Didáctica activa para la resolución de problemas
6º Nivel E.G.B. Curso 86-87

Departamento Didáctica de la Matemática
Universidad de Granada.

Sociedad Andaluza Educación Matemática "THALES"
Grupo E.G.B. de Granada.
Director: L. Rico.
Didáctica activa para la resolución de problemas

6º Nivel E.G.B. Curso 86-87

Departamento Didáctica de la Matemática
Universidad de Granada.

Sociedad Andaluza Educación Matemática "THALES"
Grupo E.G.B. de Granada.
Director: L. Rico.

Este trabajo se ha realizado con una Ayuda concedida por la Consejería de Educación y Ciencia de la Junta de Andalucía, dentro de los proyectos de Investigación aprobados en el Segundo Plan de Investigación Educativa de Andalucía (Orden 14-1-86; BOJA 28-1-86).
Didáctica activa para la resolución de problemas
6º Nivel E.G.B. Curso 86-87

AUTORES DEL PROYECTO
ALMENDROS MORALES Antonio: Profesor de E.G.B.
CÓBO VARGAS Francisco: Profesor de E.G.B.
CASARES RUIZ Mercedes: Profesora de E.G.B.
CASARES SANDUR Antonio: Profesor de E.G.B.
CASTRO MARTINEZ Enrique: Titular de Escuela Universitaria.
CASTRO MARTINEZ Encarnación: Titular de Escuela Universitaria.
FERNANDEZ GUERRERO Eduardo: Profesor de E.G.B.
GARCIA FERNANDEZ Antonio: Profesor de E.G.B.
GONZALEZ GONZALEZ Evaristo: Profesor de E.G.B.
GUTIERREZ PEREZ José: Profesor de E.G.B.
IBAÑEZ CARRILLO Blas: Profesor de E.G.B.
LINARES DE SICILIA José: Profesor de E.G.B.
MIÑAN ESPIGARES Antonio: Profesor de E.G.B.
MORENO RUIZ Antonio: Profesor de E.G.B.
MORCILLO DELGADO Nicolás: Profesor de E.G.B.
PEREZ MORALES Alvaro: Profesor de E.G.B.
ROA GUZMAN Rafael: Titular de Escuela Universitaria.
SEGOVIA ALEX Isidoro: Profesor de Escuela Universitaria
SERRANO GARCIA Miguel: Profesor de E.G.B.
SEVILLA SANCHEZ Fco. Jesús: Profesor de E.G.B.
TAMAYO RUIZ Rosario: Profesora de E.G.B.
TORRES DE MORAL Concepción: Profesora de E.G.B.
TORTOSA LOPEZ Antonio: Profesor de E.G.B.
UBANO BOLIVAR Manuel: Profesor de E.G.B.
VALENZUELA HERRERIAS Julián: Profesor de E.G.B.
VICO GUZMAN Antonio: Profesor de E.G.B.

DIRECTOR DEL PROYECTO: RICO ROMERO Luis: Catedrático E.U.
ÍNDICE

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>PRESENTACIÓN</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CAMPO DE TRABAJO</td>
<td></td>
</tr>
<tr>
<td>1.1.</td>
<td>Breves consideraciones psicológicas</td>
<td>2</td>
</tr>
<tr>
<td>1.2.</td>
<td>Resolución de Problemas y Educación Matemática</td>
<td>2</td>
</tr>
<tr>
<td>1.3.</td>
<td>Problemas aritméticos. Tratamiento en el currículum escolar</td>
<td>5</td>
</tr>
<tr>
<td>1.4.</td>
<td>Las variables de los problemas aritméticos</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>EL TRABAJO A REALIZAR</td>
<td></td>
</tr>
<tr>
<td>2.1.</td>
<td>Población</td>
<td>18</td>
</tr>
<tr>
<td>2.2.</td>
<td>La cuestión a estudiar</td>
<td>18</td>
</tr>
<tr>
<td>2.3.</td>
<td>El equipo investigador</td>
<td>20</td>
</tr>
<tr>
<td>2.4.</td>
<td>El plan de acción didáctica</td>
<td>23</td>
</tr>
<tr>
<td>3.</td>
<td>TRABAJO REALIZADO POR EL EQUIPO DE APOYO A LA EXPERIENCIA</td>
<td></td>
</tr>
<tr>
<td>3.1.</td>
<td>Plan General</td>
<td>32</td>
</tr>
<tr>
<td>3.2.</td>
<td>Material para el profesorado que participa en la investigación. Primer Trimestre</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>Calendario general del desarrollo de la investigación</td>
<td>34</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>Guión de trabajo para la primera quincena (15-30 septiembre)</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>Programación para el tema de trabajo “Fracciones”</td>
<td>38</td>
</tr>
<tr>
<td>3.2.4.</td>
<td>Material preparado para resolución de problemas sobre fracciones con el método IDEAL</td>
<td>41</td>
</tr>
<tr>
<td>3.3.</td>
<td>Material para el profesorado que participa en la investigación. Segundo Trimestre</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1.</td>
<td>Programación para el Tema de trabajo “La Longitud”</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2.</td>
<td>Material preparado para la resolución de problemas sobre Longitud con el método IDEAL</td>
<td>59</td>
</tr>
</tbody>
</table>
3.4. Material para el profesorado que participa en la investigación. Tercer Trimestre

3.4.1. Programación para el Tema de trabajo “La superficie”

3.4.2. Material preparado para la resolución de problemas sobre Superficies con el método IDEAL

4. TRABAJO REALIZADO POR EL EQUIPO RESPONSABLE DE LA EXPERIENCIA EN EL AULA

4.0. Introducción

4.1. Punto de partida

4.2. Tareas del equipo

4.3. Descripción de la marcha del grupo experimental en las sesiones del seminario

4.4. Consideraciones en torno a la experiencia de simultear un grupo de control y otro experimental

4.5. Comentario a las situaciones desarrolladas en el aula

4.5.1. Situación “Tableta de chocolate”

4.5.2. Situación “El Supermercado”

4.5.3. Situación “Botellas de Refresco”

4.5.4. Situación “El Periódico”

4.5.5. Situación “Mido mi cuerpo y objetos de la clase”

4.5.6. “Hago el plano de la clase y del patio del colegio”

4.5.7. “Construimos el plano de una casa”

4.6. Evolución del pensamiento del profesor y actuación en el aula

4.7. Conclusiones generales del trabajo realizado por el equipo experimental

4.8. Algunas preguntas formuladas por los alumnos

5. TRABAJOS REALIZADOS POR EL EQUIPO RESPONSABLE DEL DISEÑO EXPERIMENTAL Y CONTROL ESTADISTICO
5.0. Introducción 114
5.1. Modelo experimental de la investigación 116
5.2. Pruebas aplicadas y resultados obtenidos 124
5.3. Conclusiones 154

6. TRABAJOS REALIZADOS POR EL EQUIPO DE ESTUDIO DE CASOS 154
 6.0. Presentación 154
 6.1. Finalidades del estudio de casos 156
 6.2. Metodología de trabajo 158
 6.3. Procesos analizados 164
 6.4. Resultados obtenidos 167
 6.5. Aportaciones del estudio de casos 170
 6.6. Descripción de las sesiones sobre el tema "Mido mi cuerpo y los objetos de mi clase" 176

7 ANEXOS 182
 7.1. Análisis de problemas utilizando el método de Guilford 182
 7.2. Transcripción de la grabación sobre la primera situación "La tableta de chocolate" 187
 7.2.1. Primera Sesión 187
 7.2.2. Segunda Sesión 191
 7.2.3. Tercera Sesión 197
 7.2.4. Cuarta Sesión 212
 7.3. Transcripción de la grabación de las entrevistas individuales a los alumnos de "Estudios de Casos" 219

8. CONCLUSIONES 237

9. BIBLIOGRAFÍA 243
PROLOGO

A lo largo de tres años los miembros del Grupo de Trabajo de E.G.B. de la antigua A.P.M.A., se han venido reuniendo para trabajar, una tarde cada semana, en tarea de Seminario en el Departamento de Didáctica de la Matemática de la Universidad de Granada. Estas sesiones de Seminario han servido para presentar los trabajos realizados durante la semana, discutirlos, adoptar nuevas decisiones sobre las acciones a realizar, discutir y planificar las correspondientes actuaciones y, finalmente, repartir nuevas tareas hasta la semana siguiente. Este sistema llevado con continuidad y disciplina produce resultados sorprendentes ya que consigue poner en orden y dotar de sentido el trabajo de innovaciones didácticas. Aun cuando semana a semana puede parecer que no se avanza, que las ideas se reiteran, que los conceptos se desvanecen y que no se sabe cómo continuar de una forma clara, sensata e innovadora, cuando se levanta acta del camino recorrido se puede apreciar que la tarea realizada ha sido considerable.

Este es el propósito principal que nos anima a elaborar esta memoria: dejar constancia de que el trabajo de renovación pedagógica es posible mediante una labor en equipo; más aun, nos atrevemos a asegurar que cualquier proyecto de investigación que afecte al currículum de matemáticas debe abordar esencialmente los mismos problemas que nosotros hemos tenido que trabajar, debe pasar por estrategias mas o menos similares a las que nosotros hemos utilizado y sus logros van a estar parcialmente en función de haber acertado a coordinar con mayor o menor fortuna el trabajo de un grupo de personas en los aspectos esenciales que conlleva toda investigación en Didáctica de las Matemáticas.

Esta ha sido nuestra experiencia y eso es lo que aquí contamos. Una comunidad científica se constituye, entre otras cosas, mediante un intercambio lo más fluido posible de información relevante. Para
contribuir en ello hemos escrito este trabajo. Pero también para animar a todos los profesores preocupados por la mejora de la enseñanza que realizan. La tarea es posible siempre que se execute con un mínimo de ilusión, honestidad y rigor.

Son muchas las ayudas recibidas y muchos los agradecimientos a testimoniar, seguramente no va a ser posible enumerarlos todos, por ello pedimos disculpas y preferimos no nombrar expresamente a ningún compañero ni institución. Sin embargo sí queremos transmitir nuestro cariño y agradecimiento a las seis niñas que han trabajado en el estudio de casos: Cinta Rodríguez Gómez, Marta Román Rodríguez, Pilar Rico Castro, Estefanía Rodríguez Navarro, Leticia Serrano García y Mónica Ureña Cadiar. Sacrificar la mayor parte de las mañanas libres de los sábados en la Resolución de Problemas y hacerlo con interés e ilusión, ha sido para nosotros no solo una ayuda sino también un estímulo.

Granada, 1988

Los Autores
RESOLUCIÓN DE PROBLEMAS
CURSO 86-87

0. PRESENTACIÓN

Durante los Cursos 84-85, 85-86 y 86-87 el Grupo de E.G.B. de la APMA ha llevado a cabo un trabajo de investigación relativo a Resolución de Problemas con alumnos del 6º Nivel de E.G.B., mediante una labor de seminario realizada en el Departamento de Didáctica de la Matemática de la Universidad de Granada.

Su objetivo fundamental ha sido modificar la posición de la Resolución de Problemas en el Curriculum de la E.G.B.. Pretendemos que la Resolución de Problemas se constituya en el núcleo central del aprendizaje de la matemática de este nivel, en vez de ser un simple objetivo de aplicación de los conceptos y de las estructuras y algoritmos operacionales. Queremos que los procesos y conceptos de la matemática —en este orden— aparezcan como necesarios, o al menos muy convenientes, para dar respuesta a cuestiones relevantes que se plantean en el medio social accesible al alumno.

La conversión de este objetivo general en un Plan de actuación didáctica en el Aula, con unos mecanismos de planificación, ejecución, evaluación, control, discusión y obtención de conclusiones nos ha llevado tres años de trabajo.

Los resultados y conclusiones de los dos primeros años han quedado reflejados en los trabajos:

"Aritmética Elemental para Resolución de Problemas en el Tercer Ciclo de EGB": 1ª Parte, Castro Martínez, E. y otros, en el n° 5 de la Revista Epsilon; 2ª Parte, Cobo Vargas, F. y otros en el n° 6/7 de la Revista Epsilon. (Curso 84-85)

"Didáctica Activa para la Resolución de Problemas en el Tercer Ciclo de la EGB", Proyecto de Investigación aprobado dentro del Segundo Plan de Investigación Educativa de Andalucía; director del Proyecto: Rico Romero. L.; autores: Almendros Morales, A. y otros
En esta Memoria presentamos los resultados obtenidos en este tercer año de experimentación, y las conclusiones más generales de nuestra investigación.

1. CAMPO DE TRABAJO

En lo que sigue vamos a encuadrar nuestro trabajo dentro del amplio campo del estudio e investigación que se conoce con el nombre genérico de Resolución de Problemas. Pasaremos revista, inevitablemente breve y concisa, a las teorías, estudios, trabajos e investigaciones que hemos tenido en cuenta y que han influido en nuestro estudio.

1.1. Breves consideraciones psicológicas.

El interés por las conductas de los individuos en la resolución de problemas ha aparecido a lo largo de la historia de forma esporádica. Va a ser en la década de los años cincuenta cuando se modifique esta situación con la aparición de los estudios de Newel, Shau y Simon, que propusieron un marco de referencia que parecía prometedor para el estudio del tema.

Dicho marco de referencia tenía por enfoque estudiar la solución de problemas desde una perspectiva de procesamiento de la información, con el empleo sistemático de programas de ordenadores, que eran utilizados como modelos con los que se contrastaba la conducta de los individuos al intentar solucionar problemas.

Bastante años antes los psicólogos de la Gestalt describieron el fenómeno presentando la resolución de problemas como una integración de respuestas previamente aprendidas, y la solución aparecía de una forma relativamente repentina. Por tanto no se preocuparon en explicar cómo se producía esta respuesta de solución al problema.

Paralelamente al auge de publicaciones e investigaciones sobre el tema desde una perspectiva de procesamiento de la información, los investigadores conductistas dirigieron su atención al estudio de las complejas conductas exhibidas en la situación de solución de problemas. Pero siguiendo su metodología habitual se centraron en el establecimiento de relaciones entre las variables especificadas de estímulo y las respuestas de los sujetos. Para conceptualizar y explicar
estas relaciones utilizaron los mismos conceptos propuestos para las restantes: operantes, respuestas mediacionales, jerarquías de contingencias E-R, etc. Algunos incluso se negaron a incorporar variables intervientes de ningún tipo.

Los conductistas han centrado por tanto su interés en el análisis de las unidades E-R. En tanto que desde el primer momento los procesadores de la información se han centrado en la organización de esas unidades en jerarquías.

Podríamos citar a continuación las aportaciones hechas por diferentes estudios:

Los trabajos de Spinak y Shure (1974-1978) los más interesantes en el entrenamiento de escolares para desarrollar las habilidades propias de la resolución de problemas.

Pensamiento alternativo. — Como capacidad para generar múltiples soluciones posibles a una situación problemática personal.

Pensamiento consecuencial. — Como capacidad para prever las consecuencias a corto y largo plazo de una determinada alternativa.

Pensamiento medio-fin. — Como capacidad para elaborar una serie de acciones específicas, medias, para conseguir un objetivo dado, teniendo en cuenta los distintos obstáculos en la realidad.

Los trabajos de Moser y Carpenter (1982, pág. 24). La mayoría de los programas curriculares asumen que los problemas de enunciado verbal son difíciles para los niños de todas las edades y que estos deben dominar las operaciones simbólicas de la suma y de la resta antes de que se pongan a resolver problemas de enunciados verbales aunque sean simples.

Davison (1977), por otro lado, cree que los niños no saben resolver problemas porque no los comprenden, debido a las dificultades en la lectura que se lo impiden.

A este respecto se propone el uso de un lenguaje experencial. Cuando se emplea este enfoque, los niños tienen la oportunidad de escribir los problemas usando su propio lenguaje cotidiano. Cuando a los niños les resulta familiar la situación de los problemas comprenden el lenguaje y pueden referirse adecuadamente a la información del problema (le Blanc, 1977).
Este enfoque "Lenguaje-experiencia" se comienza, generalmente, estimulando una discusión sobre la experiencia o actividad común en que el niño ha estado involucrado para estimular la comprensión del enunciado y así la estructura del problema.

Va a ser este enfoque "lenguaje experiencia" uno de los elementos que se van a utilizar en nuestro trabajo sobre la resolución de problemas ya que, como se muestra más adelante, es el debate tanto en grupos pequeños como con el profesor la base del trabajo de clase.

Bredie (1980) en su estudio sobre los aprendizajes heurísticos nos dice que los alumnos de 6º curso aprenden mejor a través del trabajo organizado.

Mayer (1986) esquematiza así las diferencias entre gestaltistas y asociacionistas, respecto de la R.P.

<table>
<thead>
<tr>
<th></th>
<th>Asociacionista</th>
<th>Gestalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Tipos de tareas</td>
<td>Reproductivo</td>
<td>Productivo</td>
</tr>
<tr>
<td>2 Actividad mental</td>
<td>Intenta vincular estímulo y respuesta</td>
<td>Reorganiza elementos</td>
</tr>
<tr>
<td>3 Unidad de Pensamiento</td>
<td>Eslabón estímulo/respuesta</td>
<td>Organizaciones</td>
</tr>
<tr>
<td>4 Detalles de la Teoría</td>
<td>Precisos</td>
<td>Vaquos</td>
</tr>
</tbody>
</table>

El pensamiento productivo es aquel que se basa en la creación de una nueva solución, produce una organización nueva de los elementos. El pensamiento reproductivo se limita a reproducir antiguos hábitos o comportamientos.

Además de la distinción entre pensamiento productivo y reproductivo hay otras aportaciones importantes de los gestaltistas al tipo de pensamiento implicado en la R.P. Por una parte la idea de que el pensamiento se produce por etapas, y la verificación de que la experiencia anterior puede tener efectos negativos en algunas situaciones nuevas de resolución de problemas. El concepto principal para la comprensión de estos procesos fue la idea de que la solución implica la reorganización o estructuración del problema.
En un orden de ideas más amplio tenemos la Teoría del Significado, con Ausubel como uno de sus representantes más destacados. "La concepción del pensamiento en la teoría del significado implica descubrir en qué forma el problema presente se relaciona con los conceptos e ideas que ya existen en la memoria del resolutor, es decir, las relaciones externas entre los elementos y los esquemas lógicos. El problema debe ser asimilado a la propia experiencia del que piensa y traducirse en términos conocidos. El pensamiento resulta ser un proceso de descubrir un esquema o conjunto de experiencias pasadas con el que ha de relacionarse el nuevo problema, y luego interpretar y reestructurar la situación nueva de acuerdo con el esquema particular elegido." (Meyer, R).

Hay dos ideas importantes en la teoría del significado respecto de la R.P. Una de ellas es que representando el problema de una manera concreta puede obtenerse un método de solución distinto al que se consigue cuando el problema se representa en términos abstractos. La segunda idea es la de que cuando los estudiantes descubren por sí mismos cómo resolver un problema, aprenden de modo distinto a cuando se les explica cómo obtener la solución. Las personas que trabajan activamente en la solución de problemas intentan integrarlos en su propio conocimiento, sin embargo cuando se proporcionan las reglas para la solución éstas se relacionan con un conjunto más limitado de experiencias aprendidas de memoria.

1.2. Resolución de Problemas y Educación Matemática.

Usualmente se considera que la publicación del libro de Polya "How to solve it", en 1945, está en el origen de la importancia que adquiere la R.P. en los últimos años. No cabe duda que la obra de Polya ha tenido una gran difusión y una influencia destacada, y no sólo entre Profesores de Matemáticas. Esto se pone de manifiesto en que la estrategia general propuesta por Polya es punto de referencia para todos aquellos autores que se han dedicado con posterioridad a estudiar la resolución de problemas, matemáticos y no matemáticos.

Sin embargo no es hasta mediados de la década de los 70 cuando, coincidiendo con la búsqueda de una nueva visión global para el currículum de matemáticas en la enseñanza obligatoria, se plantea la R.P. como un campo autónomo sobre el que trabajar e investigar sistemáticamente.
Por supuesto que, hasta ese momento, los Problemas habían ocupado un lugar destacado en los estudios matemáticos de cualquier nivel o rama del sistema educativo. También es cierto que se han venido haciendo problemas en las aulas escolares, por muy rutinarios y mecánicos que éstos hayan sido, desde el comienzo del sistema escolar tal y como hoy lo conocemos. La diferencia estriba en que, hasta el momento que consideramos, la Resolución de Problemas no se contemplaba como algo específico, cuyo desarrollo necesitase de consideraciones especiales. Los problemas eran, simplemente, la forma más adecuada para demostrar la utilidad y conveniencia de las reglas y conceptos, estrictamente matemáticos, que se habían estudiado.

A finales de la década de los 70 toma fuerza la orientación de considerar la R.P. como eje central de la enseñanza de la matemática en los niveles obligatorios. Se da así salida a una crisis centrada en la disyuntiva entre la “Matemática Moderna” y la vuelta a atrás que suponía la corriente “Vuelta a lo básico” (Schoenfeld, 1985).

En la comunidad educativa internacional ésto se ve apoyado por:

- el libro del año (yearbook) de 1980, que edita el N.C.T.M. (USA), está dedicado a la Resolución de Problemas, totalmente.
- por otra parte, entre los objetivos propuestos por el mencionado N.C.T.M. para la década de los 80, figura que la R.P. debe ser el eje de la matemática escolar, objetivo principal en la enseñanza de la matemática. (An Agenda for Action, 1980).
- el informe Cockcroft, en el punto 243, considera como recomendación general para la enseñanza de la matemática en todos los niveles que ésta debe “incluir resolución de problemas, con la aplicación de las matemáticas a las situaciones de la vida cotidiana”. En el párrafo 249 sintetiza las consideraciones generales a tener en cuenta en la R.P. De nuevo en el Cp. 6, párrafos 321 a 324 vuelve a enfatizar su importancia en la Escuela Primaria.

A partir de 1980 la R.P. ha tomado un gran auge en la Educación Matemática, principalmente entre los grupos y escuelas del mundo anglosajón. El trabajo sistemático con la puesta en marcha y desarrollo de proyectos y centros de investigación; la aparición continua de artículos, memorias y libros relacionados con el tema; su tratamiento casi monográfico en los Congresos, Simposiums y reuniones entre
educadores matemáticos, ponen de manifiesto la importancia priori-
aria que ha tomado este tema en los últimos años, llegando a constitu-
iejsese casi en una disciplina autónoma dentro de la E.M.

Este papel destacado que ha tomado la R.P. no es gratuito, la
amplitud del propio concepto, que abarca desde una forma general de
pensamiento y aprendizaje hasta tareas muy específicas dentro de un
campo más limitado de conocimientos, han contribuido a que su fun-
ción dentro del currículum de matemáticas pueda desarrollarse en dife-
rentes niveles. Tres son las funciones que se atribuyen a la R.P. en la
enseñanza/aprendizaje de las matemáticas: como objetivo, como pro-
ceso y como destreza básica (Branca, 1980).

La R.P. es un objetivo general en la enseñanza de las matemáticas,
yá que éstas se justifican por su aplicación y utilidad en la vida real. La
R.P. es un proceso de pensamiento, como ya hemos destacado en el
punto anterior de esta memoria: Al resolver un problema aplicamos co-
nocimientos previos a situaciones nuevas o poco conocidas. La R.P. es
la actividad que se desarrolla al intentar reorganizar datos y conocimi-
entos previos en una nueva estructura, mediante un proceso se-
cuencial. Importan los procedimientos y métodos empleados tanto o
más que el resultado final.

La R.P., finalmente, es una destreza básica cuando se consideran
los contenidos específicos, los tipos de problemas y sus métodos de
solución; de este modo se puede organizar el trabajo escolar de ense-
nanza de conceptos y aprendizaje de destrezas.

Dentro de este panorama, que va desde la investigación hasta la
elaboración de propuestas metodológicas muy concretas para la ac-
tuación en el aula, los aspectos claves de estudio están centrados en
determinar:

¿Qué constituye la resolución de problemas? ¿a qué tipo de com-
portamiento puede asociarse?.

¿Cuáles son las variables que influyen en las conductas de R.P.?,
¿cómo se realiza el aprendizaje de R.P.?.

¿Cómo puede medirse el rendimiento en R.P.?.

¿Qué tipos de enseñanza pueden elaborarse sobre R.P. ? ¿qué
características mínimas debe satisfacer un currículum de matemáticas
respecto de la R.P.?.

7
¿Cuál es la dinámica en el aula que mejor favorece la R.P.? ¿cómo se modifican los roles del Profesor y del Alumno con esta nueva estrategia?

Estos temas no están resueltos, y posiblemente algunos de ellos no puedan estarlo nunca. Sí es importante destacar que el trabajo sobre R.P. ha permitido integrar en un mismo campo el análisis didáctico de los diferentes contenidos matemáticos, facilitando su estudio dentro de un mismo marco de conceptos y procesos. Ello ha sido posible por la aparición de un nuevo paradigma en el estudio de los procesos de pensamiento sobre contenidos matemáticos, que no está centrado ni en la enseñanza ni en el aprendizaje, sino en el estudio de los procesos de pensamiento desarrollados ante los problemas matemáticos (Davis, 1983).

"Dentro de este nuevo marco conceptual, el aprendizaje se entiende y se define en términos de transición de una forma de pensamiento matemático a otra y, en este sentido, no es fundamental: es un tipo de concepto derivado de segundo orden, pues la tarea esencial consiste en la descripción de las diversas formas de pensamiento matemático, las que se dan antes y después de cualquier cambio debido al aprendizaje. Los estudios se centran en la observación y descripción de las conductas matemáticas, siendo necesario relacionar estas observaciones con una teoría de los procesos de pensamiento matemático y con la recogida de datos, a través sobre todo de entrevistas basadas en tareas". (Arrieta, J. 1987).

Las investigaciones en Educación Matemática, actualmente, están centradas bien en el análisis de las ideas que se adquieren en los niveles intermedios entre un estadio cognitivo y otro, bien en los factores y procesos que facilitan el paso de un nivel conceptual a otro —para algún concepto individual—, bien en los procesos y capacidades que se suponen para la comprensión de un contenido, o bien en las ideas y conceptos que necesitan de instrucción para su educación.

Hay mucho campo avanzado en este terreno, y las publicaciones aparecidas en los últimos años lo ponen de manifiesto, con la consolidación de equipos de investigación que, en las universidades de los países avanzados, mantienen una línea de trabajo propia.

A niveles más modestos, pretendemos con este trabajo y para nuestro país varios objetivos:
mantenernos al día sobre los resultados más relevantes que se
vienen llevando a cabo sobre R.P.

realizar nuestro propio trabajo experimental y de campo en el
que poner a prueba nuestras conjeturas y obtener nuestras pro-
pias conclusiones

estimular el trabajo creativo en el aula de EGB, rompiendo con
las rutinas y moldes que impiden un aprendizaje más amplio,
completo y profundo de la matemática

mantener un equipo y una línea de investigación propios, nece-
sarios para una adecuada formación inicial y permanente del
Profesorado

contribuir a la elaboración del curriculum obligatorio de mate-
máticas, aportando experiencias previas, evidencia empírica y
resultados que avalen las elecciones que se hagan.

1.3. Problemas Aritméticos. Tratamiento en el Curriculum Escolar

El empleo de técnicas aritméticas en la resolución de problemas es
una de las habilidades básicas que deben dominar los alumnos al térmi-
ño de la EGB. De hecho el aprendizaje del sistema decimal de numeración y los algoritmos usuales de las operaciones tiene sentido en cuanto
facilitan el cálculo y la resolución de cuestiones en situaciones prácticas. “La resolución de problemas es consustancial a las matemáticas. Las matemáticas sólo son útiles en la medida en que pueden aplicarse a una situación concreta; precisamente la aplicación a diversas situaciones posibles es lo que se denomina resolución de problemas” (Cockcroft, 249).

En la vida usual del ciudadano medio, y en gran parte de su vida
profesional, se presentan situaciones que necesitan y en las que se
emplean técnicas aritméticas para la resolución de problemas elemen-
tales. Parece indudable que una competencia de los estudios de Básica
es el aprendizaje y dominio en la resolución de problemas aritméticos.

Enfocamos nuestro interés en el campo de la R.P. al caso particu-
lar de los problemas aritméticos en los niveles de nuestra EGB.

Siguiendo el planteamiento de Lester (1983), entendemos por
problema, en sentido amplio, “una tarea para la cual:
i) el individuo o grupo que se enfrenta con ella quiere o necesita encontrar una solución,

ii) no hay un procedimiento fácilmente accesible que garantice o determine completamente la solución, y

iii) el individuo o grupo debe realizar intentos para encontrar la solución’’.

En este marco se sitúa la idea más precisa de problema aritmético: ‘’conocidas las relaciones entre una serie de datos numéricos alguno (s) de los cuáles es (son) desconocido (s), determinar dicho (s) valor (es) desconocido (s)’’.

Se entiende que la relación o relaciones entre los datos, conocidos y desconocidos, que constituyen un problema son susceptibles de expresarse mediante operaciones o relaciones numéricas. Quedan así excluidas la aritmología y otras interpretaciones exóticas que pueden realizarse utilizando números. El hecho de que la relación entre los datos pueda expresarse mediante una operación o secuencia de operaciones no implica que deban utilizarse necesariamente en la obtención de la solución; sólo expresan el criterio para delimitar la clase de problemas a los que nos referimos al hablar de problemas aritméticos.

Las orientaciones elaboradas por nuestra Administración para los estudios de EGB y su concreción en los Programas Escolares han enfatizado la adquisición de los diferentes conceptos de número —natural, entero, decimal y racional— y su simbolización. También se ha destacado la definición correcta de cada una de las operaciones y las técnicas más usuales algoritmos —para conseguir el resultado preciso de cada operación concreta. En todos los casos se han entendido los problemas como un campo práctico para aplicar y adquirir destreza con los conceptos y mecanismos previamente estudiados.

Las Orientaciones Pedagógicas del año 70 dan predominio a la consideración estructural del contenido matemático. Aún cuando en la presentación del Área de Matemáticas se dice ‘’que la enseñanza de la matemática en todos los niveles debe centrarse en el proceso de matematización de problemas, creación de sistemas formales, utilización de las leyes de estos sistemas para obtener unos resultados e interpretación de los mismos’’, el hecho real es que esta idea se articula en una dirección muy precisa, que se enuncia en uno de los Objetivos específicos de este área: ‘’Capacidad de plantear simbólicamente si-
tuaciones problemáticas”. Sólo van a tener interés para estos Programas aquellos problemas en los que se ejemplifican determinadas relaciones entre conceptos abstractos. Los problemas comienzan cuando hay representación simbólica. En las sugerencias de posibles actividades en las que se hacen indicaciones sobre Observación y Manipulación, Intuición Espacial, Traducción del Pensamiento Cuantitativo en frases matemáticas, Mecanismos y Automatismos, Vocabulario, Relación, Análisis, Síntesis, Abstracción, Razonamiento lógico y Creatividad, sólo hay dos referencias explícitas a la Resolución de Problemas, que se concretan en los enunciados genéricos:

“Formular problemas tomados de la vida real”

“Identificar problemas y establecer gradualmente los pasos para su solución”.

Estos dos enunciados no se conectan con el resto de las actividades, que se dedican a destacar los valores simbólicos, lógicos y estructurales del contenido matemático.

En el desarrollo posterior de los contenidos los problemas aparecen citados expresamente en sólo dos ocasiones, 1º y 7º niveles, y siempre como aplicación de unos contenidos específicamente matemáticos previamente estudiados.

En los Programas Renovados del año 81 la R.P. no aparece considerada tampoco con carácter específico ni en la Estructura de los Programas, ni en el Nivel de Profundización que debe lograrse; es decir la R.P. no es un contenido ni tampoco un proceso. La única opción que aparece es la de ejercicios de aplicación, en concreto al estudiar los Conjuntos Numéricos y la Proporcionalidad.

Al finalizar el listado de las destrezas aritméticas a adquirir sobre algún tópico concreto aparece un único objetivo cuyo enunciado dice “resolver situaciones problemáticas relacionadas con..., y termina indicando el tópico correspondiente. A las alturas del año 81, los grupos que trabajaron en la renovación de los Programas no conocían los trabajos realizados sobre R.P. ni las propuestas curriculares elaboradas a nivel internacional, o bien —lo que es peor— no consideraron oportuno introducir ninguna modificación en las Orientaciones Pedagógicas para la EGB.

Debido a los cambios políticos realizados en nuestro país en la segunda mitad de la década de los 70, los temas educativos no fueron
prioritarios en ese período. Esta es la única justificación posible a la falta de participación en los estudios y discusiones que se realizaron en torno a las matemáticas de los 80. Así puede explicarse parcialmente el que todos los proyectos, estudios, investigaciones y resultados conseguidos respecto a la incorporación sistemática de la R.P. a los Programas Escolares no hayan tenido apenas difusión entre nosotros —salvo grupos muy reducidos—, y sean prácticamente desconocidos para la mayoría de los docentes.

Las sucesivas fases del proyecto de Reforma que han ido apareciendo a partir del año 82 han intentado incorporar la R.P. como una de sus referencias básicas, pero estos intentos han sido insuficientes ya que no han seguido sistematización alguna ni han logrado elaborar unas pautas mínimas para incorporar la R.P. al currículum de la EGB con una visión más amplia que la ya clásica de los ejercicios de aplicación.

En el momento de comenzar el trabajo de este curso 86-87 podemos decir que el Curriculum de Matemáticas para la EGB, FP y BUP, tanto en sus versiones oficiales como en las oficiosas, no incorporan la RP de manera precisa. Sólo, en algunos casos, aparecen algunos enunciados genéricos que hablan de los problemas que pueden resolverse con los contenidos y técnicas estudiados previamente. Los problemas siguen siendo ejercicios más o menos complicados que hay que solucionar después de haber estudiado unos contenidos. La R.P. como método de trabajo no está incorporada a nuestro currículum, hechas todas las excepciones —muy minoritarias— que quieran hacerse.

1.4. Las variables de los problemas aritméticos

Ya hemos delimitado con anterioridad nuestra noción de Problema Aritmético, y nos parece muy conveniente estudiar las variables que se pueden considerar sobre los mismos, con el fin de hacer un estudio lo más preciso posible.

Entendemos que los problemas aritméticos, objeto de nuestra investigación, son aquellos en los que:

1º) Se conocen una serie de datos numéricos y unas relaciones entre ellos, que aparecen en un contexto significativo.

2º) Hay uno o varios datos o relaciones desconocidos cuya conexión con los iniciales está establecida en el contexto gene-
ral. Hay una petición explícita de determinar la información desconocida.

3°) Se puede establecer una secuencia de operaciones aritméticas que permitan relacionar el dato desconocido en función de los conocidos.

4°) A partir de las relaciones establecidas se infiere el dato desconocido mediante una combinación de operaciones y relaciones aritméticas, en las que el dato desconocido nunca se manipula como si fuese una cantidad más de las que intervienen en el problema.

Este proceso puede no ser lineal y necesitar de ensayos y correcciones.

Las variables que pueden considerarse en los Problemas Aritméticos son múltiples. Señalamos los criterios que, a nuestro juicio, determinan las más importantes. Para ello vamos a atender a:

i) La información proporcionada.
ii) La pregunta o cuestión plantead.
iii) La secuencia operatoria que relaciona la información con la pregunta.

Respecto al primer bloque señalado distinguimos las siguientes variables:

i)-1. Transmisión de la información. Es la forma mediante la que el individuo o grupo recibe los datos numéricos y las relaciones entre ellos. Básicamente se distinguen cuatro posibilidades:

a) Acción: se obtiene la información realizando determinadas acciones tales como manipular objetos, empleando instrumentos de medida, contabilizando hechos, etc.

b) Representación: la información se obtiene mediante un dibujo o representación gráfica, sobre el que hay que buscar la información.

c) Expresión verbal: la información aparece expresada mediante un texto que consta de una o varias frases con significado. Se suelen considerar Problemas Aritméticos fundamentalmente aquellos en los que la información se obtiene verbalmente, a los que se llama Problemas Aritméticos de Expresión Verbal –P.A.E.V.–.

d) Expresión simbólica: la información aparece expresada empleando prioritaríamente términos lógicos y símbolos matemáticos.
i)-2. Datos numéricos en la información. Se suele distinguir en este caso según que:

a) Los datos vengan dados directamente mediante números o bien haya que obtenerlos contando o midiendo objetos.

b) Los datos numéricos vengan expresados simbólicamente o verbalmente.

c) Los datos numéricos sean números abstractos o correspondan a medidas de cantidades continuas o discretas.

d) Conjunto de números empleados: naturales, enteros, decimales, racionales, radicales, etc.

e) El “tamaño” de los datos, y la mayor o menor disparidad entre ellos.

f) Orden en que aparecen los datos.

g) Datos que no aparecen nombrados explícitamente.

h) Inclusión de datos innecesarios o superfluos.

i)-3. Relaciones que se conocen entre los datos. En este caso tenemos en cuenta:

a) Si la relación es global o parcial, es decir, si abarca a todos los datos o solo a una parte de ellos.

b) Si la relación comprende o no a parte de la información desconocida; si la propia relación es o no conocida.

c) Si las relaciones aparecen explícitas o tácitamente. Asl: “Hay tres manzanas y dos peras en la mesa” es una relación explícita. “Cada coche tiene cuatro ruedas” o “cada semana tiene siete días”, suelen ser relaciones tácitas, que se dan por supuestas, salvo que tengamos delante a los coches en cuestión o bien una hoja de almanaque.

d) Si la relación o relaciones expresan estados o bien indican acciones y transformaciones. Así: “En cada caja caben 12 vasos” describe un estado, “En cada hora se empaquetan 12 vasos” expresa una acción.

e) Atendiendo a la estructura lógica de la relación: si se trata de una inclusión, una unión, intersección, complementación, igualación o partición, o bien un encadenamiento de los tipos anteriores.

f) Si las relaciones aparecen encadenadas o son independientes.
Si hay o no datos independientes, es decir, sin relación conocida con el resto.

i)-4. Contexto de la información. Es todo aquello que no siendo esencial para la información que se transmite contribuye a hacerla más inteligible. Conviene tener en cuenta:

a) La situación más o menos “real” en la que se encuadra la información.

b) El estilo empleado, cuando la información está expresada verbalmente.

c) La extensión de la información, y la densidad que tiene dentro de la misma el núcleo de dicha información.

d) Las connotaciones de tipo normativo, axiológico o moral que puede tener la información. La visión positiva o negativa que se pueda despedir de los hechos descritos por la información.

e) La participación del individuo o grupo en la obtención de la información.

f) El vocabulario más o menos usual que se emplee.

Un Segundo Bloque fundamental de variables que se consideran en los Problemas Aritméticos son las relativas a la pregunta o cuestión planteada, es decir, respecto de la petición explícita de determinar uno o varios datos/relaciones desconocidos. Conviene tener en cuenta que, sea cual sea la forma mediante la que se transmite la información, la pregunta siempre se expresa verbalmente, es decir, la pregunta tiene enunciado.

La pregunta es un enunciado verbal, que puede aparecer o no escrito. Las variables que pueden considerarse respecto de la pregunta son:

ii)-1. El tipo de información que se pide, ya que puede que se pregunte por:

a) Un dato exacto o aproximado, o bien una relación determinada entre los datos.

b) La representación gráfica de un dato numérico o relación, o bien la interpretación numérica o relacional de un dato gráfico.

c) Elección entre varias respuestas posibles.
d) La acción que debe llevarse a cabo para conseguir un determinado objetivo.

Cuando se consigue la información solicitada se dice que se ha obtenido la solución. Usualmente se entiende que, en un problema aritmético, la solución es un dato numérico y que el resto de las preguntas posibles son siempre pasos previos para conseguir el dato numérico. No compartimos ese punto de vista y entendemos como preguntas propias de un Problema Aritmético el resto de las opciones.

ii)-2. La estructura semántica de la pregunta. En los casos en que las relaciones entre los datos se ajustan a una estructura aditiva se consideran cuatro tipos diferentes de estructura:

a) Combinación: hay una serie de objetos o datos numéricos presentes y se solicita un dato no explícitado en el contexto. La situación viene dado por una relación estática y se pide simplemente un dato que debe inferirse de los anteriores, sin que se establezcan nuevas relaciones ni se suponga ninguna acción.

b) Cambio: en la información o en la pregunta hay un factor dinámico, una acción, y la pregunta versa fundamentalmente sobre el resultado de dicha acción.

c) Comparación: la pregunta incluye un término comparativo: ¿cuánto más?, ¿cuánto menos?, ¿cuánto falta?..., que tiene significado dentro del contexto informativo.

d) Igualación: combina las situaciones de cambio y comparación, ya que la pregunta suele versar sobre qué cantidad es aquella en la que hay que actuar para conseguir hacerla igual a otra con la que se compara. Hay pues acción y comparación, y la pregunta se dirige a conocer la cantidad sobre la que se actúa.

En los problemas cuya estructura general es de tipo multiplicativo, siguen valiendo las cuatro categorías generales anteriores pero se añade un caso más:

e) Tasa o razón: son aquellos problemas en los que aparece una relación constante entre cantidades mediante un cociente o razón, o bien mediante un factor de proporcionalidad.

ii)-3. Posición y extensión de la pregunta. Conviene considerar:

a) Si la pregunta aparece al comienzo, en el medio o al final del enunciado, cuando éste viene dado verbalmente.
b) Si la pregunta abarca a la totalidad de la información, a parte de ella, o se limita escuetamente al valor o valores desconocidos.

c) Cadencia de la pregunta: si se plantea una única cuestión o aparecen una serie de preguntas parciales que dan paso a la cuestión final.

ii)-4. Sentido real de la pregunta. Se trata de un aspecto meta-cognitivo, y consiste en determinar si el individuo o grupo encuentran sentido real o no a la cuestión planteada. Es decir, si se entiende que se trata de una cuestión con interés real dentro del contexto en el que aparece planteada, o bien se trata de un interrogante artificial y carente de sentido o de importancia. Cabe valorar:

a) Si la pregunta entra dentro de las cuestiones que el sujeto o grupo puede plantearse.

b) Si la pregunta planteada da respuesta, o no, a una necesidad real y cuál es dicha necesidad.

c) Si el dato que se obtiene se integra de modo coherente en el contexto informativo, aportando algún tipo de conocimiento no controlado anteriormente.

El Tercer Bloque fundamental en los Problemas Aritméticos es la Secuencia Operatoria, que relaciona la globalidad de datos —conocidos y desconocidos—, y permite obtener el dato desconocido en función de los conocidos. Se consideran las variables:

iii)-1. Conjunto numérico. Debe tenerse en cuenta:

a) El conjunto numérico en el que están definidas las operaciones a utilizar.

b) El subconjunto dentro del que aparecen los datos, por ejemplo: números naturales de hasta cuatro cifras, fracciones con denominador un dígito, etc.

c) Pertenencia del resultado, o no, al mismo subconjunto en el que están los datos. Así: la suma de dos fracciones puede dar otra fracción o bien un número natural, etc.

d) Empleo de un único sistema de signos o unidades para los datos, o bien empleo de sistemas diferentes.

iii)-2. Operaciones implicadas.

a) Si hay operaciones debidas a un cambio de unidades para unificar los datos.
b) Cuál o cuáles son las operaciones necesarias para la obtenCIÓN del resultado.

c) Algoritmo empleado en cada operación.

d) Conveniencia del uso de cálculo mental, en todo o en parte de las operaciones.

e) Conveniencia, o no, del redondeo de los datos.

iii) 3. Tipo de sentencia abierta mediante la que se expresa la relación global entre todos los datos. Conviene tener en cuenta:

 a) Sentencias elementales que establecen relaciones entre los datos. Ejp: \(a + b = ?; a + ? = c; \) etc.

 b) Número de sentencias elementales.

 c) Orden de resolución de las sentencias y encadenamiento de las mismas.

 d) Expresión de la secuencia numérica mediante una única sentencia abierta compleja.

 e) Distintas posibilidades de alcanzar el resultado mediante diferentes secuencias operatorias.

iii) 4. Recursos Auxiliares. Se trata en este caso de tener en cuenta:

 a) La utilización de material concreto.

 b) El apoyo en dibujos o representaciones gráficas para obtener la solución.

 c) La elaboración de tablas.

 d) El uso de esquemas: flechas, cuadros, etc.

 e) El empleo de fórmulas.

 f) Tanteo del resultado.

 g) Verificación del resultado.

2. **EL TRABAJO A REALIZAR**

2.1. **Población**

La experiencia que se va a realizar se aplicará a los alumnos de 6° nivel de E.G.B., por sus características psicológicas y nivel de conten-
dos. También se tiene en cuenta los objetivos propuestos por el M.E.C. para este nivel.

Si atendemos a las características psicológicas, es a partir de los 11 años de edad cuando se considera que el niño inicia el periodo de las operaciones formales, que le capacita para formular en términos de proposiciones los resultados de las operaciones concretas, con posibilidad de utilizar diversas operaciones lógicas y razonar deductivamente. Mas importante que ésto, y desde luego mas seguro, resulta el hecho de que a los once años el niño está concluyendo el periodo de las operaciones concretas y es capaz de realizar razonamientos complejos con ayuda de materiales concretos sobre los que manipular y actuar.

Con relación a los contenidos, el alumno que inicia los estudios del Tercer Ciclo de EGB ha realizado el aprendizaje de las cuatro operaciones aritméticas: adición, sustracción, multiplicación y división. En cada operación conoce:

i) El resultado memorizado de las operaciones entre dígitos (caso de la suma y el producto) o también entre algunos números de dos cifras y un dígito (caso de la resta y la división). Estos resultados aparecen recopilados en ‘‘tablas’’.

ii) Un mecanismo simple que permite extender los resultados de las tablas a operaciones entre números con dos o más cifras; este mecanismo se denomina usualmente ‘‘algoritmo’’.

iii) Una serie de situaciones elementales de problemas en cuya resolución se emplea una sola de las operaciones aritméticas estudiadas.

En la mayor parte de los casos, la formación del alumno al concluir el Ciclo Medio se caracteriza por:

1. Un dominio insuficiente de los apartados i), ii) y iii) anteriores.

2. Un trabajo bastante amplio sobre resolución de problemas en los que interviene una sola operación, si bien no resulta difícil descubrir lagunas importantes en el conocimiento de algunas variantes de problemas.

3. Una sistematización de algunos tipos de problemas con dos o más operaciones. En los enunciados de estos problemas no suelen distinguirse los pasos intermedios mediante preguntas parciales
específicas, por lo que, si se cambia el tipo de ejercicio a los que el alumno está acostumbrado por otro aún con la misma estructura, suele encontrar serios inconvenientes para su resolución.

Las deficiencias que presenta el alumno en R. de P. al iniciar el Ciclo Superior se pueden deber a que los objetivos del Ciclo Medio respecto de la RP son muy amplios e imprecisos, según se ve:

2.2.20 "plantear y resolver problemas tomados de la vida real, en los que sea necesario recurrir a las cuatro operaciones estudiadas, según criterios dados"

2.2.21 "inventar problemas tomados de la vida real, en los que sea necesario recurrir a las cuatro operaciones estudiadas, según criterios dados"

Según esto no hay una delimitación clara sobre lo que un alumno debe conocer de R.P. al finalizar el Ciclo Medio. Suponemos en todo caso que el alumno ha trabajado todas las situaciones básicas que se resuelven con una operación y que tiene cierta experiencia en problemas con dos o más operaciones.

2.2. La Cuestión a Estudiar

En este apartado trataremos de explicar las deficiencias con que se plantea la R. de P. en los niños de Ciclo Medio, con la metodología existente actualmente; en una 2ª parte definimos los objetivos o principios que nos planteamos, los cuales justifican la nueva metodología a emplear en la R. de P. en nuestra experiencia.

El aprendizaje realizado por el alumno de los Ciclos Inicial y Medio sobre R.P. entendemos que tiene serias deficiencias, entre las que destacamos las siguientes:

1. La resolución de cada tipo de Problemas se ha realizado excesivamente ligada a cada operación particular.

2. Aunque pueda parecer extraño no se utiliza material concreto en la R.P., todo lo más que se hace es justificar algún ejemplo mediante representaciones gráficas.

El Profesorado de nuestras escuelas suele estar excesivamente condicionado por los libros de texto. Generalmente en los libros se emplean dibujos y representaciones gráficas sólo para ilustrar el enun-
ciado, muy pocas veces para actuar y trabajar sobre él. Nunca se dan indicaciones en un libro de matemáticas sobre las manipulaciones y acciones que se deben realizar sobre objetos reales, en situaciones concretas.

3. El Problema se plantea siempre como un enunciado verbal conciso, con la información muy sintetizada, ajustándose a patrones pre-establecidos y en los que no falta ni sobra nada. El enunciado de un problema es una entidad cerrada, que florece en las páginas de los libros de texto, y cuya relación con el mundo real que vive el niño es muy ténue o inexistente.

4. La solución es un valor numérico que se obtiene al combinar los datos del enunciado mediante una secuencia de operaciones. No se consideran soluciones cualitativas o relacionales, no se plantean problemas con varias posibles soluciones distintas, no existen soluciones aproximadas, ni tanto, ni evaluación de la solución obtenida.

Todo esto es debido a que los Problemas en la EGB no tienen, por el momento, entidad propia; se trata exclusivamente de ejercicios de aplicación del contenido aritmético (conceptos y propiedades) estudiado.

El esquema de R. de P. descrito es complementario de una forma de actuación en el aula, en la que los papeles del alumno y del profesor están previamente delimitados. Al alumno se le interpela para que, a partir de una información precisa, dé una respuesta a una cuestión planteada. El Profesor mediante el enunciado plantea preguntas; el alumno busca la respuesta. El papel que se asigna a profesor y alumno con este planteamiento es muy diferente; el primero establece cuáles son las cuestiones importantes y el segundo ayuda a encontrar la respuesta a dichas cuestiones.

En un plano más elevado que el de la estricta resolución, podemos decir que el Profesor es el que asigna significado a un problema, puesto que es el que plantea las cuestiones correspondientes, mientras que el alumno debe descubrir el significado de la cuestión, para de este modo intentar la búsqueda de solución a la misma.

El Profesor selecciona las cuestiones, las propone al alumno y las valora finalmente con un “bien” o un “mal”, que obliga a volver a intentar la solución correcta. Aún cuando se hagan algunos ejercicios en la pizarra, estudiando con mayor detalle los diferentes pasos que per-
miten alcanzar la solución, la regla general es que el valor final en la resolución de un problema es un dato numérico —solución—, que debe ser correcto.

Sobre este concepto general es sobre el que situamos nuestra investigación. Nos planteamos seis objetivos o principios generales los cuales nos obligan a un nuevo planteamiento en la metodología sobre R. de P. que a la vez influye en la nueva situación que ocupará la R. de P. en el currículum de la E.G.B.

1. La Resolución de Problemas no es una actividad subsidiaria al contenido matemático y que necesariamente le sirve de prolongación. Antes bien, pensamos que la Resolución de Problemas es un método de trabajo con entidad propia en el aula, que precede y justifica la aparición de los contenidos matemáticos.

2. Los Problemas surgen de situaciones reales, no cerradas. La información hay que elaborarla, no está previamente seleccionada. No hay una única forma de elegir la información y no toda la información que puede elegirse es interesante, en cada caso dependerá de cual o cuáles sean las cuestiones que quieran plantearse.

3. La pregunta de un problema debe tener sentido para quien la debe responder tanto como para el que la plantea. El alumno puede plantear cuestiones significativas dentro de un contexto. Identificar cuestiones que puedan plantearse dentro de un contexto, en el que previamente se ha localizado y organizado una información, es una forma no trivial de enunciar problemas que tengan sentido para aquéllos que deban resolverlos.

