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Abstract: Personalized emotion recognition provides an individual training model for each target
user in order to mitigate the accuracy problem when using general training models collected from
multiple users. Existing personalized speech emotion recognition research has a cold-start problem
that requires a large amount of emotionally-balanced data samples from the target user when creating
the personalized training model. Such research is difficult to apply in real environments due to the
difficulty of collecting numerous target user speech data with emotionally-balanced label samples.
Therefore, we propose the Robust Personalized Emotion Recognition Framework with the Adaptive
Data Boosting Algorithm to solve the cold-start problem. The proposed framework incrementally
provides a customized training model for the target user by reinforcing the dataset by combining the
acquired target user speech with speech from other users, followed by applying SMOTE (Synthetic
Minority Over-sampling Technique)-based data augmentation. The proposed method proved
to be adaptive across a small number of target user datasets and emotionally-imbalanced data
environments through iterative experiments using the IEMOCAP (Interactive Emotional Dyadic
Motion Capture) database.

Keywords: speech emotion recognition; personalization; machine learning; data selection;
data augmentation

1. Introduction

Recently, various machine learning techniques, such as representation, translation, alignment,
fusion, and co-learning, have been researched for multimodal user interfaces, analyzing various sensor
information, such as text, image, video, and sound [1]. The multimodal user interface research has
been progressed to recognize emotion from video information that includes audio images using the
latest deep learning technology, the convolutional neural network [2]. In particular, speech information
is an important information that naturally recognizes emotions, and emotion recognition techniques
using various machine learning strategies and algorithms are under study.
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Various technologies, such as audio preprocessing, feature extraction, model creation,
feature/decision level fusion, and adaptation, have been researched in speech emotion recognition
recently [3]. Traditional speech emotion recognition studies aim at improving the feature extraction and
classification methodologies to improve the accuracy of various amounts of recorded emotional speech
from multiple users. Such feature extraction studies consist of filter-bank algorithm improvements and
statistical feature discoveries [4,5]. On the other hand, the classification studies include a hierarchical
classification methodology [6], a mixture of two classifiers [7], and the creation of training models of
males and females [8]. These previous studies achieved high accuracy based on speaker-dependent
(SD) model experiments, where the users participated in the training process. However, the accuracy
is significantly lowered when the target user’s speech does not participate in the training [9].

Therefore, the speech emotion recognition studies have been conducted to create a training model
that achieves high accuracy in speaker independent (SI) experiments. SI model studies also have
been researched to create a highly accurate predictive model for every user. The accuracy of an SI
model was lower than that of existing SD models given the same amount of training data. Nowadays,
the gap of accuracy difference has been reduced with the SD model by introducing many machine
learning techniques and strategies, such as deep learning [10,11], extreme learning machines [12,13],
classification fusions [14], and Adaboost MH (Multi-class Hamming trees) [15]. These methods have
the advantage of providing a recognition service to users with reasonable models immediately in the
initial stage. However, these methods still do not guarantee the recognition of emotions with high
accuracy levels for every user. Additionally, the SI model also requires a sufficient training dataset in
training phases to achieve reasonable accuracy. Furthermore, it is difficult to improve the accuracy
level due to using a static training model.

Recently, speech emotion recognition research has focused on creating a personalized model that
can provide a high accuracy level to every user by providing customized dynamic models to each
user. The important thing of creating a personalized model is how to provide recognition services to
the target user with a reasonable accuracy. In personalized emotion recognition, the target user’s real
speech data is required. The personalized model is most affected by target user speech data. In the
field of speech based emotion recognition, the collected data is the most influential, and the training
model should be modified to the maximum extent as possible.

In the personalized emotion recognition process, the initial model should also be generated in
a limited dataset environment, where there are small samples of the target user’s dataset. On the
other hand, it is very important to establish an efficient machine learning strategy to create an accurate
personalized model in the whole life cycle of the recognition process.

There are three typical machine learning strategies, convolutional learning, self-learning, and
adaptive learning. The convolutional learning strategy is to improve the accuracy level by extracting a
various and sophisticated feature set from the obtained large scale data set [16]. This strategy requires
a lot of reference datasets in the feature vector extraction process to build an accurate training model
in various feature schemes. Therefore, it is difficult to find the combination of feature vectors suitable
in an environment where there is not much target user data [17].

The self-learning strategy is a system in which the system automatically changes the existing
general model by continually adding user data [18,19]. Even in this strategy, when the target user’s
speech data has a small number, the influence of the existing training model is much larger than
personal data. Therefore, too much target user speech is required to change the personalized model
from the existing model.

The adaptive learning strategy method involves some intervention by the user and guarantees a
high degree of accuracy through direct modification of the training model. This strategy is performed
with high accuracy when acquiring a large scale target user dataset as time goes on [20]. Additionally,
this strategy can improve the accuracy in the initial stage by changing the model directly.

The convolutional and self-learning strategies are optimized in a large dataset environment to
achieve high accuracy. However, the personalized system cannot acquire the large scale of target user’s



Sensors 2018, 18, 3744 3 of 21

data samples in the initial stage. Therefore, these two strategies face underfitting problems exploiting
the small target user’s data set. In other words, these strategies cannot modify the training model
rapidly due to the method of adding new data to the existing training model.

