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Preface 

 

The approach of a research work is motivated by different studies and problems, raised 

previously, and by an objective to be achieved. Firstly, we would like to show the main 

aspects which led to the desirable development and objective. Several points of a 

reliability system have been taken into account in this work to answer a final question.  

 Serious economic and human damage can be provoked when poor system reliability 

causes an unscheduled interruption or system failure. Redundant systems and 

preventive maintenance, which is employed to avoid this outcome, or at least to 

improve system reliability, involves regular, routine maintenance to help keep 

equipment up and running.  

 Nowadays, it is well known that the classical binary system of ‘failure vs. operational 

state’ has been extended by multi-state systems (MMS), the efficiency of a system 

may vary according to the performance level of interest. 

 Different problems appear when complex reliability systems are modeled. The 

modelling process and the measures associated with the model have intractable 

expressions of highly complex applicability and interpretation. Furthermore, a 

reliability system can be subject to several types of events that can produce failure or 

degradation.  

 In reliability literature is usual to consider that when a non-repairable failure occurs, 

the unit is replaced in a negligible time. Sometimes this assumption is not real enough 

and loss of units can be considered whereas the systems continue to work. 

 In a repairable system the number of repairpersons and the embedded times and costs 

do not change over time. It seems logic to consider a variable number of 

repairpersons depending on the number of units in the system. 
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 Most studies of reliability focus on dynamic reliability systems in a continuous-time 

setting, while very few take into account the discrete-time case. However, not all 

systems can be continuously monitored, and some must be observed at certain times, 

for reasons such as the internal structure of the system, the need for periodic 

inspections, etc. 

For these reasons the following question arises then, why not study a discrete complex 

multi-state system subject to different events and loss of units, with preventive 

maintenance, in a well-structured algorithmic form, optimizing the number of 

repairpersons?  

Multi state systems 

A system that has a finite number of performance levels and different failure modes 

with different effects on the entire system performance is called a multi-state system 

(MSS). Traditional reliability theory considers systems in which the units perform in 

terms of binary models composed of up state (performing) and down state (failure). 

Multi-state reliability systems have been developed and applied intensively. So, any 

system consisting of different binary-state units that have a cumulative effect on the 

entire system performance has to be considered a MSS. Multi-state systems were first 

introduced by Murchland (1975) [38], since that time MSS reliability began intensive 

development. Essential achievements that were attained up to the mid 1980's were 

reflected in Natvig (1985) [40] and in El-Neweihi and Proschan (1984) [12]. MSS can 

have a finite number of performance/degradation stages. This approach has been studied 

using methods such as Markov and semi-Markov models, generating functions, Lz-

transform and Monte Carlo simulations. Markov models have been considered to 

analyses the behaviour of multi-state systems (Li et al. (2017) [28], Peng et al. (2017) 

[48], Xie et al. (2018) [68]). Yeh and Fiondella (2017) [69] determined the optimal 

redundancy allocation such that computer networks reliability is maximized. In this 

respect, too, Yi and Cui (2017) [70] have used Z-transform to analyse repairable 

aggregated semi-Markov ternary systems experiencing degradation and internal shocks, 

while Lisnianski et al. (2017) [32] proposed a method based on an Lz-transform of the 
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discrete-state continuous time Markov process, and also on Ushakov’s Universal 

Generating Operator, to evaluate the sensitivity of an aging MSS under minimal repair. 

Finally, in this area,  Levitin et al. (2017b) [26] presented a novel Markov model of 

standby systems composed of multi-state elements in which, when an operating element 

fails, the standby element with the best technical state is chosen. 

 

Many real-life systems contain multiple components with different performance 

levels. Power and computer systems are among many examples of multi-state systems. In 

recent years, Lisnianski et al. (2010) [31] performed a comprehensive analysis of multi-

state systems, and Eryilmaz (2010) [13] studied measures for single-unit multi-state 

systems and multi-state k-out-of-n: G systems. In this field, too, Ruiz-Castro (2016b) [55] 

analysed a complex multi-state system by considering Markov counting and reward 

processes. Lisnianski and Frenkel (2012) [30] considered Markov processes in the 

analysis of multi-state systems, highlighting the benefits of their application. However, 

when multiple states interact within a system, problems of a complex mathematical 

nature may arise.  

Redundant Systems and Preventive maintenance  

Redundant systems and preventive maintenance are of considerable research interest to 

improve overall reliability, prevent system failures and reduce costs. Serious damage and 

considerable financial losses are caused when a system failure occurs due to poor 

reliability. To avoid it, several reliability methodologies are commonly employed such as 

redundancy and maintenance policies. Redundant systems have been proposed in the 

reliability literature to solve different problems. The literature related to cold, warm and 

k-out-of-n systems is extensive. For example, an optimisation problem was addressed by 

Levitin et al. (2014) [27], who considered cold and warm standby groups. Wells (2014) 

[67] extended known analytic results to a case with repairable and non-repairable 

failures, while Levitin et al. (2017a) [25] presented a method for evaluating the 

probability of mission success for an arbitrary redundancy level in several 1-out-of-n 

subsystems where the environment is modelled by the Poisson process of shocks, by 

increasing the failure rate. Kim and Kim (2017) [22] suggested the exact reliability 
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function for a cold standby redundant subsystem with an imperfect detector/switch. 

Recently, the reliability of a parallel system with active multicomponents and a single 

cold-standby unit has been investigated by Yongjin et al. (2018) [71].  

A k-out-of-n: G system is an n-system which works if at least k units are operational. 

This system, introduced by Birnbaum et al. (1961) [4], is a redundant system that is 

applied in various fields, such as electronic, industrial and military systems. A 

generalised k-out-of-n with parallel modules was developed by Cui and Xie (2005) [7]. 