4. La respuesta a una cuestión no tiene por qué ser única; hay cuestiones de solución múltiple, dependiendo del contexto y de la mayor o menor precisión que se busque. Las formas de obtener respuesta a las cuestiones son muy variadas, dependiendo de cómo se tenga la información. Es importante que el alumno aprenda a buscar la solución de un problema mediante manipulación de objetos y acciones físicas y también haciendo representaciones gráficas, así respondemos a las características del pensamiento del niño de esta edad. La solución mediante operaciones aritméticas debe aparecer como una opción más entre otras posible.

5. El debate y discusión entre los alumnos sobre la forma más adecuada de localizar y manejar una información mejora la capacidad
de expresión, de plantear cuestiones y buscar la(s) respuesta(s), obliga a los alumnos a justificar sus actuaciones y permite conocer cuáles son los procedimientos puestos en juego; también permite enfrentar a los alumnos con las consecuencias de sus elecciones y mejorar sus actuaciones.

6. El Profesor puede favorecer el pensamiento creativo y conseguir que los alumnos se sientan satisfechos del trabajo matemático mediante la resolución de problemas.

2.3. El Equipo Investigador

Para llevar adelante el trabajo anterior el equipo de investigación en el curso 86-87 ha estado constituido por 26 Profesores, cuyos nombres aparecen en el listado inicial de autores.

La situación Académica y Profesional es la siguiente:

* 21 Profesores de EGB, de ellos 3 Licenciados en Psicología y 3 Licenciados en Pedagogía;
* 5 Licenciados en Matemáticas.
* Funcionarios 20, no funcionarios 6.
* Ejerciendo la docencia 24, en paro 2.
* Con destino en la Escuela de Magisterio de Granada 5, en Colegios Públicos 13, en Colegios de Patronatos 6.

Además del Equipo Investigador, participan en este trabajo 3 Profesores de EGB más, que son titulares de tres cursos que forman parte de la muestra general.

Por tratarse de un grupo de trabajo muy amplio, y a efectos de llevar adelante las tareas con el máximo de eficacia y rendimiento, pareció conveniente constituir distintos equipos dentro del grupo general, con asignación de tareas específicas. Con este fin se establecieron seis equipos diferentes, cuyas tareas específicas pasamos a presentar. Aún cuando cada equipo se considera responsable de una parcela concreta del trabajo, el Grupo General, como Equipo Investigador, se mantiene informado del trabajo de todos y asume las responsabilidades y decisiones generales, que son necesarias para la marcha de la investigación.
Equipo A o Equipo de Apoyo a la Experiencia

Tareas:

- elaborar guiones con información básica sobre el contenido de trabajo de cada trimestre, dirigido a todo el Profesorado que participó en la experiencia.
- proponer situaciones prácticas para el trabajo en el aula del grupo experimental.
- elaborar guiones con las etapas a cubrir en cada situación práctica dentro del aula, con indicación de actuaciones y momentos importantes.
- corregir y proponer modificaciones a las pruebas de control.
- redactar un informe/artículo sobre la selección, preparación y elaboración del material de apoyo.

Equipo B o Equipo Responsable de la Experiencia en el Aula

Tareas:

- seleccionar las situaciones prácticas sobre las que trabajar en el aula para la Invención y Resolución de Problemas.
- discutir los guiones de trabajo de las situaciones prácticas, señalar el material complementario, seleccionar y acordar estrategias de trabajo en el aula, elaborar guiones de observación de las actuaciones en el aula.
- seleccionar preguntas inventadas por los alumnos.
- evaluar las actuaciones en el aula.
- evaluar el proceso experimental, dando una respuesta clara a las siguientes cuestiones:
 ¿Qué se está haciendo?, ¿Cómo se está haciendo?, ¿Cuáles son los momentos fundamentales del proceso?, ¿Cuál es el papel del Profesor en el aula (especificando tareas)?. ¿Qué puede hacer el Profesor y qué no?.
- analizar el organigrama del proceso y explicarlo al grupo general (redactar un informe/artículo al respecto).
Equipo C o Equipo Elaborador de Instrumentos de Medida, responsable del Diseño Experimental y Pruebas de Control.

Tareas:

— revisar el proceso del Curso 85-86 y proponer las modificaciones convenientes.
— reconsiderar las variables intervinientes y sus componentes.
— elaborar los instrumentos de medida: pruebas de control, con indicación de las variables consideradas en cada caso.
— realizar el tratamiento estadístico de los datos y la obtención de resultados.
— analizar los resultados y elaborar las conclusiones.
— redactar un informe/artículo sobre el diseño experimental, variables implicadas, técnicas estadísticas empleadas y conclusiones obtenidas.

Equipo D o Equipo Responsable del Estudio de Casos

Tareas:

— análisis del proceso seguido por los alumnos:
 * al inventar preguntas significativas
 * al inventar preguntas cuantitativas
 * al elegir caminos de respuesta
 * al ensayar soluciones
 * al completar datos
 * al localizar rutinas de cálculo,
todo ello en la Resolución de Problemas Aritméticos.
— elaborar conclusiones del estudio clínico de casos con aportación de información destacada para el trabajo en el Aula con grandes grupos.
— redactar un informe/artículo sobre el estudio de casos.

Equipo I o Equipo de Intendencia

Tareas:
— preparación y distribución de las pruebas de control y material de la experiencia
— control de fondos; propuestas y gestión de gastos
— mecanografiado y reproducción de material
— recogida de datos e información, con seguimiento del BOE y del BOJA sobre becas y ayudas de investigación.
— archivo y distribución de información.
— relaciones institucionales.

Equipo E o Equipo de Documentación y Bibliografía

Tareas:

— elaborar lista de bibliografía, diferenciando y clasificando el material.
— proponer la traducción, y en su caso realizar, del material más importante que no esté en castellano.
— extrayendo la documentación existente en castellano.
— proponer documentación básica para el trabajo.
— redactar la Memoria Final del Proyecto.
— controlar las publicaciones conectadas con el Proyecto.

Grupo General

Tareas:

— discutir documentación elaborada, material de apoyo y guiones de trabajo.
— hacer la interpretación y discusión de resultados; obtener las conclusiones.
— analizar el proceso con el que se introduce la Resolución de Problemas; delimitar los factores más importantes; realizar nuevas propuestas y reelaborar estrategias.
— elaborar un tratamiento curricular sobre Resolución de Problemas.
aprobar gastos y solicitar ayudas.

Cada miembro del Equipo General debe asumir responsabilidad básica en un equipo de trabajo, y ofertar su colaboración (para cuando sea necesario) a un segundo equipo. Cada miembro define su propio tipo de compromiso.

Cada Equipo elige un Coordinador de las tareas del mismo.

Los Equipos deben estar equilibrados en su composición. Quien no pueda comprometerse a un trabajo continuo en un equipo puede mantener su vinculación a la experiencia con un status de observador o colaborador. En este caso no se participa de la propiedad intelectual de la experiencia.

Los trabajos que se publiquen conectados con la experiencia se firmarán por sus autores, haciendo referencia a su conexión con el trabajo general y citando la memoria de la investigación.

Organigrama de Trabajo
La descripción de las tareas concretas que cada equipo ha llevado a efecto aparece en los siguientes capítulos de esta memoria.

2.4. El Plan de Acción Didáctica

Conseguir una nueva organización para la clase de Matemáticas que incluyan la forma de presentar el contenido, el método para resolver problemas y la actuación del Profesorado y de los alumnos, todo ello en la dirección de los objetivos antes enunciados, resulta una tarea muy compleja, que debe planificarse.

El hecho de ser 9 Profesores distintos los que han llevado adelante la experiencia nos ha obligado a precisar con todo detalle el Plan de Acción Didáctica en el Aula, y también a limitar el número de temas sobre el que llevar a la práctica nuestro método de trabajo de manera coordinada.

El modelo que hemos elegido para trabajar en la R.P. en nuestra investigación ha sido el método I.D.E.A.L. de Bransford y Stein (1986), modificado en algunos puntos por nosotros.

El esquema de trabajo que desarrolla este método considera cinco etapas, cada una de ellas correspondiente a una de las letras del anagrama IDEAL. Dichas etapas son:

1. **Identificar Problemas.** Ante situaciones reales —familiares para el niño de once años— conviene entrenar a los alumnos para que se planteen cuestiones con sentido, que incluyan o no datos numéricos o bien sean cualitativas, pero que en todo caso tengan interés real. Esta etapa la hemos precedido en la mayoría de los casos por otra de Búsqueda, en la que, descrita una situación real en términos generales, el alumno ha buscado la información más importante que permitía considerar la situación como un espacio en el que plantearse preguntas. Dicho brevemente: la búsqueda consiste en dotar, “amueblar”, a una situación real de un mínimo de información sobre el que comenzar a Identificar cuestiones.

2. **Definir Problemas.** Planteada una batería de cuestiones o hecha una reflexión sobre qué aspectos son los que más pueden interesar en una situación, se puede obtener nueva información a partir de la ya disponible. Cuando la información requerida es de tipo cuantitativo una de las técnicas para obtenerla es el cálculo aritmético. Definir el
problema consiste en plantear una cuestión mediante un enunciado que permita llegar a una solución.

Los pasos 1 y 2 a veces no conviene diferenciarlos excesivamente para no confundir al alumno. En un principio se pueden trabajar conjuntamente mediante la técnica de “inventar preguntas”, que consiste en que el alumno trate de enunciar problemas a partir de la información disponible sobre una situación; la única limitación que se impone es que la pregunta planteada tenga sentido real, signifique algo para el alumno que la plantea, y debido a ello sea capaz de justificar y explicar su pregunta delante de sus compañeros.

3. **Elaborar Estrategias para dar respuesta al problema.** Las posibilidades de responder a un problema o cuestión son por lo general múltiples, y más aún cuando se trabaja sobre un contexto real con significado; en el que se da una mayor riqueza de posibilidades de actuación sobre los datos y relaciones de la información.

Cuando estamos ante un problema cuantitativo una forma posible de darle respuesta es empleando técnicas aritméticas. Pero conviene destacar que además de aritméticamente siempre hay otras posibilidades de responder al problema: manipulativas, gráficas, con empleo de instrumental, etc.

El alumno debe plantearse una posibilidad numérica de resolución y otra no numérica al menos, discutiendo además cual es más conveniente según la situación concreta en la que se encuentra.

En este curso las estrategias se van a mover en tres niveles: manipulativas, gráficas y numéricas, pero sin trabajar ninguna de las estrategias convencionales que se conocen para la R.P., tales como Simplificar, Buscar Regularidades, etc., En este caso concreto intentamos que el alumno entienda que la solución numérica es una posibilidad de trabajo entre varias alternativas, y que siempre una posibilidad para lograr la solución consiste en actuar físicamente o manipular objetos.

4. **Actuación fundada en la Estrategia.** Consiste en resolver el problema planteado según la estrategia elegida, comparando incluso la correspondencia existente entre el proceso numérico y el manipulativo, e interpretando las posibles diferencias que puedan aparecer.

De nuevo añadimos nosotros aquí otra etapa de comparación de estrategias, que nos parece de especial interés para el alumno de este nivel porque le permite recorrer de nuevo el ciclo que va desde la mani-
pulación, pasando por la verbalización, conducta del relato y representación gráfica, a la expresión simbólica que suponen las relaciones numéricas, volviendo a cerrarse el ciclo cuando las operaciones se interpretan de nuevo como acciones sobre los objetos.

En esta fase conviene trabajar al máximo las correspondientes entre las cuatro operaciones y las acciones básicas de agregar, suprimir, reiterar y repartir, junto con sus variantes más usuales.

Por lo general, esta etapa de Comparación de estrategias debiera estar superada al finalizar el Ciclo Medio. En nuestro caso no tenemos seguridad de que se haya realizado, o al menos de que se haya hecho con toda la riqueza de matices y situaciones conveniente. Por ello hemos elegido este curso, en el que iniciamos a los alumnos en una nueva técnica de R.P., para hacer un repaso del máximo de acciones reales que se simbolizan mediante cada operación.

5. Logros: Evaluación de los efectos de la actuación. Consiste en comprobar la adecuación del resultado obtenido en el contexto inicial. Dar las unidades de la solución, ver que el resultado no es absurdo, discutir las diferentes interpretaciones que puede tener la solución e incluso, si la solución no es única, ver cada solución concreta a qué datos complementarios —por lo general no explicitados— corresponde. La verificación del resultado se realizará teniendo en cuenta diferentes estrategias de resolución. Por ello conviene hacer no sólo verificaciones numéricas sino también gráficas y manipulativas. En esta fase es importante poner de relieve que una solución incorrecta supone un desajuste entre la totalidad de datos y relaciones del problema. Una respuesta equivocada tiene consecuencias físicas reales y tangibles que conviene que el alumno tenga presentes.

Estas cinco fases son nuestra interpretación al método IDEAL de solución de Problemas, que pueden estudiarse con más detalle en el libro “Solución IDEAL de problemas” de Bransford, J.D. y Stein, B.S.

Nuestra estrategia de actuación en el aula está montada sobre el desarrollo de las cinco fases anteriores, y el detalle de su desarrollo para cada tema concreto puede verse en los capítulos dedicados al trabajo de los Equipos A y B de la experiencia, en esta memoria.

Para el seguimiento de nuestro estudio hemos trabajado en dos niveles. A) por una parte hemos hecho un estudio sobre una población escolar con un diseño experimental, y cuyo esquema de trabajo resumimos a continuación:
Muestra elegida: 673 alumnos, de 20 unidades escolares. Se aplica pretest sobre resolución de problemas C. Medio.

Gruppo experimental: 355 alumnos, de 10 unidades escolares

Tema de trabajo común elegido trimestralmente del Cuestionario Oficial. Se proporciona una Programación del tema de trabajo.

A todos los profesores se les proporcionan situaciones reales relacionadas con el tema. Se le da un guión del desarrollo detallado de cada una de las situaciones. Todos ellos conocen el método IDEAL para resolución de problemas y lo aplican.

Se trabaja usualmente con el libro y material propios. No se sigue ninguna técnica especial convenida.

Se somete a la muestra una prueba aritmética relativa al tema de trabajo. Postest: prueba final general sobre todo el Cuestionario.

Se estudian los resultados comunes y diferenciados.

Conclusiones
B) También hemos trabajado en un segundo nivel, en el que hemos realizado un estudio clínico sobre una muestra de seis alumnos no integradas en ninguno de los dos grupos anteriores.

Este trabajo lo ha llevado a cabo el Equipo D, Responsable del Estudio de Casos. Se ha trabajado aquí con técnicas e instrumentos prioritariamente cualitativos, empleando técnicas de grabación para las discusiones con el grupo completo o para las entrevistas individuales. El Plan de trabajo seguido se ha ajustado a los guiones preparados para la actuación en el aula, en pequeñas modificaciones debidas a las peculiaridades de un grupo pequeño.

Una mayor interacción entre los dos niveles de trabajo en la experiencia (experimental-estudios de casos) y un empleo más sistemático de ambas técnicas generales de valoración debe preverse para próximas etapas de la investigación.

En los siguientes capítulos se desarrollan los trabajos realizados por cada uno de los Equipos que participan en la experiencia y las conclusiones a que llegan.

3. TRABAJO REALIZADO POR EL EQUIPO DE APOYO A LA EXPERIENCIA

3.1. Plan General

A lo largo del curso el Equipo de Apoyo a la Experiencia ha elaborado una serie de guiones de trabajo correspondientes a los temas, previamente seleccionados para cada trimestre, sobre los cuestionarios de sexto nivel.

Los guiones contienen la información básica sobre el contenido de trabajo correspondiente a cada trimestre.

Estructuralmente cada guión se compone de dos partes:

- La primera, común, para todo el profesorado, (tanto para los grupos de control como del experimental), contiene un análisis de tareas referentes al alumno y al profesor, sobre los objetivos correspondientes al tema a tratar, y de una serie de situaciones que se consideran idóneas a la hora de tratar el tema.
La segunda trata de orientar el Plan de Actuación en el Aula del Grupo Experimental, y por tanto, va exclusivamente dirigida a los profesores del mencionado grupo.

Esta segunda parte consta a su vez de:

* Una serie de consideraciones metodológicas en las que se sule hacer referencia a las etapas del método I.D.E.A.L. para la resolución de problemas, aplicadas específicamente al tema a tratar en ese trimestre.

* Un guión de trabajo sobre las situaciones seleccionadas en el tema a tratar en ese trimestre. Este guión incluye:

1. La enumeración del material necesario para utilizar en el aula.
2. Una breve descripción de cada una de las sesiones a desarrollar.
3. La temporalización, a título orientativo, de cada una de las sesiones.

Se eligieron tres temas de trabajo, uno para cada trimestre, considerados como los más representativos de los cuestionarios de sexto nivel.

Para el primer trimestre se tomó como Tema de Trabajo el de las Fracciones, para el segundo trimestre la Longitud y para el tercero la Superficie.

A la hora de seleccionar las situaciones correspondientes a cada trimestre debimos hacerlo con arreglo a unos criterios:

a) Todas las situaciones propuestas deben pertenecer al entorno social del alumno.

b) El material y recursos necesarios para su desarrollo deben ser accesibles para el alumno.

c) Carácter manipulativo.

Las situaciones preparadas fueron:

Para las fracciones (tableta de chocolate, mural sobre supermercado, distintos tipos de refrescos, el periódico).

Para las longitudes (mido mi cuerpo y los objetos de mi clase, hago el plano de mi clase y del resto del colegio).
Para las superficies (construimos el plano de una casa).
A continuación aparece el material que se le entregó a todos los profesores de la experiencia y el que se le entregó solo al grupo experimental.

3.2. Material para el profesorado que participa en la investigación. Primer trimestre

3.2.1. Calendario general del desarrollo de la investigación.

Este material se le entregó a todos los profesores de la investigación.

* Del 8 al 12 de setiembre, reunión con los profesores que van a llevar la experiencia:
 a) Se explica el calendario general.
 b) Se entrega un guión para la primera quincena del curso, con la hoja de estructura de preguntas para cada operación con ejemplo de situaciones.
* Del 15 al 29 de setiembre, repaso con los alumnos de las estructuras de problemas de Ciclo Medio. Se repasan todos los casos de una operación; en los que interviene varias operaciones, las más frecuentes.
* Del 1 al 3 de octubre aplicación del pretest.
* Antes del 8 de octubre entrega de los resultados del pretest, división del Grupo en Experimental y Control; entregar el material sobre fracciones y operaciones.
* Antes del 10 de noviembre prueba de fracciones.
* Antes del 15 de diciembre, prueba de operaciones con fracciones.
* Del 19 al 23 de enero entrega del material de longitudes.
* Quince días antes de Semana Santa, prueba de longitudes. (entre el 25 y 30 de marzo).
* En la primera semana del tercer trimestre entrega del material relativo a superficies.
* Veinte de mayo como fecha tope para aplicar la prueba de superficies.
* Antes de 10 de junio aplicar la prueba final.

3.2.2. **Guión de trabajo para la primera quincena (15-30 septiembre).**

Este material se le entrega a todos los profesores de la investigación.

Al comenzar el Ciclo Superior el alumno tiene una información bastante amplia sobre resolución de problemas y operaciones aritméticas. Conviene sin embargo hacer un repaso general sobre los problemas de una operación ya estudiados en el Ciclo Medio.

Un objetivo fundamental de esta quincena de trabajo, es recordar los principales problemas tipo estudiados en el Ciclo Medio, e identificar de forma inmediata qué operación concreta debe emplearse en cada caso.

Una forma de comenzar el trabajo puede ser realizar preguntas en clase del siguiente estilo:

- "¿Qué situaciones nos ayuda a resolver la suma?"
- "¿Qué situaciones nos ayuda a resolver la resta?"
- "¿Qué situaciones nos ayuda a resolver el producto?"
- "¿Qué situaciones nos ayuda a resolver la división?"

Para cada una de las operaciones debe dedicarse una sesión de trabajo, y debe aprovecharse para hacer un repaso de las dificultades principales de la operación correspondiente.

Las situaciones que pueden trabajarse en cada operación vienen resumidas y sintetizadas al final de este guión. El alumno expresará esas situaciones utilizando verbos propios: reunir, juntar, quitar, repartir, etc... e indicando así mismo situaciones de la vida real en las que se aplican o pueden aplicarse las operaciones.

Como método en clase pueden pedirse preguntas cuya respuesta se haga empleando una operación concreta, discutiéndola en clase y generalizando la pregunta y situación propuestas.

Con el fin de ayudar a los profesores que realizan la experiencia en el aula se le entrega la siguiente clasificación.
CLASIFICACION DE SITUACIONES ATENDIENDO A LA OPERACION QUE INTERVIENE Y A LA ESTRUCTURA SEMANTICA

A) SITUACIONES DE SUMAR

1. COMBINACION: Conocidas dos o más cantidades, ¿cuánto en total?
2. CAMBIO: Conocido lo que se reúne o gasta después de varias acciones, ¿cuánto en total?
3. COMPARACION:
 3.1 Tiene y otro tiene más que él, ¿cuánto tiene el segundo?
 3.2 Tiene y otro tiene tanto menos que otro, ¿cuánto tiene el segundo?

B) SITUACIONES DE RESTAR

1. COMBINACION: Conocido un total y una parte de él, ¿cuánto es la otra?
2. CAMBIO:
 2.1 Hay y se realiza una acción que supone pérdida, ¿cuánto queda?
 2.2 Hay y se realiza una acción que supone pérdida y se conoce lo que queda, ¿cuánto se pierde?
 2.3 Se conoce el total de una acción y uno de sus componentes, ¿cuál es el otro?

3. COMPARACION:

 3.1 Conocidos dos datos:
 3.1.1 ¿Cuánto uno más que otro?
 3.1.2 ¿Cuánto uno menos que otro?
 3.1.3 ¿Cuánto falta o sobra?

 3.2 Conocido un dato mayor y en cuanto supera a otro, ¿cuál es el otro?

C) SITUACIONES DE MULTIPLICAR

36
1. COMBINACION:

1.1 Cada bloque tiene "n" objetos, ¿cuántos hay en "h" bloques?

1.2 Pasar una cantidad a una unidad inferior (de múltiplo o unidad fundamental; de unidad fundamental a divisor)

2. CAMBIO:

2.1 Conocido el resultado de una acción, ¿cuánto se obtiene al reiterar dicha acción? (se gasta o se reune)

2.2 Conocidas las partes de un reparto y lo que corresponde a cada una, calcular el total.

3. COMPARACION:

3.1 Hacer "n" veces mayor una cantidad

3.2 Calcular una cantidad conocida otra "n" veces menor

D) SITUACIONES DE DIVIDIR

1. COMBINACION:

1.1 Conocido un total de objetos y los que hay en cada bloque, ¿cuántos bloques hay?

1.2 Conocidos un total de objetos y el número de partes en la que están divididos, ¿cuántos objetos en cada parte?

1.3 Pasar una cantidad a una unidad superior, (de unidad a múltiplo o de divisor a unidad fundamental)

2. CAMBIO:

2.1 Conocido el resultado de varias acciones equivalentes y lo que se añade en cada acción, ¿cuántas veces se ha hecho?

2.2 Conocido el resultado de varias acciones equivalentes y el número de acciones que se realizan, ¿cuánto cada vez?
2.3 Reparto (¿cuántas partes?, ¿cuánto en cada parte?)

3. COMPARACIÓN:

3.1 Calcular las veces que una cantidad está contenida en otra.
3.2 Conocido el valor de "n" unidades, ¿cuánto es la unidad?
3.3 Calcular una unidad fraccionaria de una cantidad

3.2.3. Programación para el tema de trabajo "Fracciones"

Este material se le entrega a todos los profesores que participan en la investigación.

Bloques de trabajo:

1. Concepto de fracción; lectura y escritura; fracciones propias e impropias; números mixtos.
2. Las fracciones equivalentes.
3. Suma y resta de fracciones.
4. Producto de fracciones.
5. Cociente de fracciones.
6. Orden de fracciones.

Objetivos

1. Resolver numéricamente situaciones en las que es necesario fraccionar y/o calcular el valor de varias unidades fraccionarias de una misma cantidad.
2. Reconocer y formar fracciones equivalentes a una dada comprobando su equivalencia a partir de una situación real.
3. Determinar la resolución numérica de situaciones problemáticas de la vida real donde aparezcan sumas y restas de fracciones, indicando entre qué valores se encuentra el resultado de dichas operaciones.
4. Resolver enunciados problemáticos en los que intervengan un máximo de dos factores (uno natural y otro fraccionario, o
bien los dos fraccionarios) referidos a una o dos magnitudes, utilizando la técnica más adecuada.

5. Resolver enunciados problemáticos en los que aparezca un cociente de fracción (natural/fracción; fracción/natural; o fracción/fracción) utilizando la técnica más adecuada.

6. Resolver enunciados problemáticos en los que aparezca una comparación de tres fracciones como máximo, utilizando las distintas técnicas y procedimientos posibles (manipulativo, gráfico o numérico).

Situaciones

A) Situaciones con cantidades discretas (los objetos se cuentan) personas, dinero, objetos, rompecabezas, cromos, pegatinas,...

B) Situaciones con cantidades contínuas (los objetos se miden): peso, capacidad, tiempo, longitud, superficies,...

C) En los conceptos que surgen sobre la noción de fracción conviene respetar siempre las siguientes etapas:
 1. Manipulación con objetos concretos: cuartillas fraccionadas, cordelas con señales, maderas, tizas, reloj,...
 2. Representación gráfica mediante figuras geométricas de los fraccionamientos anteriores: círculo, rectángulo, triángulo, segmento,...
 3. Cálculo numérico de fracciones de una cantidad y simbolización.

Análisis de tareas.

Tareas para el profesor

Trabajar con enunciados que se ajusten a los siguientes tipos:

1. Calcular la unidad fraccionaria de una cantidad.

2. Calcular k unidades fraccionarias de una cantidad, en los siguientes casos:
 a) k menor que n
 b) k = n
 c) k mayor que n
 (k es el numerador y n el denominador).
3. Conocida una fracción de cantidad, determinar dicha cantidad.
4. Conocida una fracción de cantidad, determinar "m" veces dicha cantidad.
5. Conocida una fracción de una cantidad, calcular otra fracción de la misma.

* Utilizar distintas técnicas de resolución:
 - Manipulativas
 - Gráficas
 - Numéricas

* Formar fracciones equivalentes en los siguientes casos:
 a) Equivalentes a partes de la unidad
 b) Equivalentes a la unidad
 c) Equivalentes a una fracción mayor que la unidad

* Utilizar distintas técnicas para la justificación del concepto de fracción equivalente

* Trabajar con enunciados problemáticos de suma y resta de fracciones con un denominador inferior a doce y no más de 3 fracciones.

* Trabajar con productos de natural por fracción o fracción por fracción, donde aparezcan una o varias magnitudes.

* Trabajar con cocientes de natural por fracción, fracción por natural y fracción por fracción, donde aparezcan una o más magnitudes.

* Utilizar las distintas estructuras de problemas (cambio, combinación, comparación, igualación) en todos los casos anteriores.

* Comparar un máximo de tres fracciones utilizando correctamente las distintas técnicas algorítmicas más adecuadas.

Temporalización

Se trabajará este tema a lo largo del primer trimestre, respetando fechas de aplicación de pruebas ya indicadas.
3.2.4. Material preparado para resolución de problemas sobre fracciones con el método IDEAL.

Este material se le entrega sólo al Grupo Experimental.
Consideraciones metodológicas.

Se trata de iniciar al alumno en una técnica más amplia de resolución de problemas. Para ello se quiere superar la idea que resolver un problema consiste sólo en realizar las operaciones numéricas "correctas" con una serie de datos dados. Resolver problemas supone un esquema más amplio, y que conlleva cinco etapas:

1. **Identificar problemas**
 Ante situaciones reales conviene adiestrar al alumno para que se planteen preguntas con significado, que incluyan o no datos numéricos o bien sean de tipo cualitativo, pero que en todo caso tengan interés real.

2. **Definir problemas**
 Planteada la pregunta o hecha una reflexión sobre lo que puede interesar de una situación, se puede obtener nueva información a partir de información conocida o fácilmente accesible. En el caso de situaciones que se resuelven con operaciones aritméticas "definir el problema" consiste en elaborar un enunciado con solución o que lleve a una solución.

Los pasos 1 y 2, conjuntamente, es lo que también se llama invención de preguntas o enunciados: a partir de una información real el alumno se plantea obtener más información que está conexionada con la información disponible.

Esta etapa es importante: conseguir que el alumno reflexione sobre el hecho de que hay cuestiones que interesa conocer (y por qué motivo en cada caso) y que dichas cuestiones pueden responderse a partir de la información disponible.

3. **Elaborar estrategias para dar respuesta al problema**
 Las posibilidades de responder a un problema o cuestión planteadas son por lo general múltiples, dependiendo la mayor o menor riqueza de posibilidades de las circunstancias en las que nos dan la información. Cuando estamos ante un proble-
ma cuantitativo una forma posible de darle respuesta es empleando técnicas aritméticas. Pero conviene destacar que además de aritméticamente siempre hay otras posibilidades de responder al problema; manipulativas, gráficas, con empleo de instrumental, etc. El alumno debe plantearse una posibilidad numérica de resolución y otra no numérica, al menos, discutiendo además cuál es más conveniente según la situación concretas en la que se encuentra.

4. **Actuación fundada en la estrategia**
Consiste en resolver el problema planteado según la estrategia elegida, comparando incluso la correspondencia existente entre el proceso numérico y el manipulativo, interpretando las posibles diferencias que puedan aparecer.

5. **Logros: evaluación de los efectos de la actuación**
Consiste en comprobar la adecuación del resultado obtenido en el contexto inicial: dar las unidades de la solución, ver que el resultado no es absurdo, verificar numéricamente el resultado.

Estas cinco fases corresponden al método IDEAL de resolución de problemas que puede estudiarse con más detalle en el libro "Solución IDEAL de problemas" de Bransford, J.D. y Stein, B.S.

Pretendemos demostrar que un dominio completo de las cinco fases de la estrategia antes descrita mejora apreciablemente la resolución de los Problemas Aritmética Expresión Verbal (PAEU), es decir los conocidos problemas aritméticos clásicos.

La metodología a seguir por el Grupo Experimental va a consistir en trabajar a fondo esta estrategia sobre cuatro situaciones ya seleccionadas en el Primer Trimestre.

SITUACIONES.

PRIMERA SITUACION: “LA TABLETA DE CHOCOLATE”

1. **Material necesario en clase**
 * Una tableta cada cuatro niños (aproximadamente 10 tabletas).
 * Un peso o balanza que marque hasta 5 ó 10 gramos.
 * El coste de la tableta en monedas sueltas.
* Cartón o cartulina para representar la tableta a tamaño real y tijeras.
* Papel, lápices, gomas, reglas, etc (el material escolar normal).

2. Sesiones en las que se va a trabajar
1ª Sesión, 10 minutos, objetivo: Identificar problemas.
2ª Sesión, 1 hora, objetivo: Definir Problemas y Elaborar estrategias de respuesta.
3ª Sesión, 1 hora, objetivo: Actuación fundada en la estrategia y evaluar el resultado.
4ª Sesión, 1 clase, objetivo: Resolver problemas.

3. Desarrollo de cada sesión
3.1. Primera Sesión: durante 10 minutos.
El profesor presenta un paquete en el que está envuelta la tableta y pide plantear preguntas sobre dicho paquete. Entre las preguntas planteadas deben aparecer: ¿Qué hay en el paquete?’’ u otras similares.
Se piden soluciones a la pregunta en realidad con conjeturas.
Discutir cómo se comprueba la realidad de las respuestas aportadas, desechando las que sean obviamente absurdas (previa aclaración).
Comprobar cuál de las respuestas se ajusta más a la realidad externa.
Nuevas cuestiones:
— ¿Se trata en realidad de chocolate?
— ¿Qué tipo de chocolate es?, ¿Qué calidad tiene?
— ¿Para que suele emplearse?
De nuevo ante el planteamiento de preguntas se proponen soluciones y se indican métodos de comprobación y se verifican cuando es posible.

CONCLUSION: Se pide a los alumnos que traigan para el próximo día tres cuestiones que cada uno pueda plantearse respecto de una tableta de chocolate.
El objetivo de esta primera sesión consiste en adiestrar a los alumnos en la Identificación de Problemas, insistiendo en que se planteen cuestiones significativas y que se acomoden a la situación considerada: tableta de chocolate.
3.2. Segunda Sesión duración 1 hora.
El tiempo se distribuirá en tres fases.

3.2.1. PRIMERA FASE: 25 minutos.
En equipos de 4 discuten las preguntas que cada uno ha aportado; dan respuestas a las que sean posible e intentan explicar por qué no pueden dar respuesta a las restantes.
Clasifican sus preguntas en dos grupos:
— Preguntas con respuesta.
— Preguntas sin respuesta.
Una nueva reflexión consistirá en clasificar las preguntas según incluyan o no datos cuantitativos y, en su caso, sea necesario realizar operaciones para responderlas. Para ello realizarán una nueva clasificación con los criterios:
— Cuestiones en las que para responder es necesario hacer cuentas.
— Cuestiones en las que para responder no es necesario hacer cuentas.

3.2.2. SEGUNDA FASE: 20 minutos.
El trabajo es colectivo. En esta segunda fase se reflexiona y trabaja sobre las preguntas que no tienen respuesta inmediata, clasificadas anteriormente. Salvo que la pregunta carezca de significado (absurda) debe dar lugar a una o varias respuestas, es decir si se plantea un problema debe ser posible su solución; por ello hay que dotar de precisión a la cuestión planteada “Definir problemas” haciendo caer en la cuenta a los alumnos en la falta de precisión, información insuficiente, incongruencia de algunos datos, etc.
A continuación se trabaja sobre los posibles medios o técnicas de encontrar respuesta a las preguntas planteadas: “Elección de estrategia”, destacando las técnicas de pesada, medida o cualquier otra que implique manipulación. Procurarán dejarse de lado al comienzo las técnicas estrictamente numéricas, presentándolas en último lugar como otra posible vía de dar respuesta a una pregunta.
La cuestión a destacar en esta fase es: las preguntas deben precisarse dentro de un contexto: deben estar bien definidas, y además siempre hay varias estrategias para responderlas.

3.2.3. TERCERA FASE: 15 minutos.
Entregar la tableta de chocolate y que cada componente del equipo redacte 5 cuestiones que él pueda o quiera conocer a partir de los datos que le proporciona la tableta, y en tres de ellas han de intervenir fracciones.
Cada alumno intercambia con un compañero para intentar resolver en su casa las cuestiones planteadas por éste.
En esta tercera fase debe quedar claro que los conceptos asociados a la noción de fracción proporcionan técnicas adecuadas para responder a preguntas en las que están en juego relaciones de parte a todo.
Al finalizar la sesión es necesario que el Profesor haga una selección de las preguntas más significativas o de mayor interés realizadas por los alumnos. Con estas preguntas se elabora una lista de 10, que abarquen diferentes aspectos de la fracción, se pasan a multicopia y se entregan a los alumnos para que den respuesta a las mismas. Las respuestas que se den no tienen por qué ser numéricas. Caso de que los alumnos no propongan preguntas de algún tipo importante serán incluidas por el Profesor, bien en este momento o en la sesión siguiente.

3.3. Tercera Sesión: duración 1 hora.
Resolver las cuestiones propuestas por los alumnos en gran grupo con los siguientes pasos:

a) Discutir brevemente el interés de la pregunta y el sentido.

b) Ensayar respuestas sin haber operado y que sean coherentes con los datos del enunciado.

c) Emplear más de una estrategia para su solución por lo que los alumnos deben modificar las circunstancias y con motivo de ello el cambio de estrategia está justificado por
esas modificaciones.

d) Comprobar que la solución es la real: hay que verificar la congruencia de la solución con la información disponible y con los ensayos efectuados por los alumnos. Se emplearán las mismas técnicas que las utilizadas para encontrar la solución.

No es conveniente trabajar sobre todas las preguntas realizadas por los alumnos, sino sólo sobre una selección de ellas, incluyendo el máximo de cuestiones que faciliten el dominio de los objetivos propuestos sobre el aprendizaje de fracciones, si bien alguna de las cuestiones puede ser distinta o no cuantitativa.

Sobre las cuestiones seleccionadas conviene realizar variantes, es decir, modificar algunos de los datos o circunstancias, y volver a discutir las estrategias de resolución u obtención de respuestas a las cuestiones planteadas.

3.4. Cuarta Sesión: duración 1 hora.

Se resuelven los problemas en el Aula bajo las observaciones e indicaciones del Profesor; se puede hacer puesta en común de los más significativos, pero el trabajo en esta sesión es fundamentalmente individual.

Las indicaciones del Profesor se harán teniendo en cuenta en qué fase se encuentra el alumno dentro de la estrategia de resolución y ayudándole a reflexionar sobre qué información necesita, qué estrategia puede utilizar, qué significado tiene la situación sobre la que trabaja o la cuestión que se plantea, etc. Es decir, en cada caso el Profesor debe identificar la fase en la que se encuentra el alumno y apoyar una actuación reflexiva del mismo con algún comentario o analogía. Nunca debe facilitarse el proceso o mecanismo a seguir (fórmula) o cuál es la solución.

SEGUNDA SITUACION: MURAL SOBRE SUPERMERCADO

1. Material necesario en clase

 * Mural en cartulina sobre el supermercado. (ver pág. 53 y 54).
* Una fotocopia para cada alumno de la ilustración sobre el supermercado.
* Peso o báscula.
* Dinero
* Cartelones para completar precios.
* Cartulina. Tijeras.
* Si es posible algún alimento o producto de los dibujados.
* Rotuladores para marcar precios.

2. Sesiones en las que se va a trabajar

2.1. Primera sesión. Objetivo: Presentar la situación y discutir la información.

3. Desarrollo de cada sesión

3.1. Primera sesión: duración 5 minutos.
Se presenta a los alumnos el mural del supermercado indicándoles que se van a hacer problemas sobre él.
Se entrega a cada alumno una fotocopia del supermercado para que investigue sobre los precios que faltan, pidiéndoles que los traigan sobre cantidades enteras (1 kg, 1 l., 1 queso,...) y sobre fracciones de ellas en los casos que realmente se utilicen.
El objetivo de esta sesión consiste en que el alumno aprecie la "realidad" de la información, localizándola por medios propios.

3.2. Segunda sesión: duración 1 hora.
Se completa la información que hay en el mural, con los datos aportados por los alumnos. Como es posible que existan diferencias de precio se discute sobre ellas apuntando las razones que se creen las motivan, y se componen los carteles con los precios. Los alumnos también escriben los precios en su dibujo.
Completaba el cartel se pasa a identificar problemas, y a definirlos pidiéndole a los alumnos que cada cuestión tenga una componente fraccionaria. Cuando un alumno proponga una cuestión que el profesor considere apro-
piada para conseguir los objetivos propuestos hará que los alumnos la escriban y se comienza a elaborar estrategias para su resolución.

Los alumnos resolverán en su casa las cuestiones o problemas que haya dado tiempo a discutir en clase siguiendo más de una estrategia para su resolución y para su comprobación. Se debe intentar que sean entre 5 y 10, las cuales se llevarán al Seminario para formar un listado con los problemas empleados.

3.3. Tercera sesión: duración 1 hora.

Los alumnos presentan en clase en sesión coloquial a todos sus compañeros la estrategia que han seguido para la resolución o para su comprobación. Deben plantearse en clase todas las estrategias empleadas por lo que en esta sesión hay que tener presente el material previsto o aquel otro que se haya visto necesario a través de las distintas sesiones.

No debe aceptarse sin discusión ni verificación por la totalidad de los alumnos las soluciones que se vayan aportando.

Una vez analizados los 5 ó 10 problemas que los alumnos han realizado en casa se debe intentar, mediante un diálogo con ellos, hacer un listado de situaciones que los alumnos han debido superar a partir del conocimiento del concepto de fracción. Como orientación deberán aparecer los siguientes aspectos:

1. Calcular una fracción de: a) una cantidad; b) una unidad.
2. Cálculo de la unidad conocida una unidad fraccionaria de ella.
3. Cálculo de la unidad conocida una fracción de ella.
4. Cálculo de la fracción de una cantidad conocida otra fracción de ella.

Estos cuatro aspectos son los ya señalados como Tareas del Profesor en la pg. 5 del Material preparado para el Primer Trimestre.

Por cada uno de los aspectos que aparezcan el alumno
debe redactar un problema. Cuando el profesor recoja esta serie de problemas tendrá un listado con los que sean diferentes y los tendrá preparados para el momento que vaya a repasar estos aspectos del tema, o bien los irá mandando como trabajo complementario a realizar en el Aula o en casa. Se trata de este modo que las tareas de repaso y refuerzo hayan sido discutidas previamente en el Aula, y los alumnos las conciban significativamente dentro de un proceso de aprendizaje.

TERCERA SITUACION: DISTINTOS RECIPIENTES DE REFRUCOS

1. Material necesario en clase.
 * Botellas llenas de refrescos de cada una de las medidas. Deben emplearse botellas de 2 l, 1,5 l, 1 l, ½ l, 1/3 l, ¼ l y 1/5 l. (No se pueden beber hasta el final de las tres sesiones ya que los alumnos deben ver hasta dónde están llenas).
 * Botellas vacías de la misma clase que las anteriores.
 * Dinero
 * Medidas de capacidad.
 * Embudos.
 * Cubeta.
 * Material escolar normal (cartulina, papel, tijeras, reglas,...)

2. Sesiones en las que se va a trabajar
 2.3. Tercera sesión. Objetivo: Resolver problemas.

3. Desarrollo de cada sesión.
 3.1. Primera sesión: duración 5 minutos.
 Una vez terminada la parte teórica de suma, resta y comparación de fracciones se indica a los alumnos que se van a hacer problemas utilizando refrescos.
 El profesor encarga a sus alumnos que comprén los refrescos y que traigan los envases vacíos. Les indica marcas y tamaños.
3.2. Segunda sesión: duración 1 hora.
En trabajo de grupo coloquial, dirigido por el profesor, se presenta el material que se ha comprado y se discuten todas las indicaciones de los envases, tendiendo a que los alumnos hagan preguntas sobre ellos tanto cualitativas como cuantitativas. Las preguntas en las que se detecten los aspectos más interesantes se intentarán resolver siguiendo las indicaciones ya hechas para la tercera sesión de la primera situación.
En los últimos 15 minutos de esta sesión se pedirá a los alumnos que redacten cinco cuestiones de las que al menos tres tengan que ver con la suma, resta o comparación de fracciones y relativas al material que se maneja. De éstas el Profesor hará una selección de las 10 más significativas para trabajar con ellas en la siguiente sesión.

3.3. Tercera sesión: duración 1 hora.
Igual que la cuarta sesión de la primera situación.

CUARTA SITUACIÓN: “EL PERIODICO”

1. Material necesario en clase.
 * Periódicos (dos o tres por equipo de cuatro alumnos)
 * Tijeras.
 * Información para cada alumno sobre la composición de un periódico.

2. Sesiones en las que se va a trabajar.
 2.2. Segunda sesión: elaborar estrategias, actuar de acuerdo con la estrategia y evaluar el resultado.
 2.3. Tercera sesión: resolver problemas en el aula de acuerdo con lista elaborada en clase, completada por el Profesor.

3. Desarrollo de cada sesión.
 3.1. Primera sesión: duración 1 hora.
 Se entrega a cada alumno la información sobre la composición de un periódico para que después de leerla se pase a un periodo de reflexión sobre ella, comentando
los aspectos que se tratan en cada apartado.
Se forman equipos y se le entregan periódicos para que
los alumnos localicen en ellos las distintas secciones y
completan el siguiente cuadro:

<table>
<thead>
<tr>
<th></th>
<th>N° páginas</th>
<th>Fracción</th>
<th>de</th>
<th>periódico</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granada</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
</tr>
<tr>
<td>España, deportes y publicidad</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sociedad y cultura, pasatiempos</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio, T.V.</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opinión</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucesos</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resto del mundo</td>
<td></td>
<td>~</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los alumnos redactarán en su casa cuatro cuestiones re-
lativas a los periódicos que han analizado en las que in-
tervengan operaciones con fracciones. Cada una de es-
tas cuestiones será relativa a una operación distinta.

3.2. Segunda sesión: duración 1 hora.
Los alumnos trabajarán según lo indicado en la tercera
sesión de la primera situación.

3.3. Tercera sesión: duración 1 hora.
Similar a la cuarta sesión de la primera situación.

INDICACIONES GENERALES

El trabajo total del Trimestre, para el Grupo Experimental,
comprende:

1ª Situación 4 sesiones duración total 3 h 15 min.
2ª Situación 3 sesiones duración total 2 h 5 min.
3ª Situación 3 sesiones duración total 2 h 5 min.
4ª Situación 3 sesiones duración total 3 h

TOTAL: 10 h 20 min.

Cada situación se trabajará en días consecutivos (uno por sesión)
siempre que esto no entorpezca un desarrollo sensato de la situación
correspondiente (por búsqueda de la información, o conclusión de actividades o discusiones iniciadas, etc). No debe dejarse tiempo muerto intermedio.

La primera situación se presentará a continuación de haber estudiado los contenidos relativos a fraccionar, fracción, lectura y escritura de fracciones y situaciones en las que se plantean las fracciones; antes de presentar la equivalencia de fracciones.

La segunda situación se presentará una vez concluido el estudio de la equivalencia de fracciones y concepto de número racional, antes del estudio de las operaciones.

La tercera situación se presentará concluido el estudio de la suma, resta y orden, antes del producto.

La cuarta situación una vez concluido el estudio de todas las operaciones.

Las sesiones en clase, con carácter general, serán:

1. De trabajo autónomo, individual o por pequeños grupos, según proceda en cada momento. El Profesor observa la marcha del trabajo y ayuda ante cualquier dificultad.

2. De trabajo en grupo coloquial, dirigido por el Profesor, con participación de toda la clase e intervención de los alumnos, bien por sus observaciones y comentarios, bien con una intervención más directa en la pizarra.

Murales para la segunda situación
3.3. Material para el profesorado que participa en la investigación. Segundo Trimestre.

3.3.1. Programación para el Tema de trabajo "La Longitud"

Este material se le entrega a todos los profesores que participan en la investigación.

Bloque de trabajo.

Concepto de longitud. Unidades de medida. Operaciones con longitudes.

OBJETIVOS

1. Identificar en situaciones del ámbito escolar, familiar, social y natural, dimensiones, distancias y trayectorias.

2. Enumerar motivos o situaciones de la vida real en las que sea necesario medir distancias, dimensiones o trayectorias.

3. Describir técnicas para medir dimensiones, distancias y trayectorias.

4. Utilizar instrumentos usuales de medida, universales y locales, para experimentar y medir cantidades de la magnitud longitud.

5. Cuantificar situaciones de la vida real relativas a longitudes seleccionando la unidad, operando con las cantidades y expresando el resultado en la unidad más adecuada.

6. Distinguir, de entre varias situaciones, aquellas que expresan longitud de las que no la expresan.

7. Dada una situación y varias unidades, (todo ello referido a la magnitud longitud), elegir la más idónea para realizar la medición.

8. Planteada una situación por la que una cantidad expresada en una unidad de longitud hay que convertirla o expresarla en otra unidad, y diversos criterios para realizar tal conversión, reconocer cuál es el criterio correcto.
9. Resolver enunciados problemáticos en los que aparecen, al menos, dos longitudes y que se resuelven mediante una suma o una resta:
 a) Estando las medidas expresadas en forma incompleja.
 b) Estando las medidas expresadas en forma compleja.

10. Resolver enunciados problemáticos por los que conozcamos una longitud hay que calcular n veces.

11. Resolver enunciados problemáticos en los que haya que comparar longitudes:
 a) Conocidas dos longitudes calcular la diferencia.
 b) Conocida una longitud A y la diferencia con otra longitud B, calcular B.
 c) Calcular las veces que una longitud está contenida en otra.

12. Resolver enunciados problemáticos referentes a longitudes y que precisen de dos operaciones:
 a) Suma y resta.
 b) Suma y producto.
 c) Suma y división.
 d) Resta y producto.
 e) Resta y división.
 f) Producto y producto.
 g) Producto y cociente.

13. Calcular fracciones de longitudes.

SITUACIONES en las que puede trabajarse.

A) DIMENSIONES

a1) Corporales:
 Rodilla-pie
 Brazos extendidos
 Codo-mano
 Pie
 Altura
a2) Figuras u objetos regulares:
- Familiar, social o natural: mesa, televisión, cama, ...
- Escolares: bloc, cartulina, pizarra, pupitre, lápiz, goma, ...
- Juegos: cromos, fichas, tarjetas, álbum, ...

a3) Figuras y objetos irregulares:
- Familiar, social o natural: teléfono, zapato, vaso, piedra,
- Escolar: plastilina, minerales, ...
- Juegos: bolos, tejos, ...

B. DISTANCIAS:

<table>
<thead>
<tr>
<th>Familiar</th>
<th>Escolar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre plato y plato en la mesa.</td>
<td>Libro y libro sobre la mesa.</td>
</tr>
<tr>
<td>Mesa-televisión.</td>
<td>Silla-mesa</td>
</tr>
<tr>
<td>Aseo-dormitorio.</td>
<td>Asiento-pizarra.</td>
</tr>
<tr>
<td>Casa-colegio.</td>
<td>Asiento-papelera.</td>
</tr>
</tbody>
</table>

JUEGOS:

Portería-portería.
Canasta-canasta.
Poste-poste.
Area portería.

C) TRAYECTORIAS:

Familiar, social o natural:
- Trayecto casa-colegio.
- Trayecto casa-tienda.
- Trayecto pueblo-rio,

Escolar:
- Trayecto clase-campo deportes.
- Trayecto clase-biblioteca.
- Trayecto asiento-pizarra.

JUEGOS:

- Trayecto portería-portería.
- Trayecto canasta-canasta.
ANALISIS DE TAREAS:

ALUMNO

- Identificar situaciones de dimensiones, distancias y trayectorias.
- Enumerar situaciones en las que sea necesario medir dimensiones, distancias y trayectorias.
- Distingue entre dimensión, distancia y trayectoria.
- Describe técnicas y recursos para medir distancias, dimensiones y trayectorias.
- Expresa motivos que justifiquen la necesidad de cuantificar la medida.
- Justifica la necesidad de un instrumento intermedio de medida (unidad patrón).
- Confecciona su propio instrumento de medida: flexible, rígido.
- Maneja y reconoce instrumentos de medida: metro, compás, cadena del agrimensor, nonius...
- Mide situaciones dadas, eligiendo el instrumento adecuado y lo expresa con la unidad adecuada.

PROFESOR

- Selecciona las situaciones más representativas en que se deba medir dimensiones, distancias y trayectorias.
- Clasifica, corrige las situaciones enumeradas por los alumnos en las que se deban medir dimensiones, distancias y trayectorias, añadiendo aquellas otras que los alumnos hayan omitido.
- Establece las diferencias entre dimensión, distancia y trayectoria.
- Enumera y describe las técnicas y recursos no aportadas por los alumnos para poder medir; dimensiones, distancias y trayectorias.
- Completa los motivos expresados por los alumnos de la necesidad de cuantificar las medidas.
- Indica el instrumento intermedio de medida (segmento) como recurso más apropiado para efectuar una medida.
- Establece las equivalencias entre las distintas unidades de medida de más uso.
Temporalización

Se aconseja utilizar el mes de Enero para trabajar con números decimales y sus operaciones, o cualquier otro tema que quede pendiente. También conviene repasar —con carácter general— los tipos de problemas y situaciones que se resolvían con cada operación (pgs. 3-4 del Documento General para el Profesorado en el Primer Trimestre).

El tema de Longitudes se trabajará durante el mes de Febrero y su prueba de control deberá realizarse entre el 26 de Febrero y el 3 de Marzo. Los resultados se entregarán el 10 de Marzo.

