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Chapter 1

Introduction

1.1 Background

Unraveling the mysteries of Nature has always been one of the main challenges
of humanity. During centuries, questions such as what is the different substances
made of?, why does it rain? or why does the Sun rise and set every day? were tried
to be solved. Finding answers to these fundamental questions opens the door to a
new interesting dilemma: would it be possible to anticipate what is going to happen
under the light of this new information? Or in other words, are we able to detect
general patterns from these answers and use them to predict future behaviour?
These elements constitute the foundations in which physics relies on. Loosely
speaking, physics aims to understand natural phenomena by characterizing their
causes and deduce basic principles and theories which allow to make quantitative
predictions about future observations1. In this sense, physics occupies a special
place among the different fields comprehending modern Natural Science. In words
of Richard P. Feynman: “Physics is the most fundamental and all-inclusive of the
sciences [...]. Students of many fields find themselves studying physics because of
the basic role it plays in all phenomena” [1]. Indeed, physics, as a science which
tries to obtain general laws governing Nature , has a wide range of applicability in
Chemistry, Biology, Geology or even social sciences.

The spectrum of phenomena described by physics wide from the very tiny (e.g.
particles that constitute matter and radiation) to the extremely large (e.g. galaxies,

1We do not aim to establish here a formal definition of what physics is, just to point out, from
the point of view of the author, some of the most important goals of this science.
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Chapter 1. Introduction

clusters of galaxies, superclusters,...). When dealing with the ambitious task of un-
derstanding the universe, one realizes that Nature presents a hierarchical structure.
Reality is divided into different levels of description, each of them defined by their
typical length and time scales. For instance, let us imagine a litre of water inside
an isolated Dewar flask. The length and time scales that we can measure with the
naked eye in a laboratory define the macroscopic level. However, it is well-known
that the litre of water is composed by a number of H2O molecules of the order
of Avogadro’s number, NA. These much smaller length and time scales define a
new level of description called microscopic level2. Studying the properties of each
level separately, one discovers that they are characterized by their own observables
which satisfies certain relations. These laws govern the behaviour of each hierar-
chical structure. In our water example, the macroscopic level is completely char-
acterized by quantities such as temperature, volume, pressure, etc. Furthermore,
there exists a macroscopic theory establishing relations among these observables:
Thermodynamics. Nevertheless, when we think about molecules composing wa-
ter, their behaviour is described by their position, velocity, energy, etc., and laws
that govern their evolution are defined by Classical or Quantum Mechanics. Some
examples of this hierarchical division are shown in Fig.1.

The clear separation between different scales lead to a fundamental question:
if both level of descriptions are parts of the same reality, which is the connection
between microscopic and macroscopic levels? The field trying to find a solution of
this dilemma is Statistical Mechanics, whose main goal is to describe the macro-
scopic properties of a system from laws governing the microscopic world. We
think again in the example of water in a Dewar flask. For simplicity, let us assume
that laws which describe the behaviour of water molecules are given by Classical
Mechanics. Therefore, equations defining the dynamics of each particle are de-
terministic, i.e. their evolution is fully determined once initial conditions of each
molecule are fixed. Nevertheless, although this situation is formally solvable, find-
ing the solution of NA coupled differential equations is, in general, impracticable.
Furthermore, it is also impossible to experimentally fix and determine NA initial
conditions. Consequently, the existence of such large number of particles leads to
a statistical treatment of this problem. Statistical Mechanics deal with the many
microscopic degrees of freedom in order to obtain statistical laws which will allow
us to understand the complex macroscopic behaviour. Under this scheme, one can
determine the mean or average value of a macroscopic observable, which corre-

2This division is not unique and represent a simplified version of the whole reality. Certainly,
H2O molecules are composed by a number of sub-atomic particles such as electrons, quarks, etc.,
with their own scales. Furthermore, the litre of water could be just a little fraction of the Atlantic
Ocean, which again presents its typical length and time scales.

2



1.1. Background

Figure 1.1: Several examples of system seen at different scales. (a) Copper(II) sulfate is a crystal
of triclinic structure formed by atoms of Cu, S and O. (b) Each human cell has 46 chromosomes of
size of order 10−4 − 10−6 m inside the nucleus. In the chromosomes the DNA exists in a wrapped
structure, but if stretched out in one cell, DNA would form very thin thread, of about 3 m long [2].
(c) The human brain has a volume of the order of 103 m3 and it is composed by around 1010 neurons,
which length varies from 10−6 − 10−4 m. [3]. (d) A flock of birds and a single starling. (e) The
spiral galaxy NGC 6984 is one of the 1011 galaxies in the observable universe, and in each galaxy
there is an estimated amount of 1011 stars [4]. (f) The number of active users of the largest social
network is of the order of 1010. Image sources: Wikimedia Commons, the free media repository (a,
d, e), ESA/Hubble (b), Facebook (c), Graphodatsky et al., Molecular Cytogenetics 2011, 4-22 (d),
Pixabay (d, f), COBBS (Sapienza University, Rome) (f).

sponds to the typical value that we will observe during a measure in the labora-
tory3. However, one can find deviations from the mean value of such a quantity as
a consequence of its statistical nature. In this case, it said that the value of the ob-
servable fluctuates [7–9]. Hence, fluctuations are understood to be a microscopic
reminiscence at the macroscopic world. The study of fluctuations is a fundamental
object in modern physics, and it will the central topic of this Thesis.

In 1905, Albert Einstein introduced a formalism to describe the Brownian mo-
tion, i.e. the random motion of a particle suspended in a fluid, based on a statistical
description of the phenomena [10–13]. This work is broadly considered one of the
first evidences of the strong influence of fluctuations. The randomness of the parti-

3This will be not always the case. A system satisfying this condition is call ergodic system.
Proving that a system is ergodic is far from being a easy task, only solved in a few particular cases
(see for instance, Sinai’s billiards system [5, 6]). In most cases, this property is assumed to be
satisfied, what it is known as Ergodic Hypothesis.

3



Chapter 1. Introduction

cle’s movement emerge from its collisions with the molecules composing the fluid.
In this way, Einstein was able to determine Avogadro’s number and, consequently,
the size of fluid molecules by analysing the statistic of fluctuations of the particle
displacement. Many other examples highlighting the importance of fluctuations
can be found, for instance, in critical phenomena, hydrodynamics or even cos-
mology, where the study of fluctuations of the cosmic background radiation has
provided crucial information to understand the origin of our universe.

1.2 Why do we study macroscopic fluctuations?

The probability of observing a given fluctuation usually decays with the number of
particles of the system. Consequently, measuring a deviation from the mean value
of a macroscopic quantity in a laboratory is, in general, unlikely. The situation
is even more dramatic if we are interested in large deviations. To illustrate this
fact, let us imagine that we are in an isolated room and, suddenly, the air of the
place condenses in the upper corner of the room. This event is a paradigmatic
example of what we understand by a large fluctuation. Even though this rare event
is not physically forbidden, the probability of taking place is so small that, in
practice, it will luckily never occur. In Nature, there exists several phenomena
which are known to be an outgrowth of such a behaviour, usually with dramatic
consequences (see Fig. 2). Thus, the question that naturally arises is: why are
we interested in studying phenomena which rarely happen? Or reformulating it,
why the characterization of arbitrarily large fluctuations result of special relevance
in physics? In the following lines we will provide three powerful arguments to
support the importance of analysing the statistic of arbitrarily large fluctuations.

Nonequilibrium dilemma. Describing macroscopic behaviour in terms of the
microscopic dynamics is an arduous task which remains challenging in most cases.
Let us imagine an isolated system presenting no hysteresis. Under these con-
ditions, after a transient time it will settle into a state in which its macroscopic
variables do not change with time, known as thermodynamical equilibrium state.
Dealing with systems in equilibrium, Statistical Mechanics has achieved a great
success, providing a general theory capable of connecting both levels of descrip-
tion: the Ensemble Theory. Under this framework, one can construct and relate
the different (macroscopic) thermodynamic quantities (e.g. entropy, free energy,
temperature, pressure,...) from the knowledge of the laws of Classical (or Quan-
tum) Mechanics controlling the evolution of the microscopic components. In this
way, by postulating that each microscopic state which realizes a given equilibrium
macroscopic state has a priori the same probability of occurring (i.e. equal a priori

4



1.2. Why do we study macroscopic fluctuations?

Figure 1.2: Rogue wave in Avila Bay (California). A paradigmatic example of large fluctuations
taking place in Nature. These waves could reach 30 metres high. Their rarity and unpredictability
make them an extremely dangerous phenomena.

probability postulate), Statistical Mechanics establishes that entropy (macroscopic
observable) could be related to the number of microstates Ω(U,∆U ;V,N) com-
patible with macrostates of energy E ∈ [U,U + ∆U ] (with ∆U << U ), volume
V and number of particles N , as:

S(U, V,N) = kB ln Ω(U,∆U ;V,N) , (1.1)

where kB is the Boltzmann constant. The relation between this two quantities was
first established by Ludwig Boltzmann in 1875 [14], and later formulated as (20)
by Max Planck in early 1900’s [8]. The number of microstates Ω is the main
element of the microcanonical ensemble, which describes a system characterized
by E ∈ [U,U + ∆U ], V and N . However, it is difficult to fix experimentally the
system energy. Using a heat bath, we can control its temperature, leting the energy
fluctuates. Hence, one can define the canonical ensemble describing a system
characterized by T , V and N . The probability density function of observing a

5



Chapter 1. Introduction

microscopic state α is now given by Gibbs distribution:

ρ(α) =
1

Z(T, V,N)
e−βE(α) , (1.2)

where β = (kBT )−1,E(α) is the energy associated to microstateα andZ(T, V,N)
is the partition function, central object of the canonical ensemble. Canonical en-
semble provides a definition of the free energy or Helmhotz potential,F (T, V,N),
in terms of the partition function, namely:

F (T, V,N) = −β−1 lnZ(T, V,N) , (1.3)

Furthermore, one could write Ω in terms of Z via a sort of Laplace transform,
while the entropy and free energy can also be related, as it was predicted by Ther-
modynamics, via the Legendre transform:

F = U − TS . (1.4)

In the context of equilibrium Statistical Mechanics, fluctuations play a prominent
role since by characterizing their statistics one can compute relevant thermody-
namic potentials. One particularly interesting relation is given by Einstein for-
mula [7, 8, 15] which allow us to write the fluctuations of the system energy E in
terms of a measurable macroscopic quantity, the heat capacity at constant volume
CV =

(
∂U
∂T

)
V,N

:

〈∆E〉 ≡ 〈E2〉 − 〈E〉2 = kBT
2CV , (1.5)

where U = 〈E〉 and 〈·〉 indicates an average over the canonical (Gibbs) distribu-
tion.

Considering a real system to be in thermodynamic equilibrium has become
an exceptional approximation in many situations, where Statistical Mechanics has
lead to outstanding predictions. Nevertheless, there exists no real equilibrium sys-
tems in Nature (they will require, for instance, perfect insulating materials). Even
more, most of the phenomena we found in Nature are out of equilibrium. Let us
think about ourselves. Our brain is composed by billions of neurons which are in
continuous activity, sending and receiving electrical signals, leading to a highly
complex structure working far from equilibrium. In our heart, a blood flow en-
ters and is pumped to the whole body through a purely nonequilibrium process,
in which the different parts contract and expand in a non-trivial way. Breathing,
cell division or DNA replication are a few more examples of nonequilibrium pro-
cesses occurring in our body. Far away living organisms, nonequilibrium systems
abound in Nature at all scales. For instance, liquid crystals under the action of

6



1.2. Why do we study macroscopic fluctuations?

external electric or magnetic fields found in cell membranes or LCD screens; seas
and oceans where complex and turbulent flows are paradigms of their behaviour;
or stars which present temperature and pressure gradients, convection phenomena,
etc. In general, they are open or hysteric systems, often under the action of external
forces or noise sources, subject to mass or energy fluxes. One interesting situation
arise when the system evolves to a state in which their macroscopic varibles remain
constant in time. We say that they settle into a nonequilibrium steady state. They
are the most similar situations to equilibrium states, becoming the main object of
study in most works characterizing out of equilibrium phenomena.

Despite their ubiquity, there no exists a general theory which predicts macro-
scopic behaviour in terms of the microscopic laws in nonequilibrium systems.
The crucial role played by the microscopic dynamics out of equilibrium hinders
the development of a scheme connecting both levels of description. As a direct
consequence, the system’s trajectories or histories, i.e. sequences of states, fol-
lowed by the system during its evolution, emerge as the central elements to char-
acterize nonequilibrium features. In general, such trajectories are described by
phenomenological equations obtained using ad hoc approximations valid for a
particular system (or class of systems), as for instance Langevin, Fokker-Planck
or Navier-Stokes equations. Furthermore, in a similar way to what happens in
equilibrium, one can find phenomena related to the breaking of a symmetry, self-
organization, phase coexistence, etc., far from equilibrium in the space of trajecto-
ries. The instabilities behind these processes are known as dynamical phase transi-
tions (DPTs) which separates regions where histories characterizing the evolution
of the system present different properties and structures.

Inspired by Einstein formula and the capital relevance of fluctuations in equi-
librium, it is nowadays expected that a deeper understanding of nonequilibrium
macroscopic fluctuations could fill in part this lack of a general theory linking
both level of descriptions [16–19]. To support this idea, we briefly describe in the
following lines the main features of the Large Deviation Theory (LDT), the math-
ematical framework characterizing large fluctuations [19–26], and its connection
to equilibrium Statistical Mechanics. The LDT relies on a fundamental statistical
principle, cornerstone of the study of rare events. Let An be a random variable
depending on the parameter n, and let p(An = a) the probability of having a given
value An = a. We say that p(An = a) satisfies a large deviation principle if the
limit:

G(a) = lim
n→∞

{
− 1

n
ln p(An = a)

}
(1.6)

exists [19]. The function G(a) is called Large Deviation Function (LDF) or rate

7



Chapter 1. Introduction

function, the central element of LDT characterizing the statistic of fluctuations.
From Eq. (25), one can write:

p(An = a) � e−nG(a) , (1.7)

where “�” stands for “asymptotic logarithmic equivalence”. The LDF is a positive
function G(a) ≥ 0 ∀a. Assuming that G(a) has an unique global zero value and
minimum 4, it can be proved that it is located at a∗ = limn→∞〈An〉noise, called
typical or expected value. Remarkably, p(An = a∗) does not decay exponentially,
and thus the LDF indicates how the probability p(An = a) peaks around a∗ when
n → ∞, which is nothing more that an expression of the Law of Large Numbers.
Finally, in this scheme one can study fluctuations around the typical value a∗ by
expanding the LDF:

G(a) ≈ 1

2
G′′(a∗)(a− a∗)2 +O((a− a∗)3) , (1.8)

which at first order different from zero leads, as it was expected, to Gaussian fluc-
tuations:

p(An = a) � e−n
1
2
G′′(a∗)(a−a∗)2

. (1.9)

Therefore, Large Deviation Theory can be considered as a generalization of the
Central Limit Theorem (CLT), since it provides information about what happens
both near the expected value (where LDT and CLT agree) and for large deviations
from a∗, where the Gaussian approximation is no more valid. We encourage the
reader to see the review by Touchette [19], where the features of Large Deviation
Theory are studied in depth.

Ensemble Theory, nucleus of equilibrium Statistical Mechanics, can be now
understood in terms of Large Deviation Theory [19,24,25,27–36]. Let us show in
brief this correspondence. Indeed, if the random variable whose fluctuations are
going to be studied is the energy of the systemEN , following (25) one can define5:

G(e) = lim
N→∞

{
− 1

N
lnP (eN ∈ [e, e+ de])

}
, (1.10)

where N is again the number of particles, eN = EN/N is the energy per particle
(or molar energy) and P (eN ∈ [e, e + de]) is the probability of observing an
energy eN ∈ [e, e + de]. Such a probability is proportional to the number of

4In general, this will be the case along this Thesis.
5This can be trivially proved (see [19]) by using P (EN ∈ [E,E + dE]) = p(EN = E)dE
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microstates Ω(e, de; v) compatible with eN ∈ [e, e + de] (with v=V/N), so it can
proved that [19]:

G(e) = lim
N→∞

{
− 1

N
ln Ω(e, de; v)

}
. (1.11)

Writing G(e) = −s(e)/kB and according to previously mentioned LDF proper-
ties, we realize that such expression corresponds to (20) with s = S/N the entropy
per particle. Hence, the energy LDF indeed corresponds to the entropy in equi-
librium systems. One can know define the scaled Cumulant Generating Function
(sCGF) of the distribution P (eN ∈ [e, e+ de]) as:

µ(T ) = lim
N→∞

{
− 1

N
lnZN (T )

}
, (1.12)

with T the temperature and ZN (T ) = 〈e−nβeN 〉 the partition function (note that
〈·〉 stands for the average over P (eN ∈ [e, e+ de]). Defining µ(T ) = βf(T ), we
again realize that the previous equation corresponds to (22) with f = F/N the
free energy per particle. Thus, in equilibrium, the sCGF corresponds to the free
energy. Furthermore, according to Gärtner-Ellis Theorem [19, 24, 37], both G and
µ are related via a Legendre-Fenchel transform, leading to:

s(e) = inf
T

{
e− f(T )

T

}
, (1.13)

in complete analogy with (23). Finally, we focus on fluctuations around the mean
value u = 〈eN 〉, which according to (28), lead to:

〈e2
N 〉 − 〈eN 〉2 = −kBs

′′(u) . (1.14)

Noticing that CV = −N 1
T 2

(
∂2s(u,v)
∂u2

)
v
, this equation is nothing more that Ein-

stein formula (24).
The connection between equilibrium ensemble theory and Large Deviation

Theory breaks new ground for facing nonequilibrium situations. The LDT method-
ology provides a robust scheme from which general far from equilibrium predic-
tions could be derived. In the core of this framework, the large deviations func-
tions, in a natural extension, could be considered as nonequilibrium analogs to
thermodynamic potentials, bridging the gap between the microscopic and macro-
scopic levels of descriptions. Furthermore, it is expected that LDF exhibit a far
more complex structure out of equilibrium, encoding key information on nonequi-
librium properties6. However, these ideas are not deprived of problems. One of

6For instance, the LDF will be, in general, non-local which reflects the existence of long-range
correlations standards of nonequilibrium situations
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Chapter 1. Introduction

the main difficulties is the identification of the relevant macroscopic observables.
The lacking of such a theory as Thermodynamics out of equilibrium leads to a gap
in the proper definition (if any) of the quantities fully characterizing the behaviour
of a macroscopic system (an essential element in the development of equilibrium
ensemble theory). For systems which could be described by the evolution of some
conserved quantities (e.g. temperature, energy, density of particles,...), it is broadly
accepted that essential nonequilibrium observables are the associated currents or
fluxes emerging in response of the external forces or gradients driven the system
out of equilibrium. Indeed, understanding current fluctuations is nowadays con-
sidered as one of the main goals in nonequilibrium physics, becoming a source of
number of very general results, as for instance [16–18,38–52]. In other situations,
space- and time-integrated observables could be good candidates, but in general,
they will strongly depend on each system features.

In spite of being able to identify the relevant observables characterizing nonequi-
librium behaviour, obtaining the large deviation function is still highly complex
task since, in general, we do not know the structure of the probability distribu-
tion of microscopic dynamical states, or even if such a distribution indeed exits.
The computation of the LDF from the microscopic dynamics have only succeeded
in a few oversimplified stochastic lattice gases [16, 17]. Nevertheless, in the last
decades, Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim has formulated a
theory to study dynamic fluctuations in driven diffusive systems far from equi-
librium: the Macroscopic Fluctuation Theory (MFT) [16, 38, 53–55]. Starting
from a mesoscopic description of the system in terms of fluctuating hydrodynam-
ics (fully characterized by only a few transport coefficients which can be easily
determined in experiments or simulations), the MFT offers detailed predictions
for the large deviation functions of interest in the large time and size7 limits. Note
that time and size will play the role of the large-n parameter in LDT. As an in-
teresting by-product, MFT also determines the most probable trajectory that the
system follows to sustain a given fluctuation. Understanding the properties and
spatio-temporal structure of these optimal histories is of paramount importance, as
they contain information on possible dynamic phase transitions appearing at the
fluctuating level [18, 41, 52, 56–63], while their symmetry properties lead to new
fluctuation theorems [44, 46, 48–50, 64–71]. The application of such scheme has
been proved to provide deep and very general results helping us to improve our
understanding on nonequilibrium behaviour.

Effective dynamics. The second reason to justify the importance of studying
rare events is related to the determination of what it is called effective driven dy-

7In this situation, large size means large scale of separation between level of descriptions.
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1.3. Outline of the Thesis

namics. As it was previously mentioned, it is in general nearly impracticable to
measure a rare fluctuation in an experiment. However, recent breakthroughs have
shown that fluctuations admit a control-theory (or active) interpretation [72–77].
In this way, by using a generalised version of Doob’s h-transform [78, 79], one
can construct an effective dynamics whose typical trajectories corresponds to the
rare events of the original dynamics. In addition, this mechanism provides the ex-
ternal effective force which should be apply to our original system to make rare
events become typical. Many advances and explicit examples on the determination
of such effective dynamics have been done in the last years [72, 73, 80–88]. In the
light of such mechanisms, the determination of rare events probability distribution,
as well as characterization of interesting phenomena such as DPTs, symmetry-
breaking, ordered structures, etc., are now more accessible both in simulations and
experiments.Certainly, this methodology opens the door to a whole new world of
possible applications of the large number of results and techniques developed in
large fluctuations studies.

Small systems. Finally, the last argument supporting the interest in large fluc-
tuations is based on the main role they played when dealing with small systems.
We have shown that the probability of observing a deviation from the mean value
decays exponentially with the number of particles of the system, which is the main
reason why rare events rarely occurs in experiments. Nevertheless, if the system
is small the difference between the scales of microscopic and macroscopic de-
scription notably reduces, as well as its number of particles. Consequently, large
fluctuations become far more probable rising as essential elements to understand
the system behaviour. This fact will be of crucial relevance in, for instance, nano-
electronic devices, where fluctuations severely condition properties and features of
such systems and their effects must be taken into account [89–92].

1.3 Outline of the Thesis

On the basis of the foregoing, it seems clear that the study of fluctuations is an
essential object in modern physics. The aim of this Thesis will be to delve into
the role of fluctuations arbitrarily far from equilibrium under the frameworks of
Macroscopic Fluctuation Theory and Large Deviation Theory. In the following
pages we will explore the two firsts arguments exposed above and their deep impli-
cations, developing a number a tools, techniques and results for a wide spectrum of
situations ranging from general driven diffusive systems to systems composed by a
single particle under the action of an external force both in and out of equilibrium.
In this way, Chapters 2, 3, 4, 5, 6 will be devoted to the study and characterization
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of MFT and its consequences, showing general results in the structure of the tra-
jectories sustaining a given fluctuation, LDFs and dynamic phase transitions. On
the other hand, Chapter 7 will focus on the construction of the effective dynamics
associated to fluctuations of very general observables for a stochastic particle in a
ring subjected to an external drift. We show then the outline of this Thesis.

In Chapter 2 we present an introduction to Macroscopic Fluctuation Theory.
Focusing on systems with one conserved quantity, we will describe their evolution
at a mesoscopic level, which will serve as a starting point to develop the different
aspects characterizing MFT. In particular, we will show how the study of proba-
bility distributions of relevant observables fluctuations converts into a variational
problem whose solutions are the optimal trajectories sustaining a given fluctua-
tion, leading to the determination of the corresponding LDF. Furthermore, we will
present some essential and very general results on fluctuations and we will trans-
late to the language of large deviations and MFT. Finally, we will briefly describe
the mesoscopic evolution of other classes of systems, such as systems with no con-
served quantities, to which the different techniques of MFT could be generalized.

As we have seen, trajectories leading to a given fluctuation encode key infor-
mation on their statistical properties. This makes the understanding of optimal
histories features a central issue. In Chapter 3 we will derive a fundamental rela-
tion which strongly constraints the architecture of these optimal paths for general
d-dimensional nonequilibrium diffusive systems, which implies a non-trivial struc-
ture for the dominant current vector fields. This general relation makes manifest
the spatio-temporal non-locality of the current statistics and the associated optimal
trajectories. In addition, we will also show how this outcome encompasses and
explains many previous results obtained in the large deviation field.

Chapter 4 is devoted to the study of fluctuations of the heat current in a model
of d-dimensional incompressible fluid driven out of equilibrium by a temperature
gradient. Macroscopically, this system is govern by Fourier’s law of heat conduc-
tion and its behaviour is fully described by the temperature field along the system.
We will find that the most probable temperature fields sustaining atypical values
of the global current can be naturally classified in an infinite set of curves, allow-
ing us to exhaustively analyze their topological properties and to define universal
profiles onto which all optimal fields collapse. We will also compute the statis-
tics of empirical heat current, where we find remarkable logarithmic tails for large
current fluctuations orthogonal to the thermal gradient. Finally, we will determine
explicitly a number of cumulants of the current distribution, finding remarkable
relations between them.

In Chapter 5 we focus on the study of dynamic phase transitions at a fluctu-
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1.3. Outline of the Thesis

ating level in the spaces of trajectories, one of the most intriguing phenomena of
nonequilibrium physics. Here we will discover a DPT in the current vector statis-
tics of an archetypal two-dimensional (2d) driven diffusive system, and character-
ize its properties using MFT. Interestingly, this is the first work which analyses
DPTs of a d′-dimensional observable in d′-dimensional systems with d′ > 1, a
situation which until now had remained puzzling. The complex interplay among
the external field, system anisotropy and vector currents in 2d leads to a rich phase
diagram, with different symmetry-broken fluctuation phases separated by lines of
1st- and 2nd-order DPTs. Remarkably, different types of 1d order in the form
of jammed density waves emerge to hinder transport for low-current fluctuations,
revealing a connection between rare events and self-organized structures which
enhance their probability.

Originally, MFT was developed to study large fluctuations of driven diffu-
sive systems. However, these techniques could be extended to other situations
characterized by mesoscopic evolution equations. In this way, in Chapter 6, we
will characterize fluctuations in Ginzburg-Landau models at equilibrium. These
systems are described by a scalar field which evolves following a locally non-
conserved dynamics whose mesoscopic equations are given by Hohenberg-Halpe-
ring model A [93]. Interestingly, these systems present two different beheviour
regimes characterized by a single or double equilibrium states. We will focus on
fluctuations of the magnetization, i.e. the space- and time-integrated scalar field,
revealing the existence of a DPT when asking for the probability of having small
values of such observable in the “double-well” regime. Furthermore, we will show
an exotic homogeneous but time-periodic trajectory which could appear below the
transition point.

In Chapter 7 we determine explicitly the effective probability-conserving dy-
namics in the case of fluctuations of general space- and time-integrated observables
for a particle diffusing in a one-dimensional periodic potential in the weak-noise
and large time asymptotes (which will play now the role of large-n in LDT). For
‘current-type’ additive observables, we find criteria for the emergence of a prop-
agative trajectory for large enough deviations, revealing the existence of a dynam-
ical phase transition at a fluctuating level, whose singular behaviour is between
first and second order. In addition, we will provide a new method to determine the
sCGF of the observable without having to solve the variational problem derived
from MFT. It will allow us to show that the weak-noise and the large-time limits
commute in this problem. Lastly, we will show how the original dynamics can be
mapped in practice to an explicit effective driven dynamics, which takes the form
of a driven Langevin dynamics in an effective potential. The non-trivial shape of
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Chapter 1. Introduction

this effective potential is key to understand the link between the dynamical phase
transition in the large deviations of current and the standard depinning transition
of a particle in a tilted potential.

Finally, in Chapter 8 we will summarize the different results exposed along
this Thesis, pointing out the main implications and novelties which such contri-
butions could involve to the field of macroscopic fluctuations and, in general, to
Statistical Mechanics.
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Chapter 2

An Introduction to Macroscopic Fluctu-
ation Theory

2.1 Introduction

Fluctuations arise macroscopically as a consequence of the statistical nature of
microscopic elements composing our world. Their appearance could involve se-
vere consequences in the properties and behaviour of the system, so determining
the probability distribution of fluctuations has become an interesting, although ex-
tremely hard, issue. In the context of equilibrium systems, Gibbs [94] and Ein-
stein [15] provide, from different perspectives, a deep description of this problem.
Under the light of this works, it is possible to establish a connection between the
thermodynamic variables (e.g. entropy, internal energy, volume,...) and the prob-
ability of a fluctuation. To illustrate this fact, let us consider an isolated closed
system composed by a small body A embedded in a (large) reservoir B. We sup-
pose that both systems are macroscopic and they are in thermal and mechanical
equilibrium. The reservoir is considered to be much larger than A, so its tempera-
ture T , pressure p and chemical potential µ remain fixed. While the total internal
energy, U , volume, V and number of particles, N remains constant, there exists a
mutual exchange of these quantities between both subsystems, opening the door to
the emergence of fluctuations. The equilibrium entropy of the whole system, de-
noted by S0, takes the maximum accessible value. When a fluctuation takes place,
the value of total entropy changes to S, in such a way that ∆S = S−S0 < 0. Un-
der these conditions, it can be proved [7–9] that the probability of such fluctuation
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obeys Boltzmann-Einstein formula:

P � exp

(
−Wmin − µ∆NA

kBT

)
, (2.1)

where subindex A indicates that variations of the observables between the fluctu-
ation and equilibrium state are considered for subsystem A, kB is the Boltzmann
constant, and:

Wmin = ∆UA − T∆SA + p∆VA (2.2)

is the minimum reversible work necessary to carry out such a fluctuation, i.e. to
produce the given change of the observable’s values, in the body A in a reversible
way, for a fixed number of particles [95, 96]. For instance, if the volume remains
constant during the process, this work corresponds to the variation of the free en-
ergy from one state to the other,Wmin = (∆F )T,V (in other words, the exponent in
(2.1) is the variation of the grand potential). Interestingly −Wmin is the maximum
“useful” work which could be extracted from the system when it is forced to sus-
tain the given fluctuation, i.e. to achieve a new equilibrium state whose variables
correspond to the fluctuation state.

Out of equilibrium, the situation becomes harder. Indeed, there is no general
theory describing the probability distribution of a fluctuation. During decades,
a number of works tried to shed light on this problem, developing fundamental
results which are considered as the basis of the way in which nonequilibrium fluc-
tuations are understood nowadays [44, 48–50, 97–101]. A special remark should
be made for Onsager [102, 103] and Onsager and Machlup [104] works, which
characterized fluctuations near equilibrium and provided a mathematical approach
to describe the statistics of a full trajectory. However, it was in the 2000’s when
the study of far from equilibrium fluctuations undergoes a true revolution. Bertini,
De Sole, Gabrielli, Jona-Lasinio and Landim [16, 38, 53–55] settled the basis of
general theoretical scheme which describes fluctuations of driven diffusive sys-
tems out of equilibrium: the Macroscopic Fluctuation Theory (MFT). Under this
framework, the problem of characterizing the probability distribution of fluctua-
tions turns into a variational problem on the most probable paths the system fol-
lows to sustain such a given fluctuation. The mathematical techniques underlying
MFT relies on the well-known large deviation theory, developed by Cramér [105],
Donsker and Varadhan [21, 106–108], and Freidlin and Wentzell [26], which, as it
was shown in the Introduction, has been proved to provide an efficient framework
to formulate problems of statistical mechanics [19, 24, 25, 28–30, 35].

The aim of this chapter is to establish the foundations for characterizing the
statistics of macroscopic fluctuations in a broad variety of general systems, un-
der the MFT (and large deviations) formalism. In this direction, we will describe

16



2.2. A mesoscopic description of d-dimensional driven systems with locally
conserved dynamics

the different features constituting MFT, as well as the mechanisms and techniques
widely employed to study large fluctuations in systems both in and out of equilib-
rium. The structure of the chaper is the following: in Section 2.2 we will describe
the general class of system we are going to deal with, d-dimensional systems with
conserved dynamics, providing a mesoscopic description of its evolution by means
of Langevin equation. We will also present a particular kind of systems, included
in the general case, with special relevance in physics: the driven diffusive systems.
In Section 2.3, we will show other possible formulations describing the evolution
at the mesoscopic level, i.e. the Fokker-Planck equation and Path Integral repre-
sentation, and their equivalences. In Section 2.4, we will describe the procedure
to study macroscopic fluctuations under the MFT framework, paying special at-
tention to fluctuations of the final structure of conserved field characterizing the
behaviour of the system and of relevant space- and time-integrated observables.
In Section 2.5, we will present some remarkable results in the realms of fluctu-
ations which have been obtained in the last decades. Finally, in Section 2.6, we
will characterize the evolution at a mesoscopic level of two other systems which
will be also studied along this Thesis: systems with non-conserved dynamics and
a particle under the action of a force and a thermal noise.

2.2 A mesoscopic description of d-dimensional driven sys-
tems with locally conserved dynamics

The broad class of systems we are interested in are the d-dimensional driven sys-
tems characterized by one conservation law. These systems are completely de-
scribed by a locally-conserved scalar field φ(r, t) (e.g. particle density, tempera-
ture, charge,...), where r ∈ Λ ≡ [0, 1]d is the (macroscopic) spatial dimension and
t ∈ [t0, tf ] is the (macroscopic) time, which evolves according to the hydrodyna-
mic (or macroscopic) equation [109, 110]:

∂tφ(r, t) + ∇ · jD(r, t) = 0 . (2.3)

The field jD(r, t) is the local current associated to φ(r, t). This evolution equation
is known as continuity equation. In order to close Eq. (2.3), one can express the
local current as a function of φ(r, t):

jD(r, t) = JE[φ(r, t)] , (2.4)

with JE[φ(r, t)] depending on the external drift E(r, t), the scalar field φ(r, t)
and its derivatives. The relation (2.4) is called constitutive equation and its struc-
ture is determined by the physical properties of the problem. Interestingly, these
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equations are also known in literature as phenomenological relations since, in their
origin, they were introduced ad hoc under the light of experimental results. Nowa-
days, while some of them have still a phenomenological basis, most constitutive
equations can be deduced theoretically from first principles. Some examples of
constitutive equations are Fick’s law of diffusion, Fourier’s law of thermal con-
duction or Ohm’s law of electric conduction.

The current field (2.4) represent a dissipative flux related to the necessary work
made by the thermodynamic forces acting on the system in a relaxation or excur-
sion between two states (both in or out of equilibrium) or to the dissipation needed
to sustain a nonequilibrium state [16,110,111]. Furthermore, it vanished when the
system is in thermodynamic equilibrium1. As a consequence, the current plays a
foundamental role in describing and characterizing nonequilibrium behaviour.

Finally, to fully define the problem, one must supplement equations (2.3)-(2.4)
with the appropriate boundary and initial conditions, namely:

φ(r, t) = φ̄(r, t) , r ∈ ∂Λ , φ(r, 0) = φ0(r) , (2.5)

where ∂Λ denotes system boundary. Some examples of boundary conditions could
be periodic ones, if Λ is the d-dimensional torus Td, or non-homogeneous and
time-independent conditions inducing an external boundary-drift (e.g. a one di-
mensional bar in contact with two thermostat at different temperatures). Remark-
ably, the structure of boundary conditions are crucial to define whether the system
described by (2.3)-(2.4) reach an equilibrium state after an appropriated transient.
A detailed example of this fact will be exposed in Section 2.2.1 when dealing with
driven diffusive systems.

The set of equations (2.3)-(2.4), together with boundary conditions (2.5), de-
fines the deterministic (or classical) evolution of a d-dimensional driven system
with locally conserved dynamics at a macroscopic level of description. Thus, we
will obtain the same system evolution once the initial conditions are fixed. Never-
theless, as we have seen, the values of physical observables fluctuate in real sys-
tems as a result of molecular-scale random behaviour. This fact could be taken into
account by describing the system at an intermediate scale between the microscopic
and the macroscopic ones: the mesoscopic level.

The new variables characterizing mesoscopic scale are integrated out in a
“coarse-graining” procedure from the microscopic to the macroscopic by an ap-
propriate rescaling of the spatial coordinates r = L−1r′ and time t = L−2t′, where

1In general, nonequilibrium systems are characterized by a non-vanishing current. However,
it is important to remark that there exists out of equilibrium systems with zero net current. For
an interesting discussion about which conditions should be satisfied by systems with one or no
conserved quantities to be at equilibrium we refer to [112]
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r′ and t′ are the microscopic spatial dimension and time, respectively. The L fac-
tor could be interpreted as a parameter proportional to the inverse of the size of a
microscopic region which is averaged to obtain the local field mesoscopic value.
This coarse-grained fields become random variables with the noise preserving in-
formation about the many fast microscopic degrees of freedom at the mesoscopic
level. Deriving a continuum mesoscopic equation from the laws governing the mi-
croscopic dynamics is really hard task, which has been rigorously done for a few
systems, such as stochastic lattice gas models (we refer the reader to [113–115]
for a detailed description). In general, the construction of such equations is done
by introducing ad hoc arguments based on intuitive heuristic reasonings. We are
going to assume in our case that random microscopic motions leave a fingerprint
in the form of small perturbation of the current field, in such a way that the average
value will correspond to the one predicted by macroscopic equations (2.3)-(2.4).
Furthermore, the amplitude of the noise will be, in general, nontrivial, depending
on the the field φ. Hence, we can write the new “mesoscopic” current field as:

j(r, t) = jD(r, t) + ξ(r, t) , (2.6)

where jD(r, t) is the deterministic current defined in (2.4) and ξ(r, t) is a Gaussian
white noise with:

〈ξ(r, t)〉 = 0 (2.7)

〈ξα(r, t)ξβ(r′, t′)〉 =
1

Ω
σαβ[φ(r, t)]δ(t− t′)δ(r− r′) , α, β ∈ [1, d] . (2.8)

The variance σ̂[φ(r, t)] is the mobility matrix and it is coupled to the determin-
istic part of the current (2.6) via a fluctuation-dissipation theorem [100] which
guarantees the correct equilibrium state in the absence of driving [109, 110]. This
structure of this noise term defines the evolution of the system as a Markov pro-
cess. Moreover, Ω ≡ L−d is a (large) parameter controlling the strength of the
noise that arise because of the law of large numbers when rescaling space and time
keeping x2/t fixed in the coarse-graining procedure [113]. In the limit Ω → ∞
the amplitude of the noise vanish, which corresponds to the macroscopic hydro-
dynamic description of the system (2.3)-(2.4). Interestingly, it is possible to see
the effect of strong intrinsic fluctuations by tuning this parameter, which can be
useful when studying nanosize systems with an unclear scale separation between
microscopic and macroscopic descriptions. In our case, we are interested in large
but finite values of Ω (i.e. weak noise description).

Therefore, the field φ now obeys a stochastic differential equation of the form:

∂tφ(r, t) + ∇ · (jD(r, t) + ξ(r, t)) = 0 , (2.9)
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which, together with constitutive equation (2.4) and boundary conditions (2.5),
describes the evolution of the system at a mesoscopic level.

Equation (2.9) is a non-linear Langevin equation, i.e. a stochastic differential
equation describing the evolution of the stochastic field φ. In general, the main
interest of this equation is not to compute the evolution of the fluctuating field for
one realization of the noise, but to obtain the probability distribution at all times
characterizing the stochastic process φ [116]. However, this problem remains chal-
lenging in most cases. One way to proceed now, commonly used in fluctuating hy-
drodynamics, consist in linearizing the Langevin equation (2.9) around the steady
macroscopic fields and solving the resulting linear deterministic equation to ob-
tain the form of the fluctuations [110, 117]. This procedure allows to compute the
lower-order correlators of the mesoscopic fields, information about large fluctu-
ations and higher-order correlators is lost as a consequences of the linearization.
Taking into account non-linear corrections (within the framework of non-linear
fluctuating hydrodynamics) can help in understanding the long-time tail behavior
of lowest-order correlation functions (the reader could find interesting examples
in [118–123]). Nevertheless, it has been long recognized that in order to explore
arbitrary fluctuations an alternative scheme is needed, one based on the compu-
tation of the full stationary probability distribution for the observable of interest.
This can be achieved using Macroscopic Fluctuation Theory (MFT) [16], which
offers a variational formula for this probability distribution. From a mathematical
point of view, the starting point for building the MFT is the path integral rep-
resentation of the system at hand. Hence, we firstly present in Section 2.3 two
formalism which describes the evolution of the system at a mesoscopic level: the
Fokker-Planck equation and the path integral representation.

2.2.1 An interesting example: driven diffusive systems.

Before proceeding with the alternative mesoscopic formulations, with the aim of
illustrating the previous scheme, we show here a paradigmatic example of driven
systems with one conserved field which will be used along this Thesis: the driven
diffusive systems [124, 125]. This broad class of systems describes a wide range
of physical situations as, for instance, population dynamics, molecular diffusion,
semiconductor dopping processes or thermal conduction. Furthermore, from the
perspective of fluctuations, driven diffusive systems result of special relevance as
they are the objects of study used by Bertini et al. [16] to develop the Macroscopic
Fluctuation Theory. Although this theory has been recently generalized to others
classes of system (see [112]), they are still the central elements of numerous and
interesting works in the world of large deviations [16–18,38,40,41,52–56,63,114,
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126, 127].
Mathematically, driven diffusive systems are described (at the mesoscopic

level) by the set of equations (2.4)-(2.9), where the local current JE[φ] is split into
two terms: one diffusive term given by Fick’s (or equivalently Fourier’s) law and
a second term governed by the external drift E (Ohm’s law-like term). Therefore,

JE[φ] = D̂[φ]∇φ(r, t) + σ̂[φ]E(r, t) , (2.10)

where D̂[φ] is the diffusivity matrix and σ̂[φ] is the mobility matrix appearing in
(2.8). Both D̂ and σ̂ are known as transport coefficients and, as we previously
mentioned, they are not independent: in order to reproduce equilibrium states in
absence of any drift, both are coupled via the local Einstein relation:

f ′′0 [φ]D̂[φ] = σ̂[φ] , (2.11)

with f0[φ] the equilibrium free energy density (i.e. equilibrium free energy per
unit of volume) and ′′ denoting second derivative with respect to its argument.
Therefore, the evolution of the system is fully characterized by these two transport
coefficients, which can be measured in experiments or simulations.

Finally, to complete the description of the system at hand one needs to specify
the form of boundary conditions (2.5). Interestingly, boundary structure will be
an essential element to determine whether our system is in or out of equilibrium.
Indeed, we can establish that our system will reach an equilibrium state (after a
transient govern by (2.4)-(2.9)) if one of the following statements is satisfied:

1. The Λ-space is the torus and there is no external field E(r, t) = 0.

2. The chemical potential of the boundaries is time-independent and homoge-
neous and there is no external field E(r, t) = 0. In terms of the field φ,
these boundary conditions read φ̄(r, t) = φ̄bc , ∀r ∈ ∂Λ , with φ̄bc a given
constant.

3. Boundary conditions are non-homogeneous and time-independent in such a
way that the induced boundary-gradient counteracts the external drift E(r).

In any other case, the system will be out of equilibrium.

2.3 Fokker-Planck equation and path integral represen-
tation associated to a Langevin equation

As we explained in the previous section, the Langevin equation (2.9) describes
the evolution of the stochastic field φ(r, t). Notwithstanding, there exist other
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Chapter 2. An Introduction to Macroscopic Fluctuation Theory

two formulations characterizing how the system evolves in time at a mesoscopic
level of description, namely the Fokker-Planck equation and the path integral rep-
resentation. It is important to note that the three formulations are mathematically
equivalent, containing the same “physical information” when describing the sys-
tem behaviour.

In order to deduce both alternative formulations, one needs to obtain a discrete
version of the Langevin equation. This automatically leads to the well-known “Itô-
Stratonovich” dilemma [128]. Let us divide the time-domain in N intervals of
duration ∆t = ε, in such a way that ti = t0 + iε, with tN = tf . Loosely speaking,
the origin of a such a problematic resides in the following question: which value
φ̃ of the field φ should one choose to evaluate JE[φ] and σ̂[φ] in a time-interval
[ti, ti+1]? The answer to this question reveals that there exists an infinity family
of possible discretization corresponding to the same original continuum Langevin
equation in the limit ε→ 0. Parameterizing this family by η ∈ [0, 1], we can write
the time-discrete version of the Langevin equation as2:

1

ε
(φ(r, ti+1)− φ(r, ti)) + ∇ ·

(
JE[φ̃(r, ti)] + ζ(r, ti)

)
= 0 , (2.12)

with φ̃(r, ti) = ηφ(r, ti) + (1− η)φ(r, ti+1) and:

ζ(r, ti) =

∫ ti+1

ti

ξ(r, t) dt . (2.13)

The election of the η-value fix the discretization scheme: η = 1 corresponds to
Itô-discretization [129], while η = 1/2 corresponds to Stratonovich-discretization
[130]. Remarkably, techniques used to compute integrals or derivative in ordinary
calculus could change depending on the discretization we use. For instance, while
the usual chain rule of calculus holds when using Stratonovich-discretization, it
is not valid for Itô-discretization, where one needs to define new transformation
laws (Itô’s Lemma) [128]. Finally, while different discretization leads to different
Fokker-Planck equations and path integral measures (a fact of crucial relevance
when describing the evolution of a microscopic system in the mesoscopic limit
[128]), it is important to note that the averaged values of physical observables
are the same whichever the discretization scheme we have chosen to solve the
problem.

