2

uβ

= −β

ν
.

By means of the change of variable v2 = u2
β
−

�
β

c

�2
we arrive to the ODE

−β

ν
=



1− 1

1 +
�

v

β/c

�2



 v�.

Then, �
L

x

�
−β

ν

�
dy =

�
L

x

v�(y) dy −
�

L

x

v�(y)

1 +
�

v(y)
β/c

�2 dy

= v(L)− v(x)− β

c
arctan

�
v(L)
β/c

�
+

β

c
arctan

�
v(x)
β/c

�
.

Hence, we get

x = L− ν

β

�

uβ(x)2 −
�

β

c

�2

+
ν

c
arctan



 c

β

�

uβ(x)2 −
�

β

c

�2


 . (6.63)

If x = u−1
β

(y) then we can write (6.63) as

u−1
β

(y) = L− ν

β

�

y2 −
�

β

c

�2

+
ν

c
arctan



 c

β

�

y2 −
�

β

c

�2


 .
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Thus, �
u−1

β

��
(y) =

y�
y2 −

�
β

c

�2

ν

β

�
β2

c2y2
− 1

�
.

Consequently, since (uβ)(L−) = β

c
, we obtain that

(uβ)�(L−) = lim
y↓β

c

1
�
u−1

β

��
(y)

= lim
y↓β

c

�
y2 −

�
β

c

�2

y

�
β

ν

� �
c2y2

β2 − c2y2

�
= −∞.

Finally, since uβ satisfies −(a(uβ(x), u�
β
(x)))� = 0 if x ∈]0, L[ and satisfies the boundary

conditions also, we have that uβ is an entropy solution of the problem (6.62). As an
aside, it is easily proved that

M ≤ β

c

�

1 +
�

cL

ν
+

π

2

�2

from the relation

0 = L− ν

β

�
uβ(0)2 − (β/c)2 +

ν

c
arctan

�
c

β

�
uβ(0)2 − (β/c)2

�
.

✷

Remark 6.6.3 In fact dimensional analysis shows that

uβ(x) =
β

c

�

1 + ψ

�
L− x

L

�

for some dimensionless function ψ : [0, L] → R+ with ψ(0) = 0. The first two terms of
an asymptotic expansion around x = L are

β

c
+

�
3(2−

√
2)

2
√

2
β

ν

�
β

c

�
(L− x)

2
3 .

The following homogeneity property of the operator Bβ will be important to get an
L∞-estimate of the resolvent.

Proposition 6.6.4 Let u ∈ L1(]0, L[)+. Then, for µ, λ, β > 0 the following relation
holds:

(I + λBβ)−1 (µu) = µ

�
I + λBβ

µ

�−1

(u). (6.64)

Moreover, let u ∈ L∞(]0, L[)+ and λ > 0. If for some β2 > 0 we have that

(I + λBβ2)
−1 (u) ∈ BV (]0, L[),

then for any β1 ≤ β2 we have the following inequality:

(I + λBβ1)
−1 (u) ≤ (I + λBβ2)

−1 (u) a.e. x ∈]0, L[. (6.65)
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Proof. The very definition of the operator entails the fact that, if u ∈ D(Bβ
µ
), then

µu ∈ D(Bβ) and Bβ(µu) = µBβ
µ
(u). Then, we have

v := (I + λBβ)−1 (µu) ⇐⇒ v + λBβ(v) = µu ⇐⇒ 1
µ

v +
1
µ

λB
µ

β
µ
(v) = u

⇐⇒ 1
µ

v + λBβ
µ
(
v

µ
) = u ⇐⇒

�
I + λBβ

µ

�−1

(u) =
v

µ
,

from where (6.64) follows.
Finally, let us see that (6.65) holds. Let ui := (I + λBβi)

−1 (u), i = 1, 2. Then, ui

is an entropy solution of the problem





ui − λ (a(ui, u�i))
� = u in ]0, L[

−a(ui, u�i)|x=0 = βi > 0 and u(L) = 0.

Consider a sequence pn of non negative increasing approximations to the sign+
0 function,

each of them vanishing in a neighborhood of the origin. Under the present hypotheses,
pn(u1 − u2) ∈ BV (]0, L[). Therefore, having in mind (4.13), we get

�
L

0
(u1 − u2)pn(u1 − u2) dx

=
�

L

0
λ

��
a(u1, u

�
1)

�� −
�
a(u2, u

�
2)

���
pn(u1 − u2) dx

=−
�

L

0
λ

�
a(u1, u

�
1)− a(u2, u

�
2)

�
D(pn(u1 − u2))

+ λ
�
a(u1, u

�
1)(L−)− a(u2, u

�
2)(L−)

�
pn(u1 − u2)(L−)

− λ
�
a(u1, u

�
1)(0+)− a(u2, u

�
2)(0+)

�
pn(u1 − u2)(0+)

≤λ
�
a(u1, u

�
1)(L−)− a(u2, u

�
2)(L−)

�
pn(u1 − u2)(L−) + λ(β1 − β2)pn(u1 − u2)(0+)

≤λ
�
a(u1, u

�
1)(L−)− a(u2, u

�
2)(L−)

�
pn(u1 − u2)(L−).

Then, taking limit as n → +∞ we get
�

L

0
(u1 − u2)+ dx ≤ λ

�
a(u1, u

�
1)(L−)− a(u2, u

�
2)(L−)

�
sign+

0 (u1 − u2)(L−) ≤ 0,

since a(ui, u�i)(L−) = −c ui(L−), i = 1, 2. Therefore u1 ≤ u2 as desired. ✷

Proposition 6.6.5 For u ∈ L∞(]0, L[)+ and λ > 0, we have the inequality

0 ≤ (I + λBβ)−1 (u) ≤ µuβ,

being uβ the entropy solution of the stationary problem (6.62) constructed in Proposition
6.6.2 and µ = max

�
c�u�∞

β
, 1

�
.
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Proof. As a consequence of Proposition 6.6.2 we have that (uβ, 0) ∈ Bβ, from where
it follows that

(I + λBβ)−1 (uβ) = uβ. (6.66)

On the other hand, since uβ ≥ β

c
, we have that 0 ≤ u ≤ max{ c�u�∞

β
, 1}uβ. Define then

µ := max{ c�u�∞
β

, 1}. Hence, by Proposition 6.6.4 and having in mind (6.66), we get

0 ≤ (I + λBβ)−1 (u) ≤ (I + λBβ)−1 (µuβ)

=µ

�
I + λBβ

µ

�−1

(uβ) ≤ µ (I + λBβ)−1 (uβ) = µuβ

as desired. ✷

Remark 6.6.6 Needless to say, a sharper definition of µ could be given. Namely,

µ = max
�

1, inf
�

K ≥ 0/

�
L

0
(u−Kuβ)+ dx = 0

��
.

We won’t need this improvement of the estimate in Proposition 6.6.5.

Next we introduce the main result of this section, which paves the way for the
operator Bβ to generate an order-preserving semigroup.

Theorem 6.6.7 The operator Bβ is T-accretive in L1(]0, L[) and verifies the range
condition

D(Bβ)
L

1(]0,L[)
= L1(]0, L[)+ ⊂ R(I + λBβ) for all λ > 0.

Proof. Theorem 6.5.3 yields the T -accretivity of the operator Bβ and the fulfillment of
condition (6.61) also. To prove the density of D(Bβ) in L1(]0, L[)+, we shall prove that

D(]0, L[)+ ⊆ D(Bβ)
L

1(]0,L[)
. Let 0 ≤ v ∈ D(]0, L[). By (6.61), v ∈ R(I + 1

n
Bβ) for all

n ∈ N. Thus, for each n ∈ N, there exists un ∈ D(Bβ) such that (un, n(v − un)) ∈ Bβ.
Since un = (I + 1

n
Bβ)−1(v), by Proposition 6.6.5 we get

�un�∞ ≤ M := M(β, c, ν, L, �v�∞). (6.67)

The function un verifies the equation

n(v − un) = −Da(un, u�n) in D�(]0, L[).

Let � > 0 and consider S� := T�,�v�∞ . We multiply the equation above by v − S�(un)
and integrate by parts. What we get is

�
L

0
(v − S�(un))n(v − un) dx =

�
L

0
a(un, u�n)(Dv −DS�(un))

− cun(L−)S�(un)(L−) + βS�(un)(0+).

Note that due to (5.29) we have
�

L

0
a(un, u�n)DS�(un) ≥ 0.
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Taking into account (6.67) we get the estimate
�

L

0
(v − S�(un))(v − un) dx ≤ 1

n

��
L

0
a(un, u�n)Dv

�
+

1
n

βS�(un)(0+) ≤ C

n
.

Letting � → 0+, we obtain �
L

0
(v − un)2 dx ≤ C

n
,

and thus un → v in L2(]0, L[) as n → ∞. Moreover, we have un → v in L1(]0, L[)

as n → ∞. Therefore v ∈ D(Bβ)
L

1(]0,L[)
and the proof of the density of D(Bβ) in

L1(]0, L[)+ is complete.
To finish the proof of the theorem we only need to show that the operator Bβ is

closed in L1(]0, L[) × L1(]0, L[). Given (un, vn) ∈ Bβ such that un → u and vn → v
in L1(]0, L[), we need to prove that (u, v) ∈ Bβ. Since (un, vn) ∈ Bβ, we have that
un ∈ TBV +(]0, L[) and zn := a(un, u�n) ∈ C([0, L]) —under the usual conventions—
satisfy the following relations:

vn = −Dzn in D�(]0, L[), (6.68)

h(un, DT (un)) ≤ znDT (un) as measures ∀T ∈ T + (6.69)

hS(un, DT (un)) ≤ znDJT �S(un) as measures ∀S ∈ P+ T ∈ T +,

−zn(0) = β and zn(L) = −cun(L−). (6.70)

Let T = Ta,b ∈ Tr. Multiplying (6.68) by T (un) and applying integration by parts we
get �

L

0
vnT (un) dx =

�
L

0
znDT (un)− zn(L)T (un(L−))− βT (un(0+)).

We deduce that �
L

0
znDT (un) ≤ b(β + �v�1) ≤ C. (6.71)

Here we used (6.70) to note that the term related to zn(L) can be disregarded as it has
the right sign. Anyway zn(L) is bounded by �zn�∞, a quantity which is controlled in
terms of �zn�W 1,1 , being the later uniformly bounded. On the other hand, by (6.69)
and having in mind (4.12) and (4.21), we get

�
L

0
znDT (un) ≥ c

2

�
L

0
|D([T (un)]2)|− c2

ν

�
L

0
T (un)2 dx. (6.72)

By (6.71) and (6.72), it follows that
�

L

0
|D([T (un)]2)| ≤ 2c

ν

�
L

0
T (un)2 dx +

2C

c
≤ 2cLb2

ν
+

2C

c
= C. (6.73)

Using the coarea formula as in the proof of Theorem 6.5.3 we deduce from (6.73) that
�

L

0
|DT (un)| ≤ C

2a
∀n ∈ N.
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Then, since the total variation is lower semi-continuous in L1(]0, L[), we have
�

L

0
|DT (u)| ≤ lim inf

n→∞

�
L

0
|DT (un)| ≤ C

2a
.

Hence T (u) ∈ BV (]0, L[) and consequently u ∈ TBV +(]0, L[).
Since zn = c|un|b(un, u�n) with |b(un, u�n)| ≤ 1, we have that for all measurable

subsets E ⊂]0, L[ the following inequality holds:
�

E

|zn| dx ≤ c

�

E

|un| dx.

As {un} converges strongly, it is equi-integrable. Therefore, by Dunford-Pettis’s The-
orem, we can assume that

zn � z weakly in L1(]0, L[). (6.74)

Moreover, since |b(un, u�n)| ≤ 1 we also can assume that

b(un, u�n) � zb weakly∗ in L∞(]0, L[). (6.75)

As un → u in L1(]0, L[), we obtain from (6.74) and (6.75) that

z = c u zb. (6.76)

As vn → v in L1(]0, L[), we easily deduce from (6.74) and (6.68) that

v = −Dz in D�(]0, L[). (6.77)

Hence by (6.76) and (6.77) it follows that z ∈ W 1,1(]0, L[) ⊂ C([0, L]).

Lemma 6.6.8 The functions z(x) and a(u(x), u�(x)) coincide for a.e. x ∈]0, L[.

Proof. We use Minty–Browder’s technique. Let 0 < a < b, let 0 ≤ φ ∈ C1
c (]0, L[) and

let g ∈ C2([0, L]). We recall that T �
a,b

shall mean χ]a,b[. By (4.13), we have that
�

L

0
φ[zn − a(un, g�)]T �

a,b
(un)(un − g)� dx ≥ 0. (6.78)

Let us denote

Ja(x, r) :=
�

r

0
a(s, g�(x)) ds,

Ja�(x, r) :=
�

r

0
∂x[a(s, g�(x))] ds =

�
r

0

∂a

∂ξ
(s, g�(x))g��(x) ds

and observe that

−a
�
Ta,b(un(x)), g�(x)

�
[Ta,b(un(x))]� = −Dac [Ja(x, Ta,b(un(x)))] + Ja�(x, Ta,b(un(x))).

This we will substitute into (6.78). Note now that, using (6.69) we can get
�

L

0
φ[znDsTa,b(un)−DsJa(x, Ta,b(un))] ≥

�
L

0
φ[h(un, DTa,b(un))s −DsJa(x, Ta,b(un))] .

This lower bound is non-negative, as we have the following result:
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Lemma 6.6.9 The following inequality

(DJa(x, Ta,b(un)))s ≤ h(un, DTa,b(un))s

holds true.

Proof. We begin the proof stating two properties that concern the function h0. Thanks
to (4.19) we have that h0(z, ξ) = c|z| |ξ| = θ(z)|ξ|. In connection with (4.15) this leads
to

a(z, ξ)η ≤ h0(z, η) ∀ξ, η, z ∈ R (6.79)

Using the chain rule and Volpert’s averaged superposition we compute

(DJa(x, Ta,b(un)))s = a(Ta,b(un), g�(x)) DsTa,b(un)

= a(Ta,b(un), g�(x))
DsTa,b(un)
|DsTa,b(un)| |D

sTa,b(un)|

=
� 1

0
a(τ(Ta,b(un))++(1− τ)(Ta,b(un))−, g�(x)) dτ

DsTa,b(un)
|DsTa,b(un)| |D

sTa,b(un)|.

Notice that by (6.79) the previous is bounded above by
� 1

0
h0

�
τ(Ta,b(un))+ + (1− τ)(Ta,b(un))−,

DsTa,b(un)
|DsTa,b(un)|

�
dτ |DsTa,b(un)|.

Using the decomposition of h0 this is rewritten as
� 1

0
θ(τ(Ta,b(un))+ + (1− τ)(Ta,b(un))−) dτ

����
DsTa,b(un)
|DsTa,b(un)|

���� |D
sTa,b(un)|.

Thanks to the chain rule again, this is transformed into |DsJθ(Ta,b(un))|, which coin-
cides with h(un, DTa,b(un))s and conclusion follows. ✷

Then we can combine this information with (6.78), obtaining that

0 ≤
�

L

0
φ [znDTa,b(un)−DJa(x, Ta,b(un(x)))]

+
�

L

0
φ

�
Ja�(x, Ta,b(un(x)))− zng�T �

a,b
(un)) + g�T �

a,b
(un)a(un, g�)

�
dx.

Now, since
�

L

0
φ zn[DTa,b(un)− g�T �

a,b
(un) dx]

=
�

L

0
φ znD[Ta,b(un)− g] +

�
L

0
φ zng�(1− T �

a,b
(un)) dx

=−
�

L

0
vnφ (Ta,b(un)− g) dx−

�
L

0
φ�zn (Ta,b(un)− g) dx

+
�

L

0
φ zng�(1− T �

a,b
(un)) dx
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we get

lim
n→+∞

�
L

0
φ zn[DTa,b(un)− g�T �

a,b
(un) dx]

≤ �zD(Ta,b(u)− g), φ�+ �g��∞
�

L

0
|z|φ

�
1− T �

a,b
(u)

�
dx.

On the other hand, the almost everywhere convergence of un implies that

Ja� (x, Ta,b(un(x))) → Ja� (x, Ta,b(u(x))) a.e.

and we also have that

DJa(x, Ta,b(un(x))) � DJa(x, Ta,b(u(x))) weakly∗ as measures.

As a consequence, we get

lim
n→+∞

�
L

0
φ

�
Ja�(x, Ta,b(un(x))) dx−DJa(x, Ta,b(un(x))) + g�T �

a,b
(un)a(un, g�) dx

�

= �Ja�(x, Ta,b(u))−DJa(x, Ta,b(u), φ�+
�

L

0
φ g�T �

a,b
(u)a(u, g�) dx.

Consequently we obtain

0 ≤�zD (Ta,b(u)− g) , φ�+ �g��∞
�

L

0
|z|φ

�
1− T �

a,b
(u)

�
dx

+
�

L

0
φ g�T �

a,b
(u)a(u, g�) dx− �DJa(x, Ta,b(u(x)))− Ja�(x, Ta,b(u(x))), φ�

for all 0 ≤ φ ∈ C1
c (]0, L[). This means that, as measures,

0 ≤zD (Ta,b(u)− g)−DJa(x, Ta,b(u(x))) + Ja�(x, Ta,b(u(x)))L1

+
�
a(u, g�)g�T �

a,b
(u) + |z|�g��∞

�
1− T �

a,b
(u)

��
L1.

We deduce, as it was done in Lemma 6.5.8, that the absolutely continuous part of

−D [Ja(x, Ta,b(u(x)))] + Ja�(x, Ta,b(u(x)))

is
−a(u, g�)(Ta,b(u))� L1.

Then we obtain the inequality

z (Ta,b(u)− g)� − a(u, g�)(Ta,b(u))� + a(u, g�) g�T �
a,b

(u) + |z|�g��∞
�
1− T �

a,b
(u)

�
≥ 0

after taking absolutely continuous parts in the previous relation. If x ∈ [a < u < b],
this reduces to �

z− a(u, g�)
�
(u− g)� ≥ 0,

which holds for all g ∈ C2([0, L]) and all x ∈ Ω ∩ [a < u < b], where L1(]0, L[\Ω) = 0.
Being x ∈ Ω∩ [a < u < b] fixed and ξ ∈ R given, we find g as above such that g�(x) = ξ.
Then

(z(x)− a(u(x), ξ)) (u�(x)− ξ) ≥ 0, ∀ξ ∈ R.
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By an application of Minty–Browder’s method in R, these inequalities imply that

z(x) = a(u(x), u�(x)) a.e. on [a < u < b].

Since this holds for any 0 < a < b, we obtain the identification a.e. on the points of
]0, L[ such that u(x) �= 0. Now, by our assumptions on a and (6.76) we deduce that
z(x) = a(u(x), u�(x)) = 0 a.e. on [u = 0]. The Lemma is proved. ✷

To finish the proof we only need to show that
c

2
|Ds(T (u)2)| ≤ zDsT (u) as measures ∀T ∈ T +,

|Ds(JSθ(T (u))| ≤ zDsJT �S(u) as measures ∀S, T ∈ T +,

−a(u, u�)(0) = β and a(u, u�)(L) = −cu(L−).

These proofs are similar to those in the previous section. ✷

Once we get to this point we can use Theorem 6.6.7 to justify that Crandall-Liggett’s
Theorem B.1.4 applies in our situation. Thus we get that for any 0 ≤ u0 ∈ L1(]0, L[)
there exists a unique mild solution u ∈ C([0, T ];L1(]0, L[)) of the abstract Cauchy
problem

u�(t) + Bβu(t) � 0, u(0) = u0.

Moreover, u(t) = Tβ(t)u0 for all t ≥ 0, where (Tβ(t))t≥0 is the semigroup in L1(]0, L[)+

generated by Crandall-Liggett’s exponential formula, i.e.,

Tβ(t)u0 = lim
n→∞

�
I +

t

n
Bβ

�−n

u0.

On the other hand, as the operator Bβ is T-accretive we have that the comparison
principle also holds for Tβ(t). Meaning that, if u0, u0 ∈ L1(]0, L[)+, we have the estimate

�(Tβ(t)u0 − Tβ(t)u0)+�1 ≤ �(u0 − u0)+�1. (6.80)

Using Crandall-Liggett’s exponential formula and (6.64) we get that for all u0 ∈
L1(]0, L[)+,

Tβ(t)(µu0) = µTβ
µ
(t)(u0) for all t > 0. (6.81)

Finally, as a consequence of (6.80) and (6.81) we get an L∞-bound for the evolution
semigroup. More precisely, for u ∈ L∞(]0, L[)+ we have —with the notation of Propo-
sition 6.6.5—

0 ≤ Tβ(t)(u) ≤ µuβ, ∀ t ≥ 0.

6.7 Existence and uniqueness of solutions of the parabolic
problem

This section deals with the problem





∂u

∂t
= (a(u, ux))

x
in ]0, T [×]0, L[

−a(u(t, 0), ux(t, 0)) = β > 0 and u(t, L) = 0 on t ∈]0, T [,

u(0, x) = u0(x) in x ∈]0, L[.

(7.82)
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To make precise our notion of solution we need to recall the following definitions given
in [15]. We set QT =]0, T [×]0, L[ for the spatio-temporal domain.

First we give a meaning to products like zDT (u). Note that if

w ∈ L1(0, T ;BV (]0, L[)) ∩ L∞(QT )

and z ∈ L1(QT ) is such that there exists an element ξ ∈ [L1(0, T ;BV (]0, L[))]∗ with
Dxz = ξ in D�(QT ), we can define, associated with (z, ξ), the distribution zDxw in QT

by means of

�zDxw, ϕ� = −�ξ, ϕw� −
�

T

0

�
L

0
z(t, x)w(t, x)∂xϕ(t, x) dxdt (7.83)

for all ϕ ∈ D(QT ).
Our concept of solution for the problem (7.82) is the following.

Definition 6.7.1 A measurable function u : ]0, T [×]0, L[→ R+ is an entropy solution
of (7.82) in QT =]0, T [×]0, L[ if






u ∈ C([0, T ];L1(]0, L[))

u(0, x) = u0(x), x ∈]0, L[.

T (u(·)) ∈ L1
loc,w

(0, T, BV (]0, L[)) for all T ∈ Tr

z(t) := a(u(t), ∂xu(t)) ∈ L1(QT )

and the equation is satisfied in the following sense:

(i) the time derivative ut of u in D�(QT ) belongs to [L1(0, T ;BV (]0, L[))]∗ and satis-
fies �

T

0
�ut(t), ψ(t)� dt = −

�
T

0

�
L

0
u(t, x)Θ(t, x) dxdt (7.84)

for all test function ψ ∈ L1(0, T ;BV (]0, L[)) compactly supported in time such
that ψ(t) =

�
t

0 Θ(s) ds as a Pettis integral and Θ ∈ L1
w(0, T ;BV (]0, L[))∩L∞(QT ).

(ii) The relation Dxz = ut holds in D�(QT ) and for any w ∈ L1(0, T ;BV (]0, L[)), the
distribution zDxw defined by (7.83) is a Radon measure in QT . The following
integration by parts formula

�

QT

zDxw + �ut, w� = β

�
T

0
w(t, 0+) dt − c

�
T

0
u(t, L−)w(t, L−) dt. (7.85)

is fulfilled by the above objects, for all w ∈ L1(0, T ;BV (]0, L[)).