3.3.2. Material preparado para la resolución de problemas sobre Longitud con el método IDEAL.

Este material se le entrega solo al Grupo Experimental.

Consideraciones metodológicas.

Conviene recordar a todos los Profesores del grupo experimental cuáles son los pasos e ideas fundamentales de la metodología que se sigue en la experiencia:

1. Los problemas aparecen en situaciones reales. Importa mucho que el niño participe en la obtención de la información, que tenga sentido de la realidad o veracidad de los datos obtenidos, que sepa ajustar datos aparentemente contradictorios, y que en todos los casos se planteen nuevas preguntas a partir de unos datos; y no reciba la información pasivamente.

Las situaciones elegidas pretenden tener sentido real, la información que se obtenga de ellas debe ser elaborada por los alumnos, y debe promoverse la búsqueda de nueva información. Si el Profesor trabaja con otras situaciones, además de las comunes, deberá ajustarse a estos criterios.

2. Ante las situaciones propuestas y una vez recogida la información que el Profesor haya indicado, el alumno debe plantearse preguntas. Las preguntas deben ser significativas y se deben proponer medios para dar respuestas a las cuestiones planteadas. Cada respuesta enunciada debe justificarse con un criterio más o menos aproximado, pero que tenga coherencia.
Conviene discutir las respuestas y mejorar los criterios con los que se emiten. Este tanteo de la respuesta sirve para comprobar que el alumno ha entendido la cuestión planteada.

3. Hechas las discusiones anteriores —de carácter general y no específicamente matemáticas— se inicia la primera fase formal del proceso: "Identificar y definir problemas". Los tipos de problemas que interesa identificar y definir en el tema de las longitudes son problemas de:

- comparar longitudes
- sumar y restar longitudes (una o varias veces)
- multiplicar o dividir una longitud por un número
- son de especial interés los de objetos igualmente esparcidos
- fracciones de longitud
- proporcionalidad de la magnitud longitud con:
 - el tiempo (casos de velocidad uniforme)
 - el dinero (problemas de coste, etc.)
 - peso y capacidad

No deben entrar problemas de superficie ni de volumen. La magnitud con la que se trabaja en este caso es fija: la magnitud longitud, por ello conviene considerar como variables las operaciones y los tipos de preguntas. El alumno debe inventar problemas atendiendo a estas variables. El Profesor debe procurar que estén considerados los casos más importantes y que no haya reiteración.

4. Obtenida una lista de problemas enunciados por los alumnos y que responda a distintas estructuras y operaciones se pasa a dar respuesta a los mismos siguiendo en cada caso distintas estrategias.

Conviene emplear al menos una estrategia activa: con manipulación de objetos; otra estrategia representativa con dibujo o simbolización; y finalmente la estrategia numérica, que debe intentarse que no sea única (cuando se pueda obtener el resultado mediante secuencias operatorias distintas debe hacerse).
El resolver un mismo problema con distintas técnicas sirve para controlar los resultados: si hay coincidencia se reafirma en el resultado obtenido y si no, hay que detectar el error y revisar la estrategia elegida. También la obtención del resultado evalúa los cálculos aproximados previos, cuando se hayan hecho.

5. Se tiende a olvidar la fase de evaluación de los logros: todo dato debe ser verificado. Una posibilidad es la apuntada en el comentario anterior, pero no la única. La bondad de la solución obtenida se comprueba cuando al colocar este dato en relación con todos los demás ya conocidos dicha relación es la adecuada, no presenta incoherencias. Hay que verificar que el dato obtenido satisface todas las condiciones.

En el tema de estudio que nos ocupa hay que entender que al ser la solución, por lo general, una longitud, dicho dato “ajusta” físicamente con el resto de los datos. Cuando la comprobación pueda ser física o pueda realizarse con un dibujo, deberá hacerse.

SITUACIONES

Se van a trabajar dos situaciones: “Mido mi cuerpo y los objetos de mi clase” y “Hago el plano de mi clase y del patio del Colegio”.

PRIMERA SITUACION: “MIDO MI CUERPO Y LOS OBJETOS DE MI CLASE”

1. Material necesario en clase:
 1. cuerda
 1. cinta métrica
 1. doble decímetro
 1. cuadro de doble entrada con indicación de las medidas que hay que efectuar sobre el cuerpo
 1. cuadro de doble entrada con indicación de las medidas y objetos sobre los que hay que tomarlas.

El trabajo se desarrollará por equipos de 4 ó 5 alumnos. Puede tenerse en el Aula otro tipo de material lineal: varillas de madera, pajitas, etc., que sirvan como referentes de longitud.
2. Sesiones en las que se va a trabajar (tres)

2.1. Primera sesión

a) Los alumnos trabajan en grupo de 4 ó 5, midiendo los objetos o partes de su cuerpo que vienen indicados en la tabla, completando los datos de cada alumno. Puede decidirse que los datos de unos niños vengan expresados sólo en cm, los de otros sólo en dm, los de otros en m, etc., para que se utilicen todas las posibilidades.

Esta primera actuación se realiza en 30 minutos

b) A partir de los datos obtenidos en cada equipo se piden preguntas, se anotan y se discuten si son o no interesantes.
Se indica a los alumnos que inventen preguntas aritméticas de una sola operación.
Se seleccionan las cinco más importantes por equipo y se entregan por escrito al Profesor.

Esta segunda actuación se realiza en otros 30 minutos, a continuación o separados de la actuación anterior.

Cubrimos así las fases Identificación y definición de Problemas y se completa la primera sesión. Tiempo total: 1 hora.

2.2. Segunda sesión

El Profesor presenta a la clase una selección de las preguntas (bien en folio multicopiado todas a la vez o bien las va leyendo y dictando conforme las necesita).
La selección debe hacerse sobre preguntas que se resuelvan con una sola operación (+, -, x, ÷), incluyendo distinto tipo semántico de cuestiones. Como máximo deben trabajarse diez cuestiones y el punto fundamental consiste en elaborar estrategias que permitan su contestación, desarrollando algún caso hasta el final; pero el
El trabajo debe ser colectivo, con tiempos de reflexión individual.

2.3. Tercera sesión

El Profesor entrega o dicta 4 problemas a sus alumnos, los casos que parezcan más interesantes, y siempre partiendo de la información proporcionada por los alumnos. Los problemas se resuelven en el aula siguiendo el proceso completo; el trabajo será a veces personal y a veces colectivo, según el juicio del Profesor.

La duración máxima será también de 1,5 horas

Hay que destacar en esta sesión la comprobación o evaluación del logro o resultado obtenido.

TIEMPO TOTAL MAXIMO PARA LA PRIMERA SITUACION: CUATRO HORAS

SEGUNDA SITUACION: "HAGO EL PLANO DE MI CLASE Y DEL PATIO DEL COLEGIO"

Primera sesión

El Profesor presenta la situación a la clase. Se forman grupos de 4 ó 5 alumnos y cada uno de ellos discute qué información es necesaria obtener para realizar la tarea propuesta, así como las medidas a utilizar para ello.
(Tiempo máximo 15 minutos). A continuación se hace una puesta en común: se valoran las distintas ofertas y se acepta (n) una o varias opciones de trabajo (15 minutos).
Los alumnos dedican a continuación 30 minutos a localizar la información necesaria, se la lleva cada alumno a casa y hace su propio croquis en papel cuadrículado.

Segunda sesión

Se comienza con una puesta en común de los croquis y se elabora un plano común, corrigiendo los errores y poniendo de manifiesto las falsas interpretaciones, datos superfluos, etc. El plano se hace en la pizarra y cada alumno lo copia (si se considera conveniente el Profesor puede entregar uno previamente elaborado por él). Tiempo máximo 45 minutos. Sobre el plano aceptado y elaborado por todos se pide plantear cuestiones con sentido real que se resuelvan con dos operaciones excepcionalmente algún caso especial de una sola o bien tres operaciones. Este trabajo se realiza por equipos y cada uno plantea uno o dos problemas de interés. Tiempo 45 minutos.

TIEMPO MAXIMO DE LA SESION: 1‘5 horas.

Tercera sesión

Durante 45 minutos como máximo se resuelven 1 ó 2 problemas en sesión colectiva en el aula siguiendo detalladamente todas las fases del proceso. Finalizada esta discusión se eligen 5 problemas interesantes y se mandan para casa. La sesión finaliza corrigiendo en clase esos 5 problemas y viendo a qué son debidos los posibles fallos. Esto durará otros 45 minutos.

TIEMPO TOTAL DE ESTA SESION; 1‘5 horas.

TIEMPO TOTAL DE LA SEGUNDA SITUACION: CUATRO HORAS

Los problemas elaborados por los alumnos y no trabajados en clase se irán mandando como tarea, escalonadamente, a juicio del Profesor.
3.4. Material para el profesorado que participa en la investigación. Tercer Trimestre

3.4.1. Programación para el Tema de trabajo “La Superficie”.

Este material se le entrega a todos los profesores de la investigación.

Bloques de trabajo.

Concepto de superficie. Unidades de medida. Operaciones con superficies.

OBJETIVOS

Cuantificar superficies del entorno familiar, escolar o social; seleccionando la unidad, operando con las cantidades, expresando el resultado en la unidad más adecuada, realizando estimaciones y justificando cada uno de los procesos anteriores.

1. Identificar situaciones del entorno familiar, escolar o social en las que sea necesario utilizar superficies para realizar medidas, comparaciones o hacer operaciones.

2. Expresar motivos que justifiquen la necesidad de medir o comparar superficies.

3. Describir técnicas para medir superficies.

4. Comparar superficies del entorno utilizando la técnica más adecuada en cada caso.

5. Elegir la unidad de superficie más apropiada a las dimensiones de cada situación, teniendo en cuenta las unidades del sistema métrico y las medidas más usuales de la zona, la comarca y la región.

6. Operar con las unidades de superficie elegidas para realizar una medida; expresar el resultado con la unidad más adecuada.

7. Realizar estimaciones o cálculos aproximados con superficies de distintas formas y tamaños del entorno.

8. Expresar en forma incompleja medidas de superficie dadas en forma compleja (y viceversa)
SITUACIONES

El aula, el colegio, el patio de recreo, los jardines y aparca-
mientos del colegio, su habitación, su mesa, sus libros, su ca-
sa, su barrio, el pueblo o la ciudad, los campos de deportes,
telas, forros de libros, cometas, propuestas alternativas para
dotar de jardines y zonas verdes los espacios desapro-
vechados del barrio.

FORMAS DE PRESENTACION

FISICA: En aquellos casos en que esté presente la superficie.
REPRESENTATIVA: Todos los casos.
OPERATIVA: En aquellos casos en que sea preciso realizar
operaciones previas a la representación gráfica: construcción
de planos, parcelación del huerto escolar,...

Al llegar a este punto remitimos a los Profesores componentes del
Seminario a las páginas del “Material para el profesorado que participa
en la investigación”. Primer trimestre, en las que aparecen: “La clasifi-
cación de situaciones atendiendo a la operación que interviene y a la
estructura semántica”, a fin de repasar los tipos de problemas y si-
tuaciones que se resolvían con cada operación.

ANALISIS DE TAREAS

ALUMNOS

* Identificar situaciones de superficies.
* Enumerar situaciones en las que sea necesario medir superfi-
cies.
* Expresar motivos que justifiquen la necesidad de cuantificar
superficies.
* Justificar la necesidad de un instrumento de medida (unidad
patrón).
* Confeccionar un instrumento de medida propio.
* Medir situaciones (superficies) dadas, eligiendo los instrumen-
tos adecuados y expresándolos en las medidas adecuadas.
* Calcular las superficies partiendo de sus dimensiones.
PROFESOR

* Selecciona las situaciones más representativas en las que deba medir superficies.
* Clasifica, corrige las situaciones enumeradas por los alumnos en las que deben medir superficies, añadiendo aquellas otras que los alumnos hayan omitido.
* Completa los motivos expresados por los alumnos de la necesidad de cuantificar las medidas y los justifica.
* Indica el instrumento intermedio de medida como recurso más apropiado para efectuar la medida.
* Establece las equivalencias entre las distintas unidades de medida de más uso.
* Enumera y describe las técnicas y recursos no aportados por los alumnos para poder medir superficies.

Temporalización

El tema de superficies se trabajará durante la última quincena de abril y el mes de Mayo; su prueba de control se realizará entre el 25 de Mayo y el 31 del mismo mes, debiendo entregarse los resultados el día 2 de Junio.

3.4.2. Material preparado para resolución de problemas sobre Superficies con el método IDEAL.

Este material se le entrega solo al profesorado del Grupo Experimental.

OBSERVACIONES

1. Comenzamos remitiendo al profesorado a las páginas 5 y 6 correspondientes al documento entregado en el segundo trimestre con el fin de recordar las consideraciones metodológicas expuestas

2. En este caso los tipos de problemas que interesa identificar y definir son problemas de:
 - Comparar superficies.
 - Sumar y restar superficies (una o varias superficies).
— Multiplicar o dividir una superficie por un número.
— Fracciones de una superficie.
— Proporcionalidad de la magnitud superficie con: las longitudes, el dinero, el peso, la capacidad y otras.

3. No deben entrar problemas de volúmenes.

SITUACION

En este último trimestre, por la escasez de tiempo y las dificultades propias del tema, hemos elegido una sola situación:

"Construimos el plano de una casa"

1. Material necesario:
 a) Cinta métrica o flexómetro.
 b) Folios cuadriculados (de cuadrícula grande a ser posible)
 c) Utiles de dibujo: Regla, escuadra, cartabón, compás, ...

El trabajo se desarrollará por equipos de 4 ó 5 alumnos.

2. Sesiones en las que se va a trabajar

2.1. Primera sesión

 a) El profesor plantea ante la clase el trabajo que van a realizar entregando a cada equipo un guión explicativo que se lee y discute en clase.

 Se hacen aclaraciones pertinentes y se recomienda seguir correctamente las instrucciones, sobre todo a la hora de realizar mediciones y expresarlas. La escala elegida no debe estar representada con una fracción sino expresando las unidades (un metro de la realidad = dos centímetros del plano u otra que se elija).

Esta primera actuación se realizará en 20 min. como máximo

b) A partir del guión entregado se distribuye el trabajo entre los alumnos, por equipos, buscan los datos necesarios responsabilizándose cada equipo de aportar las medidas
de una misma habitación. Hacen las medidas oportunas en sus respectivas viviendas.

Esta segunda actuación se desarrolla en dos fases, pero ambas fuera de las horas lectivas y no en el recinto escolar.

2.2. Segunda sesión.

A partir de los datos aportados los componentes de cada equipo discuten y eligen las dimensiones ideales de la habitación correspondiente: cocina, salón, estar, dos dormitorios y un cuarto de baño. Cada equipo aporta las dimensiones ideales de la habitación que le ha correspondido.

Seleccionadas las medidas ideales para cada estancia se procede a representar la vivienda ideal en un plano sobre papel cuadriculado. Para ello se seguirán estos pasos:

- Eligen la distribución que consideran ideal.
- Representan en papel cuadriculado cada una de las habitaciones ideales.
- Intentan unir las habitaciones con el fin de construir la distribución ideal.
- Hacen la representación de la vivienda completa sobre papel cuadriculado.

Esta sesión durará una hora (ó 1 hora y media si la clase fuese de esa duración). Si el trabajo no se finaliza en ese tiempo se acabará en casa.

2.3. Tercera sesión

A partir de los planos y datos obtenidos por cada equipo se pide a los alumnos que inventen preguntas aritméticas (de una o dos operaciones como máximo).

Se seleccionan las cinco más importantes por equipo y se entregan por escrito al profesor.
2.4. Cuarta sesión

El profesor presenta a la clase una selección de las preguntas (bien en un folio o fotocopiadas todas a la vez, o las va dictando conforme las necesite).

La selección debe hacerse sobre preguntas que se resuelven con una sola operación o con varias operaciones incluyendo los distintos tipos semánticos de cuestiones.

Con cada uno de los ejercicios seleccionados se desarrollará el método I.D.E.A.L. completo, por ello sólo se harán uno o dos ejercicios en la misma sesión. Las cuestiones que al final del desarrollo del tema no se hayan resuelto en clase colectivamente se le entregarán al alumno para que las resuelva de forma individual, indocándole que las realice de dos formas distintas, para que se pueda autoevaluar.

INFORMACION ESCRITA QUE SE LES DA A LOS ALUMNOS EN LA PRIMERA SESION

SITUACION:

La vivienda Ideal

Lee detenidamente el siguiente guión, sobre el cual vamos a discutir y ponernos de acuerdo en los siguientes puntos. Se trata de realizar el plano de una vivienda lo más cómoda posible, a partir de los datos obtenidos de alguna habitación de tu casa.

Puedes modificar la realidad de tu vivienda haciendo el piso o vivienda IDEAL.
Aquí tienes unos ejemplos de planos de viviendas;
ACUERDOS TOMADOS

DEPENDENCIAS ASIGNADAS:
GUION DE TRABAJO: Vamos a construir en equipo el plano de la vivienda IDEAL, para ello tenemos que ponernos de acuerdo en varios aspectos:

a) Escala del dibujo. Todos deberéis utilizar la misma y expresarla en el plano.
b) Habitaciones y servicios que va a tener la vivienda.
c) Habitación que cada uno va a hacer. Para ello medirás en tu casa las habitaciones que creas necesarias para que podáis elegir las medidas que penseis son idóneas. No deberís elegir ninguna habitación si no la habéis comparado con una de vuestra casa.

El próximo día el equipo elegirá las medidas que considera mejores y entre todos construireis el plano de la vivienda. Tendréis que:

- Elegir la distribución IDEAL
- Representar, en papel cuadriculado, cada una de las habitaciones elegidas.
- Intentar unir las habitaciones con el fin de construir todo el plano (No olvidéis los balcones y los pasillos).
- Dibujar el plano definitivo

4. TRABAJO REALIZADO POR EL EQUIPO RESPONSABLE DE LA EXPERIENCIA EN EL AULA

4.0 Introducción

No sería coherente comentar el trabajo que hemos desarrollado en el aula sin resaltar, aunque sea brevemente, la ayuda que hemos recibido del resto de los equipos, que han hecho que nuestro trabajo haya sido posible.

El Grupo General nos dio algo tan importante como el impulso para continuar cuando la experiencia no producía los frutos que nosotros deseábamos en calidad y rapidez; ha sido en sus reuniones donde nacían las ideas comunes que el resto de los equipos no éramos capaces de conectar, donde todos los equipos nos sentíamos parte de una maquinaria superior que nos impedía desfallecer en el trabajo común.
El equipo de Diseño Experimental nos proporcionó las pruebas de evaluación (pretest, postest, pruebas intermedias), también confeccionó el modelo de actas (cementerios) en los que plasmamos el resultado de las pruebas realizadas por nuestros alumnos.

Del equipo de Apoyo a la Experiencia recibimos todo el aporte técnico que necesitábamos para trabajar en el aula. Este equipo preparó para nosotros la programación de cada una de las situaciones seleccionadas, con indicación del material que necesitábamos, de las sesiones en las que teníamos que desarrollar cada una, de los aspectos que teníamos que tratar previamente para que no aparecieran dificultades accesorias y en general todo aquello que pensaban íbamos a necesitar.

Importante ha sido para nosotros el trabajo realizado por el grupo de Estudio de Casos. Este equipo durante toda la experiencia ha ido siempre por delante de nosotros. Esto ha hecho que en las sesiones conjuntas en las que oíamos los cassettes que habían grabado en sus clases prácticas pudiéramos detectar aquellos aspectos de las situaciones a los que los alumnos se dirigían preferentemente, con lo cual podíamos preparar el material preciso, si no estaba previsto, o reconducir la situación si las cuestiones que los alumnos proponían no eran las adecuadas a los objetivos propuestos o a su nivel de conocimiento. Ejemplo de esto último fue la dificultad que los alumnos de la experiencia sobre estudios de casos introdujeron al tema de superficies al intentar elegir una escala entre unidades de superficie y que en los grupos de la experiencia en el aula pudimos evitarlo ya que estábamos prevenidos antes esta cuestión.

En resumen, el grupo de profesores del equipo de Experiencia en el Aula queremos agradecer el apoyo y el soporte técnico que hemos recibido del resto del Grupo Jeneral, sin los cuales nuestro trabajo con los alumnos hubiese sido mucho más difícil.

4.1. Punto de partida

El día 8 de septiembre de 1986 se reunen en el Seminario de Matemáticas de la E.U. de Formación del Profesorado de E.G.B., un grupo de profesores interesados en participar en la investigación, los cuales reciben del Grupo de Apoyo el guión de trabajo para la primera quincena del curso, donde se recogen las pautas a seguir en la misma, así co-
mo las situaciones a trabajar atendiendo a la operación que interviene en cada caso y a la estructura semántica.

Se acuerda desarrollar ese guión durante el tiempo previsto y se fija la primera semana de octubre para la aplicación de una prueba (PRE-TEST), sobre problemas del ciclo medio, y para entregar los resultados de la misma al Equipo Responsable del Diseño Experimental y Pruebas de Control, para el tratamiento de los datos y elaboración de conclusiones.

Teniendo en cuenta el estudio de los resultados de la prueba aplicada, en la reunión del seminario celebrada el 12 de octubre se distribuye la población objeto de la experiencia, en dos grupos, experimental y control, teniendo en cuenta los siguientes criterios:

1. Los grupos que guardan homogeneidad, se van asignando uno a Grupo Experimental y otro a Control procurando guardar cierto paralelismo entre unos y otros.

2. Los grupos de alumnos, correspondientes a los profesores que se comprometen a trabajar en sus aulas, las situaciones elaboradas en el Seminario y a seguir la Metodología y Tecnica de Trabajo que se establezcan en las reuniones semanales del mismo, podrán ser tomados como grupos experimentales.

3. Dos profesores llevarán al mismo tiempo un Grupo Experimental y otro de Control. Uno de ellos con asistencia asidua a las tareas del seminario y el otro con esporádicos contactos con el mismo. También se asigna como Experimental, un grupo de alumnos cuyo profesor se limita a recibir la información escrita elaborada por el Seminario para el trabajo y metodología de cada situación, y no tiene ninguna otra vinculación ni contacto con el mismo.

4. Buscando la homogeneidad de los grupos también se tienen en cuenta otros factores como: clase de centro (público o privado), ubicación (rural o urbano).

Aplicados estos criterios y distribuida la población, el Equipo Responsable de la Experiencia en el Aula queda formado por los siguientes profesores:

Casáres Sánchez, Antonio. Profesor del Colegio “Juan XXIII” del Zaidín de Granada. — Dos grupos de Control.

Ibáñez Carrillo, Blas. Profesor del Colegio “Juan XXIII” de Granada. — Grupo de Control.

Moreno Ruiz, Antonio. Profesor del Colegio “Juan XXIII” del Zaidín de Granada. — Grupo Experimental.

Jiménez Antonio, Felipe. Profesor del Colegio de Prácticas número 1 de Jaén. — Un Grupo de Control.

4.2. Tareas del Equipo Responsable de la Experiencia en el Aula:
Grupo Experimental

Las tareas de este grupo son las siguientes:

A. Seleccionar las situaciones prácticas sobre las que trabajar en el aula.

B. Discutir los guiones de trabajo de las situaciones prácticas, señalar el material complementario, seleccionar y acordar estrategias de trabajo en el aula, y elaborar guiones de observación.

C. Seleccionar preguntas inventadas por los alumnos.

D. Evaluar las actuaciones en el aula.

E. Evaluar el proceso experimental. Conviene dar respuesta clara a las cuestiones siguientes:
 - ¿Qué se está haciendo?
 - ¿Cómo se está haciendo?
 - ¿Cuáles son los momentos fundamentales del proceso?
 - ¿Cuál es el papel fundamental del profesor en el aula?
 - ¿Qué puede hacer el profesor y qué no?

F. Analizar el organigrama del proceso y explicar al grupo general (redactar un informe artículo al respecto).

Las tareas realizadas han sido las siguientes:

Respecto a las previstas en el punto A se puede afirmar que se han realizado plenamente.

También se han llevado a cabo las tareas previstas en el punto B, salvo la elaboración de guiones de observación de las actuaciones en el aula, pues esta tarea solo se ha llevado a cabo en la situación ‘‘La Tableta de Chocolate’’.

Las tareas previstas en el punto C, sí se han realizado y en el Anexo se recogen las preguntas seleccionadas.

En cuanto a las tareas previstas en los apartados D, E y F, se han discutido en las sesiones semanales del Seminario y aunque no se ha llevado un registro sistemático de las conclusiones que se han obtenido de los análisis y evaluaciones, éstas sí que han servido para mejorar la actuación del profesor en el aula en las situaciones abordadas con posterioridad.
Una de las tareas, más importantes, realizadas por este equipo ha sido el adaptar a la investigación el método IDEAL para resolución de problemas, con las modificaciones expuestas anteriormente y también comentadas por el grupo "Estudios de Casos".

4.3. **Descripción de la marcha del Grupo Experimental en las sesiones del Seminario.**

Desarrollado el plan previsto en el Programa de Investigación por los Profesores de los Grupos Experimentales, el análisis de su actuación se realiza mediante el intercambio de información y discusión de experiencias en reuniones semanales. Sólo se ha podido realizar un análisis sobre actuación grabada en vídeo, y no se han efectuado entrevistas posteriores a la actuación en el aula. Se ha preferido llevar a cabo un análisis conjunto de todos los profesores para conseguir un comportamiento en el aula lo más homogéneo posible.

En los contactos semanales se tratan las dificultades, innovaciones y modificaciones introducidas en el proceso o desarrollo de las situaciones. Periódicamente, junto con una reflexión personal, se exponen al grupo las conclusiones del seguimiento; quedando al final todo reflejado en un informe, a partir del cual y con las aportaciones de todos los grupos el Grupo General discute e interpreta los resultados tratando de obtener conclusiones.

Cabe destacar que mediante este análisis se da una influencia del Grupo, que incide en la conducta del profesor. Para ello existe una conciencia colectiva de que se está en una experiencia innovadora, siendo la primera novedad la actitud del Profesor en el Aula.

Esta actitud se ve sostenida por una constante presencia del Grupo en tres aspectos:

- **Material.-** Recibe el trabajo de los Equipos de Apoyo y de Estudio de Casos en el sentido de proveer, además del material propiamente dicho, un estudio previo de la experiencia.

- **Técnico.-** Recibiendo ayuda en todos los aspectos técnicos y metodológicos que introduce. En este sentido va dirigido el trabajo del Equipo Responsable de la Experiencia en el Aula y del Equipo Elaborador de Instrumentos de Medida.
Psicoprofesional.- Sintiéndose respaldado en todas aquellas dudas, dificultades, incluso aspectos morales, que modifican una anterior filosofía en el aula. En este sentido inciden fuertemente las puestas en común, reflexiones y análisis que se efectúan semanalmente y que terminan de conformar el clima de equipo.

El trabajo en el aula no termina en ella, tiene una continuación en el Grupo que analiza, codifica y termina por delimitar la conducta del profesor que actúa con más seguridad en la dinámica del aula, lo que a su vez consigue modificar la actuación personal del alumno (tradicionalmente entendida).

Es imprescindible que el profesor alcance la confianza suficiente emanada de esa conciencia colectiva.

4.4. Consideraciones en torno a la experiencia de llevar un grupo de control y otro experimental simultáneamente por un mismo profesor.

Una de las tareas más difíciles y a la vez más fascinantes fue la encargada a dos profesores que llevaron a la vez un grupo de control y otro experimental.

Con ambos grupos se realiza de forma paralela el desarrollo de cada tema, impartiendo los mismos contenidos y buscando los mismos objetivos, aunque la metodología se bifurca en el momento en que los alumnos del grupo experimental comienzan a trabajar una de las situaciones propuestas para cada tema. Desde ese momento, los alumnos del grupo de control se dedican a resolver problemas seleccionados del fichero del profesor o del libro de texto, utilizando métodos tradicionales. A estas tareas le dedican el mismo número de horas que los alumnos experimentales dedican al desarrollo de una situación.

El número de problemas resueltos por los alumnos de Control, es bastante más elevado que el número de los resueltos por los del Grupo Experimental, pero estos últimos realizan un análisis más exhaustivo de aquellos que resuelven. Profundizan más en los problemas a lo largo de las distintas fases que se recorren durante la resolución por el método I.D.E.A.L.
Los alumnos del grupo Experimental a la hora de resolver problemas han estado más motivados que sus compañeros de Control. Esta mayor motivación la podemos atribuir a varias causas:

- Las preguntas se las plantean ellos sobre, aspectos que les interesan conocer de las situaciones propuestas.
- El utilizar técnicas manipulativas para la resolución de problemas ha sido un incentivo que ha movido a interesarse por el tema a algunos alumnos cuya postura habitual en clase era el "pasar" de la resolución de problemas, ya fuese por que no eran capaces de resolver ninguno o porque la técnica que le habíamos enseñado no se adaptaban a sus intereses.
- Otro factor que ha servido como centro de interés para los alumnos experimentales ha sido el responsabilizarlos de la recopilación de datos en el medio social en el que ellos viven.
- El obligar a los alumnos experimentales a aplicar más de una estrategia para la resolución ha dado lugar a que algunos alumnos hayan caído en la cuenta de que los problemas no tienen un modo único de resolución, y a otros les ha servido para abrirles unas perspectivas totalmente desconocidas, que les han permitido conocer procedimientos resolutivos que faciliten el encontrar solución a los problemas planteados.

Los alumnos del Grupo de Control han presentado algunas quejas en el sentido de sentirse discriminados, al no disponer ellos de los materiales que veían utilizar a sus compañeros experimentales y exigían un trato de igualdad en cuanto a medios y en cuanto a métodos de resolución.

Como conclusión de esta experiencia opinamos que cuando un profesor lleve dos grupos de la investigación es aconsejable que ambos sean experimentales o de control.

4.5. Comentario a las situaciones desarrolladas en el aula por el grupo experimental.

4.5.1. Situación "Tableta de chocolate"

Material empleado

Se utilizó el siguiente material:
1 tableta de sucedáneo de chocolate para cada equipo
1 balanza
Dinero real y/o simbólico
Material escolar (cartulina, tijeras, folios,...)

Desarrollo del trabajo en el aula

PRIMERA SESION. Identificar problemas

Antes de conocer el objeto las preguntas que surgen tienen las siguientes características:
- Son significativas
- Se ajustan a la realidad
- En general no aparecen preguntas numéricas
- Van a lo concreto

Después de conocer el objeto, las preguntas reúnen las mismas características anteriores.

En cuanto a la participación del alumnado se puede calificar como alta en ambas partes de la sesión.

El tiempo empleado en la misma osciló entre 10 y 20 minutos.

SEGUNDA SESION.- Definir problemas

Primera Fase. La clasificación de las preguntas elaboradas por los alumnos creó confusión en los distintos grupos de la experiencia y bastantes dificultades en los alumnos para hacer las clasificaciones.

Fue difícil adaptarse al tiempo fijado.

Se considera que se debería cambiar el enfoque de esta fase en el sentido de que los alumnos se limitaran a discutir las preguntas entre ellos sin exigirles que las clasifiquen o pidiendoles una clasificación muy simple (con números y sin números).

Segunda Fase.- Las preguntas planteadas por los alumnos tienen respuesta en un 90% y de ellas un 10% no tienen respuesta inmediata, de todas formas son de un nivel de **cognición elemental**.

Un 25% de las preguntas son cuantitativas mientras que un 75% son cualitativas.

Solo un 5% de las preguntas son **NO** significativas mientras que el resto son significativas.
La mayoría de las preguntas carecen de precisión y pueden dar lugar a diversas interpretaciones.

TERCERA SESION.- Definición de problemas.

Los alumnos siguen presentando preguntas no numéricas cuando se les deja libertad para elegir las preguntas que consideran más interesantes.

La mayoría de las preguntas que surgen adolecen del defecto de ser inconcretas y permitir muchas interpretaciones.

Algunos de los profesores, al observar que las preguntas que seleccionaban los alumnos no servían para los objetivos fijados en el tema de fracciones, no se pararon a analizar las propuestas por los alumnos como más interesantes y los condujeron hacia preguntas que tuviesen más incidencia en los objetivos del tema.

Se estima que el tiempo asignado da lugar al análisis de pocas preguntas de las propuestas por los alumnos, lo que ha dado lugar a que algunos profesores hayan dejado a éstos analizar las preguntas seleccionadas por ellos como más interesantes, mientras que otros han optado por seleccionar ellos las preguntas que más se identificaban con los objetivos del tema.

CUARTA SESION.- Elección de estrategias.

En esta sesión la elección de estrategias fue muy elemental ya que el trabajo se realizó de manera individual. Algunos alumnos han resuelto gran cantidad de las preguntas propuestas, mientras que otros no han resuelto ninguna o muy pocas.

CONCLUSIONES.

Es de destacar como aspecto positivo que la situación trabajada ha sido válida para que el alumno analice preguntas y observe la falta de precisión de muchas de ellas sacando como consecuencia la necesidad de utilizar un lenguaje más preciso.

Es una buena situación para introducir a los alumnos en esta nueva metodología. Se puede realizar con ella de forma adecuada la identificación y definición de problemas.
Se rompe un poco el molde que el alumno tiene prefijado de que todo problema conlleva una o varias operaciones aritméticas.

Da pie adecuadamente para ir introduciéndole en la elección de estrategias.

Hay que destacar el aspecto de que una mayoría de las preguntas analizadas no van encaminadas a cubrir los objetivos para el tema “Concepto de fracción” e incluso que nada tienen que ver con las matemáticas.

4.5.2. Situación “El Supermercado”

Material empleado

El material empleado en esta situación fue:

- Un mural tamaño cartulina, a escoger entre dos opciones.
- Un mural tamaño folio para cada alumno.
- Dinero real en el 80% de las clases.
- Dinero simbólico en el 50% de las clases.
- Material escolar (tizas, folios, colores, tijeras, pizarra...).

En el mural, tanto en el caso A como en el B, se pretende reflejar un aspecto de un supermercado real para de este modo motivar a los alumnos en la investigación de los datos en la realidad.

Pretendemos con esta situación el paso de la manipulación propiamente dicha, que se trabajó en la situación “Tableta de chocolate”, a la de representación de la realidad.

Desarrollo del trabajo en el aula

PRIMERA SESION.- Presentación de la situación.

Se entregó el mural a cada uno de los alumnos para clarificar y concretar algunas figuras sobre alimentos que podían prestarse a confusión. El tiempo empleado por término medio fue de 15 minutos.

La idea principal de esta sesión fue motivar a los alumnos para la búsqueda de información en las tiendas y supermercados de su barrio.
SEGUNDA SESION.- Identificar y definir problemas.

Más del 90% de los alumnos han traido los precios de cuatro a ocho productos. Se han discutido y concretado en un precio para “nuestro supermercado”, el cual se ha apuntado en el mural de clase y el de cada uno de los alumnos. El tiempo empleado en esta fase fue de 15 a 30 minutos.

Generalmente los alumnos participaron con mucho interés en la redacción de los problemas que se propuso a continuación. El resto de esta sesión estuvo dedicada a definir correctamente los problemas que los alumnos consideraron más interesantes. Algunos profesores empezaron conjuntamente con sus alumnos a elegir estrategias para la resolución de los problemas propuestos. Finalmente se le pide a los alumnos que piensen individualmente estrategias para la resolución de los problemas.

TERCERA SESION.- Elección de estrategias y resolución de problemas.

Esta sesión estuvo especialmente dedicada a la elección de estrategias, aunque la mayoría de los profesores hemos hecho especial hincapié en la discusión de la solución como paso previo para comprobar que la identificación y definición de problemas era correcta.

La utilización de varias estrategias para la resolución de un mismo problema ha hecho que este proceso, en el tiempo prefijado, solo se pudiera desarrollar con un máximo de 5 problemas.

CONCLUSIONES

Ha sido el supermercado una situación bastante motivadora para todos los grupos de trabajo.

La principal característica que detectamos con esta situación fue la aportación de los datos por los propios alumnos y su posterior puesta en común para decidir el precio del producto en “nuestro super”. Los alumnos al analizar en un primer contacto la diferencia de precios en distintos establecimientos tenían una visión simplista de la realidad que al matizarla en clase se comprobó que además del precio tenían que constatar la calidad y los márgenes comerciales de las grandes ca-
denas de establecimientos en comparación con los pequeños empresarios, por lo que se vió la ventaja del cooperativismo.

Se notaba que los alumnos acostumbrados a ayudar en la realización de la compra familiar eran los que estaban más motivados tanto para la confección de preguntas como para resolución.

Con esta situación se superaron las dos primeras fases del método que habíamos trabajado con la Tableta de Chocolate y se pudo pasar a completar las fases E, elección de estrategias, A, actuación en la resolución y evaluación de los logros, L, del método I.D.E.A.L.

Es una buena situación para terminar de desarrollar la estructura multiplicativa del cálculo de "n" unidades conocido el valor de la unidad.

En esta situación domina principalmente el cálculo de la fracción de cantidad aunque sin olvidar el cálculo de la unidad conocida la fracción, aunque este último aspecto sólo a partir de una unidad fraccionaria.

El objetivo de calcular una fracción a partir de otra conocida no se superó con esta situación.

Cuando pretendimos que el alumno redactara problemas conocidos los objetivos matemáticos, muchos de ellos encontraban dificultad para hacerlo con sentido real. Es difícil encontrar algunos tipos de situaciones que se ajusten a un esquema formal previsto.

4.5.3. Situación "Botellas de refresco"

Material empleado

El material empleado en el aula por los profesores del grupo experimental ha sido el siguiente:

- Dinero real y/o simbólico
- Medidas de capacidad normalizadas: 2 litros, 1 litro, 1/2 litro y 1/4 de litro.
- Embudos, cubetas, vasos de plástico...
- Material escolar (cartulina, papel, tijeras, reglas...)
- Botellas llenas de refresco. Abarcando las capacidades: 2 L., 1.5 L., 1 L., 1/2 L., 1/3 L., 1/4 L. y 1/5 L. En todos los casos se utilizaron marcas comerciales usuales.
Botellas vacías de igual capacidad que las anteriores.

Desarrollo del trabajo en el aula

PRIMERA SESION.- Preparación de material.

Se realizó de acuerdo con el plan previsto en el guión aportado por el Equipo de Apoyo, con la diferencia de que los refrescos, aunque comprados por los alumnos serían pagados por el Seminario. Los alumnos aportaron los envases vacíos. Se realizó con toda normalidad en el tiempo previsto.

SEGUNDA SESION.- Identificación y definición de problemas.

Las preguntas planteadas por los alumnos tienen las siguientes características:

- Siguen apareciendo preguntas con falta de precisión pero en menor número que en situaciones anteriores.
- Las primeras preguntas cuantitativas que surgen son relativas a la capacidad de cada una de las botellas. Investigación de datos en la realidad.
- Abundan las preguntas cualitativas referentes a caducidad, composición, lugar de fabricación..., que en este curso no nos han dado suficiente juego matemático pero que nos han servido de pista para conocer las preguntas que los alumnos se plantean ante esta situación u otras similares y que nos van a permitir poder aplicarlas en cálculos de composición centesimal, repartos proporcionales para séptimo nivel, así como tener previsto la posibilidad de realizar operaciones con cantidades complejas de la magnitud tiempo y resolver problemas de distancias y coste de transporte de los productos empleados.

La mayoría de las preguntas planteadas por los alumnos se resuelven mediante suma, resta o comparación de fracciones por lo que sería preciso orientar al alumno para que se plantearan preguntas que necesitaran el producto o la división para su resolución numérica ya que la situación planteada es propicia para ello y pueden aparecer con un mínimo de esfuerzo preguntas del tipo:
¿Cuánto hay en tres botellas de...?
¿Cuántos litros hay en una caja de botellines de...?
¿Cuántos botellines de... se necesitan para llenar 1 L.? u otras similares que relacionen las operaciones suma y diferencia con las de producto y división para su resolución. El tipo de preguntas planteadas por los alumnos son de un grado de cognición media.

Al resolver algunas de las preguntas propuestas los alumnos detectan la dificultad de expresar numéricamente el resultado cuando el problema se resolvía manipulativamente, desapareciendo esta dificultad si la estrategia elegida era gráfica o numérica.

Generalmente el proceso completo, I.D.E.A.L sólo se pudo realizar en uno o dos problemas debido a la dificultad que presenta la manipulación de líquidos.

TERCERA SESION.- Elección de estrategias. Logros.

Contrariamente a lo ocurrido en las situaciones anteriores los alumnos usan estrategias manipulativas para resolver de forma individual los problemas propuestos. Esto es debido a la presencia de nuevo del material manipulable en el aula. Quizás para hacer un estudio completo de las operaciones hubiésemos necesitado trabajar una situación en la que predominaran actividades de representación.

La mayoría de los alumnos han resuelto satisfactoriamente y por dos procedimientos distintos entre seis y siete de los problemas propuestos.

CONCLUSIONES

Se puede considerar esta situación bastante acertada, tanto si valoramos la participación activa como el alto porcentaje de alumnos que han intervenido en el desarrollo de la misma.

Han inventado y resuelto gran cantidad de preguntas tanto cualitativas como cuantitativas, con lo que se han cubierto prácticamente todos los objetivos fijados para el tema, relativos a la suma resta y comparación de fracciones.

Se puede hacer una valoración global positiva tanto del desarrollo de la situación como de los resultados obtenidos.
Se detectó falta de exactitud en las medidas cuando se trasvasaba líquido de una a otra botella.

En algunos casos los alumnos utilizaron las medidas en centímetros desviándose del objetivo propuesto de operaciones con fracciones.

4.5.4. Situación “El periódico”

Esta situación no llegamos a desarrollarla por problemas de tiempo.

4.5.5. Situación: Mido mi cuerpo y objetos de mi clase.

Material empleado

El material utilizado fue:

- Instrumentos propios de dibujo (regla, compás, escuadra, carbon…)
- Flexómetro de 2 metros, cinta métrica de costurera
- Cuerdas
- Un cuadro de doble entrada para anotar el nombre de los alumnos y sus medidas antropométricas.
- Otro cuadro de doble entrada para anotar el nombre de algunos objetos de la clase y su medida.

Desarrollo de la experiencia en el aula

PRIMERA SESIÓN: Recogida de datos

Al entregar el folio de medidas antropométricas, pudimos observar que había sido una situación acertada por el interés que despertaba en los alumnos. Observamos que si bien al trabajar en equipo se producía un alboroto anormal en clase, este era debido al trabajo en sí, no a comportamiento de los alumnos ocasionado por la falta de interés en el tema.

Son frecuentes las preguntas relativas a inspiración, espiración, palmo, envergadura…, por la terminología empleada en los cuadros de doble entrada.
Al entregar el folio que hace referencia a objetos de las clases, los alumnos preguntan por el largo y el ancho cuando tienen que tomar medidas en objetos cuadrados o cuando se encuentran colgados en las paredes ya que confunden el ancho por el grueso.

SEGUNDA SESION: Identificación de problemas

Al analizar las cuestiones planteadas observamos:

Los alumnos plantean cuestiones con sentido y que tienen validez desde el punto de vista de la enseñanza de las matemáticas, en la medida que obligan a un razonamiento a partir de una situación real sobre la que han manipulado en una primera fase de la secuencia del aprendizaje.

En una primera impresión pudiera parecer que el espíritu del planteamiento no se distingue del método tradicional, y si lo hace es a peor, ya que las cuestiones planteadas no responden, al menos en porcentaje muy elevado, al deseo de conocer otros aspectos de la realidad, sino a la necesidad de plantear una cuestión porque se le ha pedido.

Un análisis más en profundidad nos lleva a descubrir la necesidad de tener en cuenta otros intereses, afectivos, lúdicos,... para comprender mejor el planteamiento de algunas cuestiones que hacen los alumnos.

Ejemplo: Cuando un alumno plantea "Pepe mide de altura el doble que Isaac, menos la altura de Jorge, más 9 cm. Si Isaac mide 1.35 cm y Jorge 1.40 cm, ¿cuánto mide Pepe?"... observamos que el interés por la pregunta no es tan fuerte como el deseo de jugar utilizando las matemáticas como medio.

A pesar de las reflexiones anteriores quedamos un poco insatisfechos al comprobar que el espíritu de la I (Identificación de problemas), no llega aun a calar en nuestros alumnos a estas alturas de curso como sería nuestro deseo. Las causas junto a otras pudieran ser:

1.- Falta de entrenamiento en este sentido

2.- Condicionamiento por el tipo de problemas que siempre han resuelto.
3.- El campo de problemas que satisfacen intereses reales de los niños a partir de una situación dada no es todo lo amplio que nosotros quisiéramos.

El tipo de problemas que proponen en esta situación suelen ser de cognición elemental e intermedia abundando en expresiones cuyo contenido semántico es una comparación.

TERCERA Y CUARTA SESION: Elaboración de estrategias, actuación y logros.

En estas dos sesiones analizamos la manera de resolver los problemas.

Hay una gran tendencia a emplear el procedimiento aritmético, utilizando el manipulativo como técnica de contraste con los resultados obtenidos por el procedimiento anterior.

No tenían especial dificultad en emplear estrategias manipulativas para resolver cuestiones propuestas colectivamente pero cuando actuaban individualmente se inclinaban por procedimientos numéricos. Especial interés tuvo el cálculo de la media de altura de un grupo de alumnos para los que se emplearon las técnicas más variadas:

a) Sumando todas las cantidades y dividiendo por el número de alumnos.

b) Prestando centímetros de unas cantidades a otras hasta que se igualaban. (Numérica).

c) Representando con trozos de folio la medida de cada alumno, juntando todas las medidas y repartiendo en partes iguales, (manipulativas).

d) Sumando la parte no común de la medida, dividiendo por el número de alumnos y sumando el cociente a la parte común.

CONCLUSIONES

Esta situación junto con la del "super" ha sido en la que los alumnos se han encontrado más a gusto. Esto ha hecho que en clase exista un comportamiento natural y que los alumnos se manifiesten tal cual son.
Esta actitud de los alumnos ha hecho que el nivel de alboroto fuese superior al normal en clase.

Es necesario permitir que los equipos de alumnos se dispersen entre la propia clase, los pasillos y el patio de recreo ó deportivo para que puedan manifestar su espontaneidad, ya que no debemos intentar anularla.

Los alumnos con un nivel de abstracción más desarrollado construían preguntas muy complejas, que vistas desde la perspectiva de los hechos pasados nos han hecho reflexionar, si en un principio creíamos que eran improcedentes, hoy pensamos que hay que motivarlos para que las sigan planteando pero a la vez exigirles que las resuelvan.

Creemos que las situaciones planteadas cuanto más cerca están del alumno más motivan a éste y hacen que su rendimiento sea mayor.

MEDIDAS ANTROPOMÓRFICAS

<table>
<thead>
<tr>
<th>MEDIDAS ANTIPOMORFICAS</th>
<th>ALUMNOS</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONGITUDES A MEDIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTAURA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVERGADURA, (con los brazos en cruz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIDAS DEL PALMO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANO, (desde el extremo del dedo corazón hasta el comienzo de la muñeca)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERIMETRO CRANEAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERIMETRO TORACICO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>En inspiración</td>
<td></td>
<td></td>
</tr>
<tr>
<td>En espiración</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIDAS SOBRE OBJETOS DE LA CLASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largo de tu mesa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ancho de tu mesa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alto de tu mesa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>largo de la clase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ancho de la clase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>largo de este folio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grueso del tablero de tu mesa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>largo de la pizarra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alto de la pizarra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimensiones de las baldosas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.5.6. SITUACION: "Hago el plano de mi clase y del patio del Colegio"

Material empleado

El material que se utilizó fue:
- Una cinta de 10 ó 15 metros para cada equipo
- Doble decímetro
- Papel cuadriculado
- Material escolar (tijeras, lápices, rotuladores,...)

Desarrollo de la experiencia en el aula

PRIMERA SESIÓN: Recogida de datos en la realidad

En el desarrollo de esta situación ninguno de los profesores del grupo experimental confeccionó los dos planos, se eligió el de la clase o el del patio.

Como habíamos quedado en nuestra reunión de trabajo en la primera parte de esta sesión se tomaron con los alumnos los siguientes acuerdos:
- Qué medidas había que tomar
- Qué escala se iba a utilizar
- Dónde se iba a tomar nota de las medidas efectuadas

En la segunda fase de esta sesión, cuando los alumnos tuvieron que tomar las medidas necesarias para construir sus planos, es cuando detectamos la dificultad de la situación ya que los alumnos no conocían las técnicas elementales para la construcción de planos, ni el trabajo con escalas y los comentarios que anteriormente se habían hecho en clase no fueron suficientes. Fueron 30 minutos intensos, haciendo indicaciones constantemente ya fuese de las medidas que tenían que tomar para situar un terreno de juego dibujado dentro del patio ó la no necesidad de medir el alto de los objetos para dibujarlos en el plano, ó la misma conversión de los datos reales a su valor en el plano.

SEGUNDA SESIÓN: Identificación y Definición de problemas

La primera fase de esta sesión: "Construcción del plano" se llevó en la práctica la totalidad del tiempo. La puesta en común de los cro-
quis, la corrección de errores, los datos innecesarios y el trabajo con la escala elegida necesitó de un tiempo extra que no habíamos programado. Los profesores que desarrollaron esta sesión en dos días siguieron las pautas marcadas por el grupo de apoyo en cuanto a contenido pero aumentando el tiempo en 30 minutos.

La casi totalidad de las preguntas planteadas por los alumnos necesitan para su solución más de una operación aritmética como se les indicó, siendo parte de ellas de cognición media, aunque se tendía al tipo de cognición formal principalmente en aquellos casos que había que hacer conversión de los datos mediante la escala para hallar la solución.

TERCERA SESIÓN: I.D.E.A.L.

En la primera fase de esta sesión se desarrolló el método I.D.E.A.L. con 1, 2 ó 3 de las preguntas planteadas por los alumnos.

De las dos primeras partes del proceso, Identificación y Definición de problemas, que ya habían sido tratados en la sesión anterior, sólo se pedía a los alumnos que dieran una solución lógica, por tanto, a la pregunta planteadada. Hay que reconocer que este aspecto es muy difícil y entre el 10 y el 20 % de los alumnos experimentales son capaces de dar una respuesta razonable y además justificarla, pero sólo en aquellas preguntas que no presentan gran dificultad.

La primera estrategia que utilizaron los alumnos era numérica; aunque no encontraban dificultad en utilizar material como segunda alternativa, para dar respuesta a las preguntas planteadas.

La utilización de material siempre hacía el proceso mas largo y laborioso. A pesar de esto la técnica utilizada en un colegio para usar la escala hizo este proceso más comprensible para la totalidad de la clase. Esta técnica fue ponerse unos alumnos con la cinta métrica de agrimensor y otro con un doble decímetro. El alumno que dirigía la conversión iba indicando a uno y otro lado lo que tenían que señalar, así mientras que unos les decía que señalaran un metro al otro le indicaba 2 centímetros. Fueron interesantes las discusiones que se plantearon cuando las cantidades no eran enteras.

CONCLUSIONES

En la recogida de datos de la realidad se notó a los alumnos algo confusos por lo que sería necesario que la construcción del plano fuese
más sencilla, perímetro solamente o entrenar al alumnado en la repre-
sentación de objetos en un plano mediante su cara superior.

De todas formas el que el alumno se sienta protagonista de los da-
tos de sus ejercicios es suficientemente motivador para que el aspecto
negativo detectado, quede relegado a segundo término.

Fue una buena idea que el plano se construyese en común pues
dio pie para subsanar bastantes de los errores que se habían detecta-
dos.

Algunos alumnos, al aplicar la escala, operaban como si convir-
tiesen los metros en una cantidad equivalente de centímetros.

Sería conveniente que cuando se introducen escalas del tipo de las
que utilizaban: 1 metro equivale a 2 cm ó similares, se indujese a los
alumnos a realizar estas conversiones manipulativamente para que ob-
serven el efecto de la escala.