In the following lines we will present both Fokker-Planck and path integral
representations associated to Langevin equation (2.9). We refer the reader to [112,
128, 131] for a formal derivation of such formulations.

2From now on, we are going to consider the external field to be time-independent, that is
E(r, t) = E(r).
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2.3. Fokker-Planck equation and path integral representation associated to a
Langevin equation

2.3.1 The Fokker-Planck equation

Since the field φ(r, t) characterizing system behaviour is a stochastic variable, one
could describe its evolution by determining the probability of observing a given
configuration φ at a fixed time t, P [φ; t]. As it was previously mentioned, finding
this probability directly from the Langevin equation, far away from being trivial,
is an arduous task which requires to solve the stochastic equation. However, there
is another way to proceed: we can write a partial differential equation describing
the evolution in time of the probability P [φ; t]. This partial differential equation is
called Fokker-Planck equation.

The probability P [φ; t] can be written as:

P [φ; t] =

〈∏
r∈Λ

δ
[
φ(r, t)− φ̃(r, t)

]〉
ξ

, (2.14)

where φ̃(r, t) is the solution of the Langevin equation for a given realization of
the noise, and 〈·〉ξ represents the average over the noise. The main idea behind
the derivation of Fokker-Planck equation is to expressed the probability P [φ; ti+1]
in terms of P [φ; ti] by using a discrete version of the Langevin equation. This
fact leads to an unavoidable previously announced conclusion: the structure of the
Fokker-Plank equation will depend on the chosen discretization scheme. In this
way, the Fokker-Planck equation associated to the Langevin equation (2.9) is3:

∂tP [φ; t] =

∫
Λ
dr

d∑
α=1

(
∂α

δ

δφ(r, t)

)[
− jD,αP [φ; t]

+
1

2Ω

d∑
β=1

(
∂β

δ

δφ(r, t)

)
(σαβ[φ]P [φ; t])

− (1− η)

2Ω

d∑
β=1

((
∂β

δ

δφ(r, t)

)
σαβ[φ]

)
P [φ; t]

]
, (2.15)

where ∂α accounts for derivatives with respect to xα, jD = (jD,1, ..., jD,d) and:(
∂β

δ

δφ(r, t)

)
A[φ] = ∂α

(
δ

δφ(r, t)
A[φ]

)
− δ

δφ(r, t)
(∂αA[φ]) . (2.16)

3We encourage the reader to take a look at the new work of Garrido [112] for a detailed descrip-
tion of this derivation.
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2.3.2 Path integral representation

Works by Wiener and Feynman [132–134] showed that any stochastic process can
be described in terms of path integrals. Roughly speaking, the probability of hav-
ing a given configuration φ(r, t∗) = φ∗(r) at a time t∗ can be written as an infinite
sum of all possible trajectories (i.e. sequence of configurations) compatible with
the system constraints, correspondingly weighted, which, starting from an initial
configuration, lead to the final one φ∗(r). The weight of each path, i.e. the proba-
bility of occurring a given trajectory starting from an initial state to a final config-
uration at time t, will be the basic and fundamental object in our description. This
formulation has turned out to be a crucial framework not only in statistical physics
but also in quantum physics, constituting the basis of Quantum Field Theory. Path
integral representation indeed provides an unified mathematical scheme for both
Quantum and Statistical Field Theory.

At this point, one should note an essential fact: the knowledge of a trajec-
tory φ(r, t), with t ∈ [t0, tf ] corresponding to a particular noise realization does
not define univocally the trajectory of the local current j(r, t) for dimension d >
1. Indeed, both fields are related via continuity equation (2.9), and any current
field of the form j′(r, t) = j(r, t) + u(r, t) with u(r, t) a divergence-free vector
(∇ · u(r, t) = 0) will satisfy the same equation. This is a direct consequence of
the lost of information taking place when going from the microscopic to the meso-
scopic description through the coarse-grained procedure. The strong implications
of this result will be illustrated along this Thesis (see, for instance, Chapter 5).
Thus, when studying systems characterized by a locally conserved dynamics, it
seems more interesting to ask for the probability of observing a given trajectory
{φ(r, t), j(r, t)}, which takes the form4:

PΩ({φ, j}tft0 ) ∝ exp
[
−ΩS[t0,tf ][φ, j] +O(Ω0)

] ∏
t∈[t0,t1]

∏
r∈λ

δ (∂tφ+ ∇ · j) ,

(2.17)
where δ[·] is the Dirac delta function accounting for constraint imposed by conti-
nuity equation (2.9) and:

S[t0,tf ][φ, j] =
1

2

∫ τ

0
dt

∫
Λ
dr(j− JE[φ]) · σ̂−1[φ](j− JE[φ]) , (2.18)

is the action of the system. It is important to note that by P we represent the
probability of a given configuration, whereas P accounts for the probability of a

4For the sake of simplicity, we omit to write explicitly the spatial and time dependence of φ(r, t)
and j(r, t)
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2.4. Macroscopic Fluctuation Theory

whole trajectory. Trivially, any trajectory {φ, j} whose fields are not coupled via
continuity equation contributes with zero probability. To obtain such an expression
for P({φ, j}tft0 ), we have to integrate over all possible realizations of the noise,
taking into account that it is coupled to fields φ and j via Eq. (2.9). We refer the
reader to [112, 128, 131, 135–137] for a complete derivation.

2.4 Macroscopic Fluctuation Theory

Once the different formulations to describe the evolution of a system at a meso-
scopic level are defined, we are now in position to study macroscopic fluctuations.
Our starting point will be the path integral representation given by (2.17)-(2.18).
As we are interested in the large, but finite, Ω limit we can write5:

P({φ, j}tft0 ) � exp
[
−ΩS[t0,tf ][φ, j]

]
, (2.19)

where � stands for “asymptotic logarithmic equivalence” in the sense:

S[t0,tf ][φ, j] = lim
L→0

Ld lnP({φ, j}τ0) , (2.20)

and where φ and j are coupled via continuity equation:

∂tφ+ ∇ · j = 0 . (2.21)

Interestingly, since σ̂ is a positive defined matrix, the action S ≥ 0, where the
equality corresponds to the classical trajectory solution of the macroscopic equa-
tion (2.3). Eqs. (2.18)-(2.19) and the associated definitions constitute the funda-
mental formula of Macroscopic Fluctuation Theory [16], from which many impor-
tant and general results can be derived, valid arbitrarily far from equilibrium.

With this ideas in mind, we proceed with the study of fluctuations of relevant
macroscopic quantities. In particular, we will focus on large deviations of the
conserved field φ and time-integrated additive observables.

2.4.1 Fluctuations of the conserved field φ(r, t)

As we have seen, the field φ characterize the properties of the system at hand, so
studying fluctuations of φ will provide relevant information about its behaviour.
In particular, we will be interested in analysing fluctuations of the conserved field

5As we have seen in Introduction, this is a manifestation of the large deviation principle. We
will delve into the features and consequences of Large Deviation Theory in Section 2.4.2
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φ at the final time of its evolution tf , i.e. φf (r) = φ(r, tf ). In other words, we
will study large deviations of the final configuration φf (r). As we will see in the
following lines, this study is of capital relevance, leading to the construction of the
quasi-potential.

The probability of observing a final configuration φf (r) can be written as the
sum over all possible trajectories {φ(r, t), j(r, t)}tft0 , correspondingly weighted
with (2.19), compatible with φ(r, tf ) = φf (r) and continuity equation (2.21),
that is:

P[t0,tf ] (φ(r, tf ) = φf (r)) =

∫
Dφ
∫
DjP({φ, j}tft0 )

∏
r∈Λ

δ (φ(r, tf ) = φf (r))∏
t∈[t0,tf ]

∏
r∈Λ

δ (∂tφ+ ∇ · j) , (2.22)

where again δ[·] are Dirac delta functions accounting for the different constraints.
Nevertheless, since we are interested only in the final structure of the field φ, it
would be desirable not to deal with the pair of fields {φ, j} but focus only on the
probability of observing a given path {φ}tft0 , that is P({φ}tft0 ). In the following
lines, we briefly describe two different procedures to obtain such a probability
distribution. For the first one [16], one can see that:

P({φ}tft0 ) =

∫
DjP({φ, j}tft0 )

∏
t∈[t0,tf ]

∏
r∈Λ

δ (∂tφ+ ∇ · j) (2.23)

Since we are interested in the large Ω limit, we can make use of the steepest descent
or saddle-point method to crack this problem. Indeed, we can write:

P({φ}tft0 ) � exp
[
−ΩS[t0,tf ][φ]

]
, (2.24)

with:
S[t0,tf ][φ] = inf

{j}
∂tφ+∇·j=0

S[φ, j] . (2.25)

The current field j solution of the previous variational problem is the optimal or
most probable path. In Section 2.4.2, we will study in depth the meaning and
relevance of such optimal trajectories. On the other hand, the second procedure
[112] consists in deriving a path integral formulation for P({φ}tft0 ) directly from
the Langevin equation (2.9). In this way, we can reformulate (2.9) as:

∂tφ(r, t) + ∇ · JE[φ(r, t)] + ν(r, t) = 0 , (2.26)
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2.4. Macroscopic Fluctuation Theory

where ν(r, t) = ∇ · ξ(r, t) is a new gaussian white noise, obtaining by the sum of
d gaussian random variables, with:

〈ν(r, t)〉 = 0 (2.27)

〈ν(r, t)ν(r′, t′)〉 =
1

Ω

d∑
α=1

d∑
β=1

∂α∂
′
β

(
σαβδ(r− r′)

)
δ(t− t′) , (2.28)

with ∂′β denoting the derivative with respect to x′β . Once again (see Section 2.3.2),
integrating over all possible realization of the noise compatible with (2.26), we
obtain that, in the large Ω limit, P({φ}tft0 ) obeys (2.24).

Whichever the mechanism we choose, one can prove that the action takes the
form:

S[t0,tf ][φ] =
1

2

∫ τ

0
dt

∫
Λ
dr

∫
Λ
dr′ (∂tφ+ ∇ · JE[φ])M−1

(
∂tφ+ ∇′ · JE[φ]

)
,

(2.29)
where ∇′ stands for derivatives with respect to r′ and:

M =
d∑

α=1

d∑
β=1

∂α∂
′
β

(
σαβδ(r− r′)

)
. (2.30)

Finally, the probability of observing a given configuration φf at time tf is:

P[t0,tf ](φ(r, tf ) = φf (r)) =

∫
DφP({φ}tft0 )

∏
r∈Λ

δ (φ(r, tf )− φf (r)) , (2.31)

which in the large Ω limit, using again the steepest descent method, can be written
as:

P[t0,tf ](φ(r, tf ) = φf (r)) � exp
[
ΩI[t0,tf ][φf ]

]
, (2.32)

where
I[t0,tf ][φf ] = inf

{φ}
S[t0,tf ][φ] , (2.33)

with the constraint φ(r, tf ) = φf (r). Therefore, the problem of studying fluctua-
tions of the final profile φf becomes a variational problem.

Once the methodology to obtain the probability distribution of the final con-
figuration φf has been presented, we proceed to explain why it is important to
characterize such fluctuations by introducing an essential element in nonequilib-
rium situations. Let us assume that our system reaches, after an appropriated tran-
sient, a steady state characterized by a time-independent probability distribution
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Pst[φ], called stationary probability distribution, solution of Fokker-Planck equa-
tion (2.15). For large Ω-values, this probability could be written as:

Pst[φ] � exp
[
−ΩV0[φ] +O((Ω)0)

]
, (2.34)

where V0[φ] is known as quasi-potential [26]. Remarkably, V0[φ] ≥ 0 and the
minimum corresponds to the stationary solution of the macroscopic equation (2.3),
namely φst(r). Therefore:

V0[φst] = 0 ,
δV0[φ]

δφ

∣∣∣∣
φ=φst

= 0 . (2.35)

Trivially, in the macroscopic limit Ω → ∞, the stationary probability distribution
becomes a Dirac delta function of the form:

Pst[φ] =
∏
r∈Λ

δ (φ(r)− φst(r)) . (2.36)

As we can see, Pst[φ] provides information about the probability of observing
a given configuration (not a trajectory) φ(r). Let us a consider, for instance, a
driven diffusive system at equilibrium where the particle density conserves locally
(that is, the relevant field characterizing the system is the density ρ(r, t)). The
evolution of such a system is given by (2.10). It can be proved [16, 17] that the
quasi-potential is of the form:

V0[φ] =

∫
Λ
dr
(
f [ρ]− f [ρst]− f ′[ρst](ρ− ρst)

)
, (2.37)

where f ′[ρst] = µ is the chemical potential. If the system at hand is homoge-
neous (i.e. homogeneous boundary conditions and no external drift), the station-
ary probability distribution is indeed given by Boltzmann-Einstein formula (2.1)-
(2.2). Consequently, the quasi-potential corresponds to the minimum reversible
work necessary to observe a given fluctuation ρ plus the energy contribution due
to the exchange of particles with the external reservoir. From a thermodynamical
point of view, the integrand in (2.37) is nothing more that the variation of the grand
potential per unit of volume, characteristic function of the grand canonical ensem-
ble. Hence, the quasi-potential could be considered as a good candidate for being
the nonequilibrium extension of the available energy, representing the connection
between the microscopic (probability of a fluctuations) and the macroscopic (ther-
modynamical quantities) levels.
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2.4. Macroscopic Fluctuation Theory

Characterizing the structure of the quasi-potential out of equilibrium is usually
a really hard task. Indeed, V0[φ] will present in general a non-local behaviour re-
flecting the existence of long-range spatial correlations typical of nonequilibrium
systems. One way to proceed is introducing the expression of the stationary prob-
ability (2.34) in the Fokker-Planck equation (2.15), obtaining a Hamilton-Jacobi
equation for the quasi-potential. However, we show here another mechanism to
compute V0[φ] by studying fluctuations of the final configuration φ. The probabil-
ity of observing a given configuration φ̃(r) at time tf = 0 assuming that the state
of the system at t0 = −∞ was the macroscopic stationary one can be written as:

P[−∞,0](φ(r, 0) = φ̃(r)|φ(r,−∞) = φst(r)) = Pst(φst)P[−∞,0](φ(r, 0) = φ̃(r)) ,
(2.38)

where Pst(φst) and P[−∞,0](φ(r, 0) = φ̃(r)) are given by (2.34) and (2.31), respec-
tively. Since we look for a stationary probability of a configuration, its asymptotic
large Ω limit is also given by (2.34). Consequently:

V0[φ̃] = I[−∞,0][φ̃] , (2.39)

where the right-hand side of the equality defines a variational problem with con-
straint φ(r,−∞) = φst and φ(r, 0) = φ̃(r). Thus, the form of the quasi-potential
is fully determined by studying fluctuations of the configuration φ̃ at time t = 0 of
a system which was, at t = −∞, in the macroscopic stationary state.

To conclude with this section, we present an alternative way to reproduce Eq.
(2.39). This method was developed by Bertini et al. [16] and it is based on the
definition of the dual or adjoint dynamics. In 1953, Onsager and Machlup [104]
proved that, in equilibrium, the path followed by the system to create a fluctuation
starting from an stationary state is the time reversal of the relaxation path both
along the same dynamic. However, we do not expected that both path could fol-
low the same dynamic out of equilibrium as a consequence of dissipation. Let us
define the time reversal operator θ as θφ(r, t) = φ(r,−t), θj(r, t) = −j(r,−t).
The probability of observing a particular trajectory {φ}tft0 from a fixed initial state
φ(r, t0) = φt0(r) distributed as Pst[φt0 ] is naturally given by:

P({φ}tft0 |φ(r, t0) = φt0(r)) = Pst[φt0 ]P({φ}τt0) , (2.40)

In this way, the adjoint dynamics is defined as the one to which one can associate
a new trajectory weight P ∗ satisfying

P
(
{φ}tft0 |φ(r, t0) = φt0(r)

)
= P ∗

(
{θφ}−t0−tf |θφ(r,−tf ) = φ(r, tf )

)
. (2.41)
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This relation can be interpreted as a generalization of detailed balance condition:
the probability of evolving from an initial state to another fluctuating state under
the original dynamics is the same that the probability of evolving from that state to
the initial one under the adjoint dynamics. Consequently, in the asymptotic large
Ω limit:

V [φt0 ] + S[t0,tf ][φ] = V [φtf ] + S∗[−tf ,−t0][θφ] , (2.42)

where S∗ is the action associated to the adjoint dynamic and we have written
φ(r, tf ) = φtf (r) for simplicity. In this way, assuming that the adjoint dynamics
admits a mesoscopic description of the form (2.9), it can be proved [16, 112] that
the deterministic part of Langevin equation governing the adjoint dynamic cor-
responds to the time reversed equations for the optimal paths evolving from φst
to an arbitrary state φ(r) in the original dynamics. If we now consider again the
problem of studying fluctuations of the final configuration φ̃ by fixing t0 = −∞,
tf = 0, φ−∞ = φst and φ0 = φ̃, we can then integrated both sides of (2.41) over
all possible trajectories obtaining:

V [φst] + I[−∞,0][φ̃] = V [φ̃] + I∗[0,∞][φst] . (2.43)

Following (2.35), V [φst] = 0. Moreover, I∗[0,∞][φst] = 0 since it corresponds to a
relaxation in the adjoint dynamics, that is the optimal trajectory associated to I∗

is the classical trajectory solving the macroscopic adjoint dynamics. Hence, we
recover equation (2.39). This definition of the adjoint dynamic and later analysis
lead to a nonequilibrium generalization of the Onsager-Machlup relationship: the
optimal path sustaining a given fluctuation starting from the stationary state in the
original dynamics is the time reversed of the relaxation path following the adjoint
dynamics (see [16, 112]). Furthermore, this construction provides an useful tool
to solve the difficult problem of determining the most probable trajectory to a
given configuration and the quasi-potential by obtaining the adjoint dynamics and
solving a relaxation process to the stationary state (see, for instance [138]).

2.4.2 Fluctuations of space- and time-integrated observables

Besides the conserved field φ(r, t), there exists other observables of great rele-
vance in describing system behaviour, e.g. work, entropy production, time-integrated
total mass, activity, etc. In particular, space- and time-integrated current plays a
prominent role in characterizing nonequilibrium situations [16–18, 40, 41]. There-
fore, it becomes a important task to study the statistic of fluctuations of such es-
sential quantities. Here and upon, let us consider t0 = 0 and tf = τ . We define a
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space- and time-integrated observable as:

a ≡ 1

τ

∫ τ

0
dt

∫
Λ
dr a[φ, j] , (2.44)

where a[φ, j] could depend on both fields φ and j. We are interested in the probabil-
ity distribution for this observable, namely Pτ (a), in the large scale separation (i.e.
large Ω) and τ limits. In these asymptotics, the scaling form of Pτ (a) is described
within the framework of the Large Deviation Theory [139–144], which has wit-
nessed a tremendous development in the last decades both in mathematics (within
the Donsker–Varadhan approach [20–23], the Gärtner–Ellis theorem [145, 146]
and the Freidlin–Wentzell framework [26]) and in statistical physics in the study
of many example systems (see for instance [147–152]). Therefore, the asymptotic
limit of Pτ (a) is controlled by the large deviation principle, which establishes
that the probability of observing a given value a of the space- and time-integrated
a[φ, j] scales for large Ω and τ as:

Pτ (a) � exp [−τΩG[a]] . (2.45)

The function G(a) ≥ 0 is the Large Deviation Function (LDF) controlling the
statistic of fluctuations of the observable aτ , an element of crucial relevance in
MFT. Indeed, as we have shown in Introduction, the LDF is considered to be a
good candidate for acting as a nonequilibrium thermodynamic potential6. Defining
the averaged value7 of a as:

a∗ = 〈a〉 , (2.46)

one observe that:
G(a∗) = 0 , G′(a∗) = 0 . (2.47)

In other words, the LDF has a global minimum in a∗, so the large deviation princi-
ple shows how the probability of the observable a peaks around the averaged value
a∗. The LDF is, thus, a measure of the exponential rate at which the likelihood of
observing a given value a 6= a∗ decays as τ and Ω increases.

Despite of being such a fundamental element, characterizing the structure of
the LDF is a highly non-trivial problem. To shed light on this issue, in the fol-
lowing lines we will describe the study of space- and time-integrated observables

6We refer the reader to works by Ruelle, Ellis and Oono [24, 25, 27–29, 35] where the anal-
ogy between large deviation theory and equilibrium statistical mechanics is study in depth, as well
as the review by Touchette [19] for a self-contained derivation of such relation and extensions to
nonequilibrium situations.

7It is also known as stationary, typical or expected value.
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fluctuations under the framework of the MFT, which will open the door to a more
accessible definition of the large deviation function. In this way, we can write the
probability Pτ (a) as the sum over all possible paths, correspondingly weighted,
compatible with the constraint (2.44). Thus, considering an arbitrary initial state
chosen from the stationary distribution (2.34), the probability density function
(pdf) of the integrated observable a takes the form:

Pτ (a) =

∫
Dφ
∫
DjPst(φ(r, 0))P({φ, j}τ0)

∏
r∈Λ

∏
t∈[0,τ ]

δ (∂tφ+ ∇ · j)

· δ

(
a− 1

τ

∫ τ

0
dt

∫
Λ
dr a[φ, j]

)
, (2.48)

where the weight of each trajectory P({φ, j}τ0) is given by (2.19). Once again,
the Dirac delta ensures that constraint (2.44) is satisfied. We can now just use the
Fourier-Laplace representation of the δ-functionals, namely

δ

(
a− 1

τ

∫ τ

0
dt

∫
Λ
dr a[φ, j]

)
=

∫
dλ e−Ωτλ·(a− 1

τ

∫ τ
0 dt

∫
Λ dr a[φ,j]) , (2.49)

δ (∂tφ+ ∇ · j) =

∫
Dψ e−Ω

∫ τ
0 dt

∫
Λ drψ(r,t)(∂tφ+∇·j) , (2.50)

where the function ψ(r, t) depends on the space- and time-coordinates and its
boundary conditions are defined by problem geometry. Consequently, the proba-
bility Pτ (a) reads (in the large Ω limit):

Pτ (a) =
1

Z̃

∫
Dφ
∫
Dj

∫
dλ

∫
dψ Pst(φ(r, 0)) exp [−τΩSτ [φ, j,λ, ψ]]

(2.51)
with Z̃ a normalization constant and where the action takes the form:

Sτ [φ, j,λ, ψ] =
τ−1

2

∫ τ

0
dt

∫
Λ
dr
{

(j− J[φ]) · σ̂−1(j− J[φ]) + ψ (∂tφ+ ∇ · j)
}

+λ · (a− 1

τ

∫ τ

0
dt

∫
Λ
dr a[φ, j]) . (2.52)

Finally, in the large time limit, we can make use of the steepest descent method to
obtain:

P (a) � exp− [τΩG[a]] , (2.53)

which is nothing more that the manifestation of the large deviation principle (2.45),
where the LDF is defined by:

G[a] = lim
τ→∞

1

τ

{
min
{φ,j,λ,ψ}

Sτ [φ, j,λ, ψ]

}
. (2.54)
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Therefore, the problem of determining the LDF becomes now a variational prob-
lem in which λ and ψ(r, t) act as Lagrange multipliers guaranteeing that con-
straints (2.9) and (2.44) are satisfied. The set {φã, jã,λã, ψã} minimizing the
action are called optimal or most probable paths and they represent the trajectories
followed by the system in mesoscopic phase space to sustain a given large-time
fluctuation. The optimal paths are one of the most interesting results derived from
MFT: we can obtain not only the probability of observing a fluctuation, but also
the sequence of configurations that the system exhibits during its evolution to such
an event. Finally, it is important to stress that the concept of optimal path is linked
to the low-noise and large time limit: indeed, for instance, if the noise of the sys-
tem is large enough and we study short time trajectories, there can exist many
different and equally likely paths sustaining the same event, and thus, establishing
a general theory for not only small but arbitrarily large fluctuations becomes an
immeasurable problem.

Let us remark several aspects on the definition of the LDF and the associated
variational problem (2.54). Firstly, when going from (2.51) to (2.53) in the large
time limit via the saddle-point method, the dependence on the initial probability
vanishes at leading order in τ . Indeed, since the initial state is chosen from the
stationary probability distribution, the term Pst(φ0) appears as subdominant orders
in the scaling (2.53), providing no contribution to the computation of the LDF.
Secondly, variational problem (2.54) needs to be supplemented with appropiated
boundary and initial conditions. While boundary conditions are given by (2.5), the
issue of initial conditions worths to be explained more in detail. As we have said,
we choose the initial condition arbitrarily from the stationary distribution (2.34),
which implies that one should minimize over such initial condition to obtain the
proper LDF. However, as we will see along this Thesis, in many nonequilibrium
situations the dependence on the initial condition will disappear for large times as
a consequence of the dissipative behaviour of nonequilibrium dynamics.

The structure of the conditioned probability (2.48) remind to that of the mi-
crocanonical ensemble of equilibrium statistical physics. Inspired by that, let us
introduce a “canonical version” of our problem by performing a Laplace transform
of (2.48). This operation leads to the generating function:

Πτ (λ) ≡ 〈e−τΩλã〉ã =

∫
e−τΩλaPτ (a)dã . (2.55)

After some straightforward operations, it takes the form (in the large Ω limit):

Πτ (λ) =
1

Z̃

∫
Dφ
∫
DjPst(φ(r, 0)) exp

[
−τΩSλτ [φ, j, ψ]

]
(2.56)
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with:

Sλτ [φ, j, ψ] =
τ−1

2

∫ τ

0
dt

∫
Λ
dr
{

(j− J[φ]) · σ̂−1(j− J[φ]) + ψ (∂tφ+ ∇j)
}

+
1

τ

∫ τ

0
dt

∫
Λ
drλ · a[φ, j] . (2.57)

The dynamics described by the path weight e−τL
dSλ
τ is known as biased or tilted

dynamics. The importance of this biased description lies in the fact that, after
reweighting the trajectories, rare events in the original dynamics becomes typical
in the tilted one. This property is the basis of many techniques to measure the
statistic of fluctuations in simulations, e.g. the cloning algorithm [153–155] or
transition path samplings [156–158]. Nevertheless, the tilted dynamics described
above does not preserve probability, an undesirable property in order to describe
a physical systems. Recent works have shown that it is possible to define a new
probability-conserved effective dynamics asymptotically equivalent to the biased
one at large times whose typical events corresponds to the rare ones in the original
dynamics [74–77]. These ideas will be study in depth in Chapter 7 in the case of a
particle under the action of a periodic force in the weak-noise limit.

Coming back to generating function, in the large time limit, we can apply the
steepest-descent method to write (2.55) as:

Πτ (λ) � exp [−τΩµ(λ)] , (2.58)

where:

µ(λ) = lim
τ→∞

{
1

τ
min
{φ,j,ψ}

Sλτ [φ, j, ψ]

}
(2.59)

is the scaled Cumulant Generating Function (sCGF). This function can be seen as
the conjugate “potential” to G[a], a similar relation to the free energy being the
Legendre transform of the entropy in equilibrium thermodynamics. Indeed, the
Gärtner-Ellis theorem [19, 24, 37] establishes that LDF and sCGF are related via
the Legendre-Fenchel transform:

µ(λ) = sup
a
{G(a)− τΩλ · a} . (2.60)

Consequently, the sCGF works as a dynamical free energy (dFE) fully character-
izing the probability distribution of a. Furthermore, the vector λ is conjugated to
integrated observable a, in again a similar way to the relation between tempera-
ture and energy in equilibrium (see Eq. (29) and (31) Introduction). Under the
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2.5. Some interesting results in fluctuations

appropriated convexity conditions (which in our situation consist in G(a) being a
concave function of a) we can invert (2.60) obtaining:

G(a) = inf
λ
{µ(λ)− τΩλ · a} . (2.61)

Hence, these two Legendre-Fenchel transformations describe the change of “en-
semble” between microcanonical (fixed a) and canonical (fixed λ) descriptions.
Furthermore, this correspondence can be extended at the level of trajectories: un-
der the same convexity hypothesis, both trajectories conditioned to exhibit a given
value a of the integrated observable and biased trajectories weighted by e−τΩSλ

τ

present an asymptotically equivalent distribution in the large time limit. A rigor-
ous description of this equivalence and its consequences was developed by Chétrite
and Touchette [74].

Finally, the cumulants of the pdf Pτ (a) can be now obtained from successive
derivatives of the SCGF µ(λ) evaluated at λ = 0, that is:

µ
(n)
(n1...nd) ≡

[
∂nµ(λ)

∂λn1
1 . . . ∂λndd

]
λ=0

, (2.62)

with
∑d

i=1 ni = n and λi the i-th component of the vector λ. Furthermore, ac-
cording to the definition of sCGF, one can show for n ≤ 3 that µ(n)

(n1,...,nd) =

(τΩ)n−1
〈
∆an1

1 ...∆andd
〉
, with ∆ai ≡ ai − (1 − δn,1)a∗i and ai the component

of a along the i-direction. Therefore, the cummulants µ(n)
(n1,...,nd) are nothing but

spatiotemporal integrals of n-point correlators of the observable a[φ, j] (see [18]
for the particular case of a[φ, j] = j).

Once we have described the different tools and mechanisms characterizing
MFT, we are now in position to proceed with the study of macroscopic fluctuations
and rare events which will be developed in this Thesis. However, before going
further, in the next section we will present some previous results obtained within
the framework the Macroscopic Fluctuation Theory.

2.5 Some interesting results in fluctuations

Fluctuations have always been a target of study of Statistical Mechanics. Many
very general results have been obtained to understand the nature and behaviour of
fluctuations, as, for instance, the broadly known fluctuation-dissipation theorem
[100], which relates the linear response of a system to an external force with the
intensity of a spontaneous fluctuation of the system in equilibrium8. This interest

8A particular example of such theorem is the local Einstein relation (2.11)
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Chapter 2. An Introduction to Macroscopic Fluctuation Theory

has strongly increased in the last decades, when an enormous number of works
and advances have been developed in the field of macroscopic fluctuations. In this
context, the establishment of the MFT and the great progress made in simulating
rare events are considered as turning points in the study of fluctuations. With
the aim of putting in context and illustrating many of the concepts and outcomes
which will appear in following chapters, we will now summarize some of the most
relevant breakthroughs obtained in this field.

2.5.1 Gallavotti-Cohen Fluctuation Theorem

Obtaining the probability distribution of fluctuations far from equilibrium is an am-
bitious task hard to succeed in even in most simple cases. One of the main reasons
of this adversity is the major role played by the microscopic dynamics out of equi-
librium. However, some properties of such microscopic dynamics could provide
clues on the behaviour of fluctuations’ distribution. In particular, time-reversibility
of laws governing microscopic world leads to extremely relevant results, usually
valid far from equilibrium, known as fluctuation theorems. One of the first estab-
lishments of a fluctuation theorem was made by Evans, Cohen and Morris [50] in
their study of fluctuations in shear stress of fluids in far from equilibrium steady
states. Other interesting examples9 in this sense are Bochkov and Kuzovlev rela-
tion [160,161], Jarzynski equality10 [163,164], Crooks fluctuation theorem [165],
Hatano-Sasa relation [166] or fluctuation theorems for quantum systems as the
ones presented in works by Kurchan [167] and Esposito and Mukamel [168]. How-
ever, in this Section we will focus on the work developed by Gallavotti and Co-
hen [44], which formulated a fluctuation theorem for macroscopic (deterministic)
nonequilibrium system in steady states. This outcome was proved to be valid also
for a stochastic Langevin dynamics of a single particle (Kurchan [48] ) and, later,
extended to very general Markov processes (Lebowitz and Spohn [49]). In our
context, considering fluctuations of the space- and time-integrated current, q, of
driven systems (let us suppose, for simplicity, that the external drift E is constant),
the Gallavotti-Cohen (GC) fluctuation theorem (also called Gallavotti-Cohen sym-
metry) reads:

lim
τ→∞

1

τΩ
ln

[
Pτ (q)

Pτ (−q)

]
= 2ε · q , (2.63)

9We refer to review by Harris and Schütz [159]
10Both Bochkov and Kuzovlev (1977) and Jarzynski (2007) formulated a fluctuation theorem of

the work along trajectories arbitrarily far from equilibrium from an initial (equilibrium) state to a
final one. Although both derivations lead to apparently different results, they turn to be mathemati-
cally equivalent. The solution of this conflict resides in the different definition of work considered in
their calculations. To see a rigorous description (and resolution) of this contradiction we refer [162]
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2.5. Some interesting results in fluctuations

where ε = υ + E is the driving force, which depends on the external field and
on the boundary gradient via υ, and it is related to the entropy production in the
system. This relation establishes that the probability of observing a given value
of the integrated current q and the one of the reverse event −q are related via the
driving force ε. Remarkable, this highly non-trivial result is valid arbitrarily far
from equilibrium. In the language of LDF, the GC symmetry takes form:

G(q)−G(−q) = 2ε · q , (2.64)

which will be of special relevance, among other occasions, when one pretends to
characterize the statistic of current fluctuations in the whole q-space.

2.5.2 Additivity principle

As it was shown in the previous section, one of the main goals when studying
macroscopic fluctuations consist in solving the variational problem defined by
(2.54). Nevertheless, it becomes a highly complex task. Indeed, Eq. (2.54) leads
to a set of coupled non-linear partial differential equations which could not be,
in general, solved. Moreover, the solution of such a set of equations could not be
unique, and only one of them minimizes the action. In this direction, Bodineau and
Derrida [40] established an additivity principle (AP) for large time fluctuations of
the space- and time-integrated current

q =
1

τ

∫ τ

0
dt

∫ L

0
dx j(x, t) , (2.65)

in one-dimensional driven diffusive systems in contact with two boundary reser-
voirs φ(0, t) = φL and φ(L, t) = φR. Trivially, assuming that macroscopic equa-
tion (2.3) associated to that systems admits a time-independent solution, i.e. the
macroscopic system exhibits a stationary state, the optimal paths associated to a
large-time fluctuation where the value of the integrated current q is equal to the av-
eraged (stationary) value 〈q〉 are also time-independent. Inspired by this fact, the
additivity principle hypothsize that for fluctuations near the stationary value, the
optimal profiles are time-independent11. This conjecture have strong implications

11In the original work by Bodineau and Derrida [40], they conjectured that, if we divide the
system into two subsystems, the global LDF is the result of minimizing of the sum of the LDF of each
subsystem over the field φ at their contact surface (under an appropriate scaling hypothesis [40,169]).
It has been proved that, for d = 1, this hypothesis is equivalent to consider the optimal paths to be
time-independent. Nowadays, it is broadly accepted that the additivity conjecture refers to time-
independence of the optimal profiles, even for different situations than the one presented Bodineau
and Derrida.
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Chapter 2. An Introduction to Macroscopic Fluctuation Theory

in one-dimensional systems. Since φ and j are coupled via continuity equation
(2.9), if both fields are time independent, the optimal current path is uniform with
value j(x, t) = q. Therefore, the variational problem (2.54) eminently simpli-
fies [17,40,62,170–172]. From a physical point of view, additivity principle estab-
lishes that the 1d-system, after an short transient time, reaches a time-independent
state with a structured field φ(r) and uniform current q12.

In one dimension, whichever the boundary conditions are, the validity of this
principle has been demonstrated in simulations for 1d stochastic lattice gases [18,
45, 173, 174]. However, it has been shown that this result does not hold, in gen-
eral, for large current fluctuations. One example of that is the case of periodic
boundary conditions which present an interesting phenomenology: while for cur-
rent fluctuations near the averaged value the additivity conjecture applies, to sus-
tain extremely rare fluctuations coherent jammed (soliton-like) structures emerge
traveling around the system at a constant velocity [41, 57, 175]. This traveling
waves solutions enhanced the probability of observing such rare events, breaking
the additivity principle and evincing the existence of a dynamical phase transition.

The application of this conjecture to systems with d > 1 poses more prob-
lems. Indeed, considering the optimal paths to be time-independent implies, ac-
cording to continuity equation, that the optimal current field is now divergence-free
∇ · jã = 0, but not necessarily uniform. This question opens the door to two pos-
sible extensions of the additivity principle to d-dimensional systems (d > 1): (i)
considering time-independent optimal paths and an uniform optimal current field
(the straightforward one) or (ii) considering time-independent optimal paths but a
non-uniform optimal current field (known as weak additivity principle). In a recent
work, Pérez-Espigares et al. [176] have shown that, for the 2d Kipnis-Marchioro-
Presutti (KMP) model [126] with a boundary gradient in one direction and periodic
boundary conditions in the other, the solution given by imposes weak additivity
principle better minimizes the action with respect to the straightforward extension
of the AP. In Chapter 3, we will present an original result which provides, un-
der very general conditions, a fundamental constraint that must be satisfied by the
optimal current fields, which will clarify this dilemma.

2.5.3 Isometric Fluctuation Relation

Under the light of the straightforward extension of the additivity principle (time-
independent optimal paths and uniform optimal current field) when studying fluc-
tuations of the integrated current, Hurtado et al. [46] derived an interesting re-

12If q = 〈q〉, the field φ will correspond to the stationary state, φst. However, if q 6= 〈q〉 the
system will evolve to time-independent state with φ 6= φst
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lation between the probabilities of observing any pair of isometric currents, i.e.
|q| = |q′|. They observed that, as a consequence of the time-reversibility of the
macroscopic dynamics, the optimal field φ is invariant under rotations of the cur-
rent q. This result leads to what they called Isometric Fluctuation Relation (IFR),
which takes the form:

lim
τ→∞

1

τ,Ω
ln
Pτ (q)

Pτ (q′)
= ε · (q− q′) , (2.66)

where ε (as in GC fluctuation theorem) is a constant vector related to the rate of
entropy production in the system (thermodynamic force). Interestingly, this result
includes Gallavotti-Cohen symmetry in the case q′ = −q. The strong conse-
quences derived from IFR have implied relevant advances in the study and char-
acterization of fluctuations statistics. For instance, IFR provides a hierarchies of
equations for cumulants of the integrated current probability distribution and their
associated response coefficients [18,46] which go beyond Onsager’s reciprocity re-
lations [102, 103] and Green-Kubo formulas [97–99]. However, it is still an open
question how this relation modifies when we consider the optimal current not to
be uniform, i.e. under the weak additivity principle.

2.5.4 Dynamical Phase Transitions at fluctuating level

Phase transitions are one of the most ubiquitous phenomena in Nature, represent-
ing a key element in equilibrium thermodynamics. They describe the transition
between two equilibrium states, that is two states which maximize the entropy
of the system or minimize the Gibbs free energy13 whose physical properties re-
main constant. From a mathematical point of view, a equilibrium phase transition
is characterized by a non-analiticity of the Gibbs free energy. Ehrenfest classified
the different types of phase transitions into two main groups. First-order or discon-
tinuous phase transitions are characterized by the abrupt change of some quantities
revealing the presence of non-analiticities in the first derivative of the free energy.
Associated to these transitions one could find phenomena such as phases coexis-
tence or hysteresis cycles. On the other hand, second order or continuous phase
transitions appears when the non-analiticity of the free energy takes place in the
second derivative. In theses transitions, order emerges continuously at some crit-
ical point, as captured by an order parameter, signaling the spontaneous breaking
of a symmetry. At the critical point, the system presents really interesting features
such as scale-invariance or long-range correlations in its physical quantities.

13This definition can be equivalently extended to minimization of other thermodynamic poten-
tials, e.g. Helmhotz free energy.

39



Chapter 2. An Introduction to Macroscopic Fluctuation Theory

In recent years, these ideas have been extended to the realm of fluctuations
both in equilibrium and nonequilibrium physics. We now deal with transitions
not between (fixed) states but among trajectories that minimizes the action of
the system: that is reason why they are known as dynamical phase transitions
(DPTs). They describe how the trajectories that lead to an atypical value of the
time-integrated observable can change from one class to another when varying the
value of this observable. They have been identified in different systems, both clas-
sical [16, 17, 41, 52, 55–59, 62, 177–182] and quantum [183–185], with important
examples in glass formers [61, 186–191], micromasers and superconducting tran-
sistors [192, 193], or applications such as DPT-based quantum thermal switches
[194–196]. Interestingly, some dynamical phases may display emergent order and
collective rearrangements in their trajectories, including symmetry-breaking phe-
nomena [18,41,56,57], while the large deviation functions (LDFs) [19] controlling
the statistics of these fluctuations exhibit non-analyticities and Lee-Yang singulari-
ties [197–204] at the DPT reminiscent of standard critical behavior. Moreover, the
emergence of coherent structures associated to rare fluctuations implies in turn that
these extreme events are far more probable than previously anticipated [18,60]. In
our language, dynamical phase transitions separate regions of the fluctuating ob-
servable space (for instance, a-space) which corresponds to different solutions of
the variational problem (2.54). In analogy with Ehrenfest’s classification, DPTs
could be of first- or second-order (depending on whether the non-analiticity ap-
pears at the first or second derivative of nonequilibrium potential), or even they
can exhibit a more complex behavior. In Chapter 5 we will apply these ideas to
the study of current fluctuations of a paradigmatic 2-dimensional model of driven
diffusive systems, obtaining, among other results, the “dynamical” phase diagram
showing the emergency of both first- and second-order dynamical phase transitions
at a fluctuating level.

2.6 Mesoscopic description of other system of interest

To conclude Chapter 2, we briefly present the mesoscopic description of two mod-
els of systems which will be also object of study this Thesis. We will define
their dynamics by a Langevin equation and we will show their associated Fokker-
Planck and path integral formulations. Once these three descriptions are known,
the study of macroscopic fluctuations will follow the same MFT techniques al-
ready described in Section 2.4.
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2.6.1 Systems with a non-conserved local dynamics

These systems are described by a scalar field φ(r, t), where r ∈ Λ ≡ [0, L]d is
the spatial coordinates and t ∈ [t0, tf ] the time, which evolves according to the
Langevin equation:

∂tφ(r, t) = F [φ(r, t)] +$(r, t) , (2.67)

where F [φ(r, t)] is a given function of φ(r, t) and its derivatives, and $(r, t) is a
Gaussian white noise with correlations:

〈$(r, t)〉 = 0 (2.68)

〈$(r, t)$(r′, t′)〉 =
1

Ω
G[φ(r, t)]δ(r− r′)δ(t− t′) . (2.69)

The associated Fokker-Planck equations takes the form:

∂tP [φ; t] =

∫
Λ
dr

δ

δφ(r)

[
−
(
F [φ] +

(1− η)

2Ω

δG[φ]

δφ(r)

)
P [φ; t]

+
1

2Ω

δ

δφ(r)
(G[φ]P [φ; t])

]
(2.70)

and the weight of a given trajectory {φ(r, t)}τ0 can be written as:

P({φ}tft0 ) ∝ exp
[
−ΩSnc[t0,tf ][φ]

]
, (2.71)

with:

Snc[t0,tf ][φ] =
1

2

∫ tf

t0

dt

∫
Λ
dr

[
1

G[φ]

(
∂tφ− F [φ] +

(1− η)

Ω

δG[φ]

δφ(r)

)2

+
2(1− η)

Ω

δF [φ]

δφ(r)

]
. (2.72)

2.6.2 Particle diffusing under the action of an external force

This system can be interpreted as a particular model of the previous one. Consider
a particle subjected to a force F [x(t)] and a thermal noise ζ(t) (for simplicity, we
restrict to the one-dimensional case). At a given time t ∈ [0, τ ], the particle is
located at x(t). In the overdamped limit, the evolution of its position is described
by the Langevin equation

ẋ(t) = F [x(t)] + ζ(t) , (2.73)
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where ζ(t) is a Gaussian white noise with:

〈ξ(t)〉 = 0 (2.74)

〈ζ(t)ξ(t′)〉 =
1

Ω
G[x(t)]δ(t− t′) . (2.75)

The dynamics of the system given by Langevin equation (2.73) is equiva-
lently described by the Fokker-Planck equation for the evolution of the probability
P (x, t) of finding the particle at a position x at time t, which takes the form

∂tP (x, t) = −∂x
[(
F [x(t)] +

(1− η)

2Ω
G′[x(t)]

)
P (x, t)

]
+

1

2Ω
∂2
x (G[x(t)]P (x, t)) ,

(2.76)
where ′ denotes the derivative with respect to the argument. Finally, the Onsager-
Machlup weight of a trajectory {x(t)}τ0 of duration τ takes the form:

P({x(t)}τ0) ∝ exp

[
−Ω

2

∫ τ

0
dt

{
(ẋ− F + (1−η)

2Ω G′)2

G
+

2(1− η)

Ω
F ′

}]
.