(iii) Given any truncations S ∈ P+, T ∈ T + and any η ∈ D(QT ), the following
entropy inequality is satisfied:

�

QT

ηhS(u,DT (u)) dt +
�

QT

ηhT (u,DS(u)) dt

≤
�

QT

JTS(u)∂tη dxdt −
�

QT

a(u, ∂xu)∂xη T (u)S(u) dxdt.
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Definition 6.7.2 We say that u is a bounded entropy solution of (7.82) if u is and
entropy solution of (7.82) and satisfies that

sup
0≤t≤T

�u(t)�L∞(]0,L[) < +∞.

In the following result we get a positive lower bound for u(t, 0+) that holds for any
entropy solution.

Lemma 6.7.3 If u is an entropy solution of (7.82) in QT =]0, T [×]0, L[, then

u(t, 0+) ≥ β

c
> 0, for almost all t ∈]0, T [. (7.86)

Proof. For any n ∈ N, let vn be the function defined by

vn(x) :=






−nx + 1, 0 < x ≤ 1
n

0 1
n
≤ x < L.

Being 0 ≤ φ ∈ D(]0, T [) fixed and taking w in (7.85) as wn(t) := φ(t)vn, we get

�

QT

zDxwn + �ut, wn� = β

�
T

0
φ(t) dt. (7.87)

By (7.84), we have

�ut, wn� = −
�

T

0
φ�(t)

�
L

0
u(t, x)vn(x) dxdt.

Using the dominated convergence theorem it follows that

lim
n→∞

�ut, wn� = 0. (7.88)

On the other hand, given ϕ ∈ D(QT ), relations (7.83) and (7.85) in combination yield

�zDxwn, ϕ� =
�

T

0
φ(t)

�
L

0
z(t, x)ϕ(t, x)v�n(x) dxdt.

Hence,
�

QT

z(t, x)Dxwn(t, x) = −
�

T

0
φ(t)n

� 1
n

0
z(t, x) dxdt. (7.89)

Now, by (7.87), (7.88) and (7.89), we get

β

�
T

0
φ(t) dt = − lim

n→∞

�
T

0
φ(t)n

� 1
n

0
z(t, x) dxdt.

Assume now that for some n ∈ N we have that u ∈ L∞(]0, 1/n[); if this is not the
case then u ≥ β/c in a neighborhood of zero and we are done. Then, since |z(t, x)| ≤
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cu(t, x) ≤ cTa,�u�∞(u(t, x)) for any 0 < a < �u�∞ and almost every x ∈]0, 1/n[, using
Fatou’s Lemma we obtain that

β

�
T

0
φ(t) dt ≤ c

�
T

0
φ(t)

�
lim

n→∞
n

� 1
n

0
Ta,�u�∞(u(t, x)) dx

�
dt

= c

�
T

0
φ(t)

�
Ta,�u�∞(u(t)

�
(0+) dt,

thanks to the definition of the trace operator. Thus β ≤ c
�
Ta,�u�∞(u(t)

�
(0+) for any

a > 0, from where (7.86) follows. ✷

As regards the existence and uniqueness of bounded entropy solutions we have the
following result.

Theorem 6.7.4 For any initial datum 0 ≤ u0 ∈ L∞(]0, L[) there exists a unique
bounded entropy solution u of (7.82) in QT =]0, T [×]0, L[ for every T > 0. Moreover,
if u(t), u(t) are bounded entropy solutions of (7.82) in QT =]0, T [×]0, L[ corresponding
to initial data u0, u0 ∈ L∞(]0, L[)+ respectively, then

�(u(t)− u(t))+�1 ≤ �(u0 − u0)+�1 for all t ≥ 0.

In particular, we have uniqueness of bounded entropy solutions for (7.82).

The remaining sections of this chapter constitute a proof for this statement. The time
regularization procedure introduced in Definition C.2.1 of the Appendix will be required
several times. For future usage we point out here the following features of our particular
case:

Remark 6.7.5 Let u a bounded entropy solution of (7.82) in QT and consider the
time regularization given in Definition C.2.1. Given p ∈ P+, it is easy to see that

|Dx(φp(u))τ (t)|(]0, L[) ≤ 1
τ

�
t

t−τ

|Dx(φ(s)p(u(s)))|(]0, L[) ds.

Then, by the lower-semi-continuity of the total variation respect to the L1-convergence,
we have

|Dx(φ(t)p(u(t)))|(]0, L[) ≤ lim inf
τ→0

|Dx(φp(u))τ (t)|(]0, L[)

≤ lim sup
τ→0

1
τ

�
t

t−τ

|Dx(φ(s)p(u(s))|(]0, L[) ds.

Since the map t �→ |Dx(φ(t)p(u(t)))|(]0, L[) belongs to L1
loc([0, T ]), we have that almost

all t ∈ [0, T ] is a Lebesgue point of this map. So, for almost all t ∈ [0, T ], we have

1
τ

�
t

t−τ

|Dx(φ(s)p(u(s))|(]0, L[) ds
τ→0−→ |Dx(φ(t)p(u(t))|(]0, L[),

and consequently,

|Dx(φp(u))τ (t)|(]0, L[) τ→0−→ |Dx(φ(t)p(u(t))|(]0, L[) a.e. t. (7.90)

The following trick will be also useful a number of times.
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Lemma 6.7.6 Let q be a non-decreasing function and r, r ≥ 0. Then, the inequality

Jq(r)− Jq(r) ≤ q(r)(r − r)

holds. As a consequence, given τ ∈ R, given real functions u,φ and changing variables
we obtain the following inequality

� +∞

−∞

u(t)− u(t− τ)
τ

q(u(t))φ(t) dt ≥
� +∞

−∞
Jq(u(t))

φ(t)− φ(t + τ)
τ

dt

whenever it makes sense.

6.7.1 Proof of the comparison principle

Let b > a > 2� > 0. We will use the notation T = T a

a,b
. We also need to consider

truncation functions of the form

S�,l(r) := T�(r − l)+ = Tl,l+�(r)− l ∈ T +

and
Sl

�(r) := Tl−�,l(r) + �− l ∈ T + = −T�(l − r)+ + �,

where l ≥ 0. Let us denote

J+
T,�,l

(r) =
�

r

0
T (s)T�(s− l)+ ds,

J−
T,�,l

(r) = −
�

r

0
T (s)T�(l − s)+ ds.

Then, JTS�,l(r) = J+
T,�,l

(r) and JTSl
�
(r) = J−

T,�,l
(r) + �JT (r).

Let u, u be two entropy solutions of (7.82) corresponding to the initial condi-
tions u0, u0 ∈

�
L1(]0, L[)

�+ respectively. Then, if z(t) := a(u(t), ∂xu(t)), z(t) :=
a(u(t), ∂xu(t)) and l1, l2 > �, we have

−
�

T

0

�
L

0
J+

T,�,l1
(u(t))∂tη(t) dxdt

+
�

T

0

�
L

0
η(t)[hT (u(t), DxS�,l1(u(t))) + hS�,l1

(u(t), DxT (u(t)))] dt

+
�

T

0

�
L

0
z(t)∂xη(t)T (u(t))S�,l1(u(t)) dxdt ≤ 0

(7.91)

and

−
�

T

0

�
L

0
J−

T,�,l2
(u(t))∂tη(t) dxdt− �

�
T

0

�
L

0
JT (u(t))∂tη(t) dxdt

+
�

T

0

�
L

0
η(t)[hT (u(t), DxSl2

� (u(t))) + h
S

l2
�

(u(t), DxT (u(t)))] dt

+
�

T

0

�
L

0
z(t)∂xη(t)T (u(t))Sl2

� (u(t)) dxdt ≤ 0

(7.92)
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for all η ∈ C∞(QT ) which are non-negative and factorize as η(t, x) = φ(t)ρ(x), being
φ ∈ D(]0, T [), ρ ∈ D(]0, L[).

We choose two different pairs of variables (t, x), (s, y) and consider u, z as functions
of (t, x) and u, z as functions of (s, y). Let 0 ≤ φ ∈ D(]0, T [) and ψ ∈ D(]0, L[); let also
ρm and ρ̃n be sequences of mollifiers in R. Define

ηm,n(t, x, s, y) := ρm(x− y)ρ̃n(t− s)φ
�

t + s

2

�
ψ

�
x + y

2

�
.

Being (s, y) fixed, we substitute l1 = u(s, y) in (8.145) to get

−
�

T

0

�
L

0
J+

T,�,u(s,y)(u(t, x))∂tηm,n dxdt

+
�

T

0

�
L

0
ηm,n[hT (u(t, x), DxS�,u(s,y)(u(t, x))) + hS�,u(s,y)

(u(t, x), DxT (u(t, x)))] dt

+
�

T

0

�
L

0
z(t, x)∂xηm,nT (u(t, x))S�,u(s,y)(u(t, x)) dxdt ≤ 0.

(7.93)
Similarly, for (t, x) fixed, if we take l2 = u(t, x) in (8.146) we get

−
�

T

0

�
L

0
J−

T,�,u(t,x)(u(s, y))∂sηm,n dyds− �

�
T

0

�
L

0
JT (u(s, y))∂sηm,n dyds

+
�

T

0

�
L

0
ηm,n[hT (u(s, y), DyS

u(t,x)
� (u(s, y))) + h

S
u(t,x)
�

(u(s, y), DyT (u(s, y)))] ds

+
�

T

0

�
L

0
z(s, y)∂yηm,nT (u(s, y))Su(t,x)

� (u(s, y)) dyds ≤ 0.

(7.94)

We integrate (8.147) in (s, y) and (8.148) in (t, x). Then we add the two resulting
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inequalities. What we get is

−
�

QT×QT

�
J+

T,�,u(s,y)(u(t, x))∂tηm,n + J−
T,�,u(t,x)(u(s, y))∂sηm,n

�
dsdtdydx

−�

�

QT×QT

JT (u(s, y))∂sηm,n dsdtdydx

+
�

QT×QT

ηm,nhT (u(t, x), DxS�,u(s,y)(u(t, x))) dsdtdy

+
�

QT×QT

ηm,nhT (u(s, y), DyS
u(t,x)
� (u(s, y))) dsdtdx

+
�

QT×QT

ηm,nhS�,u(s,y)
(u(t, x), DxT (u(t, x))) dsdtdy

+
�

QT×QT

ηm,nh
S

u(t,x)
�

(u(s, y), DyT (u(s, y))) dsdtdx

+
�

QT×QT

z(tx)∂xηm,nT (u(t, x))S�,u(s,y)(u(t, x)) dsdtdydx

+
�

QT×QT

z(s, y)∂yηm,nT (u(s, y))Su(t,x)
� (u(s, y)) dsdtdydx ≤ 0.

(7.95)

Since
�

QT×QT

ηm,nhS�,u(s,y)
(u(t, x), DxT (u(t, x))) dsdtdy ≥ 0

and
�

QT×QT

ηm,nh
S

u(t,x)
�

(u(s, y), DyT (u(s, y))) dsdtdx ≥ 0

thanks to (4.18), we might neglect fifth and sixth terms above. We could do the same
for the third and fourth terms, but we keep them as they will be helpful later. Next
we bring in the terms

�
z(t, x)∂yηm,nT (u(t, x))S�,u(s,y)(u(t, x)) dsdtdydx

and
�

z(s, y)∂xηm,nT (u(s, y))Su(t,x)
� (u(s, y)) dsdtdydx

added and subtracted and we combine them with the seventh and eighth terms in
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(7.95). Summing up all computations so far we get

−
�

QT×QT

�
J+

T,�,u(s,y)(u(t, x))∂tηm,n + J−
T,�,u(t,x)(u(s, y))∂sηm,n

�
dsdtdydx

−�

�

QT×QT

JT (u(s, y))∂sηm,n dsdtdydx

+
�

QT×QT

ηm,nhT (u(t, x), DxS�,u(s,y)(u(t, x))) dsdtdy

+
�

QT×QT

ηm,nhT (u(s, y), DyS
u(t,x)
� (u(s, y))) dsdtdx

−
�

QT×QT

z(s, y)∂xηm,nT (u(s, y))Su(t,x)
� (u(s, y)) dsdtdydx

−
�

QT×QT

z(t, x)∂yηm,nT (u(t, x))S�,u(s,y)(u(t, x)) dsdtdydx

+
�

QT×QT

T�(u(t, x)− u(s, y))+[T (u(t, x))z(t, x)− T (u(s, y))z(s, y)]

×(∂xηm,n + ∂yηm,n) dsdtdydx

+�

�

QT×QT

T (u(s, y))z(s, y)(∂xηm,n + ∂yηm,n) dsdtdydx ≤ 0.

(7.96)

Recall that u, z are always functions of (t, x) and u, z are always functions of (s, y).
From now on we shall work with more concise expressions. In order to do so, we shall
omit the arguments of u, z, u and z except in some cases where we find it useful to
remind them. We will also omit the differentials of the integrals.

Let I be the sum of the third up to the sixth terms of the above inequality. Working
as in the proof of uniqueness of Theorem 3 in [17], we obtain that 1

�
I ≥ �φ�∞�ψ�∞o(�);

the techniques to obtain this result are pretty similar to those used in the proof of
Lemma 6.5.13. Hence, by (8.149), it follows that

−
�

QT×QT

�
J+

T,�,u
(u)∂tηm,n + J−

T,�,u
(u)∂sηm,n

�

+
�

QT×QT

T�(u− u)+[T (u)z− T (u)z](∂xηm,n + ∂yηm,n)

+ �

�

QT×QT

T (u)z(∂xηm,n + ∂yηm,n) ≤ −� o(�) + �

�

QT×QT

JT (u)∂sηm,n.
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Then, dividing by � and letting � → 0 we get

−
�

QT×QT

�
J+

T,sign,u
(u)∂tηm,n + J−

T,sign,u
(u)∂sηm,n

�

+
�

QT×QT

sign+
0 (u− u)[T (u)z− T (u)z](∂xηm,n + ∂yηm,n)

+
�

QT×QT

T (u)z(∂xηm,n + ∂yηm,n) ≤
�

QT×QT

JT (u)∂sηm,n

where
J+

T,sign,l
(r) =

�
r

0
T (s)sign+

0 (s− l)ds l ∈ R, r ≥ 0

and
J−

T,sign,l
(r) = −

�
r

0
T (s)sign+

0 (l − s)ds l ∈ R, r ≥ 0.

Now, letting m →∞ we obtain

−
�

T

0

�
T

0

�
L

0

�
J+

T,sign,u(s,x)(u(t, x))∂tχn + J−
T,sign,u(t,x)(u(s, x))∂sχn

�

+
�

T

0

�
T

0

�
L

0
sign+

0 (u(t, x)− u(s, x))[T (u(t, x))z(t, x)− T (u(s, x))z(s, x)]∂xχn

+
�

T

0

�
T

0

�
L

0
T (u(s, x))z(s, x)∂xχn ≤

�
T

0

�
T

0

�
L

0
JT (u(s, x))∂sχn

where
χn(t, s, x) := ρ̃n(t− s)φ(

t + s

2
)ψ(x).

We set ψ = ψk ∈ D(]0, L[) ↑ χ]0,L[ in the last expression. Taking limit as k → +∞ we
obtain

−
�

T

0

�
T

0

�
L

0

�
J+

T,sign,u(s,x)(u(t, x))∂tκn(t, s) + J−
T,sign,u(t,x)(u(s, x))∂sκn(t, s)

�

+ lim
k→+∞

�
T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(t, x))z(t, x)∂xψk(x)

− lim
k→+∞

�
T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(s, x))z(s, x))∂xψk(x)

+ lim
k→+∞

�
T

0

�
T

0

�
L

0
κn(t, s)T (u(s, x))z(s, x)∂xψk(x)

≤
�

T

0

�
T

0

�
L

0
JT (u(s, x))∂sκn(t, s),

(7.97)
where κn(t, s) := ρ̃n(t− s)φ( t+s

2 ). Rewrite that inequality as
�

T

0

�
T

0

�
L

0
JT (u(s, x))∂sκn(t, s) ≥ +A−B + C

−
�

T

0

�
T

0

�
L

0

�
J+

T,sign,u(s,x)(u(t, x))∂tκn(t, s) + J−
T,sign,u(t,x)(u(s, x))∂sκn(t, s)

�
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being A, −B and C the second, third and fourth terms above.

Lemma 6.7.7 The following inequalities hold true:

1. for the second term above,

A ≥ −β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(t, 0+)) dtds

+c

�
T

0

�
T

0
u(t, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(t, L−)) dtds,

2. for the third term above,

−B ≥β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(s, 0+)) dtds

−c

�
T

0

�
T

0
u(s, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(s, L−)) dtds,

3. for the fourth term above,

C ≥ c

�
T

0

�
T

0
u(s, L−)κn(t, s)T (u(s, L−)) dtds−β

�
T

0

�
T

0
κn(t, s)T (u(s, 0+)) dtds.

Proof. To prove the first point, denote

Ik :=
�

T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(t, x))z(t, x)∂xψk(x)

=
�

T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(t, x))z(t, x)∂x(ψk(x)− 1).

Set
Hn(s, r) := κn(r, s)sign+

0 (u(r)− u(s))T (u(r)).

For τ > 0, we define the function (κn(s))τ as a Dunford integral (see Remark C.2.1)

(κn(s))τ (t) :=
1
τ

�
t+τ

t

Hn(s, r) dr.

In fact, this defines an s-parametric family of Dunford integrals. Note that

r �→ κn(r, s) ∈ D(]0, T [)

and
r �→ sign+

0 (u(r)− u(s))T (u(r)) ∈ L1
loc

(0, T, BV (]0, L[)).
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Then, using (ii) of Definition 6.7.1 with w = (κn(s))τ (ψk − 1),

Ik = lim
τ→0

�
T

0

�
T

0

�
L

0
(κn(s))τ (t)z(t, x)∂x[ψk(x)− 1] dxdtds

= + lim
τ→0

�
T

0

�
T

0

�
L

0
Dx[(κn(s))τ (t)(ψk(x)− 1)]z(t, x)

− lim
τ→0

�
T

0

�
T

0

�
L

0
Dx(κn(s))τ (t)z(t, x)(ψk(x)− 1)

=− lim
τ→0

�
T

0

�
T

0

�
L

0
[ψk(x)− 1]z(t, x)Dx((κn(s))τ (t))) dtds

− lim
τ→0

�
T

0
�ut, (κn(s))τ (ψk(x)− 1)� ds

+ c lim
τ→0

�
T

0

�
T

0
u(t, L−)(κn(s))τ (t)(L−) dtds

− β lim
τ→0

�
T

0

�
T

0
(κn(s))τ (t)(0+) dtds

:=I1
k

+ I2
k

+ I3
k

+ I4
k
.

Notice that

I3
k

= c

�
T

0

�
T

0
u(t, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(t, L−)) dtds

and

I4
k

= −β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(t, 0+)) dtds.

By Remark 6.7.5, we get

|Dx((κn(s))τ (t))|(]0, L[) τ→0−→ |Dx(κn(t, s)sign+
0 (u(t)− u(s))T (u(t)))|(]0, L[). (7.98)

Using (8.151), we obtain the bound

|I1
k
| ≤ c�u�L∞(QT )

�
T

0

�
T

0

�
L

0
(1− ψk(x))|Dx(κn(t, s)sign+

0 (u(t)− u(s))T (u(t)))| dtds,

which implies limk→∞ I1
k

= 0. Let us deal with I2
k
. We have

I2
k

= lim
τ→0

�
T

0

�
T

0

�
L

0
u(t, x)

Hn(s, t + τ)−Hn(s, t)
τ

(ψk(x)− 1) dxdtds.
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Define the function
q(τ) := sign+

0 (τ − u(s, x))T (τ)

Using Lemma 6.7.6 and the fact that Hn(s, t) = q(u(t))κn(t, s) we get

I2
k

= lim
τ→0

�
T

0

�
T

0

�
L

0
(1− ψk(x))

u(t, x)− u(t− τ, x)
τ

Hn(s, t) dxdtds

≥ lim
τ→0

�
T

0

�
T

0

�
L

0
(1− ψk(x))κn(t, s)

Jq(u(t, x))− Jq(u(t− τ, x))
τ

dxdtds

= lim
τ→0

�
T

0

�
T

0

�
L

0
(1− ψk(x))Jq(u(t, x))

κn(t, s)− κn(t + τ, s)
τ

dxdtds

= −
�

T

0

�
T

0

�
L

0
(1− ψk(x))Jq(u(t, x))∂tκn(t, s) dxdtds,

from where it follows that limk→∞ I2
k
≥ 0. Taking into account the above facts, we get

a proof for the first point of the Lemma.
Now we deal with the second point. First we set

− lim
k→∞

�
T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(s, x))z(s, x)∂xψk(x)

=− lim
k→∞

lim
τ→0

�
T

0

�
T

0

�
L

0
(κn(t))τ (s)z(s, x)∂x(ψk(x)− 1),

being

(κn(t))τ (s) =
1
τ

�
s+τ

s

sign+
0 (u(t, x)− u(r, x))T (u(r, x))κn(t, r) dr.

To study the integral above we decompose it and use integration by parts as follows:

−
�

T

0

�
T

0

�
L

0
(κn(t))τ (s)z(s, x)∂x(ψk(x)− 1)

=
�

T

0

�
T

0

�
L

0
[ψk(x)− 1]z(s, x)Dx((κn(t))τ (s))) dsdt

+
�

T

0
�us, (κn(t))τ (s)(ψk(x)− 1)� dt

− c

�
T

0

�
T

0
u(s, L−)(κn(t))τ (s)(L−) dtds

+ β

�
T

0

�
T

0
(κn(t))τ (s)(0+) dtds.

All the terms are treated in the same way as before, except the second one. This one
can be written down as

�
T

0

�
T

0

�
L

0
(1− ψk(x))

u(s− τ, x)− u(s, x)
τ

sign+
0 (u(t, x)− u(s, x))T (u(s, x))κn(t, s)

=−
�

T

0

�
T

0

�
L

0
(1− ψk(x))

u(s− τ, x)− u(s, x)
τ

κn(t, s) (u(s− τ, x) + u(s, x))

+
�

T

0

�
T

0

�
L

0
(1− ψk(x))

u(s− τ, x)− u(s, x)
τ

κn(t, s)

×
�
sign+

0 (u(t, x)− u(s, x))T (u(s, x)) + (u(s− τ, x) + u(s, x))
�

:= I1 + I2.



174 6.7. Existence and uniqueness of solutions of the parabolic problem

We show that the first term will converge to zero after taking the limits in τ and k, as

−I1 =
�

T

0

�
T

0

�
L

0
(1− ψk(x))

u(s− τ, x)2 − u(s, x)2

τ
κn(t, s)

=
�

T

0

�
T

0

�
L

0
(1− ψk(x))u(s, x)2

κn(t, s + τ)− κn(t, s)
τ

.

To deal with the second term, notice that the mapping

q(r) =
�
sign+

0 (u(t, x)− u(s, x))T (u(s, x)) + r + u(s, x))
�

is non-decreasing in r, so that defining Q(r) =
�

r

0 q(s) ds we get

Q(b)−Q(a) ≥ (b− a)q(a)

or
Q(a)−Q(b) ≤ (a− b)q(a).

Choose now a = u(s− τ) and b = u(s), which leads us to

I2 ≥
�

T

0

�
T

0

�
L

0
(1− ψk(x))κn(t, s)

Q(u(s− τ))−Q(u(s))
τ

.