4.5.7. SITUACIÓN: “Construimos el plano de una casa”

Material empleado

El material utilizado fue:
- Cinta métrica o metro flexible.
- Folios cuadriculados.
- Utiles de dibujo.

Desarrollo de la experiencia en el aula.

PRIMERA SESION: Presentación de la situación.

Como estaba previsto hicimos la presentación del trabajo, y no
presentó mayor dificultad la elección de la escala, debido a que los
alumnos durante el tema de longitudes ya habían trabajado con ellas.

SEGUNDA SESION: Toma de datos

La realización de los planos presentó dificultades de coordinación
en los equipos y como se terminaron en casa, se pudo en algunos ca-
sos observar la mano e influencia de sus padres, cosa que considera-
mos positivas. En las páginas (98 y 99) se incluyen algunos de los pla-
nos que construyeron los alumnos.

TERCERA SESION: Identificación y definición de problemas.

En la tercera sesión los alumnos tenían que plantear cuestiones re-
lacionadas con la superficie de una vivienda, que respondieran a intere-
ses reales y cuya información se asemejara lo más posible a la realidad.
Al analizar los planteamientos pudimos observar:

a) Se incrementan, respecto al primer y segundo trimestre, los
planteamientos que consideramos de cognición intermedia y
formal.

b) Los aspectos cuantitativos van sustituyendo a los cualitati-
vos.

c) Siguen apareciendo planteamientos en los que, si bien la cues-
tión planteada respondía a intereses reales, la información
aportada no era ni se aproximaba mucho a la real. Como
ejemplo para ilustrar este caso pondremos el del alumno que
quería saber el costo de pulimentación de un suelo y expresa
su precio en 0.18 ptas/dm².

Entre los planteamientos que los alumnos han hecho con más fre-
cuencia se encuentran:

1.- ¿Cuántas veces una superficie está contenida en otra?. Plan-
teamiento que implica el producto, para el cálculo de superfi-
cies, y la división.
2.- Proporcionalidad entre la superficie y el dinero.
3.- Suma, resta y comparación de superficies.

En cuanto a la técnica empleada por los alumnos en la resolución
de los problemas ha sido la aritmética el recurso empleado con mayor
frecuencia. Sin embargo la manipulación ha servido como técnica de
contrasté para confirmar la solución verdadera ó para descubrir el error
en otros casos. Como ejemplo de estos últimos diremos el del alumno
que estima en 18 cm² la superficie de un azulejo que realmente se
aproximaba a los 300 y descubre su equívoco al comparar esta super-
ficie con la del dm² que tiene construido en cartulina y cuya equiva-
cencia en cm² él conoce bien.
Pensamos que la manipulación es fundamental en este nivel durante todo el curso escolar, especialmente para aquellos alumnos cuyo rendimiento en matemáticas no progresa adecuadamente.

CONCLUSIONES

Los inconvenientes que aparecían con la escala en el tema de longitudes no surgieron en éste.

En aquellos colegios en que los alumnos pedían una escala referida a las unidades de superficie se acordó reconducirlos a las escalas lineales, ya que se habían detectado su dificultad de aplicación con el grupo de Estudio de Casos.

Al conjuntar los planos parciales de habitaciones para formar el plano general de la casa se presentaron dificultades que se resolvieron con grandes pasillos.

Algunos alumnos que no tomaron medidas de la realidad hacían los planos de sus habitaciones o excesivamente grandes o excesivamente pequeñas. Es necesario insistir en que tomen como referencia las medidas de una habitación real.

Los problemas planteados son en su mayoría de *cognición formal* y hacen referencia al cálculo de superficies ó al precio del piso.

Presentó dificultad el paso de dimensiones del plano a dimensiones reales.

Planos realizados por los alumnos del grupo experimental
PLANO VIVIENDA "IDEAL"

1 cm = 1 m
- Curso: 6º A

Plan: de una vivienda ideal
(E escala 1/100)
4.6. Evolución del pensamiento y actuación en el aula del profesor respecto a la resolución de problemas

Antes de conocer y trabajar este método, pensábamos que la destreza para la resolución de problemas se adquiría mediante el aprendizaje de las técnicas de resolución de los problemas-tipo y su aplicación. Resolviendo un alto número de problemas de cada clase teniendo en cuenta todas las variantes de los mismos.

Los profesores del Grupo Experimental nos sometimos a una encuesta con el fin de detectar si la metodología empleada había afectado a nuestro modo de enfocar la resolución de problemas. Para efectuar este contraste también se aplicó la citada encuesta a una muestra de profesores que desarrollan su labor en el Ciclo Superior y no están implicados en la experiencia.

La encuesta tiende a darnos información sobre tres aspectos claramente definidos:

a) Situación administrativa de los profesores encuestados.

b) Importancia atribuida por los profesores a los distintos aspectos del aprendizaje matemático.

c) Valoración de la resolución de problemas en los siguientes apartados:
 — Situación de los problemas en el desarrollo del tema.
 — Importancia de la resolución de problemas.
 — Finalidad del problema.
 — Procedencia de los problemas y datos.
 — Estructura del problema.
 — Tipo de trabajo para la resolución en clase.
 — Resolución formal del problema.
 — Técnicas de comprobación de la solución.

La información proporcionada por la encuesta, en los aspectos presentados en los puntos a) y b) nos unifica casi al 100% a los profesores que no participan en la experiencia con los que formamos este equipo.

En el apartado c) sí se detecta de forma clara cómo los profesores que estamos dentro de un colectivo, al separarnos de él, y trabajar conjuntamente dentro de un Equipo de Investigación sobre un tema de nuestra competencia, modificamos nuestra actitud respecto del tema tratado en relación al colectivo del que procedemos.
En este tema concreto, Resolución de Problemas en el Ciclo Superior de E.G.B., en los apartados de la última fase de la encuesta, se han detectado diferencias entre los Profesores que no participan en la experiencia y nosotros. Diferencia que hemos desarrollado en una comunicación al Congreso de Matemáticas de la S.A.P.M. "Thales", realizado en Huelva en el pasado mes de abril, presentado con el título: "El Seminario de Profesores como medio para modificar el pensamiento y la actuación del Profesor en el aula. Diseño para una metodología activa en la resolución de problemas.

Analisis de la encuesta

TABLA I
Situación de los encuestados en %

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imparte clase en un solo nivel</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Imparte clase en varios niveles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-- Sólo en tercer ciclo</td>
<td>76</td>
<td>100</td>
</tr>
<tr>
<td>-- En dos ciclos diferentes</td>
<td>95</td>
<td>89</td>
</tr>
<tr>
<td>Sólo en matemáticas</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Matemáticas y Ciencias</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Matemáticas, Ciencias y otras materias</td>
<td>33</td>
<td>56</td>
</tr>
</tbody>
</table>

TABLA II
Grupos de alumnos atendidos por cada Profesor

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24%</td>
<td>21%</td>
<td>15-19</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>38%</td>
<td>56%</td>
<td>20-24</td>
<td>4%</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>19%</td>
<td>22%</td>
<td>25-29</td>
<td>11%</td>
<td>3%</td>
</tr>
<tr>
<td>5</td>
<td>5%</td>
<td>11%</td>
<td>30-34</td>
<td>28%</td>
<td>13%</td>
</tr>
<tr>
<td>6</td>
<td>9%</td>
<td>0%</td>
<td>35-39</td>
<td>41%</td>
<td>7%</td>
</tr>
<tr>
<td>NC</td>
<td>5%</td>
<td>0%</td>
<td>40-44</td>
<td>3%</td>
<td>37%</td>
</tr>
</tbody>
</table>
Los datos obtenidos revelan que, si bien, la selección de profesores se hizo al azar, la situación de los encuestados es homogénea y responde a la diversidad de situaciones en que se encuentran el profesorado. La única diferencia que se detecta es que el 72% de los grupos de alumnos del control están formados por más de 30 alumnos, frente a un 57% en el experimental. A pesar de ello en el grupo experimental hay un 37% de clases que tienen más de 40 alumnos, alcanzando sólo un 3% en el control.

Un segundo bloque de cuestiones estaba dirigido a las creencias de los Profesores de Matemáticas Básicas respecto a la importancia atribuida a los distintos aspectos del aprendizaje matemático.

El resumen de opiniones se recoge en las siguientes tablas:

TABLA III

Valoración de aspectos del aprendizaje matemático
(Puntuaciones medias valoradas de 0 a 10)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución de problemas</td>
<td>9</td>
<td>9.7</td>
</tr>
<tr>
<td>Conocimiento de propiedades</td>
<td>6</td>
<td>6.1</td>
</tr>
<tr>
<td>Dominio de definiciones</td>
<td>5.1</td>
<td>6</td>
</tr>
<tr>
<td>Cálculo exacto y sin errores</td>
<td>7.6</td>
<td>7.4</td>
</tr>
<tr>
<td>Capacidad de demostración</td>
<td>6.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Construcción correcta de figuras</td>
<td>6.7</td>
<td>6.1</td>
</tr>
</tbody>
</table>

TABLA IV

Importancia de la Resolución de problemas (%)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental en todos los temas</td>
<td>71</td>
<td>100</td>
</tr>
<tr>
<td>Importante en casi todos los temas</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Fundamental en algunos, poco importan-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>te en otros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interés normal en la mayor parte de los temas</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>
No aparecen diferencias significativas entre las opiniones de los dos grupos de profesores, dándose una coincidencia total en la ordenación de los apartados considerados (tabla III). La resolución de problemas y el cálculo son los aspectos que más se valoran en este nivel. A pesar de esta coincidencia, empiezan a aparecer diferencias entre ambos grupos relativas a la importancia en sí de los problemas, según los temas, y su situación en el tema que se desarrolla. La totalidad de los profesores del grupo experimental consideran que la resolución de problemas es fundamental para cualquier tema, en contraposición al 71% del grupo control (tabla IV).

Más se destaca esta diferencia respecto al momento en que debe iniciarse la resolución de problemas; el grupo experimental señala la necesidad de introducir los problemas desde el inicio de cada tema, ya que lo considera parte integrante de él, mientras que el 56% de los profesores del grupo de control considera que son aplicaciones de lo explicado en las preguntas, lecciones o temas (tabla V).

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desde que comienza la explicación de cada tema</td>
<td>44%</td>
<td>78%</td>
</tr>
<tr>
<td>Después de explicar cada pregunta</td>
<td>32%</td>
<td>11%</td>
</tr>
<tr>
<td>Después de cada lección</td>
<td>8%</td>
<td>11%</td>
</tr>
<tr>
<td>Concluido todo el tema</td>
<td>16%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Al analizar la finalidad de la resolución de problemas, los aspectos fundamentales para los que el profesorado de básica emplea los problemas en este nivel son dos:

- Formación de la mente del alumno
- Utilidad práctica del conocimiento (tabla VI)
TABLA VI
Finalidad de la Resolución de los Problemas

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desarrollar el pensamiento lógico</td>
<td>42%</td>
<td>26%</td>
</tr>
<tr>
<td>Comprobar la adquisición de conocimien-</td>
<td>9%</td>
<td>7%</td>
</tr>
<tr>
<td>tos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxiliar en el desarrollo de un tema</td>
<td>0%</td>
<td>7%</td>
</tr>
<tr>
<td>Afianzar los mecanismos de cálculo</td>
<td>14%</td>
<td>0%</td>
</tr>
<tr>
<td>Motivar el inicio de las partes de un tema</td>
<td>5%</td>
<td>13%</td>
</tr>
<tr>
<td>Matematizar la realidad</td>
<td>23%</td>
<td>47%</td>
</tr>
<tr>
<td>Evaluar el tema</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Otras</td>
<td>5%</td>
<td>0%</td>
</tr>
</tbody>
</table>

TABLA VII
Procedencia de los problemas %

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libro de texto</td>
<td>45</td>
<td>21</td>
</tr>
<tr>
<td>Archivo personal del profesor</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>Invención de los alumnos</td>
<td>8</td>
<td>61</td>
</tr>
<tr>
<td>Seminario de matemáticas</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Otras procedencias</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Estos datos manifiestan uno de los principales cambios producidos en los profesores del Grupo Experimental; aunque se sigue reconociendo la importancia intelectual o sicológica de los problemas, se enfatiza la utilización práctica del aprendizaje, lo cual ha implicado cambios sustanciales en el rol asignado al profesor en el aula. El primer aspecto (desarrollo del pensamiento lógico), parte de una concepción tradicional centrada en el profesor, el cual planifica las actividades adecuadas que el alumno debe realizar para desarrollarse y a éste, únicamente le queda el ejecutarlas. El segundo, destaca el papel del alumno como autor de su aprendizaje, para lo cual debe interpretar la realidad,
hacerse preguntas sobre ella y expresarla a través de relaciones numéricas.

Estas ideas no son extrañas ya que (ver tabla VII), sólo el 8% de los problemas que resuelven los alumnos del grupo de control son propuestos por ellos mismos y es posible que lo hagan después de recibir indicaciones como: “Inventa un problema sobre/de/para/en donde...”; mientras que ya el 61% de los problemas que resuelven los alumnos del grupo experimental son propuestos por ellos mismos a partir de situaciones reales que proponen o inducen los profesores.

Por otra parte también se observa esta transformación (tabla VIII) ya que al ser los alumnos los que proponen sus propias preguntas a partir de situaciones reales los datos son los que ellos mismos han recogido de la realidad, discutido y valorado.

Esta misma idea se ve al analizar los enunciados (tabla IX). El grupo experimental presenta un 43% de enunciados sin pregunta, para que los alumnos la inventen. Por el contrario el 95% de los problemas realizados en el grupo de control se refieren a enunciados ya definidos.

TABLA VIII

Procedencia de los datos de los problemas en %

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Libros de texto (literalmente)</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Libros de texto (adaptados por el profesor)</td>
<td>44</td>
<td>14</td>
</tr>
<tr>
<td>Libro de texto (adaptado por los alumnos)</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>Recogidos por los alumnos de la realidad</td>
<td>25</td>
<td>64</td>
</tr>
<tr>
<td>Otras procedencias</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLA IX

Definición de enunciados en %

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con una pregunta</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Con dos o más preguntas</td>
<td>32</td>
<td>21</td>
</tr>
<tr>
<td>Con varias preguntas encadenadas</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Sin pregunta, para que sea inventada</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>Otro tipo</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
El análisis de estos datos nos muestra una modificación de nuestra actitud, que ha motivado una evolución interna del concepto de problemas y de las técnicas para su resolución. De la visión tradicional consistente en:

- Se desarrollan o explican unos conceptos matemáticos.
- Se presentan al alumno una serie de datos que se relacionan mediante los conceptos estudiados.
- Se plantea una pregunta al alumno cuya solución requiere operar con dichos datos.

Se ha pasado al siguiente esquema:

- Existen situaciones reales
- Ante una situación real cada persona se puede hacer preguntas distintas, según sus intereses o necesidades.
- Para responder estas preguntas son necesarios conocimientos o conceptos matemáticos que se proporcionan al alumno, para que pueda dar respuesta a sus preguntas.

Por tanto podemos considerar que el trabajo realizado en Seminario por el Equipo de la Experiencia en el Aula, auxiliado por el resto de los equipos, ha sido la causa principal de que el grupo de Profesores integrados en él, modifiquen su concepto de problema.

Esta modificación ha dado lugar a cambios metodológicos y didácticos, relativos a:

- Técnicas de agrupamiento de los alumnos para la resolución de problemas.
- Técnica específica de resolución de problemas.
- Material empleado en la resolución.
- Técnica de comprobación de la solución.

Los aspectos anteriores se destacan en las respuestas dadas en la parte final de la encuesta.

TABLA X

<table>
<thead>
<tr>
<th>Agrupamiento de los alumnos en %</th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo coloquial</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>En equipos</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>Trabajo individual</td>
<td>55</td>
<td>35</td>
</tr>
</tbody>
</table>
TABLA XI
Técnicas de Resolución de Problemas

<table>
<thead>
<tr>
<th>Resolución individual, aclaración de dudas lingüísticas</th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resultado aproximado antes de operar y se discute de acuerdo con los datos</td>
<td>33%</td>
<td>0%</td>
</tr>
<tr>
<td>Lectura individual, aclaración de dudas, se discuten las operaciones. Resolución individual</td>
<td>3%</td>
<td>8%</td>
</tr>
<tr>
<td>Lectura colectiva, hincapié en palabras que indican operación a realizar. Resolución individual</td>
<td>12%</td>
<td>17%</td>
</tr>
<tr>
<td>Lectura individual ó colectiva. Análisis del problema. Discusión de procedimientos para resolverlo</td>
<td>21%</td>
<td>8%</td>
</tr>
<tr>
<td>Otras técnicas</td>
<td>21%</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Se observa cómo el grupo experimental reparte el tiempo de trabajo en tercios, quitándole importancia a la Resolución individual de Problemas (tabla X). La recogida de datos, su valoración, la discusión sobre el interés de la pregunta propuesta y de las distintas estrategias a emplear en la resolución, la valoración del resultado sin operar y la comprobación de ellos son más propios del trabajo en equipo, o con la totalidad de la clase, que individualmente.

La técnica usual en el grupo de control es la resolución individual, mientras que en el experimental lo importante es la discusión del interés de la pregunta y los distintos procedimientos que se usan en la vida real según las circunstancias en que se encuentre el alumno respecto a los datos (Tabla XI).
<table>
<thead>
<tr>
<th>Tabla XII</th>
<th>Material empleado para la resolución de problemas en %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Material manipulable</td>
<td>18</td>
</tr>
<tr>
<td>Instrumentos de medida</td>
<td>20</td>
</tr>
<tr>
<td>Lápiz y papel</td>
<td>25</td>
</tr>
<tr>
<td>Pizarra</td>
<td>17</td>
</tr>
<tr>
<td>Calculadora</td>
<td>5</td>
</tr>
<tr>
<td>Libros de texto</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla XIII</th>
<th>Procedimientos utilizados para la resolución en %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Un solo procedimiento</td>
<td>2</td>
</tr>
<tr>
<td>Estrategias formuladas por los alumnos</td>
<td>18</td>
</tr>
<tr>
<td>Procedimientos gráficos</td>
<td>30</td>
</tr>
<tr>
<td>Material simbólico construido por los alumnos</td>
<td>13</td>
</tr>
<tr>
<td>Varios procedimientos en un mismo problema</td>
<td>37</td>
</tr>
</tbody>
</table>

Respecto al material empleado no se han detectado diferencias entre los grupos, debido, posiblemente a la redacción del item correspondiente; al solicitar que indiquen todos los materiales usados y no indicar que fuesen habitualmente, la mayoría de los profesores han señalado los cuatro primeros, por lo que no se discriminan las respuestas.
<table>
<thead>
<tr>
<th>Procedimientos de corrección o evaluación de problemas en %</th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los alumnos usan la calculadora</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>El profesor o un alumno de la solución correcta</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Plantillas con solución correcta</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resolución individual en la pizarra</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>Cada alumno lo resuelve mediante dos procedimientos distintos</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Discusión del resultado en grupo y resolución en la pizarra de varias formas</td>
<td>40</td>
<td>73</td>
</tr>
</tbody>
</table>

Para encontrar la solución de un problema, normalmente los alumnos de los Profesores de los Grupos de Control emplean los procedimientos gráficos o numéricos. Nuestros alumnos proponen distintas estrategias según los medios a su alcance en el 44% de los casos.

Estos resultados parecen no ser suficientemente amplios. Posiblemente los profesores de nuestro grupo no estamos totalmente mentalizados de que la resolución de un problema depende de los medios disponibles y de la situación en que se encuentren los datos, y que por tanto, en cada caso hay que definir una estrategia diferente.

En cuanto a la corrección o evaluación de los problemas, el método tradicional de salir a la pizarra ha variado sustancialmente en los dos grupos. Además, mientras que en el grupo experimental los alumnos en un 91% de los casos, comprueban sus problemas realizandolos de dos formas distintas al menos, los del grupo de control ensayan un procedimiento único en el 55% de los problemas y fundamentalmente en grupo.

4.7. Conclusiones generales del trabajo realizado por el equipo responsable de la experiencia en el aula.

A la hora de redactar unas conclusiones sobre el método I.D.E.A.L. en su globalidad, o mejor dicho sobre la experiencia que hemos desarrollado del método en nuestras clases, no podemos fijarnos
sólo en él, sino en todas las partes que intervienen como son: alumnos, profesores y contenidos matemáticos.

Los alumnos, en principio, parece que son los grandes beneficiarios del método. La clase de matemáticas, deja de ser mas o menos seria, divertida o amena, según sea el profesor, para convertirse en casi "un juego" donde el alumno es el principal protagonista.

Es un método que motiva enormemente a los alumnos, ya que al tratarse de preguntas planteadas por ellos mismos entran totalmente dentro de sus intereses.

Adquieren destreza para definir los problemas, cosa que no ocurre con otros métodos donde se les dan definidas las preguntas.

El uso de distintas estrategias de resolución abre a todos los alumnos unas perspectivas muy amplias; a unos porque les permite captar las diferentes formas de resolución y a otros porque les ayuda a elegir la estrategia más acorde con sus capacidades intelectuales.

La comprobación de los resultados obtenidos mediante la aplicación de distintas estrategias, sirve al alumno para tomar confianza en sí y asegurar su aprendizaje.

El alumno juega un papel importante como autor de su propia cultura matemática.

Se trabaja con datos reales tomados por el propio alumno, en lugar de datos más o menos reales aportados por el profesor o el texto.

En cuanto a los contenidos matemáticos ya no se puede decir lo mismo. Si en todos y cada uno de los temas se llevase el método I.D.E.A.L. para la resolución de problemas, tal cual lo hemos llevado este curso en los temas propuestos, no sería posible dar ni la mitad del cuestionario oficial de sexto nivel. Ha sido sólo con seis situaciones que iban dirigidas a algunos aspectos de algunos temas y nos han impedido desarrollar el cuestionario en profundidad.

Por otra parte, con las preguntas inventadas por los alumnos en muchas ocasiones, no se cubren todos los objetivos fijados para el tema. Surgen muchas preguntas repetidas o similares.

Aunque se trabajan los problemas en profundidad a lo largo de todas las etapas del método, puede resultar negativo el bajo número de ellos que se resuelven en cada tema.
El profesor es el que se encuentra en el dilema de elegir entre alumnos-contenidos o contenidos-alumnos, no es tan fácil la decisión. Parece que es claro que los alumnos deben primar sobre los contenidos, pero esta decisión que beneficia claramente a los alumnos de nivel intelectual más bajo, ¿beneficia también al resto de la clase?. Esta es la incógnita que en este nivel de la experiencia, no podemos contestar. Este Equipo se inclina a pensar que sí, pero esta respuesta no puede impedirnos que seamos cautos al introducir el método en séptimo nivel.

Puede ser que este estado de duda venga motivado por nuestra propia inseguridad en el método. Hemos roto un esquema de trabajo que ya creíamos dominar, para pasar a aplicar otro distinto que teníamos que empezar por conocerlo y que ha ocasionado un cambio en nuestra escala de valores.

De todos modos las ventajas que detectamos para la formación matemática del alumno, nos tiene que llevar a superar nuestras dudas e intentar buscar una armonía entre el método I.D.E.A.L. y los contenidos matemáticos.

Situación: Tableta de chocolate

1. ¿En que partes se puede fraccionar?
2. Si hay siete tabletas, ¿cuántas partes hay entre todas?
3. ¿Qué fracción de la tableta está hecha?
4. ¿Cuántos quintos tiene cada cuadrico?
5. Si se pudiera partir en tercios, ¿serían exactos?
6. Si la tableta tiene 12 onzas y cojo 6, ¿qué fracción es?
7. Divide la tableta en cuatro partes y di la fracción correspon-

Situación: El Supermercado

1. Para comprar 2/4 de kilo de jamón serrano que vale a 1500 Ptas/kg, entrego 5.000 Ptas, ¿cuánto me devolverán?
2. Si el kilo de pollo vale 200 Pts. ¿cuánto vale 1/4 de kilo de pollo?
3. El kilo de chorizo vale 575 Pts, si mi tita me manda a por 3/4 de kilo, ¿cuánto tendré que pagar?
4. Una señora lleva 2.000 Pts. se gasta 1/20 de ellas en peras y del resto 4/10 en patatas. ¿cuánto le habrá sobrado?
5. Un cuarto de kilo de queso cuesta 215 Pts. y otro queso de la misma calidad cuesta a 980 Pta. los 6/6, ¿cuál me saldrá más caro?
6. El kilo de jamón vale 1.200 Pts. Un jamón pesa 6 kg. Si una señora se lleva 1/4 del jamón y otra 2/4. ¿Cuántos kilos de ese jamón quedan en el supermercado?
7. Se compra 1/4 de kilo de queso, 1/5 de chorizo y 3/2 de kilo de lechugas, ¿cuánto ha pesado todo?
8. A Juan le dan 1/4 de 1.000 Pts. y compra un kilo de peras. ¿Cuánto le queda?
9. Tres cuartos de litro de vino valen 60 Pts. ¿Cuánto costarán dos litros de ese mismo vino?
10. El kilo de jamón cuesta a 720 Pts. Se ha comprado un jamón que pesa 3 kg. y 3/4 de kg. ¿Cuál es su precio?

Situación: Los refrescos

1. De un litro y medio se sacan 2/3, ¿Cuánto queda?
2. ¿Se podría encerrar el líquido de todas las botellas en una vasi- ja de 7 litros?
3. Yo tengo seis botellas y le quito a cada una 1/5. ¿Cuántos quintos me quedan?
4. ¿cuántos tercios caben en una botella de 2 litros?
5. Si tenemos una fanta de 2 litros y le quitamos 2/5 ¿Cuántos litros le quedan?
6. Si juntamos dos botellas, una de litro y medio y otra de un quinto, ¿cuántos litros hay?
7. ¿Qué cantidad de diferencia hay entre dos litros y 6 botellas de 1/3?
8. Si yo tengo 1/5 de fanta, 1/3 y 1/2, ¿cuántos litros hay en to- tal?
9. Si tenemos un medio litro, ¿podemos quitarle 3/5?
10. Si 2 dos litros le quitamos 1/3 y 2/5, ¿cuánto queda?
Situaciones: Medimos el cuerpo y objetos de la clase.
Hago los planos de la clase o del patio

1. ¿Cuál es la medida de altura de nuestro grupo?.
2. ¿Cuántos metros medirán Daniel, Del Bot y Cuadra, con los brazos en cruz, uno a continuación de otro?.
3. ¿Cuánto mide la quinta parte del largo de la clase?.
4. Si Pertínez mide 1.50 metros y Mendoza 2 cm. menos que Pertínez, ¿cuántos centímetros mide Mendoza de alto?.
5. Si Navío mide 1.43 m. de alto y cada día crece 1 mm., ¿Cuánto medirá en el mes próximo?.
6. Si el grueso de la mesa mide 2 cm. y el grueso del estuche mide 4.5 cm. ¿cuántos mm. mide más el grueso del estuche que el grueso de la mesa?.
7. Si una mesa mide de largo 59.5 cm., ¿qué largo ocuparán seis mesas?.
8. ¿Cuál es la envergadura media de la clase?.
9. Si mi hermano mide el doble que yo menos la altura de Isaac que mide 1.42 m. ¿Cuánto mide mi hermano si yo mido 1.42 m.?.
10. Si cuatro de nosotros tenemos la misma medida de palmo y entre todos los palmos suman 64 cm., ¿cuánto mide nuestro palmo?.
11. Si la altura de mi mesa es de 75 cm., ¿Cuánto medirán 42 mesas juntas unas encima de otras?.
12. El largo de mi mesa es 55 cm. y mi mesa es 3/5 más larga que la mesa de mi compañero, ¿cuánto mide la mesa de mi compañero?.
13. Si cada metro de rodapié vale 40 Pts. y compro 21.15 m. y doy 1.000 Pts. para pagar, ¿cuánto me tienen que devolver?.
14. La pared del fondo de la clase mide 6.35 m.; si el trozo de esa pared comprendida entre el rincón y el armario mide 1.90 m. y el armario mide de ancho 220 cm., ¿cuánto mide el hueco que queda entre el armario y la pared de las ventanas?.
15. El largo de la acera mide 31.10 m. y el ancho 1.65 m.; si el largo de la clase mide 9.20 m. y su ancho es de 625 cm., ¿cuánto mide menos ancho y largo de la clase juntos que ancho y largo de la acera?.
16. ¿Cuál es el perímetro de la clase?
17. ¿A qué distancia de la pared habría que hacer un muro para dejar la clase cuadrada?
18. ¿Cuánto me falta para darme con la cabeza en el marco de la puerta?
19. Un niño ha contado 22 baldosas a lo largo de la clase. ¿Se ha podido equivocar? ¿En cuántas?
20. ¿A qué altura del suelo comienza la pizarra?

Situación: Construimos el plano de la vivienda ideal

1. Si el dormitorio de matrimonio mide de largo 5.8 m. y de ancho 3.2 m. pero hay dos dormitorios de soltero que miden de largo 5 m. y de ancho 3 m. ¿Cuántos metros cuadrados ocuparán los tres dormitorios?
2. Si un dormitorio mide de largo 5.8 m. y de ancho 3.2 m. y se quieren poner a todo el alrededor rodapies y cada uno mide 32 cm., ¿cuántos hacen falta?
3. El comedor mide de largo 4 m. y de ancho 4 m. y la mesa que vamos a poner mide de largo 2.5 m. y de ancho 1.59 m. ¿Cuántos m² sobran de comedor?
4. Calcular lo que vale el salón al precio de 60.000 Pts. el m².
5. En una habitación caben 600 baldosas, cada baldosa mide 2 dm², ¿cuánto mide la habitación?
6. ¿Qué diferencia hay entre las dos terrazas?
7. ¿Cuántas baldosas de 20 cm. por 20 cm podríamos poner en el suelo del cuarto de baño principal?
8. ¿Cuántos cm² miden los tres dormitorios juntos?
9. ¿Cuántos m² mide el piso construido?
10. Si el dormitorio número 2 mide de largo 3.4 m. y de ancho 3.2 m. ¿Cuáles son los 3/4 de la superficie de este dormitorio? Expresa el resultado en cm².

5. TRABAJO REALIZADO POR EL EQUIPO RESPONSABLE DEL DISEÑO EXPERIMENTAL Y CONTROL ESTADISTICO

5. INTRODUCCION

El planteamiento hecho al comenzar nuestra experiencia en Resolución de Problemas asume que la formación recibida por los alumnos
en este campo de trabajo tiene muchas deficiencias, que se descuidan muchos aspectos que a nosotros nos parecen importantes y que las estrategias que el profesor emplea en su enseñanza son sólo una parte de las que pueden y deben emplear. Nos planteábamos el interrogante de si al ampliar tanto la variedad de situaciones como las estrategias que el profesor y el alumno emplean, con la consiguiente disminución del número de problemas resueltos, se seguirían manteniendo los niveles de rendimiento en pruebas de resolución de problemas verbales de corte tradicional. Este fue un objetivo de la experiencia realizada durante el curso 85-86: controlar la posible pérdida de rendimiento al modificar el método.

Puesto que se trataba de una primera toma de contacto no fuimos excesivamente rigurosos en la selección de la muestra, en su composición y homogeneidad, ni en la asignación de los grupos experimental y control. Su composición fue voluntaria y en cierto modo indicaba un interés inicial del Profesorado en la experiencia.

Al comenzar nuestro estudio el curso pasado se sometieron ambos grupos, experimental y control, a un pretest y en él se observó una ligera diferencia de rendimiento en favor de los alumnos del grupo experimental.

Conforme se desarrolló la experiencia se puso de manifiesto que era viable; a los profesores del grupo experimental, subjetivamente, les parece una experiencia positiva, con la que han disfrutado durante el curso y además intuyen que les ha cambiado determinadas pautas de conducta en relación con el tratamiento didáctico de los temas. Los resultados finales se aceptan como positivos y se admite que los alumnos de los grupos experimentales son más aptos para la resolución de problemas.

Analizada la experiencia se observa un fallo: no se ha programado ni seguido la actividad de los profesores de los grupos de control. No se les ha dado instrucciones sobre el tiempo a emplear, objetivos a conseguir, secuencia metodológica, etc... Solamente se advierte que se van a realizar unas pruebas de unos tópicos determinados: conoce el día de aplicación y el tema, pero nada más.

En el desarrollo de la experiencia aparece gran cantidad de información que queda sin procesar. Sólo se analizan estadísticamente la situación inicial y final de los grupos experimental y control sobre Re-
solución de Problemas. Esto es consecuencia de un seguimiento estricto del esquema cuantitativo elegido para la investigación.

Demasiado aparato y trabajo para la poca información conseguida, descontando los fallos de planificación. Pero suficiente para conseguir un resultado importante: poner de manifiesto la viabilidad del método y contrastar que con él no hay pérdida de rendimiento.

Al planear la experiencia para el curso 86-87 procuramos subsanar en lo posible las deficiencias antes señaladas. Se elige una muestra lo más amplia posible, que fue de veinte grupos de alumnos de sexto, con la finalidad de que las pérdidas de alumnado no tuvieran repercusión en los resultados y que estuvieran representadas las distintas zonas de la capital así como algunos colegios de pueblos.

A los veinte colegios se les pasa un pretest que nos marca el grado inicial de desarrollo en Resolución de Problemas, y que nos sirve además para estudiar el grado de homogeneidad existente entre los distintos colegios seleccionados. Atendiendo a esta homogeneidad se reparten las distintas unidades en experimental y control.

La laguna que deja el método cuantitativo al tratar los individuos en bloque, intenta ser cubierta con la creación de un Equipo de Estudio de Casos, que al mismo tiempo que pone de manifiesto las peculiaridades individuales de los alumnos en Resolución de Problemas, sirva con su actuación de punto de referencia para criticar el método seguido en clase. Este grupo tendrá también la misión de analizar las modificaciones que se producen en la conducta del profesor que lleva a cabo el método utilizado, así como una valoración conjunta de las situaciones experimentales.

Nos proponemos, por último, profundizar en la técnica de trabajo seguida el curso anterior y tratar de conseguir que el Grupo de Control dedique el mismo tiempo a Resolución de Problemas con técnicas convencionales, que el Grupo Experimental, para lo cual se le dan las indicaciones necesarias al profesorado que imparte clases a los diez grupos de control.

5.1. Modelo Experimental de la investigación

Variables que intervienen. Hipótesis a confirmar

116
Dos son las variables fundamentales con las que se trabaja en la experiencia. La variable independiente es la metodología propuesta fundamentada en la invención de preguntas y cuestiones que den lugar a enunciados de problemas aritméticos. La variable dependiente es el rendimiento en la resolución de problemas aritméticos convencionales.

La hipótesis Ho a confirmar es:

— El entrenamiento llevado a cabo con profesores y alumnos sobre invención de enunciados de problemas aritméticos significativos respecto a una información en la que aparecen datos cuantitativos, no produce variación del rendimiento en la resolución de problemas convencionales.

— Hay variación del rendimiento en la resolución de problemas convencionales cuando se trabaja con la metodología propuesta. En esta segunda hipótesis habría que diferenciar entre una variación a la baja o una variación a la alta en la resultante.

Diseño experimental

La experiencia que estamos llevando a cabo podría incluirse dentro de un diseño “Grupo Control, postet” de ESCOTET, M.A., si el grupo de control y el experimental hubieran sido seleccionados mediante aleatorización y bloqueo.

En nuestro trabajo no se han seleccionado los grupos de control y experimental de esta forma, sino que se han tomado clases enteras de diferentes colegios, asignando unos al grupo de control y otros al experimental. En consecuencia el diseño que vamos a utilizar es “Grupo de control no equivalente” de CAMPBELL, DT, y STANLEY.

Este diseño comprende un grupo experimental y otro de control, con un pretest y un postest cada uno de ellos.

Control de las variables.

Antes de introducirnos en el control de las variables será interesante clasificarlas en relación al papel que desempeñan en el proceso experimental. Estas son: variables independientes, variables dependientes y variables intervinientes.

La v. independiente se considera causa de la variabilidad o modificación de la variable dependiente.
La v. dependiente es el fenómeno que aparece, desaparece o cambia cuando el investigador suprime, aplica o modifica la v.i. (también analizada anteriormente.

Las v. intervinientes son todas las variables extrañas al experimento y que pueden influir en la investigación, haciendo que la variabilidad de la v.d. no se deba sólo a la v.i. Estas variables hay que controlarlas tanto las que provienen del medio, de las diferencias individuales, como las generadas por el propio experimento.

En cualquier diseño de investigación hay dos tipos de validez: interna y externa. La validez interna consiste en comprobar si los cambios observados en la variable dependiente son debidos exclusivamente a la v.i. experimental. La validez externa es el poder que tiene un diseño de generalizar los resultados.

El diseño utilizado en la experiencia controla las posibles variables que afectarían a la validez interna, como veremos a continuación:

HISTORIA (Acontecimientos ocurridos durante las diferentes mediciones).- Para controlarla preparamos una serie de información que se da a los profesores del grupo experimental con el objeto que trabajen con los mismos objetivos, metodología, material, etc. Es decir, existen una serie de instrucciones previas respecto al comportamiento de cada uno de los investigadores en cada uno de las diferentes sesiones y tratamientos. En el grupo de control se deja libertad plena al profesor con respecto a la metodología, material, etc. y sólo se le dan contenidos que debe impartir.

Los diferentes procesos terminan en una medición de la variable dependiente que se lleva a cabo por el grupo de control y el experimental.

El tiempo que se dedica en el grupo experimental a trabajar con la variable independiente es el mismo que dedica el grupo de control.

MADURACION (Evolución de los procesos internos de los participantes por el mero paso del tiempo).- Al tratarse de alumnos de 6 de E.G.B. con edades iguales, o poca diferencia, con respecto a la media en los dos grupos, es por lo que este efecto se supone igual para todos durante el transcurso de la investigación.

Partiendo de la puntuación del pretest, se podrá afirmar que el incremento del grupo de control en la puntuación del postest se deberá
a la instrucción normal y a la maduración; este efecto también ocurre en el grupo experimental. Si el aumento del grupo experimental es significativamente superior en el postest al del grupo de control, es esta diferencia la que nos mide el efecto del tratamiento experimental. La maduración es pues una variable controlada.

ADMINISTRACION DEL TEST (Presentación de estímulos cuya mera aplicación pueda modificar los resultados de aplicaciones posteriores).- La prueba pretest pasada a los alumnos no la pueden relacionar los alumnos con el tratamiento experimental posterior. Si se crea alguna motivación se debe suponer que se produce en los dos grupos.

Las pruebas son de tipo general, miden rendimientos de los contenidos anteriormente expuestos a los alumnos, tanto del grupo experimental como de control.

INSTRUMENTACION (Los cambios en los instrumentos de medición o en los observadores o calificadores participantes pueden producir variaciones en las mediciones).- Para controlar este efecto hemos tratado que las pruebas pretest y postest pasadas sean idénticas para los dos grupos. Dado que no era posible el que un mismo experimentador fuera el encargado de pasarlo, tomamos las medidas necesarias para que las instrucciones de la prueba, tiempo de aplicación y baremos de corrección fuesen iguales para todos.

Tampoco creemos que afecten las diferentes medidas que se realizan a cada uno de los grupos, ya que la influencia debe ser igual para todos.

REGRESION ESTADISTICA (Opera allí donde se han seleccionado los grupos sobre la base de puntajes extremos).- Si bien los grupos no son completamente equivalentes, sus puntuaciones tampoco son extremas.

SESGOS (Resultantes de una selección diferencial de participantes para los grupos de comparación).- Dado que la equiparación total de sujetos en una investigación es muy difícil de conseguir y para ello teníamos que transformar nuestra investigación en un experimento de laboratorio, es por lo que se optó por tomar grupos completos de clases para acercarnos más a un experimento de campo.
La igualdad de los grupos con respecto a los sujetos creemos que está conseguida una vez estudiados los resultados de la prueba. Otro aspecto a tener en cuenta es que la muestra se puede considerar grande, ya que han sido 600 los sujetos implicados en la investigación.

MORTALIDAD EXPERIMENTAL (Pérdida de participantes en los grupos de comparación). Entre las posibles soluciones podemos optar por: a) suprimir desde el principio los alumnos que hayan sido objeto de mortalidad, o b) disminuir “n” en cada uno de los postest a la hora de calcular parámetros.

La equiparación de grupos en el comienzo, nos permite equilibrar las posibles pérdidas.

INTERACCION ENTRE LA SELECCION Y LA MADURACION. En nuestro experimento la creemos controlada.

CONCLUSION: Según CAMPBELL y STANLEY este diseño tiene validez interna, pues controla la historia, maduración, administración de test, instrumentación, selección, mortalidad, pudiendo controlarse la regresión estadística.

Esta afirmación también la comparte J. ARNAU, aún cuando presupone que es posible que no esté controlado en este diseño la interacción entre selección y maduración. En este caso concreto, ésto, no sucede pues los grupos son relativamente uniformes y los alumnos que pertenecen a los dos grupos poseen la misma edad, el mismo nivel, etc. y, por lo tanto la ganancia que puede tener el grupo experimental en el postest con relación al grupo de control sólo será imputable al tratamiento experimental.

El efecto de la regresión estadística ya ha sido comentado anteriormente. También estudiaremos este efecto utilizando técnicas estadísticas como el análisis de covarianza.

Respecto a la validez externa, puesto que en este diseño se toman grupos completos de clases, la sensación de ser “conejillos de indias” es menor, de ahí que la validez externa sea mayor que en otros diseños propiamente experimentales. Esto posibilita el poder generalizar los resultados a otros grupos que tengan las mismas características, aunque no se les haya incluido en esta muestra.
Dado que las pruebas utilizadas para controlar el efecto de la variable son usuales para los sujetos de la experimentación, no suponen una ruptura respecto a la conducta normal del sujeto; ni para otros sujetos que pertenezcan a otra población.

La selección de clases se ha realizado teniendo en cuenta los distintos grupos sociales (distinta localización geográfica de las escuelas) y situación administrativa (centros públicos y privados).

También consideramos que en la investigación no existen efectos reactivos de los dispositivos experimentales, debido a que la experiencia no presupone una artificialidad con relación al desarrollo normal de la clase. El sujeto no tiene conciencia de la situación experimental que está viviendo.

No existe presencia de un experimentador desconocido en ningún grupo, son los propios profesores los que desarrollan la experiencia, los que pasan pruebas, etc.; de ahí que esta línea de investigación esté próxima a una "investigación en la acción", ya que son los propios maestros coordinados con especialistas los que planifican la investigación.

Aún cuando se dé el efecto de "interferencia de tratamientos múltiples" no creemos que afecte a la validez de este diseño, pues todos tienen una misma línea de acción y la acumulación de los efectos se considera positiva en el resultado final de la experiencia.

En resumen:

<table>
<thead>
<tr>
<th>FUENTES DE INVALIDACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historia +</td>
</tr>
<tr>
<td>Maduración +</td>
</tr>
<tr>
<td>Administración de tests +</td>
</tr>
<tr>
<td>Instrumentación +</td>
</tr>
<tr>
<td>Regresión +</td>
</tr>
<tr>
<td>Selección +</td>
</tr>
<tr>
<td>Mortalidad +</td>
</tr>
<tr>
<td>Interacción de selección y maduración, etc. +</td>
</tr>
</tbody>
</table>

121
Analisis de resultados.

Pruebas pretest y postest.

Las conclusiones de la experiencia tendrán como base el análisis realizado sobre los resultados de las pruebas pretest y postest aplicadas a ambos grupos: experimental y control.

Teniendo en cuenta el empleo de grupos intactos para la asignación aleatoria del tratamiento y no de individuos (CAMPBELL y STANLEY, 1973 y GARCIA HOZ, 1984), será preciso para observar rendimientos un análisis de covarianza en el que se empleen como covariables las puntuaciones individuales y por grupos del pretest, probando los efectos del tratamiento con la variación de las mismas, obtenidas en el postest también de forma individual y por grupos.

Pruebas intermedias realizadas entre el pretest y el postest. Aparte de las observaciones que realice cada profesor del grupo experimental sobre el desarrollo de cada bloque de contenidos, correspondiente a una determinada prueba, con los resultados de las mismas se puede controlar:

1. Adecuación de la metodología experimentada a los distintos contenidos; es decir, si hay temas donde los rendimientos son mejores que en otros e incluso si existen temas donde no sea adecuada esta metodología.

2. Si el rendimiento en la resolución de problemas mejora progresivamente con el empleo de la metodología o se estanca en un determinado nivel (puede que la novedad produzca una mejora de los resultados y después se establezca al no presentar atractivos o simplemente porque la metodología no da más de sí).
Esto se medirá comparando en cada prueba el grupo de control y el experimental, mediante la PRUEBA T, STUDENT viendo si las diferencias aumentan o se estabilizan.

Análisis de cada una de las pruebas.

En cada una de las pruebas se medirán los siguientes aspectos:
1. - Fiabilidad de la prueba, mediante el método dado por la fórmula de KUDER-RICHARDSON. Se considera una prueba fiable cuando el grado de fiabilidad es mayor que 0.6.
2. - Discriminación de los items, mediante la comparación del 27% del grupo inferior. Consideramos ítem aceptable aquel que tenga un índice de discriminación positivo.
3. - Dificultad de los ítems, también mediante comparación del 27% del grupo superior con el 27% del grupo inferior; considerando demasiado fáciles los que superen el 85% y demasiado difíciles los que no lleguen al 15%.

Tipo de investigación y consecuencias que se esperan.

Campo de trabajo: Didáctica de la Matemática.
Tema de estudio: Resolución de Problemas Aritméticos.

Se trata de una investigación aplicada por cuanto los objetivos planteados son utilitarios: mejorar la capacidad de comprensión y resolución de los problemas aritméticos.

La investigación que se propone es activa puesto que se define en un ámbito espacio-temporal preciso, pero también es formativa en cuanto se entiende que conduce a una mejor formación del profesorado en ejercicio. La investigación es experimental puesto que se van a someter a contraste una propuesta metodológica, delimitando las variables que se quieran estudiar y comparando su evolución con un grupo de control.

El trabajo que se propone es una investigación de campo, ya que va a desarrollarse en una situación natural como es el aula de clase.

Las consecuencias que se deducen de nuestra investigación, caso de confirmarse la hipótesis, afectan al profesor y al alumno de E.G.B., así como a nuestra propia investigación en los siguientes aspectos:
Los métodos activos de resolución de problemas son mejores que los que actualmente se aplican y habría que propugnar su utilización.

En la resolución de problemas intervienen más variables de las que hoy se consideran y el profesor debe conocerlas y tenerlas en cuenta en su clase.

Hay que abandonar los planteamientos clásicos de los problemas incorporando a los mismos la filosofía de resolución de situaciones problemáticas propugnada por el Ministerio en los Programas Renovados de la E.G.B.

Se debe facilitar a los profesores nuevas técnicas metodológicas y abrirles posibles vías de investigación en el aula.

Hay que favorecer la participación del alumno en las actividades que va a realizar y posibilitar un fuerte grado de interdisciplinariedad.

Se puede incrementar la transferencia del aprendizaje matemático a los problemas que se plantean en el entorno.

El rendimiento en la resolución de problemas no decrece, se contribuye a despertar interés hacia la matemática, se analizan desde una perspectiva más amplia y le dan al individuo una formación más completa.

Conecta la escuela con las necesidades sociales y prepara mejor al alumno para el futuro.

Favorece el aspecto investigador y creativo del alumno. Finalmente, para nuestra investigación, la confirmación de la hipótesis supondría continuar investigando la influencia que tienen las nuevas variables que consideramos en la resolución de problemas; sin la cual la actual quedaría incompleta.

5.2. Pruebas aplicadas y resultados obtenidos.

5.2.1. Primera prueba (Pretest)
SEXTO NIVEL, PRUEBA INICIAL DE MATEMATICAS. Fecha __________
COLEGIO: ___
NOMBRE Y APELLIDOS: ___________________________________

1. Juan tiene 214 pesetas, Pedro 163 y Ana siete veces más que los dos juntos. ¿Cuánto dinero tiene Ana?.

CRITERIO: \[214 + 163 = 377 \text{ PTA.} \quad 377 \times 7 = 2639 \text{ PTA.} \]

2. Tenemos dos piezas de tela. La primera mide 75 m. y la segunda 36 m más que la primera. ¿Cuántos metros miden entre las dos?

CRITERIO: \[75 + 36 = 111 \quad 75 + 111 = 186 \text{ metros} \]

3. Isidoro compra 15 chicles a 13 PTA. cada uno y 7 tebeos a 140 PTA. cada uno. ¿Cuánto dinero se ha gastado?

CRITERIO: \[15 \times 13 = 195; \quad 7 \times 140 = 980; \quad 980 + 195 = 1175 \text{ Pta.} \]

4. Un bidón tiene una capacidad de 180 litros. Echamos en él 95 litros. ¿Cuántos litros faltan para llenarlo?

CRITERIO: \[180 - 95 = 85 \text{ litros.} \]

5. Un comerciante compró un balón por 1.300 PTA. Se le pinchó, y tras arreglarlo lo vendió por 385 PTA. ¿Cuánto perdió?

CRITERIO: \[1.300 - 385 = 915 \text{ PTA.} \]

6. Marí a nació en Diciembre de 1932. ¿Cuántos años va a cumplir María próximamente?

CRITERIO: \[1986 - 1932 = 54 \text{ años.} \]

7. La distancia entre dos pueblos es de 15 Km. si ya llevo recorridos 1.750 m. ¿cuántos metros me faltan por recorrer?

CRITERIO: \[15 \times 1.000 = 15.000; \quad 15.000 - 1.750 = 13.250 \text{ mts.} \]

8. Calcula cuántos billetes de 100 PTA hay en un billete de 2.000 PTA.

125
CRITERIO: $2.000 : 100 = 200$ billetes.

9. Un camionero lleva 52 sacos de patatas que en total valen 26.100 PTA. ¿Por cuánto hay que vender cada saco para no ganar ni perder?

CRITERIO: $26.000 : 52 = 500$ PTA.

10. Para vaciar un tonel que contiene 480 litros de vino, ¿cuántas garrafas de 16 litros hacen falta?

CRITERIO: $480 : 16 = 30$ garrafas.

11. Un niño dispone de 45 minutos para realizar una evaluación. En el primer ejercicio tarda 4 minutos y en el segundo 12 minutos. ¿Cuánto tiempo le queda para terminar la prueba?

CRITERIO: $12 + 4 = 16; 45 - 16 = 29$ minutos.

12. Un campesino vende 7 sacos de trigo a 1125 PTA. cada uno, y con el dinero obtenido compra dos borregos por un total de 7.200 PTA. ¿Cuánto le sobró?

CRITERIO: $1.125 \times 7 = 7.875; 7.875 - 7.200 = 675$ PTA.

13. Se compran 5 rotuladores por 260 PTA. ¿Cuánto valen 9 rotuladores de la misma clase?

CRITERIO: $260 : 5 = 52; 52 \times 9 = 468$ PTA.

14. Un niño nació hace 6 semanas y 5 días. ¿Cuántos días tiene?

CRITERIO: $6 \times 7 = 42; 42 + 5 = 47$ días.

15. Una niña sacó de la hucha 2.500 PTA. Gastó 750 PTA. en un cuento, y el resto lo repartió entre sus tres hermanos. ¿Cuánto dió a cada uno?