However, the adaptive learning strategy can avoid the underfitting problem through training
data augmentation or combining the existing dataset with the target user’s dataset from feedback.
In other words, this strategy can modify the training model directly to solve the bias problem in small
datasets, such as modifying the boundary of the model. Therefore, it is an effective method in the field
of personalized emotion recognition, if the user’s intervention is minimized and the personalization
factor can be accurately considered [21]. Thus, most of the personalized emotion recognition has
researched the speaker adaptation (SA) model using adaptive learning strategies when considering
the amount of limited data and the duration of the training process.

SA models are dynamic training models for target users created by combining the target user
speech with user speech from multiple users. SA model research consists of feature normalization,
supervised adaptation, and unsupervised adaptation. Feature normalization studies [22,23] have
created personalized models through iterative feature value normalization processes. In particular,
these models can create individual models for target users by controlling the overall ranges of
the feature values of the training dataset. However, in small-sample environments, these studies
have not achieved high accuracy, as it is difficult to estimate target user speech characteristics.
Supervised adaptation studies [24,25] consist of individual model creation utilizing only the target
user speech and incremental learning [26,27], which adds target user speech to existing multiple-user
training models. However, these methods require large amounts of data to create personalized models
that are dependent on the target user speech. Unsupervised adaptation [28] has an advantage in easily
constructing SA models via cluster models of the target user speech without any emotional speech
annotation processes. However, this leads to lower accuracy when using small amounts of samples,
making it difficult to predict the probability distribution of clustering.

In other words, the experimental results of existing SA studies have considered numerous target
user samples and balanced data for each emotion. In real environments, the acquired target user
speech in the initial stage cannot guarantee a large number of samples with balanced emotion due
to imbalanced emotion expression as seen in daily life. Regarding the small amount of imbalanced
data at the initial stage, the experimental results indicate that no reinforcement methods have been
conducted due to the lack of emotional speech cases. This is known as a cold-start problem, which
can be overcome by constructing personalized training datasets using real data selection and virtual
data augmentation.

Therefore, we propose the adaptive data boosting (ADB) method to deal with the cold-start
problem in small and imbalanced datasets during the initial stage and implement the robust
personalized speech emotion recognition framework. The proposed ADB reinforces the training
dataset with a similar real training data when there is an insufficient amount or absence of emotion
data. This process is conducted by constructing a similarity of speech feature vector by comparing the
acquired target user speech with the initial multiple-user database. Further, we also augment virtual
data using the SMOTE (synthetic minority over-sampling technique) algorithm to create a robust
model considering the new data. The proposed personalized speech emotion recognition framework
incrementally provides personalized models for target users through a retraining process via a machine
learning algorithm based on the boosted personalized data from ADB.

2. Robust Personalized Emotion Recognition Framework

The framework introduced in this section incrementally creates an acceptable training model
using a minimal number of target user samples via the proposed adaptive data boosting methods.
This framework is an innovative system that can resolve the cold-start problem present in small and
emotionally-imbalanced data environments. The proposed ADB, which is the core methodology of this
framework, consists of data reinforcement and data augmentation. The data reinforcement method
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selects real data by determining the similarity of speech datasets between the acquired target speech
and the initial multiple-user training model. The data augmentation method generates virtual data to
create more scenarios by utilizing SMOTE. The boosted data extracted via the ADB process constructs
the personalized training model using a machine learning algorithm.

This framework can create and update a personalized model incrementally for a target user by
implementing a re-training process with only a single target user input. Figure 1 shows the system
architecture of the proposed method.
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1© Preprocessing

This module performs normalization and the silence removal process. We employed the peak
normalization implemented by jAudio [29], which is the default approach to adjusting the data value
based on the highest signal level present in the audio. Additionally, we also employed the existing
silent removal approach based on the zero crossing rate (ZCR) for speaker identification [30] to
discard the blank area in the speech. This approach divides audio into frames, where each duration
is segmented in 15 ms by a hamming window. Then, speech boundaries are estimated based on the
short time energy (STE) algorithm. After that, silence areas are removed by the zero crossing rate
value. This method can extract user’s speech in consideration of the noise level. Figure 2 presents the
examples of waves of before and after applying the silent remover.
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2© Feature Extraction

This module extracts the feature vector from the speech. We employed popular features, two
spectral features (MFCC: Mel frequency cepstral coefficient, LPC: Linear predictive coding) and two
prosodic features (pitch, energy), in existing methods of the speech emotion recognition area [31,32].
The reasons for selecting these features are shown in Table 1.
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The process of this module is as follows. At first, speech data is split to 16 ms and then the
filter-bank values are extracted, including 13 MFCC, 10 LPC, energy, and pitch in each frame. Then, it
calculates the statistical feature vector, which includes the mean, standard deviation, maximum, and
minimum. Finally, we use a total of 100 features in the recognition process. Table 1 shows the feature
vector scheme description.

Table 1. Feature vector scheme description.

Categories Statistical
Values

Number of
Features (100) Description

13 MFCC

- Mean
- StdDev
- Min
- Max

52 (13 × 4)

MFCC is a coefficient, which represents audio, based on the
perception of human auditory systems. MFCC has a simple
calculation, anti-noise, good ability of distinction, and many other
advantages. It is a commonly used feature of speech [33].

10 LPC 40 (10 × 4)

LPC is a tool used mostly in audio signal processing and speech
processing for representing the spectral envelope of a digital
signal of speech in a compressed form, using the information of a
linear predictive model. It is one of the most powerful speech
analysis techniques, and one of the most useful methods for
encoding [34].

