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Abstract: This paper is concerned with the least-squares linear centralized estimation problem
in multi-sensor network systems from measured outputs with uncertainties modeled by random
parameter matrices. These measurements are transmitted to a central processor over different
communication channels, and owing to the unreliability of the network, random one-step delays and
packet dropouts are assumed to occur during the transmissions. In order to avoid network congestion,
at each sampling time, each sensor’s data packet is transmitted just once, but due to the uncertainty
of the transmissions, the processing center may receive either one packet, two packets, or nothing.
Different white sequences of Bernoulli random variables are introduced to describe the observations
used to update the estimators at each sampling time. To address the centralized estimation problem,
augmented observation vectors are defined by accumulating the raw measurements from the different
sensors, and when the current measurement of a sensor does not arrive on time, the corresponding
component of the augmented measured output predictor is used as compensation in the estimator
design. Through an innovation approach, centralized fusion estimators, including predictors, filters,
and smoothers are obtained by recursive algorithms without requiring the signal evolution model.
A numerical example is presented to show how uncertain systems with state-dependent multiplicative
noise can be covered by the proposed model and how the estimation accuracy is influenced by both
sensor uncertainties and transmission failures.

Keywords: least-squares filtering; least-squares smoothing; networked systems; random parameter
matrices; random delays; packet dropouts

1. Introduction

1.1. Background and Motivation

With the active development of computer and communication technologies, the estimation
problem in multi-sensor network stochastic systems has become an important research topic in the
last few years. The significant advantages of multi-sensor systems in practical situations (low cost,
remote operation, simple installation, and maintenance) are obvious, and have triggered wide
use of these systems in many areas, such as target tracking, communications, the manufacturing
industry, etc. Moreover, they usually provide more information than traditional communication
systems with a single sensor alone. In spite of these advantages, a sensor network is not generally a
reliable communication medium, and together with the communication capacity limitations (network
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bandwidths or service capabilities, among others), may yield different uncertainties during data
transmission, such as missing measurements, random delays, and packet dropouts.

The development of sensor networks motivates the necessity to desig fusion estimation
algorithms which integrate the information from the different sensors and take these network-induced
uncertainties into account to achieve a satisfactory performance. Depending on the way the information
fusion is performed, there are two fundamental fusion techniques: the centralized fusion approach,
in which the measurements from all sensors are sent to a central processor where the fusion is
performed, and the distributed fusion approach, in which the measurements from each sensor are
processed independently to obtain local estimators before being sent to the fusion center. The survey
papers [1–3] can be examined for a wide view of these and other multi-sensor data fusion techniques.

As already indicated, centralized fusion architecture is based on a fusion centre that is able to
receive, fuse, and process the data coming from every sensor; hence, centralized fusion estimation
algorithms provide optimal signal estimators based on the measured outputs from all sensors and,
consequently, when all of the sensors work correctly and the connections are perfect, they have the
optimal estimation accuracy. In light of these concerns, it is not surprising that the study of the
centralized and distributed fusion estimation problems in multi-sensor systems with network-induced
uncertainties (in both the sensor measured outputs and the data transmission) has become an
active research area in recent years. The estimation problem in systems with uncertainties in the
sensor outputs (such as missing measurements, stochastic sensor gain degradation and fading
measurements) is addressed in refs. [4–6], among others. In refs. [7–10], systems with failures
during transmission (such as uncertain observations, random delays, and packet dropouts) are
considered. Also, recent advances in the estimation, filtering, and fusion of networked systems
with network-induced phenomena can be reviewed in refs. [11,12], where detailed overviews on this
field are presented.

Since our aim in this paper is the design of centralized fusion estimators in multi-sensor network
systems with measurements perturbed by random parameter matrices subject to random transmission
failures (delays and packet dropouts), and multi-packet processing is considered, we discuss the
research status of the estimation problem in networked systems with some of these characteristics.

1.2. Multi-Sensor Measured Outputs with Random Parameter Matrices

It is well known that in sensor-network environments, the measured outputs can be subject not
only to additive noises, but also to multiplicative noise uncertainties due to several reasons, such as
the presence of an intermittent sensor or hardware failure, natural or human-made interference,
etc. For example, measurement equations that model the above-mentioned situations involving
degradation of the sensor gain, or missing or fading measurements must include multiplicative
noises described by random variables with values of [0, 1]. So, random measurement parameter
matrices provide a unified framework to address different simultaneous network-induced phenomena,
and networked systems with random parameter matrices are used in different areas of science (see,
e.g., refs. [13,14]). Also, systems with random sensor delays and/or multiple packet dropouts are
transformed into equivalent observation models with random measurement matrices (see, e.g., ref. [15]).
Hence, the estimation problem for systems with random parameter matrices has experienced increasing
interest due to its diverse applications, and many estimation algorithms for such systems have been
proposed over the last few years (see, e.g., refs. [16–24], and references therein).

1.3. Transmission Random Delays and Losses: Observation Predictor Compensation

Random delays and packet dropouts in the measurement transmissions are usually unavoidable
and clearly deteriorate the performance of the estimators. For this reason, much effort has been
made towards the study of the estimation problem to incorporate the effects of these transmission
uncertainties, and several modifications of the standard estimation algorithms have been proposed
(see, e.g., refs. [25–27], and references therein). In the estimation problem from measurements subject to
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transmission losses, when a packet drops out, the processor does not recieve a valid measurement and
the most common compensation procedure is the hold-input mechanism which consists of processing
the last measurement that was successfully transmitted. Unlike the approach to deal with losses,
in ref. [28] the estimator of the lost measurement based on the information received previously is
proposed as the compensator; this methodology significantly improves the estimations, since in cases
of loss, all the previously received measurements are considered, instead of using only the last one.
In view of this clear improvement of the estimators, the compensation strategy developed in ref. [28]
has been adopted in some other recent investigations (see, e.g., refs. [29,30], and references therein).

1.4. Multi-Packet Processing

Another concern at the forefront of research in networked systems subject to random delays and
packet dropouts is the number of packets that are processed to update the estimator at each moment,
and different observation models have been proposed to deal with this issue. For example, to avoid
losses as much as possible, in ref. [16] it is assumed that each packet is transmitted several times.
In contrast, to avoid the network congestion that may be caused by multiple transmissions, ref. [31]
the packets are sent just once. These papers also assume that each packet is either received on time,
delayed for, at most, one sampling time, or lost, and only one packet or no packets are processed to
update the estimator at each moment. However, in refs. [32–34] two packets were able to arrive at
each sampling time, in which case, both were used to update the estimators, thus improving their
performance. In these papers, different packet dropout compensation procedures have been employed.
The last available measurement was used as compensation in refs. [32,34], while the observation
predictor was considered in ref. [34].