This enables us to show, as it has been done before, that

lim
k→∞

lim
τ→0

I2 ≥ 0,

which concludes the proof of the second point of the Lemma.
The proof of the third point is performed in a similar way. ✷

From (8.150), by Lemma 6.7.7 we have

−
�

T

0

�
T

0

�
L

0

�
J+

T,sign,u(s,x)(u(t, x))∂tκn(t, s) + J−
T,sign,u(t,x)(u(s, x))∂sκn(t, s)

�
dtdsdx

+c

�
T

0

�
T

0
u(t, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(t, L−)) dtds

−c

�
T

0

�
T

0
u(s, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(s, L−)) dtds

−β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(t, 0+)) dtds

+β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(s, 0+)) dtds

+c

�
T

0

�
T

0
u(s, L−)κn(t, s)T (u(s, L−)) dtds− β

�
T

0

�
T

0
κn(t, s)T (u(s, 0+)) dtds

≤
�

T

0

�
T

0

�
L

0
JT (u(s, x))∂sκn(t, s) dtdsdx.

(7.99)
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By Lemma 6.7.3, we have

u(t, 0+) ≥ β

c
> 0, u(s, 0+) ≥ β

c
> 0 for almost all t, s > 0. (7.100)

Now we let a → 0, then we divide by b and finally we let b → 0 in (8.155). We have that
J+

T,sign,u(s,x)(u(t, x)) converges to (u(t, x)− u(s, x))+, while J−
T,sign,u(t,x)(u(s, x)) does to

(u(t, x)− u(s, x))+ − u(t, x). Thus, after these processes (8.155) has become

−
�

T

0

�
T

0

�
L

0
(u(t, x)− u(s, x))+(∂tκn(t, s) + ∂sκn(t, s)) dtdsdx

+c

�
T

0

�
T

0
u(t, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))sign+
0 (u(t, L−)) dtds

−c

�
T

0

�
T

0
u(s, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))sign+
0 (u(s, L−)) dtds

−β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))[sign0(u(t, 0+)− sign0(u(s, 0+))]dtds

+c

�
T

0

�
T

0
u(s, L−)κn(t, s)sign+

0 (u(s, L−)) dtds− β

�
T

0

�
T

0
κn(t, s) dtds

≤
�

T

0

�
T

0

�
L

0
u(s, x)∂sκn(t, s) dtdsdx.

(7.101)
Now we analyze term by term. Having in mind (8.156), the fourth term in (7.101)
vanishes. Moreover, the sum of the second and third terms in (7.101) is non-negative
(argue case by case). Finally, using that us = Dx (z) in the sense given in (ii) of
Definition 6.7.1 with w = w(s) = κn(s, t) —which does not depend on x and has t as
a mute variable —, it follows that

�
T

0

�
T

0

�
L

0
u(s, x)∂sκn(t, s) dxdtds = −

�
T

0
�us, κn(·, t)� dt

= c

�
T

0

�
T

0
u(s, L−)κn(t, s) dtds− β

�
T

0

�
T

0
κn(t, s) dtds.

Therefore, this contribution vanishes when combined with the fifth and sixth terms in
(7.101). All together yields

−
�

T

0

�
T

0

�
L

0
(u(t, x)− u(s, x))+(∂tκn(t, s) + ∂sκn(t, s)) dtdsdx ≤ 0.

Letting n →∞,

−
�

T

0

�
L

0
(u(t, x)− u(t, x))+φ�(t) dxdt ≤ 0.

Since this is true for all 0 ≤ φ ∈ D(]0, T [), we have

d

dt

�
L

0
(u(t, x)− u(t, x))+ dx ≤ 0.
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Hence
�

L

0
(u(t, x)− u(t, x))+ dx ≤

�
L

0
(u0(x)− u0(x))+ dx for all t ≥ 0,

which finishes the uniqueness part.

6.7.2 Existence of bounded entropy solution

Given 0 ≤ u0 ∈ L1(]0, L[), let u(t) = Tβ(t)u0, being (Tβ(t))t≥0 the semigroup in
L1(]0, L[)+ generated by the accretive operator Bβ. Then, according to the general
theory of nonlinear semigroups, we have that u(t) is a mild solution of the abstract
Cauchy problem

u�(t) + Bβu(t) � 0, u(0) = u0.

Let us prove that, assuming 0 ≤ u0 ∈ L∞(]0, L[), then this mild solution u is also a
bounded entropy solution of (7.82) in QT . We divide the proof in several steps.

Step 1. Approximation with Crandall-Ligget’s scheme.
Let T > 0, K ∈ N, ∆t = T

K
, tn = n∆t, n = 0, . . . ,K. We define inductively un+1,

n = 0, . . . ,K − 1, to be the unique entropy solution of the problem





un+1 − un

∆t
−

�
a(un+1, (un+1)�)

�� = 0 in ]0, L[

−a(un+1(0), (un+1)�(0)) = β > 0 and un+1(L−) = 0

(7.102)

in the sense of Definition 6.5.1, where u0 = u0.
If we set

uK(t) := u0χ[0,t1](t) +
K−1�

n=1

unχ]tn,tn+1](t),

we get that uK converges uniformly to u ∈ C([0, T ], L1(]0, L[)) as K → ∞, thanks to
Crandall-Liggett’s Theorem.

We also define

ξK(t) :=
K−1�

n=0

un+1 − un

∆t
χ]tn,tn+1](t)

and

z
K(t) := a(u1, (u1)�)χ[0,t1](t) +

K−1�

n=1

a(un+1, (un+1)�)χ]tn,tn+1](t).

Since un+1 is the entropy solution of (7.102), we have the relations

ξK(t) = Dxz
K(t) in D�(]0, L[), ∀t ∈]0, T ] (7.103)

z
K(t)(L) = −cuK(t + ∆t)(L−), ∀t ∈]0, T −∆t] (7.104)

−z
K(t)(0) = β, ∀t ∈ [0, T ]. (7.105)

We also have that for all S ∈ P+, T ∈ T + and ∀t ∈]0, T−∆t], the following inequalities
are satisfied:

h(uK(t + ∆t), DxT (uK(t + ∆t)) ≤ z
K(t)DxT (uK(t + ∆t)) as measures (7.106)
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hS(uK(t + ∆t), DxT (uK(t + ∆t)) ≤ z
K(t)DxJT �S(uK(t + ∆t)) as measures. (7.107)

Note that (7.106) is equivalent to

c

2
|Ds

x([T (uK(t + ∆t))]2)| ≤ z
K(t)Ds

xT (uK(t + ∆t)) as measures. (7.108)

In the same way, (7.107) is equivalent to

|Ds(JSθ(T (uK(t + ∆t)))| ≤ z
K(t)DsJT �S(uK(t + ∆t)) as measures. (7.109)

Note also that using (4.12) and (4.21) we can write

h(un+1, DxT (un+1)) = a(un+1, (un+1)�)(T (un+1))�L1 +
c

2
|Ds

x[(T (un+1))2]|

≥ c

2
|((T (un+1))2)�|L1 − c2

ν
(T (un+1))2L1 +

c

2
|Ds

x[(T (un+1))2]|

=
c

2
|D[(T (un+1))2]|− c2

ν
(T (un+1))2L1;

since a(un+1, (un+1)�)DxT (un+1) ≥ h(un+1, DxT (un+1)) as measures in ]0, L[ we get
the following inequality as measures

z
K(t)DxT (uK(t + ∆t)) ≥ c

2
|Dx([T (uK(t + ∆t))]2)|− c2

ν
(T (uK(t + ∆t)))2. (7.110)

Lemma 6.7.8 There exists M := M(β, c, ν, L, �u0�∞) such that

�uK(t)�∞ ≤ M ∀K ∈ N and ∀t ∈ [0, T ]. (7.111)

Consequently, �u(t)�∞ ≤ M ∀t ∈ [0, T ].

Proof. Since

(I + ∆tBβ)−1 (un) = un+1, for n = 0, . . . ,K − 1,

setting µ := max{ c�u0�∞
β

, 1} and using Proposition 6.6.5 we get that

0 ≤ u1 = (I + ∆tBβ)−1 (u0) ≤ µuβ.

Then, repeating this process, we obtain

0 ≤ un+1 = (I + ∆tBβ)−1 (un) ≤ (I + ∆tBβ)−1 (µuβ)

= µ

�
I + ∆tBβ

µ

�−1

(uβ) ≤ µ (I + ∆tBβ)−1 (uβ) = µuβ

and the statement follows.
✷

Step 2. Passage to the limit.
Lemma 6.7.8 assures that �zK(t)�∞ ≤ C for all K ∈ N and a.e. t ∈ [0, T ]. Then

we may assume that
z

K � z ∈ L∞(QT ) weakly∗. (7.112)
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Moreover, since uK converges uniformly to u in C([0, T ], L1(]0, L[)) and

z
K(t) = c uK(t + ∆t)b(uK(t + ∆t), ∂xuK(t + ∆t)) ∀t ∈]0, T −∆t],

with �b(uK(t + ∆t), ∂xuK(t + ∆t))�∞ ≤ 1, we may also assume that

b(uK(t + ∆t), ∂xuK(t + ∆t)) � zb(t) ∈ L∞(QT ) weakly∗

and
z(t) = c u(t)zb(t) for almost all t ∈ [0, T ]. (7.113)

Given w ∈ BV (]0, L[), it follows from (7.103) and (7.111) that for each t ∈]0, T ],
����
�

L

0
ξK(t, x)w(x) dx

���� =
����−

�
L

0
z

K(t)Dw + z
K(L)w(L−) + βw(0+)

����

≤ C�w�BV (]0,L[) + |zK(L)w(L−)| ≤ (C + cµ�uβ�∞)�w�BV (]0,L[),

Here the continuous injection of BV (]0, L[) into L∞(]0, L[) was used. Thus,

�ξK(t)�BV (]0,L[)∗ ≤ C, ∀ K ∈ N and t ∈]0, T ].

Consequently, {ξK} is a bounded sequence in L∞(0, T ;BV (]0, L[)∗). Now, since
L∞(0, T ;BV (]0, L[)∗) is a vector subspace of the dual space

�
L1(0, T ;BV (]0, L[))

�∗,
we can find a subnet ξα of ξK such that

ξα � ξ ∈
�
L1(0, T ;BV (]0, L[))

�∗ weakly∗.

Now we are to identify this limit ξ. We recall that not every subnet of a sequence qua-
lifies a a subsequence of the original one, but nevertheless any quantities that converge
for K →∞ converge also along the subnet α.

Lemma 6.7.9 The limit ξ is the time derivative ut of u in D�(QT ) and (7.84) holds.

Proof. Let ψ ∈ L1(0, T ;BV (]0, L[)) compactly supported in time and such that there
exists Θ ∈ L1

w(0, T ;BV (]0, L[)) ∩ L∞(QT ) verifying ψ(t) =
�

t

0 Θ(s) ds, the integral
being a Pettis integral, as in (7.84) . Then, for ∆t small enough

�
T

0

�
L

0

K−1�

n=0

un+1 − un

∆t
χ]tn,tn+1](t)ψ(t) dxdt =

�
T

0

�
L

0

uK(t + ∆t)− uK(t)
∆t

ψ(t) dxdt

= − 1
∆t

�
t1

0

�
L

0
u0ψ(t) dxdt +

�
tK

t1

�
L

0
uK(t)

ψ(t−∆t)− ψ(t)
∆t

dxdt.

Taking limits along α we obtain
�

T

0
�ψ(t), ξ(t)� dt = −

�
T

0

�
L

0
u(t, x)Θ(t, x) dxdt. (7.114)

Substitute now ψ ∈ D(QT ) into (7.114). Taking into account that

ψ(t) =
�

t

0
Θ(s) ds, Θ(s) =

∂ψ

∂s

conclusion follows. ✷

Step 3. Fulfillment of the equation.
We begin with
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Lemma 6.7.10 The relation
ut = Dxz (7.115)

holds in D�(QT ).

Proof. In fact, given ψ ∈ D(QT ), we have that ψ ∈ L1(0, T ;BV (]0, L[)). Then, by
(7.114) and (7.112), we get

�ut, ψ� = lim
α
�ξα, ψ� = lim

α

�
T

0

�
L

0
ψ(t)ξα(t) dxdt = lim

α

�
T

0

�
L

0
ψ(t)Dxz

α(t) dxdt

= − lim
α

�
T

0

�
L

0
∂xψ(t)zα(t) dxdt = −

�
T

0

�
L

0
∂xψ(t)z dxdt = �ψ,Dxz�

and (7.115) holds (the representation of the duality product is done by means of Remark
C.2.2). ✷

Next, we are going to prove that ut = Dx z holds in the stronger sense given by
Definition 6.7.1. To do this, let us first prove:

Lemma 6.7.11 The distribution zDxw in QT defined by (7.83) is a Radon measure
in QT for all w ∈ L1(0, T ;BV (]0, L[)).

Proof. Let ϕ ∈ D(QT ), then

�zDw,ϕ� =− �ut, ϕw� −
�

T

0

�
L

0
z(t, x)w(t, x)∂xϕ(t, x) dxdt

=− �ut − ξα, ϕw� − �ξα, ϕw� −
�

T

0

�
L

0
z(t, x)w(t, x)∂xϕ(t, x) dxdt

=− �ut − ξα, ϕw� −
�

T

0

�
L

0
Dxz

α(t)ϕ(t)w(t) dxdt

−
�

T

0

�
L

0
z(t, x)w(t, x)∂xϕ(t, x) dxdt

and integrating by parts

�zDw,ϕ� =− �ut − ξα, ϕw�+
�

T

0

�
L

0
z

α(t, x)Dxw(t, x)ϕ(t, x) dxdt

+
�

T

0

�
L

0
(zα(t, x)− z(t, x)) w(t, x)∂xϕ(t, x) dxdt.

Then, taking limit in α and having in mind (7.112) we obtain

�zDw,ϕ� = lim
α

�
T

0

�
L

0
z

α(t, x)Dxw(t, x)ϕ(t, x) dxdt. (7.116)

Therefore, we have

|�zDw,ϕ�| ≤ �ϕ�∞cM

�
T

0
|Dxw(t)|(]0, L[) dt.

Hence, zDw is a Radon measure in QT . ✷
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Lemma 6.7.12 The relation ut = Dx z holds in the sense given by (ii) of Definition
6.7.1.

Proof. It follows from (7.116) and integrating by parts that
�

QT

zDxw = lim
α

�
T

0

�
L

0
z

α(t)Dxw(t) dt = − lim
α

�
T

0

�
L

0
w(t, x)Dxz

α(t, x) dxdt

+ lim
α

��
T

0
z

α(t, L)w(t, L−) dt−
�

T

0
z

α(0)w(t, 0+) dt

�
.

Using (7.104) this becomes
�

QT

zDxw = lim
α

�
−�ξα, w� − c

�
T

0
uα(t + ∆t)(L−)w(t, L−) dt + β

�
T

0
w(t, 0+) dt

�

= −�ut, w� − c

�
T

0
u(t)(L−)w(t, L−) dt + β

�
T

0
w(t, 0+) dt.

The convergence of the boundary term followed from the fact that w(t, L−) ∈ L1(]0, T [)
together with

uα(t + ∆t, L−) ∈ L∞(]0, T [) uniformly on α,

which is due to (7.111) and the definition of trace. So finally (7.85) holds. ✷

Step 4. Regularity and some auxiliary inequalities.
Let T = Ta,b be any cut-off function and let 0 ≤ φ ∈ D(QT ). We multiply (7.102)

by T (un+1)φ(t), t ∈]tn, tn+1] and integrate in ]tn, tn+1]×]0, L[. Adding from n = 0 to
n = K − 1, we have

K−1�

n=0

�
tn+1

tn

�
L

0

un+1 − un

∆t
φT (un+1) dxdt +

�
T

0

�
L

0
z

K(t)Dx(φT (uK(t + ∆t))) dt = 0.

(7.117)
Since φ has compact support in time in ]0, T [, using Lemma 6.7.6 for K large enough
we have

−
K−1�

n=0

�
tn+1

tn

�
L

0

un+1 − un

∆t
T (un+1)φ dxdt ≤

�
T

0

�
L

0
JT (uK(t))

φ(t)− φ(t−∆t)
∆t

dxdt.

Hence, from (7.117) it follows that
�

T

0

�
L

0
z

K(t)Dx(φT (uK(t + ∆t))) dt ≤
�

T

0

�
L

0
JT (uK(t))

φ(t)− φ(t−∆t)
∆t

dxdt.

(7.118)
Assume now that 0 ≤ φ ∈ D(]0, T [). Arguing as before, we have

�
L

0

un+1 − un

∆t
φ(t)T (un+1) dx +

�
L

0
a(un+1, (un+1)�)Dx[φ(t)T (un+1)]

= βφ(t)T (un+1(0+))− c φ(t)un+1(L−)T (un+1(L−)).
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Adding from n = 0 to n = K − 1 and integrating in time we arrive to
�

T

0

�
L

0
z

K(t)φ(t)DxT (uK(t + ∆t)) dt

≤
�

T

0

�
L

0
JT (uK(t))

φ(t)− φ(t−∆t)
∆t

dxdt +
�

T

0
βφ(t)T (uK(t + ∆t, 0+)) dt. (7.119)

As a first application of these computations we can prove the following regularity pro-
perty for the solution we are constructing.

Lemma 6.7.13 The function u(t, x) defined as the limit of Crandall-Liggett approxi-
mations verifies

T (u(·)) ∈ L1
loc,w

(0, T, BV (]0, L[)) (7.120)

for any T ∈ Tr.

Proof. Given � > 0, we take into (7.119) any test 0 ≤ φ ∈ D(]0, T [) such that φ(t) = 1
for t ∈]�, T − �[. Having in mind (7.106) and (7.111), we get

�
T−�

�

�
L

0
z

K(t)DxT (uK(t + ∆t)) dt

≤
�

T

0

�
L

0
JT (uK(t))

φ(t)− φ(t−∆t)
∆t

dxdt +
�

T

0
βT (uK(t, 0+)) dt ≤ C.

On the other hand, by (7.110)
�

T−�

�

�
L

0
z

K(t)DxT (uK(t + ∆t)) dt

≥ c

2

�
T−�

�

�
L

0
|Dx([T (uK(t + ∆t))]2)| dt−

�
T−�

�

�
L

0

c2

ν
(T (uK(t + ∆t)))2 dt.

Hence �
T−�

�

�
L

0
|Dx[(T (uK(t + ∆t)))2]| dt ≤ 2C

c
+

2cLTb2

ν
= C.

Using the coarea formula it follows that
�

L

0
|DxTa,b(uK(t + ∆t))| dx =

�
b

a

|Dxχ[Ta,b(uK(t+∆t,·))≤λ]|(]0, L[) dλ

=
�

b

a

|Dxχ[{Ta,b(uK(t+∆t,·))}2≤λ2]|(]0, L[) dλ

=
�

b
2

a2
|Dxχ[{Ta,b(uK(t+∆t,·))}2≤s]|(]0, L[)

ds

2
√

s

≤ 1
2a

�
L

0
|Dx[Ta,b(uK(t + ∆t))]2|)

and this entails the estimate
�

T−�

�

�
L

0
|DxT (uK(t + ∆t))| dt ≤ C. (7.121)
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Moreover, the map t �→ �T (uK(t))�BV (]0,L[) is measurable (Lemma 5 of [14]). Then by
Fatou’s Lemma and (7.121), it follows that

�
T−�

�

lim inf
K→∞

�
L

0
|DxT (uK(t + ∆t))| dt ≤ lim inf

K→∞

�
T−�

�

�
L

0
|DxT (uK(t + ∆t))| dt ≤ C.

(7.122)
Now, since the total variation is lower semi-continuous in L1(]0, L[), we have

�
L

0
|DxT (u(t))| ≤ lim inf

K→∞

�
L

0
|DxT (uK(t))|.

Thus, we deduce that T (u(t)) ∈ BV (]0, L[) for almost all t ∈]0, T [ and consequently
u(t) ∈ TBV +(]0, L[). Then, by (7.122), applying again Lemma 5 of [14], we reach the
conclusion of the Lemma. ✷

Step 5. Identification of the field.
Let us now prove that

z(t) = a(u(t), ∂xu(t)) a.e. t ∈]0, T [. (7.123)

Let 0 ≤ φ ∈ D(QT ) and g ∈ C2([0, L]). Assume that φ = η(t)ρ(x) with η ∈ D(]0, T [)
and ρ ∈ D(]0, L[). Let 0 < a < b and T = Ta,b. Recall that T �(r) means χ]a,b[(r).
Recall also that

Ja(x, r) =
�

r

0
a(s, g�(x)) ds and Ja�(x, r) =

�
r

0
∂x[a(s, g�(x))] ds

For simplicity, we will use the following notation

D2Ja(x, T (uK(t + ∆t))) := Dx

�
Ja(x, T (uK(t + ∆t)))

�
− Ja�(x, T (uK(t + ∆t))).

Using Volpert’s averaged superposition

a(T (uK(t + ∆t)), g�(x)) =
� 1

0
a(τT (uK(t + ∆t))+ + (1− τ)T (uK(t + ∆t))−, g�(x)) dτ

and the chain rule we can write

D2Ja(x, T (uK(t + ∆t))) = a(T (uK(t + ∆t)), g�)∂xT (uK(t + ∆t))

+ a(T (uK(t + ∆t)), g�)Ds

xT (uK(t + ∆t)).

As a consequence we find out that

[D2Ja(x, T (uK(t + ∆t)))]ac = a(uK(t + ∆t), g�)∂x[T (uK(t + ∆t))]. (7.124)
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Using (7.124) we have that
�

T

0

�
L

0
φ z

K(t)Dx[T (uK(t + ∆t))− g] dt

−
�

T

0

�
L

0
φ

�
D2Ja(x, T (uK(t + ∆t)))− a(uK(t + ∆t), g�)g� dx

�
dt

=
�

T

0

�
L

0
φ

�
z

K(t)DxT (uK(t + ∆t)) dx− z
K(t)g� + a(uK(t + ∆t), g�)g� dx

�
dt

−
�

T

0

�
L

0
φ

�
[D2Ja(x, T (uK(t + ∆t)))]ac dx + [D2Ja(x, T (uK(t + ∆t)))]s

�
dt

=
�

T

0

�
L

0
φ

�
a(uK(t + ∆t), g�)− z

K(t)
� �

g� − ∂xT (uK(t + ∆t))
�

dxdt

+
�

T

0

�
L

0
φ

�
z

K(t)Ds

xT (uK(t + ∆t))− [D2Ja(x, T (uK(t + ∆t)))]s
�

dt,

which, thanks to (4.13) is bounded from below by
�

T

0

�
L

0
φ

�
z

K(t)Ds

xT (uK(t + ∆t)))− [D2Ja(x, T (uK(t + ∆t)))]s
�

dt.

Then, using (7.108) we obtain that
�

T

0

�
L

0
φ z

K(t)Dx[T (uK(t + ∆t))− g] dt

−
�

T

0

�
L

0
φ

�
D2Ja(x, T (uK(t + ∆t)))− a(uK(t + ∆t), g�)g� dx

�
dt

≥
�

T

0

�
L

0
φ

� c

2
��Ds

x(T (uK(t + ∆t))2)
��− [D2Ja(x, T (uK(t + ∆t)))]s

�
dt.

Performing as in the proof of Lemma 6.6.9, we get
�

T

0

�
L

0
φ

� c

2
��Ds

x(T (uK(t + ∆t))2)
��− [D2(Ja(x, T (uK(t + ∆t)))]s

�
dt ≥ 0.

Collecting everything so far we arrive to
�

T

0

�
L

0
φ z

K(t)Dx[T (uK(t + ∆t))− g] dt

−
�

T

0

�
L

0
φ

�
D2Ja(x, T (uK(t + ∆t)))− a(uK(t + ∆t), g�)g� dx

�
dt ≥ 0.