Pitch 4
Pitch and energy are two of the most important features for
determining emotion in speech. Individual’s emotional state is
strongly related to pitch and energy while pitch and energy of a
speech signal expressing happiness or anger is, usually, higher
than those associated with sadness [32].Energy 4

3© Insufficient Data Reinforcement

This module reinforces the insufficient target emotional samples from an initial constructed
multiple user speech dataset when the acquired target user speech samples in a particular emotional
label is not enough to train. Regarding reinforcement of the target user training dataset from other users,
the overall labeled dataset in a multiple user speech dataset is transformed into an unlabeled statement.
Then, we measure the distance from the extracted feature vectors through module 1 and 2 from not
only labeled target user speeches, but also unlabeled multiple user speeches. The distance between the
unlabeled speech data and the mean value of the acquired target user speech is calculated to measure
the similarity. Then, the training dataset is reinforced with the speech that has the most similarities.

4© Absent Emotion Data Reinforcement

This module replaces the dataset of empty target emotional samples through similar user
emotional speeches from another user speech dataset when some particular emotional label samples
were never acquired from the target user. Regarding the similar user emotional speech selection from
other users, the distance is measured on each emotional category between the target user and other
user through data distribution factors, such as the median, variance, skewness, and kurtosis, for the
target user as well as every user in the initial constructed multiple user dataset. Then, the most similar
emotion data among the other users is copied to the empty target user emotional label dataset based
on the distance from the distribution factors.

5© Heuristic-based Data Selection

This module selects real cases for the training dataset based on the proper heuristic methods of
steps 3 and 4. We designed a heuristic rule considering two kinds of scenarios, which are an insufficient
and absent emotion data environment as well as the emotionally-imbalanced samples.

6© SMOTE-based Data Augmentation

This module builds the final dataset by reinforcing the virtual dataset using the SMOTE algorithm,
based on the selected dataset in step 5.



Sensors 2018, 18, 3744 6 of 21

7© Model Creation and Classification

This module creates a training model based on the boosted dataset from step 6 and then classifies
emotions from a new speech input from the target user.

3. Proposed Adaptive Data Boosting Methodologies

To provide a personalized model for the target user, it is important to collect a varied amount of
target user speech in a balanced manner. However, the target user’s speech may not exist when using
the recognition process for the first time, and it is impossible to collect emotion data if the user does not
appropriately express themselves during the data collection period. In this initial stage, it is difficult to
create a personalized model with high accuracy since there is no speech dataset that includes various
cases, thus making it impossible to predict the data distribution of the target user. In order to create a
highly personalized training model, it is necessary to reinforce and augment various speech data.

Using the SMOTE algorithm [35] is an efficient way to reinforce and augment different speech
cases. SMOTE is a well-known over-sampling technique that can resolve the imbalanced data problem
where a particular class is biased. The SMOTE method reduces the gap in the number of samples
compared to the majority and minority classes by augmenting the samples of the minority class.
However, the main limitation of this method is the cold-start problem, in which there is no accurate
data generated when the initial input data are limited numbers. The reason is that SMOTE generates
the random data in the nearest boundary of acquired data [36]. In small amounts of data, the boundary
area is narrowed. Therefore, it can fall into the overfitting problem and show low accuracy with
the new input data. To solve this problem, it is important to acquire enough initial samples before
oversampling. Therefore, we propose an ADB method to acquire an initial dataset through data
reinforcement and data augmentation to create a personalized model with high accuracy with a
minimal number of samples.

ADB reinforces and augments real and virtual data to provide a customized model for target users.
ADB consists of insufficient data reinforcement, absent emotion data, heuristic-based data selection,
and SMOTE-based virtual data augmentation. The descriptions of the detailed methodologies are
given in the following sections.

3.1. Insufficient Data Reinforcement

The target user speech data is not always acquired in a sufficient amount to create the personalized
emotion recognition model. Especially, the target user emotional samples are collected in limited
numbers in the initial stage of personalized emotional speech acquisition. If the personalized model is
trained in prime numbers of the target user emotional speech, we cannot achieve a high performance
on new input data due to the lack of real case data. The proposed method can overcome the insufficient
data problems by adding the similar emotional speech of other users to the training dataset of the
personalized model.

This section introduces the proposed technique to reinforce insufficient emotional speech of the
target users. To increase the amount of insufficient target user emotional speech, the dataset is selected
based on the similarity between the target user speech and the multiple-user speech. Figure 3 shows
the process of insufficient data reinforcement.
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For the similarity calculation between the target user speech and the multiple-user speech,
preprocessing and a feature extraction process are performed first, as mentioned in steps 1 and 2
of Section 2. Then, the target user dataset is separated into different emotion classes and the mean
value of each feature is obtained for each emotion. The distance between the speech relative to the
initial multiple-user speech database is calculated and the target user mean values are obtained.
Among this process, the labeled data in the initial multiple-user speech database are transformed into
unlabeled data. This means that the label information is ignored in the multiple-user speech database.
The reason for using an unlabeled transformation is that emotional expressions are different for each
user. For example, if the target user’s anger speech pattern is similar to the happiness pattern from the
multiple-user speech database, the system classifies the target user’s anger as happiness. This means
that the target user’s particular emotional speech can be similar to different emotional speech in other
users’ emotional speech when the acoustic pattern is almost the same. Therefore, we ignore the labeled
information in the multiple-user speech database when reinforcing the target user training dataset
with other users’ similar speech.