1.5. Addressed Problem and Paper Contributions

Based on the considerations made above, we were motivated to address the study of
the centralized fusion estimation problem for multi-sensor networked systems perturbed by
random parameter matrices. This problem is discussed under the following assumptions:
(a) Each sensor transmits their measured outputs to a central processor over different communication
channels and random delays, and packet dropouts are assumed to occur during the transmission;
(b) in order to avoid the network congestion, at each time instant, the different sensors send their
packets only once, but due to the transmission random failures, the processing center can receive more
than one packet; specifically, either one packet, two packets, or nothing; and (c) the measurement
output predictor is used as a loss compensation strategy.

The main contributions and advantages of the current work are summarized as follows:
(1) A unified framework to deal with different network-induced phenomena in the measured outputs,
such as missing measurements or sensor gain degradation, is provided by the use of random
measurement matrices. (2) Besides the uncertainties in the measured outputs, random one-step
delays and packet dropouts are assumed to occur during the transmission at different rates at each
sensor. Unlike previous authors’ papers concerning random measurement matrices and random
transmission delays and losses where only one packet is processed to update the estimator at each
moment, in this paper, the estimation algorithms are obtained under the assumption that either one
packet, two packets, or nothing may arrive at each sampling time. (3) Concerning the compensation
strategy, the use of the measurement predictor as the loss compensator combined with the simultaneous
processing of delayed packets provides better estimators in comparison to other approaches where the
last measurement successfully received is used to compensate the data packets and only one packet is
processed to update the estimator at each moment. (4) The centralized fusion estimation problem is
addressed using covariance information, without requiring full knowledge of the state-space model
generating the signal process, thus providing a general approach to deal with different kinds of signal
processes. (5) The innovation approach is used to obtain recursive prediction, filtering, and fixed-point
smoothing algorithms which are recursive and computationally simple, and thus aresuitable for
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online implementation. In contrast to the approaches where the state augmentation technique is used,
the proposed algorithms are deduced without making use of augmented systems; therefore, they have
lower computational costs than those based on the augmentation method.

1.6. Paper Structure and Notation

The remaining sections of the paper are organized as follows. Section 2 presents the assumptions
for the signal process, the mathematical models of the multi-sensor measured outputs with random
parameter matrices, and the measurements received by the central processor with random delays and
packet losses. Section 3 provides the main results of the research, namely, the covariance-based
centralized least-squares linear prediction and filtering algorithm (Theorem 1) and fixed-point
smoothing algorithm (Theorem 2). A numerical example is presented in Section 4 to show the
performance of the proposed centralized estimators, and some concluding remarks are drawn in Section
5. The proofs of Theorems 1 and 2 are presented in the Appendix A and Appendix B, respectively.

The notations used throughout the paper are standard. Rn and Rm×n denote the n-dimensional
Euclidean space and the set of all m× n real matrices, respectively. AT and A−1 denote the transpose
and inverse of a matrix (A), respectively. In and 0n denote the n× n identity matrix and zero matrix,
respectively. 1n denotes the all-ones vector. Finally,⊗ and ◦ are the Kronecker and Hadamard products,
respectively, and δk,s is the Kronecker delta function.

2. Observation Model and Preliminaries

The aim of this section is to design a mathematical model to allow the observations to be processed
in the least-squares (LS) linear estimation problem of discrete-time signal processes from multi-sensor
noisy measurements transmitted through imperfect communication channels where random one-step
delay and packet dropouts may arise in the transmission process. More specifically, in order to avoid
the network congestion, at every sampling time, it is assumed that the measured outputs from each
sensor, which are perturbed by random parameter matrices, are transmitted just once to a central
processor, and due to random delays and losses, the processing center (PC) may receive, from each
sensor, either one packet, two packets, or nothing at each time instant.

In this context, our goal is to find recursive algorithms for the LS linear prediction, filtering, and
fixed-point smoothing problems using the centralized fusion method. We assume that only information
about the mean and covariance functions of the signal process is available, and this information is
specified in the following hypothesis:

(H1) The nx-dimensional signal process, {xk}k≥1, has a zero-mean, and its autocovariance function
is expressed in a separable form, E[xkxT

s ] = AkBT
s , s ≤ k, where Ak, Bs ∈ Rnx×M are

known matrices.

2.1. Multi-Sensor Measured Outputs with Random Parameter Matrices

We assume that there are m sensors which provide measured outputs of the signal process that
are affected by random parameter matrices according to the following model:

z(i)k = H(i)
k xk + v(i)k , k ≥ 1, i = 1, . . . , m, (1)

where z(i)k ∈ Rnz is the signal measurement in the i-th sensor at time k, H(i)
k are random parameter

matrices, and v(i)k are the measurement noises. We assume the following hypotheses for these proceses:

(H2) {H(i)
k }k≥1, for i = 1, . . . , m, are independent sequences of independent random parameter

matrices. For p = 1, . . . , nz and q = 1, . . . , nx, we denote h(i)pq (k) as the (p, q)-th entry of H(i)
k ,

which has known first and second order moments, and H(i)
k = E[H(i)

k ].
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(H3) The measurement noises {v(i)k }k≥1, i = 1, . . . , m, are zero-mean second-order white processes

with E[v(i)k v(j)T
s ] = R(ij)

k δk,s.

2.2. Observation Model. Properties

To address the estimation problem with the centralized fusion method, the observations coming
from the different sensors are gathered and jointly processed at each sampling time to yield the
optimal signal estimator. So, the problem is addressed by considering, at each time (k ≥ 1), the vector
constituted by the measurements received from all sensors and for this purpose, Equations (1) were
combined to yield the following stacked measured output equation:

zk = Hkxk + vk, k ≥ 1, (2)

where zk =
(
z(1)Tk , . . . , z(m)T

k
)T, Hk =

(
H(1)T

k , . . . , H(m)T
k

)T, vk =
(
v(1)Tk , . . . , v(m)T

k
)T.