(7.125)
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Now we shall bound from above the first term. This is done by means of Lemma 6.7.6.
Use (7.103) for ∆t small enough to get
�

T

0

�
L

0
φ(t, x)T (uK(t + ∆t))Dxz

K(t)dt =
�

T

0

�
L

0
φ(t, x)T (uK(t + ∆t)ξK(t) dxdt

≥
�

T

0

�
L

0

φ(t−∆t, x)− φ(t, x)
∆t

JT (uK(t)) dxdt.

Then, integrating by parts, we have
�

T

0

�
L

0
φ z

K(t)Dx(T (uK(t + ∆t))− g) dt ≤−
�

T

0

�
L

0

φ(t−∆t)− φ(t)
∆t

JT (uK(t)) dxdt

+
�

T

0

�
L

0
φg ξK(t) dtdx−

�
T

0

�
L

0
∂xφ z

K(t)[T (uK(t + ∆t))− g] dxdt.

Thanks to this inequality we arrive from (7.125) to

−
�

T

0

�
L

0

φ(t−∆t)− φ(t)
∆t

JT (uK(t)) dtdx +
�

T

0

�
L

0
φ(t)gξK(t) dxdt

−
�

T

0

�
L

0
∂xφ(t) z

K(t)[T (uK(t + ∆t))− g] dxdt

−
�

T

0

�
L

0
φ(t)

�
D2Ja(x, T (uK(t + ∆t)))− a(uK(t + ∆t), g�)g�

�
dt ≥ 0.

(7.126)

Taking limit along α in (7.126) and having in mind that

D2Ja(x, T (uK(t + ∆t))) � D2Ja(x, T (u(t))) weakly∗ as measures

we obtain
�

T

0

�
L

0
∂tφJT (u(t)) dxdt + �ut, φg� −

�
T

0

�
L

0
[T (u(t))− g]z(t)∂xφ dxdt

+
�

T

0

�
L

0
φ

�
−D2Ja(x, T (u(t))) + a(u(t), g�)g� dx

�
dt ≥ 0.

(7.127)

By (7.85),

�ut, φg� = −
�

T

0

�
L

0
z(t)g ∂xφ dxdt−

�
T

0

�
L

0
z(t)g�φ dxdt

and we can rearrange (7.127) in the following way
�

T

0

�
L

0
∂tφJT (u(t)) dxdt−

�
T

0

�
L

0
z(t)g�φ dxdt−

�
T

0

�
L

0
T (u(t))z(t)∂xφ dxdt

+
�

T

0

�
L

0
φ

�
−D2Ja(x, T (u(t))) + a(u(t), g�)g� dx

�
dt ≥ 0.

(7.128)
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Our next step will be to use again Lemma 6.7.6 for τ small enough, as follows
�

T

0

�
L

0
∂tφ(t, x)JT (u(t, x)) dxdt = lim

τ→0

�
T

0

�
L

0

η(t− τ)− η(t)
−τ

JT (u(t, x))ρ(x) dxdt

≤ lim
τ→0

�
T

0

�
L

0
u(t, x)ρ(x)

d

dt
(ηT (u))τ (t, x) dxdt,

where we used the time regularization given in Definition C.2.1. On recourse to (7.84),
we have �

T

0

�
L

0
u(t)ρ

d

dt
(ηT (u))τ (t) dxdt = −�ut, ρ(ηT (u))τ (·)�

which we recast as

− lim
α
�ξK , ρ(ηT (u))τ (·)� = − lim

α

�
T

0

�
Dxz

K(t), ρ
1
τ

�
t

t−τ

η(s)T (u(s)) ds

�
dt

and after integration by parts equals to

lim
α

�
T

0

�
L

0
z

K(t)Dx

�
ρ
1
τ

�
t

t−τ

η(s)T (u(s)) ds

�
dt

= lim
α

�
T

0

�
L

0
∂xρ z

K(t)
1
τ

�
t

t−τ

η(s)T (u(s)) dsdxdt + lim
α

�
T

0

�
L

0
ρ z

K(t)Dx[(ηT (u))τ (t)] dt

=
�

T

0

1
τ

�
t

t−τ

η(s)
�

L

0
T (u(s))z(t)∂xρ dxdsdt + lim

α

�
T

0

�
L

0
ρ z

K(t)∂x[(ηT (u))τ (t)] dxdt

+ lim
α

�
T

0

�
L

0
ρ z

K(t)Ds

x[(ηT (u))τ (t)] dt.

This is bounded above by
�

T

0

1
τ

�
t

t−τ

η(s)
�

L

0
T (u(s))z(t)∂xρ dxdsdt +

�
T

0

1
τ

�
t

t−τ

η(s)
�

L

0
ρ z(t)∂x(T (u(s))) dxdsdt

+
�

T

0

1
τ

�
t

t−τ

η(s)
�

L

0
cMρ|Ds

x[T (u(s)]| dsdt.

Taking limits when τ → 0 in the previous chain of inequalities we arrive to
�

T

0

�
L

0
∂tφ(t)JT (u(t)) dxdt ≤

�
T

0
η(t)

�
L

0
T (u(t))z(t)∂xρ dxdt

+
�

T

0
η(t)

�
L

0
ρ z(t)∂xT (u(t)) dxdt + cM

�
T

0
η(t)

�
L

0
ρ|Ds

x[T (u(t)]| dt.

From (7.128), all gathered together reads

0 ≤ −
�

T

0

�
L

0
φ(t)z(t)g� dxdt +

�
T

0
η(t)

�
L

0
ρ z(t)∂x(T (u(t))) dxdt

+ cM

�
T

0
η(t)

�
L

0
ρ|Ds

xT (u(t))| dt +
�

T

0

�
L

0
φ

�
−D2Ja(x, T (u(t))) + a(u(t), g�)g�dx

�
dt.
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Using (7.124) this is written as

0 ≤cM

�
T

0
η(t)

�
L

0
ρ|Ds

xT (u(t))| dt−
�

T

0

�
L

0
φ[D2Ja(x, T (u(t))]s dt

+
�

T

0

�
L

0
[g� − ∂x(T (u(t)))][a(u(t), g�)− z(t)]φ dxdt.

As measures, this is translated into

cM |Ds

xT (u(t))|− [D2Ja(x, T (u(t))]s + [g� − ∂x(T (u(t)))][a(u(t), g�)− z(t)]L2 ≥ 0.

Taking the absolutely continuous part and particularizing to points x ∈ [a < u(t) < b],
this reduces to

[g� − ∂xu(t)][a(u(t), g�)− z(t)] ≥ 0,

an inequality which holds for all g ∈ C2([0, L]) and all (t, x) ∈ S ∩ [a < u < b], where
S ⊆]0, T [×]0, L[ is such that L2(]0, T [×]0, L[\S) = 0. Being (t, x) ∈ S ∩ [a < u < b]
fixed and ξ ∈ R given, we can find a function g as above such that g�(x) = ξ. Then

(z(t, x)− a(u(t), ξ)) (∂xu(t, x)− ξ) ≥ 0, ∀ξ ∈ R, ∀(t, x) ∈ S ∩ [a < u < b].

By an application of Minty–Browder’s method in R, these inequalities imply that

z(x) = a(u(t, x), ∂xu(t, x)) a.e. on QT ∩ [a < u < b].

Since this holds for any 0 < a < b, we obtain (7.123) a.e. on the points of QT

such that u(t, x) �= 0. Now, by our assumptions on a and (7.113) we deduce that
z(x) = a(u(x), u�(x)) = 0 a.e. on [u = 0]. We have finally proved that

z(t) = a(u(t), ∂xu(t)) a.e. t ∈]0, T [.

Step 6. The entropy inequality.
Given S ∈ P+, T ∈ T + and φ ∈ D(QT ), working as in the proof of (7.118) we can

get the following inequality
�

T

0

�
L

0
φ z

K(t)Dx[T (uK(t + ∆t))S(uK(t + ∆t))] dt

≤
�

T

0

�
L

0
JTS(uK(t))

φ(t)− φ(t−∆t)
∆t

dxdt

−
�

T

0

�
L

0
z

K(t)T (uK(t + ∆t))S(uK(t + ∆t))∂xφ dxdt.

(7.129)

The fact that �
z

K(t)Dx[T (uK(t + ∆t))S(uK(t + ∆t))]
�

is a bounded sequence in L1
loc

(0, T ;M(]0, L[)) follows. Using now Lemma 6.4.6 we can
write

z
K(t)Dx[T (uK(t + ∆t))S(uK(t + ∆t))]

= z
K(t)DxJT �S(uK(t + ∆t)) + z

K(t)DxJS�T (uK(t + ∆t))
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and we get that the sequences of positive — due to (7.107)— measures

{zK(t)DxJT �S(uK(t + ∆t))}

and
{zK(t)DxJS�T (uK(t + ∆t))}

are both bounded in L1
loc

(0, T ;M(]0, L[)). This allows us to define, up to subsequence,
the objects µS

T
, µT

S
∈M(QT ) by means of

�φ, µT

S � = lim
K

�
T

0

�
L

0
z

K(t)DxJT �S(uK(t + ∆t))φ dt, ∀φ ∈ Cc(QT ),

�φ, µS

T � = lim
K

�
T

0

�
L

0
z

K(t)DxJS�T (uK(t + ∆t))φ dt, ∀φ ∈ Cc(QT ).

Then, passing to the limit in (7.129), we obtain

�φ, µT

S �+ �φ, µS

T � ≤
�

T

0

�
L

0
JTS(u(t))∂tφ(t) dxdt

−
�

T

0

�
L

0
z(t)T (u(t))S(u(t))∂xφ dxdt, ∀φ ∈ D(QT ),

(7.130)

The entropy inequalities, as stated in Definition 6.7.1, (iii), can be obtained for the
solution already constructed as a direct consequence of the following result.

Lemma 6.7.14 For any truncations S, T ∈ T +, we have that the inequality

µT

S ≥ hS(u,DT (u))

holds in the sense of measures.

Proof. From the entropy inequalities (7.109) we can get, using (4.21), that

z
K(t)Ds

xJT �S(uK(t + ∆t)) ≥ FS(uK(t + ∆t), Dx(T (uK(t + ∆t))))s ∀t ∈]0, T −∆t].
(7.131)

We recall also that

∂xJT �S(uK(t + ∆t)) = S(uK(t + ∆t))∂xT (uK(t + ∆t)). (7.132)

Let 0 ≤ φ ∈ Cc(QT ). We decompose
�

T

0

�
L

0
φS(uK(t + ∆t))zK(t)∂xT (u(t)) dxdt

=
�

T

0

�
L

0
φS(uK(t + ∆t))a(uK(t + ∆t), ∂xT (uK(t + ∆t)))∂xT (u(t)) dxdt

+
�

T

0

�
L

0
φS(uK(t + ∆t))[zK(t)− a(uK(t + ∆t), ∂xT (uK(t + ∆t)))]∂xT (u(t)) dxdt
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On the aid of the convexity (4.11) of F we have that
�

T

0

�
L

0
φS(uK(t + ∆t))a(uK(t + ∆t), ∂xT (uK(t + ∆t)))∂xT (u(t)) dxdt

≤
�

T

0

�
L

0
φS(uK(t + ∆t))zK(t)∂xT (uK(t + ∆t)) dxdt

+
�

T

0

�
L

0
φS(uK(t + ∆t))F (uK(t + ∆t), ∂xT (u(t))) dt

−
�

T

0

�
L

0
φS(uK(t + ∆t))F (uK(t + ∆t), ∂xT (uK(t + ∆t))) dt.

Using (7.132) we rewrite the right hand side as
�

T

0

�
L

0
φ

�
z

K(t)DxJT �S(uK(t + ∆t))− z
K(t)Ds

xJT �S(uK(t + ∆t))
�

dt

+
�

T

0

�
L

0
φS(uK(t + ∆t))F (uK(t + ∆t), ∂xT (u(t))) dt

−
�

T

0

�
L

0
φS(uK(t + ∆t))F (uK(t + ∆t), ∂xT (uK(t + ∆t))) dt,

which, thanks to (7.131) and (4.21) is in turn bounded above by
�

T

0

�
L

0
φ z

K(t)DxJT �S(uK(t + ∆t)) dt

−
�

T

0

�
L

0
φFS(uK(t + ∆t), DxT (uK(t + ∆t)))s dt

+
�

T

0

�
L

0
φS(uK(t + ∆t))F (uK(t + ∆t), ∂xT (u(t))) dt

−
�

T

0

�
L

0
φFS(uK(t + ∆t), Dx(T (uK(t + ∆t))))ac dxdt.

We recast it as
�

T

0

�
L

0
φ z

K(t)DxJT �S(uK(t + ∆t)) dt

+
�

T

0

�
L

0
φS(uK(t + ∆t))F (uK(t + ∆t), ∂xT (u(t))) dt

−
�

T

0

�
L

0
φFS(uK(t + ∆t), DxT (uK(t + ∆t))) dt.
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Using the previous chain of estimates, we get

�
T

0

�
L

0
φS(uK(t + ∆t))zK(t)∂xT (u(t)) dxdt

≤
�

T

0

�
L

0
φ z

K(t)DxJT �S(uK(t + ∆t)) dt

+
�

T

0

�
L

0
φS(uK(t + ∆t))F (uK(t + ∆t), ∂xT (u(t))) dt

−
�

T

0

�
L

0
φFS(uK(t + ∆t), DxT (uK(t + ∆t))) dt

+
�

T

0

�
L

0
φS(uK(t + ∆t))[zK(t)− a(uK(t + ∆t), ∂xT (uK(t + ∆t)))]∂xT (u(t)) dxdt.

Note that the last term vanishes in the limit K →∞. Thanks to the lower-semicontinuity
properties,

�
T

0

�
L

0
φFS(u(t), DxT (u(t))) dt

≤ lim inf
k→∞

�
T

0

�
L

0
φFS(uK(t + ∆t), DxT (uK(t + ∆t))) dt.

Thus passing to the limit as K →∞ in the previous inequality yields

�
T

0

�
L

0
φS(u(t))z(t)∂xT (u(t)) dxdt

≤
�
µT

S , φ
�

+
�

T

0

�
L

0
φS(u(t))F (u(t), ∂xT (u(t))) dt

−
�

T

0

�
L

0
φFS(u(t), DxT (u(t))) dt

=
�
µT

S , φ
�
−

�
T

0

�
L

0
φFS(u(t), DxT (u(t)))s dt

where we used the definition of µT

S
. Put it in another way,

�
hS(u,DxT (u))ac, φ

�
≤

�
µT

S , φ
�
−

�
hS(u,DxT (u))s, φ

�
,

and hence the result. ✷
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6.8 Some qualitative features

Entropy solutions verify the following balance of mass law.

Lemma 6.8.1 The entropy solution u of (7.82) with initial datum u0 ∈ L∞(]0, L[)+

satisfies
�

L

0
u(t, x) dx =

�
L

0
u0(x) dx + βt− c

�
t

0
u(s, L−) ds for all t ≥ 0. (8.133)

Proof. Let t > 0 be fixed. By the definition of entropy solution, we know that u
satisfies the relation

�

Qt

zDxw + �us, w� = β

�
t

0
w(s, 0+) ds− c

�
t

0
u(s, L−)w(s, L−) ds (8.134)

for all w ∈ L1(0, t;BV (]0, L[)). Taking w(s) = χ]0,L[ in (8.134), we get

�us,χ]0,L[� = βt− c

�
t

0
u(s, L−) ds. (8.135)

Recall that u is the limit of Crandall–Liggett’s approximating scheme; we stress the
fact that (see step 2 of the previous section)

�us, w� = lim
α
�ξK , w� for all w ∈ L1(0, t;BV (]0, L[)). (8.136)

Taking again w(s) = χ]0,L[ in (8.136), we obtain that

�us,χ]0,L[� = lim
α
�ξK ,χ]0,L[� = lim

α

�
t

0
�ξK ,χ]0,L[�BV ∗−BV dτ

= lim
α

�
t

0

1
∆s

K−1�

n=0

�
L

0
[un+1(x)− un(x)]χ]sn,sn+1](τ) dxdτ

= lim
α

K−1�

n=0

��
L

0
un+1(x) dx−

�
L

0
un(x) dx

�

= lim
α

�
L

0
uK(x) dx−

�
L

0
u0(x) dx =

�
L

0
u(t, x) dx−

�
L

0
u0(x) dx.

(8.137)

Finally, from (8.135) and (8.137), we get (8.133) and we finished the proof. ✷

Let uβ the stationary solution given in Proposition 6.6.2. Particularization of (8.133)
to this solution yields

�
L

0
uβ(x) dx =

�
L

0
uβ(x) dx + βt− c

�
t

0
uβ(L−) ds for all t ≥ 0.

Hence
uβ(L−) =

β

c
. (8.138)
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Then, since uβ is a non-increasing function with uβ ≥ β

c
, and obviously is non-

constant, we have

uβ(0+) >
β

c
. (8.139)

We shall denote by U0 the entropy solution of (7.82) with initial datum u0 = 0, that
is,

U0(t) = Tβ(t)(0) for all t ≥ 0.

By comparison we have

U0(t) ≤ Tβ(t)(uβ) = uβ for all t ≥ 0. (8.140)

As a way to study more precise upper estimates we introduce the following con-
cept of super-solution. To do so we require the space T −, standing for non-positive
truncations of the form T l

a,b
.

Definition 6.8.2 Given 0 ≤ u0 ∈ L∞(]0, L[), we say that a measurable function u :
]0, T [×]0, L[→ R is an entropy super-solution of the problem (7.82) in QT =]0, T [×]0, L[
if u ∈ C([0, T ];L1(]0, L[))∩L∞(QT ), u(0) ≥ u0, Ta,b(u(·)) ∈ L1

loc,w
(0, T, BV (]0, L[)) for

all 0 < a < b, and z(t) := a(u(t), ∂xu(t)) ∈ L1(QT ) is such that:

(i) The following inequalities hold for almost every t ∈ [0, T ]

z(t, 0+) ≤ −β and z(t, L−) ≥ −cu(t, L−). (8.141)

(ii) The following inequality is satisfied:

�

QT

hS(u,DT (u))φ +
�

QT

hT (u,DS(u))φ (8.142)

≤
�

QT

JTS(u)∂tφ−
�

T

0

�
L

0
a(u(t),∇u(t)) · ∂xφT (u(t))S(u(t))dxdt,

for any φ ∈ D((0, T )×]0, L[), φ ≥ 0, and any T ∈ T +, S ∈ T −.

Note that taking T (r) = 1 and S(r) = −1, for all r ∈ R, from (8.142), we get

∂u

∂t
≥ a(u(·),∇u(·))x in D�(QT ). (8.143)

We can not use these truncation functions directly, instead we can use T = T 1
n ,

2
n

+ 1
and S = T 1

n ,
2
n
− 1, and so obtain (8.143) by a limit process.

Working as in the proof of Theorem 2 in [21] we have the following comparison
principle between entropy super-solutions and entropy solutions.

Theorem 6.8.3 Assume that u is an entropy solution of (7.82) corresponding to initial
datum u0 ∈ (L∞(]0, L[))+, and u is an entropy super-solution of (7.82) corresponding to
initial datum u0 ∈ (L∞(]0, L[))+ such that u(t) ∈ BV (]0, L[) for almost all 0 < t < T .
Then

�(u(t)− u(t))+�1 ≤ �(u0 − u0)+�1 for all t ≥ 0. (8.144)
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Proof. Let b > a > 2� > 0, T (r) := Ta,b(r) − a. We need to consider truncation
functions of the form S�,l(r) := T�(r−l)+ = Tl,l+�(r)−l ∈ T +, and Sl

�(r) := T�(r−l)− =
−T�(l − r)+ = Tl−�,l(r)− l, if l > �. Observe that Sl

� ∈ T −. Let us denote

J+
T,�,l

(r) =
�

r

0
T (s)T�(s− l)+ ds,

J−
T,�,l

(r) =
�

r

0
T (s)T�(s− l)− ds = −

�
r

0
T (s)T�(l − s)+ ds.

Since u is an entropy solution of (7.82) and u is an entropy super-solution of (7.82),
if z(t) := a(u(t), ∂xu(t)), z(t) := a(u(t), ∂xu(t)) and l1, l2 > �, we have

−
�

T

0

�
L

0
J+

T,�,l1
(u(t))∂tη(t) dxdt

+
�

T

0

�
L

0
η(t)[hT (u(t), DxS�,l1(u(t))) + hS�,l1

(u(t), DxT (u(t)))] dt

+
�

T

0

�
L

0
z(t)∂xη(t) T (u(t))S�,l1(u(t)) dxdt ≤ 0,

(8.145)

and

−
�

T

0

�
L

0
J−

T,�,l2
(u(t))∂tη dxdt

+
�

T

0

�
L

0
η(t)[hT (u(t), DxSl2

� (u(t))) + h
S

l2
�

(u(t), DxT (u(t)))] dt

+
�

T

0

�
L

0
z(t)∂xη(t) T (u(t))Sl2

� (u(t)) dxdt ≤ 0,

(8.146)

for all η ∈ C∞(QT ), with η ≥ 0, η(t, x) = φ(t)ρ(x), being φ ∈ D(]0, T [), ρ ∈ D(]0, L[).
We choose two different pairs of variables (t, x), (s, y) and consider u, z as functions

in (t, x), u, z in (s, y). Let 0 ≤ φ ∈ D(]0, T [), ψ ∈ D(]0, L[), ρm and ρ̃n sequences of
mollifier in R. Define

ηm,n(t, x, s, y) := ρm(x− y)ρ̃n(t− s)φ
�

t + s

2

�
ψ

�
x + y

2

�
.

For (s, y) fixed, if we take in (8.145) l1 = u(s, y), we get

−
�

T

0

�
L

0
J+

T,�,u(s,y)(u(t, x))∂tηm,n dxdt

+
�

T

0

�
L

0
ηm,n[hT (u(t, x), DxS�,u(s,y)(u(t, x))) + hS�,u(s,y)

(u(t, x), DxT (u(t, x)))] dt

+
�

T

0

�
L

0
z(t, x)∂xηm,n T (u(t, x)) S�,u(s,y)(u(t, x)) dxdt ≤ 0.

(8.147)
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Similarly, for (t, x) fixed, if we take in (8.146) l2 = u(t, x) we get

−
�

T

0

�
L

0
J−

T,�,u(t,x)(u(s, y))∂sηm,n dyds

+
�

T

0

�
L

0
ηm,n[hT (u(s, y), DyS

u(t,x)
� (u(s, y))) + h

S
u(t,x)
�

(u(s, y), DyT (u(s, y)))] ds

+
�

T

0

�
L

0
z(s, y)∂yηm,n T (u(s, y)) Su(t,x)

� (u(s, y)) dyds ≤ 0.