Then, the speech samples from the user closest to the target speech mean value are selected. After
that, selected unlabeled data of other users are mapped to the most similar target user emotional label
and added to the target user training data set.

The distance is measured using an Euclidean distance measurement [37] between the target user’s
mean feature vector and each of the other user’s feature vectors, which is then used to determine the
similarity. The following Equations provide the distance measurements:

meansei =
1
N

N

∑
j=1

TFeatureVectorji (1)

d(meansei, IDSm) =

√√√√ FN

∑
i=1

(meansei − IDSi)
2 (2)

In Equation (1), meansei is a two-dimensional array that stores the average value of the acquired
target user emotion voice feature vectors, where e is the corresponding emotion index, i is the index
of the feature vector, N is the number of data, j is the index of the data, and TFeatureVectorji is the
extracted statistical speech feature vector via the feature extraction module mentioned in step 2 of
Section 2. In Equation (2), d(meansei, IDSm) represents the distance between two vectors, where m
is the index of the initial multiple-user speech and IDSm is the initial dataset consisting of multiple
users. Equation (1) is performed independently for each emotional label of the acquired target user,
and Equation (2) is performed based on the results of Equation (1). In the case of the initial dataset, i ,
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in Equation (2), all of the data are retrieved regardless of the label, and then the distance is calculated
for each emotion. Finally, the process of sequentially selecting similar data to reinforce the insufficient
data according to distance is performed via the following Algorithm 1.

Algorithm 1 Insufficient Data Reinforcement

Input: TDS(1 . . . N)—Target User Dataset
IDS(1 . . . M)—Initial Multiple User Dataset
FN—Number of Features
C—Number of Classes

Output: S (1...K)—Selected Similar Emotional Speeches Dataset

for i = 1 to N do
TFeatureVectori = extractFeatures(TDSi);
TEmoLabeli = getLabel(TDSi);

end

for i = 1 to C do
cnt = 0;
for j = 1 to FN do

for k = 0 to N do
if TEmoLabel k = i then

Tsumij = Tsumij + TFeatureVectorkj ;
cnt ++;

end
end
Tmeans ij = Tsumij/cnt;

end
end

for i = 1 to C do
for j = 1 to M do

IFeatureVector = extractFeatures(IDSj);
Distancesij = d(Tmeansi, IFeatureVector);

End
end

S = Sorting (Distances, IDS);

Return S;

3.2. Absent Emotion Data Reinforcement

Normally, humans do not express different emotions at the same rates in daily life [38]. If the
target user does not express a particular emotion for a long time, the training model will be created
without any samples for that particular emotional speech. In this case, this particular emotion is
not recognized by the system and the accuracy is 0%. We can assume that the target user’s absent
emotion data will be similar to that of another user’s emotional speech if they have a similar speech
pattern. Based on this assumption, it can be determined that the user is similar if the distribution of
the voice data of the target user is similar to the distribution of other user data. Therefore, we propose
the reinforcement method to replace the absent target user’s emotion data with the similar user’s
emotional speech based on this assumption.

This section introduces the proposed method to reinforce data that is not collected from the target
user’s particular emotional speech. The proposed method selects the user most similar with the target
user from among the emotional speech data of multiple users, and then selects the speech from this
similar user. Then, it calculates the distribution similarity based on the speech of each users’ training
dataset and selects the most similar user relative to the acquired target user. Finally, this particular
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absent emotion data will be reinforced regarding the target user’s training dataset considering its
similarity with the other user’s emotion speech data. Figure 4 shows the process of absent emotion
data reinforcement.
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We compute the statistical distribution factors [39], including the median, variance, skewness,
and kurtosis, from the speech data of both the target user and the other users considering the speech
feature vectors extracted in step 2 of Section 2. Then, the similarity degree between the target user and
the other users is calculated. The similarity calculation procedure is the same as in Section 3.1, and
the data of the user with the lowest distance value is selected via the following Algorithm 2, where
the distance is the sum of the data distribution factors of each user. The contents of the speech feature
vector distribution to be considered are as follows.

• Median—This variable is used to understand the central value from extracted feature vectors for
each emotional labeled speech dataset.

• Variance—This variable is used to understand the spreading of the data distribution from
extracted feature vectors for each emotional labeled speech data set.

• Skewness—This variable is used to understand the direction and extent of the data distribution
from extracted feature vectors for each emotional labeled speech data set.