(2.77)
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Chapter 3

Structure of the optimal paths to a fluc-
tuation

3.1 Introduction

As we have seen, understanding the statistic of macroscopic fluctuations could
pave the way to a better comprehension of nonequilibrium behaviour. However,
this highly non-trivial problem remains as a major challenge of theoretical physics.
Macroscopic Fluctuation Theory has shed light on this situation in the context
of driven diffusive systems providing a powerful scheme to determine the large
deviation function controlling the probability distribution of a fluctuation as well
as the most probable paths the system follows to carry out such an event [16,38,53–
55]. Among all possible observables that can be defined, the currents of locally-
conserved quantities play a key role as tokens of nonequilibrium physics, so their
associated LDF becomes a central object of investigation. Under MFT framework
[16], the problem of characterizing the current LDF converts into a spatio-temporal
variational problem for the locally-conserved fields and the associated currents
(see Section 2.4.2).

The complexity of the MFT variational problem is such that most studies to
date have focused on the current statistics of oversimplified one-dimensional (1d)
transport models for which the MFT problem is somewhat simpler [40, 45, 170–
174, 205, 206], specially when aided with the Additivity Principle (see Section
2.5.2). Only very recently MFT has been used to understand current fluctuations
in more realistic high-dimensional (d > 1) systems [18, 46, 52, 176, 207–209],
and these studies have unveiled a rich phenomenology which only appears for
d > 1, including hidden symmetries leading to new fluctuation theorems [46],

43



Chapter 3. Structure of the optimal paths to a fluctuation

a weak generalization of the Additivity Principle [176], and complex dynamic
phase transitions associated to competing emergent orders and symmetry break-
ing phenomena [52]. Crucially, the richness found in d > 1 stems in all cases
from the relevance of structured optimal current fields at the fluctuating level, a
common trait of all these new results [52, 176, 209]. In this chapter we will show
that structured optimal current fields are a fundamental requirement of any high-
dimensional fluctuating theory, rather than a mathematical accident. In particular,
a simple calculation within MFT will allow us to relate the Jacobian matrix of
the reduced optimal current field (to be defined below) with the Hessian matrix
of a response field which guarantees that the continuity equation expressing the
local conservation law is fulfilled at all points of space and time. A natural ana-
lyticity requirement for this response field then leads to a strong condition on the
reduced optimal current field: in brief, the optimal current vector field is bounded
to exhibit non-trivial structure along the dominant direction in all its orthogonal
components, and this structure is coupled to the optimal conserved field via the
mobility transport coefficient. This coupling is explicitly non-local in space and
time, a main feature of nonequilibrium physics. This result sheds new light and
encompass all previous works on current fluctuations in d > 1, opening the door
to further developments in this field.

To illustrate the meaning of the structure described above, we show in Fig. 3.1
both the optimal temperature T (x) and current vector fields associated to a par-
ticular (rare) current fluctuation in a broadly studied driven diffusive system, the
two-dimensional Kipnis-Marchioro-Presutti (KMP) model of heat transport [126]
in contact with two boundary thermal baths located at x = 0, 1 and no external
field [176]. In this case, the dominant direction of structure formation corresponds
to that of the temperature gradient, resulting in optimal temperature fields with
structure only along the x-direction (Fig. 3.1.b-c). Consequently, the optimal
current vector field exhibits a non-trivial structure in its y-component along the
gradient x-direction, proportional to the local temperature field squared as dic-
tated by the KMP mobility transport coefficient, which is simply σ(φ) = φ2. This
structure of the current y-component, which contrasts with the constant structure-
less x-component (Fig. 3.1.a), is the manifestation of a general theorem for driven
diffusive systems that we will prove in the following lines.

In this way, in Section 3.2 we will present the variational problem derived
from MFT when studying fluctuations of the space- and time-integrated current.
In Section 3.3 we will analyze the structure of Euler-Lagrange equations for such a
problem, which will allow us to deduced a general theorem for the structure of the
optimal current fields. Furthermore, we will study the deep consequences derived
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3.2. Current fluctuations in driven diffusive systems

Figure 3.1: Optimal solution for the current vector field (a) and the temperature field (b and c)
associated to a given current fluctuation in the 2d Kipnis-Marchioro-Presutti model of heat transport
[126] in contact with two boundary thermal baths at temperatures φ(x = 0) = φ0 = 3 and φ(x =
1) = φ1 = 1 and no external field (in this model the locally-conserved field is the energy leading to
the study of optimal temperature fields, as we will see in Chapter 4). Gray lines in (a) depict both
local components of the optimal current vector field, while red arrows show the resultant vectors.
Note the non-trivial structure of the y-component of the current field along the gradient x-direction,
in stark contrast with the constant, structureless current x-component.

from this relation. In Section 3.4 we will compare this constraint on the current
fields with previous results and show in which way it could contribute to future
works in fluctuations of d-dimensional systems. Finally, in Section 3.5 we will
summarize the main points obtained along this chapter and present an outlook of
this work.

3.2 Current fluctuations in driven diffusive systems

To be more precise, we focus now on a broad class of d-dimensional anisotropic
driven diffusive systems characterized by a field φ(r, t), with r ∈ Λ ≡ [0, 1]d and
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Chapter 3. Structure of the optimal paths to a fluctuation

t ∈ [0, τ ] . As we have seen in Section 2.2.1, this field evolves in time according
to the following fluctuating hydrodynamics (mesoscopic) equation1

∂tφ(r, t) + ∇ ·
(
−D̂(φ)∇φ(r, t) + σ̂(φ)E + ξ(r, t)

)
= 0 . (3.1)

The field j(r, t) ≡ −D̂(φ)∇φ(r, t) + σ̂(φ)E + ξ(r, t) is the fluctuating current,
with E an external driving field. The deterministic part of the current field j(r, t)
is given by Fick’s law2 under an external driving. In this way, Eq. (3.1) is nothing
but the continuity equation expressing the local conservation law. We consider that
diffusivity and mobility matrices can be writen as D̂(φ) ≡ D(φ)Â and σ̂(φ) ≡
σ(φ)Â, respectively, with Â a diagonal matrix with components Âαβ = aαδαβ ,
α, β ∈ [1, d], which we assume constant and independent of the local field φ.
The matrix Â encodes information about the system underlying anistropy, i.e. the
possible change of microscopic jumps rates from one spatial direction to another.
In other words, the system could exhibit a different diffusive behaviour in each
spatial orientation. Hence, Â is called anisotropy matrix. According to (2.7)-(2.8),
the vector field ξ(r, t) is a Gaussian white noise term with:

〈ξ(r, t)〉 = 0 (3.2)

〈ξα(r, t)ξβ(r′, t′)〉 =
σ(φ)

Ω
aαδαβδ(r− r′)δ(t− t′) . (3.3)

It is important stress again that, at this mesoscopic level of description, the dif-
fusion and mobility matrices fully characterize the dynamic and fluctuation prop-
erties of the model at hand. In the absence of any driving mechanism, we ex-
pect the system to relax to equilirbium, implying that both transport coefficients
cannot be independent. Indeed, they are coupled via a local Einstein relation
D̂(φ) = σ̂(φ)f ′′0 (φ), with f0(φ) the equilibrium free energy density of the system
of interest and ′′ denoting second differentitation with respect to the argument (see
Eq. (2.11) and below). The results we are going to derived here can be however
easily generalized to more general theories violating the previous condition.

We are now in position to write the path integral representation of the given
stochastic dynamics, milestone of the Macroscopic Fluctuation Theory. As it was
shown in Sections 2.3.2 and 2.4, the probability of observing a particular trajectory
{φ(r, t), j(r, t)}τ0 of duration τ can be written, in the large Ω limit, as

P ({φ, j}τ0) � exp
(
− ΩSτ [φ, j]

)
, (3.4)

1To facilitate reading, we include here some concepts already introduced in Chapter 2.
2Or, equivalently, Fourier’s law.
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3.2. Current fluctuations in driven diffusive systems

where the action takes the form

Sτ [φ, j] =

∫ τ

0
dt

∫
Λ
dr

1

2σ(φ)
J (r, t) · Â−1J (r, t) , (3.5)

with the definition

J (r, t) ≡ j + D̂(φ)∇φ− σ̂(φ)E , (3.6)

and the additional constraint that the fields φ(r, t) and j(r, t) must be coupled via
the continuity equation at every point of space and time (see Eq. (3.1)),

∂tφ(r, t) + ∇ · j(r, t) = 0 . (3.7)

For trajectories {φ, j}τ0 not obeying this continuity constraint or the appropriate
boundary conditions (which depend on the particular problem at hand, see below),
Sτ [φ, j] → ∞. Note that the field J (r, t) in Eq. (3.5) is nothing but the excess
current, i.e. the departure of the current vector field j(r, t) from its constitutive
form −D̂(φ)∇φ+ σ̂(φ)E.

Our interest is to characterize fluctuations of the space- and time-averaged em-
pirical current q, defined as

q =
1

τ

∫ τ

0
dt

∫
Λ
dr j(r, t) . (3.8)

Therefore, the probability of observing a given value q of the empircal current
Pτ (q) can be now obtained by summing up the probability of all trajectories
{φ, j}τ0 compatible with the constraint (3.8) and the continuity constraint (3.7).
Mathematically (see Eq. (2.48)

Pτ (q) =

∫
DφDj Pst(φ(r, 0))P ({φ, j}τ0)

∏
r∈Λ

∏
t∈[0,τ ]

δ (∂tφ+ ∇ · j)

· δ

(
q− τ−1

∫ τ

0
dt

∫
Λ
dr j

)
, (3.9)

with the Dirac δ-functionals guaranteeing the above contraints, and where the
initial condition is chosen from the stationary probability Pst(φ(r, 0)). As we
have seen in Section 2.4.2, by introducing the corresponding Lagrange multipliers
ψ(r, t) and λ for constraints (3.7) and (3.8), respectively, we can write:

Pτ (q) ∝
∫
DφDjDψ dλPst(φ(r, 0)) exp (−ΩSτ [φ, j, ψ,λ]) (3.10)
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Chapter 3. Structure of the optimal paths to a fluctuation

where the modified action reads

Sτ [φ, j, ψ,λ] =

∫ τ

0
dt

∫
Λ
dr
[ 1

2σ(φ)
J · Â−1J +

+ ψ(r, t) (∂tφ+ ∇ · j) + λ · [q− j(r, t)]
]
. (3.11)

For long times (and large scale separation between levels of description, Ω), the
probability of observing an empirical current q peaks around the average current
〈q〉 as Pτ (q) � exp[−τΩG(q)], with G(q) the current large deviation function.
According to Eq. (2.54), in the large time limit, the current LDF can be written as

G(q) = lim
τ→∞

{
1

τ
min
{φ,j,ψ,λ}

Sτ [φ, j, ψ,λ]

}
. (3.12)

Once the variational problem for the current LDF is defined, we can now proceed
to analyze the subsequent Euler-Langrange equations.

3.3 Structure of the optimal path

The set (φq, jq, ψq,λq) of optimal fields which solve this variational problem
define the most probable path leading to a current fluctuation q. Equations for
these optimal fields can be derived now by functional differentiation of the above
modified action. In particular, by varying over the conserved field, φ(r, t) →
φ(r, t) + δφ(r, t), we arrive at the following partial differential equation

∂tψq = H(φq)−
σ′q
2σ2

q

jq · Â−1jq +
σq
2

E · ÂE , (3.13)

where we have defined

H(φq) ≡ −

[
∇
(
D2

q

2σq

)
+
D2

q

σq
∇
]
· Â∇φq , (3.14)

withDq ≡ D(φq) and σq ≡ σ(φq). Another equation is obtained by varying over
the current field, j→ j + δj, leading to

J q = σ̂q (λq + ∇ψq) (3.15)

where J q = jq + D̂q∇φq − σ̂qE is the optimal excess current, see Eq. (3.6).
Finally, variations over ψ and λ lead respectively to the constraints (3.7) and (3.8)
for the optimal fields φq(r, t) and jq(r, t).
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3.3. Structure of the optimal path

Before continuing, we can now gain some insight on the physical interpretation
of λq and ψq by using the local Einstein formula D̂q = σ̂qf

′′
0 (φq) to write Fick’s

law under external driving as −D̂q∇φq + σ̂qE = σ̂q[E −∇(δF0/δφq)], where
F0(φ) =

∫
Λ dr f0(φ) is the equilibrium free energy functional of the system of

interest. Using this in Eq. (3.15) we find that

jq = σ̂q

[
(E + λq)−∇

(
δF0

δφq
− ψq

)]
. (3.16)

In this way, λq and ψq(r, t) can be interpreted respectively as the additional bulk
field and boundary driving (i.e. chemical potential) necessary to obtain the current
field jq(r, t) within Fick’s law under external driving. Alternatively, note also
that ψq is nothing but the (optimal) Legendre multiplier associated to continuity
equation, Eq. 3.7, and as such it is intimately related to the noise field. Indeed, the
field ψ selects those noise realizations compatible with Fick’s law and the local
conservation law (this can be better seen in the Hamiltonian formulation of the
problem [63, 210] where ψ plays the role of the conjugate moment to the field φ).

Eq. (3.15), or equivalently Eq. (3.16), sets strong conditions on the structure
of the optimal current field. In particular, if we define now the reduced (optimal)
excess current χq(r, t) ≡ σ̂−1

q J q(r, t) and take its Jacobian matrix ∇χq, with
components (∇χq)αβ = ∂αχq,β , we have from Eq. (3.15) that ∇χq = ∇∇ψq,
or equivalently

∂αχq,β = ∂α∂βψq . (3.17)

In words, the Jacobian matrix of the reduced (optimal) excess current χq corre-
sponds to the Hessian of the response field ψq associated to the continuity equation
(3.7). This observation thus leads to the following strong result:

Theorem: Let the response function ψq : Λ × [0, τ ] → R be a C2-class
function of spatial coordinates, i.e. a function twice continuously differentiable in
its spatial domain. Then

∂β

(
jα,q
aασq

)
= ∂α

(
jβ,q
aβσq

)
∀ (r, t) ∈ Λd × [0, τ ] . (3.18)

Proof: Schwarz’s theorem [211] states that if a function ψq has continuous
second partial derivatives at any given spatial point in Λ then its Hessian matrix
is symmetric at this point, ∂α∂βψq = ∂β∂αψq. This immediately implies, via
Eq. (3.17), that the Jacobian of the reduced (optimal) excess current is itself a
symmetric matrix, i.e. ∂αχq,β = ∂βχq,α ∀α, β ∈ [1, d]. From this symmetry, and
using the definitions of χq and J q above, and the relation ∂α(Dq/σq)∂βφq =
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Chapter 3. Structure of the optimal paths to a fluctuation

∂β(Dq/σq)∂αφq = (Dq/σq)′∂αφq∂βφq, we immediately arrive at the funda-
mental relation (3.18). Note that the C2-differentiability of the response function
ψq is a natural requirement for most physical solutions to this variational problem,
though we cannot discard the possible existence of singular, non-differentiable so-
lutions for ψq which would violate (3.18) at singular points. Note also that a
weaker condition for ψq which nevertheless suffices to ensure the symmetry of its
Hessian matrix is that all partial derivatives are themselves differentiable.

To better understand the tight constraints that Eq. (3.18) impose on the op-
timal current fields, it is important to realize that in all high-dimensional prob-
lems studied in literature up to now the dominant paths responsible of a current
fluctuation, corresponding to the global extrema of the action Sτ in Eq. (3.12),
always exhibit structure (if any) along a principal direction, that we denote here
as x‖ [18, 52, 176, 207–209]. This means in particular that φq(r, t) = φq(x‖, t)
and jq(r, t) = jq(x‖, t). Examples include open systems subject to a boundary
gradient, which develop structure along the gradient direction (irrespective of the
external field) [176], see e.g. Fig. 3.1 above; or closed driven diffusive systems
with periodic boundary conditions, for which different dynamic phase transitions
appear to current regimes characterized by traveling waves with structure along
one of the principal axes of the system of interest [52]. In all these cases, condi-
tion (3.18) leads to

∂‖

(
jβ,q
aβσq

)
= 0 ∀β 6=‖ , (3.19)

which immediately implies that jβ,q(x‖, t) = kβσ[φq(x‖, t)] ∀β 6=‖, with kβ a
direction-dependent constant which follows from the constraint (3.8) on the em-
pirical current q. Therefore we arrive at

jβ,q(x‖, t) = qβ
τσ[φq(x‖, t)]∫ τ

0
ds

∫ 1

0
dy σ[φq(y, s)]

∀β 6=‖ . (3.20)

In this way the relation between the Jacobian matrix forχq and the Hessian matrix
of the response field ψq, together with a natural analyticity condition for the latter,
force the optimal current vector field jq to exhibit non-trivial structure along the
dominant direction ‖ in all its orthogonal components β 6=‖, and this structure is
coupled to the optimal field φq via the mobility transport coefficient σ(φq). Inter-
estingly, this result makes manifest the spatio-temporal nonlocality of the current
LDF (3.12) and the associated optimal trajectories, as the optimal current field at a
given point of space and time depends explicitly on the space-time integral of the
mobility of the optimal conserved field, see the denominator in Eq. (3.20). Note

50



3.4. Connection with previous results

also that conditions (3.18) and (3.20) become empty for d = 1, where structureless
optimal current fields are still possible [40,45,173], evidencing the richness of the
fluctuation landscape for d > 1 driven diffusive systems when compared with their
one-dimensional counterparts.

3.4 Connection with previous results

We next explore how previous results on current fluctuations for both open and
closed d > 1 driven diffusive systems fit into the above general result.

3.4.1 Open systems under a boundary drift

First we consider the case of open systems subjected to an external gradient along
an arbitrary direction x‖. For that we fix the field boundaries to φ(r, t)|x‖=0,1 =
φ0,1, which drive the system out of equilibrium as soon as φ0 6= φ1, setting pe-
riodic boundary conditions for all other directions of space. This class of sys-
tems has been broadly studied during the last years, finding that a simplifying
conjecture within MFT known as Additivity Principle (AP) allows to solve the
problem of current statistics both for d = 1 [17, 18, 40, 45, 62, 170–174] and
d > 1 [176, 207–209, 212, 213]. The AP, which offers explicit expressions for
the current LDF and the optimal paths supporting a given fluctuation, establishes
that the most probable trajectory to a current fluctuation is time-independent (apart
from some initial and final transients of negligible weight for the current LDF). In
this situation, the following general property is satisfied:

Property: Consider the following boundary conditions for the optimal field

φq(0,x⊥) = φ0 ; φq(1,x⊥) = φ1 ;

φq(x‖,x⊥ + êi) = φq(x‖,x⊥) , ∀i = 2, .., d , (3.21)

where we write r = (x‖,x⊥) with x‖ ∈ [0, 1] and x⊥ ∈ [0, 1]d−1, being êi
the canonical unit vectors. If φq(r) = φq(x‖) and jq,‖(r) = jq,‖(x‖), with jq,‖
the component of the current in the principal direction x‖, then the most probable
current is of the form

jq(r) =

(
q‖, q⊥

σ[φq(x‖)]∫ 1
0 dy σ[φq(y)]

)
, (3.22)

where we have decomposed q = (q‖, q⊥) along the gradient (‖) and all other,
(d− 1) directions (⊥).
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Chapter 3. Structure of the optimal paths to a fluctuation

Proof: The AP conjectures that the optimal paths associated to a current fluc-
tuation are time-independent. Under this hypothesis, the set of equations for the
most probable trajectories derived from variational problem (3.12) takes the form

H(φq)−
σ′q
2σ2

q

jq · Â−1jq +
σq
2

E · ÂE = 0 (3.23)

jq + D̂q∇φq − σ̂qE = σ̂q (λq + ∇ψq) (3.24)

∇ · jq = 0 (3.25)

q =

∫
Λ
dr jq . (3.26)

One can easily realize that Eq. (3.23), together with φq(r) = φq(x‖), leads to

jq · Â−1jq = a‖ j
2
q,‖ +

∑
β 6=‖

aβ j
2
q,β = F (x‖), (3.27)

with F (x‖) a function depending only on coordinate x‖. Therefore, assuming
jq,‖(r) = jq,‖(x‖), we can deduced from relation (3.18) of our theorem that

jq,β = aβ Cβ(x⊥)σ[φq] , ∀β 6=‖ , (3.28)

where Cβ(x⊥) is a function depending (at most) on the orthogonal coordinates
x⊥. Using this expression in Eqs. (3.18), (3.27) and (3.25) we find

∂αCβ = ∂βCα (3.29)∑
α

aαC
2
α = R (3.30)∑

α

aα ∂αCα = W, (3.31)

respectively, with R and W two constants. At this point, differentiating Eq. (3.30)
with respect to xβ , and taking into account Eq. (3.29), it can be shown that∑

α

aαCα∂αCβ = 0. (3.32)

Differentiating again with respect to xβ , multiplying by aβ and summing over all
β-coordinates, together with Eq. (3.29) and (3.31), we obtain∑

α

∑
β

aα aβ (∂αCβ)2 = 0, (3.33)
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which implies that Cβ(x⊥) is a constant. As a result, the most probable current
field is of the form jq(r) =

(
jq,‖(x‖),k⊥σ

)
, with k⊥ a constant vector. Finally,

considering Eqs. (3.25) and (3.26), finally leads to (3.22), as we want to proof.
Note that in dimension d = 2 it can be proved that the optimal current field jq is
of the form (3.22) by only hypothesizing φq = φq(x).

The structure of the most probable current field given by Eq. (3.22) cor-
responds exactly to the result obtained previously from the weak extension of
Additivity Principle as applied to d-dimensional isotropic driven diffusive sys-
tems [176], starting from a variational problem for general but divergence-free cur-
rent fields with structure along one dominant direction. Our general theorem (3.18)
allows now to understand this structure as a direct consequence of the symmetry of
the Jacobian matrix associated to the reduced excess current. Note that this result
is not compatible with the straightforward extension to d > 1 of the 1d-system so-
lution (which considers the optimal current field to be constant [40, 45, 170, 173]),
elucidating the dilemma exposed in Section 2.5.2. This situation will be study in
depth in the next chapter, where our theorem and Eq.(3.22) will play a fundamental
role.

3.4.2 Closed systems with periodic boundary conditions

To end this chapter, we consider current fluctuations in closed d-dimensional ani-
sotropic driven diffusive systems under an external field E [52]. For that we set
periodic boundary conditions along all directions of space. Due to the system pe-
riodicity, the total mass is conserved so φ0 =

∫
Λ φq(r, t)dr is constant in time,

a further constraint that has to be taken care of in the MFT variational problem.
A detailed analysis of the resulting MFT equations shows [18, 41, 52, 56, 57] that
a 2nd-order dynamic phase transition (DPT) appears at a given critical current for
this broad family of systems between a homogeneous fluctuation phase with Gaus-
sian current statistics and constant, structureless optimal fields, φq(r, t) = φ0 and
jq(r, t) = q, and a symmetry-broken non-Gaussian phase characterized by the
emergence of coherent traveling waves with structure along a dominant direction,
φq(r, t) = ωq(x‖ − vt) and jq(r, t) = jq(x‖ − vt), with v some velocity [52].
Interestingly, for mild or no anisotropy, different traveling-wave phases appear de-
pending on the current separated by lines of 1st-order DPTs, a degeneracy which
disappears beyond a critical anisotropy. This richness of the fluctuation phase dia-
gram stems again from the relevance of structured current fields at the fluctuating
level, a seemingly mathematical aspect which takes full significance at the light of
our general result (3.18). In particular, the continuity equation ∂tφq + ∇ · jq = 0
applied to the 1d traveling-wave structure implies that ∂‖[j‖,q(z‖)− vω(z‖)] = 0,
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where we have defined z‖ ≡ x‖ − vt, and this together with the constraint (3.8)
on the empirical current leads to j‖,q(z‖) = q‖ − v[φ0 − ωq(z‖)]. On the other
hand, all orthogonal current components follow directly from our theorem above
as j⊥,q(z‖) = q⊥σ[ωq(z‖)]/

∫ 1
0 dy σ[ωq(y)]. This result, which is markedly dif-

ferent from the traveling-wave structure found in 1d models [41, 46, 57], will be
broadly analyze in Chapter 5.

3.5 Conclusions

In summary, we have derived a fundamental relation which strongly constraints
the structure of the optimal path sustaining a given current fluctuation. In particu-
lar, when a principal direction exists, the optimal current vector field is bounded to
exhibit non-trivial structure along this dominant direction in all its orthogonal com-
ponents, a structure coupled to the optimal conserved field via the mobility trans-
port coefficient. This has been done by relating within macroscopic fluctuation
theory the Jacobian matrix of the reduced optimal current field with the Hessian
matrix of the response field associated to the continuity equation, and requiring an-
alyticity for the latter. In this sense, we prove here that the structured optimal cur-
rent fields predicted and observed by a number of recent works [52, 176, 209, 213]
is indeed a fundamental requirement of any high-dimensional fluctuating theory,
rather than a mathematical accident. Remarkably, our result also makes manifest
the non-locality in space and time of the current large deviation function and the
associated optimal trajectories. This result hence serves as a starting point in the
study of fluctuations in complex d-dimensional systems, constraining the form of
the optimal paths and thus aiding in the formulation of simplifying hypotheses to
solve these complex variational problems in nonequilibrium statistical physics.
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Chapter 4

Fluctuations of the empirical heat cur-
rent on thermal conducting hydrodyna-
mic systems

4.1 Introduction

The development of a theory of fluctuations in fluids has been a central object of
study in statistical physics [117, 214]. A general framework to characterize fluc-
tuations in thermodynamic equilibrium states was provided by Landau and Lif-
shitz [7, 109], and this program has been generalized with success to study small
fluctuations for fluids in nonequilibrium steady states [110]. Nevertheless, under-
standing arbitrary fluctuations in fluids far from equilibrium still remains an open
problem, and this is the focus of the present chapter. An interesting situation to an-
alyze in this context is the problem of heat transport in a fluid subject to a thermal
gradient, possibly one of the “simplest” and most studied cases of a nonequilib-
rium steady state [215]. Heat transport in this setting is governed by Fourier’s
law, which establishes the propotionality between the heat current and the local
temperature gradient. The proportionality constant defines the heat conductivity
κ, an intrinsic property of the fluid which could depend on the local tempera-
ture and density. Interestingly, while it is widely believed that Fourier’s law is
just a linear approximation to a more complex transport law, recent works have
shown that, at least for some fluid models, this law holds locally far from equilib-
rium [216] and well beyond the linear transport regime. Numerous experimental
works have studied the statistics of fluctuations of heat flux and temperature in
this setting for a wide variety of systems, measuring the corresponding probability
distributions [217–220], some low- and high-order cumulants [219–229] and the
associated temperature profiles [221, 222, 224, 226, 229, 230]. In this case, Macro-
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scopic Fluctuation Theory provides an suitable scheme to describe fluctuations of
the corresponding relevant observables.

The aim of this chapter is to characterize within the MFT framework the statis-
tics of fluctuations of the empirical heat current in an incompressible quiescent
(i.e. at rest) d-dimensional model fluid subject to a boundary temperature gradi-
ent [110, 231]. In particular, we will focus on describing the optimal temperature
field sustaining a given heat flux fluctuation in the long-time limit, determining
its associated large deviation function controlling the probability distribution of
the heat current and analizing its behaviour for small (near the steady state) and
large fluctuations. Hence, in Section 4.2 we will describe the system at hand.
Starting from the general balance laws describing fluid’s evolution, we will de-
duce the diffusion equation controlling the dynamics of our model, which, at the
mesoscopic level, will correspond to Eq. (2.10) for a diffusive system with no ex-
ternal drift. Then we will proceed, following the MFT scheme shown in Chapter
2, with the study of heat current statistics. In Section 4.3 we will obtain the most
probable temperature fields minimizing the action of our system. As we will see,
the theorem on the structure of the optimal current fields presented in the previ-
ous chapter will become an essential element, since the complex MFT variational
problem will be solved under the conjecture established by the (weak) additiv-
ity principle [127, 176]. Once the optimal temperature fields are known, we will
prove, in Section 4.4, that they can be gathered into families characterized by the
same functional form (in terms of inverse Jacobi elliptic functions). This observa-
tion will allow us to classify all optimal trajectories in an infinite set of universal
functions, providing a deeper understanding of their properties and structure. In
Section 4.5 we will obtain the analytical form of the current LDF and analyze its
behavior in limiting cases, both near the steady state and in the far tails of the
distribution. While for small deviations from the stationary value, the current dis-
tribution can be properly approximated by a deformed Gaussian, its structure for
large fluctuations exhibits an interesting logarithmic dependence which confirms
the complex analytic behavior of the heat current LDF. We will further determine
the cumulant generating function of the current distribution, from which analytical
expressions for its cumulants follow, as well as interesting relations between them
which open the door to further experimental research on this problem.
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4.2 Heat current fluctuations in a quiescent incompress-
ible fluid

We consider a d-dimensional fluid subject to a boundary temperature gradient in
one direction, say x ∈ [0, 1]. The fluid is fully described at any instant of time
by the mass density ρ(r, t), temperature T (r, t), pressure p(r, t) and local center-
of-mass velocity v(r, t) fields, with r ∈ Λ ≡ [0, 1]d and t ∈ [0, τ ] the spatial
and temporal coordinates, respectively. The fluid’s evolution at the macroscale is
completely characterized by a set of d + 2 partial differential equations, called
balance equations, which are derived from the local conservation laws together
with the usual constitutive relations between the thermodynamic forces and the
fluxes [214]. In particular, conservation of mass leads to the continuity equation

∂tρ+ ∇ · (ρv) = 0 , (4.1)

while momentum conservation yields the Navier-Stokes equations

ρ [∂tv + (v ·∇)v] = −∇ · p+ η∇2v +

(
ζ +

1

3
η

)
∇(∇ · v) , (4.2)

and conservation of energy results in

∂t

(
1

2
ρv2 + ρε

)
= −∇ ·

[
ρv

(
1

2
v2 + ω

)
+ Φ + jD

]
. (4.3)

In the above equations η and ζ are respectively the shear and bulk viscosity coef-
ficients, ε is the internal energy per mass unit, ω is the enthalpy per mass unit, Φ
is the viscous dissipation function (proportional to the divergence of the velocity)
and jD is the local heat current [110, 214, 231]. In particular, the structure of the
local heat current field is given by the well-known Fourier’s law of heat conduction

jD(r, t) = −κ(T )∇T (r, t) , (4.4)

with κ(T ) the thermal conductivity. In this chapter we are interested in studying
thermal transport in a quiescent incompressible fluid in contact with two bound-
ary thermostats at temperatures T0 and T1 along the x-direction, with periodic
boundary conditions along all perpendicular (d − 1)-directions, x⊥. Quiescence
implies that v(r, t) = 0 ∀ r, t, while incompressibility implies that the fluid’s mass
density and pressure fields are constant across space, so the only relevant field in
this case is the temperature field T (r, t), which then satisfies Fourier’s heat equa-
tion [7, 109, 110, 214]

∂tT (r, t) = ∇ · (D(T )∇T (r, t)) , (4.5)
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where D = κ
ρcp

is the thermal diffusivity, with cp the specific heat at constant pres-
sure. Finally, we further assume that the initial condition is such that the system
relaxes to its steady state in a finite time scale.

The previous scheme is nothing more that the macroscopic description of a dif-
fusive system characterized by one conservation law already presented in Chapter
2 (see in particular Eqs. (2.3), (2.4) and (2.10), identifying φ(r, t) = T (r, t).
Therefore, as we are interested in analyzing macroscopic fluctuations of the heat
current, we describe the mesoscopic evolution of our system by the Langevin equa-
tion (see Eq. (2.9))

∂tT (r, t) + ∇ · [−D(T )∇T (r, t) + ξ(r, t)] = 0 , (4.6)

where ξ(r, t) is the Gaussian white noise vector field with

〈ξ(r, t)〉 = 0 , (4.7)

〈ξα(r, t)ξβ(r′, t′)〉 =
1

Ω
σ[T (r, t)]δαβδ(t− t′)δ(r− r′) , (4.8)

and α, β ∈ [1, d]. Note that this equation corresponds to Eq. (3.1) for an isotropic
system. Consequently, the anisotropy matrix is equal to the identity, A = 1, and
both the diffusivity and mobility are scalar coefficients, D[T (r, t)] and σ[T (r, t)],
respectively.

At this point, we can now proceed as in Section 3.2 and write the path proba-
bility of having a given trajectory {T (r, t), j(r, t)}τ0 as:

P ({T, j}τ0) � exp (−ΩSτ [T, j]) , (4.9)

with

Sτ [T, j] =

∫ τ

0
dt

∫
Λ
dr

[
j(r, t) +D[T (r, t)]∇T (r, t)

]2
2σ[T (r, t)]

, (4.10)

and the temperature and current fields coupled via continuity equation:

∂tT (r, t) + ∇ · j(r, t) = 0 . (4.11)

Hence, the probability distribution of the space- and time-averaged current

q ≡ 1

τ

∫ τ

0
dt′
∫

Λ
dr j(r, t′) , (4.12)

takes the form:

Pτ (q) ∝
∫
DT DjDψ dλPst(T (r, 0)) exp (−ΩSτ [T, j, ψ,λ]) (4.13)
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with Pst the stationary distribution and where the modified action reads

Sτ [T, j, ψ,λ] =

∫ τ

0
dt

∫
Λ
dr
[(j +D[T ]∇T )2

2σ[T ]
+

+ ψ(r, t) (∂tT + ∇ · j) + λ · (q− j)
]
. (4.14)

Lagrange multipliers ψ(r, t) andλ ensure that constraints (4.11) and (4.12) are ful-
filled, respectively. Furthermore, according to boundary conditions, the Lagrange
multiplier associated to continuity equation satisfies:

ψ(r, t)
∣∣
x=0,1

= 0 , ψ((x,x⊥ + êi), t) = ψ((x,x⊥), t) , ∀i = 2, .., d , (4.15)

where we have decomposed the position vector r = (x,x⊥) along the gradient
direction (x) and all other (d−1) orthogonal directions (x⊥), with êi the canonical
unit vectors. In the long-time (and large scale separation Ω) limit, the probability
density function (pdf) of the empirical current obeys a large deviation principle,
scaling as Pτ (q) � exp [−ΩτG(q)], and the large deviation function takes the
form:

G(q) = lim
τ→∞

{
min
T,j,ψ,λ

Sτ [T, j, ψ,λ]

}
. (4.16)

4.3 Most probable temperature and current fields

We next focus on solving the variational problem defined by (4.16). As we have
seen, this analysis will lead to explicit predictions for the current statistics, as well
as to a detailed knowledge of the properties of the optimal path associated to an
arbitrary fluctuation. The set (Tq, jq, ψq,λq) solution of (4.16) defines then the
trajectory that the fluid follows in mesoscopic phase space to sustain a long-time
current fluctuation. In this way, these optimals fields can be obtained by solving
the following Euler-Lagrange equations

∂tψq = −
σ′q
2σ2

q

(
j 2
q −D2

q(∇Tq)2
)
− Dq

σq
∇ · (jq +Dq∇Tq) (4.17)

jq +Dq∇Tq = σq (∇ψq + λq) (4.18)

∂tTq + ∇ · jq = 0 (4.19)

q =
1

τ

∫ τ

0
dt

∫
Λ
dr jq(r, t) , (4.20)
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with Dq = D[Tq(r, t)] and σq = σ[Tq(r, t)], and σ′q the derivative of σq with
respect to its argument, T (r, t). As a result, the current LDF takes the form

G(q) =
1

τ

∫ τ

0
dt

∫
Λ
dr

(jq(r, t) +Dq∇Tq(r, t))2

2σq
, (4.21)

in terms of the optimal temperature and current fields.
The general solution of the spatiotemporal problem (4.17)-(4.20) remains a

major challenge in most cases [38, 55, 232, 233]. As we have seen in Section
2.5.2, a powerful conjecture known as Additivity Principle has been put forward to
strongly simplify the variational problem at hand by assuming the optimal paths to
be time-independent (except for initial and final transients of negligible statistical
weight). We hence adopt the AP here and write Tq(r, t) = Tq(r) and jq(r, t) =
jq(r). It is then straighforward to prove1 that ψq(r, t) = ψq(r). Recalling the
boundary conditions for the temperature field described in the previous section,
we have that Tq(0,x⊥) = T0 and Tq(1,x⊥) = T1, together with

Tq(x,x⊥ + êi) = Tq(x,x⊥) ∀i = 2, .., d . (4.22)

These boundary conditions correspond to a fluid in contact with two plates at tem-
peratures T0 and T1 at the x-boundaries at x = 0 and 1, respectively, and peri-
odic boundary conditions on the perpendicular (d − 1)-subspace. The symmetry
of the boundary conditions leads to the natural assumption that the optimal tem-
perature and x-component of the current fields will exhibit structure only along
the x-direction, i.e. Tq(r) = Tq(x) and jq,x(r) = jq,x(x). We realize that the
different hypothesis of the property for the structure of the optimal current field
established in Section 3.4.1 are fulfilled. Consequently, the most probable current
field exhibits the following non-trivial form:

jq(r) =

(
qx, q⊥

σ[Tq]

A[Tq]

)
, (4.23)

with the decomposition q = (qx, q⊥) and

A[Tq] =

∫ 1

0
dy σ[Tq(y)] . (4.24)

1Differentiating with respect to time both Eqs. (4.17) and (4.18) we see that ∂2
t ψq = 0 and

∂t∇ψq = 0 leading to ∂tψq = k, with k a constant. Therefore, considering that boundary condi-
tions (4.15) are satisty for all t ∈ [0, τ ], we finally arrive to k = 0, which implies ψq(r, t) = ψq(r).
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As a result, the probability Pτ (q) is completely characterized in terms of the opti-
mal temperature profile Tq(x). Considering (4.17) and the previous assumptions,
the most probable temperature field satisfies the ordinary differential equation [18]

(
D[Tq]

dTq
dx

)2

= q2
x +Kσ[Tq]−

(
σ[Tq]

A[Tq]

)2

q2
⊥ , (4.25)

where K is an integration constant fixed by the boundary conditions, which are
given by T0 and T1.

In order to proceed, we now need to specify the functional form of the thermal
diffusivity and mobility transport coefficients, which completely define the model
fluid we will study here. For an incompressible fluid under moderate boundary
temperature gradients, the thermal conductivity can be considered a constant of the
material, and hence the thermal diffusivity defined above will be a constant, that we
take here to be D = 1/2. Furthermore, in this situation it can be proved using the
fluctuation-dissipation theorem that the standard deviation of the fluctuating heat
current (which is nothing but the mobility) scales as the local temperature squared
[7,109,110], so we take σ(T ) = T 2. Indeed, these two transport coefficients define
a broadly studied transport model, the Kipnis-Marchioro-Presutti (KMP) model of
heat conduction [126] which, as we see, captures the heat transport properties of a
quiescent incompressible fluid. With these prescriptions, the differential equation
(4.25) boils down to

dTq
dx

= ±2

[
q2
x +KT 2

q −
T 4
q

A2
q2
⊥

]1/2

. (4.26)

This equation can be solved in terms of Jacobi inverse elliptic functions, leading
to the following reduced optimal temperature field

τq(x) ≡ Tq(x)

T1
=

cn
[
− F0 + (F1 + F0)x; k

]
cn(F1; k)

, (4.27)

where cn(u; k) is the cosine-amplitude Jacobi function with modulus k [234,235].
The reader could find in Appendix A a detailed resolution of Eq. (4.26), as well
as a complete characterization of the optimal temperature fields. The value of the
constant parameters F0,1 and the modulus are fixed by the boundary conditions
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and the clausure equation (4.24), namely

Qx =

√
1− k2(F1 + F0)

2 cn(F1; k)
, (4.28)

Q⊥ =
E1 + E0 − (1− k2)(F1 + F0)

2k cn(F1; k)
, (4.29)

τ0 =
cn(F0; k)

cn(F1; k)
, (4.30)

where we have defined Qx = |qx|/T1, Q⊥ = |q⊥|/T1, τ0 = T0/T1 and E0,1 =
E(am(F0,1; k); k) with am(u; k) the amplitude Jacobi function and E(θ; k) the
Jacobi integral of the second kind [234, 235]. Note that, assuming without loss
of generality that T0 ≥ T1 so τ0 ≥ 1, we have that F0 ∈ [−K(k),K(k)], F1 ∈
[cn−1(τ−1

0 ; k),K(k)] and k ∈ [0, 1], with F1 ≥ F0 and K the Jacobi complete
elliptic integral of the first kind2

(using the notation of Gradshteyn & Ryzhik [234]). In this way, once the
physical variables Qx, Q⊥ and τ0 are fixed, we can obtain F0, F1 and k from Eqs.
(4.28)-(4.30). Note also that, for a fixed value of the external gradient parameter
τ0, one can solve Eq. (4.30) to obtain

F1 = cn−1
[ 1

τ0
cn(F0; k); k

]
, (4.31)

Therefore, substituting F1 into Eqs. (4.28)-(4.29), we conclude that Qx and Q⊥
are just functions of F0 and k.

4.4 Scaling, structure and universality of the optimal path

As shown above, the most probable reduced temperature profile τq(x) is a contin-
uous positive function written in terms of cn(u; k), an even and periodic function
of its argument u = −F0 + (F1 + F0)x. Indeed, the cosine-amplitude Jacobi
function presents only one positive maximum located at u = 0 [234, 235], i.e.
xmax = F0/(F0 + F1), which implies that the optimal temperature field (defined
in the spatial interval x ∈ [0, 1]) exhibits at most two possible typical behaviors,
namely (i) a single-maximum profile for F0 > 0, or (ii) a monotonously decreasing
profile for F0 < 0. The values of Qx and Q⊥ where the crossover happens can
be found by setting F0 = 0 and F1 = cn−1(1/τ0; k) on Eqs. (4.28) and (4.29),

2See Appendix A.
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Figure 4.1: Surface defined by the set of points (τ0, Qx, Q⊥) with fixed modulus k = 0.9. Points
in this surface have the same scaling form of the associated optimal reduced temperature field τq(x)
except for a linear transformation of the x-coordinate and a suitable amplitude factor, see Eq. (4.32).
The black dashed line shows the set of points in this surface with the aditional constraint F1 +F0 =
0.4. Reduced optimal profiles along this curve present the same functional structure except for only
a translation of the x-coordinate. The orange dashed line represents the stationary current values
given by (τ0, Q

st
x , Q

st
⊥ ) = (τ0, (τ0 − 1)/2, 0).

and are a function of the modulus k ∈ [0, 1] and the external gradient parame-
ter τ0. This condition defines a limiting curve in the (Qx, Q⊥) plane for each τ0

separating both behaviors.

Interestingly, Eqs. (4.28)-(4.30) lead to a one-to-one correspondence between
the set of physical variables (τ0, Qx, Q⊥) and the parameters (k, F0, F1). The
Jacobi-cosinus function cn(u; k) defining the most probable temperature profile
(4.27) is just a linear function of space, u = −F0 + (F1 + F0)x, with constants
fixed by (τ0, Qx, Q⊥), while the modulus k captures the particular functional de-
pendence on u (e.g. cn(u; k = 0) = cosu while cn(u; k = 1) = sech u). In
this way, the modulus k parametrizes in a natural way the topology of the op-
timal temperature field: all optimal profiles with the same modulus k share the
same functional structure (after a linear transformation of the x-coordinate and a
suitable amplitude factor). Therefore there exist a surface in (τ0, Qx, Q⊥)-space,
defined by the constraint on constant k, whose optimal reduced temperature pro-
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Figure 4.2: Top row: Current fluctuations exhibiting the same scaling form of the optimal re-
duced temperature profile. Each black solid line represents a uniparametric family of solutions
(Qx(F0), Q⊥(F0)) of Eqs. (4.29)-(4.30) with varying F0 and fixed k which share the same scaling
form of the optimal profile. Each panel includes curves for k = 0.001, 0.01, 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999, 0.9999 (displayed counterclockwise). Each panel
corresponds to a fixed external gradient parameter τ0, with τ0 = 1.4,

√
2, 1.5, and 2 from left to

right. The dashed black line in each panel represents the crossover between monotonous (below
the dashed line, F0 < 0) and non-monotonous, single-maximum profiles (above the dashed line,
F0 > 0). Blue lines separate regions of profiles with 0, 1 and 2 inflection points. Bottom row: Op-
timal reduced temperature profiles associated to the different highlighted dots in upper panels. The
dashed lines represents the stationary profile in each case, while the dots locate the corresponding
inflection points (if any).

files follow the scaling function

τq(x) = A(τ0, Qx, Q⊥)cn(u; k) , u = −F0 + (F0 + F1)x . (4.32)

This defines a universal scaling behavior for the optimal temperature fields respon-
sible for different current fluctuations in the quiescent incompressible fluid. Note
in particular that the above scaling implies the existence of optimal profiles as-
sociated to different values of the external gradient parameter τ0 = T0/T1 with
the same functional form. Fig. 4.1 shows an example of the surface of points
(τ0, Qx, Q⊥) having the same value of k = 0.9 and hence the same scaling behav-
ior. We note that these surfaces are analytic at all points. Finally, one can define
a stronger universal scaling by demanding that not only the modulus k is fixed,
but also the slope F0 + F1 of the linear map in the scaling fundtion (4.32). This
aditional contraint defines a curve within the (τ0, Qx, Q⊥)-surface of constant-
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k along which the optimal temperature field for a heat current fluctuation has the
same functional form except for a translation along the x-coordinate (see the black
dashed line in Fig. 4.1).