(8.148)
Observe that since a > 2�, if u(s, y) ≤ � or u(t, x) ≤ � the integrals in (8.147) and
(8.148) are zero. We integrate (8.147) in (s, y), (8.148) in (t, x), and add the two
inequalities. Since

�

QT×QT

ηm,nhS�,u(s,y)
(u(t, x), DxT (u(t, x))) dsdtdy ≥ 0

we get

−
�

QT×QT

�
J+

T,�,u(s,y)(u(t, x))∂tηm,n + J−
T,�,u(t,x)(u(s, y))∂sηm,n

�
dsdtdydx

+
�

QT×QT

ηm,nhT (u(t, x), DxS�,u(s,y)(u(t, x))) dsdtdy

+
�

QT×QT

ηm,nhT (u(s, y), DyS
u(t,x)
� (u(s, y))) dsdtdx

−
�

QT×QT

z(s, y)∂xηm,nT (u(s, y))Su(t,x)
� (u(s, y)) dsdtdydx

−
�

QT×QT

z(t, x)∂yηm,nT (u(t, x))S�,u(s,y)(u(t, x)) dsdtdydx

+
�

QT×QT

ηm,nh
S

u(t,x)
�

(u(s, y), DyT (u(s, y))) dsdtdx

+
�

QT×QT

T+
� (u(t, x)− u(s, y))[T (u(t, x))z(t, x)− T (u(s, y))z(s, y)]

×(∂xηm,n + ∂yηm,n) dsdtdydx ≤ 0.

(8.149)

Let I2 be the sum of the second up to the fifth terms of the above inequality. From
now on, since u, z are always functions of (t, x), and u, z are always functions of (s, y),
to make our expression shorter, we shall omit the arguments except when they appear
as sub-index and in some additional cases where we find it useful to remind them. We
also omit the differentials of the integrals.



194 6.8. Some qualitative features

Working as in the proof of uniqueness of Theorem 3 in [17], we obtain that 1
�
I2 ≥

�φ�∞�ψ�∞o(�). Hence, by (8.149), it follows that

−
�

QT×QT

�
J+

T,�,u
(u)∂tηm,n + J−

T,�,u
(u)∂sηm,n

�

+
�

QT×QT

ηm,nh
S

u(t,x)
�

(u(s, y), DyT (u(s, y)))

+
�

QT×QT

T+
� (u− u)[T (u)z− T (u)z](∂xηm,n + ∂yηm,n) ≤ �o(�).

Then, dividing by � and letting � → 0 we get

−
�

QT×QT

�
J+

T,sign,u
(u)∂tηm,n + J−

T,sign,u
(u)∂sηm,n

�

+
�

QT×QT

ηm,nh(u(s, y), DyT (u(s, y)))

+
�

QT×QT

sign+
0 (u− u)[T (u)z− T (u)z](∂xηm,n + ∂yηm,n) ≤ 0.

where
J+

T,sign,l
(r) =

�
r

0
T (r�)sign+

0 (r� − l)dr� l ∈ R, r ≥ 0

and
J−

T,sign,l
(r) =

�
r

0
T (r�)sign−0 (r� − l)dr� l ∈ R, r ≥ 0.

Now, letting m →∞, we obtain

−
�

T

0

�
T

0

�
L

0

�
J+

T,sign,u(s,x)(u(t, x))∂t
χ

n + J−
T,sign,u(t,x)(u(s, x))∂s

χ
n

�

+
�

QT×QT

χnh(u(s, y), DyT (u(s, y)))

+
�

T

0

�
T

0

�
L

0
sign+

0 (u(t, x)− u(s, x))[T (u(t, x))z(t, x)− T (u(s, x))z(s, x)]∂x
χ

n ≤ 0

where χ
n(t, s, x) := ρ̃n(t− s)φ( t+s

2 )ψ(x). We set ψ = ψk ∈ D(]0, L[) ↑ χ]0,L[ in the last
expression and we take limit as k → +∞. Then we have

−
�

T

0

�
T

0

�
L

0

�
J+

T,sign,u(s,x)(u(t, x))∂tκn(t, s) + J−
T,sign,u(t,x)(u(s, x))∂sκn(t, s)

�

+
�

QT×QT

κnh(u(s, y), DyT (u(s, y)))

+ lim
k→+∞

�
T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(t, x))z(t, x)∂xψk(x)

− lim
k→+∞

�
T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(s, x))z(s, x))∂xψk(x) ≤ 0,

(8.150)
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where κn(t, s) := ρ̃n(t−s)φ( t+s

2 ). Let us study the second and third terms of the above
expression. Let

Ik :=
�

T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(t, x))z(t, x)∂xψk(x)

=
�

T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(t, x))z(t, x)∂x(ψk(x)− 1).

Let Hn(s, r) := κn(r, s)sign+
0 (u(r) − u(s))T (u(r)). For τ > 0, we define the function

(κn(s))τ , as the Dunford integral (see Remark 6.7.5)

(κn(s))τ (t) :=
1
τ

�
t+τ

t

Hn(s, r) dr.

Then,

Ik = lim
τ→0

�
T

0

�
T

0

�
L

0
(κn(s))τ (t)z(t, x)∂x[ψk(x)− 1] dxdtds

=− lim
τ→0

�
T

0

�
T

0

�
L

0
[ψk(x)− 1]z(t, x)Dx((κn(s))τ (t))) dsdt

− lim
τ→0

�
T

0
�ut, (κn(s))τ (ψk(x)− 1)� ds

+ c lim
τ→0

�
T

0

�
T

0
u(t, L−)(κn(s))τ (t)(L−) dtds

− β lim
τ→0

�
T

0

�
T

0
(κn(s))τ (t)(0+) dtds

:=I1
k

+ I2
k

+ I3
k

+ I4
k
.

Notice that

I3
k

= c

�
T

0

�
T

0
u(t, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(t, L−)) dtds

and

I4
k

= −β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(t, 0+)) dtds.

By Remark 6.7.5, we get

|Dx((κn(s))τ (t))|(]0, L[) τ→0−→ |Dx(κn(t, s)sign+
0 (u(t)− u(s))T (u(t)))|(]0, L[). (8.151)

Using (8.151), we get

|I1
k
| ≤ c�u�L∞(QT )

�
T

0

�
T

0

�
L

0
(1− ψk(x))|Dx(κn(t, s)sign+

0 (u(t)− u(s))T (u(t)))| dtds,

which implies limk→∞ I1
k

= 0. Let us deal with I2
k
. We have

I2
k

= lim
τ→0

�
T

0

�
T

0

�
L

0
u(t, x)

Hn(s, t + τ)−Hn(s, t)
τ

(ψk(x)− 1) dxdtds.
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Let

q(τ) := sign+
0 (τ − u(s, x))T (τ), Q(r) :=

�
r

0
q(τ) dτ.

Since q is non-decreasing, Q(r) − Q(r) ≤ q(r)(r − r). Then, changing variables, since
Hn(s, t) = q(u(t))κn(t, s)

I2
k

= lim
τ→0

�
T

0

�
T

0

�
L

0
(1− ψk(x))

u(t, x)− u(t− τ, x)
τ

Hn(s, t) dxdtds

≥ lim
τ→0

�
T

0

�
T

0

�
L

0
(1− ψk(x))κn(t, s)

Q(u(t, x))−Q(u(t− τ, x))
τ

dxdtds

= lim
τ→0

�
T

0

�
T

0

�
L

0
(1− ψk(x))Q(u(t, x))

κn(t, s)− κn(t + τ, s)
τ

dxdtds

= −
�

T

0

�
T

0

�
L

0
(1− ψk(x))Q(u(t, x))∂tκn(t, s) dxdtds,

(8.152)

from where it follows that limk→∞ I2
k
≥ 0. Taking into account the above facts, we get

lim
k→∞

Ik ≥ −β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(t, 0+)) dtds

+c

�
T

0

�
T

0
u(t, L−)κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(t, L−)) dtds.

(8.153)

To deal with the third term in (8.150) we introduce

Hn(t, s) = κn(t, s)sign+
0 (u(t, x)− u(s, x))T (u(s, x))

and

(κn(t))τ (s) =
1
τ

�
s+τ

s

Hn(t, r) dr.

Then, integrating by parts and owing to (8.143) we get to

−
�

T

0

�
T

0

�
L

0
(κn(t))τ (s)z(s, x)∂x(ψk(x)− 1) dxdtds

≥
�

T

0

�
T

0

�
L

0
Dx(κn(t))τ (s)z(s, x)(ψk(x)− 1) dxdtds

+
�

T

0

�
T

0

�
L

0
us(κn(t))τ (s)(ψk(x)− 1) dxdtds

+
�

T

0

�
T

0
(κn(t))τ (s)(L−)z(s, L−) dtds

−
�

T

0

�
T

0
(κn(t))τ (s)(0+)z(s, 0+) dtds.
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The sum of the first and the second term can be shown to be non-negative after the
passage to the limit in τ and k and rearranging conveniently in between. Thus,

− lim
k→+∞

�
T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(s, x))z(s, x))∂xψk(x)

≥
�

T

0

�
T

0
κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(s, L−))z(s, L−) dtds

−
�

T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(s, 0+))z(s, 0+) dtds

or, invoking the boundary conditions,

− limk→+∞

�
T

0

�
T

0

�
L

0
κn(t, s)sign+

0 (u(t, x)− u(s, x))T (u(s, x))z(s, x))∂xψk(x)

≥ −c

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, L−)− u(s, L−))T (u(s, L−))u(s, L−) dtds

+β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+))T (u(s, 0+)) dtds

(8.154)

From (8.150), by (8.153) and (8.154), we have

−
�

T

0

�
T

0

�
L

0

�
J+

T,sign,u(s,x)(u(t, x))∂tκn(t, s) + J−
T,sign,u(t,x)(u(s, x))∂sκn(t, s)

�
dtdsdx

+
�

QT×QT

κnh(u(s, y), DyT (u(s, y))) dtdsdx

+c

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, L−)− u(s, L−))

× {u(t, L−)T (u(t, L−))− u(s, L−)T (u(s, L−))} dtds

+β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+)) {T (u(s, 0+))− T (u(t, 0+))} dtds ≤ 0.

(8.155)
Notice now that, as h(z, ξ) ≤ C|z||ξ|, we are enable to write

�
L

0
h(u(s, y), DyT0,b(u(s, y))) ≤ Cb

�
b

0
Per([u ≥ λ]) dλ,

thanks to the coarea formula. Since the mapping λ �→ Per([u ≥ λ]) is integrable, we
deduce that

lim
b→0+

1
b

�

QT×QT

κnh(u(s, y), DyT0,b(u(s, y))) dtdsdx = 0.
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Then, letting a → 0, dividing by b and letting b → 0 in (8.155), we obtain,

−
�

T

0

�
T

0

�
L

0
(u(t, x)− u(s, x))+(∂tκn(t, s) + ∂sκn(t, s)) dtdsdx

+ c

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, L−)− u(s, L−))

×
�
−u(t, L−)sign+

0 (u(t, L−)− u(s, L−)sign+
0 (u(s, L−))

�
dtds

+ β

�
T

0

�
T

0
κn(t, s)sign+

0 (u(t, 0+)− u(s, 0+)) {sign0(u(s, 0+)− sign0(u(t, 0+)} dtds ≤ 0.

By Lemma 6.7.3 and the boundary conditions, we have

u(t, 0+) ≥ β

c
> 0, u(s, 0+) > 0 for almost every t, s > 0 (8.156)

and the third term above vanishes. Therefore,

−
�

T

0

�
T

0

�
L

0
(u(t, x)− u(s, x))+(∂tκn(t, s) + ∂sκn(t, s)) dtdsdx ≤ 0.

Letting n →∞,

−
�

T

0

�
L

0
(u(t, x)− u(t, x))+φ�(t) dxdt ≤ 0.

Since this is true for all 0 ≤ φ ∈ D(]0, T [), we have

d

dt

�
L

0
(u(t, x)− u(t, x))+ dx ≤ 0.

Hence
�

L

0
(u(t, x)− u(t, x))+ dx ≤

�
L

0
(u0(x)− u0(x))+ dx for all t ≥ 0,

which finishes the proof. ✷

Proposition 6.8.4 There are values 0 ≤ a < L, c2 > 0 and µ > 1 such that

u(t, x) =

�
µ

β

c
+ c2t−

β

ν

µ�
µ2 − 1

x

�
χ]0,a+ct[(x)

is a super-solution of the problem (7.82) in the time interval [0, (L − a)/c] and with
initial datum

u0(x) =

�
µ

β

c
− β

ν

µ�
µ2 − 1

x

�
χ]0,a[(x).

Proof. To ease notation we write u(t, x) = ϕ(t, x)χ]0,a+ct[(x) and set γ(t) := ϕ(t, a+ct).
We compute

∂tu = c2χ]0,a+ct[(x) + cγ(t)δx=a+ct,

Dxu(t) = −β

ν

µ�
µ2 − 1

χ]0,a+ct[(x)− γ(t)δx=a+ct,
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a(u(t), u(t)x) =
− βµ√

µ2−1
ϕ(t, x)

�
ϕ(t, x)2 + β2

c2
µ2

µ2−1

χ]0,a+ct[(x).

For the sake of a lighter notation we decompose

a(u(t), u(t)x) = ψ(t, x)χ]0,a+ct[(x).

The super-solution boundary condition (8.141) now reads

a(u(t), u(t)x)(x = 0) =
− βµ√

µ2−1

�
µβ

c
+ c2t

�

��
µβ

c
+ c2t

�2
+ β2

c2
µ2

µ2−1

≤ −β

and its readily seen to be satisfied without placing any restriction on the parameters.

Next we study the fulfillment of the entropy condition (8.142). Let T ∈ T + and
S ∈ T −. As

JTS(u(t)) = JTS(ϕ(t))χ]0,a+ct[

we can compute

∂

∂t
JTS(u(t)) = cJTS(γ(t))δx=a+ct + c2[TS(ϕ(t))]χ]0,a+ct[

and so
�

T

0

�
L

0
JTS(u(t, x))∂tφ(t, x) dxdt = −

�
T

0

�
L

0
φ(t)

∂

∂t
JTS(u(t, x)) dxdt

= −c

�
T

0
φ(t, a + ct)JTS(γ(t)) dt− c2

�
T

0

�
a+ct

0
[TS(ϕ(t, x))]φ(t, x) dxdt.

We also have that

−
�

T

0

�
L

0
a(u(t), u(t)x)∂xφ(t)T (u(t))S(u(t)) dxdt

=−
�

T

0

�
a+ct

0
ψ(t, x)T (ϕ(t, x))S(ϕ(t, x))∂xφ dxdt

=
�

T

0

�
a+ct

0
∂x [TS(ϕ(t, x))ψ(t, x)]φ(t) dxdt

−
�

T

0
φ(t, a + ct)[TS](γ(t))ψ(t, a + ct) dt.

=
�

T

0

�
a+ct

0
∂x [TS(u(t))]ψ(t, x)φ(t) dxdt

+
�

T

0

�
a+ct

0
φ(t)[TS(u(t))]∂xψ(t, x) dxdt

−
�

T

0
φ(t, a + ct)[TS](γ(t))ψ(t, a + ct) dt.
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On the other hand,

hS(u(t), DT (u(t)))ac = ∂xT (u(t))S(u(t))ψ(t, x)χ]0,a+ct[(x)

and
hT (u(t), DS(u(t)))ac = ∂xS(u(t))T (u(t))ψ(t, x)χ]0,a+ct[(x).

We compute now the corresponding singular parts. Using the chain rule several times
and the fact that the derivative has no Cantor part, as it was done in [21], we obtain

hT (u(t), DS(u(t)))s = |DsJθT (S(u(t)))| = |DjJθTS�(u(t))| = JθTS�(γ(t))δx=a+ct.

Similarly
hS(u(t), DT (u(t)))s = JθT �S(γ(t))δx=a+ct.

Note that, integrating by parts,

Jθ(TS)�(γ(t)) = −cJTS(γ(t)) + [θTS](γ(t)),

and consequently

hT (u(t), DS(u(t)))s + hS(u(t), DT (u(t)))s = [−cJTS(γ(t)) + [θTS](γ(t))] δx=a+ct.

Thus
�

QT

hS(u(t), DT (u(t)))φ +
�

QT

hT (u(t), DS(u(t)))φ(t)

=
�

T

0

�
L

0
φ(t, x)ψ(t, x)∂x[T (u(t))S(u(t))]χ]0,a+ct[(x) dxdt

+
�

T

0
φ(t, a + ct) [−cJTS(γ(t)) + [θTS](γ(t))] dt.

Altogether, the fulfillment of the entropy condition (8.142) reduces to check that
�

T

0
φ(t, a + ct)[θTS](γ(t)) dt ≤ −c2

�
T

0

�
a+ct

0
[TS(ϕ(t, x))]φ(t, x) dxdt

+
�

T

0

�
L

0
φ[TS(u(t))]∂xψχ]0,a+ct[(x) dxdt−

�
T

0
φ(t, a + ct)[TS](γ(t))ψ(t, a + ct) dt.

Now we use that 0 > ψ(t, a + ct) ≥ −cγ(t) to reduce the situation further to

c2

�
T

0

�
a+ct

0
[TS(ϕ(t, x))]φ(t, x) dxdt ≤

�
T

0

�
L

0
φ(t, x)[TS(u(t, x))]∂xψχ]0,a+ct[(x) dxdt.

This condition would be fulfilled if we were able to show that ut ≤ a(u, ux)x almost
everywhere in ]0, a + ct[. That is, we are to show that

c2 ≤ ∂xψ(t, x) a.e. in ]0, a + ct[.

A bit of calculus shows that

∂xψ(t, x) =
β

4
µ

4

c2(µ2−1)2
�
ϕ(t, x)2 + β2

c2
µ2

µ2−1

�3/2
.
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This function attains its minimum value precisely where ϕ(t, x) has its maximum value.
For the region that interests us, this maximum value is

ϕ

�
L− a

c
, 0

�
= µ

β

c
+

c2

c
(L− a).

Then, the final condition over the parameters reads

c2 ≤
β

4
µ

4

c2(µ2−1)2
�

β2

c2

�
µ2 + µ2

µ2−1

�
+

�
c2
c
(L− a)

�2 + 2µβc2
c2

(L− a)
�3/2

.

Therefore, for µ > 1 sufficiently close to one we have that u(t, x) is a super-solution of
(7.82). ✷

The previous result will allow to demonstrate an upper bound for the speed of
propagation associated with our model. Next we introduce the concept of sub-solution,
which will enable us to derive lower bounds for this speed of propagation.

Definition 6.8.5 Given 0 ≤ u0 ∈ L∞(]0, L[), we say that a measurable function u :
]0, T [×]0, L[→ R is an entropy sub-solution of the problem (7.82) in QT =]0, T [×]0, L[
if u ∈ C([0, T ];L1(]0, L[))∩L∞(QT ), u(0) ≤ u0, Ta,b(u(·)) ∈ L1

loc,w
(0, T, BV (]0, L[)) for

all 0 < a < b, and z(t) := a(u(t), ∂xu(t)) ∈ L1(QT ), such that:

(i) The following inequalities hold for almost every t ∈ [0, T ]

z(t, 0+) ≥ −β, z(t, L−) ≤ −cu(t, L−).

(ii) The following inequality is satisfied:

�

QT

hS(u,DT (u))φ +
�

QT

hT (u,DS(u))φ (8.157)

≥
�

QT

JTS(u)∂tφ−
�

T

0

�
L

0
a(u(t),∇u(t)) · ∂xφT (u(t))S(u(t))dxdt,

for any φ ∈ D((0, T )×]0, L[), φ ≥ 0, and any T ∈ T +, S ∈ T −.

Note that taking T (r) = 1 and S(r) = −1, for all r ∈ R, from (8.157), we get

∂u

∂t
≤ a(u(·),∇u(·))x in D�(QT ). (8.158)

We can not use these truncation functions directly, instead we can use T = T 1
n ,

2
n

+ 1
and S = T 1

n ,
2
n
− 1, and so obtain (8.158) by a limit process.

With a similar proof of one of Theorem 6.8.3, we obtain the following result.

Theorem 6.8.6 If u(t) is a bounded entropy solution of (7.82) in QT =]0, T [×]0, L[
corresponding to initial data u0 and u(t) is an entropy sub-solution corresponding to
initial data u0 ∈ L∞(]0, L[)+ such that

u(t, 0+) ≥ β

c
> 0 for almost every t > 0.

Then,
�(u(t)− u(t))+�1 ≤ �(u0 − u0)+�1 for all t ≥ 0.
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Proposition 6.8.7 The function

u(t, x) =
β

c2t
(ct− x)χ]0,ct[(x).

is a sub-solution with zero initial datum, as long as t ≤ L/c.

Proof. Notice that u(t, x) represents the family of straight lines joining the points
(0, β

c
) and (ct, 0). As these are smooth in almost every point we can stick to classical

computations when trying to check the requirements for u(t, x) to be a sub-solution.
We compute over ]0, ct[

ut =
βx

c2t2
,

∂xu = − β

c2t
,

a(u, ux) =
− βν

c2t
(1− x

ct
)

�
ν2

c4t2
+ (1− x

ct
)2

=
βν

c2t
(x− ct)

�
ν2

c2
+ (x− ct)2

and

a(u, ux)x =
βν3

c4t

�
ν2

c2
+ (x− ct)2

�− 3
2

.

Then we can check that ut ≤ a(u, ux)x holds on ]0, ct[ and therefore on the whole
spatial interval. These computations are valid for t ≤ L

c
, the limit configuration being

the segment β

cL
(L − x). As regards the boundary conditions, we notice that the one

pertaining x = L is automatically fulfilled for t < L

c
, while

a(u, ux)(0+) =
− βν

c2t�
ν2

c4t2
+ 1

> −β.

✷

Once we have all this machinery at our disposal we can prove easily that the speed
of the signal is precisely c:

Theorem 6.8.8 We have

supp(U0(t)) =]0, ct[ for 0 < t ≤ L

c
.

Proof. This is an straightforward consequence of Propositions 6.8.7 and 6.8.4 and the
corresponding comparison results (Theorem 6.8.6 and 6.8.3). ✷



Chapter 7

Perspectives for future work

The aim of this final part of the Thesis is to address several issues linked with the
previous work in a natural way. These constitute possible continuations and extensions
of the material contained in this memory. In some of the following problems the advisors
of this Thesis are involved.

1. In the first part of the memory, self-gravitating systems were described using
an approach that was free of short range interactions. These approaches might
be too idealized in certain circumstances, as we might not be able to control a
certain number of important contributions to the dynamics. For instance, effects
related to the presence of different species whose material properties and ways of
interacting with their environment are not completely understood. The influence
of close encounters could be also important under several circumstances.

In taking into account these uncontrollable features in the non-relativistic frame-
work, the Vlasov–Poisson system appears complemented with Fokker-Planck terms
(white noise in velocities), which yields the following kinetic equation

∂tf + v ·∇xf −∇xφ ·∇vf = L(f),

where L(f) = divv (βvf) + σ∆vf (β ≥ 0 and σ > 0 are constants related to the
collisions between particles). Performing the coupling with Poisson’s equation
we obtain what is known as the Vlasov–Poisson–Fokker–Planck system [71, 72].
The overall feature in the case without friction (β = 0) is that, no matter the
smallness of the diffusion coefficient σ, the dynamics associated with the Vlasov–
Poisson system is now completely destroyed as all solutions go to zero! This fact
might not be what we were willing to obtain when we committed ourselves to
incorporate a small source of stochasticity to our system.

Our proposal is that other sources of stochasticity might be brought in that do
not alter the overall dynamics in such a radical way and are maybe able to respect
some of the interesting structures that were present in the original Vlasov–Poisson
system. We suggest then the use of the following model






∂tf + v ·∇xf−∇xφ ·∇vf = FL(f)

∆xφ= 4πρ,

203



204

where FL(f) stands for a nonlinear flux–limited term similar to that studied here.
This work is already in progress in collaboration with V. Caselles. This is not
the first time that this type of diffusions appear in connection with the field of
astrophysics; the interested reader can consult [145] and Chapter 7 in [158].