As already indicated, random one-step delays and packet dropouts occur during the transmissions
to the PC. To model these failures, we introduced the following sequences of random variables:

• {γ(i)
k }k≥1, i = 1, . . . , m, are sequences of Bernoulli random variables. Each i = 1, . . . , m, γ

(i)
k = 0

means that the output at the current sampling time, z(i)k , arrives on time to be processed for the

estimation, while γ
(i)
k = 1 means that this output is either delayed or dropped out; and

• {ψ(i)
k }k≥2, i = 1, . . . , m, are sequences of Bernoulli random variables. For each i = 1, . . . , m,

ψ
(i)
k = 1 means that z(i)k−1 is processed at sampling time k (because it was one-step delayed) and

ψ
(i)
k = 0 means that z(i)k−1 is not processed at sampling time k (because it was either received at

time k− 1 or dropped out). Since γ
(i)
k−1 = 0 implies ψ

(i)
k = 0, it is clear that the value of ψ

(i)
k is

conditioned by that of γ
(i)
k−1.

For the previous sequences of Bernoulli variables, we assume the following hypothesis:

(H4)
{(

γ
(i)
k , ψ

(i)
k+1

)T
}

k≥1
, i = 1, . . . , m, are independent sequences of independent random vectors,

such that

• {γ(i)
k }k≥1, i = 1, . . . , m, are sequences of Bernoulli random variables with known

probabilities, P
(
γ
(i)
k = 1

)
= γ

(i)
k , k ≥ 1; and

• {ψ(i)
k }k≥2, i = 1, . . . , m, are sequences of Bernoulli random variables such that the

conditional probabilities (P
(
ψ
(i)
k = 1/γ

(i)
k−1 = 1

)
) are known. Thus,

ψ
(i)
k ≡ P

(
ψ
(i)
k = 1

)
= P

(
ψ
(i)
k = 1/γ

(i)
k−1 = 1

)
γ
(i)
k−1, k ≥ 2.

Moreover, the mutual independence hypothesis of the involved processes is also necessary:

(H5) For i = 1, . . . , m, the signal process {xk}k≥1, the random matrices {H(i)
k }k≥1, and the noises

{v(i)k }k≥1 and
{(

γ
(i)
k , ψ

(i)
k+1

)T
}

k≥1
are mutually independent.

Remark 1. From hypothesis (H4), for i, j = 1, . . . , m, the following correlations are clear:

E[γ(i)
k γ

(j)
k ] =

{
γ
(i)
k , i = j,

γ
(i)
k γ

(j)
k , i 6= j.

E[ψ(i)
k ψ

(j)
k ] =

{
ψ
(i)
k , i = j,

ψ
(i)
k ψ

(j)
s , i 6= j.

E[ψ(i)
k+1(1− γ

(j)
k )] =

{
0, i = j,
ψ
(i)
k+1(1− γ

(j)
k ), i 6= j.

(3)
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In order to write jointly the sensor measurements to be processed at each sampling time, we efined
the matrices Γk ≡ Diag

(
γ
(1)
k , . . . , γ

(m)
k
)
⊗ Inz . and Ψk ≡ Diag

(
ψ
(1)
k , . . . , ψ

(m)
k
)
⊗ Inz , k ≥ 1. From the

definition of variables γ
(i)
k , i = 1, . . . , m,, it is clear that the non-zero components of vector (Imnz − Γk)zk

are those of zk that arrive on time at the PC and, consequently, those processed at time k. The other
components of zk are delayed or lost, and as compensation, the corresponding components of the
predictor ẑk/k−1, specified in Γk ẑk/k−1, are processed. Similarly, the non-zero components of Ψkzk−1
are those of zk−1 that are affected by one-step delay, and consequently, they are also processed at time
k. Hence, the processed observations at each time are expressed by the following model:

yk =

(
(Imnz − Γk)zk + Γk ẑk/k−1

Ψkzk−1

)
, k ≥ 2; y1 =

(
(Imnz − Γ1)z1

0

)
, (4)

or equivalently,
yk = C0(Imnz − Γk)zk +C0Γk ẑk/k−1 +C1Ψkzk−1, k ≥ 2;
y1 = C0(Imnz − Γ1)z1,

(5)

where C0 = ( Imnz , 0mnz )
T and C1 = ( 0mnz , Imnz )

T .

Remark 2. For a better understanding of Model (4) for the measurements processed after the possible
transmission one-step delays and losses, a single sensor is considered in the following comments. On the
one hand, note that γk = 0 means that the output at the current sampling time (zk) arrives on time to be
processed. Then, if ψk = 1, the measurement processed at time k is yk =

(
zT

k zT
k−1

)T , while if ψk = 0,

then yk =
(

zT
k 0

)T . On the other hand, if γk = 1, the output zk is either delayed or dropped out,
and its predictor ẑk/k−1 is processed at time k. Then, if ψk = 1, the measurement processed at time k is
yk =

(
ẑT

k/k−1 zT
k−1

)T , while if ψk = 0, then yk =
(

ẑT
k/k−1 0

)T . Table 1 displays ten iterations of a
specific simulation of packet transmission.

From Table 1, it can be observed that z1, z3, z6, z7, and z9 arrive on time to be processed; z2, z4 and z8 are
one-step delayed; and z5 and z10 are lost. So, Model (4) describes possible one-step random transmission delays
and packet dropouts in networked systems, where one or two packets can be processed for the estimation. Finally,
note that the predictors ẑk/k−1, k = 2, 4, 5, 8, 10 are used to compensate for the measurements that do not arrive
on time.

Table 1. Measurements processed to update the estimators.

Time k 1 2 3 4 5 6 7 8 9 10

γk 0 1 0 1 1 0 0 1 0 1
ψk 0 1 0 1 0 0 0 1 0

yk

(
z1
0

) (
ẑ1/0

0

) (
z3
z2

) (
ẑ4/3

0

) (
ẑ5/4
z4

) (
z6
0

) (
z7
0

) (
ẑ8/7

0

) (
z9
z8

) (
ẑ10/9

0

)

The problem is then formulated as that of obtaining the LS linear estimator of the signal, xk based
on the observations {y1, . . . , yL} given in (5). Next, some statistical properties of the processes involved
in observation models (2) and (5), which are necessary to address the LS linear estimation problem,
are specified:

(P1) {Hk}k≥1 is a sequence of independent random matrices with known means: Hk ≡ E[Hk] =(
H(1)T

k , . . . , H(m)T
k

)T , k ≥ 1.
(P2) The sequence {vk}k≥1 is a zero-mean second-order process with E[vkvT

s ] = Rkδk,s,

where Rk =
(

R(ij)
k
)

i,j=1,...,m.
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(P3) The random matrices
{(

Γk, Ψk+1
)}

k≥1 are independent, and their means are given by

Γk ≡ E[Γk] = Diag
(
γ
(1)
k , . . . , γ

(m)
k
)
⊗ Inz , Ψk ≡ E[Ψk] = Diag

(
ψ
(1)
k , . . . , ψ

(m)
k
)
⊗ Inz .