CRITERIO: $2.500 - 750 = 1.750; 1.750 : 3 = 583.3$ PTA.
VARIABLES QUE INTERVIENEN EN EL PRETEST

<table>
<thead>
<tr>
<th>Items</th>
<th>MAGNITUD</th>
<th>Conjunto</th>
<th>SENTENCIA</th>
<th>ESTRUCTURA SEMANTICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>(a + b)c</td>
<td>Combinación/Comparación</td>
</tr>
<tr>
<td>2</td>
<td>Continua, longitud</td>
<td>N</td>
<td>a + (a + b)</td>
<td>Combinación/Comparación</td>
</tr>
<tr>
<td>3</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>(ab) + (cd)</td>
<td>Cambio 1/Combinación</td>
</tr>
<tr>
<td>4</td>
<td>Continua, capacidad</td>
<td>N</td>
<td>a-b</td>
<td>Comparación</td>
</tr>
<tr>
<td>5</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>a-b</td>
<td>Cambio</td>
</tr>
<tr>
<td>6</td>
<td>Continua, tiempo</td>
<td>N</td>
<td>a-b</td>
<td>Combinación</td>
</tr>
<tr>
<td>7</td>
<td>Continua, longitud</td>
<td>N</td>
<td>a .1000-b</td>
<td>Tasa 1/Comparación</td>
</tr>
<tr>
<td>8</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>a:b</td>
<td>Tasa 3</td>
</tr>
<tr>
<td>9</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>a:b</td>
<td>Cambio 3</td>
</tr>
<tr>
<td>10</td>
<td>Continua, capacidad</td>
<td>N</td>
<td>a:b</td>
<td>Cambio 2</td>
</tr>
<tr>
<td>11</td>
<td>Continua, tiempo</td>
<td>N</td>
<td>a-(b + c)</td>
<td>Igualación</td>
</tr>
<tr>
<td>12</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>ab-c</td>
<td>Razón 1/Comparación</td>
</tr>
<tr>
<td>13</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>(b:a)c</td>
<td>Razón 3/Razón 1</td>
</tr>
<tr>
<td>14</td>
<td>Continua, tiempo</td>
<td>N</td>
<td>ab + c</td>
<td>Cambio 1/Combinación</td>
</tr>
<tr>
<td>15</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>(a-b):c</td>
<td>Cambio/Cambio 3</td>
</tr>
</tbody>
</table>

VALORACION Y ANALISIS DEL PRETEST

TABLA 1: Datos generales

<table>
<thead>
<tr>
<th>N.° alumnos</th>
<th>N° de unidades escolares</th>
<th>Fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.: 355</td>
<td>exp.: 10</td>
<td></td>
</tr>
<tr>
<td>cont.: 318</td>
<td>cont.: 10</td>
<td>0.81</td>
</tr>
<tr>
<td>total: 673</td>
<td>total: 20</td>
<td></td>
</tr>
</tbody>
</table>
TABLA 2: Análisis de ítems

<table>
<thead>
<tr>
<th>Item</th>
<th>Discriminación</th>
<th>Dificultad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>0.71</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>0.58</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>0.31</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>0.17</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>0.52</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>0.82</td>
<td>58</td>
</tr>
<tr>
<td>8</td>
<td>0.56</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>0.41</td>
<td>79</td>
</tr>
<tr>
<td>10</td>
<td>0.54</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>0.61</td>
<td>69</td>
</tr>
<tr>
<td>12</td>
<td>0.71</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>0.90</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>0.66</td>
<td>66</td>
</tr>
<tr>
<td>15</td>
<td>0.61</td>
<td>69</td>
</tr>
</tbody>
</table>

TABLA 3

Experimentales

<table>
<thead>
<tr>
<th>Cod.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>23</td>
<td>24</td>
<td>46</td>
<td>41</td>
<td>30</td>
<td>42</td>
<td>33</td>
<td>43</td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td>X</td>
<td>10.3</td>
<td>8.9</td>
<td>13.3</td>
<td>11.4</td>
<td>11.4</td>
<td>11.6</td>
<td>12.9</td>
<td>13</td>
<td>11.3</td>
<td>13.4</td>
</tr>
<tr>
<td>σ</td>
<td>4.4</td>
<td>4.7</td>
<td>3</td>
<td>3.7</td>
<td>4.7</td>
<td>3.3</td>
<td>2.2</td>
<td>2.6</td>
<td>3.4</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Controles

<table>
<thead>
<tr>
<th>Cod.</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>33</td>
<td>24</td>
<td>29</td>
<td>35</td>
<td>30</td>
<td>32</td>
<td>24</td>
<td>24</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>X</td>
<td>12.3</td>
<td>11</td>
<td>11.6</td>
<td>14.1</td>
<td>12.7</td>
<td>10.2</td>
<td>9.6</td>
<td>9.1</td>
<td>11</td>
<td>11.3</td>
</tr>
<tr>
<td>σ</td>
<td>3.2</td>
<td>2.9</td>
<td>4.2</td>
<td>1.7</td>
<td>2.7</td>
<td>3.9</td>
<td>4.3</td>
<td>4.4</td>
<td>4.3</td>
<td>3.6</td>
</tr>
</tbody>
</table>
Rendimientos

<table>
<thead>
<tr>
<th>Experimental</th>
<th>Control</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.4 %</td>
<td>75.2 %</td>
<td>3.2 puntos</td>
</tr>
</tbody>
</table>

5.2.2. Segunda prueba

SEXTO NIVEL. PRUEBA DEL CONCEPTO DE FRACCION. Fecha_____

COLEGIO: ___

NOMBRE Y APELLIDOS: ___

1. Raya 1/3 del rectángulo.

CRITERIO: Raya aproximadamente una parte de las tres en que ha dividido la figura.

2. La distancia de Granada a Almería son 170 Km. Llevo recorrido un quinto de esta distancia. ¿Cuántos kilómetros llevo recorridos?

CRITERIO: $170 : 5 = 34$ Km.

3. Calcula en meses:

 $\frac{1}{4}$ de año = meses

 $\frac{1}{6}$ de año = meses

CRITERIO: 3 meses; 2 meses

4. Compro 1/5 de queso que pesa 275 gr. ¿Cuánto pesa el queso entero?. Señala la respuesta correcta:

CRITERIO: Opción C
5. El dibujo representa 1/4 de una cuerda:

Dibuja a continuación la cuerda completa:

CRITERIO: Una línea que mida aproximadamente 4 veces la de arriba.
6. Raya los 3\(\frac{3}{4}\) del círculo:

CRITERIO: Deben aparecer rayadas seis partes de las ocho en que está dividido el círculo.
7. Antonio tiene 20 años, la edad de su hermano Juan es los 5/4 de la de Antonio ¿Cuántos años tiene Juan?

CRITERIO: 20 : 4 = 5; 5 x 5 = 25 años o bien 20 x 5 = 100; 100 : 4 = 25 años.
8. El día de mi santo me regalaron 2.500 ptas., al comprar un balón, gasté los 2/5 de esa cantidad. ¿Cuánto costó el balón?. Señala la respuesta correcta.

A) 1.250 Ptas. B) 2.000 Ptas. C) 1.500 Ptas.
D) 1.000 Pts. E) 6.250 Ptas.

CRITERIO: Opción D
9. Tienes dibujados los 3/10 de una figura geométrica

Dibuja la figura completa.

CRITERIO: Tienen que aparecer diez cuadrados en total
10. Los 2/5 de los alumnos de un colegio son 402 alumnos. ¿Cuántos alumnos hay en el centro?
CRITERIO: 402 : 2 = 201; 201 x 5 = 1.005 alumnos.

11. Los 3/4 de las bolas de Juan son:

```
o o o o o
 o o o o
 o o o o
```

Dibuja el total de las bolas de Juan. Hazlo en este recuadro.

CRITERIO: Tiene que dibujar 16 bolas.

12. Al comprar 3/2 litros de refresco me gasto 108 ptas. ¿Cuánto cuesta un litro de refresco?.

CRITERIO: 108 : 3 = 36; 36 x 2 = 72 Ptas.

13. En media caja de lápices hay 6 lápices. ¿Cuántos lápices hay en tres cajas enteras?.

CRITERIO: 6 x 2 = 12; 12 x 3 = 36 lápices.

14. 1/4 del peso de una caja son 8 kilos ¿Cuántos kilos pesan 5 cajas iguales?.

A) 32 Kg. B) 40 Kg. C) 20 Kg. D) 100 Kg. E) 160 Kg.

CRITERIO: 8 x 4 = 32; 32 x 5 = 160 kg; Opción E

15. Tienes dibujados los 3/4 de un rectángulo. Haz un dibujo en el que utilices tres rectángulos completos.

```
  +---+
 |   |   |
 +---+
    +---+
```

CRITERIO: Tienen que aparecer de la forma que sea 12 rectángulos en total
16. Tenemos representado la mitad de un rectángulo

Dibuja el rectángulo completo y raya sobre él los 2/3.

CRITERIO: Tiene que aparecer un rectángulo doble que el anterior, dividirlo en 3 partes y rayar dos.

17. El reloj da una campanada cada 1/2 hora. Desde que hemos llegado, la campana sonó 15 veces. ¿Cuántas horas han transcurrido?

CRITERIO: 15 : 2 = 7.5 horas o bien 7 horas y media.

18. Con 12 botellas de litro de leche. ¿Cuántas botellas de 1/3 pueden llenarse?

CRITERIO: 12 x 3 = 36 botellas de 1/3.

19. En este rectángulo cuadriculado raya una figura que ocupé los 3/5 del total.

CRITERIO: De la forma que sea deben aparecer 12 rectángulos pequeños rayados.

20. La ganancia de una rifa se la reparten entre cuatro amigos. Juan se queda con los 2/15 del total, Andrés con 1/5, Pedro con 1/3 y Miguel con 5/15 del total. ¿Qué dos amigos se quedan con partes iguales?

a) Juan y Andrés
b) Andrés y Pedro
c) Pedro y Miguel
d) Miguel y Andrés

CRITERIO: Opción C
<table>
<thead>
<tr>
<th>Items MAGNITUD</th>
<th>ACTUACION CONJUNTO</th>
<th>SENTENCIA</th>
<th>ESTRUCTURA SEMANTICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Continua (Superficie)</td>
<td>Gráfica Q</td>
<td>l:k</td>
<td>Cambio 3</td>
</tr>
<tr>
<td>2 Continua (Longitud)</td>
<td>Operar Q,N</td>
<td>n:k</td>
<td>Comparación 8</td>
</tr>
<tr>
<td>3 Continua (Tiempo)</td>
<td>Operar Q</td>
<td>n:k</td>
<td>Comparación 8</td>
</tr>
<tr>
<td>4 Continua (Peso)</td>
<td>Aproximar Q,N</td>
<td>a,k</td>
<td>Comparación 7</td>
</tr>
<tr>
<td>5 Continua (Longitud)</td>
<td>Gráfica Q</td>
<td>4.k</td>
<td>Cambio 1</td>
</tr>
<tr>
<td>6 Continua (Superficie)</td>
<td>Gráfica Q</td>
<td>n.1.k</td>
<td>Cambio 3</td>
</tr>
<tr>
<td>7 Continua (Tiempo)</td>
<td>Operar Q,N</td>
<td>n.a.k</td>
<td>Comparación 8</td>
</tr>
<tr>
<td>8 Discreta (Dinero)</td>
<td>Aproximar Q,N</td>
<td>a.n.k</td>
<td>Comparación 8</td>
</tr>
<tr>
<td>9 Discreta (Cuadrados)</td>
<td>Gráfica Q</td>
<td>k:(n.k)</td>
<td>Comparación 7</td>
</tr>
<tr>
<td>10 Discreta (Personas)</td>
<td>Operar Q,N</td>
<td>a:(n,k)</td>
<td>Comparación 7</td>
</tr>
<tr>
<td>11 Discreta (Objetos)</td>
<td>Gráfica Q</td>
<td>a:(n/k)</td>
<td>Comparación 7</td>
</tr>
<tr>
<td>12 Continua (Capacidad)</td>
<td>Operar Q,N</td>
<td>a:(n.k)</td>
<td>Tasa 3</td>
</tr>
<tr>
<td>13 Discreta (Objetos)</td>
<td>Operar Q,N</td>
<td>n(a:(1.k))</td>
<td>Tasa 1</td>
</tr>
<tr>
<td>14 Continua (Peso)</td>
<td>Aproximar Q,N</td>
<td>n(a:(1.k))</td>
<td>Tasa 1</td>
</tr>
<tr>
<td>15 Continua Superficie</td>
<td>Gráfica Q</td>
<td>b(a:(n/k))</td>
<td>Comparación 7</td>
</tr>
<tr>
<td>16 Continua (Superficie)</td>
<td>Gráfica Q</td>
<td>1:(1.k)n:k</td>
<td>Cambio 1</td>
</tr>
<tr>
<td>17 Continua (Tiempo)</td>
<td>Operar Q,N</td>
<td>a:1/k</td>
<td>Combinación 8</td>
</tr>
<tr>
<td>18 Continua (Capacidad)</td>
<td>Operar Q,N</td>
<td>a:1/k</td>
<td>Tasa 1</td>
</tr>
<tr>
<td>19 Continua (Superficie)</td>
<td>Gráfica Q</td>
<td>a:n/k</td>
<td>Comparación 8</td>
</tr>
<tr>
<td>20 Discreta</td>
<td>Aproximar Q</td>
<td>n/k = n'/k'</td>
<td>Comparación</td>
</tr>
</tbody>
</table>
VALORACIÓN Y ANÁLISIS DE LA PRIMERA PRUEBA
de fracciones

Tabla 1: Datos generales

<table>
<thead>
<tr>
<th>N° alumnos</th>
<th>N° de unidades escolares</th>
<th>Fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.: 350</td>
<td>exp.: 10</td>
<td></td>
</tr>
<tr>
<td>cont.: 314</td>
<td>cont.: 10</td>
<td>0.75</td>
</tr>
<tr>
<td>total: 664</td>
<td>total: 20</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2: Análisis de items

<table>
<thead>
<tr>
<th>Item</th>
<th>Discriminación</th>
<th>Dificultad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.11</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>0.54</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>0.47</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>0.74</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>0.59</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>0.31</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>0.72</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>0.8</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>0.58</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>0.4</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>0.73</td>
<td>54</td>
</tr>
<tr>
<td>15</td>
<td>0.56</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>0.66</td>
<td>46</td>
</tr>
<tr>
<td>17</td>
<td>0.62</td>
<td>55</td>
</tr>
<tr>
<td>18</td>
<td>0.4</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>0.59</td>
<td>64</td>
</tr>
<tr>
<td>20</td>
<td>0.55</td>
<td>46</td>
</tr>
</tbody>
</table>
Tabla 3: Media y desviación típica de aciertos por unidad escolar

Experimentales

<table>
<thead>
<tr>
<th>Cod.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>22</td>
<td>25</td>
<td>45</td>
<td>39</td>
<td>29</td>
<td>42</td>
<td>32</td>
<td>43</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>X</td>
<td>11</td>
<td>10.5</td>
<td>13.6</td>
<td>11.1</td>
<td>12.4</td>
<td>11.4</td>
<td>13</td>
<td>12.1</td>
<td>10.1</td>
<td>13.8</td>
</tr>
<tr>
<td>o</td>
<td>5</td>
<td>4.3</td>
<td>5</td>
<td>3.1</td>
<td>4.4</td>
<td>3.4</td>
<td>3.8</td>
<td>4.3</td>
<td>4.5</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Controles

<table>
<thead>
<tr>
<th>Cod.</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>35</td>
<td>23</td>
<td>30</td>
<td>33</td>
<td>30</td>
<td>31</td>
<td>23</td>
<td>23</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>X</td>
<td>10.5</td>
<td>9.4</td>
<td>10.8</td>
<td>12.6</td>
<td>11.7</td>
<td>9.1</td>
<td>10.2</td>
<td>7.5</td>
<td>13</td>
<td>11.8</td>
</tr>
<tr>
<td>o</td>
<td>4.5</td>
<td>3.4</td>
<td>4.9</td>
<td>3.6</td>
<td>3.3</td>
<td>4.5</td>
<td>3.4</td>
<td>3.3</td>
<td>4.2</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Rendimiento

<table>
<thead>
<tr>
<th>Experimental</th>
<th>Control</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.6%</td>
<td>53.3%</td>
<td>6.3 puntos</td>
</tr>
</tbody>
</table>

5.2.3. Tercera Prueba

SEXTO NIVEL. PRUEBA DE OPERACIONES CON FRACCIONES.

FECHA

COLEGIO

NOMBRE Y APELLIDOS

1. En un programa de T.V. los anuncios duraron 1/5 de hora y los dibujos animados 3/4 de hora. ¿Cuánto duró el programa completo?

CRITERIO: 1/5 + 3/4 = 19/20 de hora, o bien 12 + 45 = 57 min.

2. En la merienda me bebí 1/5 de litro de zumo, en la botella quedaron 2/3 de litro. ¿Cuánto zumo había en la botella?
CRITERIO: $1/5 + 2/3 = 13/15$ litros.

3. Un queso pesa $3/4$ de kilo. ¿Cuánto pesa la mitad de ese queso?

4. Antoñín mide $3/4$ de metro. ¿Cuánto le falta para medir $5\cdot6$ de metro?

CRITERIO: $5/6 - 3/4 = 2/24$ metros.

5. Con ocho rodapiés de $3/4$ de metro cada uno, ¿cuántos metros de pared puedo cubrir?

CRITERIO: $3/4 \times 8 = 24/4$ o bien 6 metros.

6. Un bidón de refresco contiene 50 litros. ¿Cuántas botellas de $1/3$ puedo llenar?

CRITERIO: $50 : 1/3 = 150$ botellas.

7. Una bolsa de caramelos pesa $5/4$ de kilo y un paquete de caramelos $7/10$ de kilo. ¿Cuánto pesa más la bolsa que el paquete?

a) $5/4 + 7/10$

b) $1/4 + 1/10$

c) $7/10 - 5/4$

d) $5/4 - 7/10$

CRITERIO: Opción d)

8. En una tarta de manzana de dos kilos hemos utilizado azúcar, harina y manzana. Gastamos $1/2$ kilo de manzanas y $3/4$ de kilo de harina. ¿Qué cantidad de azúcar hemos empleado?

CRITERIO: $2 - (1/2 + 3/4) = 3/4$ o bien $2 - (0.5 + 0.75) = 0.75$ kg.

9. En cada viaje un camión transporta los $3/10$ de un montón de arena. ¿Qué parte de arena habrá transportado al cabo de tres viajes?

CRITERIO: $3/10 \times 3 = 9/10$ del montón.

10. Cada una de las nueve amigas de Isabel le regalan para su santo $2/3$ de metro de cinta para el pelo. ¿Cuántos metros de cinta reúne?
CRITERIO: $\frac{2}{3} \times 9 = \frac{18}{3}$ o bien 6 metros.

11. A un recipiente le caben $\frac{6}{8}$ de litro. ¿Cuántos vasos de $\frac{1}{4}$ de litro se pueden llenar con todo ese líquido?

CRITERIO: $\frac{6}{8} : \frac{1}{4} = \frac{24}{8}$ o bien 3 vasos.

12. Un agricultor siembra el primer día $\frac{2}{4}$ de una finca de trigo. El segundo día sembró $\frac{1}{3}$. ¿Cuánto sembró más el primer día que el segundo?

CRITERIO: $\frac{2}{4} - \frac{1}{3} = \frac{2}{12}$ o bien cualquier equivalente.

13. Entre cuatro amigos se toman en total $\frac{3}{5}$ de litro de refresco. ¿Qué fracción ha tomado cada uno, si todos toman la misma cantidad?

 a) $\frac{3}{20}$ b) $\frac{12}{5}$ c) $\frac{12}{20}$ d) $\frac{1}{5}$

CRITERIO: Opción c)

14. Mi madre compra $\frac{3}{4}$ de queso. Le da $\frac{1}{2}$ de ese trozo a mí tía. ¿Qué fracción de queso le ha quedado?

CRITERIO: $\frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$ de queso.

15. Para hacer una falda necesito $\frac{3}{4}$ de metro y para una chaqueta $\frac{7}{4}$ de metro. Si quiero hacer 6 trajes completos (chaqueta y falda). ¿Cuántos metros de tela necesitaría?

CRITERIO: $(\frac{3}{4} + \frac{7}{4}) \times 6 = \frac{60}{4}$ o bien 15 metros.

16. Tenemos $\frac{3}{4}$ de tarta, me como $\frac{1}{4}$ de tarta. Lo que queda lo repartimos entre 5 niños a partes iguales. ¿Qué fracción de tarta corresponde a cada uno?

CRITERIO: $(\frac{3}{4} - \frac{1}{4}) : 5 = \frac{2}{20}$ de tarta.
VARIABLES QUE INTERVIENEN EN EL PREEST

<table>
<thead>
<tr>
<th>Items</th>
<th>MAGNITUD</th>
<th>CONJUNTO</th>
<th>SENTENCIA</th>
<th>ESTRUCTURA SEMANTICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Continua, tiempo</td>
<td>Q</td>
<td>n/k + m/t</td>
<td>Combinación</td>
</tr>
<tr>
<td>2</td>
<td>Continua, capacidad</td>
<td>Q</td>
<td>n/k + m/t</td>
<td>Cambio</td>
</tr>
<tr>
<td>3</td>
<td>Continua, peso</td>
<td>Q</td>
<td>n/k : a</td>
<td>Combinación (8)</td>
</tr>
<tr>
<td>4</td>
<td>Continua, longitud</td>
<td>Q</td>
<td>n/k - m/k</td>
<td>Igualación</td>
</tr>
<tr>
<td>5</td>
<td>Continua, longitud</td>
<td>Q, N</td>
<td>n'k * m</td>
<td>Cambio 1</td>
</tr>
<tr>
<td>6</td>
<td>Continua, capacidad</td>
<td>Q, N</td>
<td>n/k : m/t</td>
<td>Cambio 2</td>
</tr>
<tr>
<td>7</td>
<td>Continua, peso</td>
<td>Q</td>
<td>n/k - m/t</td>
<td>Comparación</td>
</tr>
<tr>
<td>8</td>
<td>Continua, peso</td>
<td>Q, N</td>
<td>a-(n'/k + m/q)</td>
<td>Combi, compar.</td>
</tr>
<tr>
<td>9</td>
<td>Continua, masa</td>
<td>Q, N</td>
<td>n/k * a</td>
<td>Razón 1</td>
</tr>
<tr>
<td>10</td>
<td>Continua, longitud</td>
<td>Q, N</td>
<td>n/k * a</td>
<td>Razón 1</td>
</tr>
<tr>
<td>11</td>
<td>Continua, capacidad</td>
<td>Q</td>
<td>n/k : m/q</td>
<td>Cambio 1</td>
</tr>
<tr>
<td>12</td>
<td>Continua, superficie</td>
<td>Q</td>
<td>n/k - m/q</td>
<td>Comparación</td>
</tr>
<tr>
<td>13</td>
<td>Continua, capacidad</td>
<td>Q</td>
<td>n/q : a</td>
<td>Cambio 3</td>
</tr>
<tr>
<td>14</td>
<td>Continua, masa</td>
<td>Q</td>
<td>n/q * 1 k</td>
<td>Cambio</td>
</tr>
<tr>
<td>15</td>
<td>Continua, longitud</td>
<td>Q, N</td>
<td>(n/k + m/q)*a</td>
<td>Combin, cambio</td>
</tr>
<tr>
<td>16</td>
<td>Continua, masa</td>
<td>Q, N</td>
<td>(n/k - m/q) : a</td>
<td>Cambio-cambio 3</td>
</tr>
</tbody>
</table>

VALORACION Y ANALISIS DE LA PRUEBA OPERACIONES CON FRACCIONES

Tabla 1: Datos generales

<table>
<thead>
<tr>
<th>Nº alumnos</th>
<th>Nº unidades escolares</th>
<th>Fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.: 350</td>
<td>Exp.: 10</td>
<td></td>
</tr>
<tr>
<td>Cont.: 314</td>
<td>Cont.: 10</td>
<td>0.6</td>
</tr>
<tr>
<td>Total: 664</td>
<td>Total: 20</td>
<td></td>
</tr>
</tbody>
</table>

138
Tabla 2: Análisis de ítems

<table>
<thead>
<tr>
<th>Item</th>
<th>Discriminación</th>
<th>Dificultad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.13</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>0.38</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>0.76</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>0.70</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>0.71</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>0.66</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>0.61</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>0.71</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>0.61</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>0.71</td>
<td>61</td>
</tr>
<tr>
<td>11</td>
<td>0.75</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>0.58</td>
<td>66</td>
</tr>
<tr>
<td>13</td>
<td>0.67</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>0.19</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>0.85</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>0.87</td>
<td>49</td>
</tr>
</tbody>
</table>

Tabla 3: Media y desviación típica de aciertos por unidad escolar

Experimentales

<table>
<thead>
<tr>
<th>N</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>7</td>
<td>6.9</td>
<td>11.2</td>
<td>8.3</td>
<td>11.1</td>
<td>7.1</td>
<td>11.3</td>
<td>7.5</td>
<td>9.7</td>
<td>10.1</td>
</tr>
<tr>
<td>σ</td>
<td>4</td>
<td>3.9</td>
<td>3.1</td>
<td>3.8</td>
<td>3.5</td>
<td>3.3</td>
<td>2.8</td>
<td>4.3</td>
<td>3.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Controles

<table>
<thead>
<tr>
<th>N</th>
<th>11</th>
<th>12</th>
<th>12</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>8.9</td>
<td>7</td>
<td>8.1</td>
<td>11.6</td>
<td>10.7</td>
<td>9</td>
<td>7.3</td>
<td>8</td>
<td>9.8</td>
<td>8.3</td>
</tr>
<tr>
<td>σ</td>
<td>3.7</td>
<td>2.3</td>
<td>5.3</td>
<td>2.7</td>
<td>2.9</td>
<td>3.9</td>
<td>4.3</td>
<td>13</td>
<td>4.3</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Rendimientos

<table>
<thead>
<tr>
<th>Experimental</th>
<th>Control</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.4 %</td>
<td>55.5 %</td>
<td>0.9 puntos</td>
</tr>
</tbody>
</table>

5.2.4. Cuarta Prueba

Sexto nivel. Prueba de longitudes

Fecha________

Colegio__________________________

Nombre y apellidos__________________________

1. Las dimensiones de la pizarra son:

 \[\text{4 m} \quad \text{1,5 m} \]

Calcula: ¿Cuánto mide más la pizarra de larga que de ancha?

Crterio: \[4 - 1.5 = 2.5 \text{ m}. \]

2. De mi casa al colegio he dado 600 pasos, cada paso son 50 cm. ¿Cuántos cm. he andado?

Crterio: \[600 \times 50 = 30.000 \text{ cm}. \]

3. La carrera de maratón mide 42 km. Si me faltan 27 km. para llegar a la meta. ¿Cuántos km. he recorrido?

Crterio: \[42 - 27 = 15 \text{ kms}. \]

4. El día de Reyes se produjo un gran atasco en el Camino de Ronda, la fila de coches era de 2.400 metros. Si cada coche mide aproximadamente 3 metros ¿Cuántos coches había?

140
CRITERIO: \(2.400 : 3 = 800\) coches o bien cualquier otra respuesta justificada.

5. Queremos agrandar una cochera de 5 metros, para meter un coche de 3 metros y una furgoneta de 4 metros. ¿Cuántos metros debemos alargar la cochera. Cómo lo has resuelto?

CRITERIO: Al menos dos metros porque \(2 + 5 = 3 + 4\);
\[2 : (3 + 4) - 5 \text{ ó cualquier contestación que esté razonada.}\]

6. Fijate en las medidas del patio del colegio:

\[
\begin{array}{c}
45.5 \text{ m} \\
120 \text{ m}
\end{array}
\]

¿Cuántos metros recorro si doy tres vueltas alrededor del patio?.

CRITERIO: \(\{(45.5 + 120) \times 2\} \times 3 \text{ ó } (45.5 + 45.5 + 120 + 120) \times 3\) \(= 993\) m.

7. Para adornar la clase de Navidad unimos dos cuerdas de 1.9 metros y 3.2 metros. Cada 30 cm se coloca un farolillo ¿cuántos farolillos puede colocar con las dos cuerdas unidas?.

CRITERIO: \((1.9 + 3.2) : 0.3 \text{ ó } (190 + 320) : 320\).

8. De una parada a la siguiente un autobús recorre 250 metros. Si hace tres veces el trayecto entre la segunda y la sexta parada ¿cuántos metros ha recorrido?.

CRITERIO: \(3 \times 4 \times 250 = 3.000\) m ó \(3 \times (250 + 250 + 250 + 250)\) ó bien \(3 \times 1.000\). (No se admite error en el factor 4).

9. Para escapar de una prisión un preso tiene que salvar una altura de 14 metros. Uniendo tres cuerdas iguales aún le faltan 5 metros para llegar al suelo. ¿Cuál es la longitud de cada cuerda?.
CRITERIO: \((14 - 5) \div 3 = 3\) m.

10. Ana y María se han comprado cada una tres cintas del pelo de 0,75; 1,25 y 1 metros. ¿Cuántos metros de cinta han comprado entre las dos?

CRITERIO: \((0,75 + 1,25 + 1) \times 2 = 6\) m. ó bien \(3 \times 2 = 6\) m.

11. Entre mi casa y la de mi primo hay 300 metros. He dado 200 pasos y cada paso que doy corro 0,60 metros. ¿Cuántos metros me faltan para llegar?

CRITERIO: \(300 - (200 \times 0.60) = 180\) m.

12. Un caracol recorre diariamente un trayecto, si ha recorrido 350 cm, y le faltan por recorrer 252 cm. ¿Cuántos centímetros recorre en total?

CRITERIO: \(350 + 252 = 602\) cm.

VALORACION Y ANALISIS DE LA PRUEBA DE LONGITUD

Tabla 1: Datos Generales

<table>
<thead>
<tr>
<th>Nº de alumnos</th>
<th>Nº de unidades escolares</th>
<th>Fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.: 344</td>
<td>exp.: 10</td>
<td></td>
</tr>
<tr>
<td>con.: 265</td>
<td>con.: 8</td>
<td>0.7</td>
</tr>
<tr>
<td>total: 609</td>
<td>total: 18</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 2: Análisis de items

<table>
<thead>
<tr>
<th>Item</th>
<th>Discriminación</th>
<th>Dificultad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.49</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>0.36</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>0.45</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>0.63</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>0.76</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>0.77</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>0.71</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td>0.85</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>0.76</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>0.89</td>
<td>49</td>
</tr>
<tr>
<td>12</td>
<td>0.30</td>
<td>84</td>
</tr>
</tbody>
</table>

Tabla 3: Media y desviación típica de aciertos por unidad escolar

Experimentales

<table>
<thead>
<tr>
<th>Cod.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>22</td>
<td>23</td>
<td>42</td>
<td>36</td>
<td>29</td>
<td>40</td>
<td>34</td>
<td>43</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>X</td>
<td>7</td>
<td>5.9</td>
<td>9.5</td>
<td>8.4</td>
<td>9.2</td>
<td>7.4</td>
<td>7.7</td>
<td>8</td>
<td>6.6</td>
<td>9</td>
</tr>
<tr>
<td>σ</td>
<td>3.4</td>
<td>2.6</td>
<td>2</td>
<td>2.4</td>
<td>2</td>
<td>2.9</td>
<td>2.5</td>
<td>2.7</td>
<td>3.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Controles

<table>
<thead>
<tr>
<th>Cod</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>35</td>
<td>25</td>
<td>29</td>
<td>32</td>
<td>29</td>
<td>28</td>
<td>—</td>
<td>—</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>X</td>
<td>8.6</td>
<td>7</td>
<td>8.1</td>
<td>9</td>
<td>9.2</td>
<td>7.3</td>
<td>—</td>
<td>—</td>
<td>8.5</td>
<td>8.1</td>
</tr>
<tr>
<td>σ</td>
<td>2.3</td>
<td>1.7</td>
<td>3.3</td>
<td>1.8</td>
<td>2.7</td>
<td>2.7</td>
<td>—</td>
<td>—</td>
<td>3.3</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Rendimientos

<table>
<thead>
<tr>
<th>Experimental</th>
<th>Control</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.5 %</td>
<td>68.7 %</td>
<td>- 3.2 puntos</td>
</tr>
</tbody>
</table>

5.2.5. Quinta Prueba

SEXTO NIVEL. PRUEBA DE SUPERFICIES. FECHA____

COLEGIO: __

NOMBRE Y APELLIDOS____________________________________

1. Queremos plantar 10 filas con 15 naranjos en cada fila. Cada naranjo necesita 4 metros cuadrados de superficie. ¿Qué superficie total necesitamos?

CRITERIO: $10 \times 15 + 4 = 600$ metros cuadrados.

2. Para hacer mi casa más grande le compro a mi vecino la vivienda contigua. Mi casa tenía una superficie de 95 metros cuadrados, mientras que la vivienda del vecino medía 15 metros cuadrados menos. ¿Cuánto mide mi nueva vivienda?

CRITERIO: $85 + (95 - 15) = 175$ metros cuadrados.

3. Para hacer una cometa se necesitan 0,75 metros cuadrados de papel de seda. Antonio quiere construir 8 cometas. ¿Cuántos metros cuadrados de papel necesita?

CRITERIO: $8 \times 0.75 = 6$ metros cuadrados.
4. El patio de mi colegio tiene estas dimensiones:

<table>
<thead>
<tr>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Dentro del patio se marca un campo de baloncesto que ocupa una superficie de 400 metros cuadrados. ¿Qué parte del total ocupa el campo de baloncesto?

CRITERIO: \frac{400}{800} = \frac{1}{2} = 0.5 del campo total o cualquier otra expresión equivalente.

5. Mi dormitorio tiene 9.5 metros cuadrados y el salón es tres veces más grande. ¿Cuántos metros cuadrados tiene el salón?

CRITERIO: 3 \times 9.5 \text{ metros cuadrados}.

6. Para embalsobar una plaza cuadrada de 825 metros cuadrados con baldosas cuadradas de 40 cm. de lado. ¿Cuántas baldosas se necesitarán?

CRITERIO: \((0.40 \times 0.40) = 0.16; \ \frac{825}{0.16} = 5156.25 \) o bien \(\frac{8250.000}{1.600} = 5156.25 \).

7. ¿Cuántos metros cuadrados le faltan a mi habitación que tiene 8.5 metros cuadrados para medir igual que la de mi hermano que mide 10.7 metros cuadrados?

CRITERIO: 10.7 - 8.5 = 2.2 metros cuadrados.

8. Para cubrir de arena una plaza de toros de 50 metros de diámetro se han empleado 25 camiones de arena. ¿Cuántos metros cuadrados se han cubierto con cada camión?

CRITERIO: \(\frac{25 \times 25 \times 3.14}{25} = 78.5 \text{ metros cuadrados}\).

9. La parte escrita de una hoja de periódico ocupa 1.200 cm. cuadrados. Tenemos dos anuncios, uno de 140 cm. cuadrados y el otro de 100 cm. cuadrados. ¿Cuántos centímetros quedan para la información en esa hoja?

CRITERIO: \(1200 - 140 - 100 = 960 \text{ centímetros cuadrados} \) o bien \(\frac{1200 - (140 + 100)}{1200} = 960 \text{ centímetros cuadrados}\).
10. Un garage tiene 16 aparcamientos de 10 metros cuadrados cada uno y un pasillo de salida de 40 metros cuadrados. ¿Cuántos metros cuadrados tiene el garaje?.

CRITERIO: $16 \times 10 + 40 = 200 \text{ m}^2$.

11. La plaza de mi barrio tiene 322 metros cuadrados y en medio una fuente que ocupa 23 metros cuadrados. ¿Cuántas veces es la plaza más grande que la fuente?.

CRITERIO: $322 : 23 = 14$ veces o bien $322 / 23 = 14$ veces.

12. Un solar mide 35.000 metros cuadrados. Sobre el terreno se han hecho 20 parcelas de 1.200 metros cuadrados cada una. ¿Cuánto terreno queda sin parcelar?.

CRITERIO: $35.000 - 20 \times 1.200 = 11.000 \text{ m}^2$.

13. Una tableta de chocolate tiene de superficie 280 cm. cuadrados. Si Luis la reparte entre sus amigos dándoles 40 cm. cuadrados a cada uno. ¿A cuántos amigos dió Luis chocolate?.

CRITERIO: $280 : 40 = 7$ amigos o bien $280/40 = 7$ amigos.

14. El salón de mi casa mide 32.5 metros cuadrados. El cuarto de baño es 5 veces menor. ¿Qué superficie tiene el cuarto de baño?.

CRITERIO: $32.5 : 5 = 6.5 \text{ m}^2$ ó $32.5/5 = 6.5 \text{ m}^2$.
VARIABLES QUE INTERVIENEN

<table>
<thead>
<tr>
<th>Items</th>
<th>Magnitud</th>
<th>Conjunto</th>
<th>Sentencia</th>
<th>Estructura semántica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Continua, superficie</td>
<td>N</td>
<td>a.b.c.</td>
<td>Combinación</td>
</tr>
<tr>
<td>2</td>
<td>Continua, superficie</td>
<td>N</td>
<td>a + (a-b)</td>
<td>Combin. Comparación</td>
</tr>
<tr>
<td>3</td>
<td>Continua, superficie</td>
<td>Q</td>
<td>a x b</td>
<td>Razón</td>
</tr>
<tr>
<td>4</td>
<td>Continua, superficie</td>
<td>Q</td>
<td>a / b</td>
<td>Comparación</td>
</tr>
<tr>
<td>5</td>
<td>Continua, superficie</td>
<td>Q</td>
<td>a x b</td>
<td>Comparación</td>
</tr>
<tr>
<td>6</td>
<td>Continua, superficie</td>
<td>Q</td>
<td>a : b^2</td>
<td>Comparación</td>
</tr>
<tr>
<td>7</td>
<td>Continua, superficie</td>
<td>Q</td>
<td>a - b</td>
<td>Comparación</td>
</tr>
<tr>
<td>8</td>
<td>Continua, superficie</td>
<td>Q</td>
<td>a^2 √c /b</td>
<td>Razón</td>
</tr>
<tr>
<td>9</td>
<td>Continua, superficie</td>
<td>N</td>
<td>a-b-c</td>
<td>Combin. comparación</td>
</tr>
<tr>
<td>10</td>
<td>Continua, superficie</td>
<td>N</td>
<td>axb + c</td>
<td>Razón, combinación</td>
</tr>
<tr>
<td>11</td>
<td>Continua, superficie</td>
<td>N</td>
<td>a : b</td>
<td>Comparación</td>
</tr>
<tr>
<td>12</td>
<td>Continua, superficie</td>
<td>N</td>
<td>a-bxc</td>
<td>Razón, comparación</td>
</tr>
<tr>
<td>13</td>
<td>Continua, superficie</td>
<td>N</td>
<td>a : b</td>
<td>Razón</td>
</tr>
<tr>
<td>14</td>
<td>Continua, superficie</td>
<td>Q</td>
<td>a : b</td>
<td>Comparación</td>
</tr>
</tbody>
</table>

VALORACION Y ANALISIS DE LA PRUEBA

Tabla 1: Datos generales

<table>
<thead>
<tr>
<th>Nº de alumnos</th>
<th>Nº de unidades escolares</th>
<th>Fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp: 337</td>
<td>exp.: 10</td>
<td></td>
</tr>
<tr>
<td>cont.: 267</td>
<td>cont.: 8</td>
<td>0.696</td>
</tr>
<tr>
<td>total: 604</td>
<td>total: 18</td>
<td></td>
</tr>
</tbody>
</table>

147
Tabla 2: Análisis de items

<table>
<thead>
<tr>
<th>Items</th>
<th>Discriminación</th>
<th>Dificultad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.59</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>0.62</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>0.18</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>0.77</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>0.14</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>0.7</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>0.28</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>0.44</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>0.66</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>0.74</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>0.65</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>0.44</td>
<td>78</td>
</tr>
<tr>
<td>14</td>
<td>0.65</td>
<td>63</td>
</tr>
</tbody>
</table>

Tabla 3: Media y desviación típica de aciertos por unidad escolar

Experimentales

<table>
<thead>
<tr>
<th>Cod.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>21</td>
<td>33</td>
<td>41</td>
<td>37</td>
<td>29</td>
<td>38</td>
<td>34</td>
<td>42</td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td>\bar{X}</td>
<td>8.7</td>
<td>7.64</td>
<td>11.4</td>
<td>9.5</td>
<td>10.2</td>
<td>9.9</td>
<td>11.6</td>
<td>9.4</td>
<td>8.5</td>
<td>10.8</td>
</tr>
<tr>
<td>σ</td>
<td>4.5</td>
<td>4</td>
<td>1.9</td>
<td>2.9</td>
<td>3</td>
<td>2.6</td>
<td>2.3</td>
<td>2.6</td>
<td>3.3</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Controles

<table>
<thead>
<tr>
<th>Cod.</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>35</td>
<td>24</td>
<td>29</td>
<td>35</td>
<td>29</td>
<td>30</td>
<td>--</td>
<td>43</td>
<td>42</td>
<td>--</td>
</tr>
<tr>
<td>\bar{X}</td>
<td>9.3</td>
<td>8</td>
<td>8.4</td>
<td>11.5</td>
<td>9.8</td>
<td>9.2</td>
<td>--</td>
<td>9.98</td>
<td>9.36</td>
<td>--</td>
</tr>
<tr>
<td>σ</td>
<td>2.9</td>
<td>3</td>
<td>3.6</td>
<td>1.6</td>
<td>2.86</td>
<td>3.2</td>
<td>--</td>
<td>2.95</td>
<td>3.26</td>
<td>--</td>
</tr>
</tbody>
</table>
Rendimientos

<table>
<thead>
<tr>
<th></th>
<th>Experimental</th>
<th>Control</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69.7 %</td>
<td>69.5 %</td>
<td>0.2 puntos</td>
</tr>
</tbody>
</table>

5.2.6. Sexta prueba: Postest

NOMBRE Y APELLIDOS

COLEGIO

FECHA

1. De un camión-cisterna de leche que llega a la fábrica se sacan 727.5 litros para embotellar; 142.8 L. para hacer mantequilla y quedan en el camión 217.71 L. ¿Cuántos litros traía el camión?

CRITERIO: $142.8 + 727.5 - 217.71 = 1088.01$ litros.

2. Uno de los cuartos de baño de una casa mide 5.25 metros cuadrados y el otro 2.30 metros cuadrados más que el primero. ¿Cuántos metros cuadrados mide el segundo?

CRITERIO: $5.25 + 2.30 = 7.55$ metros cuadrados.

3. Belén fué al cine 25 veces el año pasado. Cada entrada le costó 225 pesetas. ¿Cuánto dinero gastó Belén en el cine?

CRITERIO: $25 \times 225 = 5.625$ pesetas.

4. En una maratón de 42.2 Km. Miguel lleva recorridos 14.750 m. ¿Cuántos Km. le quedan por recorrer?

CRITERIO: $42.2 - 14.75 = 27.45$ Km.

5. En una caja de refrescos hay 24 botellas de 1/3 de litro cada una. ¿Cuántos litros de refresco hay en 4 cajas?
CRITERIO: \((24 \times \frac{1}{3}) \times 4 = 32\) litros.

6. Las vacaciones de verano duran 84 días. ¿Cuántas semanas de vacaciones hay?

CRITERIO: \(84 : 7 = 12\) semanas.

7. José Luis González, en época de entrenamiento, corre por la mañana 2 horas y cuarto, por la tarde 1 hora y media. ¿Cuánto tiempo dedica a entrenarse durante 7 días?

CRITERIO: \((2 + \frac{1}{4} + \frac{1}{2} + 1) \times 7 = 24 + \frac{1}{4}\) hora.

8. De una pieza de tela de 35 metros se vende un trozo de 7 m. y otro de 11 m. Calcula y señala con una cruz que parte es mayor.

- La vendida
- La que queda.
- Las dos iguales.

CRITERIO: una cruz en la vendida.

9. Un agricultor tiene dos fincas donde ha sembrado patatas. En la primera sembró 350 Kgs. y en la segunda 830 Kgs. Si de la primera no tuvo apenas producción, recogiendo sólo 325 Kgs. y en la segunda recogió 8.798 Kgs. ¿Cuántos Kgs. de patatas ha recogido más que sembró?

CRITERIO: \((8.798 + 325) - (350 + 850) = 7.943\) Kg.

10. Con una bicicleta hemos realizado un trayecto de 3 Km. y 76 m. ¿Cuántos metros hemos recorrido?

CRITERIO: \(3 \times 1000 + 76 = 3.076\) metros.

11. Una fábrica ha producido en un día 1.230 botellas de gaseosa. El repartidor ha cargado en el camión 32 cajas de 30 botellas cada una. ¿Cuántas botellas se quedan en el almacén ese día?

CRITERIO: \(1.230 - (32 \times 30) = 270\) botellas.

12. Evaristo, Pepe y Antonio llevan a su clase 70, 50 y 40 caramelos. En la clase hay 32 niños. Reparten los caramelos entre los niños. ¿A cuántos tocan cada uno?
CRITERIO: \((70 + 50 + 40) : 32 = 5\) caramelo.

13. Para comprar 25 paquetes de chicles entregué un billete de 1.000 ptas. y me devolvieron 375 ptas. ¿Cuánto me costó cada paquete de chicle?
CRITERIO: \((1.000 - 375) : 25 = 25\) ptas.

14. Tienes dibujado dos superficies. Observa los datos y calcula cuántos metros cuadrados es mayor una que la otra.

CRITERIO: \((12.5 \times 6) - 72.25 = 2.75\). Es mayor la primera.

15. Calcula la medida de un ángulo sabiendo que su amplitud es \(3/4\) de 90 grados.
CRITERIO: \(3/4\) de 90 grados = 67.5 grados.

VARIABLES QUE INTERVIENEN EN LA PRUEBA

<table>
<thead>
<tr>
<th>Item</th>
<th>Magnitud</th>
<th>Conjunto</th>
<th>Sentencia</th>
<th>Estructura semántica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Continua, capacidad</td>
<td>D</td>
<td>(a + b + c)</td>
<td>Cambio</td>
</tr>
<tr>
<td>2</td>
<td>Continua, superficie</td>
<td>N</td>
<td>(a + b)</td>
<td>Comparación</td>
</tr>
<tr>
<td>3</td>
<td>Discreta, objetos</td>
<td>N</td>
<td>(a \cdot b)</td>
<td>Cambio</td>
</tr>
<tr>
<td>4</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>(axb)</td>
<td>Cambio 1</td>
</tr>
<tr>
<td>5</td>
<td>Continua, longitud</td>
<td>D</td>
<td>(a-b/1000)</td>
<td>Igualación</td>
</tr>
<tr>
<td>6</td>
<td>Continua, capacidad</td>
<td>N, Q</td>
<td>(axbx)</td>
<td>Cambio 1</td>
</tr>
<tr>
<td>7</td>
<td>Continua, tiempo</td>
<td>N</td>
<td>(a : b)</td>
<td>Cambio 2</td>
</tr>
<tr>
<td>8</td>
<td>Continua, tiempo</td>
<td>N</td>
<td>((a \cdot b) \cdot c)</td>
<td>Comb. cambio 1</td>
</tr>
<tr>
<td>9</td>
<td>Continua, longitud</td>
<td>N</td>
<td>(a - (b + c))</td>
<td>Cambio, comparación</td>
</tr>
<tr>
<td>10</td>
<td>Continua, peso</td>
<td>N</td>
<td>((a + b) - (a + b))</td>
<td>Comb. comparación</td>
</tr>
<tr>
<td>11</td>
<td>Continua, longitud</td>
<td>N</td>
<td>(a + b/1000)</td>
<td>Combinación</td>
</tr>
<tr>
<td>12</td>
<td>Discreta, objetos</td>
<td>N</td>
<td>(a - (b \cdot c))</td>
<td>Cambio, cambio 1</td>
</tr>
<tr>
<td>13</td>
<td>Discreta, objetos</td>
<td>N</td>
<td>((a+b+c) : d)</td>
<td>Cambio, cambio 3</td>
</tr>
<tr>
<td>14</td>
<td>Discreta, dinero</td>
<td>N</td>
<td>((a - b) : c)</td>
<td>Cambio, cambio 3</td>
</tr>
<tr>
<td>15</td>
<td>Continua, superficie</td>
<td>D</td>
<td>(a - b)</td>
<td>Comparación</td>
</tr>
</tbody>
</table>
VALORACION Y ANALISIS DEL POSTEST

Tabla 1: Datos generales

<table>
<thead>
<tr>
<th>Nº de alumnos</th>
<th>Nº de unidades escolares</th>
<th>Fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp.: 342</td>
<td>exp.: 10</td>
<td></td>
</tr>
<tr>
<td>cont.: 264</td>
<td>cont.: 8</td>
<td>0.715</td>
</tr>
<tr>
<td>total: 606</td>
<td>total: 18</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2: Análisis de items

<table>
<thead>
<tr>
<th>Item</th>
<th>Discriminación</th>
<th>Dificultad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.21</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>0.34</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>0.67</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>0.75</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>0.23</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>0.51</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>0.5</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>0.65</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>0.52</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>0.62</td>
<td>69</td>
</tr>
<tr>
<td>12</td>
<td>0.3</td>
<td>84</td>
</tr>
<tr>
<td>13</td>
<td>0.69</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>0.84</td>
<td>53</td>
</tr>
<tr>
<td>15</td>
<td>0.74</td>
<td>45</td>
</tr>
</tbody>
</table>

Tabla 3: Media y desviación típica por unidad escolar

Experimentales

<table>
<thead>
<tr>
<th>Cod.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td>24</td>
<td>42</td>
<td>37</td>
<td>29</td>
<td>39</td>
<td>34</td>
<td>43</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>X</td>
<td>8.95</td>
<td>9.37</td>
<td>12.36</td>
<td>10.9</td>
<td>11.14</td>
<td>10.82</td>
<td>11.26</td>
<td>12.98</td>
<td>9.16</td>
<td>12.84</td>
</tr>
<tr>
<td>σ</td>
<td>4</td>
<td>4.27</td>
<td>2.75</td>
<td>2.88</td>
<td>3.58</td>
<td>3.09</td>
<td>2.56</td>
<td>2.57</td>
<td>3.77</td>
<td>2.20</td>
</tr>
</tbody>
</table>
Controles

<table>
<thead>
<tr>
<th>Cod.</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>34</td>
<td>24</td>
<td>30</td>
<td>32</td>
<td>29</td>
<td>32</td>
<td>42</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>11.35</td>
<td>11.16</td>
<td>9.06</td>
<td>11.84</td>
<td>11.52</td>
<td>11.31</td>
<td></td>
<td>10.9</td>
<td>11.07</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>2.72</td>
<td>2.81</td>
<td>3.69</td>
<td>2.55</td>
<td>3.03</td>
<td>3.41</td>
<td></td>
<td>3.08</td>
<td>2.63</td>
<td></td>
</tr>
</tbody>
</table>

Rendimientos

<table>
<thead>
<tr>
<th></th>
<th>Experimental</th>
<th>Control</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72.3</td>
<td>75.2</td>
<td>-2.9</td>
</tr>
<tr>
<td>(*)</td>
<td>75</td>
<td>73.3</td>
<td>1.7</td>
</tr>
</tbody>
</table>

(*) En este caso los grupos experimentales 1 y 2 no se incluyen; son homogéneos a los grupos 17 y 18 del control que no han intervenido en las últimas pruebas.