The technical difficulties accompanying the study of the Cauchy problem for the
suggested model come from two main sources. One is to deduce uniqueness. We
know that the conditions ensuring uniqueness for the Vlasov–Poisson system (we
typically refer to [152], as we may not have classical solutions) and for the rela-
tivistic heat equation are quite different and probably a combination of both has
to be imposed. The second is to pass to the limit in the nonlinear expression
furnished by the flux limiter. For this we need some compactness in the spatial
variable that is likely to be obtained using Kruzkov’s doubling variables method.
To succeed here we must have a (spatially) continuous force field. We cannot
assume that we will get classical solutions, so that this has to be justified using
bounds on velocity moments. Thus we would have to mimic the proof in [152],
taking care of the extra term and being able to give a meaning to the repre-
sentation formula for the density, which uses the characteristics of the Vlasov
equation. This is not completely straightforward; at least the energy functional
can be shown to be non-increasing and then the kinetic energy can be shown to be
finite for all times. To conclude, note that when we consider both Vlasov–Poisson
and the relativistic heat equation separately, none of them gives nice regularizing
properties, thus we might not get smooth solutions to our model. The Vlasov–
Poisson equation does not regularize at all the distribution function f , although
it is true that it provides a regularization mechanism at the macroscopic level
(averaging lemmas furnish regularity for ρ, see [86, 103, 106, 127] for instance).
Regarding the relativistic heat equation, we would get some regularization of our
data in the sense that we will get some integrability for ∇vf out of nothing, but
at the same time the equation may spoil all other types of smoothness we would
start with. To summarize, for the solutions of the complete model we only expect
some integrability properties for ∇vf and some regularity for ρ. Once one suc-
ceeds in proving that the system is well-posed, more interesting questions arise
related to the qualitative behavior of the solutions and the compatibility with the
special solutions associated with the Vlasov–Poisson system.

2. We also think that flux-limited diffusions have something to say about the math-
ematical modeling of chemotactic processes. The mathematical study of Chemo-
taxis started with the work of Patlak [169] and was driven by the papers of
Keller and Segel, where they introduced a model to study the aggregation of Dic-
tyostelium Discoideum due to an attractive chemical substance [131] and made
some further comments and studies [132, 133]. We refer to [134] for a review
about the first years of research on the Keller–Segel model.

The original Keller–Segel model consists of an advection-diffusion system consti-
tuted by two coupled parabolic equations:






∂tn = divx(Dn∇xn− χn∇xS) + H(n, S),

∂tS = DS∆S + K(n, S),
(0.1)
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where n = n(t, x) is the cell density at position x and time t, S = S(t, x) being
the density of the chemo-attractant. The positive definite terms DS and Dn are
the diffusivities of the chemo-attractant and of the cells, respectively, and χ ≥ 0
is the chemotactic sensitivity.

Let us briefly comment on the main aspects of model (0.1) in order to well un-
derstand its derivation from a microscopic approach and how to improve or in-
corporate some new fundamentals of the chemotaxis:

- Assuming that the chemical population undergoes a linear diffusion process
seems reasonable in a preliminary approach. But in general the substance S
does not only diffuse in the substrate, as it can also be produced by bacteria
themselves. Recent results suggest that the chemical attractant acts by local
diffusion but also has the possibility to jump over more long distances, like what
happens for a Lévy process. That might be a research line.

- It is not completely clear how the term divx(χn∇xS) induces per se the optimal
movement of the cells towards the pathway determined by the chemoattractant.
In our opinion this term could be modified in order that the flux density of
particles be optimized along the trajectory induced by the chemoattractant, i.e.
minimizing the functional

�
χn dS =

�
χn

�
1 + |∇xS|2

with respect to S, dS being the measure of the curve defined by S. This provides
an alternative term in the corresponding Euler-Lagrange equation of type

divx

�
χn

∇xS�
1 + |∇xS|2

�
.

Of course, this term coincides with divx(χn∇xS) when |∇xS| is very small. But
in the case |∇xS| ∼ 0 it will be necessary to compare this scale with the rest of
the scales of the problem in order to be correct.

- It does not seem realistic to think that the cells or bacteria are moving by simple
(linear Fokker-Planck) diffusion, divx(Dn∇xn), by assuming that Dn is constant.
There are some possibilities to modify this approach based on incorporating real
phenomena related with cell or bacteria motion (cilium activation or elasticity
properties of the membrane, among others) that could be represented by a non-
linear limited flux that would allow for richer and more realistic dynamics: finite
speed of propagation c, preservation of fronts along the evolution or formation of
biological patterns. This corresponds with an optimal mass transportation ap-
proach as it has been motivated previously and would be represented by terms of
the type

divx



Dnn
∇xn�

n2 + D2
n

c2
|∇xn|2



 .

Considering these facts we propose to modify the Keller–Segel model by account-
ing for flux limitation mechanisms and imposing optimal transport of the popu-
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lation n following the chemical signal S, as follows






∂tn = divx



Dn

n∇xn�
n2 + D2

n
c2
|∇xn|2

− nχ
∇xS�

1 + |∇xS|2



 + H2(n, S),

∂tS = divx(DS ·∇xS) + H1(n, S);

where the functions Hi(n, S), i = 1, 2, describe extra interactions between both
populations. Let us point out that this particular model can be derived from first
principles using Kinetic Theory for Active Particles [40]. We plan to perform the
mathematical study of this model in collaboration with J.M. Mazón.

3. As regards the results in Chapter 6, we want to conclude the study of qualitative
features of the solutions. For instance, it is likely that once a suitable concept
of sub-solutions is found we will be able to ensure that the speed of propagating
fronts is precisely c. The study of the convergence to the steady state solution
constitutes another interesting open problem. We would also like to study the
existence and uniqueness of solutions to the complete models (with source terms
and coupling), the technical problem here is that non-linear semigroup theory
does not work nicely when time-dependent source terms that do also depend on
the solution itself are incorporated into the equations.

4. Concerning relativistic kinetic models, there are a number of questions that would
be interesting to address. The study of dispersive behavior for the Einstein–
Vlasov system is still a wide source of open problems. Namely, only results for
small initial data [185, 191] and shells of outgoing matter [10] are available; here
dispersion is understood in the sense that certain norms of the metric quantities
decay with time. It would be desirable to generalize these results to a broader class
of initial data. This problem is related to a couple of central questions. First, we
have to understand what the precise meaning of dispersion is. This may depend
on the system of coordinates, but just getting results in Schwarzschild coordinates
would constitute an important goal. Moreover, there may be several meaningful
ways in which a solution to the Einstein–Vlasov system disperses. Secondly, it is
likely that if a solution shows such dispersive behavior then we shall have that
such solution is global, at least in the set of coordinates used to describe its
dispersive behavior. And we must not forget that we are not able to deal with
the related issues for the simpler Nordström–Vlasov system, not even to give a
physically meaningful (i.e Lorentz invariant) definition of dispersive behavior. We
would like to find functionals that are able to generalize in a meaningful way the
second spatial moment of solutions to the Vlasov–Poisson system or similar useful
macroscopic quantities. These problems should constitute a good starting point
before we confront them for the Einstein–Vlasov system.

Another challenging problem is that of proving (or disproving) the stability of
some static solutions to the spherically symmetric Einstein–Vlasov system; it
should be kept in mind that under this formulation of the Einstein–Vlasov system
we will be able to test stability only against spherically symmetric perturbations.
Our intention is to study these problems in collaboration with S. Calogero.



7. Perspectives for future work 207

5. In the dynamics of multiphase fluids described by a fluid-kinetic approach, parti-
cles are also affected by their interaction with the surrounding fluid. This could
include and favor the possibility of fragmentation or coagulation for particles or
droplets, which modifies the density or the velocity of the particles and also of the
fluid. In the context of fragmentation this problem has been recently analyzed
in the Navier–Stokes–Boltzmann coupling, see [128]. In this memory we have
studied the coagulation properties of a mixture of two species under a kinetic
formulation. It could be of great interest to extend this study to the interaction
with a fluid.

6. The foundations of flux-limited models and related diffusion mechanisms remain
at a phenomenological level, although some new results have been achieved by
using hyperbolic limits of a kinetic system in [40]. However, a rigorous derivation
of them from first principles is still lacking. We think that this gap could be filled
by using some ideas from stochastic processes and diffusion by mean curvature
flows; this is by now a work in progress.
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Appendix A

Vector integration

This material can be found in [85]. Through the following let X be a Banach space
and � · � its norm.

Definition A.1.1 Let (Ω,Σ, µ) be a finite measure space and let f : Ω → X.

1. The function f is called simple if there exist x1, x2, . . . xn ∈ X and E1, E2, . . . En ∈
Σ such that f =

�
n

i=1 xiχEi, where χEi(w) = 1 if w ∈ Ei and χEi(w) = 0 if
w /∈ Ei.

2. The function f is said to be strongly measurable if there exists a sequence of
simple functions {fn} for which limn �fn − f� = 0 µ-almost everywhere.

3. The function f is said to be weakly (or scalarly) measurable if for each x∗ ∈ X∗

the numerical function x∗f is µ-measurable.

If X is separable then both notions of measurability coincide.

Definition A.1.2 A function f : Ω → X∗ is said to be weakly* measurable if the
scalar functions x∗∗f are µ-measurable for each x∗∗ ∈ X∗∗ belonging to the image of X
under the natural imbedding into X∗∗.

Definition A.1.3 Let (Ω,Σ, µ) be a finite measure space. A strongly measurable func-
tion is called Bochner integrable if there exists a sequence of simple functions {fn}
such that

lim
n

�

Ω
�fn − f� dµ = 0.

If that’s the case, we define for each E ∈ Σ its Bochner integral as
�

E

f dµ := lim
n

�

E

fn dµ,

where
�
E

fn dµ is defined as an element of X in the obvious way.

Definition A.1.4 Let (Ω,Σ, µ) be a finite measure space. A weakly measurable func-
tion f is called Dunford integrable if x∗f ∈ L1(Ω, µ) for all x∗ ∈ X∗. The Dunford
integral of f over E ∈ Σ is defined by the element x∗∗

E
∈ X∗∗ such that

x∗∗E (x∗) =
�

E

x∗f dµ ∀x∗ ∈ X∗.
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Definition A.1.5 Let (Ω,Σ, µ) be a finite measure space. A Dunford integrable func-
tion f such that x∗∗

E
∈ X for each E ∈ Σ is said to be Pettis integrable, being x∗∗

E
∈ X

its Pettis integral over E ∈ Σ.

The Dunford and Pettis integrals coincide when X is reflexive. This may not be the
case if X is not reflexive.



Appendix B

Nonlinear Semigroup theory

Here X will be a real Banach space with norm � �. A mapping A from X to the set 2X

of parts of X will be called an operator in X. Given x ∈ X the value of A at x will be
denoted by Ax. Let D(A) := {x ∈ X : Ax �= ∅} stand for the (effective) domain of A
and R(A) := ∪{Ax : x ∈ D(A)} for its range. The subset {(x, y) ∈ X ×X : y ∈ Ax}
is called the graph of A. Sometimes we identify A with its graph. The closure of the
operator A is defined to be the closure of its graph in X ×X.

Our aim is to study evolution problems of this kind:





u�(t) + Au(t) � 0 on t ∈]0, T [

u(0) = x.
(1.1)

A mild solution of this problem is a continuous function u ∈ C([0, T ], X) which is
the uniform limit of solutions to time-discretized problems given by the implicit Euler
scheme of the form

v(ti)− v(ti−1)
ti − ti−1

+ Av(ti) � 0.

This is stated in more precise terms below:

Definition B.1.1 Let � > 0.

1. An �-discretization of u� + Au � 0 consists on a system of difference relations
vi − vi−1

ti − ti−1
+ Avi � 0

determined by a partition 0 ≤ t0 < t1 < · · · < tN ≤ T with ti − ti−1 ≤ �, i =
1, . . . , N , t0 ≤ � and T − tN ≤ �. This will be denoted by DA(t0, . . . , tN ).

2. A solution of the discretization DA(t0, . . . , tN ) is a piecewise constant function
v : [0, T ] → X whose values v(0) = v0, v(t) = vi for t ∈]ti−1, ti], i = 1, . . . , N
satisfy

vi − vi−1

ti − ti−1
+ Avi � 0, i = 1, . . . , N.

3. A mild solution of u� + Au � 0 in [0, T ] is a continuous function u ∈ C([0, T ];X)
such that, for each � > 0 there is an �-discretization DA(t0, . . . , tN ) having a
solution v which satisfies

�u(t)− v(t)� ≤ � for t0 ≤ t ≤ tN .
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Note that to solve uniquely the discretized equations we need that the inverse of the
operator I + λA be a single-valued operator, being I the identity operator and λ ∈ R.
This motivates the following definition.

Definition B.1.2 An operator A in X is accretive if

�x− x̂� ≤ �x− x̂ + λ(y − ŷ)�

whenever λ > 0 and (x, y), (x̂, ŷ) ∈ A.

To be able to talk in a meaningful way about the inverse of the operator (I + λA) we
need to state clearly that

(I + λA)x = x + λ(Ax)

and
(I + λA)−1x = {y ∈ X : x ∈ (I + λA)y}.

Note that Definition B.1.2 encodes the non-expansivity of the map (I + λA)−1. This
property of the operator implies uniqueness of solutions for the discretized equations.
In case A is accretive, we denote JA

λ
= (I + λA)−1 and we call JA

λ
the resolvent of A.

Next we introduce the notion of evolution semigroup.

Definition B.1.3 Let D be a subset of X. A family of mappings S(t) : D → D, (t ≥ 0)
satisfying

S(t + s)x = S(t)S(s)x for all t, s ≥ 0, x ∈ D

and
lim
t→0

S(t)x = x for x ∈ D

is called a strongly continuous semigroup on D.

One may now associate to every operator A in X a strongly continuous semigroup
(SA(t))t≥0 by the following definitions:

D(SA) := {x ∈ X : ∃! mild solution ux of u� + Au � 0 on ]0,+∞[ with ux(0) = x}.

For t ≥ 0 and x ∈ D(SA) we set SA(t) := ux(t). We also denote SA(t) by e−tA and we
call (e−tA)t≥0 the semigroup generated by −A.

Theorem B.1.4 (Crandall–Liggett) If A is accretive and satisfies the range condi-
tion D(A) ⊂ R(I + λA) for all λ > 0 then −A generates a semigroup of contractions
(e−tA)t≥0 on D(A). Moreover, for x0 ∈ D(A) and 0 ≤ t ≤ ∞,

lim
λ↓0, kλ→t

(Jλ)kx0 = e−tAx0

holds uniformly for compact subintervals of [0,∞[.

We deduce

e−tAx = lim
n→∞

�
I +

t

n
A

�−n

x for x ∈ D(A).

Our next set of definitions are aimed to discuss the interplay between a certain ordering
on X and the action of the semigroup. The natural setting for this is the following:
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Definition B.1.5 A Banach lattice is a Banach space X together with a mapping

(x, y) ∈ X ×X �→ x ∨ y ∈ X

which is continuous and satisfies the the following properties:

x ∨ x = x, x ∨ y = y ∨ x,

λ(x ∨ y) = (λx) ∨ (λy),

(x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∨ y) + z = (x + z) ∨ (y + z),

for λ ≥ 0 and x, y, z ∈ X. This mapping defines an order “≤” on X according to

x ≤ y if and only if x ∨ y = y

for which x ∨ y = max{x, y}.

Definition B.1.6 Let X be a Banach Lattice and S : D(S) ⊂ X → X.

1. S is order-preserving if Sx ≤ Sx̂ whenever x, x̂ ∈ D(S) and x ≤ x̂.

2. S is a T-contraction if

�(Sx− Sx̂)+� ≤ �(x− x̂)+� for x, x̂ ∈ D(S).

3. An operator A in X is T-accretive if

�(x− x̂)+� ≤ �(x− x̂ + λ(y − ŷ))+� for (x, y), (x̂, ŷ) ∈ A and λ > 0.

All this material was borrowed from [15, 43], where wider expositions on the subject
can be found.
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Appendix C

Functions of bounded variation in
one dimension

For bounded variation functions the reader may consult [3, 15, 93]. Let ]0, L[⊂ R an
interval, we say that a function u ∈ L1(]0, L[) is of bounded variation if its distributional
derivative Du is a Radon measure on ]0, L[ with bounded total variation |Du|(]0, L[) <
+∞. We denote by BV (]0, L[) the space of all function of bounded variation in ]0, L[.
It is well know that given u ∈ BV (]0, L[) there exists a function ũ in the equivalence
class of u, called a good representative of u with the following properties. If Ju is the
set of atoms of Du, i.e., x ∈ Ju if and only if Du({x}) �= 0, then ũ is continuous in
]0, L[\Ju and has a jump discontinuity at any point of Ju:

ũ(x)− := lim
y↑x

ũ(y) = Du(]0, x[), ũ(x)+ := lim
y↓x

ũ(y) = Du(]0, x]) ∀x ∈ Ju.

Consequently,
ũ(x)+ − ũ(x)− = Du({x}) ∀x ∈ Ju.

The set Ju is denumerable. Moreover, ũ is differentiable at L1 a.e. point of ]0, L[,
and the derivative ũ� is the density of Du with respect to L1. For u ∈ BV (]0, L[),
the measure Du decomposes into its absolutely continuous and singular parts Du =
Dacu + Dsu. Then Dacu = ũ� L1. Obviously, if u ∈ BV (]0, L[) then u ∈ W 1,1(]0, L[) if
and only if Dsu ≡ 0; in this case we have Du = ũ� L1. When we deal with pointwise
valued BV functions we always shall use the good representative. Hence, in the case
u ∈ W 1,1(]0, L[), we shall assume that u ∈ C([0, L]).

Hereafter we will use the following notation, which might not be the standard one:
Given u ∈ BV (]0, L[), we set

�
L

0
Du := Du(]0, L[).

C.1 Some remarkable results

Next we state without proof a series of results that will be used often in Chapter 6.

Theorem C.1.1 (Lower semicontinuity of the total variation) Let
{un} ⊂ BV (]0, L[) and un → u in L1(]0, L[). Then

|Du|(]0, L[) ≤ lim inf
n→∞

|Dun|(]0, L[).
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Theorem C.1.2 (Traces) There exist a bounded linear mapping

Tr : BV (]0, L[) → R2

such that �
L

0
uϕ� dx = −

�
L

0
ϕ Du + Tr(u) · (−ϕ(0), ϕ(L))

for all u ∈ BV (]0, L[) and ϕ ∈ C1(]0, L[). Moreover,

Tr(u) = lim
r→0+

�
1
r

�
r

0
u dx,

1
r

�
L

L−r

u dx

�
.

We shall use the notation Tr(u) = (u(0+), u(L−)), which is coherent with the customary
interpretation of the trace as “boundary values”.

Theorem C.1.3 (Approximation by smooth functions) Let u ∈ BV (]0, L[).
Then, there exists a sequence un ∈ C∞(]0, L[) ∩BV (]0, L[) such that

1. �un�∞ ≤ �u�∞ for all n ∈ N

2. un → u in L1(]0, L[)

3.
�

L

0
|u�n(x)| dx →

�
L

0
|Du|

4. un(L) = u(L−), un(0) = u(0+) for all n ∈ N

Definition C.1.4 Let u, un ∈ BV (]0, L[). We say that {un} converges weakly∗ to u
in BV (]0, L[) if {un} converges to u in L1(]0, L[) and {Dun} converges weakly∗ to Du,
meaning that

lim
n→∞

�
L

0
φDun =

�
L

0
φDu ∀φ ∈ Cc(]0, L[).

Proposition C.1.5 Let {un} ⊂ BV (]0, L[). Then {un} converges weakly∗ to u in
BV (]0, L[) if and only if {un} is bounded in BV (]0, L[) and converges to u in L1(]0, L[).

Lemma C.1.6 Let µn be a sequence of measures on ]0, L[ that is weakly∗ convergent
to a measure µ. Then

µ(K) ≥ lim sup
n→∞

µn(K)

for any compact K ⊂]0, L[.

Theorem C.1.7 (Coarea formula) Let u ∈ BV (]0, L[). Then

χ{x∈]0,L[ : u(x)>t} ∈ BV (]0, L[) for a.e. t ∈ R.

and
|Du|(]0, L[) =

� ∞

−∞
Per({x ∈]0, L[ : u(x) > t}) dt

being Per({x ∈]0, L[ : u(x) > t}) = Dχ{x∈]0,L[ : u(x)>t}(]0, L[). Note that this reduces
to a counting measure.
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Theorem C.1.8 (Embeddings) The embedding BV (]0, L[) → L∞(]0, L[) is contin-
uous and the embeddings BV (]0, L[) → Lp(]0, L[) are compact for all 1 ≤ p < ∞.

Theorem C.1.9 (Radon–Nikodym) Let (Ω,A, µ) be a σ-finite measure space and
let λ : A→ R be a real measure which is absolutely continuous with respect to µ. Then
there exists a unique f ∈ L1(µ) such that

λ(E) =
�

E

f dµ ∀E ∈ A.

We say that f is the Radon–Nikodym derivative of λ with respect to µ.

Proposition C.1.10 Let u ∈ BV (]0, L[). Then Du is absolutely continuous with res-
pect to the total variation |Du|, hence it has a Radon–Nikodym derivative with respect
to |Du|, that we will denote by Du

|Du| .

Theorem C.1.11 (Chain rule) Let u ∈ BV (]0, L[) and let f : R → R be a Lipschitz
function. Then, v = f ◦ u belongs to BV (]0, L[). Moreover,

Dv = f �(u)u� L+
f(u+)− f(u−)

u+ − u−
Dju + f �(ũ)Dcu.

The formula for the derivative of the composition can be written in a compact way
using Volpert’s averaged superposition. Let

fu(x) =
� 1

0
f �(τu+(x) + (1− τ)u−(x)) dτ,

being (u+(x), u−(x)) = (u(x)+, u(x)−) if x ∈ Ju and (u+(x), u−(x)) = (ũ(x), ũ(x)) if
x ∈]0, L[\Ju. Then

Dv = fu Du.

A vectorial version of the chain rule can be found in [3], Theorems 3.96 and 3.101.

C.2 Interplay with vector integration

For the rest of the paragraph we shall inquire about certain aspects of Bochner and
related spaces having BV (]0, L[) as target space. We stress the fact that BV (]0, L[) is
not separable and thus the notions of strong and weak measurability do not coincide.

It is well known (see for instance [213]) that the dual space
�
L1(0, T ;BV (]0, L[))

�∗

is isometric to the space

L∞(0, T ;BV (]0, L[)∗, BV (]0, L[))

of all weakly∗ measurable functions f : [0, T ] → BV (]0, L[)∗ such that the supremum of
the set {|�w, f�| : �w�BV (]0,L[) ≤ 1} in the vector lattice of measurable real functions
belongs to L∞([0, T ]). Moreover, the duality pairing is

�w, f� =
�

T

0
�w(t), f(t)� dt,
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for w ∈ L1(0, T ;BV (]0, L[)) and f ∈ L∞(0, T ;BV (]0, L[)∗, BV (]0, L[)).
By L1

w(0, T, BV (]0, L[)) (resp. L1
loc,w

(0, T, BV (]0, L[))) we denote the space of weakly
measurable functions w : [0, T ] → BV (]0, L[) such that

�
T

0 �w(t)� dt < ∞ (resp.
t ∈ [0, T ] → �w(t)� is in L1

loc
(]0, T [)). Observe that, since BV (]0, L[) has a separa-

ble predual (see [3]), it follows easily that the map t ∈ [0, T ] → �w(t)� is measurable.
The techniques of vector integration allow to set up a procedure to obtain a (time)

regularization of functions with values in some non-separable Banach space. We detail
it for the case that interests us in the following

Definition C.2.1 Given φ ∈ D(]0, T [) and w ∈ L1
loc

(0, T ;BV (]0, L[)), we define (φw)τ

as the Dunford integral

(φw)τ (t) :=
1
τ

�
t

t−τ

φ(s)w(s) ds ∈ BV (]0, L[)∗∗,

that is

�(φw)τ (t), η� =
1
τ

�
t

t−τ

�φ(s)w(s), η� ds ∀ η ∈ BV (]0, L[)∗.