• Kurtosis—This variable is used to understand the degree of lean to which the emotional labeled
dataset of feature vectors is centered.
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Algorithm 2 Absent Emotion Data Reinforcement

Input: IDS(1 . . . M)—Initial Multiple User Speeches Dataset
CT—Number of Classes from Target User
TFeatureVector(1 . . . N)—Target User Speeches Feature Vector
TEmoLabelSet(1 . . . C)—Acquired Target User Speeches Label Set
NU—Number of Users
TID—Target User ID

Output: SU (1...K)—Selected Similar User Speeches Dataset

for i = 1 to M do
IFeatureVectori = extractFeatures(IDSi);
IEmoLabeli = getLabel(IDSi);
IUserID i = getUserID (IDSi);
end

for i = 1 to N do
TCentroidValuesi = calculateDistributionFactors (TFeatureVectori);
end

for i = 1 to NU do
for j = 1 to CT do

for k = 1 to M do
if TEmoLabelSetj = IEmoLabelk and i = IUserIDk THEN

ICentroidValuesi = calculateDistributionFactors (IFeatureVectorj);
end

end
end

for i = 1 to NU do
for j = 1 to CT do

SumDistancesij = SumDistancesij + EuclidianDistance(TCentroidValuesj, ICentroidValuesij);
end

end

US = Sorting (SumDistances, IDS);

Return US;

3.3. Heuristic-Based Data Selection

In this section, we present a heuristic rule to construct the initial training dataset based on the
user-similar speech dataset and the dataset of similar users extracted in Sections 3.1 and 3.2. We should
first define what is meant by a sufficient amount of training data and then determine which data are
used to reinforce and create the heuristic rule for selection of the final real speech cases. When defining
the required amount of data, we are specifically determining how much of the other users’ data is
needed. The reason is that if the system takes only a few data from another user’s speech when lacking
target user data, it is difficult to generate an accurate training model. In addition, if the data of the
other users is utilized too much, the recognition results are the same as those of using the SD model.
Therefore, we set the sufficient data amount as 200 data per each emotion, based on the research results
of the data augmentation study [40].

The proposed heuristic rule-based data selection algorithm is composed as follows. When the
target user’s emotional speech is input, the system confirms whether the input emotional speech
samples are comprised in a sufficient amount of data for each emotion. If a sufficient amount of data is
acquired, the emotional dataset is constructed with the customized training dataset. If not, the data
reinforcement process will reinforce this data using a sufficient number of samples from another user’s
speech pattern. If there is even a single dataset available for a particular emotion, a similar speech
is selected through the insufficient data reinforcement process. When the number of samples of the
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particular emotion is 0, the similar user speech is selected and reinforced via the absent Emotion data
reinforcement process. If the selected samples from the absent emotion data reinforcement process
are not enough, the system then performs the insufficient data reinforcement process based on the
mean values of the particular emotional speech of a similar user. Figure 5 shows a flow chart of the
heuristic-based data selection rule.Sensors 2018, 18, x FOR PEER REVIEW  11 of 21 
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3.4. SMOTE-Based Data Augmentation

SMOTE is the method used to generate the dataset for a minority number of particular class
samples in the classification model. At first, SMOTE finds the K nearest neighbors of the minor class
samples and finds the difference between the current sample and these K neighbors. This difference is
multiplied by a random value between 0 and 1 and is then added to both the training data as well as
the original sample. The SMOTE algorithm increases the number of minority classes, which has the
smallest number of samples, repeating this several times until the numbers of samples for all classes
are balanced. In addition, this algorithm reinforces untrained case data by oversampling this data
virtually. This method increases the recognition accuracy of the new input data.

However, the cold-start problem, in which the misrecognition rate increases during the initial
stage, occurs when the number of acquired sample data is too small due to the generation of limited
ranges of oversampled data, thus it cannot generate accurate samples for the absent emotion data
for SMOTE. The cold-start problem of SMOTE can be solved using the dataset extracted from the
proposed heuristic-based data selection process. Then, if the data are amplified using SMOTE, the
accuracy can be improved even at the initial stage. Therefore, the final training dataset is constructed
by reinforcing the virtual case data using the SMOTE algorithm for the training dataset, which is
selected via the data reinforcement technique.

4. Model Creation and Classification

In this section, we generate the training model using common classification techniques. Choosing
an appropriate classifier is important for creating a training model in speech emotion recognition.
Machine learning algorithms, such as support vector machines (SVM), decision trees, and random
forest, have unique characteristics when generating and recognizing training models.
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In this paper, we use a random forest classification algorithm [41] to perform training model
generation and recognition. This random forest algorithm was first introduced to mitigate the
disadvantages of overfitting and instability common among decision trees. A random forest is a
method of creating a single model by combining multiple decision trees. Multiple trees are created by
applying randomness to observations and variables. This process generates N bootstrap samples, N
trees with arbitrary bootstrap samples and variables, and an ensemble training classifier, which has the
advantage of excellent prediction and high stability. Therefore, this classifier is an effective algorithm
for speech-based emotion recognition, which can build a reliable training model with few data.

5. Experiment

In this section, we introduce the experimental environment and the results. We performed the
experiment using IEMOCAP (Interactive Emotional Dyadic Motion Capture) [42], which is a public
emotion speech dataset. The IEMOCAP dataset has an extremely large number of data compared to
other similar datasets consisting of various speech patterns from real environments. In other recent
studies, the five-fold cross validation technique with the four emotions of anger, sadness, happiness,
and neutral has shown a low accuracy of about 60%, which has been challenging to overcome [43].
Therefore, the IEMOCAP dataset was selected for our experimental dataset, for which individual
datasets are sufficient and clearly exhibit accuracy improvements. In our experimental method, the
accuracy of the personalization model generation was calculated by randomly selecting training data
and test data from the target user and increasing the number of training data.

5.1. Experimental Environment

The purpose of the experiment in this paper is to verify the performance of the personalized
emotion recognition model creation method. The proposed method uses the existing SI model when
the target user’s data is 0. Since the user data is collected more than once, the training model is rapidly
changed by the retraining process using the proposed adaptive data boosting (ADB) method. In order
to verify the performance of this technique, the number of personalized data must be enough to be
able to train and test.