(P4) The signal process, {xk}k≥1 and the processes {Hk}k≥1 {vk}k≥1 and
{(

Γk, Ψk+1
)}

k≥1 are
mutually independent.

(P5) {zk}k≥1 is a zero-mean process with covariance matrices Σz
k,s ≡ E[zkzT

s ], for s ≤ k which,
from (P4), are given by

Σz
k,s = E

[
Hk AkBT

s HT
s
]
+ Rkδk,s, s ≤ k,

with E[Hk AkBT
s HT

s ] = Hk AkBT
s HT

s , for s < k, and

E[Hk AkBT
k HT

k ] =
(

E[H(i)
k AkBT

k H(j)T
k ]

)
i,j=1,...,m

,

where the (p, q)-th entries of the matrices E[H(i)
k AkBT

k H(j)T
k ] are given by

(
E[H(i)

k AkBT
k H(j)T

k ]
)

pq
=

nx

∑
a=1

nx

∑
b=1

E[h(i)pa (k)h
(j)
qb
(k)]

(
AkBT

k

)
ab

, p, q = 1, . . . , nz.

Remark 3. By denoting γk =
(
γ
(1)
k , . . . , γ

(m)
k
)T⊗ 1nz and ψk =

(
ψ
(1)
k , . . . , ψ

(m)
k
)T ⊗ 1nz , it is clear that

K1−γ
k ≡ E

[
(1mnz − γk)(1mnz − γk)

T] and Kψ
k ≡ E

[
ψkψT

k
]

are known matrices whose entries are given in
(3). Now, by defining

ξk = C0 (Imnz − Γk) zk +C1Ψkzk−1, k ≥ 2; ξ1 = C0 (Imnz − Γ1) z1, (6)

and taking the Hadamard product properties into account, it is easy to check that the covariance matrices
(Σξ

k ≡ E
[
ξkξT

k
]
) are given by

Σξ
k = C0(K

1−γ
k ◦ Σz

k)C
T
0 +C1(K

ψ
k ◦ Σz

k−1)C
T
1

+C0(Imnz − Γk)Σz
k,k−1ΨkCT

1 +C1ΨkΣzT
k,k−1(Imnz − Γk)CT

0 , k ≥ 2;

Σξ
1 = C0(K

1−γ
1 ◦ Σ1

k)C
T
0 .

(7)

3. Centralized Fusion Estimators

This section is concerned with the problem of obtaining recursive algorithms for the LS linear
centralized fusion prediction, filtering, and fixed-point smoothing estimators. For this purpose,
we used an innovation approach. Also the estimation error covariance matrices, which are used to
measure the accuracy of the proposed estimators when the LS optimality criterion is used, were derived.

The centralized fusion structure for the considered networked systems with random uncertainties
in the measured outputs and transmission is illustrated in Figure 1.
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Sensor 1 

Transmission 
random delays and losses 

Signal 

Sensor 2 Sensor m .  .  . 

Processing center 

Random failures 

Filtering estimator 

Sensor gain degradation 
Missing measurements 
Multiplicative noises ... 

Figure 1. Centralized fusion filtering estimation with random uncertainties in measured outputs
and transmission.

3.1. Innovation Technique

As indicated above, our aim was to obtain the optimal LS linear estimators, x̂k/L, of the signal
xk based on the measurements {y1, . . . , yL}, given in (5), by recursive algorithms. Since the estimator
x̂k/L is the orthogonal projection of the signal xk onto the linear space spanned by the nonorthogonal
vectors {y1, . . . , yL}, we used an innovation approach in which the observation process {yk}k≥1 was
transformed into an equivalent one (innovation process) of orthogonal vectors {µk}k≥1; the equivalence
means that each set {µ1, . . . , µL} spans the same linear subspace as {y1, . . . , yL}.

The innovation at time k is defined as µk = yk − ŷk/k−1, where ŷ1/0 = E[y1] = 0 and, for k ≥ 2,
ŷk/k−1, the one-stage linear predictor of yk is the projection of yk onto the linear space generated by
{µ1, . . . , µk−1}. Due to the orthogonality property of the innovations and since the innovation process
is uniquely determined by the observations, by replacing the observation process by the innovation
one, the following general expression for the LS linear estimators of any vector wk based on the
observations {y1, . . . , yL} was obtained

ŵk/L =
L

∑
h=1

E
[
wkµT

h
](

E
[
µhµT

h
])−1

µh. (8)

This expression is derived from the uncorrelation property of the estimation error with all of the
innovations, which is guaranteed by the Orthogonal Projection Lemma (OPL). As shown by (8), the first
step to obtain the signal estimators is to find an explicit formula for the innovation or, equivalently,
for the one-stage linear predictor of the observation.

One-Stage Observation Predictor

To obtain ŷk/k−1, the projection of yk onto the linear space generated by {µ1, . . . , µk−1}, we used
(5) and we note that Ψk and Hk−1 are correlated with the innovation µk−1. So, to simplify the derivation
of ŷk/k−1, the observations (5) were rewritten as follows:

yk = C0 (Imnz− Γk) zk +C1Ψk Hk−1xk−1 +C0Γk ẑk/k−1 + Vk−1, k ≥ 2,
Vk = C1Ψk+1zk −C1Ψk+1Hkxk, k ≥ 1.