In [14] it is shown that (φw)τ ∈ C([0, T ];BV (]0, L[)), so that the integral defining
(φw)τ is in fact a Pettis integral. Note that being η ∈ BV (]0, L[)∗ fixed the map
t �→ �φ(t)w(t), η� belongs to L1

loc
([0, T ]), hence almost any t ∈ [0, T ] is a Lebesgue point

for it. Moreover, (φw)τ admits a weak derivative in L1
w(0, T, BV (0, L)) ∩ L∞(QT ), see

[14], which values
φ(t)w(t)− φ(t− τ)w(t− τ)

τ
.

Remark C.2.2 Under certain circumstances the BV ∗−BV pairing can be represented
by means of the standard integral of the product. For instance, given u ∈ L∞(]0, L[) we
can define the functional Tu : BV (]0, L[) → R by means of �Tu, v� :=

�
L

0 u v. Trivially
|�Tu, v�| ≤ �u�∞�v�1 ≤ �u�∞�v�BV and then Tu ∈ BV (]0, L[)∗.

Let us remark that a complete description of BV ∗ cannot be achieved without the
use of the axiom of choice.



Appendix D

Miscellaneous material

D.1 The linear transport equation

It is the simplest kinetic equation that we can think of, and represents the free streaming
of a bunch of particles. It reads:

∂

∂t
f(t, x, v) + v∇xf(t, x, v) = 0.

We complement it with an initial datum f(0, x, v) = f0(x, v) : R3
x × R3

v → R+. Its
solution is explicitly given by the formula

f(t, x, v) = f0(x− vt, v).

It follows immediately that all the norms �f(t)�Lp(R6) are preserved during evolution.
It is also easy to see that the energy

H =
1
2

�

R6
v2f(t, x, v) dxdv

remains constant. We also notice that the system is Galilean invariant and satisfies

d2

dt2

�

R6
x2f(t, x, v) dxdv = 4H.

This implies that solutions are statistically dispersive with a t2 rate.
We have several decay estimates for the solutions of this problem. We are interested

in the following:

1. |ρ(t, x)| ≤ 1
t3
�f0�L1(R3

x,L∞(R3
v))

2. �ρ(t)�
L5/3(R3

x) ≤
C

t6/5
�f0�2/5

��

R6
x2f0(x, v) dxdv

�3/5

.

Part of this material is borrowed from [173], where more information can be found.
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220 D.2. Performing matchings with the Schwarzschild solution

D.2 Performing matchings with the Schwarzschild solu-
tion

Any compactly supported solution of the spherically symmetric Einstein–Vlasov system
is continuously matched with an exterior Schwarzschild solution. The family of solutions
introduced by K. Schwarzschild is the general solution representing vacuum in the
framework of General Relativity under spherical symmetry; as a particular case this
family contains Minkowsky’s solution. This matching processes is analogous to the
trivial prolongation by zero to the whole space of a compactly supported solution to
the Vlasov–Poisson; in the relativistic setting this is no longer trivial.

The Schwarzschild solution of parameter H is given by the metric

−
�

1− 2H

r

�
dt2 +

�
1− 2H

r

�−1

dr2 + r2 dw2.

Coming back to the EV system, we use the definition of local mass

m(t, r) = 4π

�
r

0
s2h(t, s) ds =

r

2
(1− e−2λ)

to guess on one hand that

e2λ =
�

1− 2m(t, r)
r

�−1

(thus we obtained one of the metric coefficients) and on the other hand that, being
R(t) the radius of our configuration,

m(t, R(t)) = H.

So that for r ≥ R(t) we get

e2λ =
�

1− 2H

r

�−1

.

For sure there holds that r > 2H in this case, since for r ≥ R(t) we have the condition
2m(t, r) ≤ r. To match the other metric coefficient with the corresponding one in
Schwarzschild’s metric, just write

µ(r) + λ(r) = −
� ∞

r

4πs(h + prad)e2λ ds,

so that given r ≥ R(t) we know that µ + λ = 0 and accordingly eµ(r)+λ(r) = 1. Thus,

e2µ = 1− 2H

r
for r ≥ R(t).



Appendix E

Resumen y resultados

1 La presente memoria de Tesis se estructura en torno a varios modelos matemáticos
basados en ecuaciones diferenciales en derivadas parciales (EDPs) de tipo cinético que
aparecen asociadas a varios fenómenos de los campos de la Astrof́ısica y la Bioloǵıa.

¿Cúal es el significado de una EDP cinética? Los modelos cinéticos proporcionan
descripciones estad́ısticas de sistemas compuestos por un gran número de part́ıculas que
interactúan entre śı. El objetivo es incorporar al nivel de descripción dado por la EDP
de transporte las propiedades microscópicas de interacción entre part́ıculas (las cuales
han de ser deducidas a partir de primeros principios). Aqúı aparece una interesante
controversia entre modelos constrúıdos a partir de leyes de interacción básicas y modelos
fenomenológicos (que usualmente describen cantidades macrocópicas). En este sentido,
las descripciones cinéticas proporcionan una escala intermedia entre la descripción mi-
croscópica y la macroscópica. El rango de aplicación de estos modelos es muy amplio,
y lo suficientemente flexible como para admitir que muy diferentes entidades jueguen
el rol de las part́ıculas acerca de las que versan los modelos cinéticos: desde los sis-
temas más grandes que imaginar podamos (galaxias y el propio Universo) hasta objetos
realmente pequeños para los cuáles los efectos cuánticos pueden ser importantes, como
puede ser el caso de sistemas compuestos por part́ıculas atómicas. Más aún, el concepto
de part́ıcula puede incluir individuos con la capacidad de tomar decisiones: veh́ıculos
en una carretera o células en contextos biológicos, por ejemplo. Por otra parte, la ver-
satilidad de estos modelos permite incluir toda una serie de interacciones de distinta
naturaleza en el sistema de EDPs, como pueden ser interacciones de largo alcance en el
caso de potenciales gravitatorios o electrostáticos, interacciones de corto alcance, como
procesos de agregación o coagulación de varias part́ıculas, o incluso efectos difusivos.
Otro aspecto a destacar es la posibilidad de obtener otros modelos interesantes llevando
a cabo ĺımites macroscópicos a partir de la EDP cinética, ya sean de tipo parabólico
difusivo (régimen de campo bajo) o de tipo hiperbólico (régimen de campo alto), que
incorporen las propiedades de los niveles microscópicos. Los efectos de cualquiera de
estas elecciones son cruciales para las propiedades cualitativas del transporte mediante
flujos (parabólicos o hiperbólicos) de estructuras geométricas, frentes, patrones, etc.
En este contexto la pregunta natural que surge es: ¿qué tipo de descripción se ajusta
mejor al estudio de una realidad f́ısica concreta? Ésta es una de las ideas conductoras
de la presente memoria.

1
The present chapter constitutes an almost literal translation to spanish of Chapter 1: Introduction

and results.
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Uno de los principales aspectos conceptuales relacionados con esta Tesis es la dis-
cusión sobre cómo modelar pequeñas fluctuaciones, que podŕıan ser originadas a partir
de interacciones no incluidas inicialmente en el modelo matemático, de forma que la
dinámica del sistema (patrones, frentes, configuraciones especiales, singularidades, etc)
no sea destrúıda (desvanecimiento). Los ĺımites macroscópicos de tipo parabólico e
hiperbólico son las dos formas —aparentemente dispares— de tratar este problema que
encontramos en la literatura. Estos ĺımites van asociados a los conceptos de difusión y
dispersión respectivamente. La Tesis también trata con una situación intermedia: las
correcciones de flujo limitado, que inducen un comportamiento más cercano a las ecua-
ciones hiperbólicas que a las parabólicas (Fokker–Planck), aunque las soluciones de los
sistemas que incluyen este tipo de términos heredan caracteŕısticas de ambos campos,
como son la velocidad finita de propagación del soporte o los efectos regularizantes en
el interior del soporte.

La presente memoria consta de dos partes bien diferenciadas. En la primera analizare-
mos varios conceptos de dispersión en el marco de la dinámica de materia tipo Vlasov
clásica o relativista, dando ejemplos concretos y condiciones implicando dispersión, co-
agulación, aparición de configuraciones espaciales estacionarias o “breathing modes”.
El cometido de esta parte es conectar toda una serie de conceptos y resulta por ello bas-
tante menos técnica que la segunda, dedicada al análisis de un sistema con limitación
de flujo, motivado por el estudio del transporte de morfógenos. El lector puede escoger
el punto de partida que mejor le parezca sin temor a perderse, pues desde el punto de
vista matemático y descriptivo ambas partes son bastante independientes. El plan de
la Tesis se basa en la dirección que va desde los niveles de descripción (matemática)
microscópico al macroscópico.

Describamos brevemente los contenidos de la mı́sma. En la primera parte de esta
memoria utilizaremos descripciones cinéticas que sólo incluyen interacciones de largo
alcance (salvo en el último caṕıtulo de la mı́sma, en el que incluiremos otro tipo de inter-
acciones). Veremos que este escenario permite gran variedad de posibilidades y en con-
secuencia una dinámica muy rica. Dependiendo de ciertos parámetros macroscópicos
de la condiciones iniciales podemos observar la aparición de configuraciones espaciales
(o patrones), “breathing modes”, dinámicas dispersivas e incluso fenómenos más com-
plejos. Daremos ejemplos expĺıcitos de todo ello en cuanto tratemos con sistemas
concretos. Estas estructuras pueden ser eventualmente robustas (como es el caso de
las configuraciones estacionarias estables o el de los solitones) y no por ello carecer
de dinámica interna. Estas caracteŕısticas no deben ser subestimadas, en cuanto que
hay un número importante de ejemplos en el mundo real que coinciden con este tipo
de descripción. Por ejemplo la dinámica tumoral, la dinámica galáctica o los halos de
materia oscura, por nombrar algunos en los que estaremos interesados en esta memoria.

Es por tanto importante remarcar que tenemos la posibilidad de modelar un am-
plio conjunto de fenómenos utilizando ecuaciones hiperbólicas que pueden describir
comportamiento dispersivo en algunos reǵımenes. Incluso podemos aumentar nuestras
posibilidades si permitimos otro tipo de interacciones. Como ejemplo de ello trataremos
en el último caṕıtulo de la primera parte el caso de sistemas hiperbólicos que incluyen
también mecanismos de coagulación (formación de agregados).

Una cuestión muy importante es la relativa al uso de términos difusivos en nuestras
ecuaciones. Estos términos están relacionados con algún tipo de aleatoriedad, ya sea
porque un modelo expĺıcito no es conocido o porque haya demasiados factores a tener



E. Resumen y resultados 223

en cuenta que podŕıan convertir al modelo en algo demasiado complejo. Lo importante
aqúı es que si sabemos que esta variables incontrolables no tienen una influencia muy
grande sobre los fenómenos en consideración, querremos que esto se refleje en nuestras
ecuaciones.

No cualquier forma de aleatoriedad servirá para un problema dado; hacer una
elección correcta de este tipo de términos se convierte en una cuestión decisiva. Sabe-
mos que los mecanismos de difusión estándar (lineal, relacionados con movimiento
browniano) suavizarán absolutamente todo, y este mecanismo de uniformización podŕıa
destruir en mucho casos la mayoŕıa de la estructura en la que pudiéramos estar intere-
sados para el tipo de problemas que antes hemos mencionado. Este es precisamente el
caso si a las ecuaciones cinéticas que se usan para describir la evolución de un sistema
gravitatorio afectado por interacciones de largo alcance les añadimos términos de tipo
Fokker–Planck. Aqúı aparece una idea recurrente: la confrontación entre dispersión y
difusión, idea que está en el fondo de muchas de las cuestiones que se van a tratar en
esta memoria. El comportamiento dispersivo resulta compatible con otras estructuras
complejas que las descripciones cinéticas pueden asumir: respeta las invarianzas (leyes
de conservación) del sistema y puede coexistir con la aparición de configuraciones es-
tables, por ejemplo. Este no tiene por qué ser el caso de los mecanismos de difusión
estándar (lineal), que no preservan cantidades f́ısicamente relevantes (más bien las disi-
pan) y tienden a destruir toda la dinámica, sin importar lo pequeña que pudiera ser
su contribución. De hecho, son las colas de las distribuciones Gaussianas las únicas
estructuras que sobreviven a la dinámica, inclusive siendo inicialmente muy pequeñas.

Dado que necesitaremos que nuestros modelos sean capaces de preservar estructuras
macroscópicas (que de hecho son f́ısicamente observables), la búsqueda de mecanismos
de difusión alternativos que sean capaces de ello está más que justificada. Tales difu-
siones han de ser necesariamente no lineales. Muchos de estos mecanismos han sido
investigados en la literatura f́ısica y matemática; estaremos interesados en todos aque-
llos que cumplan además la propiedad adicional de que la velocidad de propagación
sea finita (cual es el caso de las ecuaciones de transporte cinéticas). Las ecuaciones
de los medios porosos proporcionan este tipo de descripciones, aunque la velocidad de
propagación no es una caracteŕıstica intŕınseca de las leyes que gobiernan los fenómenos
observables, sino que depende de la configuración inicial. Un enfoque capaz de cumplir
con todas las condiciones buscadas es el de los mecanismos de limitación de flujo,
que será objeto de estudio en la segunda parte de esta memoria. Estos modelos per-
miten estructuras robustas, como son frentes que se propagan, e introducen nuevos
fenómenos como ondas viajeras singulares; veremos algunas de ellas utilizando mode-
los macroscópicos. De hecho, los resultados contenidos en esta Tesis junto con los de
[200] demuestran que la aplicación de este tipo de argumentos al problema del trans-
porte de morfógenos implica la eliminación de la difusión (que para este problema no
tiene base f́ısica) e induce la preservación de estructuras dinámicas como pueden ser la
propagación de frentes o las respuestas biológicas ante ellos, hechos en perfecta concor-
dancia con los resultados experimentales. Por otra parte, hay varios intentos recientes
para intentar deducir los términos de limitación de flujo a partir de primeros principios
microscópicos; podemos mencionar aqúı los ĺımites hiperbólicos de sistemas cinéticos
para un sistema de quimiotaxis con flujo limitado [40] o la difusión mediante procesos
estocásticos relacionados con flujos por curvatura media. Podemos observar las diferen-
cias cualitativas entre una ecuación de difusión lineal y una ecuación de flujo limitado
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que permite propagación de frentes en la Figura 1.1 de la introducción en inglés.
A modo de resumen, tendremos por un lado ecuaciones cinéticas para estudiar com-

portamiento dispersivo y estados estacionarios en Astrof́ısica, y también utilizaremos
estas ecuaciones para estudiar el comportamiento a tiempo largo de la dinámica de
poblaciones biológicas; el carácter de estas ecuaciones es principalmente hiperbólico.
Por otro lado tenemos las ecuaciones de flujo limitado, que exhiben un mezcla de com-
portamientos hiperbólico y parabólico, y que serán utilizadas para modelar el transporte
de morfógenos en el embrión. Estas ecuaciones pueden jugar un papel en Astrof́ısica,
como alternativa a las ecuaciones de Fokker–Planck.

A continuación detallamos los problemas que vamos a estudiar, los modelos matemá-
ticos que utilizamos para ello y los resultados que hemos obtenido.

E.2 Sistemas gravitatorios

En esta memoria de Tesis estudiaremos algunos modelos cinéticos que sirven para des-
cribir sistemas gravitatorios. Trabajaremos por ello siempre en tres dimensiones es-
paciales. Nos centramos principalmente en el comportamiento a tiempo largo de sus
soluciones y en ciertas propiedades de sus soluciones estacionarias. Estos temas tienen
aplicaciones en el campo de la dinámica galáctica, y de hecho presentamos una apli-
cación directa de varias de estas ideas a uno de los temas actuales más candentes de la
Astrof́ısica: el modelado de halos de materia oscura.

Vamos a introducir en este párrafo varios modelos matemáticos ampliamente usados
para describir sistemas gravitatorios. El tipo de objetos en los que estamos pensando
son galaxias, grandes agrupaciones de galaxias e incluso halos de materia oscura. Es-
tos sistemas comparten la caracteŕıstica de estar compuestos por un gran número de
entidades individuales, o part́ıculas (digamos las estrellas de una galaxia, las propias
galaxias vistas dentro de una agrupación galáctica, etc), que evolucionan bajo inter-
acciones gravitatorias. Estas caracteŕısticas también están presentes en otros sistemas
f́ısicos relevantes, como son los gases o los plasmas por ejemplo; la única diferencia es
que las leyes de interacción son de naturaleza distinta. Veremos que la teoŕıa cinética
proporciona un marco común en el cual todos estos sistemas se pueden tratar en pie
de igualdad.

Es razonable suponer que las galaxias actuales se encuentran aproximadamente en
un estado estacionario, queriendo esto decir que vaŕıan de forma tan lenta que esto no
resulta apreciable en nuestra escala temporal y por tanto los podemos considerar como
objetos estáticos (los f́ısicos se refieren a estas configuraciones con el nombre de esta-
dos o equilibrios metaestables). De forma que una representación mediante modelos
estáticos parece conformar un acercamiento coherente al estudio de estos objetos. Esto
nos insta a encontrar y analizar soluciones estacionarias de nuestros modelos (cinéticos).
Es también interesante estudiar en qué forma evolucionan las soluciones dinámicas ha-
cia semejantes estados, y estudiar si una configuración dada puede realmente vagar en
torno a o evolucionar hacia tales estados, o exhibir por contra un comportamiento muy
diferente. Una vez que hayamos presentado los modelos nos centraremos en el compor-
tamiento a tiempo largo de sus soluciones y en ciertas propiedades de sus soluciones
estáticas.

Una primera aproximación inocente seŕıa modelar sistemas gravitatorios como cole-
ciones de masas puntuales evolucionando bajo interacciones gravitatorias. Esto es, un
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problema de N cuerpos. Es bien conocido el hecho de que este modelo no se puede
resolver de forma anaĺıtica, pero tenemos una dificultad más importante, de naturaleza
más práctica que teórica. Usualmente el número de part́ıculas que conforma estos
sistemas es enorme, de forma que no hay manera de ni tampoco interés en registrar
toda esta abrumadora cantidad de información.

Este primer intento se abandona en pos de modelos más sofisticados y pretensiones
algo menos ambiciosas: la descripción del comportamiento dinámico a grosso modo
puede ser suficiente para la mayoŕıa de los propósitos. Los modelos continuos se ajustan
mejor que los discretos al cometido de llevar a cabo tales predicciones teóricas; en
particular los más ampliamente utilizados en este campo son los modelos cinéticos.

De hecho, el propósito de la teoŕıa cinética en su formulación general no es otro que
la descripción de gases a una escala intermedia entre la microscópica y la hidrodinámica.
Éstos cubren un rango importante de aplicaciones, puesto que los gases son, hablando
con cierta libertad, sistemas con un número muy grande de part́ıculas que son descritos
a un nivel estad́ıstico. Para este tipo de problemas una descripción de la posición y
la velocidad de cada part́ıcula es irrelevante, pero la descripción del propio sistema no
se puede reducir al cálculo de una velocidad promedio en una posición e instante de
tiempo dados (que seŕıa el caso con modelos de tipo fluido). Queremos poder incorporar
la posibilidad de tener más de una velocidad en cada punto y por tanto la descripción
se ha de llevar a cabo al nivel del espacio de fases.

De forma que pretendemos una descripción estad́ıstica de nuestro sistema, en térmi-
nos de lo que se conoce como función de distribución, que depende del tiempo t y de las
coordenadas del espacio de fases (x, v) —para el caso de modelos relativistas es mejor
usar (x, p), siendo p el momento. El valor de esta función en un punto dado corresponde
al número probable de part́ıculas que encontraremos en un volumen infinitesimal en
torno a ese punto en el espacio de fases. Conviene retener que toda la información
macroscópica está codificada en este objeto matemático, por complicado que pudiera
ser. Sólo es necesario saber cómo extraerla, lo cuál explicaremos para cada uno de los
modelos que vamos a considerar.

Como ya hemos dicho, hay varias descripciones posibles de los sistemas gravita-
torios, las cuáles dependen obviamente del tipo de efectos que queramos considerar y
de los que prefiramos ignorar. Pero todas ellas comparten una serie de principios co-
munes. Lo primero de todo, el objeto central es la función de distribución f(t, x, v), que
describe la evolución del conjunto de part́ıculas en sentido estad́ıstico. De forma que
dos exigencias básicas son que esta función sea no negativa y localmente integrable en
espacio de fases, para que la interpretación f́ısica que hemos mencionado anteriormente
tenga sentido. Un segundo punto crucial es dar una ley para la evolución de la función
de distribución. Aqúı es donde aparecen las diferencias entre los distintos modelos,
pero en cualquier caso todas las ecuaciones que codifican las leyes para la evolución
de f se obtienen a partir del mismo principio: la llamada ecuación de Vlasov. Esta
ecuación establece que la derivada material (o total) de f es igual a la tasa de cambio a
lo largo de las trayectorias de las part́ıculas en el espacio de fases. Denotaremos a esta
tasa de cambio mediante C(f). Tales cambios están asociados a interacciones de corto
alcance. Aqúı se pueden incluir colisiones entre part́ıculas —en un sentido amplio— o
fenómenos de coagulación entre ellas, que dan lugar t́ıpicamente a términos bilineales;
también podemos considerar efectos de fragmentación, que se pueden incluir usando
términos de tipo lineal.
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Calculemos ahora la derivada material de f . Bajo el dominio de la mecánica clásica
las leyes de Newton establecen que para las trayectorias de las part́ıculas la derivada
de la posición es la velocidad y la derivada de la velocidad es la fuerza que se ejerce
sobre la part́ıcula, digamos F —todo esto ha de ser modificado adecuadamente para
considerar modelos relativistas. Entonces la derivada material de f se puede escribir
como

Df

Dt
=

df

dt
+ v ·∇xf + F ·∇vf

y de este modo la ecuación de Vlasov resulta

∂f

∂t
+ v ·∇xf + F ·∇vf = C(f).

Dependiendo del tipo de interacciones de largo alcance F y del tipo de segundos miem-
bros C(f) obtendremos diferentes modelos; consideraremos algunos de ellos sucesiva-
mente.

E.3 El caso clásico

Estudiaremos en primer lugar el sistema clásico de Vlasov–Poisson, que proporciona
una descripción estad́ıstica de un conglomerado de muchas part́ıculas que evolucionan
en ausencia de colisiones y de acuerdo a las leyes de Newton de la gravitación en el
potencial gravitatorio autogenerado φ(t, x). La función de distribución f(t, x, v) del
conjunto y su densidad asociada

ρ(t, x) =
�

R3
v

f(t, x, v) dv

satisfacen (con G = 1)





∂tf + v ·∇xf−∇xφ ·∇vf = 0

∆xφ= 4πρ.