In the speech emotion recognition area, there are many well organized open datasets, such as
eNTEFACE [44], Emo-DB [45], and the Surrey Audio-Visual Expressed Emotion (SAVEE) Database [46].
These databases consist of hundreds to thousands of samples. Most of the existing SI studies used
k-fold cross validation when evaluating their algorithm. It means they utilize all data fully to train
and test. However, our approach can verify the utilization of an individual target user dataset only to
train and test. This means separating training data sets and test data sets to create a personalization
model when there are few individual data sets, such as Emo-DB, eNTERFACE, SAVEE, and IEMOCAP,
which does not only consider personalization data much, but also has difficulty in measuring accuracy.
Therefore, for accurate evaluation, we have required a large amount of individual emotional speech
data. Table 2 shows the representation of the existing speech database organization. Existing databases
have an insufficient amount of individual emotion data, such as 20 data. These environments have
limited choice of user training data and test data, making it difficult to conduct accurate indirect
comparison experiments. Finally, we have selected IEMOCAP, which has the largest number of total
samples about 100 emotional samples of each emotion per person.

The IEMOCAP dataset is composed of 10,038 corpus samples with 10 labels (neutral, frustration,
anger, sadness, happiness, excited, other, surprise, fear, and disgust), which are speech data continually
collected through a script. Each sample from the IEMOCAP dataset is annotated with multiple labels
from many audiences. We chose a representative label through voting. However, the dataset contains
ambiguous emotions, such as excited and frustration. Further, the number of data among surprise,
fear, disgust, and other is too small. Therefore, it is difficult to conduct precise experiments when the
data is divided into training and test datasets. Table 3 shows the original IEMOCAP dataset structure.
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Therefore, we transformed the data for the excited and frustration emotion labels to other
annotated emotion labels so that these labels are ambiguous and have a high composition ratio
in the dataset. We did this by selecting the second most voted label from the IEMOCAP dataset.
In addition, we conducted experiments using data for only four emotions: Neutral, anger, sadness,
and happiness. Table 4 shows the number and ratio of refined data and Figure 6 shows the number of
user-specific samples.

Table 2. Organization of existing emotional speech database.

Emotional
Database

Total
Samples Emotions Speakers Avg. Samples

per Person
Avg. Samples of Each
Emotion per Person

Emo-DB 535 7 10 53.5 7.6
eNTERFACE 1166 6 42 27 4.5

SAVEE 480 8 4 120 15
IEMOCAP 10,038 10 10 1003.8 100.3

Table 3. Original IEMOCAP dataset structure.

Emotion Number of Samples Rate

Anger 1229 12.24%
Sadness 1182 11.78%

Happiness 495 4.93%
Neutral 575 5.73%
Excited 2505 24.96%
Surprise 24 0.24%

Fear 135 1.34%
Disgust 4 0.03%

Frustration 3830 38.16%
Other 59 0.59%

Total 10,038 100%

Table 4. Refined IEMOCAP dataset organization.

Emotion Number of Samples Rate

Anger 1766 25.51%
Sadness 1336 19.29%

Happiness 1478 21.34%
Neutral 2345 33.86%

Total 6925 100%
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5.2. Experimental Methodologies

The traditional emotion recognition experiments were usually conducted using the five-fold cross
validation method. This evaluation method yields a high accuracy and includes the target user data in
the training dataset, where the number of training data is relatively large. However, this method is not
suitable for measuring the performance in personalized emotion recognition experiments, as there is
only a small amount of target user training data. Therefore, we aimed to verify the individual accuracy
performance using a minimal target user training dataset combined with a new experimental method.

In this new experiment, the training dataset and test dataset were randomly divided without
considering the emotion label balance to create an environment similar to real speech acquisition with
a limited dataset. At first, we decided the number of maximum training data samples. We allocated
the training data and test data to half and half, and we also constructed the sufficient test data samples
for evaluation. As a result, we set maximum training data to 300 considering the total number of data
is 6925 and the minimum number of data is 379 in subject 2. The remaining data not included in the
training dataset were used as the test dataset. Secondly, we incrementally increased the size of the
training dataset for each target user starting from a minimum of 50 to a maximum of 300.

This is done to progressively measure the accuracy, precision, and f-measure according to the
number of target user training data when creating the personalized training model. Additionally,
the average accuracy and precision were measured by repeating the experiment 10 times for fairness.
In other words, test data is randomly fixed in each experiment and the training data changes from 50
to 300 incrementally. (e.g., subject 1 had 431 utterances; total dataset: 431, training dataset: 50–300, test
dataset: 131). Figure 7 shows the process of the experimental methodologies.
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We performed four kinds of comparison evaluation to validate if the proposed method is really
efficient in an emotionally imbalanced small sample environment. Furthermore, we also employed
the imbalance ratio (IR) [47] to understand how much emotional data is unbalanced and improved.
The experiment consists of four criteria as follows.

• Exp. 1—SI (Speaker Independent): The experiment using target user speech data as the test data
and creating a training model with the remaining nine users’ datasets. (Standard Model).

• Exp. 2—PM (Personal Model): The experiment conducted by constructing a training model only
with personal user speech data.