(9)
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Taking into account that Ψk+1 and Hk are independent of µh, for h ≤ k− 1, it is easy to see that
E
[
VkµT

h
]
= 0 for h ≤ k− 1. So, from the general expression (8), we obtained V̂k/k = VkΠ−1

k µk, k ≥ 1,
where Vk ≡ E

[
VkµT

k
]
= E

[
VkyT

k
]
. Hence, according to the projection theory, ŷk/k−1 satisfies

ŷk/k−1 = C0Hk x̂k/k−1 +C1Ψk Hk−1 x̂k−1/k−1 + Vk−1Π−1
k−1µk−1, k ≥ 2. (10)

This expression for the one-stage observation predictor along with (8) for the LS linear estimators
are the starting points to get the recursive prediction, filtering, and fixed-point smoothing algorithms.

3.2. Centralized Fusion Prediction, Filtering, and Smoothing Algorithms

The following theorem presents a recursive algorithm for the LS linear centralized fusion
prediction and filtering estimators x̂k/L, L ≤ k, of the signal xk based on the observations {y1, . . . , yL}
given in (5) or equivalently, in (9).

Theorem 1. Under hypotheses (H1)–(H5), the LS linear centralized predictors and filter x̂k/L, L ≤ k and the
corresponding error covariance matrices Σ̂k/L ≡ E[(xk − x̂k/L)(xk − x̂T

k/L)] are obtained by

x̂k/L = AkeL, Σ̂k/L = Ak (Bk − AkΣe
L)

T , L ≤ k, (11)

where the vectors eL and the matrices Σe
L ≡ E

[
eLeT

L
]

are recursively obtained from

eL = eL−1 + ELΠ−1
L µL, L ≥ 1; e0 = 0, (12)

Σe
L = Σe

L−1 + ELΠ−1
L E

T
L , L ≥ 1; Σe

0 = 0, (13)

and the matrices EL ≡ E
[
eLµT

L
]

satisfy

EL = HT
BL
− Σe

L−1H
T
AL
− EL−1Π−1

L−1V
T
L−1, L ≥ 2; E1 = HT

B1
, (14)

whereHDL , for D = A, B, is defined by

HDL = C0
(

Imnz − ΓL
)

HLDL +C1ΨL HL−1DL−1, L ≥ 2; HD1 = C0(Imnz − Γ1)H1D1. (15)

The innovations µL = yL − ŷL/L−1 are given by

µL = yL −
(
HAL +C0ΓL HL AL

)
eL−1 − VL−1Π−1

L−1µL−1, L ≥ 2; µ1 = y1, (16)

and the coefficients VL = E
[
VLµT

L
]
, are obtained by

VL = C1

(
Kψ(1−γ)

L+1,L ◦ (Σz
L − HL ALΣe

L−1 AT
L HT

L)

−ΨL+1HL AL
(

BL − ALΣe
L−1
)T HT

L(I − ΓL)
)
CT

0 , L ≥ 1,
(17)

where Kψ(1−γ)
L+1,L ≡ E

[
ψL+1(1mnz − γL)

T], whose entries are given in (3).

The innovation covariance matrices ΠL ≡ E
[
µLµT

L
]

satisfy

ΠL = Σξ
L −C0

[
Kγ

L ◦ (HL ALΣe
L−1 AT

L HT
L)
]
CT

0 +OL,L−1 AT
L HT

L ΓLCT
0

−HAL
OT

L,L−1 − VL−1Π−1
L−1YT

L,L−1, L ≥ 2; Π1 = Σξ
1,

(18)
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where the matrices Σξ
L are given in (7), Kγ

L ≡ E
[
γLγT

L
]
, whose entries are obtained by (3), and the matrices

OL,L−1 ≡ E[yLeT
L−1] and YL,L−1 ≡ E[yLµT

L−1] are given by

OL,L−1 =
(
HAL +C0ΓLHL AL

)
Σe

L−1 + VL−1Π−1
L−1ET

L−1, L ≥ 2.
YL,L−1 =

(
HAL +C0ΓL HL AL

)
EL−1 + VL−1, L ≥ 2.

(19)

Proof. See Appendix A.

Next, a recursive algorithm for the LS linear centralized fusion smoothers x̂k/k+h at the fixed point
k for any h ≥ 1 is established in the following theorem.

Theorem 2. Under hypotheses (H1)–(H5), the LS linear centralized fixed-point smoothers x̂k/k+h are
calculated by

x̂k/k+h = x̂k/k+h−1 +Xk,k+hΠ−1
k+hµk+h, k ≥ 1, h ≥ 1, (20)

whose initial condition is given by the centralized filter x̂k/k, and the matrices Xk,k+h = E
[
xkµT

k+h
]

are
obtained by

Xk,k+h =
(

Bk − Ek,k+h−1
)
HT

Ak+h
−Xk,k+h−1Π−1

k+h−1V
T
k+h−1, h ≥ 1;

Xk,k = AkEk.
(21)

The matrices Ek,k+h = E[xkeT
k+h] satisfy the following recursive formula:

Ek,k+h = Ek,k+h−1 +Xk,k+hΠ−1
k+hET

k+h, h ≥ 1; Ek,k = AkΣe
k. (22)

The fixed-point smoothing error covariance matrices, Σ̂k/k+h ≡ E
[
(xk − x̂k/k+h)(xk − x̂k/k+h)

T],
are calculated by

Σ̂k/k+h = Σ̂k/k+h−1 −Xk,k+hΠ−1
k+hX

T
k,k+h, k ≥ 1, h ≥ 1,

with the initial condition given by the filtering error covariance matrix Σ̂k/k.
The filter x̂k/k, the innovations µk+h, their covariance matrices Σ̂k/k and Πk+h, and the matrices Ek+h and

Σe
k were obtained from Theorem 1.

Proof. See Appendix B.

4. Numerical Simulation Example

The performance of the proposed centralized filtering and fixed-point smoothing algorithms was
analyzed in a numerical simulation example which also shows how some of the sensor uncertainties
covered by the current measurement model (1) with random parameter matrices influence the accuracy
of the estimators. Also, the effect of the random transmission delays and packet losses on the
performance of the estimators was analyzed.