La dinámica de las soluciones de este sistema se estudia en el Caṕıtulo 2, concentrán-
donos especialmente en su comportamiento dispersivo. Este estudio se lleva a cabo
mediante un análisis detallado de las posibles formas en las que una solución puede
exhibir comportamiento dispersivo. Nos concentramos en dispersión fuerte (en el sen-
tido de las normas), en lo que llamamos dispersión total o parcial —dos nociones que
cuantifican la cantidad de masa que una solución pierde por el infinito— y en la dis-
persión estad́ıstica (crecimiento ilimitado de la varianza de la función de densidad).
Encontramos que la aparición de cualquiera de ellas está profundamente vinculada a
los valores de ciertos parámetros macroscópicos de los sistemas a estudiar: su masa M ,
su momento lineal Q y su enerǵıa H, definidas por

M =
�

R6
f dvdx, Q =

�

R6
v f dvdx,

y

H =
1
2

�

R6
|v|2f dvdx− 1

8π

�

R3
|∇xφ|2dx = Ekin − Epot,
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siendo todas ellas cantidades conservadas. Daremos ejemplos de todos ellos a lo largo
del caṕıtulo 2, a partir de ciertas construcciones de anillos de materia que se desplazan
hacia el exterior y modificaciones de éstos. La relación entre todas estas nociones de
dispersión también se ha clarificado. Tenemos el siguiente resultado:

Proposición 1 Sea f una solución regular del sistema de Vlasov–Poisson. Equivalen:

1. f es dispersiva en sentido fuerte.

2. f es totalmente dispersiva.

3. La enerǵıa potencial se desvanece para t →∞.

Además, si cualquiera de las anteriores posibilidades ocurre, entonces f cumple la si-
guiente desigualdad

H ≥ Q2

2M
.

Finalmente, si f es total o parcialmente dispersiva entonces es también estad́ısticamente
dispersiva.

A continuación estudiamos las ratios de dispersión más rápidas permitidas para la
dispersión fuerte, extendiendo y recuperando con una prueba distinta los resultados en
[87]. El nuevo resultado (Proposition 2.3.3) asegura que

�ρ(t)�p ≥ C(1 + t)−
3(p−1)

p para t � 1, p ∈]1,∞].

También completamos los resultados dados en [87] acerca de la ocurrencia de dispersión
estad́ıstica en el régimen H > Q

2

2M
, analizando el caso ĺımite H = Q

2

2M
que aquellos re-

sultados no cubŕıan. Nuestra conclusión es que también se tiene dispersión estad́ıstica
en este caso, genéricamente con una ratio al menos lineal en tiempo (Proposition 2.3.8).
Damos ejemplos de soluciones estad́ısticamente dispersivas tales que H < Q

2

2M
; puesto

que en este régimen existen soluciones no dispersivas (por ejemplo estados estacionar-
ios), la dinámica bajo la condición H < Q

2

2M
aparenta ser mucho más complicada y su

comprensión necesitará bastante trabajo en el futuro. Como ejemplo de esto presenta-
mos soluciones que aún siendo dispersivas permanecen en la región de estabilidad de
estados estacionarios estables.

Posteriormente comprobamos todas las herramientas introducidas con las soluciones
de Kurth [136], que constituyen el ejemplo más conocido de soluciones dinámicas del
sistema de Vlasov–Poisson, ya que se pueden describir de forma casi expĺıcita. Final-
mente tratamos también otras dos clases de soluciones que exhiben comportamiento
dinámico interesante: soluciones periódicas en tiempo (para las que deducimos la
relación H < − Q

2

2M
entre sus parámetros macroscópicos —Proposition 2.3.12 ) y solu-

ciones virializadas. Para esta segunda clase generalizamos el teorema virial acerca de
sistemas de N cuerpos [177] al continuo en el Lemma 2.3.13, conectando la identidad
virial con una cierta condición de crecimiento del sistema (a saber, que su varianza
espacial crezca en tiempo estŕıctamente más despacio que t2).
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E.4 Generalizaciones relativistas

Cuando los efectos relativistas pasan a ser importantes el sistema de Vlasov–Poisson
deja de ser una descripción válida y otros modelos han de ser usados. Hoy d́ıa se acepta
que la generalización correcta del sistema de Vlasov–Poisson es el sistema de Einstein–
Vlasov, en el cuál la ley de Poisson se sustituye por el acoplamiento con las ecuaciones
de Einstein de la Relatividad General. El sistema que resulta es bastante complejo y
actualmente todav́ıa no demasiado bien comprendido. En consecuencia una estrategia
común para su análisis es reducirlo a situaciones con simetŕıa, o bien tratar con otras
generalizaciones relativistas más sencillas.

El sistema de Einstein–Vlasov en simetŕıa esférica se escribe en coordenadas de
Schwarzschild (tomando unidades tales que G=c=1) como

∂tf + eµ−λ
v�

1 + |v|2
·∇xf −

�
λt

x · v
r

+ eµ−λµr

�
1 + |v|2

� x

r
·∇vf = 0,

e−2λ(2rλr − 1) + 1 = 8πr2h ,

e−2λ(2rµr + 1)− 1 = 8πr2prad ,

siendo
prad(t, r) =

�

R3

�x · v
r

�2
f

dv�
1 + |v|2

la presión radial,

h(t, r) =
�

R3

�
1 + |v|2fdv

la densidad de enerǵıa y λ, µ los potenciales métricos —en el sentido de que la métrica
queda completamente determinada a partir de estas dos funciones—. Estudiamos esta
formulación en el Caṕıtulo 3.

Los parámetros macroscópicos relevantes para una solución del sistema de Einstein–
Vlasov en simetŕıa esférica son la ADM masa (o enerǵıa) H y la masa total en reposo
M , definidas por

H =
�

R3

�

R3

�
1 + |v|2 f dvdx, M =

�

R3

�

R3
eλf dvdx.

Estas cantidades permanecen constantes para las soluciones regulares. Otra cantidad
que resulta ser importante es el redshift central, definido mediante Zc := e−µ(0) −
1. Corresponde al redshift de un fotón emitido desde el centro de la galaxia, y no
necesariamente ha de permanecer constante durante la evolución de las soluciones.

Demostramos una identidad virial muy general para soluciones de este sistema
(Lemma 3.4.1) que posteriormente particularizamos al caso de estados estacionarios
y de esta forma obtenemos una identidad que relaciona algunos de sus parámetros
macroscópicos. El resultado es el siguiente:

Proposición 2 Sea f una solución estática y con soporte compacto del sistema de
Einstein–Vlasov en simetŕıa esférica con ADM masa (o enerǵıa) H, masa en reposo
M y redshift central Zc. Entonces se tiene la siguiente desigualdad:

Zc ≥
����
M

H
− 1

���� .



E. Resumen y resultados 229

Estudiamos también dos clases particulares de estados estacionarios. Para los estados
estacionarios de tipo Jeans (soluciones estáticas dependientes de cantidades conser-
vadas a lo largo de geodésicas, ver Caṕıtulo 3 para una definición precisa) con radio R
demostramos que

eµ(0) ≤ min
�

1,
M

H

� �
1− 2H

R
,

mientras que para configuraciones de tipo anular con radio interno R1 probamos que

R1 ≤
18H

ln
���M

H
− 1

�� + 1
� .

Otra generalización relativista del sistema de Vlasov–Poisson que vamos a conside-
rar en esta memoria es el sistema de Norsdtröm–Vlasov, el cuál constituye un modelo
no f́ısico pero que aún aśı incorpora algunas caracteŕısticas interesantes de la Teoŕıa
de la Relatividad General (por medio de una teoŕıa escalar de la gravitación) y es más
manejable que el sistema de Einstein–Vlasov. Por tanto constituye un buen banco de
pruebas. Consideraremos este sistema en la siguiente formulación

∂tf +
p�

e2φ + |p|2
·∇xf −∇x

��
e2φ + |p|2

�
·∇pf = 0,

∂2
t φ−∆xφ = −e2φ

�

R3
f

dp�
e2φ + |p|2

.

La función φ determina la métrica del espaciotiempo subyacente y por tanto puede
ser considerada como una suerte de potencial. La enerǵıa local y el momento de una
solución (f, φ) se definen respectivamente como (i=1,2,3)

h(t, x) =
�

R3

�
e2φ + |p|2 f dp +

1
2
(∂tφ)2 +

1
2
|∇xφ|2,

qi(t, x) =
�

R3
pif dp− ∂tφ ∂iφ ,

donde ∂i denota la derivada parcial a lo largo de xi. La enerǵıa total y el momento
total

H =
�

R3
h(t, x) dx, Q =

�

R3
q(t, x) dx

son cantidades conservadas a lo largo de la evolución. Además, las soluciones del
sistema de Nordström–Vlasov satisfacen también la conservación de la masa total en
reposo

M =
�

R3
ρ(t, x) dx =

�

R6
f(t, x, v) dxdp.

Estudiamos varios aspectos de este sistema en los Caṕıtulos 2 y 3. En el primero
de ellos demostramos una estimación de dispersión en términos de la enerǵıa local h:

Proposición 3 Sea (f, φ) una solución del sistema de Norsdtröm–Vlasov con masa
M , enerǵıa H y momento Q. Supóngase que

H2 −HM − |Q|2 > 0.
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Entonces existe un instante de tiempo t0 y constantes positivas 0 < C1 < C2 tales que
la varianza espacial ∆x(t) de la función unitaria de densidad de enerǵıa

∆x(t) =
�

R3
|x− h̄(t)|2 h(t, x)

H
dx, donde h̄(t) =

�

R3
x

h(t, x)
H

dx,

verifica
C1t

2 ≤ ∆x(t) ≤ C2t
2 ∀t > t0 .

En el Caṕıtulo 3 establecemos una identidad (Lemma 3.2.1) que toda solución dinámica
satisface y a continuación la restringimos a estados estacionarios. Obtenemos que
la enerǵıa de los estados estacionarios regulares está acotada por su masa (Theorem
3.2.2), una propiedad que está en claro paralelismo con el hecho de que las soluciones
estacionarias del sistema de Vlasov–Poisson verifiquen que H < 0. De hecho, este
resultado motivó el desarrollo de la Proposición 2.

E.5 Estudio de los halos de materia oscura

El primer bloque conceptual de esta memoria (prácticamente toda la primera parte),
dedicado al modelado de sistema gravitatorios, concluye con una aplicación del sistema
de Vlasov–Poisson al modelado matemático de halos de materia oscura, en el Caṕıtulo
4. Éstos consisten en estructuras esféricas que envuelven a cada galaxia, constituidas a
partir de algún tipo de materia exótica indetectable mediante mediciones directas. Sólo
constatamos su presencia a partir de sus efectos gravitatorios, siendo estos realmente
fuertes, pues se cree que estas estructuras contribuyen con nueve décimas partes a la
masa total de la configuración resultante. Aunque este paradigma tiene varios detrac-
tores es una tendencia comúnmente aceptada en Astrof́ısica en la actualidad, y se han
dedicado muchos esfuerzos a la elaboración de modelos para los perfiles de densidad de
estos objetos. Éstos perfiles suelen pertenecer a una de las siguientes categoŕıas: mode-
los fenomenológicos (ajustes a datos) y simulaciones numéricas. El perfil de densidad
de Navarro-Frenk-White [164] es el más popular de entre los originados mediante simu-
laciones, mientras que el perfil Isotermo [109] y el perfil de Burkert [58] constituyen una
buena representación de los modelos fenomenológicos. Ninguno de estos modelos tiene
radio finito, lo cuál no es f́ısicamente razonable. Aún más controvertido es el hecho de
que los modelos generados mediante simulaciones numéricas predicen un valor infinito
de la densidad en el centro de la configuración.

Nuestra propuesta consiste en generar perfiles de densidad para los halos de mate-
ria oscura utilizando una familia triparamétrica de soluciones del sistema de Vlasov–
Poisson: los poĺıtropos isótropos. Estos modelos vienen corroborados por toda una serie
de fundamentos teóricos (desde la misma ecuación consolidada que los origina, pasando
por sus propiedades de reescalado, hasta toda una serie de teoŕıas termodinámicas que
tratan de ámbitos mucho más generales que el nuestro — pero todav́ıa en debate en
la comunidad f́ısica) y son relativamente fáciles de manejar. Comparamos estos mode-
los politrópicos con aquellos que antes comentamos utilizando un criterio de mı́nimos
cuadrados. Una vez que se optimizan los parámetros de ajuste se obtienen resultados
bastante buenos: los errores son del orden de un 3%. Además, el origen anaĺıtico de
nuestros modelos nos permite efectuar un desarrollo en torno al origen y sugerir la
fórmula (6.4) para los perfiles de densidad de materia oscura en el centro, que subsana
la divergencia de las simulaciones numéricas en la región central.
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E.6 Comportamiento asintótico de un modelo de coagu-
lación

La primera parte de esta memoria concluye con el Caṕıtulo 5, donde estudiaremos un
modelo cinético de coagulación que describe dos especies de part́ıculas (t́ıpicamente
moléculas o células). Las part́ıculas pueden adoptar dos estados distintos: un estado
“libre” en el cuál simplemente se mueven con una velocidad dada o un estado de
agregación en el cuál las part́ıculas ya no se mueven más. Los fenómenos de coagulación,
agregación o adhesión de part́ıculas a un grupo, ya sean éstas células, ĺıpidos, gotas,
protéınas, etc, son de fundamental importancia en procesos biológicos y biotecnológicos,
ver por ejemplo [1, 92, 100, 217]. Ésta es la motivación principal para el modelo que
estudiamos.

La distribución de part́ıculas libres será representada mediante f y la función de
densidad de las part́ıculas agregadas mediante ρ. Como modelo matemático para la
anterior situación en dimensión d consideramos el siguiente sistema de ecuaciones:

∂f

∂t
+ v ·∇xf = −f(t, x, v)

�

Rd
α(v, v�)f(t, x, v�) dv� − β(v)ρ(t, x)f(t, x, v) (6.1)

∂ρ

∂t
=

�

R2d
α(v, v�)f(t, x, v�)f(t, x, v) dv�dv + ρ(t, x)

�

Rd
v

β(v)f(t, x, v) dv (6.2)

completado con datos iniciales 0 ≤ f0(x, v) ∈ L1(R2d) y 0 ≤ ρ0(x) ∈ L1(Rd
x).

Las funciones α(v, v�) y β(v) representan núcleos de colisión o coagulación, y pro-
porcionan, en el caso de α, la probabilidad de que dos part́ıculas libres con velocidades v
y v� coagulen, y en el caso de β, la probabilidad de que una part́ıcula libre con velocidad
v coagule con una part́ıcula ya detenida. Estos núcleos de colisión seran no negativos
y cumplirán una propiedad de dominación, motivada por consideraciones f́ısicas (esto
se explica con detalle en el Caṕıtulo 5): ha de existir una constante C > 0 tal que

α(v, v�) ≤ C|v − v�|a, β(v) ≤ C|v|a, para algún a ∈ R. (6.3)

Nos concentramos principalmente en el estudio del comportamiento asintótico de las
soluciones de este modelo. A partir de las propias ecuaciones es fácil observar que
la masa correspondiente a las part́ıculas libres sólo puede disminuir y que la masa
asociada a las part́ıculas coaguladas aumentará. Por tanto la principal cuestión cuando
t → +∞ es si todas las part́ıculas libres terminarán por coagular o si algunas de
ellas permanecerán eternamente libres. Demostramos que esta alternativa depende
únicamente de la fuerza de las interacciones, codificada en el valor de a. Nuestro
análisis se basa en estimaciones de dispersión para ecuaciones cinéticas. Mostramos
también que para tiempos suficientemente grandes la distribución de part́ıculas libres
exhibe comportamiento autosemejante. Nuestros resultados quedan resumidos en el
siguiente:

Teorema 1 Supóngase que los núcleos α, β son no negativos, que verifican la condición
(6.3) y la relación a + d > 0. Entonces, para cualquier configuración inicial 0 ≤ f0 ∈
L1(Rd

x × Rd
v), 0 ≤ ρ0 ∈ L1 ∩ L∞(Rd

x) tal que para algún η > 0 se verifique

f0(x, v) ≤ C

1 + |v|max{a,0}+d+η
, para casi todo (x, v) ∈ Rd

x × Rd

v,
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existe una solución débil del sistema (6.1)–(6.2) con datos iniciales f(0, x, v) = f0 y
ρ(0, x) = ρ0. Si esta solución débil se puede aproximar fuertemente en L∞(0, T, L1(Rd

x×
Rd

v)×L1(Rd
x)) por una sucesión de soluciones regulares entonces esta solución débil es

única. Además, existe una función g∞(x, v) tal que

���f(t, x, v)− g∞
�x

t
, t(v − x

t
)
���� → 0 para t →∞

en la norma de W−1,1(Rd
x, L1(Rd

v)). Finalmente,

• si a > 1 − d (o si a > 1 en el caso de que d = 1) y tanto f0 como ρ0 son
compáctamente soportadas en la variable x, la cantidad de masa

�
R2d f(t, x, v) dxdv

está acotada inferiormente por una constante positiva que es independiente del
tiempo.

• si −d < a ≤ 1 − d, la cantidad de masa
�

R2d f(t, x, v) dxdv es estrictamente
positiva para todo instante de tiempo, pero converge a cero cuando t se hace
infinito.

E.7 Un modelo de flujo limitado para el transporte de
morfógenos

La última parte de esta memoria está dedicada al estudio del transporte de morfógenos
en sistemas biológicos. Es éste un problema clásico, que data de los trabajos de
Turing [225], Meinhardt [101, 157], Wolpert [234] o Lander [139], que plantearon la
cuestión como uno de los principales problemas a la hora de comprender el transporte
de protéınas mediante “signaling pathways”: subyace la cuestión de si los gradientes
morfogénicos son generados mediante difusión o no.

Nos concentramos en un problema algo más concreto: el estudio de la dinámica de
la función morfogénica “Sonic Hedgehog” (Shh), que juega un papel muy importante
en la evolución de algunos factores de trasncripción y en el proceso de diferenciación
celular en el tubo neural del embrión. Estos procesos son de capital importancia para
la bioloǵıa del desarrollo. Por ejemplo, dentro del sistema nervioso central el desarrollo
del tubo neural en vertebrados y más adelante del cerebro [198] dependen del proceso de
señalización del Sonic Hedgehog. Este proceso de señalización tiene también un papel
importante en la formación de tumores canceŕıgenos: los fallos en la regulación del
“Shh pathway” provocan el desarrollo de varios tipos de tumores, incluyendo aquellos
en la piel, la próstata y el cerebro [196].

Actualmente existen modelos matemáticos para estudiar este problema [202], pero
desde nuestro punto de vista su utilización de mecanismos de difusión no es realista en
este contexto. Como remedio a esta situación proponemos la supresión del mecanismo
de difusión y en su lugar la introducción de un mecanismo de limitación de flujo; todo
ello está explicado en detalle en el Caṕıtulo 6.

Nuestro objetivo en esta segunda parte de la memoria es el análisis de un problema
mixto asociado con un sistema de reacción-difusión no lineal con limitación de flujo
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para la concentración de Shh, u(t, x), dado por





∂u

∂t
= (a(u, ux))

x
− f(t− τ, u(t, x)) u(t, x) + g(t, u(t, x)), en ]0, T [×]0, L[

−a(u(t, 0), ux(t, 0)) = β > 0 y u(t, L) = 0 en t ∈]0, T [ ,

u(0, x) = u0(x) en x ∈]0, L[ .

donde
a(z, ξ) := ν

|z|ξ�
z2 + ν2

c2
|ξ|2

,

siendo f la concentración de receptores transmembranales en las células, representando
g la concentración del complejo que liga el morfógeno al receptor y estando incluida
la dependencia con respecto a u mediante el acoplamiento con un sistema de siete
ecuaciones diferenciales ordinarias. Estas siete ecuaciones modelan las tasas de cambio
de las concentraciones de las protéınas involucradas en el “signaling pathway” prove-
nientes de la cascada bioqúımica interior a las células, véase [200]. El significado de las
constantes f́ısicas c, ν, τ se explica en el Caṕıtulo 6.

Trataremos de hacer avanzar el conocimiento acerca de este problema biológico, y
para ello estudiaremos como primer paso un modelo simplificado sin términos fuente.
Este estudio se lleva a cabo en el Caṕıtulo 6 utilizando teoŕıa de semigrupos no lineal.
El modelo simplificado en consideración resulta






∂u

∂t
= (a(u, ux))

x
en ]0, T [×]0, L[

−a(u(t, 0), ux(t, 0)) = β > 0 y u(t, L) = 0 en t ∈]0, T [ ,

u(0, x) = u0(x) en x ∈]0, L[ .

(7.4)

Rápidamente nos damos cuenta de que (y esto es algo que también se ha comprobado
mediante simulaciones numéricas) la condición de contorno tipo Dirichlet ha de ser
relajada a una condición de borde del tipo de la del problema del obstáculo. Esto se
refleja en el hecho de que frentes que se propagan dinámicamente alcanzarán eventual-
mente el borde y persistirán tras ello (ver Figura 1.1 de la introducción en inglés). La
formulación precisa de estas cuestiones se puede encontrar en el Caṕıtulo 6.

La utilización de la teoŕıa de semigrupos nos proporcionará soluciones de tipo “mild”
para nuestro problema, pero nuestro propósito será caracterizar estas soluciones en
términos más operativos. Para nosotros la teoŕıa de semigrupos será la herramienta
que nos proporcione un adecuado esquema aproximante a los problemas parabólicos. De
manera que analizaremos los problemas eĺıpticos asociados, construiremos el semigrupo
correspondiente y lo utilizaremos para generar una sucesión de soluciones aproximadas,
para las cuales se puede demostrar convergencia a una solución razonable del problema
parabólico. También somos capaces de demostrar unicidad para esta clase de soluciones
“razonables” (las llamamos “bounded entropic”) de la ecuación parabólica. De hecho
somos capaces de probar un resultado bastante más fuerte, pues las soluciones de la
ecuación verifican una propiedad de contracción. Todo ello se obtiene mediante el uso
de la técnica del desdoblamiento de variables de Kruzkov, convenientemente adaptada.
Los resultados quedan recogidos en el siguiente enunciado.
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Teorema 2 Para cualquier dato inicial 0 ≤ u0 ∈ L∞(]0, L[) existe una única solución
u del problema (7.4) in QT =]0, T [×]0, L[ de tipo “bounded entropic”, para cualquier
T > 0. Además, si u(t), u(t) son soluciones de (7.4) en QT =]0, T [×]0, L[ de tipo
“bounded entropic” asociadas a datos iniciales u0, u0 ∈ L∞(]0, L[)+ respectivamente,
entonces

�(u(t)− u(t))+�1 ≤ �(u0 − u0)+�1 para todo t ≥ 0.

En particular, tenemos unicidad en la clase de soluciones “bounded entropic” del pro-
blema (7.4).

Durante este estudio hemos determinado también un perfil estacionario (Proposition
6.6.2) hacia el cuál todas las soluciones de este modelo parecen converger. También
analizamos la velocidad de propagación de los frentes, demostrando que la velocidad
de propagación de la señal entrante es precisamente c.
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[10] H. Andréasson, M. Kunze, G. Rein: Global existence for the spherically symmet-
ric Einstein–Vlasov system with outgoing matter. Commun. Part. Diff. Eqns. 33,
656–668 (2008)
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[114] M. Hénon: Numerical experiments on the stability of spherical stellar systems.
Astron. & Astrophys. 24, 229–238 (1973)

[115] G. Hinshaw et al. (20 co-authors): Five-Year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results.
Astrophys. J. Suppl. 180, 225–245 (2009)
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