5.2.7. Análisis de resultados

1) **Análisis de covarianza entre unidades escolares.**
 (experimentales con controles)

<table>
<thead>
<tr>
<th>Control</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.3</td>
<td>H</td>
<td>0.3</td>
<td>H</td>
<td>0.3</td>
<td>H</td>
<td>0.2</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>-0.03</td>
<td>H</td>
<td>0.3</td>
<td>H</td>
<td>1.8</td>
<td>H</td>
<td>0.02</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>-0.2</td>
<td>H</td>
<td>1</td>
<td>H</td>
<td>0</td>
<td>H</td>
<td>0</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>-0.2</td>
<td>H</td>
<td>0.1</td>
<td>H</td>
<td>4.3</td>
<td>H</td>
<td>10.03</td>
<td>H</td>
</tr>
<tr>
<td>5</td>
<td>-0.1</td>
<td>H</td>
<td>0.03</td>
<td>H</td>
<td>4</td>
<td>H</td>
<td>10.4</td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>-0.2</td>
<td>H</td>
<td>-0.1</td>
<td>H</td>
<td>5.5</td>
<td>H</td>
<td>10.2</td>
<td>H</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>H</td>
<td>1</td>
<td>H</td>
<td>2.3</td>
<td>H</td>
<td>0</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>-0.1</td>
<td>H</td>
<td>-0.1</td>
<td>H</td>
<td>4</td>
<td>H</td>
<td>10.02</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>0.7</td>
<td>H</td>
<td>2.4</td>
<td>H</td>
<td>1.2</td>
<td>H</td>
<td>0.1</td>
<td>H</td>
</tr>
<tr>
<td>10</td>
<td>2.1</td>
<td>H</td>
<td>0.02</td>
<td>H</td>
<td>13.8</td>
<td>H</td>
<td>15.6</td>
<td>H</td>
</tr>
</tbody>
</table>

La tabla representa los resultados del análisis de covarianza realizado comparando cada grupo experimental con cada grupo control. Exceptuando los resultados que se refieren al grupo control número 13 se confirma la hipótesis nula, es decir, no hay diferencia significativa entre los grupos.
2) Análisis de covarianza entre grupo experimental y grupo control

a) Incluyendo todos los grupos que han realizado el Postest

Grupo experimental: 338 alumnos
Grupo control: 259 alumnos
Grados de libertad: 594,1

F₀: -0.09
Fᵣ: 3.85

Se acepta H₀. No hay diferencias entre los grupos

b) Excluyendo los grupos 1 y 2 (semejantes a los grupos 17 y 18 respectivamente).

Grupo experimental: 295 alumnos
Grupo control: 259 alumnos
Grados de libertad: 554,1

F₀: -0.172
Fᵣ: 3.85

5.3. Conclusiones

Se acepta H₀: No hay diferencias entre los grupos. Queda confirmada una de las hipótesis de la experiencia: Se puede conseguir un rendimiento igual en la resolución de problemas aritméticos convencionales desarrollando una metodología activa en la que el trabajo rutinario y repetitivo disminuye considerablemente, favoreciéndose la capacidad creativa y de invención de los alumnos.

6. TRABAJO REALIZADO POR EL EQUIPO DE ESTUDIO DE CASOS

6.0. Presentación

El equipo “Estudios de Casos” se compone de cinco miembros: RICO ROMERO, Luis; GONZALEZ GONZALEZ, Evaristo; GUTIERREZ PEREZ, José; MIFÍAN ESPIGARES, Antonio y TORTOSA LOPEZ, Antonio.
Los alumnos seleccionados han sido 6 niñas de 6° de E.G.B: Pilar, Estefanía, Mónica, Marta, Leticia y Cinta; pertenecientes al Colegio Sagrada Familia de Granada. El único criterio considerado en la elección de la muestra ha sido el realizar su escolaridad en un Colegio no perteneciente a los Centros que forman parte de la experiencia; con lo cual no existía ninguna información previa sobre la metodología en estudio, por parte de estas alumnas.

El monitor o monitores de las sesiones de trabajo han sido siempre miembros del equipo.

Los observadores de las sesiones han sido, unas veces miembros de este equipo y en otras ocasiones, personas ajenas al mismo.

A la hora de poner en práctica la experiencia se han tenido en cuenta distintas modalidades de trabajo:

INDIVIDUAL. . . Un solo monitor y un solo alumno.

. . . Un solo monitor y dos alumnos, uno habla y otro observa e interviene al final.

COLECTIVA. . . Con juegos de simulación.

. . Con un sólo monitor y varios observadores no participantes.

. . Con un coordinador y varios observadores participantes.

Para llevar adelante este Estudio de Casos, dentro de la investigación "Didáctica Activa para la Resolución de Problemas en el Tercer Ciclo de la E.G.B.", se han creado unas condiciones que han permitido un control más directo de las situaciones de trabajo, facilitando las interacciones entre los implicados y sistematizando la recogida de datos. Dichas condiciones no las permite la situación normal de aula en la que el Grupo Experimental desarrolla su trabajo.

Dos han sido los frentes de acción:

1. Análisis de las sesiones colectivas con el fin de descubrir los aspectos "sociales" no matemáticos, que influyen en la Resolución de P.A.E.V. (Problemas Aritméticos de Enunciado Verbal).

2. Análisis de las sesiones individuales que permitan profundizar sobre los procesos cognitivos que siguen los alumnos en la Resolución de PAEV.
6.1. Finalidades del estudio de casos

6.1.1. Tareas

Entre las distintas tareas necesarias para enriquecer el proceso metodológico que venimos desarrollando en el aula, se encuentran las siguientes:

— Verificación de criterios de interacción en el aula para los miembros del Equipo Experimental.
— Aportación de material concreto para su discusión en el Grupo General.
— Realización de una evaluación cualitativa, en contraste con la cuantitativa llevada por los grupos B y C.
— Creación de unas condiciones de laboratorio que faciliten la recogida de datos, la elaboración de material, entrenamiento del profesorado, análisis de las dificultades, errores conceptuales, etc.
— Profundización en las interacciones entre Profesor-Alumno y entre Alumnos-Alumnos, así como en los procesos de resolución individual de PAEV.
— Adopción de un punto de vista distinto al trabajo de aula, que permita criticar la experiencia.

Para afianzar el proceso de sistematización de la metodología desarrollada en el aula, se ha creído conveniente el desarrollo práctico de las situaciones motivadoras seleccionadas por el grupo general, utilizando un grupo reducido de alumnos con anterioridad a la puesta en práctica por el grupo general.

El estudio de casos constituye una fase importante en la formación práctica del profesorado permitiendo afinar sobre los siguientes aspectos: criterios de interacción en el aula, dificultades y errores del alumno, dificultades y errores del profesor, etapas y estrategias del alumno en la resolución de PAEV,...

6.1.2. Objetivos.

1. Poner en práctica la metodología propuesta en los Guiones para la Actuación del Profesor en el Aula, elaborados trimestralmente, con un grupo reducido de alumnos de 6º nivel de la E.G.B. ajenos a la experiencia. Con esto se pretende:
i. Analizar la viabilidad de las distintas situaciones de trabajo seleccionadas por el grupo experimental (tableta de chocolate, supermercado, etc.), corregir las deficiencias que surjan y explotar sus posibilidades al máximo.

ii. Reducir la ambigüedad de los Guiones para la Actuación a través de la discusión colectiva de un documento escrito o audiovisual referido al desarrollo práctico de una situación con el grupo reducido de alumnos.

2. Analizar con detalle los principales errores o deficiencias cometidos por el profesor-monitor en las sesiones, así como los posibles aciertos y logros.

3. Valorar la actuación del grupo de alumnos en los procesos de descubrimiento y resolución colectiva de situaciones problemáticas, tomando como referencia las etapas del método IDEAL.

4. Analizar los procesos de resolución individual de problemas aritméticos, teniendo en cuenta la estructura semántica, el tipo de sentencia y otras variables utilizadas en las distintas situaciones de trabajo.

5. Comparar los procesos de resolución individual de un mismo problema o de una misma sentencia con respecto a un modelo teórico-cognitivo para la resolución de problemas.

6. Descubrir y potenciar algunos de los factores no matemáticos que condicionan la metodología de trabajo en el aula: Socialización, manipulación, interpretación de la realidad, etc.

7. Detectar las posibilidades de transferencia y utilidad de las conclusiones obtenidas por este grupo para el trabajo en el aula y la planificación del Equipo de Apoyo.

6.1.3. Innovaciones incorporadas al método IDEAL

Varias han sido las innovaciones que se han incorporado al Método IDEAL: Búsqueda, Recorrido, conexión de todas las etapas del método y descubrimiento de distintas estrategias.
a. BUSQUEDA de información como paso previo o motivación que facilite la identificación del problema e invención de preguntas. Sirva de ejemplo las situaciones:
 - del supermercado
 - los refrescos

Con este factor incorporado a la metodología, ésta toma una dimensión más real y permite la discusión del porqué de la diferencia de precios de unos sitios a otros, con lo cual ha habido una consideración importante de aspecto no matemático. BIDEAL.

b. RECORRIDO global del proceso al final de la metodología; le asignamos la clave R, con lo cual queda BIDEAL-R.

c. Conectar todas las etapas del proceso IDEAL de manera que tenga un sentido de globalidad.

d. Dentro de localización de estrategias, se ha profundizado en el descubrimiento de distintas estrategias, comparándolas entre sí y seleccionando aquella que tenga mayor interés aritmético.

6.2. Metodología de trabajo

Conexión con el Grupo General.

El siguiente esquema de trabajo coordinado representa la relación del Grupo Estudio de Casos con el Grupo Experimental y el Grupo General. (Ver pág. siguiente).

La metodología ha ido tomando consistencia a medida que las formas de actuación e intervención en el aula han adquirido un carácter más ordenado y sistemático. Esto ha posibilitado un acuerdo cada vez mayor entre los miembros del Equipo responsable de realizar la experiencia en el Aula. La misión del Grupo de Estudios de Casos ha sido facilitar ese acuerdo a través de informes y documentos escritos audiovisuales para su discusión en gran grupo.
CUADRO N° 1
Organigrama que relaciona el Grupo Estudio de Casos con otros grupos.

- Grupo de Estudio de Casos
 6 alumnas de 6° nivel de EGB ajenas a la experiencia

- Grupo Experimental
 355 alumnos de 6° nivel de EGB de colegios distintos

GUPO GENERAL

- Tema de trabajo común. Elegido trimestralmente del cuestionario oficial.

Selección de situaciones motivadoras:
- Tableta de Chocolate
- Supermercado
- Refrescos,...

Informe

Identificación y Definición de problemas

Elaboración de Estrategias

Actuación y Logros

DOCUMENTO

GRUPO GENERAL DEBATE

CONCLUSIONES

Identificación y Definición de problemas.

Elaboración de Estrategias.

Actuación y Logros
6.2. **Metodología de trabajo.**

6.2.1. **Descripción de las sesiones.**

El trabajo realizado por este grupo se ha desarrollado en dos vertientes:

1. Sesiones de pequeño grupo: Aplicación de la experiencia a un grupo reducido de alumnas, siguiendo el modelo metodológico del grupo experimental.

2. Sesiones individuales: Seguimiento individual en la resolución de problemas con el fin de obtener información, referida a los principales errores cometidos por los alumnos a la hora de resolver un problema y las estrategias que usan para corregirlos.

6.2.2. **Sesiones realizadas.**

Se han desarrollado un total de 12 sesiones, 3 por cada situación. En el Concepto de FRACCION, se trabajaron dos situaciones: “La tableta de chocolate” y el “Supermercado”, de manera anticipada a su puesta en acción en el aula por parte del grupo experimental. En el concepto de Longitud se desarrolló la situación “Mido mi cuerpo” y en el concepto de Superficies, “La vivienda ideal”. En todos los casos se procedió de la siguiente manera:

Se hizo una sesión de Identificación y Definición de problemas, partiendo de la tableta. La 2ª correspondía a la elaboración de estrategias y la 3ª Sesión a la Actuación y Logros.

La última sesión de cada situación ha consistido en una primera parte colectiva y en una segunda parte en la que cada alumna, individualmente, resolvía uno o dos problemas con un profesor; aunque hubo distintas variedades de trabajo. (Ver punto 1. PRESENTACION).

Para llevar a cabo un trabajo sistemático se ha realizado una ficha de seguimiento de cada una de las sesiones de trabajo.

En cada una de las sesiones hemos tenido en cuenta tres fases las cuales se describen a continuación:
Ficha de la Sesion N°

Bloque Temático

Tema de Trabajo

Situación

Duración Prevista. Duración Real

Objetivos:
1.
2.
3.

Descripción:

Material:

Motivación:

Problemas Propuestos:
1.
2.
3.
4.
5.

Cri terios de Interacción:

Observación y Valoración:

Participación:

Contenidos Que Surgen:

Posibilidades Que Globalizan:

Estrategias de Resolución:

Errores Cometidos:

Secuencia Operacional
6.2.3. Descripción de las fases

Esquema de trabajo

CUADRO N° 3
Organigrama que representa las tres fases que se han seguido

FASE 1 PREPARACIÓN

FASE 2 DESARROLLO PRACTICO

FASE 3 ANALISIS Y VALORACION

1.- Sesiones en pequeño grupo siguiendo el modelo metodológico de la experiencia.

2.- Estudio de casos individuales en la resolución de un problema.

FASE I: PREPARACION

Las tareas realizadas en esta etapa de trabajo han sido las siguientes:

1. Previsión de material a utilizar en el desarrollo de cada sesión.
2. Documentación sobre las técnicas de entrevista (2).
3. Búsqueda de motivaciones y estrategias que faciliten la concentración de los alumnos y agilicen los procesos de descubrimiento y resolución de problemas. (guión de trabajo para el Profesor en el Aula).
4. Previsión de esquemas lingüísticos y fórmulas de interacción verbal a utilizar por los profesores en las distintas etapas del método IDEAL, ya que en una metodología como la nuestra, el factor verbal es una variable importante digna de ser considerada.

(2) SHORDERET, TYLER y otros. (Ver bibliografía sobre entrevista reseñada al final.)
FASE 2: DESARROLLO PRACTICO

Las sesiones tanto individuales como colectivas se han grabado en cassette video. Paralelamente se ha llevado a cabo una observación participante y una recogida de datos ordenada, referida a los siguientes aspectos:

- grado de participación de los alumnos en las distintas sesiones
- tipos de preguntas inventadas por los alumnos
- estrategias de resolución utilizadas

FASE 3: ANALISIS Y VALORACION

En esta etapa se han realizado las siguientes tareas:

1. Audición y transcripción de sesiones.
2. Valoración crítica de la actuación del profesor-monitor atendiendo a:
 - el dominio de la técnica de entrevista
 - la selección de criterios para la toma de decisiones referidos al momento en que debe finalizar la entrevista
 - momentos en que deben ofrecerse sugerencias y pistas que orienten al alumno y faciliten la verbalización de los pensamientos
 - respuestas aconsejables ante las soluciones erróneas, etc.

3. Análisis del método operacional seguido por la resolución de problemas aritméticos de enunciado verbal, siguiendo el modelo propuesto por Guilford.

4. Análisis de las deficiencias detectadas en las distintas situaciones y materiales seleccionados, así como el tiempo previsto para su desarrollo.

5. Análisis de los errores cometidos debido a una incorrecta interpretación de los informes trimestrales.

6. Selección y recogida de aquellos aspectos novedosos que contribuyan al enriquecimiento de la metodología.
6.2.4. Material

El material que ha usado este grupo de trabajo se puede clasificar en:

Material de Apoyo: se refiere al material necesario para grabar y/o filmar las distintas sesiones: cámara de vídeo, magnetoscopio, grabador-reproductor de cassette, cintas de vídeo, cintas de casette, cuadernos de observaciones.

Material didáctico: Cada sesión requerirá un tipo de material:
- Material concreto manipulable: cintas métricas, dinero falso, balanza, plastilina, cartulina.
- Guiones de trabajo.
- Láminas y murales.
- Objetos comerciales: chocolate, refrescos, periódicos.

Material de Comunicación: Aquel material elaborado durante y después de las sesiones, para comunicar a los demás grupos los resultados más importantes. Fundamentalmente, esto se ha hecho mediante informes por escrito, visionados de vídeos y audiciones de cassette.

6.3. Procesos analizados

6.3.1. Análisis y clasificación de las preguntas inventadas por los alumnos en las sesiones colectivas.

Las preguntas inventadas por los alumnos en las distintas sesiones de trabajo se agrupan en 3 tipos de procesos: procesos de cognición elemental, procesos de cognición intermedia y procesos de cognición formal.

a. Procesos de cognición elemental. Vienen presentados por aquellas preguntas que se refieren a cualidades de los objetos, apreciables directamente por alguno de los sentidos. Para la resolución de estas cuestiones no se requiere ningún tipo de procesos mental o operación.

Se refieren a los siguientes aspectos:
- Sabor, cantidad y marca.
- Color.
iii. Tacto.
iv. Composición cualitativa, origen, utilidad.

Ejemplos de preguntas:
 ¿Qué color tiene la tableta de chocolate?
 ¿De qué marca es el chocolate?

b. Procesos de cognición intermedia. Vienen representados por preguntas referidas a cualidades del objeto de tipo cuantificable, apreciable también de forma inmediata tras la descodificación de símbolos numéricos o gráficos.

Para la resolución de estas cuestiones no se precisa ningún tipo de operación, simplemente se refieren a una mera interpretación simbólica.

Incluye los siguientes aspectos:
 i. Número de objetos.
 ii. Cantidad: peso, volumen, longitud...
 iii. Coste de la unidad.
 iv. Composición cuantitativa.

Ejemplo preguntas:
 ¿Por qué una niña es más alta que otra?
 ¿Cuál es el precio de una tableta de chocolate?

c. Procesos de cognición formal. Vienen representados por preguntas cuantitativas que requieren algún tipo de proceso mental más complejo o bien la utilización de una o varias operaciones para su resolución.

6.3.2. Análisis de los procesos de resolución individual de PAEV:

El modelo de análisis de las grabaciones individuales usado en esta investigación está recogido de Guilford, J.P. (1986).

Es un modelo operacional para la resolución de problemas en general, fundamentado principalmente en las categorías de la estructura de la inteligencia y las ideas del procesamiento de la información.

Los elementos u operaciones del modelo —y la definición de cada uno de ellos, para nuestro trabajo— son:
ENTRADAS: Aunque Guilford admite como entradas las provenientes del ambiente (E) y del soma (S) — es decir, la emoción, la motivación, la disposición... del alumno — en nuestro análisis sólo hemos considerado como entradas las provenientes del ambiente:
- Cuando el alumno lee el problema.
- Cuando el profesor responde a una pregunta planteada por el alumno.
- Cuando el profesor pide que explique mejor lo que ha dicho. Que lo justifique, etc.

FILTROS: Se trata de un paso que toda persona realiza cuando atrae la atención y la dirige hacia una entrada que pide o que le dan.

COGNICION: Se refiere a la fase en que el alumno conoce, comprende y actúa:
- estructura el problema
- estructura nueva información
- realiza operaciones, etc.

PRODUCCION: Cada vez que el alumno genera o produce respuestas.

SALIDAS: Consideramos como salidas las verbalizaciones de las sucesivas generadas, respuestas las soluciones erróneas y por supuesto la solución final. Aunque como se le pidió al alumno que verbalizara todo lo que pensase, a veces las salidas parten de la cognición —verbalizan una interpretación o una manera de estructurar el problema, pero no son respuestas exactamente—.

MEMORIA: A modo de guía, Guilford propone cuatro clases de contenidos almacenados en la memoria:
- Información visual-figurativa (concreta, perceptible).
- Información simbólica (signos).
- Información semántica (con significado verbal).
- Información conductual (psicológica).

En nuestro trabajo los alumnos recurren a la memoria para recordar la información matemática. Sobre todo información de algoritmos.
EVALUACION: Este es, tal vez, el elemento más importante del modelo, ya que permite establecer "ciclos de comprobación" entre la cognición, memoria y producción. Se distinguen varios tipos de Evaluación:

- Examina la entrada y la cognición.
- Examina las respuestas.
- Nuevos exámenes de la estructura del problema.
- Verifica nuevas respuestas.

En el anexo () aparecen analizados varios problemas hechos por diferentes niños, para ello se ha utilizado el modelo que acabamos de describir.

6.4. Resultados obtenidos

6.4.1. Evolución del tipo de pregunta

Para analizar el grado de asimilación de la metodología por parte de los alumnos en las sesiones de grupo, hemos utilizado como indicador el tipo de preguntas inventadas a lo largo de todo el periodo de investigación. Según las tres categorías indicadas. Los resultados aparecen indicados en el siguiente gráfico.

Gráfica en la que se expresa el porcentaje de cada tipo de preguntas inventadas por el alumno en el primer trimestre del curso académico 86/87.

☐ Al principio del primer trimestre
☐ Al final del primer trimestre
En la primera sesión de la experiencia, se obtuvieron los siguientes resultados: de un total de 50 preguntas inventadas espontáneamente por los alumnos, tan sólo un 10% se refieren a cualidades cuantificables, siendo el coste uno de los aspectos más repetidos. El 90% restante se refiere a atributos cualitativos del objeto presentado (color del chocolate, sabor, fórmula cualitativa,...).

Con todo ello se concluye que los aspectos matemáticos no surgen espontáneamente en el pensamiento del niño cuando se enfrenta a una realidad problemática, sus preocupaciones se orientan más bien a atributos más prácticos y utilitarios como el sabor, la calidad, el origen, etc...

Al final del primer trimestre analizamos de nuevo las preguntas planteadas en una sesión, los resultados fueron los siguientes:

El 18% de las preguntas inventadas se refiere a cualidades cuantificables que no requieren ninguna operación o proceso mental para su resolución, sin embargo el 82% de las preguntas inventadas requieren un procedimiento aritmético para su resolución.

6.4.2. **Etapas que siguen los alumnos**

Los pasos en la resolución de problemas aritméticos que siguen los niños dependen fundamentalmente de:

- lo que el profesor le dice o le pregunta (ENTRADAS)
- cómo interpretan esas entradas
- lectura del problema
- los conocimientos almacenados en la memoria (algorítmicos y no algorítmicos) y del uso que hace de ellos.
- la capacidad de sintetizar los tres elementos: cognición, memoria y evaluación.

Parece existir una regularidad en los esquemas mentales que utilizan:

- Analizan los datos del problema
- Lo estructuran
- Efectuan operaciones.
6.4.3. Principales errores cometidos por los alumnos

Error verbal
- Por omisión de palabras: “y te dá las tres onzas” en lugar de “y te da el peso de tres onzas”; “12 es la mitad de 150” en lugar de “los gramos de 12 onzas corresponden a la mitad de 150 gramos”.

Error algorítmico
- El alumno no entiende bien el significado de la división-interpretación errónea del resultado de una división, por ejemplo: “150 entre 12 para saber lo que pesan 12 onzas”.

Error de estructuración
- “12 partes es la mitad de la tableta”. En lugar de analizar los datos del problema y estructurarlos adecuadamente (relacionar bien los datos) el alumno recuerda una situación anterior y añade esa nueva información: “la tableta tiene 24 onzas”.

6.4.4. La intervención del profesor

Si lo que pretendemos es que se aprenda a resolver problemas más que se llegue a la solución final en el menor tiempo posible, el profesor debe estimular al alumno a que reflexione sobre los problemas: que establezca “ciclos de comprobación” entre la cognición, la memoria y la evaluación. Pero ¿Qué tipos de preguntas debe hacerle? Parece que el ¿por qué? y el ¿para qué? suscitan inseguridad y por tanto evaluaciones erróneas, mientras que el ¿qué?, hace reflexionar al alumno aunque persiste en su planteamiento inicial. Es difícil dar una respuesta a esta pregunta, es más; se plantea otra cuestión: ¿qué papel juega el filtro?. Puede ser que el alumno determine sus “ciclos de comprobación” en función de las diversas variables de percepción que en ese momento le hacen reflexionar en un sentido o en otro.

Es el momento en que se va a iniciar un “ciclo de comprobación” cuando la intervención del profesor se hace necesaria, pues determinará el aspecto en el que debe incidir el alumno. Así por ejemplo si le dice “lee el problema despacio” le induce que debe pensar sobre aspectos lingüísticos —de interpretación correcta del problema— y si le dice
"por qué has hecho eso?". Le invitas a que revise la estructuración que acaba de realizar.

6.5. Aportaciones del estudio de casos
6.5.1. Criterios de integración verbal

Con el fin de ajustar al máximo las diferencias metodológicas que puedan influir de forma negativa en la experiencia nos hemos centrado en el factor lingüístico o de interacción verbal del profesor con sus alumnos, potenciando la común utilización de frases, fórmulas y esquemas lingüísticos que agilicen la comprensión y el desarrollo de las distintas etapas metodológicas; de esta forma se evitarán graves diferencias entre los responsables del grupo experimental.

En general, estas fórmulas han sido las siguientes:

"Leed bien el problema"
"Fijaos en la información"
¿Qué datos conoceis?
"Fijaos en la pregunta"
"Pensad como se puede resolver antes de nada"
"Hablad entre vosotros, explicad vuestras ideas al compañero"
"Haced preguntas al compañero"
"Podeís utilizar material complementario para la resolución"
"Buscad alguna otra forma de resolución"
"Comprobad el resultado"

En particular y para la primera situación la fórmula puede ser:
En particular y para la primera situación la fórmula puede ser: Ver organigramas de las páginas (171, 172 y 173).

Estos organigramas servirán para que los miembros del grupo experimental adopten actitudes básicas comunes en las distintas etapas de la metodología.

Sirvan de ejemplo:

- Mantener una actitud interrogativa que facilite el descubrimiento y la búsqueda de soluciones; evitando en todo momento descubrir la solución a los alumnos.
- Sugerir la comprobación de soluciones en el momento oportuno.
- Evitar los juicios y valoraciones en las propuestas de los alumnos.
ORGANIGRAMA DE INTERACCION VERBAL PROFESOR/ALUMNO
EN LAS FASES DE IDENTIFICACION Y DEFINICION DE PROBLEMAS

I = Identificación de problemas
D = Definición de problemas

Proceso de construcción e inventiación de problemas
no matemáticos

PRESENTAR EL "PAQUETE"

PLANTEAR E INVENTAR
PREGUNTAS SOBRE EL PAQUETE

¿QUE PROCEDIMIENTO ES MÁS REAL?

¿LA PREGUNTA TIENE INTERÉS?

SI

¿Por qué?

NO

Búsqueda de estrategias
no matemáticas

Selección de estrategias con interés
Se entrega a cada alumno una cuartilla con la siguiente ficha:

<table>
<thead>
<tr>
<th>PREGUNTAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CON RESPUESTA</td>
<td>SIN RESPUESTA</td>
</tr>
<tr>
<td>Hay que hacer cuentas</td>
<td>No hay que hacer cuentas</td>
</tr>
</tbody>
</table>
ORGANIGRAMA DE INTERACCIÓN VERBAL ALUMNOS/PROFESOR
EN LAS FASES DE ACTUACIÓN Y COMPROBACIÓN

LOS ALUMNOS TIENEN LAS PREGUNTAS CLASIFICADAS

¿TIENEN RESPUESTA?

NO

¿Por qué?
-Falta de interés
-Falta de información
-Falta de conocimiento
-Falta de representación

QUE VENTAJAS Y DESVENTAJAS TIENEN LOS DISTINTOS CAMINOS ELEGIDOS

¿NECESARIO HACER CUENTAS?

SI

ENUMERA TODAS LAS POSIBLES SOLUCIONES QUE TIENE

COMPRUEBA EL OTRO MODO

PARA QUE LO HAS HECHO ASÍ (Revisión de los objetivos conseguidos)

AÑADIR INFORMACIÓN

QUE COSAS TIENES QUE HACER PARA OBTENER LA SOLUCIÓN (PASOS) Objetivos intermedios

QUE COSAS TIENES QUE SABER PARA OBTENER LA SOLUCIÓN

QUE COSAS NECESITAS PARA OBTENER LA SOLUCIÓN

PROCESO DE RESOLUCIÓN DE PROBLEMAS ARITMÉTICOS
Decidir en qué momento se debe pasar a la resolución de un nuevo problema de los inventados por los alumnos, o bien continuar con el mismo invitando a la comprobación, la búsqueda de nuevas formas de resolución, la incorporación de nuevos datos...

Orientar las preguntas de los alumnos hacia un determinado aspecto (concepto de equivalencia, suma de fracciones, etc.), sin rechazar otras posibles sugerencias que sirvan para un contenido posterior o bien sirvan de repaso a lo estudiado.

6.5.2. Conclusiones provisionales

1. Cada vez que el profesor "interroga" a alumno (le proporciona una entrada), éste realiza nuevos exámenes de la estructura del problema, es decir utiliza el elemento "evaluación". Sin embargo esta reflexión, le conduce a caminos erróneos, por lo que el profesor debe tener en cuenta si la entrada es conveniente o no, si le ayudará a comprender mejor o por el contrario le desviará del camino correcto. Recuérdese que el alumno parece cambiar automáticamente de estrategia en el momento en que el profesor le hace una pregunta. De otra parte, hemos comprobado que también incluye mucho la forma de preguntar. Así, no es lo mismo ¿cómo has dicho? que "repite eso que me ha gustado".

2. Obtener información significativa con lo que respecta a técnicas de resolución más adecuadas, recursos materiales, problemas interesantes.

Esta información será considerada por el Equipo de Apoyo a la Experiencia, será el diseño teórico de los distintos temas de trabajo. Ejemplo: para la resolución de problemas referidos al concepto de equivalencia se utilizan con demasiada frecuencia situaciones de superficie (esquema de las transparencias, cuestiones relativas a fracciones de folio, etc.) Algunas de las situaciones más interesantes para nuestra metodología pueden ser el peso, el volumen, la longitud. Ejemplo de un problema donde aparece el descubrimiento del concepto de equivalencia: "El peso del chocolate es 150 gramos, lo divido en 12 partes y tomo la mitad. ¿Cuánto pesa lo que he tomado?".

3. Encontrar justificaciones reales y prácticas para las distintas etapas o aspectos de nuestra metodología. Es decir, ¿cuáles son los ar-

174
gumentos que justifican el trabajo en grupo desarrollado en las prime-
ras sesiones de aula?

i. La situación de aprendizaje es mucho más productiva en gru-
po, puesto que aparece una variedad y riqueza de puntos de
vista imprevisibles individualmente.

ii. Entre los alumnos las discusiones adquieren un mismo nivel
de abstracción conceptual y lingüístico muy diferente del que
utiliza diariamente el adulto.

iii. Se desarrolla el sentido crítico, al someter a juicio propio las
distintas aportaciones de los demás.

iv. Al intentar explicar los razonamientos de los compañeros se
activan mecanismos de síntesis, comprensión y atención que
favorecen el proceso de resolución de problemas.

v. La motivación por encontrar soluciones originales y caminos
sencillos es elevada.

4. Hay que hacer hincapié en los procesos de cognición interme-
dia. En las situaciones experimentales los alumnos han inventado po-
cas preguntas de tipo cognitivo medio en comparación con las de cog-
nición elemental y formal.

5. Se pretende comprobar si los esquemas mentales seguidos
por los alumnos al resolver problemas se ajusta al siguiente esquema:

- Analizar los datos
- Estructurarlos
- Efectuar las operaciones

6. Se distinguen los siguientes tipos de errores cometidos por
los alumnos:

- Error verbal.
- Error algorítmico.
- Error de estructuración.

7. Los aspectos matemáticos no surgen espontáneamente en el
pensamiento del niño cuando se enfrenta a una realidad problemática.
6.6. Descripción de las sesiones sobre el tema "Mido mi cuerpo y los objetos de mi clase".

a) Primera parte: Mido mi cuerpo y los objetos de mi clase.

Antes de empezar se realiza una pequeña introducción al tema de las longitudes, donde se recuerdan las distintas situaciones de longitud y las posibilidades para realizar medidas en esas situaciones utilizando instrumentos de uso común o bien técnicas inventadas.

Seguidamente se procede a la entrega de la tabla número 1 explicando lo que debe hacer cada alumno para rellenarla, antes de empezar se recomiendan varias cosas:

- "Debes utilizar variedad de unidades e instrumentos, podeis inventar alguna técnica vosotros"
- "Procurad realizar las medidas con la mayor exactitud posible"
- "Sobre la marcha podeis consultar conmigo las pequeñas dificultades que os vayan surgiendo al realizar las medidas"

Una vez completadas las medidas de los objetos que aparecen en la lista, cada alumno debe añadir algún otro objeto o situación de longitud que se pueda medir con los instrumentos disponibles. A continuación se les entrega la siguiente tabla de medidas antopométricas, se dividen en grupos de 4 ó 6 alumnos y forman parejas dentro de cada grupo; se les explica la tabla, se recuerdan las tres recomendaciones anteriores y por parejas se miden unos a otros, se comunica el resultado de la medida y cada cual rellena su tabla con sus medidas y las de su compañero. Al final en pequeño grupo completa la tabla con el resto de medidas de los compañeros. Seguidamente, en gran grupo, se realiza por aproximación la media de cada una de las medidas, también se aconseja que en otro momento se compruebe la medida estimada.

La duración prevista para esta primera parte era de 30 minutos, sin embargo su duración real ha sido de 45 minutos, pues eran muchas las medidas que aparecían en las tablas, el profesor ha sugerido dejar en blanco alguna casilla pero el entusiasmo de los niños no lo ha permitido.

Tras los 45 minutos de trabajo se ha realizado un pequeño descanso de 15 minutos y se ha continuado.
b) Segunda parte: Identifico preguntas y las discuto con mis compañeros para seleccionar aquellas que son más interesantes.

Individualmente cada alumno inventa dos cuestiones referidas a las tablas y al trabajo de la sesión anterior. Algunas de las preguntas propuestas fueron:

- ¿Por qué hay tanta diferencia entre las medidas de una niña y de otra?
- ¿Para qué queremos todas estas medidas?
- Leticia mide 1,52 m. y Cinta 11 bolígrafos que es igual a 1,52 m. ¿Cuánto miden entre las dos?

En general las preguntas inventadas por los alumnos eran en su mayoría problemas que se resolvían con operaciones, ante esta observación del profesor mientras individualmente inventaban por escrito preguntas, se les hizo la sugerencia de que podían plantear todo tipo de preguntas, no sólo preguntas que se resolvieran con cuentas. Esto indica que los alumnos se han habituado a la técnica de trabajó y prescinden de esa primera etapa de la metodología, sería conveniente cuestionar las ventajas e inconvenientes de este hecho.

Veamos una pregunta de otra niña: Halla los 7/8 de la cuerda que hemos utilizado para medir la mesa.

Seguidamente en grupo se discuten las preguntas inventadas distinguiendo entre preguntas de fácil contestación y preguntas complicadas o que nos hacen pensar.

En este momento se pide a los alumnos que inventen preguntas interesantes, preguntas que nos hagan pensar y que se resuelvan con una suma, otras dos que se resuelvan con una resta y otras dos que se resuelvan con una multiplicación y una división.

A continuación se presentan a los compañeros del grupo pequeño las preguntas inventadas explicando por qué se resuelve con esa operación determinada; el resto de compañeros escucha y discute las preguntas inventadas cuando creen que no está completa, que le faltan datos, que sobran, etc..., o bien que está mal planteado intentando replantearlo colectivamente.

Observaciones

Mientras los alumnos miden, el profesor observa su actividad y realiza anotaciones, hace sugerencias en cuanto a la exactitud de la me-
dida, la posibilidad de utilizar todos los materiales que hay en el aula y la importancia de inventar alguna técnica original. También resuelve las dudas y dificultades que le plantean los alumnos invitándolos a que decidan ellos mismos y no sea el profesor el que lo haga.

Fueron dos las ideas que surgieron:

1. En un primer momento en que comienzan a llenar las tablas ya se utilizan operaciones: “la mesa mide 7 bolígrafos, un bolígrafo mide 15 cm. total...”, es decir las operaciones elementales surgen espontáneamente.

2. Cuando empiezan a medir con un intermediario que no es múltiplo del objeto lo abandonan y utilizan otro.

DEARROLLO PRACTICO DE LA 2ª SESION

Se le pide a una alumna que resuma lo hecho en la sesión anterior para establecer una conexión entre las dos sesiones. Ahora se debe hacer hincapié en “elaborar estrategias”. El profesor explica que ahora se trata de dialogar sobre las maneras posibles de resolver los problemas inventados; a continuación se utilizan diversas situaciones de trabajo:

* Lo lee el profesor en voz alta.
* Lo lee un alumno en voz alta.
* Lo escribe un alumno en la pizarra.

Los alumnos inmediatamente dan la solución mediante operaciones (“se suma, se resta, se multiplica...”), y el profesor les hace reflexionar sobre la posibilidad de utilizar otros métodos. Así las niñas acuden al manipulativo, comprobando que el método más rápido en general es el numérico, aunque se dan casos en los que el manipulativo puede agilizar la resolución. Por ejemplo: medir el triple del palmo sobre una cinta métrica. En este caso surgió una reflexión interesante, pues el resultado no es el mismo “multiplicando por tres” que “midiendo el palmo tres veces” concluyéndose que el método aritmético, en este caso, es un poco más lento pero más exacto.

El profesor interviene a lo largo de la sesión para pedir a alguna alumna que:

* Resuma lo que ha hecho su compañera.
* Describa las actividades realizadas desde la sesión anterior hasta ahora.
* Sugiere la resolución con otro material distinto en aquellos momentos en que a las alumnas no se les ocurre otra técnica de resolución.

Observaciones

* La mayoría de los problemas son de comparación entre medidas de una alumna y otra. Esto parece obvio ya que se les pidió medir dimensiones propias, de la compañera y de objetos. Tal vez si la situación hubiera sido ‘‘mido mi cuerpo y las distancias entre los objetos de mi clase’’, se hubieran producido más tipos semánticos de problemas.

* Tan sólo se han utilizado métodos aritméticos y manipulativos de resolución. En ningún momento se han apoyado en gráficos que ayúden a plantearse mejor el problema y encontrar otros modos de resolución; esto puede ser sugerido por el profesor.

* Surgen ‘‘errores verbales’’. Por ejemplo: ‘‘Sabemos la medida, es decir, lo que medimos todas’’. El profesor pide que expliquen mejor lo que es la medida, pero no saben hacerlo; hay un largo debate.

En resumen, es importante en esta sesión hacerles reflexionar sobre lo hecho hasta ahora, sobre lo que estamos haciendo y sobre lo que falta por hacer, hasta llegar a la solución de manera variada.

Por otra parte habría que hacer más hincapié en que los problemas han de definirse bien, la mayoría tiene datos distractores o no se expresan correctamente.

Situación ‘‘LA VIVIENDA IDEAL’’. 2ª Sesión.

Observaciones:

Al expresar las medidas de las dependencias unos alumnos se refieren únicamente a las dimensiones largo y ancho, mientras que otros hablan de metros cuadrados, con lo cual ya se ha comenzado a operar.

Puede ser interesante la composición de la vivienda recortando las distintas dependencias y combinándolas como si fuese un rompecabezas. Ello permite dialogar sobre las ventajas e inconvenientes que puede acarrear la proximidad o lejanía de habitaciones destinadas a usos diferentes, así como la dificultad para adquirir parcelas de terreno irregulares.
Distribución irregular de las dependencias obtenidas en un primer momento

a: Comedor
b: Patio.
c: Cocina
d: Baño
e: Dormitorio
Combinación más simétrica y ordenada obtenida en un segundo momento, tras valorar las dificultades para la adquisición de terrenos irregulares

En esta sesión se ha procurado construir una vivienda ideal, a partir de las mediciones obtenidas por los alumnos de la realidad. Tras la medición individual de las dependencias seleccionadas, se ha discutido en grupo la posibilidad de deformar la realidad para corregir los posibles errores detectados. Para ello, se han comparado las representaciones a escala de las distintas dependencias y se ha discutido la posibilidad de ampliar o reducir una dependencia tomando como primer criterio de discusión ‘‘la utilidad’’:

‘‘El comedor en comparación con cualquier dependencia debe ser un lugar amplio, porque en él se reciben las visitas, se come diariamente, se está más tiempo, hay muebles grandes que ocupan un espacio permanente...’’

El segundo criterio de discusión ha sido ‘‘la proximidad entre las dependencias y el aprovechamiento de espacios libres’’.

Si se observan los planos anteriores se puede apreciar que en un primer momento la distribución de las dependencias es irregular, dejando amplios espacios intermedios; sin embargo, en un segundo momento la distribución es mas simétrica y ordenada.
7. ANEXOS

7.1. Análisis de problemas utilizando el método de Guilford

PROBLEMA 1: Si estamos 5 niñas y cada una quiere tomarse media tableta. ¿Cuántas tabletas gastaríamos?

RESOLUCIÓN DEL PROBLEMA POR EL ALUMNO 1

ENTRADA I: El alumno lee el problema

ENTRADA II: "Tú como quieras, utiliza el folio que para eso está"

FILTRO: ¿Podríamos representarlo gráficamente?

FILTRO: "Pues lo primero es saber las niñas que somos, bueno cinco... y lo que quiere cada niña..."

COGNICIÓN: El alumno dibuja las 5 niñas y las tabletas y va rodeando con círculos: "...estas dos niñas formarían una tableta..."

PRODUCCIÓN: "...Ahora estas dos, estas dos niñas formarían otra tableta. Ya vamos dos tabletas y ahora tenemos esta niña sola, pues..."

EVALUACIÓN: Examina la lectura hecha del problema y los datos de que dispone (con la memoria).

EVALUACIÓN:

EVALUACIÓN:

ALMACENAMIENTO DE LA MEMORIA Recuerda que puede representarlo y verlo con más claridad.
RESOLUCIÓN DEL PROBLEMA POR EL ALUMNO 2

ENTRADA I: El alumno lee el problema.

ENTRADA II: "¿Y eso que quieres que haga?"

FILTRO

ENTRADA III: "Sí, pero explica, mejor compruébalo eso.

SALIDA I: Realiza el problema y adelanta una solución. "Pero, ¿cuántas tabletas? no pue de ser. Dos tabletas y media"

FILTRO

SALIDA II: "Lo verbaliza".

FILTRO

SALIDA III: "Dos tabletas y un medio de otra table ta".

FILTRO

COGNICIÓN: Estructura el problema según el planteamiento hecho en la memoria y a petición del profesor: "Pues si fuéramos 6 gastaríamos 6 tabletas enteras y lo dividido en dos partes porque cada uno es un medio".

PRODUCCIÓN: "No gastaríamos una tableta entera".

COGNICIÓN: "Si, si yo dibujo una tableta ¿no?"

PRODUCCIÓN: "Que gastaríamos..."

EVALUACIONES: Hay un pequeño silencio, donde examina la respuesta que acaba de adelantar.

ALMACENAMIENTO DE LA MEMORIA: "Sabes lo que te digo que 5 es impar".
C) Comparación de los dos organigramas anteriores

PROBLEMA: Si estamos 5 niñas y cada una quiere tomarse media tableta. ¿Cuántas tabletas gastaríamos?.

Sujeto N° 1

Sujeto N° 2

ENTRADA II

FILTRO:

Atrae la atención

COGNICIÓN:

Lo estructura

PRODUCCION:

Genera Respuestas

RECHAZA EL PROBLEMA Y ADELANTA UNA SOLUCIÓN

ENTRADA

FILTRO:

Atrae la atención

EVALUACIÓN:

Examina la entrada.

SALIDA:

Da la solución.

MEMORIA
RESOLUCIÓN DEL PROBLEMA POR EL ALUMNO.

ENTRADA I: El alumno lee el problema.

ENTRADA II: “A ver lés lo bien a ver qué te pregunta eso”

ENTRADA III: “¿Dóce qué?”

ENTRADA IV: “Tú haz lo que creo conveniente”

FILTRO

SALIDA I: “Entonces 12 es la mitad de 150 porque es la mitad de la tabletta”.

SALIDA II: “…150 entre 12 para saber lo que pesan 12 onzas”.

SALIDA III: “Cada parte son dos onzas”.

SALIDA IV: “Las 150 entre 12 para saber lo que pesa cada parte”.

FILTRO

COGNICION: Atrae su atención sobre el problema y lo dirige a la memoria, recuerda que anteriormente trabajó con una tabletta que tenía 24 onzas.

PRODUCCION: “Lo primero es…”

COGNICION: Obtiene nueva información y la estructura a partir de la memoria y evaluación.

PRODUCCION: “Entonces cada parte son dos onzas, Bueno entonces…”

EVALUACION: Examina atentamente el problema ante la duda que le ha surgido: “doce onzas o doce partes”.

ALMACENAMIENTO DE LA MEMORIA

Re cuerda que la tabletta con que trabajó en sesiones anteriores tenía 24 onzas.

Re cuerda nuevamente que en unas sesiones anteriores trabajó y manipuló una tabletta con 24 onzas.

Re cuerda el algoritmo de la división.
Recuerda el algoritmo de la división con decimales.
7.2. Transcripción de la grabación sobre la primera situación: “La tableta de chocolate”.

PARTICIPANTES: Cinco alumnas de sexto nivel de E.G.B. y dos profesores.

7.2.1. Primera sesión

Prof. 1.: Bueno, primero me vais a decir vuestrros nombres.
Alumn.: ...yo Marta, yo Leticia, Pilar.
Prof. 1.: ¿Cómo has dicho que te llamas?.
Alumn.: Cinta.
Prof. 2.: Yo también quiero aprenderme los nombres.
Prof. 1.: ¿Tú tienes un hermano que se llama Evaristo?
Alumn.: No...
Prof. 1.: ¡Ah!, me creía, yo no conozco a nadie que se llame Evaristo, nada más que yo.
Alumn.: Yo conozco a una maestra.
Alumn.: ¡Y esta que se llama Cinta!
Alumn.: Y yo tengo un canario que se llama... Y yo tengo un animal que se llama Jaime, que es mi hermano,... Y yo tengo un pitofo que se llama Paco...
Alumn.: ...¿Cuánto tiene la cinta?, ¿90? ¿y tienes que gastarla entera?
Prof. 1.: ¡No!
Prof. 2.: ¿Empezamos?.
Alumn.: Sí.
Prof. 2.: ¿Sabéis de qué se trata?.
Alumn.: No.
Prof. 2.: Pues yo tampoco.
Alumn.: Estamos bien, estamos bien...
Prof. 2.: Vamos a ver, vamos a estar un ratito hablando, ¿verdad?, de la presentación de una cosa.
Alumn.: ¿Y qué es?, ¡Huy, qué nervios!
Prof. 2.: Y tenéis que hacer preguntas sobre eso, ¿verdad?.
Alumn.: ¿Y levantamos la mano?.
Prof. 2.: Sí, vamos a ver si nos organizamos, levantamos la mano,
habla una, cuando termina habla otra, porque si hablamos
todos a la vez o chillamos, pues, primero que ni nos entre-
mos. Venga, entonces yo os voy a enseñar una cosa y vo-
sotras me tenéis que plantear preguntas sobre ella, ¿vale?.

Alumn.: ¿Qué es? ¿Qué es eso?, ¿Es qué es?.
Prof. 2.: ¿Qué es?, bueno, esta es la primera pregunta que hacéis
¿Cómo podéis averiguar lo que es?.
Alumn.: Tocándolo.
Prof. 2.: Tocándolo, es una manera.
Alumn.: Desenvolviéndolo, preguntándolo, quitándole el fixo...
Prof. 2.: Preguntándolo, quitándole el fixo,...
Alumn.: Quitándole el papel.
Prof. 2.: Quitándole el papel, porque si tú le quitas el fixo
sólomente...
Alumn.: No, quitándole el fixo y el papel. ¡Qué calor hace aquí!
Prof. 2.: Venga, vamos, ¿Cómo podremos saber lo que hay aquí?.
Alumn.: Agitándolo, tirándolo al suelo, y luego lo pisas.
Prof. 2.: Si lo pisas te enteras de lo que hay pero lo rompes ¿No?.
Alumn.: Oliéndolo.
Prof. 2.: Oliéndolo también.
Alumn.: Sí, vas a olerlo y ... tocándolo.
Prof. 2.: Tocándolo, ¿de qué más maneras?
Alumn.: Estrujándolo.
Prof. 2.: Vale, ¿sabéis más maneras?.
Alumn.: Y así ... y así...
Prof. 2.: Bueno, de entre todas esas maneras que habéis dicho, te-
féis que desechar la que no vale, porque si habéis dicho
que yo tiro la "tableta" al suelo y la pisoteo, pues esa no es
manera de...
Alumn.: Ya lo has dicho, lo has dicho, has dicho "tableta".
Prof. 2.: Bueno, ya lo he dicho, ha sido un fallo. Pero entonces ¿cómo
lo averiguaríais si yo no digo lo que ahí hay?.
Alumn.: Abro la tableta y me la como. No, quitándole el papel y el fi-
xo, claro.
Prof. 2.: Bueno, pues entonces fíjao que habéis hecho preguntas
sobre esto, y la primera pregunta que habéis hecho ha sido
qué es. Habéis dicho varias maneras de saber qué es y de
esas maneras que habéis dicho algunas las desecháis por-
que no son buenas. A lo mejor si quitas sólo el fixo no te en-
teras de lo que hay, pero si quitas el fixo y lo desenvuelves sí. A ver otra manera cuál puede ser; me lo preguntáis a mí, o se lo preguntáis a Evaristo. O se me escapa a mí, o bueno vamos...
Entonces desecháis maneras que no son buenas y os quedáis con otras que sí, con las que podéis averiguarlo. Vale, pero alguna pregunta más, bueno, pero lo que pasa es que saben lo que es. Pero qué ... ¿os interesaría saber algo más sobre esto?

Alumn.: ¿De qué es?
Prof. 2.: ¿De qué es?, vale.
Prof. 1.: Independientemente de eso, es decir, vosotros veis esto ¿qué puede ser?
Alumn.: Una tableta de chocolate.
Prof. 1.: Independientemente de eso, porque tú figúrate que no fuera una tableta de chocolate.
Prof. 2.: ¿Y si yo os he engañado?
Alumn.: Un cuadernillo, un regalo, un cuadernito pequeño, puede ser una carpeta o dos carpetas... puede ser un regalo tonto. Un regalo de esos que se compran en las tiendas... cosas de esas que tienen una libretita, un espejito...
Prof. 1.: Ya que es chocolate, ahora adivinan más cosas.
Alumn.: ¿Que de qué es la tableta?, de almendra, chocolate blanco con almendra,... de distintas marcas de chocolate...
Prof. 2.: O sea, que la primera pregunta que os hacéis es qué tipo de chocolate es, si está bueno, si está malo.
Alumn.: ¿Es chocolate?, pero ¿es chocolate?, ¿sabe bien?
Prof. 2.: ¿Y cómo podéis saber el tipo de chocolate que es?
Alumn.: Abriendolo y comiéndolo, tomándolo...
Prof. 2.: ¿Solamente abriendolo y comiéndoselo?.
Alumn.: Mirándolo, mirándolo y oliéndolo.
Prof. 2.: Pero, ¿mirándolo por fuera?
Alumn.: No, por dentro, por dentro también.
Prof. 2.: ¿Hay que trocearlo para saber lo que hay dentro?
Alumn.: No, abriendolo y...
Prof. 2.: ¿A tí se te ocurre alguna manera de saber de qué tipo es el chocolate y todas esas preguntas que os estáis haciendo sin necesidad de abrirlo?
Alumn.: ¿Sin necesidad de abrirlo?. No, estrujándolo o
chupándolo... No, lo aprietas, y si tiene algo duro tiene almendras. Se transparenta.