4.1. Signal Process

Consider a discrete-time scalar signal process generated by the following model with the
state-dependent multiplicative noise

xk+1 =
(
0.9 + 0.01εk

)
xk + wk, k ≥ 0,

where x0 is a standard Gaussian variable, and {wk}k≥0, {εk}k≥0 are zero-mean Gaussian white
processes with unit variance. Assuming that x0, {wk}k≥0 and {εk}k≥0 are mutually independent,
the signal covariance is given by E[xkxs] = 0.9k−sDs, s ≤ k, where Ds = E[x2

s ] is obtained by

Ds = (0.92 + 0.012)Ds−1 + 1, s ≥ 1; D0 = 1.
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Hence, the hypothesis (H1) is satisfied with, for example, Ak = 0.9k y Bs = 0.9−s Ds.
This signal process has been considered in the current authors’ previous papers and shows that

hypothesis (H1) regarding the signal autocovariance function is satisfied for uncertain systems with
state-dependent multiplicative noise. Also, situations where the system matrix in the state-space model
is singular are covered by hypothesis (H1) (see, e.g., ref. [9]). Hence, this hypothesis provides a unified
general context to deal with different situations, thus avoiding the derivation of specific algorithms for
each of them.

4.2. Sensor Measured Outputs

As in ref. [20], let us consider four sensors that provide scalar measurements with different
random failures, which are described using random parameters according to the theoretical model (1).
Namely, sensor 1 has continuous gain degradation, sensor 2 has discrete gain degradation, sensor 3
has missing measurements and sensor 4 has both missing measurements and multiplicative noise.
Specifically, the scalar measured outputs are described according to the model

z(i)k = H(i)
k xk + v(i)k , k ≥ 1, i = 1, 2, 3, 4,

where the additive noises are defined as v(i)k = ciηk, with c1 = 1, c2 = 0.5, c3 = c4 = 0.75,
and {ηk}k≥1 is a Gaussian white sequence with a mean of 0 and variance of 0.5. The additive

noises are correlated with R(ij)
k = 0.5cicj, k ≥ 1; i, j = 1, 2, 3, 4. The random measurement matrices

are defined by H(i)
k = θ

(i)
k C(i)

k , for i = 1, 2, 3, where C(1)
k = 0.82, C(2)

k = 0.75, C(3)
k = 0.74,

and H(4)
k = θ

(4)
k
(
0.75 + 0.95ϕk

)
, where the sequence {ϕk}k≥1 is a standard Gaussian white process,

and {θ(i)k }k≥1, i = 1, 2, 3, 4, are also white processes with time-invariant probability distributions that
are given as follows:

• {θ(1)k }k≥1 are uniformly distributed over [0.2, 0.7].

• P
(
θ
(2)
k = 0

)
= 0.3, P

(
θ
(2)
k = 0.5

)
= 0.3, P

(
θ
(2)
k = 1

)
= 0.4, k ≥ 1.

• For i = 3, 4, {θ(i)k }k≥1 are Bernoulli random variables with P
(
θ
(i)
k = 1

)
= θ

(i)
, k ≥ 1.

4.3. Model for the Measurements Processed

Now, according to the theoretical study, we assume that the sensor measurements, yk, that are
processed to update the estimators are modeled by

yk =

(
(I4 − Γk)zk + Γk ẑk/k−1

Ψkzk−1

)
, k ≥ 2; y1 =

(
(I4 − Γ1)z1

0

)
,

where Γk = Diag
(
γ
(1)
k , γ

(2)
k , γ

(3)
k , γ

(4)
k
)

and Ψk = Diag
(
ψ
(1)
k , ψ

(2)
k , ψ

(3)
k , ψ

(4)
k
)
, and for i = 1, 2, 3, 4,

{γ(i)
k }k≥1 and {ψ(i)

k }k≥2 are sequences of independent Bernoulli random variables whose distributions
are determined by the following probabilities:

• γ(i) ≡ P
(
γ
(i)
k = 1

)
, k ≥ 1: probability that the measurement z(i)k is not received at time k because

it is delayed or lost.

• ψ
(i)
γ ≡ P

(
ψ
(i)
k = 1/γ

(i)
k−1 = 1

)
, k ≥ 1: probability that the measurement z(i)k−1 is received at the

current time (k), conditioned to the fact that it is not received on time.

• ψ
(i) ≡ P

(
ψ
(i)
k = 1

)
= ψ

(i)
γ γ(i), k ≥ 1: probability that the measurement z(i)k−1 is received and

processed at the current time k.

Finally, in order to apply the proposed algorithms, it was assumed that all the processes involved
in the observation equations satisfy the independence hypotheses imposed on the theoretical model.
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To illustrate the feasibility and effectiveness of the proposed algorithms, they were implemented
in MATLAB, and fifty iterations of the filtering and fixed-point smoothing algorithms were performed.
The estimation accuracy was examined by analyzing the error variances for different probabilities

of the Bernoulli variables modeling the random failures in sensors 3 and 4 (θ
(i)

, i = 3, 4). Also,
different values of the probabilities γ(i), corresponding to the transmission uncertainties, and different
conditional probabilities ψ

(i)
γ , i = 1, 2, 3, 4, were considered in order to analyze the effect of these

failures on the estimation accuracy.
In the study of the performance of the centralized estimators, they were compared with local ones,

which were computed using only the measurements received from each single sensor. In that case,
the measurements processed at each local processor can be described by

y(i)k =

(
(1− γ

(i)
k )zk + γ

(i)
k ẑ(i)k/k−1

ψ
(i)
k zk−1

)
, k ≥ 2; y(i)1 =

(
(1− γ

(i)
1 )z(i)1
0

)
, i = 1, 2, 3, 4,

where ẑ(i)k/k−1 is the one-stage predictor of z(i)k based on y(i)1 , . . . , y(i)k−1, and the corresponding local
estimators are obtained via recursive algorithms similar to those in Theorems 1 and 2.

4.4. Performance of the Centralized Fusion Filtering and Smoothing Estimators

For i = 1, 2, 3, 4, we assumed that γ(i) = ψ
(i)
γ = 0.1i, and that the missing probabilities 1− θ

(i)

had the same value in sensors i = 3, 4, namely, θ
(i)

= 0.5, i = 3, 4. The error variances of the local
filtering estimators and both the centralized filtering and smoothing error variances are displayed in
Figure 2. This figure shows, on the one hand, that the error variances of the centralized fusion filtering
estimators are significantly smaller than those of every local estimator. Consequently, agreeing with
what is theoretically expected, the centralized fusion filter has better accuracy than the local ones, as
it is the optimal one based on the information from all the contributing sensors. On the other hand,
Figure 2 also shows that as more observations are considered in the estimation, the error variances are
lower and consequently, the performance of the centralized estimators becomes better. In other words,
the smoothing estimators are more accuracy than the filtering ones, and the accuracy of the smoothers
at each fixed-point k is better as the number of available observations k + h increases, although this
improvement is practically imperceptible for h > 3. Similar results were obtained for other values of

the probabilities θ
(i)

, γ(i) and ψ
(i)
γ .
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Figure 2. Error variance comparison of the local filters and centralized fusion filter and smoothers.