The top row in Fig. 4.2 presents with black solid lines different families of
current fluctuations which share the same scaling form of the optimal temperature
field (i.e. have the same value of the modulus k) for different values of the external
gradient parameter τ0. Note that these curves are parametrized by F0 for each fixed
τ0. Remarkably, we observe that all curves of current fluctuations converge to the
stationary value (Qst

x , Q
st
⊥) = ((τ0 − 1)/2, 0) when F0 → −K(k), implying that

around the nonequilibrium stationary state all family members have monotonous
temperature profiles (F0 < 0) and contribute to the fluctuating behavior of q’s
with a probability whose value will be study in the next section. In particular, we
emphasize that all possible scaling structures of the optimal temperature profile
are present when we consider infinitesimally small fluctuations around the steady
state current, the dominant family being determined by the orientation of the in-
finitesimal current fluctuation vector.

Finally, we have also studied the convexity properties of the optimal tempera-
ture field by analyzing in detail the form of its second derivative, finding profiles
with 0, 1 or 2 inflection points. This rich phenomenology is also displayed in Fig.
4.2 (top row), where we show for varying τ0 the regions corresponding to profiles
with different numbers of inflection points (blue solid lines and numbers). In ad-
dition, the particular shape of the most probable temperature fields for different
values of (τ0, Qx, Q⊥) signaled with points in the upper panels is also shown, see
bottom row in Fig. 4.2. Important features to note here are the transition from
monotonous to single-maximum profiles as the distance to the stationary state is
increased (measured in terms of the current), as well as the change in the number
of inflection points appearing in each one (identified with a dot). The evolution
of the number of inflection points as we move away from the stationary current
is non-trivial, and we notice the reentrant behavior of the curve delimiting the
regime of current fluctuations whose optimal profiles have no inflection points.
This reentrance changes as the external gradient parameter τ0 is varied, disappear-
ing for large enough τ0. It is also interesting to stress that the curves delimiting the
number of inflection points intersect with the curves defining the different scaling
profile families for constant k, see top panels in Fig. 4.2, meaning that profiles
within the same scaling family can exhibit a variable number of inflection points
despite having the same overall functional form.
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4.5 Heat current statistics

Once the optimal temperature profiles have been determined, we are now in po-
sition to study in detail the probability distribution Pτ (q) of the fluid’s empirical
heat current q. As shown in Section 4.2 above, the pdf Pτ (q) obeys a large devia-
tion principle for long times of the form Pτ (q) � exp [−τΩG(q)], which defines
the current LDF. In this way,G(q) can be then written in terms of the optimal tem-
perature and current fields as shown in Eq. (4.21). As a result, using the additivity
principle [40] and taking into account the structure of the optimal temperature
fields (4.27) and its relation with the optimal heat current (4.23), we arrive at the
following expression for the current LDF

G(q) =
qx
2

(
1

T0
− 1

T1

)
+

1

8
(F0 + F1)2 +

1

4
(F0 + F1)

(
sn(F1; k) dn(F1; k)

cn(F1; k)

+
sn(F0; k) dn(F0; k)

cn(F0; k)
− E0 − E1

)
, (4.33)

written in terms of the parameters (k, F0, F1) linked to the physical variables
(τ0, Qx, Q⊥) via Eqs. (4.28)-(4.30). From this expression, it is easy to check
that the Gallavotti-Cohen fluctuation theorem [44, 48–51, 64], relating the proba-
bility of an arbitrary current fluctuation q with its time-reversed current −q (see
Section 2.5.1 and Eq. (2.64)), holds in this case, namely

G(q)−G(−q) = 2ε · q = 2|ε|qx , (4.34)

where ε = 1
2

(
T−1

0 − T−1
1

)
x̂ is the nonequilibrium driving force (with x̂ the unit

versor along the gradient direction), related to the rate of entropy production in the
nonequilibrium fluid appearing as a consequence of the boundary temperature gra-
dient. Moreover, the symmetry of the problem implies that the LDF also satisfies
G(qx, q⊥) = G(qx,−q⊥) ∀qx, q⊥.

To better understand the fluid’s heat current statistics, it is interesting to analyze
the behaviour of G(q) in two oppossing limits, i.e. for small current fluctuations
around the stationary state defined by qst =

(
qst
x = T1(τ0 − 1)/2, qst

⊥ = 0
)
, and

its behavior in the far tails of the distribution.

4.5.1 Fluctuations around the stationary state

In the following lines we will describe in brief how to deduce the structure of the
current LDF for small devations about the stationary state. For a fixed k, it is easy
to show that the convergence to the stationary value Qst = ((τ0 − 1)/2, 0) takes
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place when F0 → −K(k) (see Section 4.4). As a consequence, the behaviour
near Qst can be analyze by fixing F0 = −K(k) + δ for small values of δ and any
k-value. We can now introduce the excess reduced current vector Q̃ = (Q̃1, Q̃⊥),
with the definitions

Q̃x ≡ Qx − |qst
x |/T1 , Q̃⊥ ≡ Q⊥ − |qst

⊥|/T1 . (4.35)

Expanding Eqs. (4.28) and (4.29) around δ = 0 we realize that they have the
structure Q̃α = Qα−Qst

α = a0δ
2(1 + a1δ

2 + . . .), with α = x,⊥. It hence seems
reasonable to parameterize Q̃x = R sin θ and Q̃⊥ = R cos θ and rewrite both
(4.28) and (4.29) as functions ofR and θ. Afterwards, we expand Q̃x/Q̃⊥ = tan θ
in terms of δ and look for the k-expansion on δ compatible with such expansion
and whose coefficients are functions of tan θ. Then we substitute the k-expansion
on the Q̃x expansion and invert the series to find δ2 and k2 as a series expansion
on R. In particular, we find

k2 =
1

2
(1− sin θ) +

9(1 + τ0 + τ2
0 + τ3

0 + τ4
0 )

10(τ0 − 1)(1 + τ0 + τ2
0 )2

R cos2 θ +O(R2)(4.36)

δ2 =
12τ2

0

τ3
0 − 1

R− 12τ2
0 (27 + 27τ0 + 7τ2

0 + 7τ3
0 + 7τ4

0 )

5(τ0 − 1)2(1 + τ0 + τ2
0 )3

R2 sin θ

+ O(R3) , (4.37)

Note that the expansions are well defined whenever R/(τ0 − 1) < 1, implying
the equilibrium limit (τ0 → 1) is singular and cannot be studied by an analytical
continuation of the nonequilibrium steady state using Eqs. (4.37). Therefore, near
the stationary state, the current LDF can be approximated by:

G(Q̃) = Ggauss(Q̃)−
3(Q̃2

x + Q̃2
⊥)

2(1 + τ0 + τ2
0 )

[
2(τ0 − 1)(4 + 7τ0 + 4τ2

0 )

5(1 + τ0 + τ2
0 )2

Q̃x

+
9

175(1 + τ0 + τ2
0 )4

(
−5(4 + 2τ0 − 30τ2

0 − 57τ3
0 − 30τ4

0 + 2τ5
0

+ 4τ6
0 )(Q̃2

x + Q̃2
⊥) + 2(τ0 − 1)2(16 + 61τ0 + 91τ2

0 + 61τ3
0

+ 16τ4
0 )(Q̃2

⊥ − Q̃2
x)

)
+O(Q̃3)

]
, (4.38)

where

Ggauss(Q̃) =
3(Q̃2

x + Q̃2
⊥)

2(1 + τ0 + τ2
0 )

(4.39)

captures the Gaussian fluctuations around the steady state expected from the cen-
tral limit theorem. In Fig. 4.3 we represent the exact G(q) of Eq. (4.33) (dark
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Figure 4.3: The dark (outer) surface represents the exact current LDF G(q) for T0 = 2 and
T1 = 1 (so τ0 = 2), see Eq. (4.33). The red (inner) surface corresponds to Gaussian approximation
Ggauss(q) around the stationary state for the same parameters, see Eq. (4.39). The red point at the
bottom represents the stationary state.

outer surface) for τ0 = 2, together with the Gaussian part of the expansion (4.38),
Ggauss, (red inner surface). We stress here the non-gaussian, asymmetric structure
of the exact G(q), which can be however approximated by a deformed Gaussian
on both axis at least for moderate current fluctuations. The dominant corrections
of the optimal reduced temperature field beyond the steady-state (linear) profile
can be also computed to first order in Q̃, leading to

τq(x) = τ0−x(τ0−1)+
2(τ0 − 1)

1 + τ0 + τ2
0

x(1−x)(1+2τ0−x(τ0−1))Q̃x+O(Q̃2) ,

(4.40)
i.e. a polynomial deformation of the linear stationary profile.

4.5.2 Far tails of the current LDF

We are also interested on the leading behavior of G(q) for currents far from sta-
tionary state behavior. This can be studied in detail by focusing on two different
limits, namely

(
|qx| � qstx , q⊥ = 0

)
and (qx = 0, |q⊥| � 0).
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The behavior in the first situation,
(
|qx| � qstx , q⊥ = 0

)
, can be obtained by

plugging k = 0 into Eq. (4.33) and expanding the expression around its maximum
value using F0 = π/2− δ, which for qx > 0 results in

G(qx, 0) ' π

2δ
− 4 + τ0(π2 + 4)

8τ0
+
π(3 + 5τ0)

24τ0
δ +O(δ2) , (4.41)

with

Q̃x = Qx −Qst
x =

πτ0

2δ

(
1− 2δ

π
+
δ2

6
+O(δ3)

)
. (4.42)

Inverting this series we obtain

δ =
πτ0

2Q̃x
− πτ2

0

2Q̃2
x

+
π(24 + π2)τ3

0

48Q̃3
x

+O(Q̃−4
x ) , (4.43)

which finally leads to

G(qx, 0) =
qx
T0
− π2

8
+
π2(1 + τ0)T1

16qx
+O(q−2

x ) , (4.44)

In order to find the behavior for −qx we employ the Gallavotti-Cohen relation
G(q)−G(−q) = 2|ε|qx:

G(−qx, 0) =
qx
T1
− π2

8
+
π2(1 + τ0)T1

16qx
+O(q−2

x ), qx > 0 . (4.45)

This implies in particular that large current fluctuations along the gradient direc-
tion decay exponentially in the current, rather than in a Gaussian manner as a
naive central-limit analysis would suggest. Note also that the asymptotic slopes
of G(qx, 0) for positive and negative values of the currents qx are just the inverse
temperatures of the left and right reservoirs, respectively.

The second limit, (qx = 0, |q⊥| � 0), corresponds to k2 → 1 and F0 → π/2,
leading to

G(0, |q⊥|) =
1

8
(F0 + F1)2 , (4.46)

with

Qx = 0 , Q⊥ = coshF1(tanhF0 + tanhF1)/2 , τ0 = coshF1/ coshF0 .
(4.47)
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Expanding these expressions for large values of |q⊥|, we obtain the following
asymptotic form for the LDF

G(0, |q⊥|) =
1

8
ln

(
4|q⊥|2T 3

1

T0

)[
ln

(
4|q⊥|2T 3

1

T0

)
+

1 + τ2
0

T 2
1 |q⊥|2

+O(|q⊥|−4)

]
.

(4.48)
This result is even more relevant, since it shows that the statistics of large current
fluctuations orthogonal to the thermal gradient exhibit a remarkable logarithmic
behaviour, which makes these rare fluctuations much more probable than antici-
pated within the Gaussian approximation. This interesting behaviour points out
once again to the complex analytic behavior of the heat current LDF, in contrast
with the apparent smooth and simple structure shown in Fig. 4.3 for moderate
current fluctuations.

4.5.3 Cumulants of the heat current distribution

Finally, we proceed to compute the first low-order cumulants of the heat current
distribution. With this aim in mind, we calculate the scaled cumulant generating
function (sCGF) µ(λ) of such a probability distribution (see Section 2.4.2):

µ(λ) = lim
τ→∞

1

τΩ
ln 〈e−τΩλ·q〉 . (4.49)

Thus, considering the form of G(q) near the stationary state (4.38) and that, as
we have shown (see Eq. (2.60)), both LDF and sCGF are related via a Legendre-
Fenchel transform [19, 24, 37], the sCGF can be expanded as

µ(λ) =
1

2
(T0 − T1)λx + (λ2

x + λ2
⊥)

[
1

6
(T 2

0 + T0T1 + T 2
1 )

+
1

45
(T0 − T1)(4T 2

0 + 7T0T1 + 4T 2
1 )λx

+
9

1890
(12T 4

0 + 8T 3
0 T1 − 5T 2

0 T
2
1 + 8T0T

3
1 + 12T 4

1 )λ2
x

+
1

1890
(44T 4

0 + 76T 3
0 T1 + 75T 2

0 T
2
1 + 76T0T

3
1 + 44T 4

1 )λ2
⊥

]
+ O(λ5) , (4.50)

where we have decomposed λ = (λx,λ⊥) along the gradient (λx) and all or-
thogonal (λ⊥) directions. We are now in position to compute the lower-order
cumulants by differentiating with respect to the components of the λ-vector, see
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Eq. (2.62). The first derivatives yield the steady state value of the current com-
ponents, 〈qx〉 = qst

x = (T0 − T1)/2 and 〈q⊥〉 = 0. The next few cumulants
for arbitrary boundary temperatures T0 and T1 compatible with the perturbation
expansions (τ0 > 1) can be written as

lim
τ→∞

τΩ〈(qs − qst
s )2〉 =

1

3
(T 2

0 + T0T1 + T 2
1 )

lim
τ→∞

(τΩ)2〈(qx − qst
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1 )
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2
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1 ) , (4.51)

where s ∈ [1, d] and α 6= β corresponding to any pair of different coordinates in
the subspace orthogonal to x. Interestingly, remarkable relations between different
cumulants can be now derived from (4.51). In particular

3 lim
τ→∞

τ2〈(qx − qst
x )q2

α〉 = lim
τ→∞

τ2〈(qx − qst
x )3〉

3 lim
τ→∞

τ3〈q2
αq

2
β〉 = lim

τ→∞
τ3〈q4

α〉 . (4.52)

Indeed, recalling the definition (4.12) of the empirical current vector q, these equa-
tions establish interesting and unforeseeing integral relations between different n-
point correlators of the current field [18] for arbitrary values of the driving thermal
baths T0 and T1.

4.6 Conclusions

In summary, we have delved into the heat current statistics of an incompressible
quiescent d-dimensional fluid subject to a boundary temperature gradient in one
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direction. This analysis has been carried out within the framework of fluctuating
hydrodynamics, using tools borrowed from large deviation theory and macroscopic
fluctuation theory. This framework provides powerful techniques to determine the
full heat current probability distribution, based on the computation of the most
probable trajectories and the current large deviation function. In this way, under
the well-established additivity conjecture (which considers the optimal paths sus-
taining atypical values of the current to be time-independent), we have determined
the explicit form of the most probable temperature fields. We have analyzed their
topological properties as a function of the external baths temperatures (T0, T1)
and the desired empirical current q, defining different regimes where temperature
profiles exhibit varying behaviors. Interestingly, our solution to the fluctuation
problem shows that optimal temperature fields can be naturally classified in an in-
finite set of curves, each set sharing the same mathematical structure, parametrized
in terms of the modulus k of a Jacobi inverse elliptic function.

Such characterization of the optimal temperature fields opens the door to the
computation of the full heat current probability distribution, as codified in the cur-
rent large deviation function. In particular, we have obtained the exact analytical
form of the heat current LDF, analyzing its behavior both for small fluctuations
around the nonequilibrium steady state, and in the far tails of the distribution. We
observe that near the stationary state corrections to Gaussian behavior are small,
and the heat current distribution can be well approximated by a deformed Gaus-
sian along all directions. On the other hand, the behavior of current LDF for large
values of the current is far more complex, pointing out to the intricateness of fluc-
tuations far from equilibrium. In particular, we find remarkable logarithmic tails in
the current LDF for large fluctuations orthogonal to the thermal gradient, showing
that these fluctuations are far more probable than previously anticipated. Finally,
reformulating the statistical problem in terms of the associated cumulant generat-
ing function, we have obtained analytic formulas for the first few cumulants of the
heat current distribution. These results allow us to find remarkable new relations
between some of this cumulants, which imply integral relations between different
correlators of the heat current field. This finding opens the door to further experi-
mental research to test these results, as the lower-order cumulants of the empirical
heat current can be readily measured in actual experiments.
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Chapter 5

Order and symmetry-breaking in the fluc-
tuations of driven systems

5.1 Introduction

The theory of critical phenomena is a cornerstone of modern theoretical physics
[236, 237]. Indeed, phase transitions of all sorts appear ubiquitously in most do-
mains of physics, from cosmological scales to the quantum world of elementary
particles. As we have shown in Section 2.5.4, in a typical 2nd-order phase tran-
sition order emerges continuously at some critical point, as captured by an order
parameter, signaling the spontaneous breaking of a symmetry and an associated
non-analyticity of the relevant thermodynamic potential. Conversely, 1st-order
transitions are characterized by an abrupt jump in the order parameter and a co-
existente of different phases [236, 237]. In the last years, a number of works has
brought to light the existence of dynamical phase transitions at a fluctuating level
in many different situations where the previous features and elements typical from
standard critical behaviour have been now analyzed. When considering the large-
deviation scaling of the stationary distribution in the weak-noise (large Ω) limit, the
appearance of dynamical phase transitions as singularities (non-differentiabilities)
in the quasi-potential of non-equilibrium dynamics has been observed [238–240].
Another type of DPTs has been reported when conditioning a system to have a
fixed value (typical or rare) of some time-integrated observable, as e.g. the cur-
rent or the activity [16–18, 41, 52, 55–59, 61, 62, 88, 177–179, 181–196, 241, 242].
These class of DPTs are the ones we are interested in. In this case, the different
dynamical phases then correspond to different types of trajectories adopted by the
system to sustain atypical values of this observable and the points at which the
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transition between them takes place corresponds to non-analicity of the associated
large deviation funcion. In this scheme, events such as the spontaneous breaking
of a symmetry, dynamical phase coexistence or emergence of ordered structures
enhancing the probability of observing a given fluctuation [18,60] appear, opening
the door to the discovery of a whole new, rich and complex phenomenology.

Apart from their conceptual importance, DPTs has acquired great relevance
in practical situations. As we have seen in Introduction, recent breakthroughs
have shown that fluctuations admit a control-theory (or active) interpretation [16,
75, 243]: among the external control fields that drive the system to the desired
fluctuation, the one minimizing the dissipated energy is univocally related to the
typical trajectory for the spontaneous emergence of such fluctuation [16]. In this
way, a DPT at the trajectory level corresponds to a singular change in the optimal
control field, and this can be observed in actual experiments. However, up to now
most works on DPTs have focused on toy 1d models [18,56–59,62,179,181–185]
or fluctuations of scalar (1d) observables in d > 1 [61, 186–194, 242], and the
goal is to understand DPTs in the fluctuations of fully vectorial observables in
d-dimensions and how they are affected by the (possible) system anisotropy for
realistic d > 1 systems amenable to control for technological applications

In this chapter we address this challenge and report compelling evidences of
a rich DPT and new physics in the statistics of vectorial currents in an archety-
pal 2d driven diffusive system, the weakly asymmetric simple exclusion process
(WASEP) [244]. To crack this problem, we use massive cloning Monte Carlo
simulations for rare event statistics [153–155], together with macroscopic fluctu-
ation theory (MFT) to understand the fluctuation phase diagram [16]. We find a
2nd-order DPT between a homogeneous fluctuation phase with structureless trajec-
tories and Gaussian current statistics, and a symmetry-broken non-Gaussian phase
for small currents characterized by the emergence of coherent jammed states in
the form of traveling-wave trajectories. Such jammed states, which are surpris-
ingly extended and non-compact, hamper particle flow enhancing the probability
of low-current fluctuations [57]. Interestingly, for mild or no anisotropy differ-
ent symmetry-broken phases appear depending on the current separated by lines
of 1st-order DPTs, a degeneracy which disappears beyond a critical anisotropy.
Dynamical coexistence of the different traveling-wave phases appears along these
1st-order lines.

The chapter is organized as follows. In Section 5.2 we will study the vectorial
current fluctuations in arbitrary periodic driven diffusive systems under the scheme
of MFT. We will observe that for small fluctuations, the most probable paths are
constant and homogeneus. We will deduce that such optimal profiles become un-
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stable for low values of the current pointing out the existence of a dynamical phase
transitions. Furthermore, we will show that the optimal trajectories minimizing
the action inmediately after the transtion line present a traveling-wave structure,
and we will characterize its properties. In Section 5.3, we will particularize these
results to the 2d-WASEP. We will present the dynamical phase diagram the system
exhibits at a fluctuating level. Moreover, we will study the nature of the different
DPTs, finding non-analiticities of both 1st- and 2nd-order in the sCGF. Finally, in
Section 5.4 we will compare this theoretical scheme with numerical results ob-
tained from extensive cloning simulations. We will observe how the sCGF beyond
the transition line deviates from the quadratic behaviour typical of Gaussian fluc-
tuations and converges to the MFT predictions on the dynamical free energy in
the symmetry-broken phase. Finally, to fully understand this 2nd-order phase tran-
sition and its associated symmetry-breaking, we will define a microscopic order
parameter which will characterize the behaviour of the system beyond the critical
line.

5.2 Current fluctuations in periodic driven diffusive sys-
tems

We aim to analyze the equations of macroscopic fluctuation theory for the current
vector statistics of arbitrary driven diffusive systems, with special emphasis on the
MFT predictions regarding the existence and nature of dynamic phase transitions
in some regimes of current fluctuations. In this way, our system of interest is the
d-dimensional anisotropic driven diffusive system characterized by the (locally-
conserved) particle density field ρ(r, t), with r ∈ Λ ≡ [0, 1]d and t ∈ [0, τ ]. As we
have studied in Section 2.2.1, its evolution is govern by the Langevin equation1

∂tρ(r, t) + ∇ ·
(
−D̂[ρ]∇ρ(r, t) + σ̂(ρ)E + ξ(r, t)

)
= 0 , (5.1)

with E the external field driving the system out of equilibrium, and where the field
j(r, t) ≡ −D̂[ρ]∇ρ(r, t) + σ̂(ρ)E + ξ(r, t) is the fluctuating current. Following
the scheme exposed in Section 3.2, both D̂[ρ] ≡ D[ρ]Â and σ̂(ρ) = σ[ρ]Â are
the diffusivity and mobility matrices, respectively, related via the local Einstein
relation, with Â a diagonal anisotropy matrix with components Âαβ = aαδαβ ,
α, β ∈ [1, d]. The term ξ(r, t) is a Gaussian white noise with average and variance
given by (3.2)-(3.3), where in this case φ(r, t) = ρ(r, t). Finally, to completely

1Once again, to facilitate reading we recall some concepts already presented in previous chap-
ters.
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define the problem, the evolution equation (5.1) must be supplemented with appro-
priate boundary conditions, which in this situation are simply periodic along all d
directions, i.e.

ρ(r + êi, t) = ρ(r, t) , ∀i ∈ [1, d] , (5.2)

with êi the already presented canonical unit vectors.
We are now in position to study the current distribution under the framework of

MFT. Indeed, proceeding as in Section 2.4.2, the probability of observing a given
trajectory {ρ(r, t), j(r, t)}τ0 can be writen as

P ({ρ, j}τ0) � exp
(
− ΩSτ [ρ, j]

)
, (5.3)

with

Sτ [ρ, j] =

∫ τ

0
dt

∫
Λ
dr

1

2σ[ρ]

(
j +D[ρ]Â∇ρ− σ[ρ]ÂE

)
· Â−1

(
j +D[ρ]Â∇ρ− σ[ρ]ÂE

)
, (5.4)

and where the fields ρ(r, t) and j(r, t) are coupled via the continuity equation (see
Eq. (5.1))

∂tρ(r, t) + ∇ · j(r, t) = 0 . (5.5)

Interestingly, for any other trajectory not obeying (5.5), Sτ [ρ, j] → ∞. At this
point, an additional constraint (already introduced in Section 3.4.2) needs to be
imposed as a consequence of considering the boundary conditions to be periodic.
Indeed, the system of interest is now isolated so the total mass is conserved, leading
to:

ρ0 =

∫
Λ
dr ρ(r, t) . (5.6)

Therefore, the probability Pτ (q) of observing a space- and time-averaged empiri-
cal current vector q, defined as

q =
1

τ

∫ τ

0
dt

∫
Λ
dr j(r, t) , (5.7)

scales for long times as Pτ (q) � exp[−τΩG(q)], and the current large deviation
function G(q) can be related to Sτ [ρ, j] via a simple saddle-point calculation in
the long-time limit,

G(q) = lim
τ→∞

{
1

τ
min
{ρ,j}τ0

Sτ [ρ, j]

}
, (5.8)
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subjected to constraints (5.5), (5.6) and (5.7)2 The optimal paths ρq(r, t), jq(r, t)
solution of (5.8) may be in general time-dependent, and, as we have seen, the
associated general variational problem is remarkably hard.

5.2.1 Uniform optimal fields and local stability analysis

The problem (5.8) becomes simpler however in different limiting cases. For in-
stance, in the steady state the system exhibits translation symmetry with an ho-
mogeneous stationary density profile ρst(r) = ρ0 and a constant average current
jst(r) = 〈q〉 = σ0ÂE, where we have defined σ0 ≡ σ[ρ0]. Now, one can argue
that small fluctuations of the empirical current q away from the average behavior
〈q〉 will typically result from weakly-correlated local events in different parts of
the system which add up incoherently to yield the desired q, so the most probable
trajectories associated to these small fluctuations are still homogeneus and time-
independent, as the stationary ones [41, 56]. Thus, according to Eqs. (5.6) and
(5.7), the optimal density and current fields takes the form:

ρq(r, t) = ρ0 jq(r, t) = q , (5.9)

for |q− 〈q〉| � 1, leading to a quadratic current LDF corresponding to Gaussian
current statistics,

GG(q) =
1

2σ0

(
q− σ0ÂE

)
· Â−1

(
q− σ0ÂE

)
, (5.10)

as it was predicted by Central Limit Theorem. Indeed, this result has been corrob-
orated in simulations for a broad range of q’s [52]. As an interesting by-product,
note that current fluctuations in this Gaussian regime obey an anisotropic version
of the Isometric Fluctuation Theorem [46, 67, 70], which links in simple terms the
probability of two different but Â-isometric current vector fluctuations (see Sec-
tion 2.5.3). In particular,

lim
τ→∞

1

τΩ
ln

[
Pτ (q)

Pτ (q′)

]
= E · (q− q′) , (5.11)

∀q,q′ in the Gaussian regime such that q · Âq = q′ · Âq′.
The above ansatz with the associated flat profiles remains a solution of the full

variational problem (5.8) for all q, but the question remains as to whether other so-
lutions with more complex spatiotemporal structure may yield a better minimizer

2Note that this problem is equivalent to define a modified action by introducing constraints (5.5),
(5.6) and (5.7) with the corresponding Lagrange multipliers, as we have done in previous chapters.
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of the MFT action (5.4) for certain values of the current. To address this question,
we now perturb the above flat solution with small but otherwise arbitrary func-
tions of space and time, and study the local stability of the homogeneous solution
against such perturbations. In particular, we ask whether the perturbed fields yield
in some case a smaller G(q). With this aim in mind, we write

ρ̄(r, t) = ρ0 + δρ(r, t), j̄(r, t) = q + δj(r, t) , (5.12)

where both ρ̄(r, t) and j̄(r, t) remain constrained by Eqs. (5.5), (5.6) and (5.7).
Inserting these expressions in Eq. (5.8) and expanding to second order in the
perturbations, we obtain the leading correction to the quadratic form GG(q) of
Eq. (5.10), denoted here by O2:

O2 =
1

2τ

∫ τ

0
dt

∫
Λ
dr
{
A(ρ0,q)δρ2 + ∇δρ · B̂(ρ0)∇δρ+ δj · Ĉ(ρ0)δj

+ δj · F(ρ0,q)δρ
}
, (5.13)

where we have defined

A(ρ0,q) =

(
σ′20
σ3

0

− σ′′0
2σ2

0

)
q · Â−1q + σ′′0E · ÂE ,

B̂(ρ0) =
D2

0

σ0
Â , Ĉ(ρ0) =

Â−1

σ0
, F(ρ0,q) = −σ

′
0

σ2
0

Â−1q , (5.14)

with ′ denoting derivative with respect to the argument, and D0 ≡ D[ρ0]. We next
expand the perturbations δρ(r, t) and δj(r, t) in Fourier series, taking advantage
of the spatial periodic boundary conditions, and imposing explicitly along the way
the constraints (5.5), (5.6) and (5.7). For simplicity we particularize hereafter
our results for dimension two, d = 2, though the generalization to arbitrary d
is straightforward. In this way, perturbations take the form3

δρ(r, t) =
∑
ν

1

ν

[
−∇ · γ1,ν(r) sin(νt) +∇ · γ2,ν(r) cos(νt)

]
, (5.15)

δj(r, t) =
∑
ν

[
γ1,ν(r) cos(νt) + γ2,ν(r) sin(νt)

]
, (5.16)

3Note that the form of the density and current fields at initial and final times are not fixed.
Consequently, we use the complete Fourier basis {sin(νt), cos(νt)} in the expansions of the pertur-
bations.
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where the first equation follows from the second expansion after imposing the
continuity constraint (5.5), with

γ1,ν(r) =
1

4
aν00 +

1

2

∑
k1 6=0

(aνk10 cos k1x+ cνk10 sin k1x)

+
1

2

∑
k2 6=0

(aν0k2 cos k2y + bν0k2 sin k2y)

+
∑

k1,k2 6=0

(aνk1k2 cos k1x cos k2y + bνk1k2 cos k1x sin k2y

+ cνk1k2 sin k1x cos k2y + dνk1k2 sin k1x sin k2y) (5.17)

γ2,ν(r) =
1

4
sν00 +

1

2

∑
k1 6=0

(sνk10 cos k1x+ uνk10 sin k1x)

+
1

2

∑
k2 6=0

(sν0k2 cos k2y + tν0k2 sin k2y)

+
∑

k1,k2 6=0

(sνk1k2 cos k1x cos k2y + tνk1k2 cos k1x sin k2y

+ uνk1k2 sin k1x cos k2y + vνk1k2 sin k1x sin k2y) (5.18)

where aνij , bνij , cνij , dνij , sνij , tνij , uνij , vνij are the coefficients of the Fourier
series. Remarkably, the previous expansion has been divided into first the only-
temporal modes, then all 1+1 spatiotemporal modes along each direction of space,
and finally the fully 2 + 1 spatiotemporal modes. The O2 correction (5.13) is of
course a quadratic form of the perturbations with constant coefficients, which, to-
gether with the orthonormality properties of Fourier basis, imply that the different
Fourier modes decouple simplifying the problem. In this way the stability anal-
ysis melts down as usual to an eigenvalue problem, which in this case splits into
different problems for only temporal modes, spatiotemporal modes with structure
along just one dimension, x or y, and 2d spatiotemporal modes, which can be
analyzed separately. This straightforward but lengthy calculation leads to the fol-
lowing conclusion: the flat solution corresponding to Gaussian current statistics
remains stable (i.e. the O2 correction is positive) whenever the following condi-

79



Chapter 5. Order and symmetry-breaking in the fluctuations of driven systems

tions hold,

amink
2
n

D2
0

σ0
+ H(E,q) > 0

amaxk
2
m

D2
0

σ0
+ H(E,q) > 0 (5.19)

(
amink

2
n + amaxk

2
m

) D2
0

σ0
+ H(E,q) > 0,

with kn = 2πn and km = 2πm the different spatial modes associated to each
perturbation along either direction, amin = min{aα, α ∈ [1, d]} and amax =
max{aα, α ∈ [1, d]}, and

H(E,q) =
σ′′0
2

(
E · ÂE− σ−2

0 q · Â−1q
)

(5.20)

A number of important conclusions can be directly derived from this set of condi-
tions, namely:

(i) The first mode to become unstable (if any) is always the fundamental mode
k1 = 2π.

(ii) For any value of the anisotropy, the first perturbations to become unstable
are those with structure along one spatial dimension, x or y.

(iii) For anisotropic systems, amin < amax, the leading unstable perturbation has
structure in the direction of minimum anisotropy.

(iv) For isotropic systems, amin = amax ≡ a, both one-dimensional perturbations
trigger the instability of the flat solution at the same point. In this case,
the orientation of the current vector q determines the most probable profile
immediately after the instability kicks in, with structure only along the x-
or y-direction, as dictated by the term proportional to F(ρ0,q) in the O2
correction, see Eq. (5.13).

Therefore there exists a line of critical values for the current qc at which the insta-
bility appears, given by

qc · Â−1qc = σ2
0Ξc , (5.21)

where

Ξc ≡
(

E · ÂE + 8π2amin
D2

0

σ0σ′′0

)
(5.22)
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For systems with σ′′0 > 0 (as e.g. the Kipnis-Marchioro-Presutti model of heat
transport [18,46,126]), the instability appears always, regardless of the value of the
external field (even for E = 0), separating a regime of Gaussian current statistics
for q · Â−1q ≤ σ2

0Ξc and a non-Gaussian region for q · Â−1q > σ2
0Ξc. On the

other hand, for systems with σ′′0 < 0 (as the weakly asymmetric simple exclusion
process, WASEP, that we will study in this chapter [41, 57, 244]) a line of critical
values of the external field exists, defined by

Ec · ÂEc = 8π2amin
D2

0

σ0|σ′′0 |
≡ |Σc| . (5.23)

beyond which the instability appears, E · ÂE ≥ |Σc|. In this strong field case,
Gaussian statistics are expected for all currents except for a region around q = 0,
defined by q · Â−1q ≤ σ2

0Ξc, where current fluctuations are non-Gaussian4. For
weak external fields, E · ÂE < |Σc|, only Gaussian statistics are observed. Con-
sequently, the existence of the instability reveals the fact that a dynamical phase
transition is taken place along this line.

Whenever the instability emerges, the first two frequencies to become unstable
are

ν±c = ±2πq‖
σ′0
σ0
, (5.24)

with q‖ the component of the current vector along the direction of structure forma-
tion (that we denote here as x‖). Considering that the first unstable spatial mode
correspond to k⊥ = 0, k‖ = 2π, the resulting leading perturbations simplify to

δρ±(r, t) =
π

ν±c

(
a

(2)

ν±c 01
sin 2πx‖ − b

(2)

ν±c 01
cos 2πx‖

)
sin ν±c t

+
(
−s(2)

ν±c 01
sin 2πx‖ + t

(2)

ν±c 01
cos 2πx‖

)
cos ν±c t (5.25)

δj±(r, t) =
1

2

(
aν±c 01 cos 2πx‖ + bν±c 01 sin 2πx‖

)
cos ν±c t

+
(
sν±c 01 cos 2πx‖ + tν±c 01 sin 2πx‖

)
sin ν±c t (5.26)

with

aν±c 01 = (a
(1)

ν±c 01
, a

(2)

ν±c 02
) , bν±c 01 = (b

(1)

ν±c 01
, b

(2)

ν±c 02
) ,

sν±c 01 = (s
(1)

ν±c 01
, s

(2)

ν±c 02
) , tν±c 01 = (t

(1)

ν±c 01
, t

(2)

ν±c 02
) , (5.27)

4Note that the sign of σ′′0 is a crucial element to fully undertstand the phenomenology associated
to this analysis. Indeed, for σ′′0 > 0 the non-Gaussian region appears above the critical line q ·
Â−1q > σ2

0Ξc, while for σ′′0 < 0 the situation is reversed and the non-Gaussian region takes place
(if any) below the critical line q · Â−1q < σ2

0Ξc.
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the coefficients of the Fourier series corresponding to that mode. Introducing these
perturbations in (5.13) and imposing O2 < 0 [41], we arrive at a relation between
the different coefficients, a(2)

01 = ±t(2)
01 , b(2)

01 = ∓s(2)
01 for ν±c . As a result, the

dominant perturbation of the density profile once the instability is triggered takes
the form of a one-dimensional traveling wave

δρ(x‖, t) = A sin

[
2π

(
x‖ − x0

‖ −
q‖σ
′
0

σ0
t

)]
, (5.28)

with A and x0
‖ two arbitrary constants.

5.2.2 Coherent jammed states: one-dimensional traveling-wave solu-
tions

With the previous result in mind, we consider now that the relevant density fields
well below the instability conserve a traveling-wave structure, i.e. ρ(r, t) ≡ ω(r−
vt), with v some velocity vector to be determined in the variational problem. Tak-
ing now into account the continuity constraint Eq. (5.5) we have that

∇r′ · j(r′) = v ·∇r′ω(r′) , (5.29)

with the definition r′ = r− vt. Integrating the previous expression leads to

j(r, t) = vω(r− vt) + Φ(r− vt) , (5.30)

where Φ(r−vt) is an arbitrary divergence-free vector field. To explicitly account
for the constraint (5.7) on the empirical current, we now split the field Φ into two
terms, Φ(r− vt) = k +ϕ(r− vt), where k = q− vρ0 is a constant vector fixed
by constaints (5.6) and (5.7), and ϕ(r − vt) is now an arbitrary divergence-free
field with zero integral, see Eqs. (5.36)-(5.37) below, defining another degree of
freedom (a sort of gauge field) to be determined in the variational problem. The
resulting traveling-wave form of the current field is

j(r, t) = q− v [ρ0 − ω(r− vt)] +ϕ(r− vt) . (5.31)

Interestingly, the system uses this kind of gauge freedom to optimize a given
current fluctuation in the symmetry-broken phase, selecting among all possible
gauges a particular, non-trivial one which maximizes the probability of this event.
This sort of gauge freedom is precisely the key feature responsible of the richness
of the fluctuation phase diagram for d > 1.

82



5.2. Current fluctuations in periodic driven diffusive systems

In this way, under the above traveling-wave assumptions, the current LDF of
Eq. (5.8) can now be written, after a change of variables (r− vt)→ r, as

G(q) = min
ω,ϕ,v

∫
Λ
drGq(ω,ϕ,v), (5.32)

with the definitions

Gq(ω,ϕ,v) ≡ 1

2σ[ω]
J q(ω,ϕ,v) · Â−1J q(ω,ϕ,v), (5.33)

J q(ω,ϕ,v) ≡ q− v (ρ0 − ω) +ϕ+D[ω]Â∇ω − σ[ω]ÂE , (5.34)

and with the additional constraints

ρ0 =

∫
Λ
ω(r) dr (5.35)∫

Λ
ϕ(r) dr = 0 (5.36)

∇ ·ϕ(r) = 0 (5.37)

To account for these constraints, we employ the method of Lagrange multipliers.
In particular, we write

G(q) = − min
ω,ϕ,v
ζ,κ,Ψ

∫
Λ
dr G̃q(ω,ϕ,v, ζ,κ,Ψ), (5.38)

where the modified functional to minimize is

G̃q(ω,ϕ,v, ζ,κ,Ψ) ≡ Gq(ω,ϕ,v) + ζ [ρ0 − ω(r)] + κ ·ϕ(r) + Ψ(r)∇ ·ϕ(r) ,
(5.39)

and ζ, κ and Ψ(r) are the Lagrange multipliers associated to the constraints (5.35),
(5.36) and (5.37), respectively. Standard variational calculus shows now that the
optimal fields and velocity solution of this complex variational problem, denoted
as ωq(r), ϕq(r), and vq, obey the following system of coupled equations,

M1 · Â−1jq −M2 · Â∇ωq +
1

2
σ′[ωq]E · ÂE− ζ = 0 (5.40)

D[ωq]∇ωq + Â−1jq + σ[ωq] [κ−∇Ψ] = 0 , (5.41)∫
Λ
dr

(
ωq − ρ0

σ[ωq]

)
Â−1jq = 0 , (5.42)
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together with constraints (5.35), (5.36) and (5.37), where we have defined jq(r) ≡
q− vq [ρ0 − ωq(r)] +ϕq(r) and

M1 ≡
[

vq

σ[ωq]
− σ′[ωq]

2σ[ωq]2
jq

]
, M2 ≡

[(
D[ωq]2

2σ[ωq]

)′
∇ωq +

D[ωq]2

σ[ωq]
∇
]

(5.43)
for simplicity in notation.

As discussed above, our local stability analysis shows that whenever the tran-
sition is unleashed, the leading instability is a density wave with structure in one
dimension only, determined either by the minimum-anisotropy direction, see con-
dition (iii) above, or by the orientation of the current vector for isotropic systems,
see (iv). Such a 1d traveling wave will dominate the optimal solution of our vari-
ational problem at least in a finite region below the transition line, so we now
assume 1d optimal traveling-wave fields of the form ωq(x‖) and ϕq(x‖) (recall
that we denote as x‖ the direction of structure formation, and x⊥ the orthogo-
nal, structureless direction). Let us show the implications of such an ansatz in
the system of equations (5.35)-(5.37), (5.40)-(5.42) and on the form of the op-
timal traveling-wave trajectories. First, we focus on the most probable current
field. We decompose the optimal vector field ϕq along the ‖- and ⊥-directions,
ϕq(x‖) = [ϕ

‖
q(x‖), ϕ

⊥
q (x‖)]. The divergence-free constraint (5.37) on ϕq(x‖)

immediately implies that ϕ‖q is in fact a constant, while the zero-integral constraint
(5.36) sets this constant to zero, resulting in a simplfied form of the vector field
ϕq(x‖) = (0, ϕ⊥q (x‖)). This in turn implies that

j
‖
q(x‖) = q‖ − v‖[ρ0 − ωq(x‖)] . (5.44)

Now, by differentiating the ⊥-component of Eq. (5.41) with respect to x⊥, it is
straightforward to see that ∂⊥Ψ is a function of x‖ at most. Moreover, doing the
same differentiation on the ‖-component of (5.41), we obtain that ∂‖∂⊥Ψ = 0,
which together with the previous observation implies that ∂⊥Ψ is indeed a con-
stant. Using this information in the ⊥-component of Eq. (5.41), together with
constraint (5.7) on the empirical current, we obtain that

j⊥q (x‖) = q⊥
σ[ωq(x‖)]∫ 1

0 σ[ωq(x‖)]dx‖
, (5.45)

which is nothing more that the natural consequence derived from the application of
our theorem on the structure of the optimal current fields exposed in Chapter 3 to
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this problem (see Eq. (3.20)). Summarising, the combined action of Eqs. (5.36),
(5.37) and (5.41) lead to an optimal current vector field of the form:

jq(x‖) =

(
q‖ − v‖[ρ0 − ωq(x‖)], q⊥

σ[ωq(x‖)]∫ 1
0 σ[ωq(x‖)]dx‖

)
(5.46)

We next focus on Eq. (5.40). Multiplying this equation by ω′q(x‖), using
that dF [ωq(x‖)]/dx‖ = F ′[ωq]ω′q(x‖) for any arbitrary functional F [ωq], and the
identity

djq(x‖)

dx‖
= vqω

′
q(x‖) +

dϕq(x‖)

dx‖
(5.47)

Eq. (5.40) can be rewritten as

d

dx‖

[
1

2σ[ωq]
jq · Â−1jq − amin

D[ωq]2

2σ[ωq]

(
dωq

dx‖

)2

+
1

2
σ[ωq]E · ÂE

]

− 1

amaxσ[ωq]

dϕ⊥q (x‖)

dx‖
j⊥q (x‖)− ζω′q(x‖) = 0 . (5.48)

Integrating this equation once and taking into account the form of jq(x‖), see Eq.
(5.46), we arrive at a differential equation for the optimal traveling-wave profile

X[ωq]

(
dωq

dx‖

)2

− Y [ωq] + K̃ωq(x‖)−K = 0 , (5.49)

with K and K̃ two constants which comprise the Lagrange multiplier ζ, the wave
velocity vq, and information on the boundary conditions, and where we have de-
fined

X[ω] ≡ D[ω]2

2σ[ω]
amin , (5.50)

Y [ω] ≡ σ[ω]

2

(
E · ÂE +

[q‖ − v‖(ρ0 − ω)]2

aminσ[ω]2
−

q2
⊥

amax(
∫ 1

0 σ[ω]dx‖)2

)
. (5.51)

Finally, two additional equations follow from the ‖-component of Eq. (5.42) and
constraint (5.35)∫ 1

0
dx‖

[ωq(x‖)− ρ0]

aminσ[ωq]

[
q‖ − v‖(ρ0 − ωq(x‖))

]
= 0 , (5.52)

ρ0 =

∫ 1

0
ωq(x‖) dx‖ . (5.53)
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Therefore, the set (5.49), (5.52) and (5.53), supplemented by periodic boundary
conditions, constitutes the system of coupled integro-differential equations for the
optimal fields.