Prof. 2.: ¿Se transparenta?, ¿qué se va a transparentar?.
Alumn.: Milka... ummm.
Prof. 2.: Bueno, no queréis saber nada más de esto.
Alumn.: Sí, queremos desliarlo, ¿dónde lo has comprado?
Prof. 2.: ¿Que dónde lo has comprado?, ¿otra pregunta?
Alumn.: ¿Cuánto te ha costado?
Prof. 2.: ¿Cómo puedo saber eso?
Alumn.: Pués preguntándolo.
Prof. 2.: ¿Nada más?
Alumn.: Yendo de tienda en tienda, ¿Cuándo le han comprado un chocolate...?
Prof. 2.: ¿Y si no lo he comprado yo?
Alumn.: Pués... ¿dónde ha comprado un señor alto que se llama Evaristo..., ¿cuánto le ha costado?, si tiene el precio puesto lo podemos saber, ¿lo habéis comprado en el Dani? A lo mejor es del supermercado ese de ahí...
Prof. 2.: ¿Qué más cosas os preguntaríais sobre esto?.
Alumn.: Que... ¿si nos lo podríamos comer?.
Prof. 2.: Más cosas.
Alumn.: Nosotros ya hemos dado ese tema de la materia ¿que si nos lo deja tocar?. Si venga...
Prof. 2.: Bueno me parece que ahora tenéis que hacer preguntas solas por equipos, ¿no?.
Alumn.: Yo contigo, no yo con Pilar...
Prof. 2.: Bueno, cada una en una banca eso, Evaristo os lo explica.
Prof. 1.: Vamos a ver lo que vais a hacer ahora, vosotros sabéis ya que es una tableta de chocolate, entonces podéis hacer muchísimas cuestiones ¿no?, podéis hacer muchísimas preguntas sobre esto, de todos los tipos. Entonces, para después poder resolver, los vais a resolver juntos; pero ahora, para que no os copiéis, para que cada uno invente, porque si no no podemos inventar bien, os vais allí, os vais a quedar allí un cuarto de hora, os vais a sentar cada una donde queráis, vais a coger cada una un folio y vais a empezar a plantear preguntas.
7.2.2. Segunda sesión

Prof. 2.: Bueno, cada una tenéis las preguntas, ¿y las tuyas?
Alumn.: ¿Y las mías?... ¡Qué cabeza loca!
Prof. 2.: Bueno, vamos a empezar leyendo, vamos a pensar cada una y entre todas vamos a ir pensando las preguntas que cada una tiene.
Alumn.: ¿Pero las leemos?
Prof. 2.: Vamos a discutirlas. Tú, por ejemplo, vas leyendo una y los demás...
Alumn.: ¿Las numeramos?
Prof. 1.: Sí, numéralas.
Prof. 2.: Empiezas tú.
Alumn.: La más bueneccia...
Alumn.: ¿De qué es el chocolate?
Prof. 2.: ¿De qué es?
Alumn.: ¿De qué es el chocolate?
Prof. 2.: Esa pregunta, ¿tiene respuesta o no tiene respuesta?
Alumn.: ¿Ah?, no sé, o sea...
Prof. 2.: Vamos a ver, que hable una y luego otra.
Alumn.: Sí tiene.
Prof. 2.: ¿Sí tiene respuesta inmediatamente? ¿de qué es el chocolate?, ¿de qué es?
Alumn.: ... el que lo ha comprado lo sabe, si le preguntamos... si nosotras cogemos y lo desenvolvemos, pues sabemos... ¿nos lo dejas coger?
Alumn.: No, no es de almendra...
Prof. 2.: Dentro de un momento os lo voy a dejar, pero, eso sí, tu los has tocado y ¿ya lo sabes?
Alumn.: Sí, ya lo he tocado.
Prof. 2.: Entonces estáis de acuerdo en que esa pregunta tiene respuesta.
Alumn.: Sí.
Prof. 2.: ¿Tú has dicho?, repite la pregunta.
Alumn.: ¿De qué es el chocolate?
Prof. 2.: ¿De qué es el chocolate?, ¿Y ya sabes que es de almendra?
Alumn.: No, que no es de almendra.
Alumn.: Es de almendra.
Prof. 1.: Yo me hago una pregunta a lo que ha dicho... ¿de qué es el
chocolate?, y digo de almendra...

Prof. 2.: Puede o no puede tener almendra, pero tiene más cosas ¿de qué es el chocolate?.

Alumn.: Leche de chocolate, claro.

Prof. 2.: Pero, ¿tiene respuesta?.

Alumn.: Sí, si la das sí.

Prof. 2.: Sigue con la siguiente pregunta; bueno esa... vamos a hacer una clasificación: preguntas con respuesta abajo, trazas así, una raya, pones a un lado preguntas con respuesta y a otro preguntas sin respuesta. Y esa decís todas que tiene respuesta, sí, ¿no? estáis de acuerdo.

Alumn.: Si la tapas claro, sí lo ves, porque si no lo ves, así...

Prof. 2.: Bueno, vamos a seguir con la siguiente pregunta y luego podemos pensar lo que sea.

Alumn.: Pero, ¿es que también tenemos que escribir esa, la que ha dicho ella?.

Prof. 2.: La que ha dicho ella no. Vamos a ver, eso que lo haga ella. ...Estamos todavía sin hacer nada, tú haz la clasificación, ¿esa pregunta tiene respuesta? sí, así que ponla en seguida.

Alumn.: ¿De dónde lo habéis sacado?.

Alumn.: Pues de una tienda.

Prof. 2.: Ponle una "R" si tiene respuesta, a la siguiente, pues si tiene respuesta le pones una "R" si no tiene respuesta pues le pones lo que quieras, "SR".

Alumno: ¿Hacemos una clasificación?.

Prof. 2.: Sí, cada una va a hacerlo también de las preguntas que tiene.

Alumn.: Una goma..., ¿no habría una goma en condiciones?...

Alumn.: ¿De dónde lo has sacado?.

Alumn.: ¿De dónde lo va a sacar?, de la leche, de la tienda, ¿no lo va a sacar de...

Prof. 2.: Bueno, habría algo importante y es ver si las preguntas que tenéis tienen significado o no tienen sentido.

Alumn.: Hombre claro, sino por qué las hemos hecho.

Prof. 2.: Todas tienen significado, ¿y tiene respuesta? Ponedle una "R" si tiene respuesta. Vamos a seguir con la siguiente.

Alumn.: ¿Hay dos o hay una?.

Prof. 2.: ¿Hay dos tabletas o hay una?
Alumn.: Depende si es fina, puede que haya dos.
Prof. 2.: Muy bien, ¿tiene respuesta o no?...
Alumn.: Ahí hay una porque dos serían más gordas...
Prof. 2.: Luego tiene respuesta. Si tiene respuesta, pues la "R" seguimos.
Alumn.: ¿De qué marca es?.
Prof. 2.: ¿De qué marca es?.
Alumn.: Pero así, ¿cómo está ahora mismo? ¿cómo está ahora mismo o deslándolo?.
Prof. 2.: Eso deslándolo es la manera de comprobar si esa respuesta es la correcta o no lo es. Tiene respuesta. Desde luego todas estamos viendo que tiene respuesta... la siguiente rápida.
Alumn.: ¿De qué es el chocolate?.
Prof. 2.: ¿Qué de qué es el chocolate?.
Alumn.: ¿Qué ingredientes tiene?.
Prof. 2.: ¿Qué ingredientes tiene?, también tiene respuesta, todas tienen respuesta. Sigue.
Alumn.: ¿Se desmenuza pronto o está un poco duro?.
Prof. 2.: También tiene respuesta, todas tienen respuesta. Son las preguntas que tienen sentido, tienen significado, también tienen respuesta, ¿y la última?
Alumn.: ¿Es fino o es grueso?.
Prof. 2.: Vale, seguimos, ahora a tí.
Alumn.: ¿A ml? ¿qué es?.
Prof. 2.: Tiene respuesta.
Alumn.: ¿Cómo es?.
Prof. 2.: ¿Cómo es?, ¿a qué te refieres que cómo es?.
Alumn.: Pues... ¿Qué cómo es? que si...
Alumn.: Que si es azul, que si es verde (...) que si tiene sabor, que si no tiene.
Alumn.: ¿De qué es?.
Prof. 2.: Muy bien, ¿alguna más?, parece que muchas coinciden ¿no?.
Alumn.: ¿Cuál es su contenido?.
Prof. 2.: ¿Cuál es su contenido...
Alumn.: Si lo podemos oler, ¿de que tipo es? ... ¿cuál es su sabor? ...
Prof. 2.: Todas tienen respuesta.
Alumn.: ¿Quién lo ha comprado?
Prof. 2.: Eres muy curiosa tú ¿eh?. Si está malo o está bueno.
Alumn.: ¿De qué marca es?
Prof. 1.: Esa pregunta que ha hecho está... es decir, ¿sería siempre igual? Has preguntado dónde lo ha comprado, ¿eso tiene una respuesta o varias respuestas?
Alumn.: Pues, lo puede haber comprado en un supermercado, en una tienda.
Prof. 1.: Pero la respuesta que tiene esa pregunta ¿puede ser una o pueden ser dos?
Alumn.: Una.
Prof. 1.: Y ésta la que ha hecho.
Alumn.: ¿Que si está buena o mala?, pues según el chocolate que sea.
Prof. 1.: ¿Que depende nada más que del chocolate?
Alumn.: Y de los ingredientes,... de la persona...
Prof. 2.: De que a ésta le guste y a ésta no le guste... ahora te toca a ti.
Alumn.: ¿Está bueno o está malo?
Prof. 2.: Está Rico, ahí pone que está Rico.
Alumn.: Bueno sí...
Prof. 2.: La que está viendo que la suya se ha repetido, ponerle que tiene respuesta.
Alumn.: ¿Es blanco o negro?
Alumn.: ¿Tiene almendra o sin ella, sin almendra?
Alumn.: ¿Cuánto ha costado?
Alumn.: Eso es lo que he puesto yo.
Alumn.: ¿Dónde se ha fabricado?
Prof. 2.: ¿Dónde se ha fabricado?, bueno, pensamos que luego se podrá averiguar...
Alumn.: ¿En España o en el extranjero?
Prof. 2.: Vale.
Alumn.: ¿Es suave?
Prof. 2.: ¿Es suave?
Alumn.: Suave de sabor, ¡cateta!
Prof. 2.: Esta no está más que pensando en el sabor.
Alumn.: ¿Está fabricado con leche?
Prof. 2.: Sí.
Alumn.: ¿O sin ella?
Alumn.: Todos los chocolates están fabricados con leche.
Prof. 2.: Bueno, vamos a seguir, tú ya lo tienes casi hecho, ¿a ver?...
Alumn.: ¿De qué marca es?
Prof. 2.: Todas. A ver Pilar.
Alumn.: ¿De qué año es?
Prof. 2.: ¿De qué año es?
Alumn.: ¿Está empezado?
Prof. 2.: Tú veras.
Alumn.: Tiene respuesta.
Prof. 2.: Tiene respuesta y además inmediata, ¿no?
Alumn.: No, que se le podría haber metido ahí algo.
Prof. 2.: Una ficha de dominó... en lo que falta.
Alumn.: Sí, eso hacíamos nosotros. (...) ¿Se puede ver?
Prof. 2.: ¿Tiene respuesta o no tiene?
Alumn.: Sí.
Alumn.: ¿Os gusta?
Prof. 2.: ¿A nosotros?
Alumn.: Sí no, pero ¿os gusta?
Prof. 2.: No, estamos viendo las respuestas, estamos viendo si tiene respuesta o no tiene respuesta.
Alumn.: ¿Es en verdad chocolate o es otra cosa?, ¿podemos comer un poco?, ¿cuanto costó?, ¿quién lo compró?, ¿de qué es?
Prof. 2.: Bueno, de todas las que tienen respuesta, que parece que todas, vamos a ver cuáles necesitan número; es decir nosotros necesitamos o no necesitamos números para responder a esas preguntas.
Prof. 1.: Vamos a ver, vosotras habéis hecho algunas preguntas y lo que vamos a ver es si en algunas aparecen datos cuantitativos.
Alumn.: ¿Cómo?, Sí.
Prof. 1.: Números.
Alumn.: Sí.
Prof. 2.: Exactamente, y en las que para responder sea necesario hacer números o no sea necesario hacer números.
Alumn.: Oye Antonio, ¿en las que sí, ponemos sí, y en las que no ponemos no?
Prof. 2.: No, venga ponéis al lado... Antes de eso hay que ver si las preguntas tienen número o no tienen número.
Alumn.: ¿Pero cómo lo señalamos?
Prof. 2.: Pues lo pones al lado, con una N o un NO.
Alumn.: Ninguna tiene número.
Prof. 2.: ¿Ninguna?, a ver lees alguna.
Alumn.: ¿Dónde se compró?
Alumn.: ¿Cuánto te ha costado?
Prof. 2.: ¿Esa no tiene número?. Ahora resulta que ninguna tiene número ¿Nó?
Prof. 1.: Sin embargo, hay preguntas que necesitan números.
Alumn.: Sí.
Prof. 1.: En algunas puede que se necesite hacer operaciones.
Alumn.: Sí, puede que sí... Aquí he puesto ¿de qué año es?, entonces decímos, bueno a mi me dicen que lo compraron hace cinco años... entonces tenemos que restar 1.986 menos 5.
Prof. 2.: Pero ¿sólomente hay esa forma de contestar?
Alumn.: No, lo compró en 1981.
Prof. 1.: Y pregunto yo, ¿para averiguar de qué año es el chocolate, solamente hay que hacer esa operación?, ¿sólomente se puede averiguar sabiendo el año en que se compró, o se podría averiguar de otra forma?
Alumn.: (...)
Prof. 2.: Tú te preguntas de qué año es el chocolate, ¿y qué haces?, ¿cómo lo averiguas?
Alumn.: Lo pregunto.
Prof. 2.: ¿A quién?
Alumn.: A vosotros.
Prof. 2.: ¿Y a quién más?
Alumn.: A la tienda.
Prof. 2.: Luego, hay muchas maneras de conocer la respuesta. Una de ellas es hacer la operación, otra preguntándolo...
Alumn.: ¿Y cuánto pesa?
Prof. 2.: Tú puedes saber cuanto pesa de muchas maneras; en algunas necesitas una operación, en otras no. ¿Hay otra manera de saber cuánto pesa esto?
Alumn.: (...)
Prof. 2.: Calculándolo aproximadamente ¿no?
Alumn.: O pesando un cuadrito y multiplicando su peso por el número de cuadritos.
Prof. 2.: Anotad al lado de cada preguntas las que probablemente
necesiten una operación para resolverlas...

Alumn.: (discuten).

Prof. 2.: A veces cuando los datos no se ordenan adecuadamente, nos vamos por los árboles, planteamos esto, luego aquello y nos confundimos. Las preguntas hay que definirlas un poco más, una vez que estén bien definidas podremos resolverlas de muchas maneras, y no sólo haciendo operaciones, ¿entendido?.

Alumn.: Vale.

Prof. 1.: Tú lees una pregunta y dices qué maneras posibles hay para contestarlas y vosotros las corregís.

Alumn.: Pues mirándolo, estrujándolo, comiéndomelo...

Prof. 2.: Tomad un folio cada uno, y junto con la tableta de chocolate, debéis inventar más de cinco preguntas, de las cuales, al menos tres, se resuelvan con operaciones de fracciones.

Alumn.: ¡Ah! Ya sé, ya sé.

(Al final se intercambian las preguntas inventadas por cada alumna y se la llevan a casa para resolverlas de todas las maneras posibles).

7.2.3. Tercera sesión.

Prof. 2.: De las preguntas que hicimos el otro día, vamos a discutir algunas y a estudiar las distintas estrategias que habéis utilizado al solucionarlas. Además, utilizaremos los medios y materiales que hay aquí: balanza, cartulina, tijeras, trozos de chocolate, etc...

Alumn.: Si sabemos que un tercio es lo que pesa media tableta, ¿cuánto pesan cuatro onzas?

Prof. 2.: ¿Lo habéis entendido?

Alumn.: Yo quiero que lo repitas.

Prof. 2.: Repítelo. (lo repite)

Prof. 2.: ¿Ese problema está bien definido?

Alumn.: No

Prof. 2.: ¿Por qué?

Alumn.: Porque un tercio no sabemos cuantas onzas son.

Alumn.: Ese problema, que lo hice yo, es que me comí una palabra.

Prof. 2.: ¿Qué palabra? Si sabemos que un tercio es lo que pesa me-
Alumn.: Falta lo que es un tercio, cuantas onzas son.
Prof. 2.: Para que tenga sentido ¿qué tendrías que quitar o poner?.
Alumn.: Es que no sabemos cuantas onzas tiene un tercio.
Alumn.: Pues mira, aquí dice que si sabemos que un tercio es lo que pesa media tableta, ¿cómo vamos a saber eso? Es imposible saberlo. Lo que tenemos que hacer...
Prof. 1.: ¿Por qué es imposible?.
Alumn.: Porque cómo va a pesar un tercio, es que es de tontos.
Prof. 2.: Pero ¿cómo va a pesar un tercio?, todavía si fuera un tercio de kilo.
Alumn.: De acuerdo, solucionado ese problema, ese problema está mal enunciado.
Alumn.: Si pesa el chocolate 150 gramos y me como un medio, ¿cuánto queda?.
Prof. 2.: ¿Cuánto queda?, ¿Cuántos que?.
Alumn.: ¿Cuántos gramos?.
Prof. 2.: ¿Se entiende que es cuántos gramos quedan?.
Alumn.: Claro hombre, aquí dice ¿Cuánto queda?.
Alumn.: Pero es que aquí dice gramos, mira el principio, dice...
Prof. 2.: Venga léelo.
Alumn.: Si pesa el chocolate 150 gramos y me como un medio de 150 gramos. Entonces, sería 75 gramos, ¿cuánto queda? y me queda...
Prof. 2.: Está claro ¿no?, vamos a seleccionar ese y le ponemos una crucecita aquí. Seguimos.
Alumn.: Si el chocolate pesa 150 gramos, yo me como un tercio y Leti se come un medio, ¿cuántas onzas quedan?.
Alumn.: No, no puede ser, porque has dividido una vez en tres partes y otra vez en dos partes.
Alumn.: Por eso no lo entiendo yo.
Prof. 2.: Que no puede ser, ¿cómo?, léelo despacio.
Alumn.: Porque mira tú tienes la tableta, y la partes en tres trozos y Leticia se come uno, y después la misma tableta, lo que queda de tableta, la partimos en dos. Después sumas lo que te has comido y sabes cuánto has comido, después lo restas y sabes cuanto sobra.
Prof. 2.: Bueno, ese lo elegimos, tiene sentido. Leemos el siguiente.
Alumn.: Si cada tableta tiene 24 onzas ¿cuánto pesa cada una?.
Alumn.: Ese sí tiene sentido.
Prof. 2.: Vamos a ver, en seguida vamos a trabajar con ellos, hare-
mos la selección rápidamente. La siguiente, a ver tú.
Alumn.: Si hay 24 onzas y en cada onza hay dos triangulitos y un
círculo ¿cuántos triángulitos hay en total?
Alumn.: ¡Chupaol.
Prof. 2.: ¿Está chupaol?.
Alumn.: (Lo repiten y lo debaten).
Prof. 2.: Está bien o seleccionamos...
Prof. 1.: Resolver con la misma estrategia. Vamos a seleccionar uno
de cada uno. Como ya os lo habéis leído, escoged cada una
uno pero que tengan fracciones.
Prof. 1.: Por eso vosotras, habéis elegido cinco por lo que veo, en-
tonces elegid uno de los cinco.
Prof. 1.: Primero vemos si está bien planteado.
Prof. 2.: Vosotras id seleccionándolo, que ahora nos ponemos a dis-
cutir sobre ellos.
Alumn.: Si sabemos que un quinto de lo que pesa el chocolate ¿có-
mo sabemos su peso exacto?.
Prof. 1.: A ver repítelo otra vez. Atened al problema porque es im-
portante.
Alumn.: (Lo repite).
Prof. 2.: Bueno ¿Esa pregunta tiene interés?, ¿es interesante sa-
berlo?, a ti por qué te interesa saberlo?.
Alumn.: Pues para saber cuánto pesa el chocolate.
Prof. 2.: Porque quieres saber cuánto pesa ¿no?, ¿tiene interés para
todas? ¡Sí!. ¿Tiene también sentido?, porque tú conoces un
quinto de lo que pesa.
Alumn.: Pero no lo ha dicho. Que no lo ha dicho ¿o que pesa.
Prof. 1.: A ver, a ver...
Alumn.: (Discuten)
Prof. 1.: De acuerdo es interesante.
Prof. 2.: Bueno ya está hecha la selección.
Prof. 1.: Vamos a seleccionar otro. Pilar lee tú misma.
Alumn.: Si cuesta 60 pesetas ¿cuánto cuesta cada trozo?.
Prof. 1.: Repite otra vez.
Alumn.: (Lo repite).
Prof. 2.: ¿Tiene sentido, no?
Prof. 1.: Ahora lo seleccionaremos y veremos a ver si tiene solución.
Alumn.: Cada trozo, pero ¿cuántos trozos hay?
Alumn.: Veinticuatro.
Alumn.: Y no lo has puesto.
Alumn.: Sí, pero antes pone en cuántos trozos está dividido?
Prof. 1.: Bueno es que tú el problema ese está encadenado con el anterior ¿no?.
Prof. 1.: Sí, pero tú lo que has leído es simplemente lo que has leído y lo otro se supone que lo has escrito tú...
Prof. 2.: El problema, como vimos el día pasado hay que definirlo bien y tú estás ahí muchas veces suponiendo datos o palabras que no están puestas.
Alumn.: (Se discute).
Prof. 2.: Cinta. Vamos a dejar que nos diga el que ha seleccionado ella.
Alumn.: Si el chocolate lo dividimos en cinco y cogemos 1/5 ¿cuánto quedaría?
Prof. 2.: Me parece que ya hay suficientes.
Prof. 1.: ¿No quedaba ésta por decir?
Prof. 2.: ¡Ah! quedabas tú. Dime tú lo que has seleccionado.
Alumn.: Si el chocolate tiene 24 onzas y yo cojo 18 ¿Cuántas onzas me quedan?
Prof. 2.: A ver, a ver. Si el chocolate tiene 24 onzas y
Alumn.: Y yo cojo 18 ¿cuántas partes me quedan?
Prof. 2.: Bueno ¿pero ese problema tiene que ver con fracciones?
Alumn.: Sí...
Prof. 2.: Parece interesante y tiene sentido...
Alumn.: Sí, pero no está relacionado con fracciones.
Prof. 2.: Bueno vamos a dejarlo seleccionado, ya está hecha la selección de algunos, ¿vale?. Ahora, ya vamos a empezar a trabajar sobre ellos. María Angustias, ¿cómo te llamas?
Alumn.: Mónica. (…)
Prof. 2.: Mónica va a empezar a leer el primer problema que hay seleccionado y ya va a empezar a pensar en las distintas respuestas que tiene, a ensayarla, a ensayarla y a utilizar… Los ganchitos me los voy a quedar…
Alumn.: (… Pilar se sale hasta que se le pasa la risa…)
Prof. 2.: ¡Lee!
Alumn.: Si pesa el chocolate 150 gramos y me como un medio
¿cuánto me queda?.

Prof. 2.: Vamos a ver. Ese problema ¿qué respuestas tiene?. Si pesa el chocolate 150 gramos y me como un medio ¿cuánto queda?. ¿Cómo era eso Pilar?. Si me como 1/2 del chocolate que pesaba 150 gramos, explica qué significa eso.

Alumn.: 75 gramos.

Prof. 2.: Vamos a ver, Pilar dice que son 75 gramos. Pilar ha lanzado una respuesta. Ahora expícanos cómo lo has hecho.

Alumn.: Pues yo, porque en principio es como si tuviéramos 100, dos montoncitos de 50 enton...

Prof. 2.: Utiliza el material que quieras. Bueno los demás, Marta, po-deis ir pensando de qué otra manera puedo hacerlo.

Alumn.: (Pilar lo explica con las pesas, pero arma un buen cacao).

Prof. 1.: ¡Pilar como no dejes de hacer el tonto, tequito,... y no vuelves a venir más!, ¿está claro?.

Prof. 2.: El problema dice que si el chocolate pesa 150 gramos y me como un medio ¿cuánto me queda?.

Prof. 1.: Y ahora sigue explicando lo que estabas explicando, pero tranquilamente. Y empieza desde el principio, pero sin hacer tonterías y pensando lo que dices y sabiendo cuando tienes que terminar.

Alumn.: Esto son 150, entonces cogemos dos terceras partes porque son 100, entonces 100 lo dividimos en dos de 50.

Prof. 2.: Luego aquí tenemos 150.

Alumn.: No. Es que ésta es como si... igualas...

Prof. 2.: Ah, bueno sí...

Alumn.: Entonces como faltan dos de 50, pues dos de 25, entonces como esto eran 50 y esto 25, pues son 75.

Prof. 2.: Esta es una forma ¿lo habéis entendido?. Hay algún otro procedimiento para saber... más fácil.

Alumn.: Pues como has dividido 150 en dos partes, lo divides y como has cogido una pues, lo que te de es. Tú has dividido 150 en dos partes.

Prof. 2.: Luego lo que tú has hecho ha sido dividir.

Alumn.: Dividir en dos.

Prof. 2.: Pilar lo que ha hecho ha sido pensar y haciendo esas partecillas, ella lo que ha hecho ha sido dividir directamente ¿a alguien se le ocurre dividir de otra manera?. Repito el problema si pesa el chocolate 150 gramos y me como un
medio. ¿Cuánto me queda? Cómo puedo saber cuánto pesa la mitad.

Alumn.: Pues dividiendo 150 entre dos.
Prof. 2.: Sí, eso lo ha dicho Marta, otra manera.
Prof. 1.: Te pregunta ¿cuánto queda?.
Alumn.: ¿Cuánto queda, cuántos gramos quedan?.
Prof. 1.: ¿Y eso?.
Prof. 2.: Entonces no está bien definido el problema. Lo que pesa es que lo hemos supuesto.
Prof. 1.: El problema pregunta cuánto queda.
Alumn.: ¿Cuántos medios quedan?.
Prof. 1.: No, no, pregunta cuánto queda. Y ahora formas de resolver el problema. Si tú después le quieres añadir más cosas estoy de acuerdo, como ha hecho Pilar.
Prof. 3.: Yo parece que, perdón por interrumpir, parece que debíais de fijaros primero en qué dice, qué os pide el problema, porque lanzáis soluciones antes de enteraros en realidad lo que pide el problema, entonces fijaros sólo en lo que pone...
Alumn.: Pero cuánto queda de qué...
Prof. 1.: ¿Cuánto queda?.
Prof. 2.: Sí, que va a hablar Cinta.
Alumn.: Pues un medio.
Prof. 2.: ¡Ah! Es una respuesta también posible, porque si el problema dice eso, pues ella dice, pues: queda un medio y para ella está bien el problema, entonces si realmente parece que se sobreentiende pero cuidado con eso, que se trata de cuántos gramos quedan, ¿eso no habría que ponerlo entonces?, hay que recitalarlo ¿verdad?.

Alumn.: Serían 75 gramos. Claro.
Alumn.: Y un medio.
Alumn.: No, 75 gramos.
Prof. 2.: Bueno, a nadie se le ocurre, hemos rectificado esto ¿no? que dice cuántos gramos quedan. A nadie se le ocurre pensar que si cojo la tableta y dice en el papel que pesa 150 gramos a nadie se le ocurre coger la mitad de la tableta, ¿cuánto es un medio?, coge un medio... A ti no se te ocurre que si pesas eso ya lo sabes también.

Alumn.: Claro, pero necesitas una balanza, un peso.
Prof. 1.: Os voy a hacer una pregunta, ¿para saber tú lo que queda
necesitas un **peso**?

Alumn.: Eso digo yo también, ¿no?.

Prof. 1.: O con la tableta sólomente lo puedes averiguar.

Alumn.: Con la tableta sólomente lo puedes saber.

Prof. 2.: ¿Cuánto queda?.

Alumn.: Un medio.

Prof. 1.: Un medio, lo ha contestado ésta. Pilar ha contestado 75 gramos. Y lo ha resuelto con pesas ¿tú lo sabrías resolver de otra forma? ¿ese problema? Buscad otra forma de resolver ese problema. Me dan una tableta que pesa 150 gramos ¿cuánto pesa un medio?. Esto ¿Cuántos gramos quedan?, esto lo habéis añadido porque así,...

Prof. 2.: Sí, esto lo hemos añadido, porque es lo que le faltaba a eso para que se entendiera, y estuviera bien definido el problema.

Prof. 1.: ¿Bien definido?, vale.

Prof. 2.: Vale, ahora, por último para no entretenernos mucho, porque hay más problemas ¡ehl! Lo que tenemos que hacer es comprobar el resultado. ¿Qué resultado nos ha dado?.

Alumn.: 75, un medio,...

Prof. 2.: 75 gramos. ¿Cómo comprobamos eso?.

Alumn.: ¿Que está bien?, pues, si pesa 150: o manualmente o por operaciones,... cogemos la mitad y la pesamos.

Prof. 2.: Luego eso, ¿que sería?. Una manera de comprobar el resultado, de hacerlo de otra forma.

Alumn.: También, si hemos dicho que un medio, (...), sumando 75 y 75 pues, está bien.

Prof. 2.: Lee otro Mónica.

Alumn.: Si el chocolate pesa 150 gramos, me como un tercio y Leti se come un medio ¿cuántas onzas quedan?.

Prof. 1.: Vuelve a leer el problema, vamos a pensar cada uno en esa problema, lo vais a intentar memorizar, y vais a buscar estrategias, formas de solución, ¿está claro?, y después cada una va a decir cómo lo puede solucionar? ¿entendido?.

Prof. 2.: Que cada una piense cómo lo hará.

Prof. 1.: Primero leedlo y enterarse de lo que dice. (Lo van leyendo y debatiendo en voz baja).

Prof. 1.: Si tú te inventas o necesitas un material; Pide el que quieras, nos lo pides a nosotros, porque tenemos de todo el
material que tú necesitas.

Prof. 3.: Si os hiciera falta algo lo pedís, que nosotros lo tenemos,...

Prof. 1.: Que nosotros lo tenemos escondido. Todo el material que vosotros veais posible o que os haga falta, lo tenemos escondido.

Alumn.: ¿En la misma tableta?

Prof. 1.: A mí me parece que el problema dice en la misma tableta ¿no?

Alumn.: Sí.

Prof. 1.: Si hay alguna que crea que ya puede decir algo sobre el problema.

Alumn.: Yo es que quiero una goma de borrar.

Prof. 1.: Para qué es la goma de borrar, toma un folio y ya está borrado. (Las alumnas hablan entre ellas).

Alumn.: ... ¿Onzas?

Prof. 1.: ¿Por qué no se puede? Ahora tenéis que buscar por qué no tiene solución.

Alumn.: Sí tiene.

Prof. 1.: Ah, tiene.

Prof. 2.: Bueno mira, aunque a los demás le falte algo vamos a empezar a cínta y los demás...

Alumn.: (Explica el dibujo que ha hecho, utiliza dos dibujos de tabletas).

Prof. 2.: Ah, mira lo que dice esta mujer.

Alumn.: Que es en la misma tableta.

Alumn.: Ya lo sé que es en la misma tableta. Es la misma tableta pero para hacerme uno he dibujado otra.

Prof. 2.: Ah, mira lo que ha dicho ella. Termina de explicarlo. (La alumna lo termina de explicar).

Prof. 2.: ¿Cuál es la pregunta del problema?

Alumn.: Que cuántas onzas me quedan.

Prof. 2.: ¿Y cuál es tu respuesta?

Alumn.: Ninguna.

Prof. 2.: Atención que ella dice que no queda ninguna onza.

Alumn.: ¿Que no queda ninguna onza?

Prof. 2.: Ahora Mónica nos va a explicar cómo lo ha hecho.

Alumn.: He hecho este dibujo y he dividido esto en dos partes luego, y me da doce onzas que no se han comido.

Prof. 2.: Doce onzas que no se han comido y a tí te da que no tiene
solución. Vamos a seguir escuchando a las demás, Pilar.

Alumn.: El chocolate pesa 150 gramos entonces he averiguado 1/3 y 1/2. A ver 1/3 o sea 1/2 son 75 gramos y un tercio son 50 gramos. Eso ya está averiguado, luego como son 24 onzas, 150 entre 24 y me dan 6 y me sobran también 6.

Prof. 2.: ¿Cuál es el resultado?
Alumn.: 6.
Prof. 2.: 6.
Alumn.: Entonces ahora 75 más cincuenta me da 125, porque eso son todos los gramos. Sí todos los gramos que se han comido.

Prof. 2.: Sigue Pilar. Vamos a dejarla terminar.
Alumn.: Lo he dividido entre 6 que era lo que me daba el número de gramos que tenía cada onza y me dan 2 onzas que no se han comido.

Prof. 2.: Bueno ¿tú utilizaste operaciones Cinta?
Alumn.: Yo no.
Prof. 2.: Cinta no ha utilizado operaciones, tú sí, tú también aunque de otra manera. Marta. Bueno Nicolás querías decir algo.

Prof. 3.: No, no.
Prof. 2.: Leticia tiene también otra manera de resolverlo. Sin cuentas.

Alumn.: Yo es que he dividido en tres, entonces me he comido una. Como me quedan dos, pues te comes otra; entonces yo lo he dividido en tres partes.

Prof. 1.: La tableta la puedes utilizar, la puedes trocear como quieras.

Alumn.: ¿La divido?
Prof. 1-2 Sí, puedes hacer lo que quieras.
Alumn.: Entonces si se comen esto y esto pues me queda esto.
Alumn.: No porque dice que se ha comido un tercio y un medio luego, pero no es igual un medio que un tercio, entonces hemos comido esta parte, mira esto es un tercio, y esto y esto es un medio, entonces como tú te vas a comer...

Prof. 1.: A ver aclara eso, Leticia ha dicho, me como 1/3 y después me como 1/2, me queda eso ¿no has dicho eso?

Alumn.: Sí
Prof. 1.: Y ahora tú dices.
Alumn.: Que esto no es 1/2, es un tercio, esto, sí es un medio, en-
tonces como te va a quedar esto.

Prof. 1.: Entonces tu dime lo que queda.
Alumn.: ¿Es que no lo sabes? Ah quedarían cuatro. Mira esto es un tercio y esto un medio, y esta es la tabletta, entonces tu te has comido esto y ella esto, luego me quedan cuatro onzas.

Prof. 2.: ¿Lo habéis entendido?
Alumn.: Sí, cuatro.
Prof. 2.: ¿Cuántas onzas quedan?
Alumn.: Cuatro.
Alumn.: A mí me ha dado dos.
Prof. 1.: Bien. se ha resuelto aritméticamente, se ha resuelto con la tabletta. ¿Habéis pensado alguna forma de resolver ese problema? Tú, si lo has hecho de la forma que has explicado. Toma nota...

Prof. 3.: Ahora imaginaos, ese problema si no es esa la tabletta, si no hubiera esa tabletta, cómo podríamos hacerlo. No hay tabletta. Hacer el problema sin tabletta.
Alumn.: Yo no sé si estará bien, pero lo he hecho sin tabletta.
Prof. 2.: Bueno, vamos a comprobar el resultado, que lo va a hacer sin tabletta.
Alumn.: Pues mira, hay 24 onzas.
Prof. 3.: No hay tabletta.
Alumn.: Preguntando.
Prof.: Preguntando a quién.
Alumn.: Pues, por ejemplo, pregunto a quién lo ha comprado.
Prof. 2.: Lo ha comprado Evaristo.
Alumn.: Evaristo ¿Cuántas onzas tiene la tabletta?
Prof. 1.: 24
Alumn.: Entonces ¿Cuánto pesa la tabletta?
Prof. 1.: 150 gramos.
Alumn.: Entonces 150 gramos lo divido entre las onzas para saber cuánto pesa cada onza. Y me da que pesa 6 gramos cada onza.
Prof. 1.: ¿Te sale exacto?
Alumn.: No, me sobran 6 gramos.
Prof. 1.: ¿Y qué haces con esos 6 gramos?
Alumn.: 6.6
Prof. 1.: ¿Cómo?
Alumn.: Ah, sacando decimales...
Alumn.: Pero nunca llega a ser exacto, porque 150 no es divisible por 24, claro, no lo es, segurísimo.

Prof. 1.: Bueno, vamos a suponer que estos sean los gramos que pesa una onza.

Alumn.: Entonces, ahora eso es dejarlo incompleto para luego poder seguir, entonces ahora 1/2, ahora sabemos que nos hemos comido 1/2 y 1/3, ahora para adivinar 1/2 multiplicamos por el numerador y dividimos por el denominador.

Prof. 1.: Eso no sirve, a mí me dices ¿Para qué?

Alumn.: Pues para adivinar qué es un medio.

Prof. 2.: ¿Cómo que qué es?

Alumn.: Para saber qué proporción es un medio.

Prof. 2.: ¿Qué proporción de qué?

Alumn.: Cuantos gramos y me da 75, y un tercio me da 50 gramos, entonces lo sumamos 75 y 50, y esto es lo que me he comido, entonces dividimos por los gramos que tenían las onzas...

Prof. 1.: ¿Para qué?

Alumn.: (…)

Prof. 1.: ¿Hay alguien que termine de completar eso? ¿Que vea que está mal…?

Alumn.: Ah, lo que nos piden es cuantas onzas quedan. Ah, entonces quedan..., tenemos que volverlo a multiplicar, porque a mí me dan los gramos que me quedan...

Alumn.: (Discuten).

Prof. 3.: A mí se me ocurre que es que Pilar no está atenta, y entonces dices: me pongo a hacer cuentas, y descubres que las cuentas te pueden ayudar, pero intenta antes pensar de qué modo puedes resolverlo.

Alumn.: Se ha hecho un bollo.

Prof. 2.: Mediante operaciones habrá veces que nos resulta mucho más fácil y rápido hacerlo. Pero hay más maneras. Yo no sé si merece la pena pasar al siguiente problema ¿eh?, hemos discutido bastante esto, y ya hemos visto la solución, ¿Cuál es la solución, Marta?.

Alumn.: Cuatro onzas.

Prof. 2.: ¿Pero lo entiendes, o no?. Hemos visto varias maneras de hacerlo, vamos a hacer más problemas porque es que podría ser esto infinito; vamos a seleccionar otro y a trabajar sobre él.

207
Alumn.: Es que este es más fácil. Mira que pinta tiene este.
Alumn.: Si el chocolate tiene 48 triangulitos, y nos comemos 22/48 de triangulito ¿cuántos triángulos quedan?
Alumn.: Esto está “chupao”.
Prof. 1.: Para ti está “chupao”.
Prof. 3.: Que cada una vuelva a pensar la manera de resolver eso.
Prof. 1.: Vuelve a leerlo.
Alumn.: Lo repite,... y nos comemos 22 onzas, 22 triangulitos..., (discuten).
Prof. 2.: Atención a lo que ha dicho Estefanía.
Alumn.: 22/48 de triangulito. Eso es lo que ha puesto ella ¿eh?
Prof. 1.: Sigue...
Alumn.: ¿Cuántos triangulitos quedan?.
Prof. 1.: Teneis el problema, ¿entendéis la pregunta?, ¿está bien definido?.
Alumn.: No.
Prof. 1.: Pues ahora quiero que cada una piense estrategias, el por qué no está bien definido. Empezaremos por preguntar a aquella que crea que no está bien definido. Y, seguiremos preguntando qué estrategias vais a utilizar para resolverlo.
Alumn.: Pero no se puede resolver.
Prof. 1.: ¿Por qué no se puede resolver?.
Alumn.: Porque está mal planteado.
Prof. 1.: ¿Por qué está mal planteado?.
Alumn.: Porque dice 22/48 de triangulito, entonces, un triangulito tienes que dividirlo en 48 partes, y coger 22... Tenía que haber puesto 22/48 del total entero.
Prof. 1.: Entonces, para ti, el qué esté mal planteado, ¿por qué es?.
Alumn.: Por un fallo de atención.
Prof. 1.: No, no tiene nada que ver eso. Tú entiendes que está mal planteado porque tú entiendes que no se puede dividir en 48 partes el triangulito.
Alumn.: No, porque al final pregunta... (Discuten sobre los 22 cuarenta y ochoavos).
Prof. 1.: Ahora ya, si tiene sentido. Leerlo ahora. (...) (siguen discutiendo).
Prof. 2.: A ver de qué manera, Mónica, entiende el problema, venga.
Alumn.: Es que la onza entera la han dividido en 48 triangulitos.
Alumn.: No, la onza no, la tableta.
Alumn.: Bueno sí, la tableta. Si la han dividido en 48 triangulitos, pues entonces, de todos los triangulitos tenemos que quitar 22 y nos quedan los que... (discuten).

Prof. 1.: Y si pongo 22/48 avos. Vamos a dejarlo así. Formas de resolver ese problema. ¿Quién se inventa alguna forma?

Alumn.: Restando.

Prof. 1.: Restando ¿qué?

Alumn.: 48-22.

Prof. 1.: De acuerdo, una forma. Otra forma.

Alumn.: Pues contándolos.

Prof. 1.: Contándolos ¿cómo?

Alumn.: Pues que si...

Alumn.: Necesito otra tableta.

Prof. 1.: ¿Para qué?

Alumn.: Para hacer otra cosa.

Prof. 1.: No hay, ¿tú sabes alguna estrategia más, independientemente de la que ha usado ésta niña, para resolver ese problema.

Alumn.: Pero supongamos que los cuadrados son triangulitos ¿no?

Prof. 1.: Supongamos que tú me dices una estrategia y supones después lo que quieras. Tú me dices, supongo esto y lo hago así.

Prof. 2.: Ese problema ¿está bien definido?

Alumn.: Sí.

Prof. 2.: ¿Sí? 22/48 avos de triangulito...

Alumn.: No, pero ahora lo han arreglado (...)

Prof. 2.: Bueno, vale, nos queda muy poco tiempo, vamos a intentar resolver otro problema más facilito, para que encontremos el resultado y lo experimentemos de varias formas. Uno más facilito, ¿cuál has dicho?

Alumn.: Este o este.

Prof. 2.: El que tú quieras, lee.

Alumn.: Si el chocolate tiene 24 onzas y yo cojo 18, ¿cuántas partes me quedan?

Prof. 2.: Bueno, es un problema fácil, pero vamos a ver las distintas maneras de resolverlo. ¿Está bien definido?

Alumn.: Sí.

Prof. 1.: ¿Por qué? A ver, léelo otra vez.

Alumn.: Si el chocolate tiene 24 onzas y yo cojo 18. ¿Cuántas par-
tes me quedan?.

Prof. 2.: ¿Partes?
Alumn.: Onzas.
Prof. 2.: Venga, lo arreglamos.
Alumn.: ¿Pongo onzas?
Prof. 2.: Si, onzas. Está bien definido, tiene sentido, tiene respuesta
¿qué respuesta tiene eso?, decidme alguien la respuesta
que tiene eso.
Alumn.: 24-18.
Prof. 2.: No, pero, la respuesta, ¿cuál es?.
Alumn.: Restar.
Prof. 2.: Que me digas la respuesta, no lo que hay que hacer.
Alumn.: Ah bueno, pues diez onzas.
Prof. 2.: ¿Diez onzas?, ¿Estáis de acuerdo?
Alumn.: No, si, si seis, seis...
Prof. 2.: Vamos a ver cómo lo habeis hecho y ensayamos las distintas
maneras; un momento, a ver lo que dice Leticia.
Prof. 2.: Venga, dividirlo en las partes que queráis.
Prof. 1.: Vamos a ver si hay alguna niña que lo esté haciendo de otra
forma, ¿por qué?, ¿por qué tiene que ser nada más que una
la tableta? señores vamos a ver si somos creativos, ya
Alumn.: Ahora verás.
Prof. 2.: ¿De qué otra manera lo podéis hacer, usando el material
que querais?
Alumn.: Quedan seis... (Se quedan haciéndolo).
Prof. 2.: Bueno, este problema lo hemos hecho con una operación,
con una resta, pero, para comprobarlo, hemos usado la
tableta, ¿habría más maneras de comprobarlo?
Alumn.: Con dibujitos.
Prof. 2.: Venga, pues hacerlo.
Alumn.: (Se ponen a hacerlo con dibujitos).
Prof. 1.: ¿Cómo lo has hecho tú?
Prof. 2.: Vamos a escuchar a Leticia cómo lo has hecho.
Alumn.: Yo he pensado que ésto eran canicas, y entonces, yo tengo
24 y quiero regalarle a alguien 28, pero luego quiero saber
cuantas me quedan.
Prof. 2.: Entonces que has hecho rodear con un... lápiz.
Alumn.: Las que le doy.
Alumn.: Las que le doy.
Prof. 2.: ¿Cuántas te quedan?, las cuentas ¿no?.
Alumn.: Sí.
Alumn.: Sale igual.
Prof. 2.: A ver explícalo tu.
Alumn.: Yo digo un cuadrado, un dibujito y los he dibujado, es casi igual.
Prof. 2.: Ella ha hecho un dibujito y ha tachado y tal, y ella se ha imaginado canicas y las ha dado, y tú ¿qué te has imaginado?
Alumn.: Yo una superficie de madera, que la he cortado en 24 partes.
Prof. 2.: Una superficie de madera que la ha cortado en 24 partes.
Alumn.: Y le he dado a una amiga 18 y le he contado las que me quedan y me da 6.
Prof. 2.: Seis partes de madera.
Alumn.: Eso es lo mismo que digo yo, tengo y y lo parto en tantos trozos.
Prof. 2.: Pero fijaros que lo habéis hecho gráficamente, lo habéis dibujado, también lo podríais haber hecho con canicas.
Alumn.: Es diferente pero igual.
Prof. 2.: Un último problema ¿Evaristo?.
Prof. 1.: ¿Quereís hacer otro? o ¿estais muy cansadas?
Alumn.: Yo quiero hacer otro.
Prof. 2.: Venga lee.
Alumn.: Somos cinco niñas, y el chocolate pesa 150 gramos, si nos lo comemos ¿Cuántos gramos tomaríamos cada una?
Prof. 2.: Muy bien, sin hacer operaciones todavía, decidme la respuesta, vamos a ensayar las respuestas.
Prof. 1.: Sin hacer operaciones.
Alumn.: Ya lo sé, 30 g.
Prof. 1.: ¿Cómo lo has calculado?.
Alumn.: Eh, haciendo operaciones.
Alumn.: De verdad que no, te lo prometo.
Prof. 2.: ¿Cómo lo has calculado?.
Alumn.: Porque como se que 3×5 es 15...
Alumn.: Pero es sin hacer operaciones.
Prof. 2.: Sin hacer operaciones ¿de qué manera lo calcularlas?
Alumn.: Con la onza.
Prof. 2.: ¿De qué más maneras?
Alumn.: Uf.
Prof. 1.: Pero primero se piensa la estrategia, ¿qué es lo que vas a hacer?, y luego lo haces.
Alumn.: Puedo (una alumna pregunta si puede pesar con la balanza una onza, y se quedan todas, durante un rato, pesando la onza en la balanza).
Prof. 2.: ¿Cuánto pesa la onza?
Alumn.: 6 gramos y... 60 miligramos.
Prof. 2.: Es verdad, oye Marta, ¿qué la tableta pesa 150 gramos?
Alumn.: Sí, mira, peso neto:...
Prof. 1.: Sí, porque lo pone ahí.
Alumn.: Pesa 150 con 240 gramos.
Prof. 2.: Bueno, entonces, ¿qué ha pasado?
Prof. 1.: ¿Y por qué pesa más?
Alumn.: Pues, por el papel.

7.2.4. Cuarta sesión.- Resolución de problemas inventados por los alumnos.

Prof. 2.: Teneis que hacer un esfuerzo para decir qué estais pensando cuando resolveis los problemas.
Alumn.: ¿Qué se pregunta?. ¿Qué cuántos gramos me he comido?.
Alumn.: ¿Qué cuántos gramos tiene un tercio?
Prof. 2.: Nos fijamos en el problema uno.
Alumn.: Si me como un tercio de tableta. ¿Cuántos gramos me he comido?. ¿Digo qué se tiene que hacer?, ¿lo explico?.
Prof. 2.: No, ¿qué se pregunta?
Alumn.: Pues los gramos que nos hemos comido...
Alumn.: O los gramos que tiene un tercio, porque eso es lo que hemos comido.
Prof. 2.: Bueno, vosotras dialogarlo. Otra cosa que tenéis que ver es fijarse bien en qué se pregunta ¿os acordáis qués es un problema?.
Alumn.: ¿Cómo?.
Prof. 2.: Os tenéis que fijar también en cómo podría responderse a esa pregunta.
Alumn.: ¿Digo la solución?.
Prof. 2.: Decid lo que queráis de forma ordenada.
Alumn.: ¿No hay material?.
Alumn.: Necesitamos chocolate...

212
Alumn.: Dice que pesa 150 gramos y te pide lo que vale un tercio; dividio 150 entre 3, y te da un tercio. Ya está, ya sabemos lo que es un tercio.

Alumn.: Ya está, lo que te has comido es un tercio, ¡estupendo!

Prof. 2.: Os repito las dos preguntas que os hacía, o mejor la 2ª, puesto que ya nos hemos fijado bien en la 1ª que es ¿cuántos gramos me he comido?, pero os repito la 2ª; ¿de qué manera se puede resolver esto?

Alumn.: Pues de esa manera y con una balanza.

Prof. 2.: ¿Cómo?

Alumn.: Tomo el chocolate, lo parto en tres y tomo un tercio.

Alumn.: Tendrían que ser iguales las partes en que ha dividido la tableta.

Prof. 2.: Pilar está pensando otra manera.

Alumn.: Es que no la encuentro. Hemos dicho con la balanza y dividiendo, pues yo creo que ya está.

Alumn.: Con la balanza habría dos maneras.

Prof. 2.: A ver, sácalas.

Alumn.: Una sería pesando toda la tableta y luego pues pesando lo otro,... o sea, pues pesando toda la tableta y hallando la..., no, no, espérate que me lio. Pesando toda la tableta, luego se pesa lo otro.

Prof. 2.: Lo otro ¿qué es?

Alumn.: Un tercio de la tableta.

Prof. 2.: Bueno, ¿has terminado?

Alumn.: ¿Pero para qué quieres pesar la tableta?

Prof. 2.: Te han hecho una pregunta.

Alumn.: ¿Qué para qué quiero pesar la tableta?, para saber cuánto pesa.

Alumn.: Si pone 150 g,... pero ¿lo sabemos o no lo sabemos?

Alumn.: Mira: una tableta de chocolate pesa 150 g.

Alumn.: Pero el problema ¿cómo tiene que resolverse? ¿sabiéndolo o sin saberlo?

Alumn.: Pues como lo pone.

Alumn.: Me he equivocado.

Prof. 2.: ¿Y la otra manera?

Alumn.: La otra manera es pesándolo directamente. Pesaría..., lo corto, lo peso y ya está.
Prof. 2.: Pero habeis dicho la misma manera.
Alumn.: Sí, es que se ha equivocado; sí claro, es que se ha equivocado en la tabletita entera que ya lo pone. ¿Sabes lo que te digo?...
Prof. 2.: ¿No tienes nada que decir?, ¿estás de acuerdo?, explicame tú una.
Alumn.: Pero, que Pilar dice que tienes que pesar primero la tabletita entera, y eso sería si aquí no vinieran los gramos que pesa...
Prof. 2.: Bien, termina.
Alumn.: Ya se lo hemos encontrado.
Prof. 2.: ¿Cuál es?.
Alumn.: Pues una dividir, dividir la tabletita, y otra pesarla.
Prof. 2.: ¿Cuántos gramos me he comido?.
Alumn.: Voy a hacerlo. ¡Ah! 50 g. Sí, ¿verdad?.
Alumn.: Sí, 50 g.
Prof. 2.: Nos fijamos ahora en el PROBLEMA n° 2: “¿Qué fracción de tabletita corresponde a una onza de chocolate?”.
Prof. 2.: De igual modo, os fijais en qué se pregunta, y de cuántas formas se puede resolver. En el momento en que alguien tenga que decir algo, levanta la mano. Todo lo que penséis lo decís en voz alta, ¿de acuerdo?.
Alumn.: Pues lo que pregunta es... lo... ¿qué fracción es un veinticuatroavo?.
Prof. 2.: ¿Qué haces?.
Alumn.: Contándolos.
Prof. 2.: ¿Para qué?.
Alumn.: Pues para saber a qué fracción corresponde una onza, y lo que nos pregunta es pues: ¿qué fracción corresponde a 1/24?, ¿que es un veinticuatroavo?, claro, veinticuatroavo, claro, porque hemos cogido uno.
Prof. 2.: ¿Cómo?.
Alumn.: Esto es lo que pone ¿no?, y es uno, aquel, 24; pues un veinticuatroavo. ¡Mira qué fácil.
Prof. 2.: ¿Habéis leído el problema?, ¿qué pregunta el problema?.
Alumn.: Que, ¿qué fracción es esta que corresponde a la onza?, un veinticuatroavo.
Prof. 2.: ¿Por qué?.
Alumn.: Porque hay veinticuatro onzas y he cogido una.
Prof. 2.: Pasamos al siguiente problema: *PROBLEMA N° 3* “Sabiendo lo que cuesta 1/5 de chocolate, ¿cómo averiguamos lo que vale la tableta?”.