4.5. Influence of the Missing Measurement Phenomenon in Sensors 3 and 4

Considering γ(i) = ψ
(i)
γ = 0.1i, i = 1, 2, 3, 4, again, in order to show the effect of the missing

probabilities in sensors i = 3, 4, the centralized filtering error variances are displayed in Figure 3 for

different values of these probabilities 1− θ
(i)

. Specifically, in Figure 3a, it is assumed that θ
(3)

= θ
(4)

with a range of values from 0.5 to 0.9, and in Figure 3b, θ
(3)

= 0.5 and θ
(4)

varies from 0.6 to 0.9.
From these figures, it is clear that the performance of the centralized fusion filter is indeed influenced

by the probabilities θ
(i)

, i = 3, 4. Specifically, the performance of the centralized filter is poorer as

θ
(i)

decreases, which means that, as expected, the lower the probability of missing measurements is,
the better performance the filter has. Analogous results were obtained for the centralized smoothers
and for other values of the probabilities.

Considering that the behavior of the error variances was analogous in all of the iterations, only
the results at a specific iteration (k = 50) are displayed in the following figures.

4.6. Influence of the Probabilities γ(i) and ψ
(i)
γ

Considering θ
(i)

= 0.5, i = 3, 4, as in Figure 2, we analyze the influences of the random delays
and packet dropouts on the performance of the centralized filtering estimators. We assume that the
four sensors have the same probability of measurements not arriving on time (γ(i) = γ, i = 1, 2, 3, 4)
and also the same conditional probability (ψ(i)

γ = ψγ, i = 1, 2, 3, 4). Figure 4 displays the centralized
filtering error variances at k = 50 versus ψγ for γ varying from 0.1 to 0.9. This figure shows that for
each value of γ, the error variances decrease when the conditional probability increases. This result
was expected since, for a fixed arbitrary value of γ, the increase in ψγ entails that of ψ, which is the
probability of processing the delayed measurement at the previous time at the current time. Also,
we observed that a decrease in the error variances was more evident for higher values of γ, which was
also expected since ψ = ψγγ and hence, γ specifies the increasing rate of ψ with respect to ψγ.

Similar results to the previous ones and consequently, analogous conclusions, were deduced
for the smoothing estimators and for different values of the probabilities γ(i) and ψ

(i)
γ at each sensor.
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By way of example, the smoothing error variances Σ̂50/51 are displayed in Figure 5 for some of the
situations considered above.

5 10 15 20 25 30 35 40 45 50

0.7

0.8

0.9

1

1.1

1.2

1.3

5 10 15 20 25 30 35 40 45 50

1

1.1

1.2

1.3 (b)(a)
Figure 3. Centralized fusion filtering error variances for different values of θ

(3) and θ
(4): (a) θ

(3)
= θ

(4)

from 0.5 to 0.9; (b) θ
(3)

= 0.5 and θ
(4) from 0.6 to 0.9.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Figure 4. Centralized filtering error variances at k = 50 versus ψγ, for γ, varying from 0.1 to 0.9

when θ
(i)

= 0.5, i = 3, 4.
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Figure 5. Centralized smoothing error variances (Σ̂50/51) when θ
(i)

= 0.5 i = 3, 4, for different values

of the probabilities γ(i) and ψ
(i)
γ , i = 1, 2, 3, 4: (a) versus ψγ, for γ(i) = 0.1i, 0.15i, 0.2i; (b) versus γ,

for ψ
(i)
γ = 0.1i, 0.15i, 0.2i; (c) versus γ(1) = γ(2) for ψ

(i)
γ = 0.1i and different values of γ(3) and γ(4);

and (d) versus ψ
(3)
γ = ψ

(4)
γ , for γ(i) = 0.1i and different values of ψ

(1)
γ and ψ

(2)
γ .

5. Concluding Remarks

In this paper, recursive algorithms were designed for the LS linear centralized fusion prediction,
filtering, and smoothing problems in networked systems with random parameter matrices in the
measured outputs. At each sampling time, every sensor sends its measured output to the fusion centre
where the data packets coming from all the sensors are gathered. Every data packet is assumed to be
transmitted just once, but random delays and packet dropouts can occur during this transmission, so
the estimator may receive either one packet, two packets, or nothing. When the current measurement
of a sensor does not arrive punctually, the corresponding component of the stacked measured output
predictor is used as the compensator in the design of the estimators.

Some of the main advantages of the current approach are the following ones:

• The consideration of random measurement matrices provides a general framework to address
different uncertainties, such as missing measurements, multiplicative noise, or sensor gain
degradation, as has been illustrated by a simulation example.

• The covariance-based approach used to design the estimation algorithms does not require the
knowledge of the state-space model, even though it is also applicable to the classical formulation
using this model.

• In contrast to most estimation algorithms dealing with random delays and packet dropouts in the
literature, the proposed ones do not require any state vector augmentation technique, and thus are
computationally more simple.

• The current estimation algorithms were designed using the LS optimality criterion by a innovation
approach and no particular structure of the estimators is required.
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Appendix A

Proof of Theorem 1. Based on the general expression (8), to obtain the LS linear estimators x̂k/L, L ≤ k,
it is necessary to calculate the coefficients

Xk,h ≡ E
[
xkµT

h
]
= E

[
xkyT

h
]
− E

[
xk ŷT

h/h−1
]
, h ≤ k.

Using (5) for yh, the independence hypotheses and the factorization of the signal covariance (H1)
lead to E[xkyT

h ] = AkH
T
Bh

+ E[xk x̂T
h/h−1]H

T
h ΓhCT

0 , 2 ≤ h ≤ k, and E[xkyT
1 ] = AkH

T
B1

, with HBh given
in (15). Now, using expression (10) for ŷh/h−1, together with (8) for x̂h/h−1 and x̂h−1/h−1, the coefficients
Xk,h, 1 ≤ h ≤ k, are expressed as follows:

Xk,h = AkH
T
Bh
−

h−1

∑
j=1
Xk,jΠ

−1
j
(
X T

h,j H
T
h (Imnz − Γh)CT

0 +X T
h−1,jH

T
h−1ΨhCT

1
)
−Xk,h−1Π−1

h−1V
T
h−1, 2 ≤ h ≤ k;

Xk,1 = AkH
T
B1

,

which guarantees that Xk,h = AkEh, 1 ≤ h ≤ k, with Eh given by

Eh = HT
Bh
−

h−1

∑
j=1
EjΠ−1

j EjHT
Ah
− Eh−1Π−1

h−1V
T
h−1, h ≥ 2; E1 = HT

B1
.