In order to solve this system, we now introduce a reparametrization which
simplifies the numerical evaluation of the optimal 1d density wave profile and thus
of the current LDF G(q). First note that, in our geometry, Eq. (5.49) leads to a
periodic optimal profile symmetric around x‖ = 1/2 (recall that x‖ ∈ [0, 1]), i.e.
with reflection symmetry x‖ → 1 − x‖. Next we consider the possible maxima
and minima of the optimal density wave. For models with a quadratic mobility
transport coefficient σ[ω], as the WASEP and KMP models typically studied in
literature, the number of possible maxima ω+ and minima ω− of the curve ωq(x‖)
is rather restricted (see Eq. (5.49) once particularized for ω′q(x‖) = 0). In the
simplest case [18, 57], a single maximum ω+ = ωq(x+

‖ ) and minimum ω− =

ωq(x−‖ ) will appear, such that the position of two consecutive extrema x+
‖ and x−‖

is such that |x+
‖ (k) − x−‖ (k)| = 1/2n, with n the number of cycles in the unit

interval. One can then study numerically the dependence of the current LDF on
the number n of cycles, finding that n = 1 is the optimal case. We hence restrict
hereafter to 1d density waves with a single maximum and minimum with n = 1.
As a result, we can express now the constants K̃ and K of Eq. (5.49) in terms of
these extrema

Y (ω±) = K̃ω± −K . (5.54)

The values of these extrema ω± can be obtained from the constraints on the dis-
tance between them and the total density of the system. In particular, the first
constraint leads to the following equation,

1 =

∫ 1

0
dx‖ = 2

∫ ω+

ω−

dωq

ω′q
= 2

∫ ω+

ω−

f(ωq) dωq (5.55)

with

f(ωq) ≡

√
X(ωq)

Y (ωq)− K̃ωq +K
(5.56)

as derived from Eq. (5.49), while the constraint on the total density leads to

ρ0 =

∫ 1

0
ωq(x‖) dx‖ = 2

∫ ω+

ω−

ωq

ω′q
dωq = 2

∫ ω+

ω−

ωqf(ωq) dωq . (5.57)

Note that the unknown variables ω± appear as integration limits in Eqs. (5.55)
and (5.57), difficulting the numerical solution of this problem. However, a suitable
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change of variables in ω-space allows to drop this dependence. In particular, we
write now ωq ≡ ω− + Ω(ω+ − ω−), with Ω ∈ [0, 1], and define h(Ω) ≡ (ω+ −
ω−)f [ω−+Ω(ω+−ω−)]. With this choice, constraints (5.55) and (5.57), together
with Eq. (5.52) for the velocity, now read

1

2
=

∫ 1

0
h(Ω) dΩ , (5.58)

ρ0

2
=

∫ 1

0
ωq(Ω)h(Ω) dΩ , (5.59)∫ 1

0
h(Ω)

[ωq(Ω)− ρ0]

aminσ[ωq(Ω)]

[
q‖ − v‖(ρ0 − ωq(Ω))

]
dΩ = 0 . (5.60)

The solution of this three integral equations for a particular model and a given
current vector q leads to particular values of the parameters ω−, ω+ and v‖, which
can be used in turn to obtain the constants K and K̃ from Eq. (5.54) needed
to solve numerically the differential equation (5.49) for the optimal density wave
profile [18, 57] and thus obtain the current LDF G(q).

5.2.3 Scaled Cumulant Generating Function

As we have shown, a related, interesting function is the scaled cumulant generating
function µ(λ) associated to the current probability distribution Pτ (q), also called
dynamical free energy since it plays a role akin to free energy out of equilibrium.
We recall here some definitions and we refer to Section 2.4.2 for further details.
Indeed, the sCGF is defined as:

µ(λ) ≡ lim
τ→∞

1

τΩ
ln Πτ (λ) , (5.61)

with Πτ (λ) = 〈e−τΩλ·q〉 the generating function, also known as dynamical par-
tition function. The Gärtner-Ellis theorem [19, 24, 37] related both the sCGF and
LDF via the Legendre-Fenchel transform

µ(λ) = max
q

[G(q) + τΩλ · q] , (5.62)

where we can see that λ and q are conjugated vectors. In this way, fixing λ is
equivalent to conditioning the system to have an empirical current qλ ≡ Qλ/t =
∇λµ(λ), so it is expected that by varying λ one can explore the different regimes
presented in the previous section.
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Certainly, the above MFT analysis of the dynamic phase transition can be de-
veloped also in terms of µ(λ), which will provide a direct comparison with the
results of numerical experiments based on the cloning Monte Carlo method (see
Section 5.4 below). In particular, defining z ≡ λ + E, it can be shown that a line
of critical values zc exists at which the instability appears, defined by the equation
zc ·Âzc = Ξc, with Ξc the critical threshold defined in Eq. (5.22). This critical line
separates a phase of Gaussian current statistics and homogeneous optimal profiles,
corresponding to a quadratic sCGF µG(z) = σ0(z·Âz−E·ÂE)/2, see Eq. (5.10),
and the non-Gaussian, traveling-wave phase. As before, for systems with σ′′0 > 0
(as the KMP model) the Gaussian regime dominates for z · Âz ≤ Ξc while the
traveling-wave region appears for z · Âz > Ξc and for all E. On the other hand,
for systems with σ′′0 < 0 (as the WASEP studied here) a line of critical values of
the external field exist, defined by Eq. (5.23), beyond which the instability appears,
E · ÂE ≥ |Σc|. In this strong field case, Gaussian statistics are expected for all
z-values except for a region defined by z · Âz ≤ Ξc, where current fluctuations are
non-Gaussian.

5.3 Dynamical phase transitions in the current vector statis-
tics from MFT

Our goal now is to characterize the different dynamical phase transitions observed
in the previous section when analyzing the current vector statistics. With this idea
in mind and the aim of establishing a comparision between this theoretical scheme
and numerical predictions, we will focus on a paradigmatic example of aniso-
tropic driven diffusive system: the weakly asymmetric simple exclusion process
(WASEP).

5.3.1 Two-dimensional Weakly Asymmetric Simple Exclusion Pro-
cess (WASEP)

The 2d-WASEP belongs to a broad family of driven diffusive systems of funda-
mental and technological interest [16–18]. Microscopically, this model is defined
on a 2d square lattice of size N = L×L with periodic boundaries where M ≤ N
particles evolve, so the global density is ρ0 = M/N . Each lattice site may con-
tain at most one particle, which performs stochastic jumps to neighboring empty
sites along the ±α-direction (α = x, y) at a rate rα± ≡ exp [±Eα/L]/2, with
E = (Ex, Ey) an external field, see Fig. 5.1. These rates converge for large L
to the standard ones found in literature [17, 41], namely 1

2(1 ± Eα/L), but avoid
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problems that the last ones could originate with negative rates for small L. Indeed,
the hydrodynamic description of both variants of the model is identical in the ther-
modynamic limit. However, for finite, moderate values of L and large E the field
per unit length (E/L) is strong enough to induce an effective anisotropy in the sys-
tem. In fact, by expanding the microscopic transition rate rα± to second order in
the field per unit length, i.e. rα± ≈ 1

2 [1±Eα/L+ 1
2(Eα/L)2] +O[(Eα/L)3], it is

easy to show using a simple random walk argument that the second-order pertur-
bation results in an effective enhancing of diffusivity and mobility along the field
direction, and an associated decrease in the orthogonal direction.

It can be proved [124, 245] that, for large enough L, this model is defined,
at a mesoscopic level, by a diffusivity and mobility matrices D̂[ρ] = D[ρ]Â and
σ̂(ρ) = σ[ρ]Â, respectively, with

D[ρ] = 1/2 , σ[ρ] = ρ(1− ρ) (5.63)

(note that σ′′(ρ) < 0). The diagonal anisotropy matrix Â has components Âαβ =
aαδαβ , with α, β = x or y. For simplicity, we can assume that the external field is
applied only in the x-direction, with no loss of generality. In this case, we consider
systems such that ax = 1 + ε and ay = 1 − ε, with ε an anisotropy parameter
accounting for the microscopic effective anisotropy previosly described. Indeed,
such an effect is modeled in our case with a parameter ε ≥ 0 so that the direction
of minimum anisotropy (if any) is y. Interestingly, the reason behind this choice is
that the finite lattice systems which we can simulate effectively using the cloning
method (see Section 5.4 below) present a moderate size L and strong external field
E, inducing an increase on the diffusivity and mobility along the field direction.

Using these definitions, one can particularize the theoretical framework de-
scribed in Section 5.2 for the 2d anisotropic WASEP and proceed to solve numer-
ically the variational problem for the current sCGF µ(λ) and the optimal profiles.

5.3.2 Order and symmetry-breaking at the fluctuating level: dynam-
ical phase diagram

The solution of the MFT problem shows that the interplay among the external
field, the two-dimensional current vector and the anisotropy leads to a rich phase
diagram for current fluctuations. Fig. 5.2.a-c. shows µ(λ), as derived from our
MFT calculations, for three different values of the anisotropy ε as well as the pro-
jections of the corresponding dynamical phase diagrams, while Fig. 5.2 shows
raster plots sketching typical configuration trajectories for WASEP in the Gaus-
sian current fluctuation phase, Fig. 5.2.d, and in the two different non-Gaussian
symmetry-broken phases which appear for low currents, Figs. 5.2.e-f. As we have
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Figure 5.1: Sketch of the 2d weakly asymmetric simple exclusion process (WASEP) with an exter-
nal field in the x-direction, i.e. E = (E, 0).

seen, small current fluctuations (|q−〈q〉| � 1 or |λ| ≈ 0) typically result from the
random superposition of mostly-independent local jumps which sum incoherently
to yield the desired current, so the typical trajectories are homogeneous. This flat
phase is depicted in light gray in Fig. 5.2. For WASEP, the local stability analysis
then shows that this Gaussian, homogeneous regime eventually becomes unstable
for q · Â−1q = σ2

0Ξc, or equivalently z · Âz = Ξc, where Ξc is the critical thresh-
old defined in Eq. (5.22), revealing the existence of a dynamical phase transition
between the Gaussian and non-Gaussian (dark colors) phases, see black eliptical
lines in Fig. 5.2.a-c.

Immediately after the instability kicks in, the dominant trajectory takes the
form of a traveling density wave with structure only along one-dimension (1d), ei-
ther x (red) or y (blue), see Figs. 5.2.e-f). This collective rearrangement breaks the
system spatiotemporal translation symmetry by localizing particles in a jammed re-
gion to facilitate a low-current fluctuation. This solution can be extended to all cur-
rents below the critical line, and we find numerically that different traveling wave
structures dominate different parts of the symmetry-broken, non-Gaussian phase,
see Fig. 5.2.a-c. For isotropic systems, ε = 0, the optimal density traveling wave
for subcritical vectors z = (zx, zy) with |zx| > |zy| (|zx| < |zy|) has structure
along the y-direction (x-direction), preserving deep into the non-Gaussian phase
the result derived from our local stability analysis right below the transition line,
see conclusion (iv) derived from the local stability analysis presented above. On
the other hand, for anisotropic systems (ε > 0) the transition triggers the formation
of a density traveling wave with structure only along the minimum anisotropy, y-
direction, see Figs. 5.2.b-c,e. , in agreement with conclusion (iii) above. However,
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Figure 5.2: Top: Dynamical free energy of the current for the 2d-WASEP in an external field
E = (10, 0) along the x-direction, as derived from MFT in the case of (a) no anisotropy, ε = 0,
(b) mild anisotropy, 0 < ε < εc, and (c) strong anisotropy, ε > εc. A DPT appears between
a Gaussian phase (light gray) with homogeneous optimal pathways, see sketch (d), representing a
typical configuration trajectory in this case, and two different non-Gaussian symmetry-broken phases
for low currents characterized by traveling-wave jammed states. The first DPT is 2nd-order while the
two symmetry-broken phases are separated by lines of 1st-order DPTs, see Fig. 5.4 below. Bottom:
Raster plots of typical configuration trajectories for the anisotropic 2d WASEP in the Gaussian
current fluctuation phase (d), and in the two different non-Gaussian symmetry-broken phases for low
currents, (e) and (f). These two novel phases are characterized by traveling density waves which jam
particle flow along the field direction, (b) and blue phase in (a)-(c), or along the direction orthogonal
to E, (c) and red phase in (a)-(c).

for mild anisotropy we find deep into the non-Gaussian regime two pockets of the
second symmetry-broken phase, i.e. the one with structure along the maximum
anisotropy axis, see Figs. 5.2.b,f. These two patches decrease with increasing ε,
up to a critical anisotropy εc ≈ 0.035 beyond which only the minimum-anisotropy
density wave appears in the non-Gaussian regime, see Figs. 5.2.c. Interestingly,
in Fig. 5.3 swe show the phase diagrams for current fluctuations for the different
anisotropy parameters (corresponding to the bottom projections of Fig. 5.2), to
illustrate such a rich and complex phenomenology.

Next, we investigate the order of the different DPT’s showing up in the cur-
rent statistics of this model. We first focus on the DPT from the Gaussian to the
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(a) (b) (c)

Figure 5.3: A closer look at the phase diagrams for current fluctuations in the case of (a) no
anisotropy, ε = 0, (b) mild anisotropy, 0 < ε < εc, and (c) strong anisotropy, ε > εc, corresponding
to the bottom projections in Fig. 5.2. The 2nd-order DPT between the Gaussian phase (light gray)
and the two different traveling-wave, non-Gaussian phases (dark blue and red) corresponds to the
black thick line, while the 1st-order DPT separating both symmetry-broken non-Gaussian phases is
depicted as a white thin line. Panels (b) and (c) also include a dashed line which corresponds to
the 2nd-order DPT line for ε = 0. This shows that the shape of this critical line does change as the
anisotropy parameter ε increases.

non-Gaussian phase at zc · Âzc = Ξc. Left panel in Fig. 5.4 shows µ(z) as a
function of z = |z| for a current angle φ = 0 in the isotropic case (ε = 0), as well
as its first and second partial derivatives with respect to z at constant φ. Clearly,
the dynamical free energy exhibits a kink in its first derivative and a related dis-
continuity in the second derivative, a hallmark of a second-order phase transition.
Similar discontinuities in ∂2

zµ(z, φ) appear at zc(φ) ∀φ ∈ [0, 2π]. Therefore, as
happens also in the simpler DPT’s already described and observed in 1d oversim-
plified transport models [56,57], the DPT from the Gaussian, homogeneous phase
and the non-Gaussian, traveling-wave phases is of second order type.

On the other hand, the DPT between different symmetry-broken phases for
zc · Âzc < Ξc and mild or no anisotropy, see Fig. 5.2.a-b, is clearly discontinuous.
Indeed, right panel in Fig. 5.4 shows µ(z) as a function of the angle φ ∈ [0, π/2]
for z = 3 (deep into the symmetry-broken phase) in the isotropic case ε = 0, see
Fig. 5.2.a, as well as its first derivative with respect to φ at constant z. The vertical
dotted line in this plot signals the DPT separating the two distinct non-Gaussian
symmetry-broken phases with traveling jammed states along the field direction
(φ < π/4) or orthogonal to it (φ > π/4). While µ(z = 3, φ) is continuous across
the transition, it exhibits a kink at φc = π/4 and an associated discontinuity in
∂φµ(z = 3, φ), signaling the first-order character of this DPT between the two
traveling density wave phases. Something similar happens for all other subcritical
z and ε < εc. Interestingly, the current qλ = ∇λµ(λ) corresponding to a given λ
jumps discontinuously at these lines. In this way the 1st-order DPT lines inλ-space
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Figure 5.4: Left: Dynamical free energy for the current µ(z, φ), with z = λ + E, as a function of
z = |z| for φ = 0 in the isotropic case (ε = 0), see Fig. 5.2.a, as well as its first and second partial
derivative with respect to z. Note that µ(z, φ) has been shifted vertically for the sake of clarity.
The vertical dotted line signals the DPT between the Gaussian, homogeneous current fluctuation
phase (z > zc(φ)) and the non-Gaussian, symmetry broken phase (z < zc(φ)) with jammed density
waves along the field direction, see Fig. 5.2.e. The dynamical free energy exhibits a kink in its
first derivative and an associated discontinuity in the second derivative, a hallmark of a second-order
phase transition. Similar discontinuities in ∂2

zµ(z, φ) appear at zc(φ) ∀φ ∈ [0, 2π]. Right: µ(z, φ)
vs φ for φ ∈ [0, π/2] and z = 3 in the isotropic case (ε = 0), see Fig. 5.2.a, as well as its first
derivative with respect to φ. As before, µ(z, φ) has been shifted vertically for clarity. The vertical
dotted line signals the DPT separating the two distinct non-Gaussian symmetry-broken phases with
jammed states along the field direction (φ < π/4) or orthogonal to it (φ > π/4). While µ(z = 3, φ)
is continuous across the transition, it exhibits a kink at φc = π/4 and an associated discontinuity
in ∂φµ(z = 3, φ), signaling the first-order character of this DPT between the two symmetry-broken
non-Gaussian phases.

correspond to regions in q-space where dynamical coexistence emerges between
the two symmetry-broken non-Gaussian phases, see Fig. 5.5.a-c. This means that
if we were to observe an atypical current q sitting in one of these regions, either
by an unlikely spontaneous fluctuation or by an active control of the current with
an optimal field, we would observe dynamical coexistence of the two different
traveling density waves.

To end this section we note that, even though our local stability analysis shows
that the dominant perturbations immediately beyond the instability line are one-
dimensional traveling waves, in principle one could expect more complex two-
dimensional (traveling-wave) patterns to emerge deeper into the symmetry-broken
phase. In this case, the equations defining the form of the optimal profiles are par-
tial differential equations, see e.g. Eq. (5.40), and the uniqueness of their solution
is in general unknown. However, one can find some particular solutions which
are local maximizers of the MFT action for currents. The particular 2d solutions
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Figure 5.5: Dynamical phase diagram for fluctuations of the current in q-space for anisotropy
ε = 0 (a,b), and 0 < ε < εc (c). The two symmetry-broken phases are separated by lines of
1st-order DPTs, and the coexistence regions (white) are apparent.

we have explored numerically do not improve the current LDF when compared
to their 1d counterparts described above. This is surprising, as one would naively
expect the system to minimize the interface between the high- and low-density re-
gions while developing a macroscopic jam to sustain a low-current fluctuation. In
any case, we cannot discard exotic 2d solutions not yet explored, though our simu-
lation results, as we will see in the next section, strongly support that 1d traveling
waves are the global optimal solutions in all cases.

5.4 Comparision with numerical predictions

The previous results call for independent empirical microscopic verification, as
they derive from an effective mesoscopic theory which relies on a few hypothe-
ses [16]. To search for this DPT, we explored the current statistics of the 2d-
WASEP using massive cloning Monte Carlo simulations [153–155]. In particular,
we simulated systems with density ρ0 = 0.3, several system sizes up to N = 144,
and a strong external field E = (10, 0). The cloning Monte Carlo method relies
on a controlled modification of the system stochastic dynamics such that the rare
events responsible for a given fluctuation are no longer rare, and involves the par-
allel simulation of multiple copies of the system [153–155]. The number of clones
needed to observe a given rare event grows exponentially with the system size, all
the more the rarer the event is [246, 247]. In particular, to pick up and charac-
terize reliably the DPT in the 2d-WASEP we needed the extraordinary number of
Nc = 5.12× 105 clones evolving in parallel for a long time.
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5.4.1 Dynamical free energy across the DPT

According to MFT, Gaussian current statistics corresponding to a quadratic dFE
µG(z) are expected for z · Âz ≥ Ξc, see Fig. 5.2 and discussion above. This is
fully confirmed in Fig. 5.6, which shows the measured µ(z) for N = 144 as a
function of z = |z| for different current orientations φ. This corroborates that mild
current fluctuations stem from the random superposition of weakly-correlated, lo-
calized events which sum up incoherently to yield Gaussian statistics, leading to
flat profiles. Interestingly, we find a weak dependence of µ(z) on φ in this Gaus-
sian regime, a clear hallmark of the effective anisotropy mentioned above. In-
deed, this φ-dependence can be used to estimate that ε ≈ 0.038 properly describes
the observed weak anisotropy, see inset in Fig. 5.7. This effective anisotropy is
slightly larger than the critical anisotropy εc ≈ 0.035 beyond which a single
symmetry-broken phase dominates the non-Gaussian regime, see Fig. 5.2.c, an
observation consistent with additional results below. The Gaussian, incoherent
fluctuation regime ends up for z · Âz < Ξc, where clear deviations from the
quadratic form µG(z) become apparent, see Fig. 5.6. This change of behavior,
in excellent agreement with MFT predictions, signals the onset of the DPT to a
symmetry-broken phase characterized by non-Gaussian current fluctuations and
traveling density wave trajectories. A clear convergence to the MFT prediction is
observed in the Gaussian and non-Gaussian regimes as both N and the number of
clones Nc increase, see inset in Fig. 5.6.

5.4.2 An order parameter for the dynamic phase transition

The smoking gun of any continuous phase transition, such as the 2nd-order DPT
here reported, is a smooth but apparent change in an order parameter [236]. In
our situation, we expect order to emerge across the DPT in the form of 1d coher-
ent traveling waves which jam particle flow along one direction, thus facilitating
low-current deviations. The interplay described above among the external field,
anisotropy and currents opens the door to different, competing symmetry-broken
phases, see Fig. 5.2.e-f., and our aim here will be to determine which ones do
emerge in our simulations. To do so, we introduce now a novel structural or-
der parameter, capable of discerning the jam direction (if any), which characterize
the onset of the 2nd-order DPT predicted by MFT from a microscopic point of
view. In this way, to define such an appropriate order parameter we perform now
a tomographic analysis by taking 1d sections of our 2d system. In particular we
consider a microscopic particle configuration n and slice it along one of the prin-
cipal axes, say x, defining the j-slice configuration nj ≡ {nij ; i ∈ [1, L]}, with
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Figure 5.6: Main: µ(λ) vs z = |λ+E| as obtained in simulations forN = 144, Nc = 5.12×105

and different φ = tan−1(zy/zx), together with MFT predictions for anisotropy ε = 0.038. A
DPT from a Gaussian regime (light-gray ribbon) to a symmetry-broken, non-Gaussian phase (blue
ribbon) is apparent upon crossing zc(φ), with zc · Âzc = Ξc (green vertical stripe). Different φ
correspond to different MFT lines within the shaded ribbons. Inset: Convergence to the φ = 0 MFT
prediction (blue line) for N = 144 as Nc increases (4) and for optimal Nc as N increases (5).

Mj =
∑L

i=1 nij the total number of particles in this slice and M =
∑L

j=1Mj ,
see e.g Figs. 5.7.a,d. To properly take into account the periodic boundaries (i.e.
the system torus topology, see Figs. 5.7.b,e), we consider each j-slice as a 1d
ring of fixed radius embedded in 2d where each site i ∈ [1, L] is assigned an angle
θi = 2πi/L, and compute the angular position of the center of mass for the j-slice,
θ

(j)
cm . This is defined as

θ
(j)
cm ≡ tan−1(

Sj
Cj

) (5.64)
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(a) (b) (c)

(e) (f)(d)

Figure 5.7: Tomographic analysis to define an order parameter for the DPT. Order is expected
to emerge across the DPT in the form of 1d coherent traveling waves (a) which jam particle flow
along one direction. To detect these jams, we slice microscopic configurations along principal axes
(see dashed lines in (a)). Due to the periodic boundaries, the systemÕs topology is in fact that of a
torus, as in (b), so each slice can be considered as a 1d ring of fixed radius embedded in 2d, with a
given angular mass distribution (c) depending on the positions of the particles in the slice. A small
dispersion σ2

x of the angular centers of mass across the different slices, (c), will signal the formation
of a coherent jam along the x-direction and the associated density wave in the orthogonal direction,
see (a). A similar analysis in the homogeneous, Gaussian phase leads to a typically large dispersion
σ2
x, see (d)-(f).

with the additional definitions

Sj ≡
1

Mj

L∑
i=1

nij sin θi , (5.65)

Cj ≡
1

Mj

L∑
i=1

nij cos θi . (5.66)

Clearly, a small dispersion of the angular centers of mass across the different slices
will signal the formation of a coherent jam along the x-direction and the associated
density wave in the orthogonal direction, see Fig. 5.7.c. On the other hand, a
large dispersion of θ(j)

cm across the different j ∈ [1, L] is the typical signature of a
structureless, homogeneous random configuration, see Figs. 5.7.d,f. In this way,
we write

σ2
x ≡ 〈(θ

(j)
cm )2〉x − 〈θ(j)

cm 〉2x , (5.67)

where we have defined

〈fj〉x ≡
1

L

L∑
j=1

fj , (5.68)
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Figure 5.8: Tomographic α-coherences, with α = x, y, as a function of z for different current
angles φ measured for N = 100 and E = (10, 0). Inset: dFE µ(z) vs z in the Gaussian regime
for φ = 0, π/4, see Fig. 5.6. Full (dashed) lines are MFT predictions with anisotropy ε = 0.038
(ε = 0).

for any arbitrary local observable fj , and define the tomographic x-coherence as

∆x(λ) ≡ 1− 〈σ2
x〉λ , (5.69)

where the average 〈·〉λ is taken over the biasedλ-ensemble, i.e. over all trajectories
statistically relevant for a rare event of fixed λ [17, 18, 41]. We can define in an
equivalent way the tomographic y-coherence ∆y(λ) to detect particle jams along
the y-direction, and Fig. 5.8 shows these two order parameters measured across
the DPT as a function of z = |z|, with z ≡ λ+ E.

Remarkably, ∆x(z) increases steeply for z · Âz ≤ Ξc and all angles φ of
the current vector, while ∆y(z) remains small and does not change appreciably
across the DPT, clearly indicating that a coherent particle jam emerges along the
x-direction in all cases, as in the sketch of Fig. 5.7.a above. This means that
only one of the two possible symmetry-broken phases appear in our simulations
(regardless of the current vector orientation), as expected from MFT in the super-
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Figure 5.9: Density wave profile along the y-direction for z = 2 and φ = 0, π/2, measured for
N = 100 and E = (10, 0). Lines correspond to MFT predictions.

critical anisotropy regime ε > εc, see Fig. 5.2.c, and consistent with the measured
effective anisotropy ε ≈ 0.038 > εc, see inset in Fig. 3.d of the main text. Note
also that the behavior of both ∆α (α = x, y) across the DPT is consistent with the
emergence of a traveling wave with structure in 1d and not in 2d, as in the latter
case both ∆α should increase upon crossing zc(φ). Moreover, the acute but contin-
uous change of ∆x(z) across the DPT is consistent with a second-order transition,
in agreement with the MFT prediction.

Finally, we have also measured the average density profile along the y-direction,
i.e. orthogonal to the jam direction, associated to a given current fluctuation deep
into the symmetry broken phase, see Fig. 5.9. In order not to blurr away the
structure of the moving density wave, we performed profile averages around the
instantaneous angular center of mass, shifting it to the origin before averaging.
Fig. 5.9 shows the highly-nonlinear density profile ω(y) of the traveling wave so
obtained for current fluctuations with z = 2 and φ = 0, π/2, together with MFT
predictions, and the agreement is remarkable in both cases. In particular, note that
the traveling wave has structure along the y-axis in both cases, as expected from
the analysis of Fig. 5.8 and consistent with the supercritical anisotropy scenario
ε > εc, see Fig. 5.2.c,e.

5.5 Conclusions

We have presented compelling evidences of a complex dynamic phase transition
in the current vector statistics of a paradigmatic model of transport in 2d, charac-
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terizing its properties with the tools of macroscopic fluctuation theory. Our anal-
ysis of MFT equations predicts a rich phase diagram, with non-analiticities of 1st-
and 2nd-order type in the current dynamical free energy, accompanied by emer-
gent order in different symmetry-broken phases characterized by traveling density
waves. This richness is aided by the complex interplay among anisotropy, exter-
nal field and vector currents in d > 1, key features missing in the simpler models
studied in the past. First, by considering vectorial currents it becomes apparent
that current rotations can trigger 1st-order transitions between different symmetry-
broken jammed dynamical phases. This is certainly not present in simpler 1dmod-
els [18,56–59,62,179,181–185] and cannot show up when studying fluctuations of
scalar observables in d > 1 [61, 186–194, 242]. Second, by including anisotropy
in our analysis (a main feature of many realistic d > 1 systems not considered
before), it becomes clear its strong effect on the relative shape and position of the
different jammed phases, see Fig. 5.2.a-c. Interestingly, our results show that or-
der and coherence may emerge out of an unlikely fluctuation, proving the deep
connection between rare events and self-organized structures which enhance their
probability. This is expected to be a general feature of many complex dynamical
systems [60]. The mapping between exclusion processes and dual quantum spin
systems [248–251] suggests a connection between the DPT here uncovered and a
rich quantum phase transition yet to be explored. It would be also interesting to
determine the universality class of this DPT, and the dynamical exponents of the
different fluctuation phases [177, 182].
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Chapter 6

Dynamic phase transition in the one-di-
mensional Landau-Ginzburg model

6.1 Introduction

In its origin, Macroscopic Fluctuation Theory was formulated to understand the
behaviour of macroscopic fluctuations in general driven diffusive systems [16, 38,
53–55]. In this context, MFT has provided a very powerful framework to char-
acterize the distribution of fluctuations in these situations, and a huge number of
results, including all that we have presented in this Thesis up to now, has been
derived in the light of this scheme. However, it has been shown that this theory
could be extended to other classes of systems [112]. In this chapter we will de-
scribe techniques to study macroscopic fluctuations in dissipative systems with no
conservation laws following a similar mechanism to the one developed in MFT.

As we have seen, an interesting phenomena taking place in fluctuations and
broadly studied under the framework of MFT are the dynamic phase transitions. In
this way, the well-known Mermin-Wagner theorem [252] establishes that continu-
ous symmetries cannot spontaneously breaking in systems with short interactions
in dimension d ≤ 2. However, recent works have shown that this theorem does not
satisfy at fluctuating level, finding remarkble DPTs when studying the statistics of
fluctuations of space- and time-integrated observables in one-dimensional driven
diffusive systems [41, 57, 175]. In the following lines we will see that this fact
is not exclussive for systems with conservation laws, but on the contrary we can
observe DPTs in systems with non-locallly conserved dynamics in fluctuations.
This outcome could open the door to the formulation of general results in dynamic
phase transtions at a fluctuating level.
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With these ideas in mind, in this chapter we will focus on the study of fluctua-
tions of the space- and time-integrated magnetization in a paradigmatic dissipative
system: the stochastic one-dimensional perdiodic Landau-Ginzburg model [236].
The values of the parameters characterizing such a model completely define its be-
haviour. Indeed, the Ginzburg-Landau potential associated to this system can ex-
hibit (i) one global minimum (one equilibrium state) or (ii) two symmetric global
minima (two different equilibrium states). We will find that such a model presents
a DPT for low values of the magnetization if the system is in the “double well”
regime, i.e. if the potential has two different minima. Furthermore, we will an-
alyze the form of the perturbation inmediately after the transition point, observ-
ing that two different dynamic phase transitions can take place depending on the
system parameters: (a) a DPT between an uniform dynamical phase and a ho-
mogeneus time-dependent phase or (b) a DPT between an uniform phase and a
spatio-temporal structured phase. Finally, we will find an exotic homogeneus
time-periodic optimal magnetization field and we will characterize its structure
and associated LDF.

6.2 Space- and time-integrated magnetization fluctuations
in one-dimensional periodic Landau-Ginzburg model

Consider a system characterized by a scalar field (called magnetization) φ(x, t)
with x ∈ [0, 1] and t ∈ [0, τ ], which evolves according to the Langevin equation
[93]:

∂tφ(x, t) = −1

2

δHLG[φ(x, t)]

δφ(x, t)
+$(x, t) , (6.1)

with:

HLG =

∫ 1

0
dx

{
1

2
∂xφ

2 +
1

2
µ2φ2 +

1

4!
λφ4

}
(6.2)

the Landau-Ginzburg Hamiltonian [236] and $(x, t) a Gaussian white noise with:

〈$(x, t)〉 = 0 (6.3)

〈$(x, t)$(x′, t′)〉 =
1

Ω
δ(x− x′)δ(t− t′) . (6.4)

Note that the dynamics of the system at hand is a particular case of the one pre-
sented in Section 2.6.1, with F [φ] = −1

2
δHLG[φ(x,t)]

δφ(x,t) and G[φ] = 1. Interestingly,
the Langevin equation (6.1) corresponds to the well-known Hohenberg-Halperin
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periodic Landau-Ginzburg model

model A [93]. The functional derivative δ/δφ of a certain functional of the form
R[φ] =

∫ 1
0 dx r[φ] is defined as:

δR[φ(x, t)]

δφ(x, t)
=
∂r[φ(x, t)]

∂φ(x, t)
− ∂x ·

∂r[φ(x, t)]

∂(∂xφ(x, t))
, (6.5)

so the Langevin evolution equation (6.1) takes form:

∂tφ(x, t) =
1

2
(∂2
xφ(x, t)− V ′LG[φ(x, t)]) +$(x, t) , (6.6)

where
VLG[φ] =

1

2
µ2φ2 +

1

4!
λφ4 , (6.7)

and ′ stands for derivative with respect to the argument. To completely define
the system at hand, Eq. (6.6) needs to be supplemented by appropiated boundary
condition, which in this case is periodic, i.e.

φ(x, t) = φ(x+ 1, t) . (6.8)

Note that both (6.6) and (6.8) describe a system which, after a time transient,
evolve to an equilibrium state.

As we have shown in Section 2.6.1, we can write the mesoscopic evolution of
this system in terms of a path integral representation. Indeed, in the large Ω limit,
the weight of a given trajectory {φ}τ0 takes the form (see Eqs.(2.71) and (2.72))

P({φ}τ0) ∝ exp [−ΩSncτ [φ]] , (6.9)

with

Sncτ [φ] =
1

2

∫ τ

0
dt

∫ 1

0
dx

(
∂tφ−

1

2
(∂2
xφ− V ′LG[φ])

)2

. (6.10)

We are now in position to study fluctuations of the space- and time-integrated
magnetization, namely

m =
1

τ

∫ τ

0
dt

∫ 1

0
dxφ(x, t) . (6.11)

In this way, the probability of observing a given value of this observable is

Pτ (m) =

∫
Dφ Pst(φ(r, 0))P ({φ}τ0) δ

(
m− 1

τ

∫ τ

0
dt

∫ 1

0
dxφ(x, t)

)
,

(6.12)
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where the initial condition is chosen from Pst(φ(r, 0)). The large deviation prin-
ciple establishes that this probability scales as Pτ (m) � exp[−τΩG(m)], with
G(m) the large deviation function. According to Eq. (2.54), in the large time
limit, the LDF can be written as

G(m) = lim
τ→∞

{
1

τ
min
{φ,ν}

Sncτ [φ, ν]

}
, (6.13)

with

Sncτ [φ, ν] =
1

2

∫ τ

0
dt

∫ 1

0
dx

[(
∂tφ−

1

2
(∂2
xφ− V ′LG[φ])

)2

− νφ

]
, (6.14)

and ν the Lagrage multiplier guaranteeing that Eq. (6.11) is satisfied.

6.3 Uniform magnetization field and instability analysis

A trivial solution of the previous variational problem is consider the optimal field
to be homogeneus and constant. In this way, according to (6.11), the most probable
magnetization field is

φ(x, t) = m, (6.15)

leading to a LDF of the form

GU(m) =
1

2
V
′2
LG(m) =

1

8

(
µ2m+

1

3!
λm3

)2

. (6.16)

In Fig. 6.1 we show the form of the LDF for µ2 = −1 and λ = 1.
At this point, we can ask whether we can find other solutions of the variational

problem (6.13) with more complex spatio-temporal structure which better mini-
mize the action. To answer this question, we perturb the above uniform field with
a small but arbitrary function of space and time, and study the local stability of flat
solutions. Consequently, we write

φ̄(x, t) = m+ δφ(x, t) . (6.17)

Inserting this expression in (6.13), and expanding to second order in the perturba-
tion, we obtain the leading correction to GU(m), namely O2:

O2 =
1

2τ

∫ τ

0
dt

∫ 1

0
dx

{[
1

4
V ′′2LG +

1

2

(
∂tφ+

1

2
V ′LG −

1

2
∂2
xφ

)
V ′′′LG

]
δφ2

+ (∂tδφ)2 +
1

4

(
∂2
x δφ

)2
+ V ′′LGδφ∂tδφ−

1

2
V ′′LGδφ∂

2
x δφ

}
. (6.18)
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Figure 6.1: Large deviation function GU(m) associated to uniform optimal field, with µ2 = −1
and λ = 1.

We now expand the perturbation δφ(x, t) in Fourier series, taking the advantage of
the spatial periodic boundary condition, obtaining:

δφ =
1

2
α0(x) +

∑
ω

(αω(x) cosωt+ βω(x) sinωt) , (6.19)

with:
α0(x) =

∑
k1

(a0k1 cos k1x+ b0k1 sin k1x) , (6.20)

αω(x) =
1

2
aω0 +

∑
k1

(aωk1 cos k1x+ bωk1 sin k1x) , (6.21)

βω(x) =
1

2
cω0 +

∑
k1

(cωk1 cos k1x+ dωk1 sin k1x) . (6.22)

Following the same procedure that we have shown in Section 5.2.1, we realize
that, when we introduce these expasions in (6.18), the different modes decoupled
as a consequence of the orthonormality property of Fourier basis. After a lenghty
computation, it can be proved that the flat solution remains stable whenever the
following conditions hold:

(V ′′LG)2 + V ′LGV
′′′
LG > 0 (6.23)

(V ′′LG)2 + V ′LGV
′′′
LG + k2

n(k2
n + 2V ′′LG) > 0 , (6.24)
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where the potential VLG is evaluated in m. Interestingly, one can see that

4G′′U = (V ′′LG)2 + V ′LGV
′′′
LG , (6.25)

so the previous conditions takes the form

G′′U > 0 (6.26)

4G′′U + k2
n(k2

n + 2V ′′LG) > 0 , (6.27)

These solutions lead to some conclusions:

(i) The uniform solution is always stable if µ2 > 0, i.e. in the “single well”
regime of the potential.

(ii) The first spatial mode to become unstable (if any) is the fundamental mode
k1 = 2π.

(iii) The interplay between 4G′′U and k2
1(k2

1 + 2V ′′LG) defines if the leading unsta-
ble perturbation has only temporal structure (associated to condition (6.26))
of spatio-temporal structure (associated to condition (6.26)).

Therefore, after comparing both 4G′′U and k2
1(k2

1 +2V ′′LG), it can be proved that the
system exhibits the following phenomenology:

• If µ2 > 0, the flat field φ(x, t) = m is stable for all m.

• If µ ∈ [−2π2, 0], the flat field becomes unstable form < mc, withmc being
the solution of

G′′U(mc) = 0 . (6.28)

Furthemore, the most probable field inmediately after the transition point
has only temporal structure, i.e. φ(x, t) = φ(t).

• If µ < −2π2, the flat field becomes unstable for m < m̄c, with m̄c being
the solution of

4G′′U(m̄c) + (2π)2((2π)2 + 2V ′′LG(m̄c)) = 0 . (6.29)

Moreover, the most probable field inmediately after the transition point has
spatio-temporal structure φ(x, t).
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6.4 Time-periodic homogeneus magnetization field

In this Section we are going to focus on one particular solution of the variational
problem (6.13): the time-periodic homogeneus magnetization field. The Euler-
Lagrange equation derived from (6.13) for this solution takes the form:

∂2
t φ =

1

4
V ′LGV

′′
LG − ν . (6.30)

Integrating this equation we obtain

(∂tφ)2 =
1

4
V
′2
LG − νφ+K , (6.31)

with K a constant which encodes information about initial conditions. We can
now reparametrize the field φ by

φ = m̄φ̄ , (6.32)

with m̄ the positive minimum of the Landau-Ginzburg potential VLG, that is

m̄ =

√
3!|µ2|
λ

. (6.33)

Hence, the equation for the optimal magnetization field (6.31) takes the form

(∂tφ̄)2 = f [φ̄] , (6.34)

with

f [φ̄] =
1

m̄2

[
1

4
V
′2
LG[m̄φ̄]− νm̄φ̄+K

]
. (6.35)

Let us assume the simplest case in which the optimal magnetization fields exhibits
only a single minimum φ̄− and maximum φ̄+. According to (6.34), these values
are the solution of the equation f [φ̄±] = 0. In this way, it can be proved that the
period of the most probable magnetization field is

T = 2

∫ φ̄+

φ̄−

dφ̄√
f [φ̄]

, (6.36)

and constraint (6.11) transforms into

m =
2m̄

T

∫ φ̄+

φ̄−

dφ̄
φ̄√
f [φ̄]

. (6.37)
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Finally, introducing this expressions in (6.13), we obtain the following expression
for the large deviation function of the space- and time-integrated magnetization
associated to a time-periodic homogeneus optimal field:

GTP(φ̄) =
1

T

∫ φ̄+

φ̄−

dφ̄

{
2m̄2

√
f [φ̄] +

V
′2
LG[m̄φ̄]

2
√
f [φ̄]

}
. (6.38)

6.5 Conclusions

In this chapter we have studied the effects of fluctuations in dissipative systems
with no conservation laws. In particular, by using similar tools that those pro-
vides by MFT, we have analyzed the distribution of fluctuations of the space- and
time-integrated magnetization in the one-dimensional periodic stochastic Landau-
Ginzburg model, with a dynamics given by the Hohenberg-Halperin model A. We
have deduced the existence of a dynamic phase transition for low values of the
magnetization by studying the stability of an uniform magnetization fields against
spatio-temporal pertubations. We have observed that the DPT only takes place for
µ2 < 0, which corresponds to the case in which the system presents two equi-
librium states. Furthermore, we have seen the optimal trajectory inmediately be-
yond the transtion can exhibits only temporal or both spatio-temporal structures,
depending on the value of µ2 characterizing the system at hand. This results is
of special relevance, since opens the door to the discovery of new phenomenol-
ogy related to the appearance of DPTs in one-dimensional dissipative systems at a
fluctuating level. Finally, we have found a new exotic dynamic phase beyond the
transition. Indeed, for low values of the magnetization, the system evolve in time
in a periodic way with no spatial structure. We have completely characterized the
properties of this optimal trajectory and determined its associated LDF controlling
the statistics of magnetization fluctuations.
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Chapter 7

Effective driven dynamics for one-dimen-
sional conditioned Langevin processes in
the weak-noise limit

7.1 Introduction

Traditional approaches in statistical physics are based on the study of the probabil-
ity distribution of microscopic configurations at a given time [253]. Although such
approaches have been very successful at equilibrium where configurations with the
same energy are distributed uniformly in an isolated system, one is faced with diffi-
culties when considering the statistics of configurations in non-equilibrium steady-
states, as this statistics is in general non-uniform and unknown (see Introduction).
It has been realised in the last decades that a more general space-time formulation,
which deals with the statistics of full trajectories (that is, configurations as a func-
tion of time on a large time window) could be formulated in a quite general way,
even for non-equilibrium systems [104, 254]. Moreover, the large-deviation for-
malism provides an efficient framework to formulate the problem [16, 139–142].
Along this Thesis we have shown that the large-deviation formalism is particularly
useful for instance to evaluate the statistics of time-integrated observables (e.g.,
particle current or dynamical activity), which are natural observables when char-
acterising the statistics of trajectories [16–18,55,142,147,150,255–257]. One can
for instance consider a modified equilibrium statistics of trajectories conditioned to
a given value of a time-integrated observable, like the average particle current. It is
then of interest to ask whether this artificial, biased dynamics shares some similari-
ties with (or even could be mapped to) a ‘real’ non-equilibrium dynamics. In other
words, does a physical force which drives a system into a non-equilibrium state
(and thus generates a given current) select all trajectories having a given average
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current in a least-biased way?
In practice, fixing a given average value of an integrated observable is done by

introducing a conjugated Lagrange multiplier (see Section 2.4.2), in the same way
as, at equilibrium, temperature fixes the average energy in the canonical ensem-
ble [16]. This Lagrange multiplier enters the definition of a “deformed” Markov
operator that describes the biased dynamics. A well-know difficulty is that this de-
formed Markov operator no longer conserves probability, and cannot straightfor-
wardly be interpreted as describing a bona fide probability-preserving dynamics. It
has however been shown [72,73,76,258] how a relatively simple but abstract trans-
formation of the deformed Markov operator allows one to define a closely related
probability-conserving Markov operator, which defines an effective dynamics that
is asymptotically equivalent at large times to the biased dynamics and the condi-
tional dynamics [76,79,259] after proper normalisation. Under this new dynamics,
the rare trajectories taking place in the original becomes now typical. Determining
and characterizing such an effective dynamics will be the main goal of this chapter.