• Exp. 3—SMOTE: The experiment applying the SMOTE technique alone.
• Exp. 4—Proposed Method: The experiment using the proposed ADB.
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5.3. Performance Evaluation Results

In this section, we describe the results of the recognition accuracy of the four experiments
introduced in Section 5.2. The experiments were performed using implemented Sequential Minimal
Optimization (SMO), J48, and random forest in the WEKA Library [48] to estimate which classifier
shows the best performance. The WEKA Library is a well-known machine learning open source library.
Table 5 shows the average accuracy, weighted average precision, and weighted average f-measure for
all four experiments using various classifiers and how many target user data we use to train. In Table 5,
the accuracy in every classifier in all experiments is incrementally increased while the target user’s
training data is increased. The proposed method (Exp. 4) always shows the highest accuracy among
all three classifiers, as well as for all numbers of target user data. In addition, the performance of the
random forest classifier used in the proposed framework is the highest.

In the SMO case, we select the RBF kernel, which is normally used in the speech emotion
recognition area. The advantage of using the RBF kernel is that it restricts training data to lie in
specified boundaries. The RBF kernel nonlinearly maps samples into a higher dimensional space,
which means it can handle the case when the relation between class labels and attributes is nonlinear
unlike the linear kernel. The RBF kernel has less numerical difficulties than the polynomial kernel [49].
Therefore, we used the RBF kernel for the SVM classifier. Additionally, the parameter of the Gamma
and C is set to default values as in the Weka Library (Gamma Value = 0.01, C value = 1). We also used
the standardization process in the RBF kernel.

In the experiment using SMO, there is a large difference between the small amount of training
data and large amount of training data. As a result, Exp. 1 shows similar accuracy (48.603%) compared
with other experiment results when the target user training data is 300 (about 50%). In the personalized
experiments results (Exp. 2–4), we can see that the SMO classifier requires lots of target user training
data to create a personalized model. That means the SMO classifier using default parameters is more
suitable to create a general model than a personalized model. If the Gamma and C value are set to the
optimized value, the accuracy can be improved slightly more.

In the experiment using J48, the result of Exp. 1 shows low accuracy (35.178%), and personalized
experiments of Exp. 2 and Exp. 3 do not significantly improve the accuracy even though the amount
of training data for the target user increases (32.5% to 40%). Exp. 4 shows that the accuracy improves
continuously as the target user data increases (35.4% to 55.1%). However, the accuracy is poor in small
data environments. This means that the J48 classifier is hard to create a personalized model when the
acquired amount of data is small.

In the experiment using random forest, the result of Exp. 1 shows moderate accuracy (42.048%),
and the result of Exp. 2 shows that the accuracy improves very slowly (40.8% to 46.3%). The result of
Exp. 3 shows the accuracy is increased rapidly (36.6% to 64.5%), and Exp. 4 shows the best accuracy
compared with all other experiments (50.9% to 67.6%). Therefore, we know that the random forest
classifier is suitable to create a personalized model with our proposed method.

Table 6 shows the status of imbalanced levels represented by the imbalanced ratio (IR) between
the majority class and minority class. Exp. 1 means the standard IR value in the IEMOCAP dataset.
Exp. 2 does not solve the imbalanced environment over the whole periods, and Exp. 3 solves a little bit
in the small amount data environment. Exp. 4 solves the imbalanced data in not only the small data
environment, but also the large data environment. The IR measurement is calculated by Equation (3).

Imbalanced Ratio = Major Class/Minor Class (3)
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Table 5. Experimental results for each classifier (unit %).

Classifier Experiment
Target User Data Samples for Training

50 100 150 200 250 300

SMO (RBF Kernel)

Exp. 1
Accuracy 48.603
Precision 0.512
F measure 0.478

Exp. 2
Accuracy 37.245 42.257 44.752 47.583 48.823 50.542
Precision 0.293 0.382 0.452 0.474 0.454 0.500
F measure 0.275 0.371 0.335 0.412 0.414 0.474

Exp. 3
Accuracy 28.119 35.533 42.018 43.986 46.379 49.569
Precision 0.313 0.453 0.454 0.498 0.510 0.518
F measure 0.197 0.297 0.367 0.390 0.419 0.415

Exp. 4
Accuracy 35.421 47.069 49.989 51.736 53.449 55.108
Precision 0.461 0.490 0.523 0.529 0.546 0.559
F measure 0.300 0.438 0.474 0.505 0.523 0.540

J48

Exp. 1
Accuracy 37.291
Precision 0.3952
F measure 0.3574

Exp. 2
Accuracy 35.178 37.916 39.784 40.529 40.707 40.027
Precision 0.350 0.390 0.397 0.406 0.409 0.400
F measure 0.328 0.376 0.387 0.398 0.400 0.389

Exp. 3
Accuracy 32.586 37.621 39.374 39.657 40.523 41.074
Precision 0.390 0.432 0.425 0.420 0.436 0.425
F measure 0.298 0.386 0.382 0.390 0.412 0.407

Exp. 4
Accuracy 36.131 42.268 47.931 53.294 56.542 60.589
Precision 0.399 0.447 0.500 0.540 0.573 0.615
F measure 0.350 0.421 0.481 0.533 0.565 0.607

Random Forest

Exp. 1
Accuracy 42.048
Precision 0.462
F measure 0.441

Exp. 2
Accuracy 40.891 43.342 44.324 44.834 44.420 46.329
Precision 0.414 0.421 0.444 0.452 0.444 0.453
F measure 0.412 0.421 0.443 0.450 0.444 0.457

Exp. 3
Accuracy 36.692 46.514 52.378 57.362 60.902 64.550
Precision 0.535 0.570 0.590 0.620 0.650 0.669
F measure 0.435 0.513 0.556 0.599 0.632 0.650

Exp. 4
Accuracy 50.925 55.448 59.302 62.293 64.722 67.633
Precision 0.503 0.554 0.621 0.658 0.661 0.683
F measure 0.506 0.554 0.612 0.640 0.650 0.680

Table 6. Average imbalance ratio for each experiment.