Then, by defining eL ≡
L

∑
h=1
EhΠ−1

h µh and Σe
L ≡ E

[
eLeT

L
]
=

L

∑
h=1
EhΠ−1

h Eh, for L ≥ 1, and taking into

account that E[eLµT
h ] = Eh, for h ≤ L, it is easy to obtain expressions (11)–(16).

Next, the expression (17) for VL = E
[
VLµT

L
]
= E

[
VLyT

L
]

is derived. Using (9) for VL, we write
VL = C1

(
E[ΨL+1zLyT

L ]−ΨL+1HLE[xLyT
L ]
)
, and we calculate each of these expectations:

• From (5), we write yL = C0 (Imnz − ΓL) (zL − ẑL/L−1) + C1ΨLzL−1 + C0ẑL/L−1, and from the
independence properties, it is clear that

E[ΨL+1zLyT
L ] = E[Ψk+1zL(zL − ẑL/L−1)

T(Imnz − ΓL)]CT
0

+ ΨL+1E[zLzT
L−1]ΨLCT

1 + ΨL+1E[zL ẑT
L/L−1]C

T
0 .

Now, from the Hadamard product properties, we obtain E[ΨL+1zL(zL − ẑL/L−1)
T(Imnz − ΓL)] =

(Kψ(1−γ)
L+1,L ◦ (Σz

L − E[zL ẑL/L−1]
T); from property (P5), E[zLzT

L−1] = HL ALBT
L−1HT

L−1, and using the

OPL and (2), E[zL ẑT
L/L−1] = E[ẑL/L−1ẑT

L/L−1] = HLE[x̂L/L−1 x̂T
L/L−1]H

T
L . Then, using (11) and the

definition of Σe
L, the following expression is obtained:

E[ΨL+1zLyT
L ] = (Kψ(1−γ)

L+1,L ◦ (Σz
L − HL ALΣe

L−1 AT
L HT

L))CT
0

+ ΨL+1HL AL

(
BT

L−1HT
L−1ΨLCT

1 + Σe
L−1 AT

L HT
LCT

0

)
.
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• Using (2), (5) again and the OPL, together with Hypothesis (H1) and (15) forHBL , we have

ΨL+1HLE[xLyT
L ] = ΨL+1HL AL

(
HT

BL
+ Σe

L−1 AT
L HT

L ΓLCT
0

)
.

From the above items and using (15), BT
L−1HT

L−1ΨLCT
1 −H

T
BL

= −BT
L HT

L(Imnz − ΓL)CT
0 , expression

(17) is deduced with no difficulty.
To obtain expression (18) for ΠL = E[µLµT

L ], we apply the OPL to write ΠL = E
[
yLyT

L
]
−

E
[
ŷL/L−1ŷT

L/L−1
]
.

On the one hand, using the OPL again, we express E
[
ŷL/L−1ŷT

L/L−1
]
= E

[
ŷL/L−1yT

L
]

which,
takes (16) into account for ŷL/L−1, and the definitions of OL,L−1 and YL,L−1, clearly satisfy

E
[
ŷL/L−1yT

L
]
=
(
HAL +C0ΓL HL AL

)
OT

L,L−1 + VL−1Π−1
L−1Y

T
L,L−1, L ≥ 2.

On the other hand, to obtain E
[
yLyT

L
]
, we use (9) and (6) to write yL = ξL + C0ΓL ẑL/L−1,

and since ẑL/L−1 = HL ALeL−1, the following expression is obtained from the definition of Σe
L

after some manipulations:

E
[
yLyT

L
]
= Σξ

L −C0
[
Kγ

L ◦ (HL ALΣe
L−1 AT

L HT
L)
]
CT

0 +C0ΓLHL ALOT
L,L−1 +OL,L−1 AT

L HT
L ΓLCT

0 , L ≥ 2.

From the above expectations, again, after some manipulations, expression (18) for ΠL is obtained.

To complete the proof, expression (19) forOL,L−1 = E[yLeT
L−1] and YL,L−1 = E[yLµT

L−1] is derived.
Using the OPL, we have E[yLeT

L−1] = E[ŷL/L−1eT
L−1] and E[yLµT

L−1] = E[ŷL/L−1µT
L−1], and from (16)

for ŷL/L−1, expression (19) is straightforward. Then, the proof of Theorem 1 is complete.

Appendix B

Proof of Theorem 2. Using (8), the signal estimators are written as x̂k/k+h =
k+h

∑
l=1
Xk,lΠ

−1
l µl , h ≥ 1,

from which it is immediately deduced that the smoothers are recursively obtained by (20) from the
filter x̂k/k.

Taking into account that Xk,k+h = E
[
xkyT

k+h
]
− E

[
xk ŷT

k+h/k+h−1
]
, h ≥ 1, the recursive relation (21)

is derived by just calculating each of these expectations as follows:

• Hypothesis (H1) together with (15), leads to

E
[
xkyT

k+h
]
= BkH

T
Ak+h

+ E
[
xkeT

k+h−1
]
AT

k+h HT
k+hΓk+hCT

0 , h ≥ 1.

• From (16) for ŷk+h/k+h−1, it is clear that

E
[
xk ŷT

k+h/k+h−1
]
= E

[
xkeT

k+h−1
](
HAk+h +C0Γk+h Hk+h Ak+h

)T
+Xk,k+h−1Π−1

k+h−1V
T
k+h−1, h ≥ 1.

From the above items, (21) is proven simply by denoting Ek,k+h = E
[
xkeT

k+h
]
, whose recursive

expression (22) is also obvious by using (12) for ek+h.
Finally, using (20) for the smoothers x̂k/k+h, the recursive formula for the fixed-point smoothing

error covariance matrices Σ̂k/k+h is immediately deduced.
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