With these ideas in mind, the results we next expose are the following: focus-
ing on the example of a particle diffusing in a periodic potential in one-dimension,
we make analytical progress in the determination of large-deviation functions (LDF)
quantifying the distribution of generic additive observables. We show that, in this
case, the two asymptotic regimes we are considering, namely, the large-time and
small-noise (i.e. large Ω) ones, can be taken in any order. A standard variational
principle arising from a weak-noise, Wentzel–Kramers–Brillouin (WKB) [260]
type asymptotic analysis is partially solved analytically and replaced by a much
simpler one. This allows us to obtain an explicit form of the effective dynamics,
and to study the occurrence of a singularity of the LDF, which corresponds to a
dynamical phase transition separating different regimes of fluctuations.

LDFs of the distribution of additive observables in such periodic one-dimen-
sional diffusive problems have been the subject of a number of studies in the past
years, but the actual derivation of LDFs were mostly limited to peculiar additive
observables, such as the entropy production [261–263] or the current [85, 264,
265], and were not fully explicit analytically. In this chapter, we extend a recent
work in which the large deviations of the current were studied in the weak-noise
asymptotics [85] to the case of generic time-integrated observables1. Instead of
relying on an a numerical analysis of a truncated Fourier–Bloch decomposition of
a spectral problem underlying the LDF problem (as done in [85, 262]), our work

1Remarkably, two recent works show similar approaches [266, 267]. The results of [266] are
complementary to those we will present here and elucidate interesting finite-time behaviours in the
initial and final times of the observation window [0, τ ]. In [267], the authors determine the non-zero
temperature behaviour of the sCGF, for a periodic potential with no local minima.
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is based on an analytical study of the the variational problem that governs the
value of LDFs, using a different approach than the one presented in [264, 265] (a
detailed comparison is provided when presenting our results). In this process, we
find the optimal trajectories minimising the action (in analogy with Lagrangian
mechanics); such trajectories are indexed by a conserved quantity (the energy)
which, in our LDF problem, also has to be optimised over, in contrast to other
physical situations where the energy is given. We show that the value of the action
for the trajectory with optimal energy takes a very special form that simplifies the
actual computation of the LDF, and that could prove useful in other contexts where
variational principles fit in the framework of Lagrangian mechanics.

As we have repeatedly shown along this Thesis (see Section 2.5.4 and Chap-
ter 5), when studying fluctuations of time-integrated observables, the existence
of dynamical phase transitions are reflected as singularities (non-analiticities) of
the large deviation functions. While the occurrence of dynamical phase tran-
sitions in periodic 1D diffusion problems has been analysed in previous stud-
ies [85, 263, 264], we provide in this chapter a thorough analysis of the compe-
tition between time-dependent and time-independent typical trajectories on both
sides of the transition, together with a complete analysis of the LDF singularity
(which takes the form of a first-order transition with a logarithmic prefactor that
makes it continuous instead of discontinuous). The occurrence of transitions of
such form is of special interest since, to our knowledge, they had not been previ-
ously determined in this context.

In this way, the chapter is organised as follows. In Section 7.2, we define the
Langevin dynamics and reformulate it in a path-integral framework, to be able to
bias the dynamics by a given value of the integrated additive observable consid-
ered. We also introduce the large deviation form of the action at large time, lead-
ing to the definition of the scaled cumulant generating function. In Section 7.3,
we show how the scaled cumulant generating function can be evaluated explicitly,
in the small noise limit, using a saddle-point calculation. Finally, in Section 7.4,
we use the knowledge of the scaled cumulant generating function to derive an ef-
fective physically driven dynamics that leads to the same statistics of trajectories
(after normalisation), and discuss its interpretation.

7.2 Rare trajectories: conditioning or biasing the dynam-
ics

We present in this section the class of systems we focus on, and the type of the
observables whose distribution we are interested in. We refer the reader to existing

111



Chapter 7. Effective driven dynamics for one-dimensional conditioned Langevin
processes in the weak-noise limit

reviews [142,144] for generalisations for instance to mixed Langevin and Markov
jump processes.

7.2.1 Langevin dynamics and additive observables

Consider a particle of position x(t) at time t subjected to a force F (x) and a ther-
mal noise ζ(t). In the overdamped limit, the evolution of its position is described
by the Langevin equation

ẋ(t) = F [x(t)] +
√
ε ζ(t) , (7.1)

where ζ(t) is a Gaussian white noise of average 〈ζ(t)〉 = 0 and correlation func-
tion 〈ζ(t)ζ(t′)〉 = δ(t − t′). Note that this is a particular case of the class of
systems presented in Section 2.6.2, identifying G[x(t)] = 1 and ε = Ω−1 (this last
one equivalence implies that the weak-noise limit corresponds now to ε→ 0). Our
interest goes to observables depending on the trajectory on a time window [0, τ ]
and taking the form2

Aτ =

∫ τ

0
h(x(t)) dt+

∫ τ

0
g(x(t)) ẋ(t) dt . (7.2)

Examples of such an additive observable encompass time-integrated current, work,
entropy production, or activity for specific choices of the functions h(x) and g(x)3

(see [144] for examples). Contributions involving the function h are termed to be
of ‘density-type’ while the ones involving g are of the ‘current-type’. We are inter-
ested in the distribution Pτ (Aτ ) of the observable Aτ at time τ , in the weak-noise
and/or the large-time limit. Under these assumptions, Large Deviation Theory
provides a description of the scaling form of Pτ (Aτ ) [139–144]. In Section 2.4.2
we have developed the different techniques used to study macroscopic fluctuations
of space- and time-integrated observables in systems characterized by a locally-
conserved dynamics in the LDT (or MFT) formalism. In the following lines we
will present an analogous approach for this new situation, starting from the path
integral representation of previously defined dynamics. We will observe deep sim-
ilarities between both schemes, laying bare the power and general nature of this
mathematical framework.

2The stochastic integral in 7.2 is taken in the Stratonovich convention (see e.g. [268] for a review
on stochastic integrals).

3In the following, for simplicity we will write the explicit dependency of functionals on the
corresponding functions with () instead of [], that is f [x] = f(x).
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The Langevin equation (7.1) is equivalently described (see Section 2.6.2) by
the Onsager–Machlup weight of a trajectory {x(t)}τ0 of duration τ

P({x(t)}τ0) ∝ exp

[
− 1

2ε

∫ τ

0
(ẋ− F )2 dt

]
(7.3)

(valid in the weak-noise asymptotics ε → 0) or by the Fokker–Planck equation
for the evolution of the probability P (x, t) of finding the particle at a position x at
time t, which takes the form

∂tP (x, t) = WP (x, t) . (7.4)

The Fokker–Planck operator W reads:

W· = −∂x(F (x)·) +
1

2
ε∂2
x · . (7.5)

Note that the conservation of probability reads 〈−|W = 0 where 〈−| is the flat
vector with all components equal to 1 (i.e. 〈−|x〉 = 1 for all x)4. In other words,
〈−| is a left eigenvector of W of eigenvalue 0. We now recall how, by studying the
generating function of the observable Aτ , one can extend the operator approach
we just presented in order to study the distribution of Aτ .

7.2.2 Path-integral and Fokker–Planck representations of the biased
dynamics

We aim at characterising the physical features of trajectories {x(t)}τ0 presenting an
arbitrary (for instance, atypical) value of the observable Aτ . One way to proceed
is to determine the probability Pτ (x,A) of the particle to be in position x at time
τ , while having observed a value A of the additive observable (7.2) on the time
window [0, τ ]. It reads as follows

Pτ (x,A) =

〈∫ x(τ)=x

x(0)
Dx δ(A−Aτ ) exp

[
− 1

2ε

∫ τ

0
(ẋ− F )2 dt

]〉
x(0)

(7.6)

where the notation 〈. . . 〉x(0) indicates an average over the initial position x(0) with
a stationary distribution Pst(x). We implicitly assume that x(0) is distributed with
Pst(x) in the following, except otherwise indicated.

4Here we use a bra-ket notation to describe the vector space on which operators such as W
act, with |x〉 the state representing the particle at position x and 〈x| its transpose. These define the
canonical scalar product 〈x|x′〉 = δ(x− x′).
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It is difficult in general to determine Pτ (x,A) or even to write a closed equa-
tion for this ‘microcanonical’ probability. Following Varadhan [269], one performs
a Laplace transform and introduces the following generating function (and its as-
sociated biased ensemble)

Πτ (x, λ) =

∫
e−

λ
ε
A Pτ (x,A) dA (7.7)

=

〈∫ x(τ)=x

x(0)
Dx exp

[
−1

ε

[
λAτ +

1

2

∫ τ

0
(ẋ− F )2 dt

]]〉
x(0)

≡

〈∫ x(τ)=x

x(0)
Dx exp

[
−1

ε
Sλτ [x(t)]

]〉
x(0)

(7.8)

where Sλτ [x(t)] is defined as

Sλτ [x(t)] = λAτ +
1

2

∫ τ

0
(ẋ−F )2 dt =

∫ τ

0

{
1

2
(ẋ− F )2 +λ

(
h+ ẋg

)}
dt (7.9)

with F ≡ F
(
x(t)

)
, g ≡ g

(
x(t)

)
and h ≡ h

(
x(t)

)
to lighten notations. As we

have shown, in analogy with thermodynamics, this defines a ‘canonical’ version of
the problem, where trajectories are biased by an exponential factor exp

[
−λ
εAτ

]
on

the time window [0, τ ]. In the large τ limit, as detailed below, the joint distribution
corresponding to (7.6) and the generating function (7.7) present the same LDF
scaling provided that the value of λ is well chosen as a function of A, as in any
change of ensemble5 (see e.g. [142] for a review). It is known that the evolution in
time of Πτ (x, λ) reads ∂tΠt = WλΠt with a biased Fokker–Planck operator given
by a generalised Feynman–Kac formula [79, 259]

Wλ· = −∂x
(
(F − λg) ·

)
+

1

2
ε∂2
x ·+

λ

ε

(
λ

2
g2 − gF − h

)
1 . (7.10)

We provide here for completeness an alternative derivation based on path integrals,
as it also sheds light on how one can jointly change process and LDF observable
while keeping the same action. The starting point consists in remarking that the
biased action Sλτ [x(t)] in 7.9 is equivalently written as:

Sλτ [x(t)] =

∫ τ

0

1

2
(ẋ− F + λg)2 dt −

∫ τ

0
λ
(λ

2
g2 − gF − h

)
dt . (7.11)

5This implies some requirement on the convexity of a large deviation function, as we explain
below.
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This rewriting (7.11) of the action (7.9) is only the factorisation of the λẋg con-
tribution into the square term of the action. The action given in Eq. (7.11) can
be interpreted as follows. The first integral in (7.11) is the action of a modified
process6 x(t) obeying a Langevin equation

ẋ = F (x)− λg(x) +
√
ε ζ . (7.12)

The second integral in (7.11) corresponds to a trajectorial reweighting

exp
{∫ τ

0

λ

ε

[λ
2
g(x(t))2 − g(x(t))F (x(t))− h(x(t))

]
dt
}
. (7.13)

Hence, the path integral over x(t) of the full weight exp
[
−1
εS

λ
τ

]
is read as the

average of the trajectorial reweighting (7.13) over the realisations of a process x(t)
obeying the modified Langevin equation (7.12). Since the integrand in (7.13) does
not involve any time derivative, one can use the classical Feynman–Kac formula
to finally infer the form of the biased operator (7.10) as follows: in this expression,
the Fokker–Planck contribution −∂x

(
(F − λg) ·

)
+ 1

2ε∂
2
x· corresponds to the

modified process (7.12) and the diagonal part λε
(
λ
2g

2 − gF − h
)
1 corresponds to

the integrand in (7.13).
Formally, the procedure we have just presented amounts to reinterpreting the

biased operator (7.10), that describes LDFs for combination of current-type and
density-type additive observables, into a biased operator for a purely density-type
observable (since the integrand of (7.13) is independent of ẋ) but for a different
process, Eq. (7.12) instead of Eq. (7.1). This procedure is the analogue for diffu-
sions of a similar one that can be devised for Markov jump processes (see e.g. the
Appendix B of [270]).

From a more physical viewpoint, the exposed procedure shows that even if the
biasing resulting from the parameter λ can be partly reabsorbed into the force by
changing F (x) into F (x) − λg(x), the Langevin dynamics defined by Eq. (7.12)
is not equivalent to the biased dynamics defined by the action Eq. (7.9), because of
the remaining exponential reweighting given in Eq. (7.13). This remains true even
in the simple case when A is the integrated current (or position of the particle),
corresponding to h(x) = 0 and g(x) = 1. We will explain in the next sections
how an effective probability-preserving dynamics, equivalent (in a sense that will
be specified) to the biased dynamics defined by the action Eq. (7.9), can however
be defined using a transformation of the operator Wλ.

6The process described by Eq. (7.12) is not related to the effective process in general.
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7.2.3 Large-deviation principle at large time

We now turn to the study of the large-time and weak-noise scaling behaviour of the
distributions at hand. One first remarks from (7.10) that the biased operator Wλ

does not preserve probability (at odds with W, 〈−| is not a left eigenvector of Wλ

of eigenvalue 0). In fact, the Perron–Frobenius theorem7 ensures that the maximal
eigenvalue ϕε(λ) of Wλ is real and unique. We now assume that this operator has
a gap (this is the case in general if the force is confining or if the space is compact);
this ensures that at large time one has

eτWλ ∼
t→∞

eτ ϕε(λ) |R〉〈L| with ϕε(λ) = max Sp Wλ (7.14)

where 〈L| and |R〉 are the corresponding left and right eigenvectors of Wλ, nor-
malised as 〈L|R〉 = 1 and 〈−|R〉 = 1. Then, the formal solution |Πτ 〉 =
eτWλ |Pst〉 of the evolution equation ∂tΠt = WλΠt implies that

Πτ (x, λ) �
τ→∞

eτ ϕε(λ) R(x) . (7.15)

Integrating (7.7) over x, this implies that, at large time, the moment generating
function behaves as 〈

e−
λ
ε
Aτ
〉
�

τ→∞
eτ ϕε(λ) . (7.16)

This result is an instance of a large deviation function (LDF) exponential scal-
ing [20]: it indicates that the scaled cumulant generating function (sCGF) Φε(λ, τ)
defined as 〈

e−
λ
ε
Aτ
〉

= eτ Φε(λ,τ) (7.17)

goes to a constant at large τ : limτ→∞Φε(λ, τ) = ϕε(λ). In other words, all
cumulants of the observable Aτ behave linearly in τ at large τ .

Such LDF scaling can be translated into a large-time behaviour of the distribu-
tion of A: integrating (7.7) over x one gets from (7.17) that

eτ Φε(λ,τ) =

∫
e−

λ
ε
A Pτ (A) dA . (7.18)

Since the l.h.s. behaves exponentially in τ at large τ , this is compatible with a
distribution Pτ (A ' aτ) obeying the following scaling

Pτ (A ' aτ) �
τ→∞

eτ πε(a) , (7.19)

7We assume that its conditions of validity are satisfied.
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with ϕε and πε related through

ϕε(λ) = sup
a

{
πε(a)− λ

ε
a
}
. (7.20)

This is an example of large deviation principle, obtained here through a saddle-
point analysis of the integral in (7.18) through the Gärtner–Ellis theorem [145,
146]. It indicates that, in the scaling A ' aτ , the distribution of A concentrates
exponentially around the most probable value(s) of a, located at the maxima of
the function πε(a). If πε(a) is a concave function of a, then one can invert the
Legendre–Fenchel transformation appearing in (7.20) and obtain

πε(a) = inf
λ

{
ϕε(λ)− λ

ε
a
}
. (7.21)

These two Legendre–Fenchel transformations describe the change of ensemble
between the microcanonical (fixed a) and canonical (fixed λ) descriptions, at fixed
ε. The correspondence (7.21) can be extended at the level of trajectories: under the
same convexity hypothesis, the trajectories conditioned to present a given value of
a = Aτ/τ and the trajectories weighted by exp

[
−1
εSλ

]
present an asymptotically

equivalent distribution as τ → ∞, in a sense defined and studied in great depth
by Chétrite and Touchette [79, 259], provided that the value of λ is the one which
realises the infimum in (7.21).

7.2.4 Large-deviation principle in the weak-noise asymptotics ε→ 0

We now consider the opposite order of limits, by keeping the duration τ finite and
sending first the noise amplitude to 0. Note that this order of limits is the one
that we have presented in Chapter 2 and used along this Thesis. In this way, we
can now focus on the path-integral representation (7.8) in order to study the weak-
noise asymptotics of the distributions. By a saddle-point evaluation in the ε → 0
limit, one sees from the definition (7.17) that, integrating (7.8) over x, the sCGF
behaves as

Φε(λ, τ) ∼
ε→0

1

ε
µτ (λ) with µτ (λ) = −1

τ
inf
x(t)

Sλτ [x(t)] (7.22)

where the action Sλτ [x(t)] is defined in (7.9). The optimisation is performed over
trajectories {x(t)}τ0 of duration τ , whose initial position x(0) is sampled according
to the initial stationary distribution Pst (the simplest case is when x(0) takes a fixed
value), and whose final position x(τ) is optimised over in the inf of (7.22). The
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function µτ (λ) is a sCGF. Since Φε(λ, τ) converges to ϕε(λ) as τ → ∞ for all ε
(see (7.16)), one expects that

lim
τ→∞

µτ (λ) = µ(λ) with ϕε(λ) ∼
ε→0

1

ε
µ(λ) . (7.23)

Situations where noise-dependent LDFs (here, ϕε(λ)) scale as one over the noise
strength were for instance considered in [85, 271]. In all, the saddle-point asymp-
totics provides the following optimisation principle for the sCGF µ(λ) as:

µ(λ) = − lim
τ→∞

{1

τ
inf
x(t)

Sλτ [x(t)]
}
. (7.24)

Hence, the determination of µ(λ) requires the knowledge of the optimal trajecto-
ries in the weak-noise limit8. This is the topic of the next section.

It is not obvious that the large-time and the weak-noise commute, i.e. that the
sCGF µ(λ) given in (7.24) by first taking ε → 0 and then τ → ∞ is the same
as the ε → 0 asymptotics µ(λ) = limε→0[εϕε(λ)] (see 7.23) of the CGF ϕε(λ)
obtained from spectral considerations by first taking the τ → ∞ limit, as done
in (7.16). We will show in Sections 7.3 and 7.4 that these two definitions coincide
for periodic systems, i.e. that one can take the large-time and the weak-noise limits
in whichever order one prefers.

7.3 Determination of the sCGF µ(λ) for spatially periodic
systems

7.3.1 Optimal trajectories in the weak-noise limit

We now aim at computing the scaled cumulant generating function µ(λ) by min-
imising the action Sλτ [x(t)] according to Eq. (7.24). The saddle-point equation for
the optimal path sustaining a given fluctuation is obtained from the optimisation
principle (7.22) and reads

ẍ− F (x)F ′(x)− λh′(x) = 0 , (7.25)

where the prime denotes a derivative with respect to x. We note that it does not
depend on the function g(x) since the term ẋ(t) g(x(t)) in the integrand of the
action (7.9) is a total derivative, but of course the function g(x) still plays a role

8Note that this definition of the sCGF coincides with the one we have used along this Thesis
just by a change of sign.
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because it appears in the expression of the action whose value is to be minimised.
It represents the conservative dynamics of a particle of unit mass in a potential

V(x) = −1

2
F (x)2 − λh(x) . (7.26)

As a result, the energy

E(ẋ, x) =
1

2
ẋ2 + V(x) (7.27)

is conserved along an optimal trajectory. Let us recall, however, that while opti-
mal trajectories obey a deterministic conservative dynamics in the potential V(x)
given by Eq. (7.26), the original dynamics of the problem obeys an overdamped
Langevin dynamics, with a deterministic force F (x) that may derive or not from
a potential — see Eq. (7.1). Note that since x(t) satisfies the second-order differ-
ential equation (7.25), it is uniquely specified in general only when one specifies a
set of two parameters. It is convenient to choose for these two parameters the en-
ergy E and the initial position xi (and the sign of the initial velocity, as we explain
later).

Importantly, the initial position xi for the optimal trajectory (solution of Eq.
(7.25)) in the weak-noise asymptotic regime differs from the ‘physical’ initial con-
dition x(0) considered in the path integral (7.6) and sampled with Pst. Indeed,
the underlying Langevin dynamics is dissipative, so that the biased distribution
Πτ (x, λ) converges to a steady state at large finite time τ after a transient; then,
the optimal trajectory that obeys the non-dissipative evolution (7.25) describes the
most probable loci of Πτ (x, λ) . In other words, there is a transient regime for the
‘physical’ initial distribution Pst(x) to reach a distribution Πτ (x, λ) that falls into
a consistent weak-noise description. As a result, the initial distribution Pst(x) be-
comes irrelevant after this transient regime and can thus be forgotten in the weak-
noise evaluation of the path-integral (7.6), since it does not fall in general in the
weak-noise large-deviation regime.

On the other hand, Eq. (7.25) has an infinite number of solutions, only one of
them being the actual optimal trajectory that minimises the action Sλτ [x(t)]. To de-
termine this optimal trajectory, one has to parameterise each solution of Eq. (7.25)
by the initial position xi and the energy E , but again, xi differs from the ‘physical’
initial condition x(0).

In the following, we consider finite-size spatially periodic systems, for which
F (x + 1) = F (x), h(x + 1) = h(x) and g(x + 1) = g(x) (we took the spatial
period as the unit length, without loss of generality). Such periodic systems have
been studied in previous works, especially in the weak-noise asymptotics [85], but
for a specific additive observable such as the entropy production [261–263] or the
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current [85, 264, 265] and using a numerical approach based on a Fourier–Bloch
decomposition [85, 262]. Our aim is to keep the form of the additive observable
Aτ generic and the approach analytical for as long as possible in the study of
the problem at hand, in order, in particular, to fully characterise dynamical phase
transitions that are known to occur [85, 261, 262, 264] in this problem but that
were not completely understood (the order of such transition for instance remained
unclear).

For such spatially periodic systems, the optimal trajectory minimising the ac-
tion Sλτ [x(t)] becomes independent of x(0) for large enough time τ , so that the
only relevant parameter to characterise the trajectories in this limit is their energy.
To determine the sCGF µ(λ), one has to evaluate the action Sλτ [x(t)] for any of
the optimal trajectories given by Eq. (7.25), and to find the optimal trajectory that
minimises the action. In practice, this last step consists in minimising the action
over the energy of the trajectories. Using Eqs. (7.9) and (7.26), the action Sλτ [x(t)]
can be written as

Sλτ [x(t)] =

∫ τ

0
dtL(ẋ(t), x(t)) (7.28)

with a Lagrangian

L(ẋ, x) =
1

2
ẋ2 − V(x) + ẋ

(
λg(x)− F (x)

)
. (7.29)

Note that the last term, proportional to ẋ, in Eq. (7.29) plays no role in Eq. (7.25)
since it is a total derivative, but it has to be included in the Lagrangian to correctly
evaluate (and minimise) the action.

Assuming that the force field F (x) and the function h(x) are bounded, the
potential V(x) is also bounded. We denote as Vmax the maximum value of the
potential:

Vmax = max
x
V(x) . (7.30)

The value Vmax allows one to classify the optimal trajectories x?(t) into periodic
and propagative solutions, according to their energy E (for convenience, we in-
clude constant trajectories as a special case of the periodic ones). For E < Vmax,
optimal trajectories are confined by the potential V(x), and are periodic in time.
For E > Vmax, the potential no longer confines the optimal trajectories, which are
then propagative, with a constant sign of the velocity ẋ. As a result, the sCGF
µ(λ) is obtained by minimising the action over both sets of periodic and propaga-
tive optimal trajectories. One can thus write, taking into account the minus sign in
Eq. (7.24),

µ(λ) = max {µper(λ), µprop(λ)} (7.31)
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where µper(λ), µprop(λ) are defined by minimising the action over the sets of
periodic and propagative trajectories respectively:

µper(λ) = − lim
τ→∞

{1

τ
inf

E<Vmax

Sλτ [x?(t)]
}
, (7.32)

µprop(λ) = − lim
τ→∞

{1

τ
inf

E>Vmax

Sλτ [x?(t)]
}
. (7.33)

In the following, we successively evaluate µper(λ) and µprop(λ).

7.3.2 Time-periodic trajectories

We start by evaluating µper(λ). A particular type of periodic trajectories are the
time-independent ones, for which ẋ? = 0 and x? = x0, implying V ′(x0) = 0 from
Eq. (7.25). For such trajectories, one has L(ẋ?, x?) = −V(x0), so that minimis-
ing the action over time-independent trajectories selects points x0 that are at the
location(s) of the maximum of the potential V(x); hence:

lim
τ→∞

{1

τ
inf

x(t)=x0

Sλτ [x?(t)]
}

= −Vmax. (7.34)

Considering now a generic time-periodic optimal trajectory, the action reads,
with x? ≡ x?(t)

1

τ
Sλτ [x?(t)] =

1

2τ

∫ τ

0
dt (ẋ?)2︸ ︷︷ ︸
≥0

−1

τ

∫ τ

0
dtV

(
x?
)

︸ ︷︷ ︸
≥−Vmax

+
1

τ

∫ τ

0
dt ẋ?

(
λg
(
x?
)
− F

(
x?
))

︸ ︷︷ ︸
→ 0 when τ→∞

. (7.35)

The proof that the last integral in (7.35) goes to 0 when τ → ∞ comes from a
change of variable from t to x:

1

τ

∫ τ

0
dt ẋ?

(
λg(x?)− F (x?)

)
=

1

τ

∫ x?(τ)

x?(0)
dx
(
λg(x)− F (x)

)
(7.36)

which goes to 0 when τ → ∞ because [λg(x) − F (x)] is bounded on the finite
interval [x?(0), x?(τ)]. It is tempting to take the τ → ∞ limit and to conclude
from (7.32) that µper(λ) ≤ Vmax but this would require to exchange the inf and
the τ → ∞ limit in (7.32), which enters in conflict with our goal since we are
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interested in how the small-noise and large-time limits commute. To avoid this
exchange, one writes from (7.35) that for any time-periodic optimal trajectory,

1

τ
inf

E<Vmax

Sλτ [x?(t)] ≥ −Vmax −
1

τ
inf

E<Vmax

∫ x?(τ)

x?(0)
dx
(
λg(x)− F (x)

)
(7.37)

so that taking the τ →∞ limit one finds

lim
τ→∞

{1

τ
inf

E<Vmax

Sλτ [x?(t)]
}
≥ −Vmax , (7.38)

because the integrand on the r.h.s. of (7.37) is a bounded function on an interval
of fixed finite length. From the definition (7.32), we obtain µper(λ) ≤ Vmax.
Remarking now from (7.28-7.29) that this bound is realised for time-independent
trajectories x? = x0 we conclude that

µper(λ) = Vmax(λ) (7.39)

where the λ-dependence of Vmax has been made explicit. Therefore, for E < Vmax,
the optimal trajectories sustaining a given fluctuations are time-independent of the
form x? = x0, where x0 are the points maximising the potential V(x0) = Vmax.

7.3.3 Propagative trajectories

To evaluate µprop(λ), one now has to compute the minimum of the action over all
propagative optimal trajectories, i.e., trajectories for which E > Vmax. Then, from
energy conservation, one has

ẋ? = σ
√

2
(
E − V(x?)

)
(7.40)

where σ = ±1 is the sign of ẋ? (we recall that the sign of ẋ? is constant all along
propagative trajectories). Propagative trajectories are pseudo-periodic, in the sense
that x?(t+ T ) = x?(t) + σ, which may be identified with x?(t) due to the spatial
periodicity of the system; T = T (E) is the pseudo-period T (E), determined as

T =

∫ T

0
dt =

∫ 1

0

dx√
2
(
E − V(x)

) , (7.41)

where we have used Eq. (7.40) to change the integration variable from t to x. Using
the relation

L(ẋ?, x?) = E − 2V(x?) + ẋ?
(
λg(x?)− F (x?)

)
, (7.42)
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the action of a propagative optimal trajectory on the time interval [0, T (E)] is,
expanding the Lagrangian (7.29),

SλT (E)[x
?(t)] = σ

∫ 1

0

(
λg(x)− F (x)

)
dx+ T (E)E −

∫ 1

0

2V(x)√
2
(
E − V(x)

) dx .
(7.43)

To lighten notations, we define

B =

∫ 1

0

(
λg(x)− F (x)

)
dx , R(E) =

∫ 1

0

2V(x)√
2
(
E − V(x)

) dx . (7.44)

Note that the term F (x) in the integral defining B gives no contribution when the
force F (x) derives from a potential.

In the large-time limit, the value of the action over every interval [nT (E), (n+
1)T (E)] is the same (by periodicity of the optimal trajectory). Furthermore, the
optimal trajectory dependence on the initial value x0 is now replaced by a pseudo-
periodic boundary condition of the form x(1) = x(0) + σ. Hence the µprop(λ)
defined in Eq. 7.33 is equal to:

µprop(λ) = − lim
n→∞

inf
E>Vmax, σ=±1

{
1

nT (E)

∫ nT (E)

0
L(ẋ?, x?) dt

}
(7.45)

= − inf
E>Vmax, σ=±1

{ 1

T (E)

∫ T (E)

0
L(ẋ?, x?) dt

}
(7.46)

= − inf
E>Vmax, σ=±1

{
E +

σB −R(E)

T (E)

}
(7.47)

where in (7.45)-(7.46) the optimal trajectory x?(t) is the propagative solution of
the saddle-point equation, with an energy E and a pseudo-period T (E) that depends
on E , as inferred from (7.41). Determining µprop(λ) thus amounts to finding, for
both σ = ±1, the infimum of the function

Ψσ(E) = E +
σB −R(E)

T (E)
. (7.48)

The function Ψσ(E) is defined over the interval (Vmax,+∞). When E → Vmax,
both R(E) and T (E) diverge to infinity (assuming V(x) is regular close to Vmax),
but their ratio R(E)/T (E) → 2Vmax, so that Ψσ(E) → −Vmax. In the opposite
limit E → ∞, T (E) ∼ R(E) ∼ 1/

√
E , yielding Ψσ(E) → +∞. Consequently, if

Ψσ(E) has no minimum for E ∈ (Vmax,+∞), one has:

inf
E>Vmax

Ψσ(E) = −Vmax . (7.49)
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We now proceed to determine if Ψσ(E) has a minimum E∗σ , satisfying Ψ′σ(E∗σ) = 0.
The derivative Ψ′σ(E) reads

Ψ′σ(E) =
1

T (E)2

[
T (E)2 −R′(E)T (E) +R(E)T ′(E)− σBT ′(E)

]
. (7.50)

From the definition (7.44) of R(E), one finds that

R′(E) = T (E) + 2ET ′(E) (7.51)

so that Ψ′σ(E) can be rewritten as

Ψ′σ(E) =
T ′(E)

T (E)2

[
R(E)− 2ET (E)− σB

]
. (7.52)

Since T ′(E) 6= 0 for all E , the condition Ψ′σ(E∗σ) = 0 is equivalent to

R(E∗σ)− 2E∗σT (E∗σ)− σB = 0 (7.53)

which determines E∗σ . If a solution E∗σ exists, one has from Eqs. (7.48) and (7.53)

Ψσ(E∗σ) = E∗σ +
σB −R(E∗σ)

T (E∗σ)
= −E∗σ . (7.54)

Using Eqs. (7.51) and (7.53), one can show that the second derivative Ψ′′σ(E∗σ) takes
the simple form

Ψ′′σ(E∗σ) = −T
′(E∗σ)

T (E∗σ)
=

∫ 1
0

(
E∗σ − V(x)

)−3/2
dx

2
∫ 1

0

(
E∗σ − V(x)

)−1/2
dx

> 0 , (7.55)

so that E∗σ is a local minimum. The fact that it is a global minimum comes from
a unicity argument, which goes as follows. Eq. (7.53) can be rewritten using
Eqs. (7.41) and (7.44) as∫ 1

0

√
2
(
E∗σ − V(x)

)
dx = −σB . (7.56)

The integral on the l.h.s. of Eq. (7.56) spans the interval

(

∫ 1

0

√
2(Vmax − V(x)) dx,+∞) (7.57)
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as a function of E∗σ . Hence a solution E∗σ exists if

− σB >

∫ 1

0

√
2
(
Vmax − V(x)

)
dx (7.58)

where we recall that B is defined in Eq. (7.44). Since
∫ 1

0

√
2(E − V(x)) dx is an

increasing function of E , the solution E∗σ is unique if it exists. Hence the function
Ψσ(E) has at most one stationary point, so that its local minimum E∗σ is, if it
exists, a global minimum. In addition, if E∗σ exists, then E∗−σ does not exist, since
Eq. (7.58) cannot be simultaneously satisfied for σ and −σ. This implies that E∗σ
can exist only for

σ = −sign(B) , (7.59)

and Eq. (7.58) can be rewritten as

|B| >
∫ 1

0

√
2
(
Vmax − V(x)

)
dx . (7.60)

If Eq. (7.60) is satisfied, one has for σ = −sign(B) that

inf
E>Vmax

Ψσ(E) = −E∗σ, and inf
E>Vmax

Ψ−σ(E) = −Vmax . (7.61)

As a result, Eq. (7.47) implies

µprop(λ) = −min{−E∗σ,−Vmax} = max{E∗σ,Vmax} = E∗σ (7.62)

(with σ = −sign(B)) if Eq. (7.60) holds.

In the opposite case, if Eq. (7.60) is not satisfied,

inf
E>Vmax

Ψσ(E) = inf
E>Vmax

Ψ−σ(E) = −Vmax , (7.63)

so that
µprop(λ) = Vmax . (7.64)

Since from Eq. (7.39) µper(λ) = Vmax ≤ µprop(λ), Eq. (7.31) implies that for all
λ

µ(λ) = µprop(λ) . (7.65)

To summarise, we have shown that when a propagative optimal solution ex-
ists, it is unique and the value of the corresponding sCGF is given by the energy
E∗σ of such trajectory; otherwise, the value of the sCGF is given by the maximum
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value Vmax of the potential V(x). This result is surprisingly simple in view of the
complicated optimisation problem one is initially facing, and it is key to the ex-
plicit determination of the sCGF. We emphasise that although the search of optimal
trajectories (coming as a standard consequence of the weak-noise approach) is for-
mulated in the framework of Lagrangian mechanics, the result we have obtained
goes one step beyond: in Lagrangian mechanics indeed the conserved energy E
of trajectories is given and fixed, while in our problem of interest the energy itself
has to be optimised. It is precisely the optimal energy E∗ that benefits of the un-
expected property that the action of its corresponding optimal trajectory becomes
equal to E∗ – a non-trivial fact, as we have shown. Such result could be of inter-
est in different contexts where Lagrangian mechanics is used to solve optimisation
problems. We note last that our result is not directly related to the optimisation
principle put forward by Nemoto and Sasa in [264, 265] (since these are not based
on a weak-noise framework).

In conclusion, the evaluation of µ(λ) generically goes as follows. Note as a
starting point that the criterion given by Eq. (7.60) for the existence of an optimal
propagative solution can be interpreted as a condition on λ; using explicit nota-
tions, one has that if the condition:∣∣∣∣λ ∫ 1

0
g(x) dx−

∫ 1

0
F (x) dx

∣∣∣∣ > ∫ 1

0

√
2Vmax(λ) + F (x)2 + 2λh(x) dx

(7.66)
is satisfied, then the optimal trajectory is propagative. For each value of λ, one
checks whether Eq. (7.66) is satisfied. If it holds, one determines E∗σ by solving
Eq. (7.53) with σ = −sign(B), i.e.,

R(E∗σ)− 2E∗σT (E∗σ) + |B| = 0 , (7.67)

leading to µ(λ) = E∗σ(λ). If Eq. (7.66) is not satisfied, then µ(λ) = Vmax(λ). This
result allows one to determine the existence of possible dynamical phase tran-
sitions in the fluctuations of the additive observable Aτ . When varying λ, one
can indeed jump from a situation where the optimal trajectory is time-independent
(when Eq. (7.66) is not satisfied) to a situation where the optimal trajectory is time-
dependent. Such a transition between two classes of optimal trajectories is illus-
trated in Fig. 7.1 and corresponds to a breaking of the ‘additivity principle’ [149]).

For an density-type observable Aτ (g(x) = 0) in the presence of a conserva-
tive force F (x) = −U ′(x), the l.h.s. of Eq. (7.66) is equal to 0, so that Eq. (7.66)
is never satisfied. It follows that µ(λ) = Vmax(λ) for all λ, meaning that the op-
timal trajectory is always time-independent in this case (in other words, there is
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Figure 7.1: The different classes of optimal trajectories of interest: On the left, stationary ones,
with x0 the location of the maximum of V(x), defined in Eq. (7.26); On the right, propagative ones,
either increasing or decreasing in time. Periodic trajectories which oscillate around x0 without being
propagative have a larger action than the stationary one in x0, as shown in Subsection 7.3.2. The
criterion for the existence of propagative trajectories is given by Eq. (7.66).

no breaking of the additivity principle). This however does not forbid dynamical
phase transitions since, as seen from the expression (7.26) of V(x) the ‘tilting’ con-
tribution −λh(x) can make the location of the maximum of V(x) switch from one
position to another, if for instance F (x) presents more than one equilibrium point.
Such a situation occurs for instance in the large deviation of additive observables
in driven diffusive systems [181].

We discuss below the determination of µ(λ) in the case of current-type addi-
tive observable, which generically leads to a phase transition between stationary
and non-stationary trajectories – a common phenomenon in periodic systems in
general [41, 85, 150, 272].

7.3.4 Determination of µ(λ) for current-type additive observable and
conservative force F (x)

Considering a current-type additive observable (corresponding to h(x) = 0) as
well as a conservative force F (x) = −U ′(x), Eq. (7.66) simplifies to

|λ| > λc ≡
∫ 1

0 |F (x)| dx∫ 1
0 g(x) dx

(7.68)

where we have assumed that
∫ 1

0 g(x) dx > 0 (the case
∫ 1

0 g(x) dx < 0 is treated
in the same way), and used the fact that Vmax = 0 when h(x) = 0 (as inferred
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from (7.26) and (7.30)). For |λ| > λc, µ(λ) is solution of the equation∫ 1

0

√
2µ(λ) + F (x)2 dx = |λ|

∫ 1

0
g(x) dx (7.69)

while for |λ| < λc, µ(λ) = Vmax = 0. Consequently, λc is the critical value
at which the dynamical phase transition takes place. Note that µ(λ) is an even
function of λ for current-type additive observable in a system with a conservative
force, due to time-reversal invariance.

The singular behaviour of the sCGF close to the transition depends both on
local and global properties of the force F (x). If one naively expands for small
µ(λ) √

F (x)2 + 2µ(λ) = |F (x)|+ µ(λ)

|F (x)|
+O

(
µ(λ)2

)
(7.70)

and integrates over 0 < x < 1 in order to obtain an expansion of Eq. 7.69 for µ(λ),
one finds a divergent integral

∫ 1
0 dx/|F (x)| (if there is a fixed point F (x0) = 0

with F ′(x0) 6= 0, which is the case in general). The expansion at small µ(λ) is
thus ill-defined. The logarithmic divergence of

∫ 1
0 dx/|F (x)| suggests a behaviour

µ(λ) ∼ (λ− λc)/| log(λ− λc)| but the situation is better understood on a specific
example first.

As an explicit example, we consider the case F (x) = sin(2πx) , h(x) = 0
and g(x) = 1, where the force F (x) is conservative, and the observable A(t) is
the integrated current (or the position at time t, counted with the number of turns).
Such model and additive observable has been previously considered in Refs. [85,
262–264]. The sCGF µ(λ) was numerically evaluated in [264] at finite noise (the
transition that appears in the weak-noise limit was not considered). In [262, 263]
the weak-noise limit is considered and the singularity of the sCGF is described
as a “kink”, with no elucidation of its nature. In [85], numerical results in the
weak but non-zero noise asymptotics are obtained, and described as suggesting
a first-order transition with a cusp in the sCGF (compatible with the results of
random-walk approximation of the problem), but the authors write that “the precise
shape of the rate function around the cusp is yet to be determined analytically”.
Below, we elucidate the precise form of the dynamical phase transition that appears
in the weak-noise asymptotics, showing that it is neither first nor second order,
but continuous and intermediate between these two cases (it presents an essential
singularity). For the location of the transition, Eq. (7.68) straightforwardly leads
to

λc =
2

π
. (7.71)
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Figure 7.2: An example sCGF µ(λ), for F (x) = sin(2πx) and h(x) = 0 and g(x) = 1. Com-
parison of the evaluation of the sCGF µ(λ) between the weak-noise approach (deduced from (7.72)-
(7.74), dashed red line) and the maximal eigenvalue of the deformed operator (7.10) of a lattice
version of the dynamics (translucent blue line; 128 sites, ε = 0.075). In the negative regime of λ,
the transition occurs at λ = −λc = − 2

π
' −0.637.

This result was already obtained in [85]. For |λ| > λc, the sCGF µ(λ) is solution
in Eλ of the equation

λ =

{
−Λ(Eλ) forλ < −λc

Λ(Eλ) forλ > λc ,
(7.72)

with

Λ(E) ≡ 2

π

√
2E E

(
− 1

2E

)
, (7.73)

where E(·) is the complete elliptic integral of the second kind (taking the definition
used by Abramowitz & Stegun [273]). One thus obtains

µ(λ) =

{
0 |λ| ≤ λc ,
Λ−1(|λ|) |λ| ≥ λc .

(7.74)

For |λ| < λc, the sCGF µ(λ) and its associated optimal profiles are flat: one needs
to consider large enough deviations of the current in order to actually observe a
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travelling trajectory. In order to check the existence of the transition and the form
of the sCGF, we evaluated µ(λ) from the maximal eigenvalue of the deformed
operator (7.10) of a lattice version of the dynamics (at small temperature and for a
large number of sites). Results are in good agreement with the present weak-noise
approach (see Fig. 7.2).

For the expansion close to the transition points, one finds for λ = λc +δλ with
δλ > 0

µ(λc + δλ) =
π δλ

| ln δλ|
+ o

(
δλ

| ln δλ|

)
. (7.75)

This leads for the average velocity v of the particle (or, equivalently, the average
current),

v(λc + δλ) = −µ′(λc + δλ) = − π

| ln δλ|
+ o

(
1

| ln δλ|

)
. (7.76)

As a result, the dynamical phase transition at λc is formally continuous since
v(λ) → 0 when λ → λc. However, for all practical purposes, the transition
appears discontinuous as the convergence to zero is extremely slow. The higher-
order derivatives µ(n)(λ) diverge to (−∞)n as λ → λ+

c for n ≥ 2, indicating an
essential singularity of the sCGF in λc. This result, which is new to our knowledge
and highly non-trivial, is to be contrasted with the standard depinning transition of
a particle in a ‘tilted’ potential (i.e., a particle subjected to a conservative force
plus a uniform non-conservative driving force). For a regular potential, the depin-
ning transition is continuous with a critical exponent 1/2 [274]. The fact that the
transition observed in the λ-biased dynamics is of a different nature shows that
biasing the dynamics with λ does not only add a non-conservative uniform driving
force to the original dynamics, but rather modifies the original dynamics in a more
complex way. We describe in the next section how the λ-biased dynamics can be
mapped onto a non-trivial effective driven process, which will allow us to better
understand why the standard behaviour of the depinning transition of a particle in
a potential is not recovered (see also [85] for a complementary approach).