Experiment
Target User Data Samples for Training

50 100 150 200 250 300

Exp. 1 1.755
Exp. 2 5.646 6.074 4.087 4.021 3.188 2.707
Exp. 3 2.914 1.990 1.666 1.730 1.560 1.973
Exp. 4 1.987 1.702 1.560 1.578 1.529 1.519

Figure 8 shows the detailed results using the random forest classifier. We can see that the proposed
method always shows the highest accuracy.

The experimental results of Exp. 1 show an average of 42.05%. Before the target user speech
exceeds 70, the performance is higher than both Exp. 2 and Exp. 3. After that value, however, Exp. 2
and Exp. 3 show a higher accuracy. Exp. 3 shows a lower accuracy than Exp. 2 when the number of
target user samples is less than 70. Past this value, Exp. 3 shows a higher accuracy than Exp. 2, where
the accuracy difference is about 19% when the number of target user samples is 300. The reason is
due to the cold-start problem of SMOTE, where precise oversampling is impossible when the number
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of target user samples is a limited number, such as 10 to 70. After that, when the target user data is
sufficiently acquired, we can see that the accuracy is rapidly increased.Sensors 2018, 18, x FOR PEER REVIEW  17 of 21 
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Exp. 4 exhibits high performance across all the experiments over the whole period due to the
construction of a sufficient number of data with the proposed ADB method from other users even
in the small amount of data environment. The results in the large amount of data environment of
Exp. 3 and Exp. 4 are becoming similar, which are influenced by SMOTE that the proposed ADB is also
including SMOTE. However, in the small amount of the target user data environment, the result of
Exp. 4 clearly shows higher accuracy than Exp. 3, where the accuracy difference is about 23%. In other
words, we can see that the proposed ADB method solves the cold-start problem of SMOTE efficiently.

The graph inside Figure 9 shows the recognition accuracies versus the number of target user
samples used in training to understand each emotional label accuracy. We can see the recognition
accuracy is kept balanced in Figure 9.

In Exp. 2, the accuracy balance is not kept before the target user training data is 200. Especially,
the happiness label kept the lowest accuracy. The reason is that Exp. 2 uses only the personal user
data in the environment of small imbalanced samples. Therefore, the recognition result shows a quite
different accuracy between the most acquired emotional label data and lowest acquired emotional
label data.

Exp. 3 did not keep the balanced accuracy when the target user training data was 10. The reason is
related to the SMOTE cold-start problem as we have already mentioned. In 10 target user training data,
the happiness label has poor accuracy compared with other emotional labels due to the generation
of inaccurate data. After acquiring a sufficient amount of target user data, we can see the rapid
improvement of accuracy in the happiness label.

Exp. 4 shows more balance and higher accuracy among all of the comparative experiments
over the whole period. As a result, we can see that the proposed method can create a more adaptive
personalized model in an emotionally imbalanced small samples environment.
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6. Conclusions

In this paper, we proposed a robust personalized emotion recognition framework considering
the small and imbalanced data environment problem in adaptive speech-based emotion recognition.
The adaptive data boosting (ADB) technique used in the proposed framework resolves the cold-start
problem during the initial recognition stage by creating a customized dataset, merging the acquired
target speech with other user speech. By utilizing repetitive individual speaker independent
experiments, the proposed method has demonstrated its ability to create a highly accurate training
model for a target user, even if there are very small or large numbers of samples. This method
effectively generates the target user training model during the initial stage and can incrementally
create a training model. We assume that generating a personalized model using the target user’s
unlabeled speech, which is acquired in a real-time setting, will show a higher accuracy than using
the existing speech data of other users. However, existing public emotion databases have insufficient
speech data regarding individual users when trying to create accurate personalized models. Further,
the IEMOCAP dataset does not have enough target user speech data to perform the experiment using
the unlabeled data of each user. It is possible to generate a more effective personalization model by
acquiring unlabeled data from a large number of target users and applying the proposed technique.
In our future work, we plan to further study creating a robust personalized model by utilizing the
unlabeled dataset of the target user. Additionally, we are also going to conduct additional experiments
using state of the art classification methods. Currently, we cannot conduct direct comparison with
other studies as the data environment, research goal, and methodologies are quite different. However,
we will figure out a solution for this later. Also, we will further conduct research integrating emotional
speech databases, such as Emo-DB, eNTERFACE, SAVEE, and IEMOCAP, to validate the generalization
of our framework.

Author Contributions: Conceptualization, J.B. and S.L.; Methodology, J.B., D.K., J.L., Y.H., O.B. and S.L.;
Implementation, J.B., T.H. and D.K.; Validation, T.H.-T. and J.I.K.; Formal Analysis, Y.H.; Writing, J.B. and T.H.
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