Prof. 2.: Bueno, en este caso tenéis que añadir la información que necesiteis para resolver ese problema.

Alumn.: ¿Qué información?

Prof. 2.: Pero leer el problema, siempre hay que leerlo para enterarse de la pregunta.

Alumn.: ¡Ah, bueno, ya sé lo que es!

Prof. 2.: Hablad entre vosotros.

Alumn.: ¿Qué cuánto cuesta un quinto?

Alumn.: ¿Sólo tenemos que decir cómo lo averiguamos, o la respuesta también?

Alumn.: Una información, dame una información, ¿Cuánto cuesta un quinto? ¿No me lo puedes decir?

Alumn.: Pero si eso es lo que pregunta.

Alumn.: No, no, ¿cómo averiguamos lo que...

Alumn.: Pues multiplicando lo que cuesta un quinto por cinco.

Alumn.: Pero, ¿qué es lo que cuesta?, eso, dime lo que cuesta un quinto.

Alumn.: Supongamos que cuesta 10 ptas., 10 por cinco 50.

Prof. 2.: Tú estás diciendo que puedes averiguar lo que cuesta un quinto preguntándomelo a mí, pero yo no lo sé.

Alumn.: ¡Ah!, pues no sé cómo se puede resolver; preguntando a la tienda.

Alumn.: Pues cogiendo la tableta de chocolate y mirando el peso que tiene, lo dividimos entre cinco.

Alumn.: Si, pero si te da el peso total no tienes que hacer nada.

Alumn.: ¡Ah, no!

Alumn.: Tu miras, como tu no tienes que hacer el problema, tu miras lo que cuesta la tableta de chocolate entera, y luego, pues sigue una operación y averiguamos lo que cuesta un quinto. Nos dices lo que cuesta un quinto, y nosotros, ese precio lo multiplicamos por 5 y tenemos ya lo que cuesta una tableta.

Alumn.: Claro, o nos da el precio de una tableta y ya lo vemos.

Prof. 2.: Yo no os tengo que dar ninguna solución, vosotras lo estais viendo.
Alumn.: ¿Dónde has comprado esa tableta?
Prof. 2.: ¿Qué tableta?
Alumn.: Es que este problema ¡hombre! Tu has dicho cómo averiguamos lo que cuesta la tableta, no cuánto cuesta. Lo averiguamos: un quinto por cinco, ya está, el peso de un quinto por ciento.
Prof. 2.: ¿El peso de un quinto por cinco, cómo?
Alumn.: ¿Digo lo que cuesta, las pesetas de un quinto por cinco?, ¿Sí?
Prof. 2.: ¿Y qué teneis que hacer?, debeis añadir la información. Habéis dicho una forma..., venga, haced lo que querais.
Alumn.: Se lo preguntamos a Evaristo. Evaristo, ¿cuánto cuesta un quinto?
Prof. 2.: No lo sabe tampoco.
Alumn.: Yo creo que sí me acuerdo, doce ptas., me parece.
Alumn.: ¿Por qué 12 ptas., y no 13 ó 14?
Alumn.: Sí, 12 ptas. vale, porque me acuerdo que el chocolate valía 60.
Alumn.: ¿Te acuerdas o no?
Alumn.: En el otro que hicimos valía 60.
Alumn.: ¡Mira que fácil.
Prof. 1.: Lo que cuesta la tableta no lo sé, yo hablo de otra tableta y lo que cuesta un quinto son 15 ptas.
Alumn.: Setenta y cinco ptas. Digo yo.
Alumn.: Esto cuesta un quinto... espera... sí, 75.
Prof. 2.: Pasamos a otro problema: PROBLEMA N° 4: Si la tableta pesa 150 g. y tiene 24 onzas. ¿Cuánto pesan tres onzas?.
Prof. 2.: De este problema teneis que ensayar dos formas para llegar a la respuesta.
Alumn.: ¿Dos?
Prof. 2.: Decídlo en voz alta.
Alumn.: Una; de la primera, podría ser: pues mira, si pesa 150 g., y tiene 24 onzas, pues tenemos que repartirle el peso entre las onzas, entonces dividimos 150 entre 24.
Prof. 2.: ¿Por qué?
Alumn.: Porque 24 son las onzas y 150 los g., partimos los gramos entre las onzas, y te da el peso de una onza; luego lo multipli- có por tres y te da las tres onzas.
Prof. 2.: He dicho que ensayéis otras formas.
Alumn.: Pues con la balanza.
Alumn.: Es verdad, con una balanza.
Alumn.: Pues pesando tres onzas y ya está.
Prof. 2.: No hay balanza.
Alumn.: Esto, ¿qué es?, ¡vaya balanza más chula...!
Prof. 2.: ¿Qué harías?, explica todo lo que estás haciendo y pensando.
Alumn.: Mira, pongo tres onzas y hasta que se nivele...
Prof. 2.: De todas formas, como no tenemos la balanza, ¿de qué manera lo hicisteis más fácil? ¿en el primer método o en el segundo?.
Alumn.: En el 1º, porque es con una operación.
Prof. 2.: Pensad otra forma, rápidamente, otra forma.
Alumn.: Yo pienso, pero parece que no hay manera posible.
Prof. 2.: ¿No hay manera posible?, eso es un reto.
Alumn.: ¡Ya está!, ya sé otra. Con la balanza cojo una onza, la mido..., luego la peso, luego lo multiplico por tres. ¡Ah!, eso es lo que hemos dicho...
Prof. 2.: Pasamos al siguiente problema: PROBLEMA N° 5: “Temos 3 tabletas de chocolate, estamos 6 niñas. Cada niña se come media tableta. ¿Cuántas mitades sobran?”
Prof. 2.: Teneis también que ensayar dos formas de llegar a la respuesta.
Alumn.: ¿Media tableta?.
Prof. 2.: Dí lo que piensas.
Alumn.: (Todas a la vez), ninguna.
Alumn.: No sobra ninguna mitad, porque si se usan tres tabletas, las divido por la mitad, 3 por 2 seis, pues ya está.
Prof. 2.: ¿Cómo lo has hecho?.
Alumn.: Mira, cojo tres tabletas.
Prof. 2.: ¿Te lo estás imaginando?.
Alumn.: Claro, porque no tengo nada.
Alumn.: ¡Ah, con dibujito!
Prof. 2.: Que una lo haga con dibujito y que nos lo cuente, porque no nos enteramos...
Prof. 2.: Tres tabletas, va a dibujar tres tabletas.
Alumn.: Están seis niñas y, como cada niña se come media...
Prof. 2.: Cada niña se come..., se come media.
Alumn.: Esto es una niña, y cada niña se come..., no sobra ninguna.
Prof. 2.: Piensa otra original. ¿Qué haces?
Alumn.: Yo, dividiendo la tableta.
Prof. 2.: Pero ¿cómo?, ¿en tres partes, en cuatro o en cinco?
Alumn.: Cada tableta en dos partes y son 6 partes, pues, ya está.
Prof. 2.: Pero, ahí no está el dibujo.
Alumn.: Espera que termine.
Prof. 2.: Y luego, ¿qué vas a hacer?
Alumn.: Espera.
Prof. 2.: Si alguna piensa otra cosa, que lo diga.
Alumn.: Son tres tabletas entre seis, pues cero coma cinco.
Prof. 2.: A ver, a ver.
Alumn.: Me toca a mí.
Prof. 2.: Ahora después volvemos sobre eso.
Alumn.: Esto es una amiga, le doy una media, otra media, otra media, otra...
Prof. 2.: ¿Esto qué es?
Alumn.: Una mitad.
Prof. 2.: Nadie dice una mitad, todas decís media tableta, un medio, bueno, una mitad. Me gustaría que me explicaras lo anterior, ¿tú tienes otra fórmula?
Alumn.: Dividimos 3 tabletas entre 6 niñas, eso pone aquí. Como no cabe tres entre seis, pues ponemos 0, coma, entonces esto cabe a 5.
Prof. 2.: Ahora yo te invito a leer el problema despacio.
Alumn.: No sobra nada.
Alumn.: Si fuese 31 ya sobraba algo, pero como es 30, no sobra nada. No me habeis entendido.
Prof. 2.: Dejadla que se explique.
Alumn.: Pero si esto son tres tabletas; como no cabe ahora, 30; pero si 30 no fuese divisible, pues tenemos que seguir dividiendo, imaginate que no cabe, pues entonces otro 0.
Prof. 2.: ¿Tú lo entiendes?, expícameo.
Alumn.: Pues la división, tú no sabes hacerlo.
Prof. 2.: Pero esta diciendo 3 tabletas, ¿por qué luego dice 30 ó 31?
Alumn.: (Todas a la vez), pues se pone un 0, porque 3 es menor que 6, y la división es exacta...
7.3. Transcripción de la grabación de las entrevistas individuales a los alumnos de estudios de casos.

7.3.1. Primer alumno.

Prof.: Pero habla fuerte, sino...
Alumn.: ¿Tengo que poner mi nombre?
Prof.: Sí, ahora sí que se oye bien, ¿eh?
Alumn.: Sí.
Prof.: ..., estos problemillas, bien Pilar.
Alumn.: ¿Qué?
Prof.: Yo te voy a dar esos dos problemas, el 7 y el 8. Nos vamos a fijar en el 7 primero. Tienes que resolverlo explicando en voz alta los pasos que sigues.
Alumn.: ¿Cómo?, que los tengo que resolver, ¿no?
Prof.: Sí, en voz alta, explicando los pasos que das. Ve leyendo y ve pensándolo todo en voz alta. No te quiero ver callada. No te quiero oír callada.

1° PROBLEMA

Alumn.: Si estamos cinco niñas y cada una quiere tomarse media tableta ¿cuántas tabletas gastaríamos?
Prof.: Sí.
Alumn.: Pues lo primero que hay que hacer es saber las niñas que somos, bueno, cinco niñas, y saber lo que quiere cada niña, que son media tableta. Entonces, ¿podríamos representarlo gráficamente?
Prof.: Tú, como quieras. Utiliza el folio, que para eso está.
Alumn.: Este que está en sucio. Entonces somos cinco niñas...
Prof.: Y dibujas las cinco niñas, ¿no?
Alumn.: Sí.
Prof.: Y cada una quiere tomarse...
Alumn.: Media tableta. Bueno son las cinco niñas y entonces pues cada una quiere tomarse media tableta, pues estas dos niñas formarían una tableta.
Prof.: Y tú rodeas con un círculo grande a estas dos niñas.
Alumn.: Sí, ahora estas dos niñas formarían otra tableta. Ya van dos tabletas, y ahora tenemos esta niña sola, pues dos tabletas
y media.

Prof.: Ahora lee el problema, si estamos cinco niñas...

Alumn.: Si estamos cinco niñas y cada una quiere tomarse media tablet, ¿cuántas tabletas gastaríamos?, ¿y la goma?, ¿dónde está la goma?, ¿dí?.

Alumn.: No, no tienes por qué pasarlo a limpio.

Prof.: ¿No?.

Alumn.: Pero, ¿estás segura de que son dos tabletas y media lo que gastaríamos?

Prof.: Sí. A no ser que tú te quieras tomar otra media.

Alumn.: ¿Lo puedes comprobar de otra manera?.

Prof.: Pues...

Prof.: ¿Qué piensas, dilo.

Alumn.: Pues estoy buscando una manera de adivinarlo.

Prof.: Y para buscarlo, ¿qué estás pensando?.

Alumn.: Pues pensando en otra manera de resolverlo, pero no tengo ni idea. Pues sería...

Prof.: Piénsalo.

Alumn.: Cinco niñas porque, cinco por doce...

Prof.: Doce, ¿por qué?.

Alumn.: Porque doce es la mitad de 24 y 24 son las onzas de una tablet y 5 son las niñas, entonces, como cada una quiere doce onzas, pues 5×12.

Prof.: Y, ¿cuánto da eso?.

Alumn.: 60 tabletas.

Prof.: ¿60 tabletas?. A ver, piénsalo.

Alumn.: ¡Ah, no!, multiplicar no, era dividirlo.

Prof.: Mira, Pilar, si tú multiplicas 5 niñas por 12 onzas, el resulta-do, que te da 60, ¿que son, onzas?.

Alumn.: 60 onzas.

Prof.: ¿Y qué significa?, que...

Alumn.: Pues 60 onzas.

Prof.: Y, como te pregunta, que cuántas tabletas...

Alumn.: ¡Ah!, entonces 60 entre 24, ahora para dividir. ¡Ah!, pero es que yo..., ¿no hay por ahí una goma?.

Prof.: Pero, ¿para qué, Pilar?, no hace falta goma.

Alumn.: Para borrar esto.

Prof.: Tú utiliza los folios que quieras.

Alumn.: A ver...
Prof.: 60, ¿qué estás haciendo?
Alumn.: Entre 24, que son las onzas que tiene una tabletta.
Prof.: A ver, tú sigue y explicamelo. Al final me tienes que decir cuántas tabletas se gastarían.
Alumn.: Pues dos tabletas y doce, el resto, doce onzas.
Prof.: ¡Ah!, muy bien, luego ya has comprobado de dos maneras eso ¿no?. Bueno pues léenos el siguiente y como siempre lo tienes que resolver explicando en voz alta todos los pasos que sigues para resolver el problema número ocho.
Alumn.: El peso del chocolate.
Prof.: Del chocolate.

2° Problema

Alumn.: No, es que iba a decir alcohol. El peso del chocolate es 150 gramos, lo divido en doce partes y tomo la mitad ¿cuánto pesa lo que he tomado?. Entonces 12 es la mitad de 150 porque es la mitad de la tabletta.
Prof.: A ver, léelo bien a ver qué te pregunta eso…
Alumn.: Mira el peso del chocolate es 150 gramos y eso ya lo sabemos, lo divido en doce partes.
Prof.: ¿El qué?
Alumn.: El chocolate y tomo la mitad.
Prof.: ¿Cuánto pesa lo que he tomado?.
Alumn.: ¿Cuánto pesa lo que he tomado?. Mira.
Prof.: Sí, sí explica todo lo que pienses.
Alumn.: Lo primero es 150 entre 12 para saber lo que pesan doce onzas. Entonces 150...
Prof.: ¿Doce qué?
Alumn.: Doce onzas, doce partes. Pues ya está, pues son cada parte, pues son dos onzas.
Prof.: Olvidate de onzas porque aquí no habla de onzas, ¿no?, bueno no te olvides nada, hazlo como quieras. Sí, sí hazlo como quieras.
Alumn.: Entonces cada parte son dos onzas. Bueno entonces las 150 entre 12 para saber lo que cada...
Prof.: Parte.
Alumn.: Cada parte. (Hace la división).
Alumn.: ¿Saco decimales?
Prof.: Tu haz lo que creas conveniente.
Alumn.: Entonces cada parte son doce con cinco gramos.
Prof.: ¿12,5 te da?
Alumn.: Sí, luego tomo la mitad, entonces 12,5 entre 2, para saber la mitad.
Prof.: Pero 12,5 ¿qué es?
Alumn.: Gramos.
Prof.: ¿Gramos de qué?
Alumn.: Gramos, que pesan doce cada parte...
Prof.: Cada parte.
Alumn.: Entonces, lo divido 125 entre 2 para saber cuál es la mitad.
Prof.: Bien tu haz lo que quieras. Yo no te digo ni bien ni mal. Tu, hazlo.
Alumn.: Esto no me sale, ¿esto que había que tachar la coma y poner aquí un cero?
Prof.: Sí.
Alumn.: Pues, cada parte es 6,25, o sea, la mitad de una parte es 6,25 gramos, y esa es la solución.
Prof.: Lo que yo he comido, ¿cuánto pesa lo que yo he comido?
Alumn.: 6,25 gramos.
Prof.: 6,25 gramillos me he comido.
Alumn.: Sí, 6,25, espérate.
Prof.: ¿Estás segura?
Alumn.: Sí, miligramos, 6,25 miligramos.
Prof.: Sí compruébalo.
Alumn.: Como, ¿con la balanza?
Prof.: Como quieras, desde luego aquí tenemos la posibilidad de hacer recortes, de utilizar dibujos..., ¿no han dibujado antes las niñas?, en fin como tú quieras.
Alumn.: ¿Con la tableta se puede hacer?
Prof.: Sí.
Alumn.: ¿Las otras se han llevado otra tableta?
Prof.: No lo sé.
Alumn.: Bueno, entonces...
Prof.: Lee otra vez el problema, ahora.
Alumn.: El peso del chocolate es 150, lo divido en doce partes, lo voy a recortar ¿lo puedo recortar?
Prof.: Sí (...) Ha estado recortando la cartulina que representaba la tableta en doce partes y ahora, pues seguimos.
Alumn.: Bueno, ya están las doce partes. Entonces...
Prof.: Coge la balanza que está dibujada en una cartulina muy grande ¿y qué vas a hacer? Explica.
Alumn.: Pues no sé, no lo se de verdad.
Prof.: El problema no lo debes perder de vista para saber lo que estás haciendo. Antonio, Antonio! Bueno era para que bajara el volumen.
Alumn.: Si no se entera, no se ha enterado. Me falta uno.
Prof.: Ve explicando todo lo que estás haciendo. Pues estoy contando esto, es que si no, no nos enteramos.
Alumn.: Estoy contando las partes en que he dividido la tableta de chocolate, y luego la he dividido en las partes...
Prof.: Tú imagínate que estamos en la radio y le estás explicando a la gente lo que estás haciendo. No te están viendo pero tienes que decirle lo que tienes en la mano, lo que estás haciendo.
Alumn.: Tengo en la mano partes, una onza de chocolate dividida en 6 trozos, con dos onzas cada trozo. Y en cada, tengo dos montones y en cada uno tengo 6. 6 trozos, con dos trozos cada uno. ¿Qué llío!. Pues si esto fuera una balanza de verdad pues aquí pondríamos esto que es lo que he tomado y ahora tomáríamos ¿qué es esto? 30.
Prof.: Lo que te has tomado ¿cuánto es? ¿Cuánto era lo que te has tomado?
Alumn.: ¿Qué? Esto.
Prof.: Y eso, ¿cuántas partes de 2 onzas cada una?
Alumn.: Son 6 partes de 2 onzas cada una.
Prof.: 6 partes de 2 onzas cada una.
Alumn.: Doce onzas.
Prof.: ¿Doce onzas?
Alumn.: Sí.
Prof.: Luego ¿cuánto pesará eso?
Alumn.: Vamos a ver 6,25. Estoy contando los pesos 1.2.3.4...
Prof.: Aquello que hay allí, ¿qué es? ¿La mitad del chocolate?
Alumn.: No, la parte que me he comido.
Prof.: ¿Cuántas partes te has comido?
Alumn.: Pues me he comido doce onzas.
Prof.: ¿Doce onzas?
Alumn.: Sí.
Prof.: A ver léelo bien...
Alumn.: Si pero es que esto son 12 onzas, porque el peso, lo divido en 12 partes en vez de en 24, entonces cada parte tiene 2 onzas, y tomo la mitad, que son 6 partes, que aquí hay 6 partes, pero cada parte tiene 6 onzas. Entonces son 12 onzas ¿y esto qué es?
Prof.: Eso 5.5. gramos.
Alumn.: ¿5 gramos?
Prof.: Bueno una cosa, como no puedes pesarlo porque está balanza..., porque no puede pesar, hacerlo con exactitud. Hazlo con operaciones lo que tu crees que te da lo que pesa aquello. Pilar, mira que vas a hacer, expícalo, es que si no...
Alumn.: Que aquí estoy poniendo los pesos adecuados para nivelar la balanza, bueno suponiendo que fuera una balanza de verdad, para nivelarla y que me dé el peso de esto y ya cuento las pesas, y...
Prof.: Y ya está.
Alumn.: Y averiguo el peso que tienen todas estas pesas y ya se lo que pesa esto.
Prof.: De acuerdo. Muy bien. Pero ahora yo te pregunto que lo averigues de otra manera.
Alumn.: Con operaciones, ya lo he hecho.
Prof.: Lo has hecho con las operaciones. Compruébalo. Por ejemplo, como tú quieras. Esa ha sido una forma. Ahora yo leo el problema y lo quiero resolver de otra manera. Piénsalo en voz alta. Todo lo que..., porque mira aunque lo que pienses no te lleve a ningún sitio pero dilo, porque estamos en la radio y no saben lo que estas pensando y lo que estás haciendo.
Alumn.: Pues no tengo ni idea.
Prof.: No tienes ni idea.
Alumn.: No sé.
Prof.: Luego entonces tú ya has resuelto y lo has explicado de este modo ¿no?
Alumn.: Sí.
Prof.: Dando los pasos con divisiones. Y también con la balanza que si hubiera estado aquí de verdad lo hubieras pesado y te hubiera dado lo que es ¿no?.
Alumn.: Sí.
Prof.: ¿Ya está? ¿Hemos acabado?
Alumn.: No, por mí no.
Prof.: Pero, me refiero al problema ¿que si lo vas a pensar más? ¿que si lo vas a comprobar?
Alumn.: Es que no sé otra manera.

7.3.2. 2° ALUMNA

Prof.: Vamos a ver, ahora te voy a dar dos problemas.
Alumn.: ¿Dos?
Prof.: Dos, sí. Primero resuelves uno y después resuelves otro. Tienes que resolverlo e ir explicando en voz alta los pasos que vas dando. Los pasos que tú das los vas explicando en voz alta. Todo lo que vas haciendo y vas pensando. Cierra la puerta. Lo lees detenidamente y lo resuelves explicando en voz alta los pasos que das...

1° PROBLEMA

Alumn.: Pero ¿cuántas tabletas?, no puede ser cuántas tabletas, es que será dos y media. Dos tabletas y media. Sabes lo que te digo, que cinco es impar.
Prof.: ¡Aah!, que cinco es impar, y eso, que quiere decir.
Alumn.: Pues que si fuéramos 6 gastaríamos tabletas enteras, pero como somos cinco, pues son que no gastamos una tabletas entera, ¿sabes lo que te digo?
Prof.: Sí, pero expícame bien, comprueba eso.
Alumn.: Sí, si yo dibujo una tabletas ¿no?, y la divido en dos partes porque cada una es un medio. Aquí ya hay para dos niñas. Luego otra tabletas y la divido en dos partes iguales y hay para cuatro ¿no? y ahora aquí pongo otra que no la puedo poner entera porque si nó sobra una. Porque falta una niña.
Prof.: ¿Por qué no la puedes poner entera?.
Alumn.: Porque si la pongo entera entonces me falta una, entonces una queda libre. Que no da tabletas enteras. Que gastarlamos dos tabletas enteras y un medio de otra tabletas.
Prof.: ¿Y cómo harías para que yo viera eso bien?
Alumn.: Pues con dibujitos. Mira aquí hay para dos niñas, porque 1/2 es, cada niña se come un medio y somos cinco. Y aquí ya hay para dos niñas que hay dos medios y hay para cada niño uno. Aquí hay otras dos niñas son cuatro y falta una, entonces en otra tableta la dividimos por la mitad y hay cuatro niñas y sobra una.
Prof.: Entonces ¿cuál es el resultado?
Alumn.: Pues dos tabletas y media. ¿si o no?.
Prof.: ¿Lo podrías resolver de otra forma? (largo silencio, está pensando).
Prof.: Entonces ¿cómo estás segura tu de eso?
Alumn.: ¿De que esto es verdad?. Pues dividiendo ¿no?... ya está.
Prof.: ¿Eso qué es?
Alumn.: Espera, eso que cada niña se toma un medio tableta,..., sí ya y cada, luego cinco niñas..., ya está, así, multiplicando.
Prof.: ¿Qué multiplicas?
Alumn.: Pues un medio por cinco niñas y da dos coma cinco.
Prof.: ¿Y donde está ahí el 1/2?
Alumn.: Pues que te dice que cada una quiere tomarse media tableta.
Prof.: Pero, ¿dónde has puesto tú ahí un medio, dónde lo has escrito?
Alumn.: Aquí.
Prof.: ¿Eso es un medio?
Alumn.: Eso es la mitad de una unidad. Esto es un medio.
Prof.: Eso gráficamente.
Alumn.: Si y esto puede ser la mitad y esto también puede ser.
Prof.: ¿Y esto cómo se lee, es que estás diciendo esto?. Porque esto lo estas llamando un medio ¿no?
Alumn.: O la mitad.
Prof.: O la mitad, pero ¿cómo se lee eso?
Alumn.: Pues cinco décimos, digo ¿qué cómo se leen?
Prof.: Que estás diciendo esto, esto, esto...
Alumn.: La mitad, cinco décimos.
Prof.: Cinco décimos, ¿hay más formas?
Alumn.: 1/2 ¿no?. La mitad de una unidad es un medio.
Prof.: Sí. ¿Pero cómo lees tú esto normalmente?
Alumn.: La mitad. Si me pones esta cantidad, sólo digo cinco décimos.
Prof.: ¡Ahl! si dices cinco décimos ¿si te digo esa cantidad? ¿por qué?
Alumn.: Porque este es el lugar que ocupan las décimas.
Prof.: ¡Ahl!, vale.
Alumn.: ¿Ahora esto? o, todavía no.
Prof.: ¿Tú crees que ya está resuelto el problema?
Alumn.: Claro, ya, dos tabletas y media.

2º PROBLEMA

Prof.: Bueno, léete el segundo.
Alumn.: ¿La tableta la dividido en 12 partes? ¿sí?
Prof.: ¿Eso es lo que pone ahí?
Alumn.: ¿O el peso?, de la tableta 12 partes de la tableta.
Prof.: ¿Por qué entiendes eso?.
Alumn.: ¡Ahl no peso. Si estamos hablando del peso ¿no?, y, entonces dices, tengo 150 gramos, lo divido en 12 partes, 150 gramos entre 12.
Prof.: ¿Por qué?. Tú lo piensas y me lo dices en voz alta.
Alumn.: Pues porque doce partes, digo 150 gramos lo hemos dividi-do en 12 partes.
Prof.: ¿Te has leído el problema?.
Alumn.: Sí, ¿cuánto pesa lo que he tomado?. Y lo que me dé... jahl no, espérate. La mitad de doce parte 6 ¿no?, entonces 150 gramos entre 6 la mitad.
Prof.: ¿Para qué?.
Alumn.: Para saber cuánto he tomado.
Prof.: Ahora resuélvelo ¿que estás haciendo?.
Alumn.: La mitad de 12 partes es 6 ¿no? 6 partes, entonces dividido 150 gramos entre 6 partes. Que es la mitad de doce, y me da la pregunta ¿no?.
Prof.: ¿Cuánto es?
Alumn.: 25 gramos.
Prof.: ¿Eso qué es?.
Alumn.: Pues lo que he tomado.
Prof.: ¿Por qué?.
Alumn.: Porque he cogido la mitad de 12 ¿no? no espérate entonces
dividido 150 entre 12 y lo que me da lo he dividido entre dos.

Prof.: ¿Dónde has hecho esto?
Alumn.: ¿ Esto?, aquí.
Prof.: Repite otra vez lo que has dicho.
Alumn.: 150 gramos que es lo que pesa la tableta lo divido entre doce.
Prof.: ¿Para qué?
Alumn.: Para saber ahora cuánto pesa una parte de doce y luego lo multiplico por 6 que es la mitad de 12.
Prof.: ¿Para qué?
Alumn.: Para saber lo que he tomado.
Prof.: ¿Por qué?
Alumn.: Porque dice que me como la mitad de los gramos que me ha dado entre esto. No, entonces (...) Porque el peso del chocolate lo divido en 12 partes y luego cojo la mitad del peso de las doce partes.
Prof.: ¡Ah! eso hazlo; compruébalo.
Prof.: Segunda operación.
Alumn.: Y ahora esto,...
Prof.: ¿Eso qué es?
Alumn.: ¿Qué cómo lo puedo hacer?
Prof.: Pero qué estás pensando ¿por qué no lo piensas en voz alta?. Lo que piensas.
Alumn.: Es que no estoy pensando nada, que cómo lo puedo hacer.
Prof.: Pero si no piensas nada...
Alumn.: No, sí, estoy pensando en doce, en esto...
Prof.: Eso, eso, eso que estás pensando dilo fuerte ¿entiendes?
Alumn.: Habla fuerte, porque yo quiero enterarme de lo que piensas.
Prof.: 12,5 entre...
Alumn.: 12,5 entre...
Prof.: Eso que estás pensando dilo fuerte. Es que si no, no se va a poder grabar.
Alumn.: De las, tomo la mitad de las 12 partes entonces, si esto es 12 partes...
Prof.: Si no te importa, un poquito más fuerte.
Alumn.: Sí, las 12 partes por 6. Voy a ver si me sale esto, no es que sea esto. 35.
Prof.: ¿Qué?, ¿qué has dicho?
Alumn.: 75 he dicho. 6,...6, 5, 75 me he tomado.
Prof.: 75 ¿qué?.
Alumn.: Gramos.
Prof.: ¿Por qué?.
Alumn.: Que ¿por qué?. Porque 12,5 es lo que pesa una parte de 12 ¿no?. 1/12, y como es la mitad de 12 que es 6, 6 partes lo he multiplicado por lo que pesa una parte y me ha dado 75 gramos, que es lo que me he tomado. ¡Anda, qué tonta!, porque la mitad de 150 es 75.
Prof.: Y eso por qué?. A ver, repite otra vez eso.
Alumn.: Porque la mitad de 150 gramos es 75.
Prof.: Entonces ¿por qué has dicho que qué tonta?.
Alumn.: Porque podía haberlo hecho así y ya está.
Prof.: ¿Seguro?.
Alumn.: Es que me va a dar lo mismo. Que me ha dado lo mismo que haciéndolo de esta forma. Porque yo 150 entre dos me daba 75 partes, digo 75 gramos.
Prof.: Entonces, porque te de igual ¿lo podías haber hecho así y ya está?. ¿Simplemente porque te da igual o...?.
Alumn.: No porque yo así no se si me va a dar como aquí.
Prof.: Entonces ¿estás segura que esa forma segunda que has dicho, sirve?.
Alumn.: Esta, ¿la de dividir?.
Prof.: Yo es que no se.
Alumn.: 150 entre dos.
Prof.: Sí.
Alumn.: Muy cierta no es.
Prof.: Que, ¿por qué no es?.
Alumn.: Porque eso no es lo que te dice, es que dice que lo dividiera en doce partes y tomo la mitad, ¿pero da 75 gramos?.
Prof.: No lo se. Yo es que no lo he hecho todavía. A ver sigue lo que dice.
Alumn.: Que cuánto pesa lo que he tomado. 75 gramos. Y luego si multiplico 75 por 2 me da 150.
Prof.: ¿Para qué?.
Alumn.: Que ¿para qué?. Para ver si es verdad lo que he hecho.
Prof.: Entonces, ¿cómo lo compruebas?.
Alumn.: Pues 75 por 2.
Prof.: Y por qué no por 3.
Alumn.: Por tres no. Porque como he cogido la mitad pues entonces
lo dividí por dos. Digo lo multiplico por dos.

Prof.: ¿Y por qué te has quedado tan parada con el problema?

Alumn.: ¿Qué por qué? Yo que se, porque no, que no entendía el principio.

Prof.: Entonces ahora ¿cómo lo entiendes?

Alumn.: ¿Qué cómo lo entiendo? Porque ya...

Prof.: No, por qué lo entiendes, sino ¿cómo lo entiendes ahora el problema?

Alumn.: ¿Qué cómo lo entiendo?, como lo he hecho.

Prof.: ¿Cómo lo has hecho?

Alumn.: Pues primero, lo que pesa una parte, como es la mitad de 12, que son 6 partes, ¿la mitad de 12 son 6 partes no?, pues, entonces lo que pesaba una parte lo he multiplicado por 6 partes.

Prof.: ¿Y qué te da?

Alumn.: Pues 75.

Prof.: ¿Y eso qué es?

Alumn.: 75?, la mitad de 12. 75 gramos es la mitad de las 12 partes digo, de 75 gramos. Es lo que pesan 6 partes que es la mitad de 12.

Prof.: Y 12 ¿qué es?

Alumn.: Las partes en que he dividido la tableta digo los 150 gramos.

Prof.: ¿Esa es la única forma?

Alumn.: Y la otra es 150 entre dos.

Prof.: ¿Y eso por qué?

Alumn.: Pues yo que se, es que como me da lo mismo.

Prof.: Piensa a ver si puede ser eso así. Léete el problema despacio y a lo mejor ya me dices si estás segura o no estás segura. Eso que estás pensando.

Alumn.: Es que lo estoy leyendo primero.

Prof.: ¡Ah!

Alumn.: Pues lo que he tomado es la mitad. Si no me viniese ésto.

Prof.: Si no te viniera ¿qué?

Alumn.: Lo he dividido en 12 partes, pues tomo la mitad de 150 gramos. Y da lo mismo.

Prof.: Y viniéndote eso?

Alumn.: Pues de esta forma.

Prof.: Y esta forma ¿qué es?
Alumn.: Pues como lo he hecho. 150 entre, ...
Prof.: ¡Ah!
Alumn.: Pero que si no me viniese esto daba lo mismo.
Prof.: Y eso es, ¿y eso tiene que venir?.
Alumn.: Pues yo creo que no es necesario.
Prof.: ¿Por qué no es necesario?.
Alumn.: Porque si dices: tomas la mitad de 150 gramos, pues lo divido por dos y ya está.
Prof.: Entonces, para hacer eso, ¿cómo enunciarias tú el problema?.
Alumn.: Pues: el peso del chocolate es 150 gramos tomo la mitad de 150 gramos, ¿cuánto pesa lo que he tomado?.
Prof.: ¿Estás segura que se puede quitar ese pedazo?.
Alumn.: Ya no diría lo mismo que hay hasta ahora.
Prof.: ¿Qué quieres decir con que no diría?.
Alumn.: Pues que ya no, si digo eso, ya no se en cuántas partes lo he dividido; que así está más complicadillo.
Prof.: ¿Y es muy importante las partes en que lo divides?.
Alumn.: Tanto, no.
Prof.: ¿Qué quieres decir tanto?.
Alumn.: Que importante no es.
Prof.: ¿Por qué no es importante?.
Alumn.: Porque como no te pregunta nada de las partes.
Prof.: Sigue.
Alumn.: Que si te preguntara algo de las partes, pues si era importante. Pero como sólo te dice que cuánto pesa lo que he tomado pues, no es importante.
Prof.: ¿Y tú qué harías con eso?.
Alumn.: Pues, lo que te he dicho, lo quitaba.
Prof.: Entonces, ¿es cierta la forma que lo has hecho?.
Alumn.: Yo creo que sí.
Prof.: ¿Y la segunda forma?.
Alumn.: ¿Quitando ésto? pues también.
Prof.: Entonces, ¿ese problema se puede resolver de la segunda forma?.
Alumn.: Sí.
Prof.: ¿Cómo es la segunda forma?.
Alumn.: 150 entre 2. Entre la mitad, que es 2.
Prof.: ¿Aunque venga eso puesto ahí?
Alumn.: No, si viene no.
Prof.: ¿Por qué?
Alumn.: Porque dice, es que puedo decir: tomo la mitad de 12 partes o de 150 gramos.
Prof.: Entonces tú lo puedes resolver, ese problema, de la segunda forma que has dicho aunque eso esté puesto ahí.
Alumn.: No.
Prof.: ¿Por qué no?
Alumn.: Sí, sí, que sí.
Prof.: ¿Por qué sí?
Alumn.: Porque tomo la mitad, no se sabe sí es de 12 partes o de 150 gramos.
Prof.: Yo, es que no me queda claro todavía, si tu crees que puedes resolver el problema de la segunda forma que has dicho, aunque esté eso puesto ahí.
Alumn.: Es que es una aclaración, lo he dividido en 12 partes.
Prof.: ¿Qué quieres decir con que es una aclaración?
Alumn.: Porque te dice que lo has dividido en 12 partes.
Prof.: Que sí, lo puedo hacer de la segunda forma.
Alumn.: Porque me da lo mismo, lo que he hecho de las dos formas, me da lo mismo.
Prof.: ¿Estás segura?
Alumn.: Mira.
Prof.: Lo que estás haciendo no es ...
Alumn.: Pues 150 entre 2,75 gramos y ... 75 gramos.
Prof.: ¿Quieres añadir algo más?
Alumn.: No.

7.3.3. Tercer Alumno

4.ª SESION INDIVIDUAL. Resolución de dos problemas inventados por los alumnos.

Prof.: Aquí tienes un problema, léelo y lo vas a resolver en voz alta, contándome los pasos.

PRIMER PROBLEMA

Alumn.: Si estamos cinco niñas y cada una quiere tomarse media
tabla. ¿Cuántas tabletas gastaríamos?. Pues mira, son cinco niñas, aquí tenemos una tableta; la dividimos en dos. Ya tenemos dos niñas despachadas; tres niñas, después otra tableta, la dividimos en dos, otras dos niñas, ya van 4. Ahora otra, la dividimos en dos y cómo solo hay una niña pues sobraría una media tableta.

Prof.: Compruébalo.
Alumn.: Ya está.
Prof.: ¿Había otra forma de hacerlo?
Alumn.: ¿Otra forma?. Un medio, mas un medio, mas un medio...
Prof.: Sumando medios.
Alumn.: Sí, sumando medios.
Prof.: Y esta forma que has hecho aquí, ¿cómo es?
Alumn.: Gráficamente.
Prof.: ¿Y qué has hecho gráficamente?, ¿tu, qué has supuesto?
Alumn.: Que esto es una tableta y doy media a cada uno.
Prof.: Das media a cada uno y qué compruebas, qué te queda?
Alumn.: Media tableta.
Prof.: ¿Estás segura?
Alumn.: Son dos formas.
Prof.: Bueno pasamos al otro.

SEGUNDO PROBLEMA

Alumn.: El peso del chocolate es 150 gramos, lo divido en 12 partes y tomo la mitad. ¿Cuánto pesa lo que he tomado?. Pues sí, 150 entre 2, eso es lo que he tomado. Es lo que pesa cada una de las partes, y tomo la mitad, la mitad de 12 es 6, y divido 6 entre lo que pesa la mitad.

Prof.: Hazlo.
Alumn.: ¿Saco decimales?. Bueno pues, cada trozo cuesta 12, pesa 12 gramos coma 5, eso es lo que pesa cada una de las 12 partes, y tomo la mitad, de 12 partes 6, pues 12 coma 5 por 6.75 gramos.

Prof.: 75 gramos. ¿Es eso lo que tomas?
Alumn.: Pide ¿Cuánto pesa la mitad?. La mitad de 150 es 75.
Prof.: ¿Es otra forma?
Alumn.: Sí, sí.
Prof.: Y ¿por qué?
Alumn.: ¿Cómo que por qué?
Prof.: ¿Por qué tu dices que divides entre 2, 150? ¿por qué has dividido entre dos?
Alumn.: Porque es un esquema de comprobar, porque dice la mitad, lo que te pide es la mitad, la mitad.
Prof.: ¿La mitad de qué, de toda la tableta?
Alumn.: La mitad de las 12 partes, ... lo divido en 12 partes y tomo la mitad. Entonces, si esta es la tableta, de las 12 partes, esta es la mitad, ¿no?. Y ahora, ¿Cuánto pesa lo que he tomado?. Pues si esto es 75, 75 menos que he tomado, esta es una manera más directa.
Prof.: O sea, que has supuesto que seis docenas es un medio.
Alumn.: No, la mitad de 150 no son 12, son 75. Lo que yo digo es que para comprobarlo, como dice la mitad, la mitad de 150 es 75, y no hace falta ese rollo de dividir por 12 que he hecho.
Prof.: Bueno, ¿Y estás segura de que se puede hacer así?
Alumn.: Así y así.
Prof.: De dos formas ¿no?. ¿Cómo más puedes hacerlo?
Alumn.: ¿Cómo más?. Pues si gráficamente es ésto y ésto con el 12, pero si fuese una persona lista, pues captaría que no hace falta dividirlo por 12, simplemente 150 que da igual a 75.
Prof.: Entonces tu has supuesto que todos esos datos que te ha dado son la mitad de la tableta.
Alumn.: Sí, porque dice que tomo la mitad.
Prof.: ¿Pero la mitad de la tableta o la mitad de 12?
Alumn.: Esto es la mitad de la tableta, y la mitad de 12 es lo mismo. Pero sería distinto, y tendría que hacer otra cosa si me diera otras cosa, pero cómo me da esto.
Prof.: Otra forma:
Alumn.: Sí, pero ya es mucho, pues 150 lo divido entre grupos de 25, 25, 25, ... y después si quieres coger la mitad, pues coges tres grupos de 25.
Prof.: ¿Y por qué lo divides en tres grupos de 25 que son 75?
Alumn.: Porque me es más fácil.
Prof.: ¿Cuándo has dividido en grupos de 25, que has pensado?
Alumn.: Sí la mitad de 100 son 50, y la mitad de 50 son 25, y la mitad de 150, 75, también sería más fácil si hago así: 25, 25,
25. 25, ...
Prof.: Pero de los datos que daban, que eran 12 partes, tú has dividido en 6 y has tomado ¿cuántas partes?.
Alumn.: Tres partes.
Prof.: ¿Qué haces ahora?.
Alumn.: Pues pensando en cómo podría ser eso de que, porque verás, yo lo que pensé fue en ésto, pero entonces 25, di con la mitad de 50.
Prof.: ¿Por qué pintas una tableta?.
Alumn.: Para saber cómo explicar ésto.
Prof.: Expícamelo.
Alumn.: Si aquí hay 75 gramos, aquí 75.
Prof.: ¿Por qué?.
Alumn.: Porque lo he dividido en la mitad, y la mitad de 150 son 75. Ahora lo dividimos en 3 pero más grandes, en cada grupo hay 25.
Prof.: ¿Cómo comprobarías tú esta parte?.
Alumn.: Cojo el chocolate, lo divido en 12 partes, cojo la mitad y la peso.
Prof.: Tu ya has supuesto que de 12 partes, tomar 6.
Alumn.: La mitad de 12 son 6.
8. CONCLUSIONES FINALES

En la Presentación se establece un Objetivo Fundamental:

Conseguir que la Resolución de Problemas se constituya en el núcleo central del aprendizaje de la Matemática en la E. G. B. y no una simple aplicación de los conceptos, las estructuras y los algoritmos de las operaciones.

Articular este objetivo es difícil porque se opone a una tradición didáctica muy extendida en la enseñanza de las matemáticas básicas. Como idea general puede ser convincente pero los modelos usuales de enseñanza, los materiales disponibles, los libros de texto y la tradición escolar están diseñadas para que predomine la transmisión de los contenidos y los mecanismos por encima de las estrategias, el ensayo, el tanteo y la creatividad imprescindibles en todo proceso de elaboración y adquisición de conocimiento. Nuestra conclusión respecto de este objetivo global es doble. En primer lugar trata de una tarea compleja que necesita de una planificación minuciosa, difícil, como todo lo que suponga romper costumbres bien establecidas, y que requiere tiempo, entrega y dedicación. Pero en segundo lugar, también hemos comprobado que es una tarea posible, que hay vías y caminos de formación y logro de conocimientos matemáticos más próximos a los intereses de los alumnos, que siguen requiriendo esfuerzo pero que rentan y abren nuevas formas de trabajo en el aula.

Esta memoria cuenta cuáles han sido nuestros planteamientos para articular este Objetivo General, cuál ha sido nuestra forma de llevarlo a la práctica, cuáles nuestros errores y nuestros aciertos, y, finalmente, cuáles han sido los resultados obtenidos.

Entendemos que la experiencia global es positiva, que nos hemos aproximado en el logro del Objetivo general y que nuestra experiencia puede ayudar a otros que estén interesados en el mismo Objetivo. Y esta es nuestra Primera Conclusión: es posible articular un Plan de Actuación Didáctica para el Aula en el que la R. P. se constituya en el núcleo central de aprendizaje de la matemática en el sexto nivel de E. G. B.

De nuestro objetivo general se infieren seis principios didácticos, que resultan al mismo tiempo necesarios para su logro.

Enunciados como conclusiones son:
1. La Resolución de Problemas precede y justifica la presentación de los contenidos matemáticos. El método de trabajo centrado en la R. P. hace que los contenidos tradicionales sean un resultado y no el principio del trabajo con las matemáticas.

2. Las situaciones reales -del medio familiar, escolar, social y natural- son la fuente para plantear cuestiones que den lugar a problemas. La información hay que elaborarla.

3. Las preguntas deben tener sentido no sólo para quien las plantea sino sobre todo, para quien debe darle respuesta. Plantear preguntas significativas es algo que puede enseñarse y que requiere entrenamiento.

4. Toda cuestión puede responderse atendiendo a diversos procedimientos; es importante que el alumno se entrene en las diversas formas de dar respuesta a una misma cuestión. También es importante apreciar cuánto una misma cuestión tiene respuestas distintas.

5. La obtención de una solución no es suficiente, hay que acostumbrar a los alumnos a que convenzan a sus compañeros de la validez de sus resultados justificándolo de la mejor forma posible. La discusión y el debate en clase sobre lo acertado de un procedimiento y lo adecuado de una contestación son métodos de trabajo que deben estimularse.

6. Favorecer al pensamiento creativo es de especial interés en la R. P.

Estos seis puntos resumen las consideraciones más importantes respecto a la metodología que hemos desarrollado.

En otro orden de ideas hay que destacar que cualquier innovación didáctica supone un trabajo considerable que no es posible abordar en solitario o por un grupo muy pequeño de personas. El trabajo en equipo, con una planificación cuidadosa y una distribución racional de competencias son requisitos imprescindibles para emprender una tarea de este tipo.

La elaboración de guiones para el desarrollo del trabajo en el aula con una descripción detallada de los objetivos, medios, actuaciones y situaciones a desarrollar ha sido un punto fundamental en nuestro trabajo.
Igual importancia han tenido las sesiones de puesta en común entre los profesores que llevaban a cabo la experiencia, tanto las previas al trabajo en el aula como las posteriores al mismo. Una conclusión importante es que el Profesor debe llevar en efecto una innovación educativa debe encontrarse asistido en los aspectos materiales, técnicos, conceptuales y psicoprofesionales. Resulta difícil mantener la coherencia en una línea de trabajo aisladamente por un tiempo prolongado. El grupo de trabajo no sólo aporta instrumentos conceptuales y metodológicos sino que proporciona ayuda moral para mantener una convicción en un terreno tan movilizado como la adquisición de conocimiento mediante el estímulo de determinados procesos de pensamiento.

Todo esto ha supuesto una modificación comprobable de la actitud del profesorado respecto a la R. de P. y su incidencia en el desarrollo de la clase de matemáticas.

Las conclusiones elaboradas por el Profesorado se resumen en:

- Necesidad de introducir los problemas desde el inicio de cada tema, y no esperar a las aplicaciones.
- Enfatizar el papel del alumno como autor de su propio aprendizaje y no como un receptor más o menos pasivo de la información previamente seleccionada por el profesor.
- Se modifica la visión tradicional del conocimiento como algo ya elaborado y preparado para su consumo, y se reemplaza por una conceptualización de que existen situaciones reales ante las que una persona se plantea unas cuestiones según sus intereses y necesidades; el conocimiento matemático sirve para dar respuesta a algunas de esas cuestiones.
- El trabajo en equipo por parte de los alumnos -grupo pequeño y mediano- se considera tan importante como el trabajo individual. La discusión de las técnicas de resolución y de los valores obtenidos se considera un método de trabajo a potenciar.
- La invención de los problemas por los alumnos se presenta como el método más adecuado para elaborar enunciados.

Todos estos aspectos son valorados positivamente por los profesores que han llevado esta experiencia.
Como aspecto de más difícil valoración aparece la inseguridad que supone explorar un nuevo esquema de trabajo en el aula, distinto del que se domina y aplica tradicionalmente; en particular el peso bastante menor que se concede a los contenidos en el sentido convencional es algo que le cuesta aceptar al profesorado.

La Conclusión Fundamental del análisis estadístico de los datos relativos a las pruebas de Pretest y Potest aplicadas nos dice que no hay diferencia en la Resolución de Problemas Aritméticos cuando se sigue la metodología propuesta por nosotros y una metodología convencional, y empleando en cada caso el mismo tiempo en el entrenamiento de los alumnos como resolutores. No se produce pérdida en el rendimiento sobre R.P. convencionales.

Quedan, por supuesto, sin evaluar el resto de los aspectos relativos a creatividad, invención de preguntas, capacidad de discusión, empleo de distintas estrategias, empleo de material, etc., cosa que no ha podido hacerse por ser variables no trabajadas en el Grupo de Control.

Para recabar información sobre parte de todos estos aspectos, no controlables mediante los diseños convencionales, nos pareció importante realizar un estudio clínico sobre un grupo pequeño. Este ha sido nuestro primer contacto con esta técnica y nos ha sorprendido la cantidad de información que puede obtenerse y la riqueza de matrices que pueden apreciarse; ésta es nuestra conclusión general relativa a esta técnica: el método clínico se presenta como especialmente valioso para el estudio de los procesos de pensamiento, y en particular para el estudio de la Resolución de Problemas. Aunque estamos sólo en el comienzo de una utilización sistemática de esta técnica ya hemos logrado algunas conclusiones importantes:

Se ha establecido un esquema de trabajo en tres fases: preparación, desarrollo práctico y análisis y valoración, en el cual cada una de estas fases tiene unas tareas bien definidas y un material establecido.

Se han determinado criterios para clasificar las preguntas inventadas por los alumnos que han permitido determinar una evolución en este tipo de actividad.

Siguiendo el modelo de Guilford se ha podido analizar la interacción verbal profesor/alumno, que ha permitido detectar los princi-
pales errores cometidos por los alumnos y la incidencia que tienen las intervenciones del profesor.

Se ha hecho un análisis sobre el proceso seguido por los alumnos en la Resolución de Problemas.

Se han hecho aportaciones valiosas al Profesor que trabaja en el aula para la preparación de su trabajo.

Finalmente, se dispone de un archivo de grabaciones que nos van a permitir profundizar en nuestro análisis.

Estas son, en resumen, las principales conclusiones de un año de trabajo coordinado, con un grupo amplio de trabajo, sobre el siempre conflictivo tema de la enseñanza de las matemáticas.

Esperamos que este estudio sirva para aportar alguna ayuda a todos los profesores preocupados por una mejora real y efectiva en el aprendizaje de nuestros alumnos.
Bibliografía

COCLECROFT, W.H. (1985) "Las matemáticas sí cuentan" Informe de la Comisión de Investigación sobre la Enseñanza de las Matemáticas en la Escuela. Centro de Publicaciones del M.E.C.

DAVISON, J.E. (1977) "The Language Experience Approach to Story Problems". Arithmetic Teacher 25, 28:

GOLDIN, G.A.; McCLLINTOCK, C.E. Eds. (1979): Task Variable in Mathematical Problem Solving. ERIC/SMEAC. Columbus, Ohio, USA.

244

NEWELL ALLEN and SIMON, H.A. (1972) "Human Problem Solving.