7.4 Effective non-equilibrium dynamics of the conditioned
equilibrium system

As we discussed in Section 7.2.3, the biased dynamics is governed by the deformed
Fokker–Planck operator Wλ defined in (7.10), which does not preserve probabil-
ity. This observation is at the basis of population dynamics algorithms [275–277]
that allow one to study rare trajectories and to evaluate numerically the CGF by
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representing the probability loss or gain through selection rules between copies
of the system, in the spirit of Quantum Monte Carlo algorithms [278, 279] (see
e.g. [280] for a review).

In fact, as shown recently in [72,73] and in [76] (inspired by [281,282]), there
exists a change of basis, based on the explicit knowledge of the left eigenvec-
tor of Wλ, that allows one to render the dynamics described by Wλ probability-
preserving, up to a global normalisation. As studied in great depth in Refs. [77,
79, 259], this defines an ‘auxiliary’ or ‘effective’ dynamics Weff

λ which is asymp-
totically equivalent to the biased dynamics described by Wλ, if normalised ap-
propriately (see Sec 7.4.4 for details). From a mathematical point of view, this
construction is based on a generalised Doob’s h-transform [79]. The interest of
this effective dynamics is that it provides a physical (probability-preserving) dy-
namics whose typical trajectories are equivalent to the rare trajectories of the orig-
inal dynamics (7.1). Such effective dynamics can be defined for Langevin pro-
cesses or for jump processes. Explicit examples of such dynamics have been de-
termined in exclusion processes [72, 73, 80, 81], in zero-range processes [82–84],
in the current large deviation of Langevin dynamics [85] or in open quantum sys-
tems [86, 87]. They illustrate in general that the effective forces governing the
dynamics described by Weff

λ modify the original dynamics (7.1) on a global scale.
In this section, we recall how to identify the effective process as a Langevin

dynamics with a force F eff
λ (x) that defines a λ-modified probability-preserving

dynamics [79,259]. We then show that the determination of F eff
λ (x) can be done in

a rather explicit way in the weak-noise limit, without having to determine explicitly
the left eigenvector. We also explain how the determination of the effective process
allows one to show that the small-noise and large-time limits can be exchanged in
periodic systems for our LDF problem.

7.4.1 Derivation of the effective force

One defines 〈L| as the left eigenvector1 of Wλ associated to the maximal eigen-
value ϕε(λ). Following Refs. [72, 73, 76], one introduces a diagonal operator L̂
whose elements are the components of 〈L|. Then, the definition 〈L|W = ϕε(λ)〈L|
of the left eigenvector implies that

〈−|Weff
λ = 0 with Weff

λ = L̂WλL̂
−1 − ϕε(λ)1 . (7.77)

1It is unique up to a multiplicative constant, since we have assumed that the conditions of validity
of the Perron–Frobenius theorem are satisfied. Note also that this implies that all components of 〈−|
can be chosen to be strictly positive.
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One reads from this relation that the operator Weff
λ is probability-preserving and

describes a bona fide dynamics (with positive transition rates). Since Weff
λ is ob-

tained from Wλ by a mere to a shift and a change of basis, it has to present the
same physical content as Wλ – but in a sense that has to be specified. We refer
to [76,79,259] for thorough studies of such a correspondence and to Section 7.4.4
for a self-contained presentation.

Let us now fix ε > 0 (not necessarily small) and send τ to infinity before taking
the weak-noise limit. The Perron–Frobenius theorem ensures that the components
of the eigenvectors associated to the large eigenvalue can be taken to be strictly
positive, which allows one to introduce a function Ũ(x) such that the left eigen-
vector reads L(x) = exp

[
−1
ε Ũ(x)

]
. Note that this relation is simply a definition

of Ũ(x), which may depend on ε at this stage. However, one expects2 that in the
weak-noise limit ε→ 0, Ũ(x) becomes independent of ε.

One finds by direct computation that

Weff
λ P (x) =

1

2
εP ′′(x) +

[
− F (x) + λg(x) + Ũ ′(x)

]
P ′(x) +

1

2ε

[
λ2g(x)2

− 2λh(x)− 2ε
(
ϕε(λ) + F ′(x)− λg′(x)

)
− 2F (x)Ũ ′(x)

+ Ũ ′(x)2 + 2λg(x)(Ũ ′(x)− F (x)) + εŨ ′′(x)
]
P (x) . (7.78)

Using the eigenvector equation for L(x)

ϕε(λ)L(x) =
1

2
εL′′(x) +

[
F (x)− λg(x)

]
L′(x)

+
λ

ε

[
1

2
λg(x)2 − h(x)− F (x)g(x)

]
L(x) (7.79)

which can be rewritten in terms of Ũ(x) as

ϕε(λ) = −1

2
Ũ ′′(x)

+
1

ε

[
1

2

(
λg(x) + Ũ ′(x)

)(
λg(x) + Ũ ′(x)− 2F (x)

)
− λh(x)

]
(7.80)

one eliminates ϕε(λ) in (7.78) and one finds that Weff
λ indeed takes the form of a

probability-preserving Fokker–Planck evolution operator [79, 259]:

Weff
λ · = −∂x

[(
F (x)− λg(x)− Ũ ′(x)

)
·
]

+
1

2
ε∂2
x · . (7.81)

2This can be formally shown for instance by expanding Ũ(x) in a power series as Ũ(x) =
Ũ0(x) + εŨ1(x) + . . . following the standard WKB procedure [260].
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It describes the evolution of a particle subjected to a force F eff(x) = F (x) −
λg(x) − Ũ ′(x). We note that the contribution h(x) to the additive observable A
defined in 7.2 does not appear explicitly in (7.81) but is still present implicitly
through the potential Ũ(x) defined from the left eigenvector L(x).

7.4.2 Effective dynamics in the weak-noise limit

Noting that ϕε(λ) ∼ 1
εµ(λ) in the weak-noise limit ε → 0, and assuming that

Ũ becomes independent of ε in this limit (as is usually the case in this WKB
procedure [260]), the differential equation (7.80) for Ũ(x) becomes an ordinary,
quadratic equation for Ũ ′(x),

1

2

(
λg(x) + Ũ ′(x)

)(
λg(x) + Ũ ′(x)− 2F (x)

)
− λh(x) = µ(λ) , (7.82)

whose solution reads

Ũ ′(x) = F (x)− λg(x)− σ
√
F (x)2 + 2λh(x) + 2µ(λ) , (7.83)

where σ = ±1 is an unknown sign that will be determined later on. Hence, the
knowledge of µ(λ) allows for the determination of Ũ ′(x), provided one is able to
select the correct sign in Eq. (7.83). This can be done by evaluating the effective
force F eff(x). Inserting Eq. (7.83) in the generic expression (7.81) of the effective
Fokker–Planck operator, one finds

Weff
λ · = −∂x

[
σ
√
F (x)2 + 2λh(x) + 2µ(λ) ·

]
+

1

2
ε∂2
x · . (7.84)

It corresponds to the evolution of a particle subjected to an effective force

F eff(x) = σ
√
F (x)2 + 2λh(x) + 2µ(λ) . (7.85)

The two possible signs correspond to the two possible cases of Sections 7.3.3
and 7.3.4 when the optimal trajectory is either increasing or decreasing in time.
We will see below that σ is given by σ = −sign(B), consistently with the results
of Section 7.3.3.

We have thus shown that in the weak-noise asymptotics, the explicit knowl-
edge of the complete left eigenvector 〈L| is not required in order to determine the
effective force F eff(x): one only needs to know the sCGF µ(λ). Interestingly, for
periodic systems, Eq. (7.83) also provides a way to determine µ(λ), without using
the optimisation procedure described in Section 7.3. In a periodic system, Ũ(x) is
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a periodic function of period 1, so that
∫ 1

0 Ũ
′(x) dx = 0. From Eq. (7.83), we thus

have ∫ 1

0
dx
(
F (x)− λg(x)− σ

√
F (x)2 + 2λh(x) + 2µ(λ)

)
= 0 (7.86)

and one recovers Eq. (7.53), given the definitions (7.44) and (7.26) of the parameter
B, the function R and the potential V(x), as well as the identification of µ(λ) with
E∗σ when Eq. (7.53) has a solution — see Eqs. (7.62) and (7.65). Following the
same reasoning as the one that leads to Eq. (7.59), we recover that σ = −sign(B).

Note that recovering the same result as in Section 7.3 is non-trivial, because
here we have made no optimisation of the action at finite time τ , but rather taken
the infinite-time limit from the outset, by using first a spectral analysis (which
yielded the eigenvector equation 7.79) and then a weak-noise expansion to go
from (7.80) to (7.82). In other words, we have exchanged the order of the large-
time and the weak-noise limit. It is interesting to see, as we previously mentioned,
that both orders of limits yield the same result. Let us emphasise that this result
strongly relies on the Perron–Frobenius theorem, which states that the eigenvector
〈L| associated to the largest eigenvalue of Wλ only has strictly positive compo-
nents (up to a sign convention) so that it can be written in an exponential form
L(x) = exp

[
−1
ε Ũ(x)

]
(with real Ũ(x)), while other eigenvectors do not have all

components of the same sign, and can thus not be written in such an exponential
form. Looking for an eigenvector in an exponential form thus automatically selects
the eigenvector associated to the largest eigenvalue thanks to the Perron–Frobenius
theorem, without any explicit optimisation procedure.

For a conservative forceF (x) and current-type additive observables (i.e., h(x) =
0), the condition σ = −sign(B) boils down (if g(x) > 0) to σ = −sign(λ), lead-
ing to an effective force

F eff(x) = −sign(λ)
√
F (x)2 + 2µ(λ) (|λ| > λc) , (7.87)

F eff(x) = −sign(λ) |F (x)| (|λ| ≤ λc) . (7.88)

Several comments are in order here. First, the effective force F eff(x) differs
from the λ-dependent force appearing in the modified process defined by the
Langevin equation (7.12). Second, F eff(x) can be decomposed into a uniform
non-conservative part

feff =

∫ 1

0
F eff(x) dx =

∫ 1

0
F (x) dx− λ

∫ 1

0
g(x) dx (7.89)
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(where the last equality results from Eq. (7.86)) and a space-dependent conserva-
tive part

− U ′eff = F eff(x)− feff . (7.90)

Note that the integrals in Eq. (7.89) should be understood as spatial averages (we
recall that the length of the system is chosen as L = 1). In the specific case
when the observable A is the current (i.e., g(x) = 1 and h(x) = 0) and F (x)
is a conservative force, one recovers that feff = −λ. Yet, the conservative part
−U ′eff does not reduce to the original force F (x). This can be seen explicitly by
computing perturbatively the effective force F eff(x) in the large λ limit, yielding

F eff(x) =
λ→∞

−λ− 1

2λ

(
F (x)2 −

∫ 1

0
F (x′)2 dx′

)
+ o

(
1

λ

)
(7.91)

From this last equation, the decomposition of the effective force F eff(x) into a
uniform non-conservative force feff = −λ and a conservative force becomes

− U ′eff = − 1

2λ

(
F (x)2 −

∫ 1

0
F (x′)2 dx′

)
+ o

(
1

λ

)
. (7.92)

The associated periodic potential Ueff reads

Ueff(x) =
1

2λ

(∫ x

0
F (x′)2 dx′ − x

∫ 1

0
F (x′)2 dx′

)
+ o

(
1

λ

)
. (7.93)

On the other side, it is instructive to determine how the effective force F eff(x)
is modified as the dynamical transition is approached: we illustrate in Fig. 7.3
how a cusp singularity appears in F eff(x) as δλ → 0+ for λ = λc + δλ in the
example system studied at the end of Section 7.3.3. One sees from Eq. (7.87)
that F eff(x) is a regular function of x as long as δλ > 0 but develops a cusp
singularity at its stationary points as δλ→ 0+, explaining why the transition is not
of the same nature as that of the standard depinning transition [274] (see [85] for a
numerical study of how singularities in the effective force F eff(x) are related to the
dynamical phase transition, in the current large deviations of a particle a periodic
sine potential).

To understand on a more general ground the relation between such depinning
transition and the dynamical phase transition, we now consider the more generic
case of an observable A with arbitrary g, h ≡ 0 and a force F (x) presenting
a stationary point x0. We assume that F can be expanded around x0 as F (x) =
(x−x0)F0+o(x−x0). In the effective dynamics, optimal trajectories are subjected
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Figure 7.3: Comparison, on an example, of the criticality of the dynamical phase transition and
of standard depinning transitions in 0d. (Top) The effective force F eff(x) at λ = λc + δλ deforms
and becomes a cuspy function of x close to the stationary points that develop as δλ → 0+, for the
example model studied at the end of Section 7.3.3. (Bottom left) In the standard depinning transition
in 0d, the depinning transition occurs when a regular force F̃ (x) possesses no stationary point any
more when driven by a uniform force δf > 0. In this case, the force F̃ (x) + δf is a regular function
of x and this implies that the transition is second-order [274], in contrast to our dynamical phase
transition of interest. (Bottom right) If instead the force presents a cusp at all values of δf ≥ 0
close to the δf = 0 stationary point, the transition becomes first-order [274], which is also different
from our dynamical phase transition.

to the effective force defined in Eq. (7.85) which reads as follows close to the
stationary point3:

F eff(x) '
√

[(x− x0)F0]2 + 2µ(λ). (7.94)

As the dynamical phase transition is approached (µ(λ) → 0 as λ → λ+
c ), this

implies that the trajectories of the effective dynamics spend a longer and longer
time close to x0, meaning that the dynamics is mainly governed by the approximate
form (7.94) of the effective force.

3We assume here that σ = +1 without loss of generality.
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Effective trajectories are governed by the equation ẋ(t) = F eff(x(t)), whose
solution reads

x(t) = x0 ±
√

2µ(λ)
sinh(F0t)

F0
, (7.95)

(up to an arbitrary translation in time) in the regime where the approximation (7.94)
holds. As usual for the depinning transition in 0d problems [274], the average ve-
locity of the trajectory (counted positively) is |v̄| ∼ L/T , with L the spatial period
(recall once again L = 1 in our settings) and T the period in time. Close to the
transition, the time period T is for instance estimated from

x(T/2)− x(−T/2) = L = 1 (7.96)

(since x(0) = x0 with our choice of the origin of time, so that x(t)− x0 is an odd
function of time). In the large-time limit, one finds from (7.96) that at dominant
order in µ(λ)→ 0, one has T ∼ 1

F0
| lnµ(λ)|. Consequently, the average velocity

of the trajectory behaves as:

|v̄| ∼ F0

|lnµ(λ)|
, (7.97)

in good agreement with the result (7.76) for the example of the sin(2πx) force.
In all, we have shown that the behaviour (7.94) of the effective force close to
the stationary point of the effective depinning problem governs the logarithmic
form of the velocity close to the transition for an arbitrary current-type additive
observable A.

Furthermore, if the additive observable A is the velocity of the particle, the
relation v(λ) = −µ′(λ) together with 7.97 leads to:

µ′(λ) ∼ 1

| lnµ(λ)|
for λ→ λ+

c . (7.98)

Close to the transition point, writing λ = λc + δλ, one can integrate this equation
and get:

µ(λ) ln δλ− µ(λ) = −δλ. (7.99)

so that at dominant order for δλ→ 0+

µ(λ) ∼ δλ

| ln δλ|
. (7.100)

which is compatible with the result (7.75) obtained for the example model F (x) =
sin(2πx).
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In conclusion, the effective depinning transition problem fully describes the
unexpected δλ/| ln δλ| behaviour [see Eq. (7.75)] of the expansion of µ(λ) near
the transition, that we computed exactly for the sine potential, but now for the
generic case when the effective force takes the form (7.94) close to its stationary
point.

7.4.3 Interpretation of the effective process in the path-integral for-
mulation

It is now interesting to come back to the path integral formulation introduced in
Section 7.2 to discuss the relationship between the effective non-equilibrium pro-
cess and the original process biased by λ. To simplify the discussion, we specialise
here to a conservative force F (x) = −U ′(x), so that we compare the effective
non-equilibrium process with a λ-biased equilibrium process 4. The aim of this
subsection is to determine the possible relation between the action of the effective
process and the biased action Sλτ [x(t)], in order to see how the trajectories cor-
responding to these actions compare, in the weak-noise limit where the results of
Subsection 7.4.2 (that we will use) are valid.

A Langevin process with the effective non-equilibrium force F eff(x),

ẋ(t) = F eff(x(t)) +
√
ε ζ(t) , (7.101)

leads to an Onsager–Machlup action which, in the small-noise limit, takes the form

S eff
τ [x(t)] =

∫ τ

0

1

2

(
ẋ− F eff(x)

)2
dt . (7.102)

Expanding the square in the action and using the expression (7.85) of the effective
force F eff(x), we end up with

S eff
τ [x(t)] =

∫ τ

0

{
1

2
ẋ2 +

1

2
F (x)2 + λh(x) + µ(λ)− ẋF eff(x)

}
dt . (7.103)

Then, Eqs. (7.85) and (7.86) imply that∫ τ

0
ẋF eff(x) dt = −

∫ τ

0
λẋg(x) dt (7.104)

so that the action of the non-equilibrium process reads

S eff
τ [x(t)] =

∫ τ

0

{
1

2
ẋ2 +

1

2
F (x)2 + λ

(
h(x) + ẋg(x)

)
+ µ(λ)

}
dt . (7.105)

4The generalisation to a non-conservative force field F (x) is straightforward and left to the
reader.
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Finally, from the expression (7.9) of the biased action Sλτ [x(t)], one obtains

Sλτ [x(t)] = S eff
τ [x(t)]− µ(λ)τ (7.106)

This means that the action Sλτ [x(t)] of the biased process identifies, up to a con-
stant, with the action S eff

τ [x(t)] of the effective non-equilibrium process. The dif-
ference −µ(λ)τ between these two actions has to be present since Sλτ [x(t)] de-
scribes a dynamics that does not preserve probability, while S eff

τ [x(t)] describes a
probability-preserving one. The remarkable feature of (7.106) is that this differ-
ence is independent of the trajectory, so that a simple normalisation Sλτ [x(t)] +
µ(λ)τ of the biased action allows one to interpret it as the action of a probability-
conserving process. This confirms that, in the weak-noise asymptotics we are
working in, the effective non-equilibrium process defined by the force field F eff(x)
describes the same statistics of trajectories as the original dynamics biased by λ
(after an adequate normalisation). Let us emphasise that in Eq. (7.106), the actions
S eff
τ [x(t)] and Sλτ [x(t)] compare the non-equilibrium dynamics characterised by a

force F eff(x) = −U ′eff(x)− λ, with a λ-biased dynamics in the original conserva-
tive force field F (x) = −U ′(x).

7.4.4 Equivalence between the effective driven process and the λ-bia-
sed process

We have shown above, using the path-integral formalism in the specific case of a
conservative force field F (x), that the effective driven process described by Weff

λ is
equivalent to the original λ-biased process described by Wλ. We provide here for
completeness a more general and formal proof of this equivalence in an operatorial
formalism, following Refs. [76, 276, 283]. The force field F (x) is here no longer
assumed to derive from a potential. We also refer the reader to Refs. [79, 259] for
a more mathematical description.

We start by defining a ‘λ-ensemble’ as a normalised average 〈 · 〉[0,τ ]
λ in the

biased dynamics, namely

〈O[x(t)]〉[0,τ ]
λ =

〈
O[x(t)] e−

λ
ε
Aτ
〉〈

e−
λ
ε
Aτ
〉 , (7.107)

where the observableO depends on the trajectory. We made explicit the time inter-
val on the l.h.s. because the statistical properties of the λ-ensemble at times close
to τ are different from those in the “bulk” of the time interval [0, τ ]. The numerator
of (7.107) corresponds to the biased process described by the operator Wλ while
the denominator represents the proper normalisation that ensures 〈 1 〉[0,τ ]

λ = 1.
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Let us now first focus on an observable O[x(t)] = O1(x(t1)) which depends
only on the position of the particle at a time t1 ∈ [0, τ ]. Denoting by Ô1 the
diagonal operator whose components are the values ofO1(x), one has by definition

〈
O1(x(t1))

〉[0,τ ]

λ
=
〈−|e(τ−t1)Wλ Ô1 e

t1Wλ |Pst〉
〈−|eτWλ |Pst〉

. (7.108)

Then, if both t1 and τ − t1 are large compared to the inverse of the gap of Wλ, that
is to say, if t1 is in the bulk of the time interval [0, τ ], one can use the asymptotic
behaviour (7.14) of etWλ , leading to〈

O1(x(t1))
〉[0,τ ]

λ
−→
τ→∞

〈L|Ô1|R〉 =

∫
O1(x)L(x)R(x) dx . (7.109)

In other words, as well known [79, 276, 283], the intermediate-times λ-ensemble
statistics is governed by the product of the left- and right-eigenvectors of Wλ.

Consider now the effective dynamics described by the operator Weff
λ . From

its definition (7.77), one sees that the left- and right-eigenvectors associated to its
largest eigenvalue 0 are respectively equal to 〈−| and |LR〉. In analogy with (7.14),
the large-time behaviour of the propagator eτW

eff
λ is thus given by

eτW
eff
λ ∼

τ→∞
|LR〉〈−| , (7.110)

where |LR〉 ≡ L̂|R〉. Hence, similarly to (7.109), one finds that the average
〈 · 〉[0,τ ]

eff of an observable for the effective dynamics is given in the steady state
by 〈

O1(x(t1))
〉[0,τ ]

eff −→
τ→∞

〈−|Ô1|LR〉 =

∫
O1(x)L(x)R(x) dx , (7.111)

which is equal to the corresponding λ-ensemble average (7.109). The statistical
properties of the biased dynamics, described by (7.107), are thus equal to those of
the effective dynamics at any time t1 in the bulk of [0, τ ].

To go further and understand the equivalence at a trajectorial level, one has
to consider more than one-time observables. Jack and Sollich [76] considered for
instance a time-discrete settings and worked at the level of trajectory probabili-
ties, showing that in the bulk of [0, τ ] there is an equivalence between the trajec-
tory probabilities of the effective process and of the (normalised) biased dynamics.
Equivalently, one can formulate this equivalence using multi-time correlation func-
tions of arbitrary observables (but now in continuous time) as follows. Using the
identity etW

eff
λ = e−t ϕε(λ) L̂ etWλL̂−1 inferred from the definition (7.77) of the
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effective operator, the previous reasoning can be readily extended to observables
of the form O[x(t)] = O1(x(t1))O2(x(t2)) . . .On(x(tn)) depending on the posi-
tion of the particle at different times t1, t2, . . ., tn which are all in the bulk of the
interval [0, τ ] (but which can be arbitrarily close to each other). One finds:〈
O1(x(t1)) . . .On(x(tn))

〉[0,τ ]

eff ∼
t1,τ→∞

〈
O1(x(t1)) . . .On(x(tn))

〉[0,τ ]

λ
(7.112)

= 〈−|One(tn−tn−1)Weff
λ . . . e(t2−t1)Weff

λ Ô1|LR〉 (7.113)

This corresponds to the notion of trajectorial asymptotic equivalence, developed
by Chetrite and Touchette [79, 259], between the biased ensemble (7.107) and the
effective dynamics.

7.5 Conclusions

In this work we have identified an effective probability-conserving dynamics turn-
ing the rare trajectories of a stochastic process into the typical histories of an
explicit modified dynamics, in the case of a particle diffusing in a periodic one-
dimensional generic force under a weak thermal noise. In this way, by using large-
deviation techniques, we have determined the form of the force that a particle
effectively withstands when conditioned to bear an atypical fluctuation for a long
duration. Interestingly, the resulting effective non-equilibrium process does not
only differ from the original λ-biased dynamics by the addition of a (λ-dependent)
uniform driving force, but the conservative part of the force is also “renormalised”
by the presence of λ, even in the simple case when the observable Aτ is the av-
erage current. Considering this result from a reversed perspective, we also learn
that a particle in a potential driven by a uniform non-conservative force cannot be
accurately represented by a λ-biased dynamics in the same potentials. This means
that a tentative statistical approach that would try to evaluate (by analogy with
equilibrium) mean values of physical observables by taking a flat average over
configurations with the same current (as defined by the λ-biased dynamics) would
be at best an approximation.

Along the way, we have analysed the fluctuations of time-integrated current-
type observables in a periodic system. These display a rich phenomenology asso-
ciated to the existence of dynamical phase transitions between a static fluctuating
phase, characterised by a flat sCGF, and a phase with time-periodic travelling tra-
jectories, associated to a sCGF being equal to the energy of a natural optimisation
problem — which takes the form of a conservative Hamiltonian dynamics. De-
termining analytically how a finite noise rounds the observed transition (see for
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instance Ref. [85]) is also an interesting open question. Furthermore, we have
described an alternative way to compute the sCGF without using the variational
techniques derived from the weak-noise analysis of the path-integral representa-
tion, that allowed us to show how the large-time and the weak-noise limits com-
mute.

The obtained results also open a direction of research to characterise fluctua-
tions in a given system by engineering a new system subjected to an additional
external force. Such an approach has been used in recent studies on adaptive
algorithms, based for instance on a feedback procedure to evaluate the effective
force [283–286], improving the computational efficiency. The weak-noise regime
has been seldom studied (it is in fact know to present specific difficulties [283]),
and the results we present in this chapter could help to understand large-time fluc-
tuations and their associated phenomenology both in experiments and simulations.
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Conclusions

Understanding the statistics of macroscopic fluctuations is a prominent challenge
in modern theoretical physics. Their capital importance relies on the main role
that fluctuations play out of equilibrium. Indeed, characterizing the probability
distribution of observing a given (typical or rare) event lead to a description of the
large deviation function, broadly considered a proper aspirant to act as marginal
of thermodynamic potential in nonequilibrium situations. The knowledge of such
a distribution and the associated LDF has been proved to be of special utility, pro-
viding very general results valid arbitrarily far from equilibrium . Furthermore, the
figure of the most probable trajectory exhibited by the system to sustain a given
fluctuation has been revealed as an essential element to describe many interesting
phenomena such as symmetry-breakings or dynamic phase transitions at a fluctu-
ating level. This situation has become even more relevant in last years, with (i)
the development of new mechanisms to determine the effective drift which should
apply to given system in such a way that the new effective dynamics reproduce as
typical events the rare trajectories of the original one, and (ii) the rise of nanoelec-
tronic technology where fluctuations considerably condition the behaviour of the
system.

In this Thesis we have focused on the study of fluctuations of space- and time-
integrated observables in different situations. In this way, under the framework of
the Macroscopic Fluctuation Theory and Large Deviation Theory, we have charac-
terized the properties of the probability distribution of fluctuations, their LDFs and
associated optimal paths. As a fruit of this research, we have obtained interesting
results which could help to clarify nonequilibrium behaviour, paving the way to
further investigation. In the following we will detail the different conclusions we
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can extract from this work.
Firstly, we have presented the main features of MFT and LDT, laying the foun-

dations for the subsequent fluctuations studies. Starting from a mesoscopic de-
scription of the system at hand, we have provided the mathematical scheme that
allows us to characterize the probability distribution of fluctuations. In particu-
lar, we have deduced that the problem of determining the LDF can be writen in
terms of a spatio-temporal variational problem, whose solutions are the optimal
trajectories leading to a fluctuation. Therefore, solving the Euler-Lagrange equa-
tions associated to such a problem is the main goal when studying the statistic of
macroscopic fluctuations.

In the context of d-dimensional driven diffusive systems, we have adressed
the problem of characterizing the structure of the most probable paths. Two main
results can be derived from this study:

1. The optimal current fields satisfy a general fundamental requirement which
strongly constraint their structure. In the particular, but frenquently ob-
served, case of considering a system that exhibits a principal direction (e.g.
a system subjected to a boundary gradient in one direction with periodic
boundary conditions in all the orthogonal components) this relation implies
a non-local behavior of the optimal current field and, consequently, on the
current LDF, a typical feature of nonequilibrium situations.

2. Previous observations of structured current vector fields perfectly fit into
this relation. Since this result does not rely on any boundary condition hy-
pothesis, it therefore provides a fulcrum for new conjectures shedding light
on the complex variational problem for the LDF in many general systems
arbitrarily far from equilibrium.

The development of the previous relation has served as a starting point for our
next study: the description of current fluctuations in a d-dimensional incompress-
ible quiescent fluid subjected to a boundary temperature gradient in one direction.
The main conclusions we have obtained from this research are the following:

3. We have computed the explicit expression for the most probable temperature
fields, analyzing their properties for different values of the desired space-
and time-integrated current, q, and intensity of the temperature boundary
gradient. In this way, we have realized that such optimal fields can be clas-
sified in families of universal profiles with the same mathematical structure,
leading to a remarkable fact: systems subjected to different boundary gra-
dients will exhibit the same optimal temperature curve if we look for an
appropiated current q (different in each of these system).
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4. Once the optimal temperature fields were determined, the corresponding
LDF controlling the heat current probability distribution has been obtained.
We have then observed that, while around the steady state deviations from
gaussianity are small and such a distribution can be approximated by a de-
formed Gaussian, its long tails behaviour are far more complex enhancing
the probability of observing rare events.

5. We have finally derived the analytic form of the spatio-temporal integrated
n-points correlation functions, with n ≤ 3, for the heat current field arbi-
trarily far from equilibrium, as well some interesting relations between low-
order cumulants of the current distribution, which could be tested in further
experimental investigations.

Thereupon, we have focused on one of the recently considered most interesting
phenomena in nonequilibrium physics: the dynamic phase transitions. Indeed, we
have analyzed the existence of DPTs in the current fluctuations for an anisotropic
2-dimensional driven diffusive system, arriving to the following results:

6. We have found a dynamic phase transition associated to the breaking of a
spatiotemporal translation symmetry for large fluctuations of the current.
This DPT separates an constant and structureless fluctuation phase with
Gaussian current statistics and coherent jammed states in the form of one
dimensional traveling waves with non-Gaussian distribution of currents, re-
vealing the emergency of order for rare fluctuations with self-organized
structures enhancing their probability of occur.

7. In the particular case of the weakly asymmetric exclussion process (WASEP),
we have characterized such a DPT both from a mesoscopic level under the
MFT framework and from a microscopic level by using extensive cloning
Monte Carlo simulations, obtaining an outstanding agreement between both
descriptions. Interestingly, the sCGF presents a non-analiticity in its sec-
ond derivative at the transition, implying that the DPT is of 2nd-order. This
outcome has been corroborated microscopically by defining a novel order
parameter which vanishes for the structureless phase and increases upon
crossing the transition point.

8. Lastly, fruit of the interplay between the external drift, anistropy and high-
dimensionality (d > 1), a rich fluctuation phase diagram for the WASEP has
been derived. Besides the previously mentioned 2nd-order dynamic phase
transition, an interesting 1st-order DPT separating different traveling-wave
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phases has been discovered, unveiling the existence of regions where such
jammed states coexists.

In order to explore situations beyond the MFT, we have then studied the effects
of fluctuations in dissipative systems with no conservation laws. In particular, we
have extended the MFT techniques to characterize the distribution of fluctuations
of the space- and time-integrated magnetization in the one-dimensional periodic
stochastic Landau-Ginzburg model, with a dynamics given by the Hohenberg-Hal-
perin model A. The following conclusions have been extracted from such analysis.

9. We have provided strong evidences of the existence of a dynamic phase
transition for low values of the magnetization by studying the stability of
uniform magnetization fields against spatio-temporal pertubations. This out-
come holds deep implications in our understanding of nonequilibrium sys-
tems, constituing a new step forward on the discovery of DPTs in one-di-
mensional systems at a fluctuating level. Interestingly, the dynamic phase
transition only takes place in situations in which the Landau-Ginzburg po-
tential exhibits a double well structure.

10. We have found a new exotic dynamic phase that this model could exhibit be-
yond the transition. Indeed, to sustain rare fluctuations of the magnetization
the system adopts a homogeneus structure which changes periodically with
time. We have characterized such a solution, showing that the corresponding
LDF is indeed lower than the one associated to uniform optimal fields.

Finaly, we have concentrated on the study of the effective probability-conserving
dynamics under which rare events of the original dynamics become typical. The
system at hand has been a single particle diffusing in a periodic one-dimensional
generic force under the action of a weak thermal noise. We next detail the conclu-
sions we have derived.

11. We have determined the effective dynamics turning rare trajectories into typ-
ical when studying fluctuations of general time-integrated additive observ-
ables, identifying the effective force under which the particle is conditioned
to exhibit such an atypical events. This new dynamics has been proved to
be not just a slightly modification of the original one by the application of a
non-conservative constant drift, but it changes in a far more complex way.

12. For the case when the observable is of the time-integrated current-type, we
have found that the system exhibits a dynamic phase transition between a
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static fluctuation phase with a flat sCGF and time-periodic propagative tra-
jectory presenting a more complex sCGF obtained as a solution of an op-
timisation problem. Interestingly, the form of the effective force near the
transition reveals the highly non-trivial nature of the DPT, very different
from standard depinning transitions.

13. As an interesting by-product, we have derived an alternative way to compute
the sCGF for fluctuations of general time-integrated additive observables
without the need to solve the complex variational problem derived from path
integral formulation. This result unveils a relevant fact: in these situations,
both weak noise and large time limits commute.

147





Appendix A

Optimal temperature field

In this Appendix we determine the analytical expression for the most probable tem-
perature field. Moreover, we will exhaustively analyze its mathematical properties
in order to better characterize the statistics of the heat current in our incompress-
ible quiescent model fluid. For our particular model fluid, the optimal temperature
field associated to a space$time-averaged heat current fluctuation q is the solution
of the following differential equation (see main text)

dTq
dx

= 2s

[
q2
x +KT 2

q −
T 4
q

A2
J2
⊥

]1/2

, (A.1)

with s = ±1 and where, for simplicity, we have fixed L = 1 without loss of
generality. This expression can be rewritten in terms of the extrema T± of the
optimal temperature field, i.e. the zeros of the quartic polynomial q2

x + KT 2
q −

T 4
q

A2J
2
⊥, resulting in

dTq
dx

= 2s|qx|
[
(1− η+T

2
q)(1 + η−T

2
q)
]1/2

, (A.2)

with the definition η± = ±1/T 2
±, such that

(η+η−)1/2 =
|q⊥|
A|qx|

, (A.3)

and we consider one of the η’s constants fixed by boundary conditions. We can
integrate Eq. (A.2) between two arbitrary spatial points (xA, xB) such that the
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slope sign s is conserved in the interval∫ Tq(xB)

Tq(xA)
dTq

[
(1− η+T

2
q)(1 + η−T

2
q)
]−1/2

= 2s|qx|(xB − xA) . (A.4)

It is now natural to transform eq. (A.4) into a Jacobi’s integral of the first kind
F (θ; k) [234, 235] by doing the change of variables cos θ =

√
η+Tq, leading to

2sQxT1
√
η+√

1− k2
(xB − xA) = F (θ(xA); k)− F (θ(xB); k) , (A.5)

where

F (θ; k) =

∫ θ

0
dθ̄

1

(1− k2 sin2 θ̄)1/2
, (A.6)

and where we have defined the modulas via k2 = (1 + η+/η−)−1, and Qx =
|qx|/T1. We can invert Eq. (A.5) by using the relation

cos θ = cn(F (θ; k); k) (A.7)

which defines the cosine-amplitude Jacobi function cn(u; k) of modulus k [234,
235], resulting in

τ(xB) =
1

T1
√
η+
cn

(
−F (θ(xA); k) +

2sQxT1
√
η+√

1− k2
(xB − xA); k

)
, (A.8)

with τq(x) = Tq(x)/T1. Since the cn(u; k) function appearing in Eq. (A.8) has
a positive maximum and a negative minimum, and taking into account that τq(x)
is defined positive, the optimal temperature field presents at most two possible
behaviors, namely: (i) a monotonous decreasing profile or (ii) a single-maximum
profile. We analyze next each case separatedly.

A.1 Monotonous profile

In this case, assuming without loss of generality that T0 > T1, we have that s = −1
for all x ∈ [0, 1]. Therefore, considering Eq. (A.8) with xA = 0 and xB = x, the
optimal temperature field takes the form

τq(x) =
cn
[
F0 + (F1 − F0)x; k

]
cn(F1; k)

, (A.9)
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with F0,1 ≥ 0 two constants. In order to completely compute the temperature field
Tq(x) we need to fix the values of F0, F1 and k through boundary conditions and
the clausure equation

A =

∫ 1

0
dxσ[Tq(x)] . (A.10)

Indeed, taking into account the boundary conditions, both Eq. (A.5) and the con-
straint τ(0) ≡ τ0 = T0/T1 lead to

Qx =

√
1− k2(F1 − F0)

2 cn(F1; k)
(A.11)

τ0 =
cn(F0; k)

cn(F1; k)
, (A.12)

respectively, and from (A.10) we obtain

Q⊥ =
E1 − E0 − (1− k2)(F1 − F0)

2k cn(F1; k)
, (A.13)

with Q⊥ = |q⊥|/T1, and where

E0,1 = E(am(F0,1; k); k) , (A.14)

being am(u; k) the amplitude Jacobi function and E(θ; k) the Jacobi integral of
the second kind [234, 235]. Remarkably, as a consequence of assuming τ0 ≥ 1,
we find that F0 ∈ [0,K(k)], F1 ∈ [cn−1(τ−1

0 ; k),K(k)] with F1 ≥ F0 and K
the Jacobi complete elliptic integral of the first kind (using the notation used by
Gradshteyn & Ryzhik [234]).

A.2 Single-maximum profile

In this case s = +1 for x ∈ [0, x∗] while s = −1 for x ∈ [x∗, 1], being x∗ the
maximum location where dτq(x)/dx|x=x∗ = 0. This maximum position can be
obtained from Eq.(A.8) by taking xA = 0, xB = x∗ and forcing the argument of
cn(u; k) to be equal to zero, arrivieng at

x∗ =
F0

√
1− k2

2QxT1
√
η+

. (A.15)

In this way, the optimal temperature profile can be determined by considering Eq.
(A.8) both for x > x∗ and x < x∗, resulting in

τq(x) =
cn
[
− F0 + (F1 + F0)x; k

]
cn(F1; k)

, (A.16)
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where the values of F0, F1 ≥ 0 and k are fixed again by the boundary conditions
and the clausure equation (A.10), leading again to Eq. (A.12) and

Qx =

√
1− k2(F1 + F0)

2 cn(F1; k)
(A.17)

Q⊥ =
E1 + E0 − (1− k2)(F1 + F0)

2k cn(F1; k)
. (A.18)

Interestingly, Eqs.(A.16), (A.17) and (A.18) corresponding to the single-maximum
case map onto Eqs. (A.9), (A.11) and (A.13) corresponding to the monotonous be-
havior by changing F0 → −F0; this allows us to write both solutions in an unified
way. In particular, from now on, given Qx, Q⊥ and τ0 fixed by boundary condi-
tions and Eq. (A.10), the values of F0, F1 and k are determined from equations
(A.12), (A.17) and (A.18) with F0 ∈ [−K(k),K(k)], F1 ∈ [cn−1(τ−1

0 ; k),K(k)]
and k ∈ [0, 1] which includes both posibilities: F0 < 0 for the monotonous case
and F0 > 0 for the single-maximum case.

A.3 Convexity behavior

Furthermore, once the solution (A.16) has been determined, we can now charac-
terize the convexity behavior of the optimal termperature field as a function of the
parameters (τ0, Qx, Q⊥). Indeed, since the second derivative of cn(u; k) takes the
form d2cn(u; k)/du2 = −cn(u; k)(1−2k2 +2k2 cn(u; k)), there are no inflection
points for k2 < 1/2 and the profile is always concave in this regime. For k2 > 1/2
we observe that, for a fixed value of τ0, both (Qx, Q⊥) are parametrized by (F0, k),
leading to the following regions with different number of inflection points. First,
for τ0 ≤

√
2 we have

• If F0 > F
(1)
0 (k) and k2 ≥ 1/2, with F (1)

0 (k) = cn−1(B(k); k) and B(k) =
((2k2−1)/(2k2))1/2, the optimal temperature profile presents two inflection
points located at

x1,2 = (F0 ± F (1)
0 (k))/(F0 + cn−1(1/τ0; k)) . (A.19)

• If F (2)
0 ≤ |F0| ≤ F

(1)
0 and k2 ≥ 1/2, with F (2)

0 (k) = cn−1(τ0B(k); k), the
optimal profile presents only one inflection point located at x1.

On the other hand, for τ0 ≥
√

2

• If F0 > F
(1)
0 (k) and k2 ≥ 1/2, we find that the profiles present two inflec-

tion points at x1 and x2.
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• If F (2)
0 ≤ |F0| ≤ F

(1)
0 and 1/2 ≤ k2 ≤ τ2

0 /(2(τ2
0 − 1)), the optimal

temperature profile has only one inflection point located at x1.

• If 0 ≤ |F0| ≤ F
(1)
0 and 1 ≥ k2 ≥ τ2

0 /(2(τ2
0 − 1)), the optimal profile

presents again only one inflection point located at x1.

Finally, outside these regions, no inflection points appear for any value of the
parameters.
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Resumen

1 Introducción

1.1 Antecedentes

Desentrañar los misterios de la Naturaleza ha sido siempre uno de los principa-
les desafíos de la humanidad. A lo largo de los siglos, hemos intentado resolver
preguntas como: ¿De qué están compuestas las diferentes sustancias?, ¿por qué
llueve?, ¿por qué el sol sale y se pone todos los días? La búsqueda de respuestas
para esas cuestiones fundamentales abre la puerta a un nuevo dilema interesante: a
la luz de esta nueva información, ¿es posible anticipar lo que va a ocurrir? En otras
palabras, ¿somos capaces de detectar patrones generales a partir de estas respuestas
y usarlas para predecir un comportamiento futuro? Estos elementos constituyen los
pilares en los cuales se sustenta la física. En líneas generales, la física persigue en-
tender los fenómenos naturales caracterizando sus causas y deduciendo principios
básicos y teorías que permiten hacer predicciones cuantitativas sobre observacio-
nes futuras1. En este sentido, la física ocupa un lugar especial entre los diferentes
campos que componen las Ciencias Naturales. En palabras de Richard P. Feynman:
"La física es la más fundamental e inclusiva de todas las ciencias [...]. Estudiantes
de todos los campos se encuentran estudiando Física dado el papel fundamental
que juega en todos los fenómenos" [1]. En efecto, la física, como ciencia que pre-
tende obtener las leyes generales que gobiernan la Naturaleza, posee un amplio

1No pretendemos establecer en este texto una definición formal de lo que es la física, sino más
bien señalar, desde el punto de vista del autor, algunos de los objetivos más importantes de esta
ciencia.
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grado de aplicabilidad en Química, Biología, Geología e incluso en las Ciencias
Sociales.

El espectro de fenómenos descritos por la física abarca desde los sistemas más
pequeños (por ejemplo, las partículas que constituyen la materia y la radiación)
hasta los más grandes (galaxias, cúmulos de galaxias, supercúmulos...). Cuando
lidiamos con la ambiciosa tarea de entender el universo, nos damos cuenta de que
la naturaleza presenta una estructura jerárquica. La realidad se divide en diferentes
niveles de descripción, cada uno de los cuales está definido por unas escalas de
longitud y tiempo típicas. Por ejemplo, imaginemos un litro de agua dentro de un
vaso Dewar. Las escalas de longitud y tiempo que podemos medir a simple vista
en un laboratorio definen el nivel macroscópico. Sin embargo, es bien conocido
que el litro de agua se compone por un número de moléculas H2O del orden del
número de Avogadro, NA. Estas escalas de longitud y tiempo mucho más pequeñas
definen un nuevo nivel de descripción llamado nivel microscópico2. Al estudiar las
propiedades de cada nivel por separado, nos damos cuenta de que éstos poseen
unos observables propios que los caracterizan, que a su vez satisfacen ciertas re-
laciones. Esas leyes gobiernan el comportamiento de cada estructura jerárquica.
En el ejemplo del agua, el nivel macroscópico está completamente caracterizado
por magnitudes tales como la temperatura, el volumen, la presión, etc. Asimismo,
existe una teoría macroscópica que establece relaciones entre esos observables: la
Termodinámica. Por otra parte, cuando pensamos en las moléculas que componen
el agua, su comportamiento es descrito por su posición, velocidad, energía, etc.,
y las leyes que gobiernan su evolución están definidas por la Mecánica Clásica o
Cuántica. Algunos ejemplos de esta división jerárquica se muestran en la Figura 1.

La clara separación entre diferentes escalas lleva a una cuestión fundamental:
si todos los niveles de descripción forman parte de la misma realidad, ¿cuál es la
conexión entre los niveles microscópico y macroscópico? El campo de estudio que
intenta encontrar una solución a este dilema es la Mecánica Estadística, cuyo prin-
cipal objetivo es describir las propiedades macroscópicas de un sistema a partir de
las leyes que gobiernan el mundo microscópico. Pensemos de nuevo en el ejemplo
del agua en el vaso Dewar. Por simplicidad, asumamos que las leyes que descri-
ben el comportamiento de las moléculas de agua vienen dadas por la Mecánica
Clásica. De esta forma, las ecuaciones que definen la dinámica de cada partícula
son deterministas, es decir, su evolución está completamente determinada una vez

2Esta división no es única y representa una versión simplificada de la realidad. Ciertamente, las
moléculas de H2O están compuestas por diferentes partículas subatómicas tales como electrones,
quarks, etc., que poseen sus respectivas escalas. Es más, el litro de agua podría ser simplemente
una pequeña fracción del Océano Atlántico, que a su vez presenta sus propias escalas de longitud y
tiempo típicas.
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Figura 1: Ejemplos de distintos sistemas vistos a diferentes escalas. (a) El sulfato de cobre(II)
es un cristal de estructura triclínica formada por átomos de Cu, S y O. (b) Cada célula humana
contiene, dentro de su núcleo, 46 cromosomas de un tamaño del orden de 10−4 − 10−6 m. En los
cromosomas, el ADN se encuentra en una estructura enrollada, sin embargo si se estirara fuera de
la célula, el ADN formaría un hilo muy delgado de aproximadamente 3 metros de largo [2]. (c) El
cerebro humano posee un volumen del orden de 103 m3 y está compuesto de alrededor de 1010

neuronas, cuya longitud varía en el intervalo 10−6 − 10−4 m. [3]. (d) Una bandada de pájaros y
un único estornino. (e) La galaxia espiral NGC 6984 es una de las 1011 galaxias en el universo
observable, y cada una de esas galaxias se estima que contiene unas 1011 estrellas [4]. (f) El número
de usuarios activos en la mayor red social es del orden de 1010. Imágenes obtenidas de las siguientes
fuentes: Wikimedia Commons, the free media repository (a, b, c), ESA/Hubble (e), Facebook (f),
Graphodatsky et al., Molecular Cytogenetics 2011, 4-22 (b), Pixabay (b, d), COBBS (Universidad
de la Sapienza, Roma) (d).

que se fijan las condiciones iniciales de cada molécula. Sin embargo, aunque este
sistema es formalmente resoluble, encontrar una solución a NA ecuaciones dife-
renciales acopladas es, en general, impracticable. Es más, resulta imposible fijar
y determinar experimentalmente NA condiciones iniciales. Como consecuencia, la
existencia de tal cantidad de partículas nos conduce a un tratamiento estadístico
del problema. La Mecánica Estadística trata con los numerosos grados de liber-
tad microscópicos con el objetivo de obtener leyes estadísticas que nos permitan
entender el complejo comportamiento macroscópico. Bajo este marco, podemos
determinar la media o valor promedio de un observable macroscópico, que corres-
ponde al valor típico que obtendremos al medir en el laboratorio3. Sin embargo,

3Este no será siempre el caso. Un sistema que satisface esta condición se llama sistema ergódico.
Probar que un sistema es ergódico no es tarea fácil en absoluto, y solo se ha conseguido en unos pocos
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podemos encontrar desviaciones respecto al valor medio de dicha magnitud como
consecuencia de su naturaleza estadística. En este caso, se dice que el valor del
observable fluctúa [7–9]. Por tanto, las fluctuaciones se entienden como reminis-
cencias microscópicas en el mundo macroscópico. El estudio de las fluctuaciones
es un objeto fundamental en la física moderna, y constituye el tema central de esta
Tesis.

En 1905, Albert Einstein introdujo un formalismo para describir el movimien-
to browniano, esto es, el movimiento aleatorio de una partícula suspendida en un
fluido, basado en una descripción estadística del fenómeno [10–13]. Este traba-
jo es ampliamente considerado una de las primeras evidencias de la determinante
influencia de las fluctuaciones. La aleatoriedad en el movimiento de la partícu-
la emerge de sus colisiones con las moléculas que componen el fluido. De esta
forma, Einstein fue capaz de determinar el número de Avogadro y, como conse-
cuencia, el tamaño de las moléculas del fluido mediante el análisis de la estadística
de las fluctuaciones del desplazamiento de la partícula. Podemos encontrar mu-
chos otros ejemplos en los que destaca la importancia de las fluctuaciones, tales
como los fenómenos críticos, hidrodinámica o incluso cosmología, donde el estu-
dio de las fluctuaciones de la radiación de fondo de microondas ha proporcionado
información crucial para entender el origen del universo.

1.2 ¿Por qué estudiar fluctuaciones macroscópicas?

La probabilidad de observar una fluctuación dada, normalmente, decae con el nú-
mero de partículas del sistema. Como consecuencia de ello, medir una desviación
del valor promedio de una magnitud macroscópica en un laboratorio es, en gene-
ral, poco probable. La situación es incluso más dramática si estamos interesados en
grandes desviaciones. Para ilustrar este hecho, imaginemos que nos encontramos
aislados en una habitación y, en un momento dado, todo el aire del lugar se conden-
sa en la esquina superior de la estancia. Este evento es un ejemplo paradigmático
de lo que se entiende por una gran fluctuación. Aunque este evento raro no está
prohibido por la física, la probabilidad de que tenga lugar es tan pequeña que en
la práctica, por suerte, nunca ocurrirá. En la naturaleza, existen varios fenómenos
conocidos por ser fruto de tal comportamiento, lo que generalmente tiene graves
consecuencias (ver Figura 2). Por tanto, la cuestión que surge de manera natural
es: ¿por qué nos interesamos en el estudio de fenómenos que rara vez suceden? O
reformulando la pregunta, ¿por qué la caracterización de fluctuaciones arbitraria-
mente grandes tiene especial relevancia en física? En las siguientes líneas se van a

casos particulares (véase, por ejemplo, el sistema de billares de Sinai [5, 6]). En la mayoría de los
casos, se asume que esta propiedad se satisface, suposición que se conoce como Hipótesis Ergódica.
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Figura 2: Ola gigante en Avila Bay (California), un ejemplo paradigmático de grandes fluctua-
ciones presentes en la Naturaleza. Estas olas pueden alcanzar los 30 metros de altura. Su rareza e
imprevisibilidad las convierte en un fenómeno extremadamente peligroso.

proporcionar tres argumentos de peso que sustentan la importancia de analizar la
estadística de grandes desviaciones.

Dilema del no equilibrio. Describir el comportamiento macroscópico en tér-
minos de la dinámica microscópica es una ardua tarea, suponiendo aún un desafío
en la mayoría de los casos. Imaginemos un sistema aislado que no presenta his-
téresis. Bajo estas condiciones, tras transcurrir un tiempo transitorio, el sistema
se asentará en un estado en el que las variables macroscópicas no cambien con el
tiempo, conocido como estado de equilibrio termodinámico. En lo que se refiere
a sistemas en equilibrio, la Mecánica Estadística ha alcanzado un gran éxito, pro-
porcionando una teoría general capaz de conectar ambos niveles de descripción
(microscópico y macroscópico): la teoría de colectividades. En este marco teó-
rico, se pueden construir y relacionar las diferentes magnitudes termodinámicas
macroscópicas (entropía, energía libre, temperatura, presión, ...) desde el conoci-
miento de las leyes de la Mecánica Clásica (o Cuántica) que controlan la evolución
de los componentes microscópicos. De esta manera, postulando que cada estado
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microscópico que da lugar a un estado macroscópico de equilibrio dado tiene a
priori la misma probabilidad de ocurrir (llamado postulado de igual probabilidad
a priori), la Mecánica Estadística establece que la entropía (observable macros-
cópico) puede ser relacionada con el número de microestados Ω(U,∆U ;V,N)
compatibles con macroestados de energía E ∈ [U,U + ∆U ] (con ∆U << U ),
volumen V y número de partículas N , de la forma:

S(U, V,N) = kB ln Ω(U,∆U ;V,N) , (20)

donde kB es la constante de Boltzmann. La relación entre estas dos magnitudes
fue establecida por primera vez por Ludwig Boltzmann en 1875 [14], y más tarde
formulada como (20) por Max Planck a principios de 1900 [8]. El número de mi-
croestados Ω es el principal elemento de la colectividad microcanónica, en la cual
se describe un sistema caracterizado por E ∈ [U,U + ∆U ], V y N . Sin embar-
go, es complicado fijar experimentalmente la energía del sistema. Por el contrario,
usando un baño térmico, podemos controlar su temperatura, dejando fluctuar la
energía. Por lo tanto, se puede definir la colectividad canónica describiendo un
sistema caracterizado por T , V y N . La función de densidad de probabilidad de
observar un estado microscópico α está ahora dada por la distribución de Gibbs:

ρ(α) =
1

Z(T, V,N)
e−βE(α) , (21)

donde β = (kBT )−1, E(α) es la energía asociada al microestado α y Z(T, V,N)
es la función de partición, objeto central de la colectividad canónica. Esta colec-
tividad proporciona una definición de la energía libre, también llamado potencial
de Helmhotz, F (T, V,N), en términos de la función de partición, a saber:

F (T, V,N) = −β−1 lnZ(T, V,N) , (22)

Además, se puede escribir Ω en términos de Z a través de una relación similar a
una transformada de Laplace, mientras que la entropía y la energía libre pueden
relacionarse, tal y como predice la Termodinámica, por la transformada de Legen-
dre:

F = U − TS . (23)

En el contexto de la Mecánica Estadística del equilibrio, las fluctuaciones juegan
un papel destacado, ya que, caracterizando su estadística se pueden calcular los
potenciales termodinámicos más relevantes. Una relación particularmente intere-
sante está dada por la fórmula de Einstein [7, 8, 15] la cual permite escribir las
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fluctuaciones de la energía E del sistema en términos de una magnitud macroscó-
pica medible, la capacidad calorífica a volumen constante CV =

(
∂U
∂T

)
V,N

:

〈∆E〉 ≡ 〈E2〉 − 〈E〉2 = kBT
2CV , (24)

donde U = 〈E〉 y 〈·〉 indica el valor medio de la magnitud correspondiente sobre
la distribución canónica (Gibbs).

Considerar que un sistema real está en equilibrio termodinámico se ha con-
vertido en una excelente aproximación en muchas situaciones, donde la Mecánica
Estadística ha alcanzado predicciones sobresalientes. Sin embargo, en la natura-
leza no existen sistemas reales en equilibrio (los cuales requerirían, por ejemplo,
materiales aislantes perfectos). Es más, la mayoría de los fenómenos que encon-
tramos en la naturaleza están fuera del equilibrio. Pensemos en nosotros mismos.
Nuestro cerebro está compuesto por miles de millones de neuronas en continua ac-
tividad, enviando y recibiendo señales eléctricas, lo que conduce a una estructura
altamente compleja que trabaja lejos del equilibrio. En nuestro corazón entra un
flujo sanguíneo que luego es bombeado a todo el cuerpo a través de un proceso pu-
ramente fuera del equilibrio, en el que diferentes partes se contraen y se expanden
de manera no trivial. Otros mecanismos como la respiración, la división celular o
la replicación del ADN son algunos ejemplos más de procesos fuera del equili-
brio que tienen lugar en nuestro cuerpo. Además de en los organismos vivos, en la
naturaleza abundan sistemas que operan lejos del equilibrio en todas las escalas.
Por ejemplo, cristales líquidos bajo la acción de campos eléctricos o magnéticos
externos, los cuales se encuentran en membranas celulares o pantallas LCD; los
mares y los océanos donde los flujos complejos y turbulentos son paradigmas de
su comportamiento; o las estrellas, las cuales presentan altos gradientes de pre-
sión y temperatura, fenómenos de convección, etc. En general, se trata de sistemas
abiertos o con histéresis, que a menudo se encuentran bajo la acción de fuerzas
externas o fuentes de ruido, sujetos a flujos de masa o energía. Una situación in-
teresante surge cuando el sistema evoluciona a un estado en el que sus variables
macroscópicas permanecen constantes en el tiempo. Decimos entonces que el sis-
tema se encuentra en un estado estacionario fuera del equilibrio. Dichos estados
son los más similares a las situaciones de estados de equilibrio, siendo el principal
objeto de estudio en la mayoría de los trabajos característicos de los fenómenos
del no equilibrio.

A pesar de su ubicuidad, no existe una teoría general que sea capaz de predecir
el comportamiento macroscópico a partir de las leyes microscópicas en sistemas le-
jos del equilibrio. El papel crucial desempeñado por la dinámica microscópica fue-
ra del equilibrio dificulta el desarrollo de un esquema que conecte ambos niveles de
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descripción. Como consecuencia de ello, las trayectorias o historias del sistema,
es decir, las secuencias de estados seguidas por el sistema durante su evolución,
emergen como elemento central para caracterizar las propiedades de no equilibrio.
En general, tales trayectorias vienen descritas por ecuaciones fenomenológicas que
se obtienen al usar aproximaciones ad hoc en cada situación particular, como por
ejemplo las ecuaciones de Langevin, Fokker-Planck o Navier-Stokes. Además, de
manera similar a lo que sucede en equilibrio, se pueden encontrar fenómenos rela-
cionados con la ruptura de una simetría, auto-organización, coexistencia de fases,
etc., lejos del equilibrio en el espacio de trayectorias. Las inestabilidades detrás
de estos procesos se conocen como transiciones de fase dinámicas (DPTs, por sus
siglas en inglés), las cuales separan regiones donde las historias que caracterizan
la evolución del sistema presentan diferentes propiedades y estructuras.

Hoy en día, inspirados por la fórmula de Einstein y por la destacada relevancia
de las fluctuaciones en el equilibrio, se espera que una comprensión más profunda
de las fluctuaciones macroscópicas fuera del equilibrio pueda rellenar en parte
la carencia de una teoría general que vincule ambos niveles de descripción [16–
19]. Para respaldar esta idea, en las siguientes líneas describimos brevemente las
principales características de la Teoría de Grandes Desviaciones (LDT, por sus
siglas en inglés), el marco matemático que describe el comportamiento de grandes
fluctuaciones [19–26] y su conexión con la Mecánica Estadística del equilibrio. La
LDT se basa en un principio estadístico fundamental, piedra angular del estudio
de los eventos raros. Sea An una variable aleatoria dependiente del parámetro n,
y sea p(An = a) la probabilidad de tener un valor dado An = a. Decimos que
p(An = a) satisface un principio de grandes desviaciones si el límite:

G(a) = ĺım
n→∞

{
− 1

n
ln p(An = a)

}
(25)

existe [19]. La función G(a) es conocida como Función de las Grandes Desvia-
ciones (LDF, por sus siglas en inglés), elemento central de la LDT que caracteriza
la estadística de las fluctuaciones. A partir de la Ec. (25), se puede escribir:

p(An = a) � e−nG(a) , (26)

donde “�” representa “equivalencia logarítmica asintótica”. La LDF es una fun-
ción positiva G(a) ≥ 0 ∀a. Suponiendo que G(a) posee un único cero y un mí-
nimo4, puede demostrarse que éste se encuentra en a∗ = ĺımn→∞〈An〉r, denomi-
nado valor típico o esperado, donde 〈·〉r representa el promedio sobre ruido. Es

4Este será el caso general en esta Tesis.
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importante remarcar que p(An = a∗) no decae exponencialmente, y por tanto la
LDF indica cómo la probabilidad p(An = a) se estrecha alrededor de a∗ cuando
n → ∞, la cual no es más que una expresión de la Ley de Grandes Números.
Por último, dentro de este esquema es posible estudiar fluctuaciones alrededor del
valor típico a∗ expandiendo la LDF:

G(a) ≈ 1

2
G′′(a∗)(a− a∗)2 +O((a− a∗)3) , (27)

la cual en el primer orden distinto de cero lleva, como era de esperar, a fluctuacio-
nes de tipo gaussiano:

p(An = a) � e−n
1
2
G′′(a∗)(a−a∗)2

. (28)

Por tanto, la Teoría de Grandes Desviaciones puede ser considerada como una ge-
neralización del Teorema Central del Límite (CLT, por sus siglas en inglés), ya
que proporciona información acerca de lo que ocurre tanto cerca del valor espe-
rado (donde la LDT y el CLT concuerdan), como para grandes desviaciones de
a∗, donde la aproximación gaussiana ya no es válida. Recomendamos al lector
consultar la publicación de Touchette [19], donde se estudian en profundidad las
características de la Teoría de Grandes Desviaciones.

La teoría de colectividades, núcleo de la Mecánica Estadística del equilibrio, se
puede entender en términos de la Teoría de Grandes Desviaciones [19, 24, 25, 27–
36]. Vamos a mostrar de forma breve esta correspondencia. En efecto, si la variable
aleatoria, cuyas fluctuaciones van a ser estudiadas, es la energía del sistema EN , a
partir de (25) se puede definir5:

G(e) = ĺım
N→∞

{
− 1

N
lnP (eN ∈ [e, e+ de])

}
, (29)

donde N es, de nuevo, el número de partículas, eN = EN/N es la energía por
partícula (o energía molar) y P (eN ∈ [e, e + de]) es la probabilidad de observar
una energía eN ∈ [e, e+ de]. Como dicha probabilidad es proporcional al número
de microestados Ω(e, de; v) compatible con eN ∈ [e, e + de] (siendo v=V/N),
puede demostrarse que [19]:

G(e) = ĺım
N→∞

{
− 1

N
ln Ω(e, de; v)

}
. (30)

5Esto puede demostrarse de forma trivial (ver [19]) usando P (EN ∈ [E,E+ dE]) = p(EN =
E)dE
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Escribiendo G(e) = −s(e)/kB y de acuerdo con las propiedades de la LDF pre-
viamente mencionadas, nos damos cuenta de que ésta última expresión no es más
que (20), siendo s = S/N la entropía por partícula. Por tanto, la LDF para la
energía se corresponde con la entropía en sistemas en equilibrio. Puede definirse
la Función Generadora de Cumulantes escalada (sCGF, por sus siglas en inglés)
de la distribución P (eN ∈ [e, e+ de]) como:

µ(T ) = ĺım
N→∞

{
− 1

N
lnZN (T )

}
, (31)

siendo T la temperatura y ZN (T ) = 〈e−nβeN 〉 la función de partición (cabe des-
tacar que, en este caso, 〈·〉 representa el promedio sobre P (eN ∈ [e, e + de]).
Definiendo µ(T ) = βf(T ), de nuevo nos damos cuenta de que la ecuación pre-
via equivale a (22) con f = F/N la energía libre por partícula. Por tanto, en
equilibrio, la sCGF se corresponde con la energía libre. Además, de acuerdo con
el Teorema de Gärtner-Ellis [19, 24, 37], G y µ están relacionadas a través de la
transformada de Legendre-Fenchel:

s(e) = ı́nf
T

{
e− f(T )

T

}
, (32)

en completa analogía con (23). Finalmente, nos centramos en las fluctuaciones
alrededor del valor medio u = 〈eN 〉, que según (28), conducen a:

〈e2
N 〉 − 〈eN 〉2 = −kBs

′′(u) . (33)

Escribiend CV = −N 1
T 2

(
∂2s(u,v)
∂u2

)
v
, nos damos cuenta que la expresión anterior

no es más que la fórmula de Einstein (24).
La conexión entre la teoría de colectividades en equilibrio y la Teoría de Gran-

des Desviaciones abre nuevos caminos para profundizar en el estudio de situa-
ciones fuera del equilibrio. La metodología de la LDT proporciona un esquema
robusto del cual se podrían derivar predicciones generales lejos del equilibrio. En
el núcleo de este marco teórico, las funciones de grandes desviaciones podrían ser
consideradas, en una extensión natural, como análogos del no equilibrio de los po-
tenciales termodinámicos, estableciendo un puente entre los niveles de descripción
microscópico y macroscópico. Adicionalmente, se espera que la LDF muestre una
estructura mucho más compleja fuera del equilibrio, conteniendo información cla-
ve sobre propiedades de no equilibrio6. Sin embargo, estas ideas no están exentas

6Por ejemplo, la LDF será en general no local, hecho que refleja la existencia de correlaciones
de largo alcance características de situaciones lejos del equilibrio.
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de problemas. Una de las principales dificultades es la identificación de observa-
bles macroscópicos relevantes. La ausencia de una teoría como la Termodinámica
fuera del equilibrio conduce a una brecha en la definición correcta (si existe) de
las magnitudes que caracterizan completamente el comportamiento de un sistema
macroscópico (elemento esencial en el desarrollo de la teoría de colectividades en
equilibrio). Para aquellos sistemas que pueden ser descritos a través de la evolución
de algunas magnitudes conservadas (como la temperatura, la energía, la densidad
de partículas, ...), es ampliamente aceptado que los observables esenciales de no
equilibrio son las corrientes o flujos asociados que surgen en respuesta a las fuerzas
o gradientes externos que hacen que el sistema se encuentre fuera del equilibrio.
De hecho, hoy en día uno de los principales objetivos en la física de no equilibrio
es caracterizar las fluctuaciones de las corrientes, convirtiéndose en una fuente de
numerosos y muy generales resultados [16–18, 38–52]. En otras situaciones, po-
drían ser buenos candidatos determinados observables integrados en el espacio y
en el tiempo, pero en general, estos dependen fuertemente de las características de
cada sistema particular.

Aún lográndose identificar los observables relevantes que caracterizan el com-
portamiento de no equilibrio, la obtención de la función de grandes desviaciones es
aún una tarea altamente compleja, ya que, en general no conocemos la estructura de
la distribución de probabilidad de los estados (dinámicos) microscópicos, o incluso
si tal distribución existe. El cálculo de la LDF a partir de la dinámica microscópica
solo ha tenido éxito en unos pocos sistemas muy simplificados como son los ga-
ses reticulares estocásticos [16, 17]. Sin embargo, en las últimas décadas, Bertini,
De Sole, Gabrielli, Jona-Lasinio y Landim han formulado una teoría para estu-
diar fluctuaciones dinámicas en sistemas difusivos lejos del equilibrio: la Teoría
de Fluctuaciones Macroscópicas (MFT, por sus siglas en inglés) [16, 38, 53–55].
Partiendo de una descripción mesoscópica del sistema en términos de hidrodinámi-
ca fluctuante (completamente caracterizadas por tan solo unos pocos coeficientes
de transporte, los cuales pueden ser fácilmente determinados a partir de experi-
mentos o simulaciones), la MFT ofrece predicciones detalladas para las funciones
de grandes desviaciones de interés en los límites de grandes tiempos y tamaños.7.
Hay que tener en cuenta que el tiempo y el tamaño juegan el papel del parámetro
n en la LDT. Como interesante subproducto, la MFT también determina la tra-
yectoria más probable seguida por el sistema para mantener una fluctuación dada.
Comprender las propiedades y la estructura espacio-temporal de estas trayecto-
rias óptimas es de suma importancia, ya que contienen información sobre posibles

7En este tipo de situaciones, gran tamaño quiere decir grandes órdenes de magnitud de separa-
ción entre las escalas de los distintos niveles de descripción.
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transiciones de fase dinámicas que aparecen en fluctuaciones [18, 41, 52, 56–63],
mientras que sus propiedades de simetría conducen a nuevos teoremas de fluctua-
ción [44,46,48–50,64–71]. Se ha demostrado que la aplicación de dicho esquema
proporciona resultados profundos y muy generales que nos ayudan a mejorar nues-
tra comprensión sobre el comportamiento de no equilibrio.

Dinámica efectiva. La segunda razón que justifica la importancia de estudiar
eventos raros está relacionada con la determinación de lo que se denomina di-
námica efectiva. Como se mencionó anteriormente, en general es casi imposible
medir una fluctuación rara en un experimento. Sin embargo, avances recientes han
demostrado que las fluctuaciones admiten una interpretación activa en términos
de una teoría de control [72–77]. De esta forma, mediante el uso de una versión
generalizada de la transformada h de Doob [78, 79], se puede construir una di-
námica efectiva cuyas trayectorias típicas se correspondan con los eventos raros
de la dinámica original. Además, este mecanismo proporciona la fuerza efectiva
externa que debe aplicarse para hacer que dichos eventos raros se vuelvan típicos.
En los últimos años se han realizado muchos avances, incluidos ejemplos explí-
citos, sobre la determinación de tales dinámicas efectivas [72, 73, 80–88]. A la
luz de estos mecanismos, la determinación de la distribución de probabilidad de
eventos raros, así como la caracterización de fenómenos interesantes tales como
DPTs, rupturas de simetría, emergencia de estructuras ordenadas, etc., son, en la
actualidad, más accesibles tanto en simulaciones como en experimentos. Cierta-
mente, esta metodología abre la puerta a un nuevo mundo de posibles aplicaciones
de la gran cantidad de resultados y técnicas desarrolladas en estudios de grandes
fluctuaciones.

Sistemas pequeños. Finalmente, el último argumento que respalda el interés
en las grandes fluctuaciones se basa en el papel fundamental que éstas desem-
peñan cuando tratamos con sistemas pequeños. Hemos visto que la probabilidad
de observar una desviación del valor promedio decae exponencialmente con el
número de partículas del sistema, razón por la cual los eventos raros apenas tie-
nen lugar en experimentos. Sin embargo, si el sistema es pequeño, la diferencia
de escalas entre las descripciones microscópica y macroscópica se reduce nota-
blemente, presentando además un número de partículas menor. En consecuencia,
las grandes fluctuaciones se vuelven mucho más probables, convirtiéndose en ele-
mentos esenciales para entender el comportamiento del sistema. Este hecho tendrá
una importancia crucial en, por ejemplo, dispositivos nanoelectrónicos, donde las
fluctuaciones condicionan severamente sus propiedades y características y cuyos
efectos deben tenerse en cuenta [89–92].
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1.3 Estructura de la Tesis

A la luz de lo expuesto anteriormente, no cabe duda de que el estudio de las fluc-
tuaciones es un objetivo esencial para la física moderna. El propósito de esta Tesis
será indagar en el papel que juegan las fluctuaciones arbitrariamente fuera del equi-
librio bajo los marcos de la Teoría de Fluctuaciones Macroscópicas y la Teoría de
Grandes Desviaciones. En las siguientes páginas exploraremos los dos primeros
argumentos expuestos anteriormente y sus profundas implicaciones, desarrollando
diferentes herramientas, técnicas y resultados para un amplio espectro de situacio-
nes que abarcan desde sistemas difusivos completamente generales hasta sistemas
compuestos por una sola partícula bajo la acción de una fuerza externa, tanto fuera
como en equilibrio. De esta forma, los capítulos 2, 3, 4, 5, 6 estarán dedicados
al estudio y caracterización de la MFT y sus consecuencias, mostrando resultados
generales en la estructura de las trayectorias que sostienen una determinada fluc-
tuación, LDFs y transiciones de fase dinámicas. Por otro lado, el Capítulo 7 se
centrará en la construcción de una dinámica efectiva asociada a fluctuaciones de
observables completamente generals para una partícula en un anillo bajo la acción
de un campo externo y una fuente de ruido térmico. A continuación detallamos,
por tanto, la estructura de la presente Tesis.

En el Capítulo 2 presentamos una introducción de la Teoría de Fluctuaciones
Macroscópicas. Centrándonos en sistemas caracterizados por una ley de conser-
vación, describiremos su evolución a nivel mesoscópico, que servirá como pun-
to de partida para desarrollar los distintos aspectos que caracterizan la MFT. En
particular, mostraremos cómo el estudio de la distribucion de probabilidad de las
fluctuaciones de observables relevantes se torna en un problema variacional cuyas
soluciones son las trayectorias óptimas que llevan a una fluctuación dada, lo que
conduce a determinar la correspondiente LDF. Asimismo, presentaremos algunos
resultados esenciales y generales sobre fluctuaciones y los traduciremo al lenguaje
de grandes desviaciones y MFT. Finalmente, describiremos brevemente la evolu-
ción mesoscópica de otras clases de sistemas, tales como sistemas sin magnitudes
conservadas, para los cuales podrán ser generalizadas algunas de las diferentes
técnicas de la MFT.

Como hemos visto, las trayectorias más probables que conducen a una fluc-
tuación dada codifican información clave sobre sus propiedades estadísticas. Esto
hace que la comprensión de las características de tales historias sea una cuestión
fundamental. En el Capítulo 3 derivaremos una relación fundamental que condi-
ciona fuertemente la arquitectura de estos caminos óptimos para sistemas difusi-
vos d-dimensionales generales fuera del equilibrio, lo que implica una estructura
no trivial para los campos vectoriales de corriente. Esta relación general pone de
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manifiesto la no localidad espacio-temporal de la estadística de las corrientes y de
las trayectorias óptimas asociadas. Además, mostraremos cómo esta relación en-
globa y explica muchos de los resultados obtenidos anteriormente en el campo de
las grandes desviaciones.

El Capítulo 4 está dedicado al estudio de las fluctuaciones de la corriente tér-
mica en un modelo de fluido incompresible d-dimensional sacado fuera de equili-
brio mediante un gradiente de temperatura. Macroscópicamente, este sistema obe-
dece la ley de Fourier de la conducción térmica y su comportamiento se encuentra
totalmente caracterizado por el campo de temperatura a lo largo del mismo. En-
contraremos que los campos de temperatura más probables que sostienen valores
atípicos de la corriente pueden clasificarse naturalmente en un conjunto infinito de
curvas, lo que nos permite analizar exhaustivamente sus propiedades topológicas
y definir perfiles universales sobre los que colapsan todos los campos óptimos.
También calcularemos la distribución de probabilidad de la corriente térmica em-
pírica, donde encontramos, entre otros resultados, un decaimiento logarítmico de
las colas de dicha distributión para fluctuaciones grandes de la corriente en direc-
ción ortogonal al gradiente térmico. Finalmente, determinaremos explícitamente
los cumulantes de orden menor de la distribución de corrientes, estableciendo no-
tables relaciones entre ellos.

En el Capítulo 5 nos centramos en el estudio de las transiciones de fase di-
námicas a nivel fluctuante en el espacio de las trayectorias, uno de los fenómenos
más intrigantes de la física de no equilibrio. Aquí descubriremos una transición de
fase dinámica estudiando la distribución del vector corriente en un sistema difusi-
vo bidimensional (2d) bajo la acción de un campo externo, caracterizando además
sus propiedades mediante la MFT. Como curiosidad, éste es el primer trabajo que
analiza DPTs de un observable d′-dimensional en sistemas d′-dimensionales con
d′ > 1, una situación que hasta ahora había sido una incógnita. La compleja inter-
acción entre el campo externo, la anisotropía del sistema y las corrientes vectoria-
les en 2d da lugar a un rico diagrama de fases dinámicas, con diferentes fases de
fluctuación en las que se rompe la simetría espacio-temporal del sistema, sparadas
por lineas de DPTs de primer y segundo orden. Notablemente, distintos tipos de
soluciones unidimensionales en forma de ondas viajeras de densidad emergen para
obstaculizar el transporte en el caso de fluctuaciones de baja corriente, revelando
una conexión entre eventos raros y estructuras auto-organizadas que aumentan la
probabilidad de que estos tengan lugar.

Originariamente, la MFT fue desarrollada para estudiar grandes fluctuacio-
nes en sistemas difusivos. Sin embargo, estas técnicas podrían extenderse a otras
situaciones caracterizadas por ecuaciones de evolución mesoscópicas. De esta for-
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ma, en el Capítulo 6, caracterizaremos las fluctuaciones en el modelo de Landau-
Ginzburg en equilibrio. Estos sistemas están descritos por un campo escalar que
evoluciona siguiendo una dinámica no conservada localmente cuyas ecuaciones
mesoscópicas vienen dadas por el modelo A de Hohenberg-Halpering [93]. Una
de las principales propiedades de estos sistemas es que presentand dos regímenes
de comportamiento diferentes caracterizados por la existencia de uno o dos esta-
dos de equilibrio. Nos centraremos en las fluctuaciones de la magnetización, es
decir, del campo escalar integrado en el espacio y en el tiempo, revelando la exis-
tencia de una DPT al analizar la probabilidad de medir valores reducidos de dicho
observable en el régimen de "pozo doble". Además, mostraremos una trayectoria
exótica, homogénea pero periódica en el tiempo, que podría aparecer por debajo
del punto de transición.

En el Capítulo 7 determinamos explícitamente la dinámica efectiva (con pro-
babilidad conservada) en el caso de fluctuaciones de observables generales integra-
dos en el espacio y en el tiempo para una partícula que se difunde en un potencial
periódico unidimensional en los límites de tiempos largos y ruido débil (que ahora
desempeñará el papel del parámetro n en la LDT). Para observables aditivos de
"tipo corriente", encontramos los criterios que marcan la emergencia de una tra-
yectoria propagativa para desviaciones suficientemente grandes, revelando la exis-
tencia de una transición de fase dinámica a nivel fluctuante, cuyo comportamiento
singular se encuentra entre primer y segundo orden. Asimismo, proporcionaremos
un nuevo método para determinar la sCGF de observables generales sin tener que
resolver el problema variacional derivado de la MFT. Esto nos permitirá demostrar
que, en este caso, los límites de ruido débil y de tiempos grandes conmutan. Final-
mente, mostraremos cómo la dinámica original puede ser mapeada en la práctica
a una dinámica efectiva explícita, la cual toma la forma de una dinámica de Lan-
gevin con un potencial efectivo. La forma no trivial de este potencial efectivo es
clave para entender el vínculo entre la transición de fase dinámica en las grandes
desviaciones de corriente y la transición de fase estándar en un sistema formado
por una partícula sometida a una fuerza conservativa más una fuerza de deriva
uniforme no conservativa.

Por último, en el Capítulo 8 resumiremos los diferentes resultados expuestos
a lo largo de esta Tesis, señalando las principales implicaciones y novedades que
tales aportaciones suponen para el campo de las fluctuaciones macroscópicas y, en
general, para la Mecánica Estadística.
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2 Conclusiones

Caracterizar la estadística de las fluctuaciones macroscópicas es uno de los grandes
desafíos de la física teórica moderna. Su importancia radica en el rol fundamental
que éstas representan en sistemas fuera del equilibrio. En efecto, la determinación
de la distribución de probabilidad de observar un evento dado (típico o raro) con-
duce a una descripción de la función de grandes desviaciones, la cual se considera,
en general, un buen aspirante para desempeñar el papel de un potencial termodi-
námico en situaciones de no equilibrio. El conocimiento de tal distribución y de
la LDF asociada ha demostrado ser de gran utilidad, proporcionando resultados
muy generales válidos arbitrariamente lejos del equilibrio. Además, la figura de la
trayectoria más probable que el sistema exhibe para llevar a cabo una fluctuación
dada ha resultado ser un elemento esencial en la descripción de muchos fenóme-
nos de interés, como rupturas de simetría o transiciones de fase dinámicas a nivel
fluctuante. Esta situación se ha vuelto aún más relevante en los últimos años, con
(i) el desarrollo de nuevos mecanismos para determinar la fuerza externa efectiva
que ha de aplicarse a un sistema dado para que la nueva dinámica efectiva repro-
duzcan, como evento típico, las trayectorias raras de la dinámica original, y (ii) el
auge de tecnología nanoelectrónica donde las fluctuaciones condicionan conside-
rablemente el comportamiento de los sistemas en cuestión.

En la presente Tesis, nos hemos centrado en el estudio de fluctuaciones de ob-
servables integrados en el espacio y en el tiempo en diferentes situaciones. De esta
forma, en el marco de la Teoría de Fluctuaciones Macroscópicas y la Teoría de
Grandes Desviaciones, hemos caracterizado las propiedades de la distribución de
probabilidad de las fluctuaciones, así como sus LDFs y los caminos óptimos aso-
ciados. Como fruto de esta investigación, hemos obtenido interesantes resultados
que podrían arrojar luz sobre el comportamiento de sistemas fuera del equilibrio ,
allanando el camino para nuevas investigaciones futuras. A continuación detalla-
remos las diferentes conclusiones que podemos extraer de este trabajo.

En primer lugar, se han presentado las principales características de la MFT y
la LDT, sentando las bases para posteriores estudios de fluctuaciones. Partiendo de
una descripción mesoscópica del sistema en cuestión, hemos desarrollado un for-
malismo matemático que nos permitirá caracterizar la distribución de probabilidad
de las fluctuaciones. En concreto, hemos deducido que el problema de determinar
la LDF se puede escribir en términos de un problema variacional espacio-temporal,
cuyas soluciones son las trayectorias óptimas que conducen a una fluctuación. Por
lo tanto, el objetivo principal al estudiar la estadística de las fluctuaciones macros-
cópicas será la resolución de las ecuaciones de Euler-Lagrange asociadas a este
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problema.
En el contexto de sistemas difusivos d-dimensionales bajo la acción de un

campo externo, nos hemos enfrentado al problema de caracterizar la estructura de
los caminos más probables. De este estudio se infieren dos resultados principales:

1. Los campos de corriente óptimos satisfacen una relación fundamental com-
pletamente general que restringe fuertemente su estructura. En el caso parti-
cular, aunque frecuentemente observado, de considerar un sistema que mues-
tra una dirección privilegiada (por ejemplo, un sistema sometido a un gra-
diente en una dirección con condiciones de contorno periódicas en todas
las componentes ortogonales), dicha relación implica un comportamiento
no local del campo de corriente óptimo y, por consiguiente, en la LDF de
la corriente, reflejo de una de las principales características en situaciones
fuera del equilibrio.

2. Las observaciones previas de campos vectoriales de la corriente con estruc-
tura encajan perfectamente en esta relación. Dado que este resultado no se
basa en ninguna hipótesis sobre las condiciones de contorno, proporciona un
importante sustento para nuevas conjeturas que arrojen luz sobre el complejo
problema variacional para la LDF en muchos sistemas generales arbitraria-
mente alejados del equilibrio.

El desarrollo de la relación anterior ha servido como punto de partida para
nuestro siguiente estudio: la descripción de las fluctuaciones de corriente en un
fluido d-dimensional quiescente e incompresible sometido a un gradiente térmi-
co en una dirección. A continuación se detallan las principales conclusiones que
hemos obtenido de esta investigación:

3. Hemos calculado la expresión explícita de los campos de temperatura más
probables, analizando sus propiedades para distintos valores de la corriente
integrada en el tiempo y en el espacio, q y de la intensidad del gradiente
térmico. De esta manera, hemos comprobado que estos campos óptimos se
pueden clasificar en familias de perfiles universales con la misma estructura
matemática, lo que conduce a un hecho relevante: los sistemas sometidos
a diferentes gradientes térmicos exhibirán el mismo perfil de temperatura
óptima para una corriente determinada q (que, obviamente, será distinta en
cada uno de estos sistemas).

4. Una vez que determinados los campos de temperatura óptimos, se ha obteni-
do la LDF correspondiente que controla la distribución de probabilidad de la
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corriente térmica. Con ello hemos observado que, mientras que las desvia-
ciones de dicha distribución respecto de la gaussiana son pequeñas en torno
al estado estacionario, por lo que ésta puede ser aproximada por una gaus-
siana deformada, su comportamiento para grandes desviaciones es mucho
más complejo, lo que aumenta la probabilidad de observar eventos raros.

5. Finalmente, hemos derivado la forma analítica de las funciones de correla-
ción a n puntos integradas en el espacio y en el tiempo, con n ≤ 3, para
el campo de corriente térmica arbitrariamente lejos del equilibrio, así co-
mo algunas relaciones interesantes entre los cumulantes de orden inferior de
la distribución de corrientes, elementos que pueden ser testeados en futuras
investigaciones experimentales.

Tras la obtención de estos resultados, nos hemos centrado en uno de los fenó-
menos recientemente considerados como más interesantes en el campo de la física
de no equilibrio: las transiciones de fase dinámicas. De hecho, hemos analizado
la existencia de las DPTs en las fluctuaciones de corrientes para un sistema difu-
sivo anisotrópico bidimensional bajo la acción de un campo externo, lo cual ha
conducido a los siguientes resultados:

6. Hemos encontrado una transición de fase dinámica asociada a la ruptura de
una simetría de traslación espacio-temporal para grandes fluctuaciones de la
corriente. Esta DPT separa una fase de fluctuación constante y sin estructura
con una estadística de corrientes gaussiana asociada, de otra caracterizada
por estrucutas coherentes que se mueven en forma de ondas viajera unidi-
mensionales con distribución de corriente no gaussiana, revelando la apari-
ción de orden para fluctuaciones raras con estructuras auto-organizadas, lo
cual aumenta la probabilidad de que éstas ocurran.

7. En el caso particular del modelo conocido como proceso de exclusión sim-
ple débilmente asimétrico, o weakly asymmetric simple exclussion process,
(WASEP, por sus siglas en inglés), hemos caracterizado tal DPT tanto desde
un nivel mesoscópico bajo el marco MFT, como desde un nivel microscópico
mediante el uso de simulaciones Monte Carlo extensivas con algoritmos de
clonación, obteniendo un extraordinario acuerdo entre ambas descripciones.
Curiosamente, la sCGF presenta una no analiticidad en su segunda derivada
a lo largo de la línea de transición, lo que implica que la DPT es de segundo
orden. Este resultado ha sido corroborado microscópicamente mediante la
definición de un nuevo parámetro de orden que toma un valor igual a cero
para la fase sin estructura y aumenta al cruzar el punto de transición.
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8. Por último, fruto de la interacción entre el campo externo, la anistropía y
la alta dimensionalidad considerada (d > 1), se ha obtenido un rico e in-
teresante diagrama de fases dinámicas para el WASEP. Además de la ya
mencionada transición de fase dinámica de segundo orden, se ha descubier-
to una interesante DPT de primer orden que separa diferentes fases de onda
viajera, revelando la existencia de regiones en las que ambas coexisten.

Con el objetivo de explorar situaciones más allá de la MFT, hemos estudiado
los efectos de las fluctuaciones en sistemas disipativos sin leyes de conservación.
En particular, hemos ampliado las técnicas de la MFT para caracterizar la distri-
bución de las fluctuaciones de la magnetización integrada en el espacio y en el
tiempo en el modelo estocástico periódico unidimensional de Landau-Ginzburg,
cuya dinámica viene dada por el modelo A de Hohenberg-Halperin. A partir de
dicho análisis se han extraído las siguientes conclusiones.

9. Hemos proporcionado evidencias sólidas de la existencia de una transición
de fase dinámica para valores bajos de la magnetización mediante el estudio
de la estabilidad de los campos de magnetización uniformes frente a pertu-
baciones espacio-temporales. Este resultado posee profundas implicaciones
en la comprensión de los sistemas fuera del equilibrio, lo que constituye
un nuevo paso adelante en el descubrimiento de DPTs en sistemas unidi-
mensionales a nivel fluctuante. Por otro lado, es interesante remarcar que
la transición de fase dinámica solo tiene lugar en situaciones en las que el
potencial de Landau-Ginzburg muestra una estructura de doble pozo.

10. Hemos encontrado que este modelo presenta una nueva fase dinámica exó-
tica más allá de la transición. De esta forma, para realizar fluctuaciones ra-
ras de la magnetización, el sistema adopta una estructura homogénea que
cambia periódicamente con el tiempo. Hemos caracterizado dicha solución,
mostrando que la LDF correspondiente es, ciertamente, menor que la aso-
ciada a los campos óptimos uniformes.

Finalmente, nos hemos concentrado en el estudio de la dinámica efectiva con
probabilidad conservada bajo la cual los eventos raros de la dinámica original se
vuelven típicos. El sistema considerado ha sido una sola partícula que se difunde
en una dimensión bajo la acción de una fuerza periódica completamente general
y ruido aleatorio débil. A continuación detallamos las conclusiones que hemos
obtenido.

11. Hemos determinado la dinámica efectiva relativa al estudio de las fluctua-
ciones de observables integrados en el tiempo y el espacio completamente

173



Resumen

generales, identificando la fuerza efectiva bajo la cual se fuerza a la partícula
a exhibir comportamientos atípicos. Esta nueva dinámica ha demostrado no
ser exclusivamente una ligera modificación de la original bajo la aplicación
de un campo constante no conservativo, sino que implica una transformación
mucho más compleja.

12. Para el caso en que el observable es de “tipo corriente”, hemos encontra-
do que el sistema exhibe una transición de fase dinámica entre una fase de
fluctuación estática con una sCGF constante y una trayectoria propagativa
periódica en el tiempo a la que se asocia una sCGF mucho más compleja cu-
yo valor puede obtenerse como la solución de un problema de optimización.
Curiosamente, la forma de la fuerza efectiva cerca de la transición revela la
naturaleza altamente no trivial de la DPT, muy diferente de aquellas que se
observan para sistemas compuestos por una partícula bajo la acción de un
campo conservativo más una fuerza constante no conservativa.

13. Como subproducto interesante, hemos deducido una forma alternativa de
calcular la sCGF para las fluctuaciones de observables integrados en tiempo
y espacio generales sin necesidad de resolver el complejo problema varia-
cional derivado de la formulación en términos de integrales de camino. Este
resultado revela un hecho de vital transcendencia: en estas situaciones, los
límites de tiempos grandes y ruido débil conmutan.
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