Recently, Kamalja (2017) [19] modelled a generalised k-out-of-n: F system with parallel 

modules.   

Preventive maintenance is also essential to avoid total failures that can produce great 

damage. It is intended to improve system reliability and to increase profits. The provision 

of optimal maintenance is widely recommended as an effective way of minimising 

system downtime and hence maintenance costs. Effective system maintenance improves 

overall reliability, prevents system failures and increases the benefit derived from the 

system. Preventive maintenance has been discussed by Osaki and Asakura (1970) [47], 

who studied the behaviour of a two-unit system. Mahfoud et al. (2016) [35] Reviewed 

this question and conducted a careful examination of the status of application-oriented 

research into the preventive maintenance and optimisation of medical devices. In the field 

of survival analysis, Huilin et al. (2015) [17] introduced models of condition-based 

maintenance (CBM), and Laggounea et al. (2010) [24] developed a preventive 

maintenance model to coordinate component replacements in a multi-component system.  

A standard study and advance problems of maintenance policies for reliability systems 

can be seen in Nakagawa (2005) [39]. Zhong and Jin (2014) [73] included preventive 

maintenance in a cold standby two-component system, using semi-Markovian processes. 

In order to keep components running properly, the working component receives periodic 

preventive maintenance. An optimal replacement policy was developed by Zhang and 

Wang (2011) [72] to cope with a deteriorating system with multiple types of failures. 

Under this approach, the application of an optimal replacement policy ensures that the 

long-run expected reward per unit of time is maximised. Qiu et al. (2017) [49] recently 

studied optimal maintenance policies for a competing-risk repairable system with a 
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working state and a general number of failure modes undergoing periodic inspections, 

and Daneshkhah et al. (2017) [9] has developed probabilistic sensitivity analysis methods 

to study the sensitivity of optimised preventive maintenance decisions. Many models 

have been proposed to evaluate the reliability of fault-tolerant systems subject to external 

shocks and internal degradation. For example, a generalised reliability system subject to 

degradation processes and to cumulative damage from external shocks was developed by 

Li and Pham (2005) [28]. In a related field, , Liu et al. (2016) [33] analysed the reliability 

of memory chips subject to a single-event upset and to a total ionising dose effect. 

Preventive maintenance has also been described by Ruiz-Castro (2013, 2014) [53, 56] for 

use in complex systems, with either a multi-state unit or with a general set of cold 

standby multi-state units.  

One interesting aspect in this work is the following. In reliability studies, it is usually 

assumed that when a system unit undergoes a non-repairable failure it is replaced by a 

new one within a negligible time. This assumption, however, is not always realistic. 

Another, perhaps more practical option, is that of redundant systems, in which a unit that 

undergoes a non-repairable failure will not be replaced while the system is operational. 

This situation has been analysed for different redundant multi-state systems (Ruiz-Castro, 

(2018) [52]; Ruiz-Castro and Fernández-Villodre, (2012) [63]). 

Phase type distribution and Markovian arrival processes 

When complex multi-state systems are modeled, the development and measures 

associated have intractable expressions of highly complex applicability and 

interpretation. A good way to analyze mathematically complex systems is through phase-

type distributions and Markovian Arrival Processes thanks to the good properties and the 

algorithmic matrix form.  

In reliability, in the continuous case, there are several distributions that are frequently 

used in practice, such as the exponential, Erlang and Weibull distributions. The latter 

involves calculations that are, in fact, unmanageable, due to the analytic expression. 

Phase-type (PH) distributions play an important role in this way. This class of 

distributions was introduced by Neuts (1975) [44], describe in detail by Neuts (1981) 

[42], and has been applied in fields such as reliability and queuing theory. One important 
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property is that the set of PH-distributions is dense in the set of probability distributions 

on the nonnegative half-line. Then, when general distributions are present in the system, 

they can be approximated through phase-type distributions. Some well-known discrete 

probability distributions, such as geometric distribution, negative binomial distribution, 

…, are phase type and in the discrete case the approximation is equivalence. All discrete 

distributions with finite support can be represented by discrete-phase (PH) distributions. 

Thus, any discrete distribution with finite support is phase-type distributed. Multiple 

redundant multi-state systems have been modelled by considering phase-type 

distributions. Ruiz-Castro and Li (2011) [62] modelled a multi-state k-out-of-k: G system 

where the embedded lifetimes are PH-distributed. 

A MAP is a well-structured counting process that enables reliability modelling to be 

developed in an algorithmic and computational form. This class of process, which is 

related to PH distributions, was introduced by Neuts (1979) [41] and comprehensively 

reviewed by Artalejo et al. (2010) [2]. The MAP has attractive properties from the 

viewpoint of stochastic point processes. It is one of the most general classes of stochastic 

counting processes and contains many commonly-used arrival processes such as the 

Poisson process, the PH renewal process and the Markov-modulated Poisson process 

(MMPP). Moreover, the MAP is dense, meaning it can approximate an arbitrary 

stochastic point process to a given degree of accuracy. It has been applied in fields such 

as telecommunication and traffic queuing systems, reliability and industrial engineering.  

Two special cases of this process are Batch MAP (BMAP) and Marked MAP 

(MMAP). In the first case, arrivals in batch are allowed, and in the second, several types 

of arrivals are counted. In all cases, the arrival rates of events can be customised for 

different situations, which highlight the inherent versatility of this class of processes. In 

recent studies, He (2014) [16] and Alfa (2016) [1] presented the main results associated 

with MAP. In that work he developed the theory of MAPs in an intuitive way, observing 

that MAPs with marked arrivals, or MMAPs, are an extension of MAPs when marked 

arrivals occur. A disadvantage of using MMAPs is the parameterisation effort required. 

This problem was analysed by Buchholz et al. (2014) [6], who made several proposals on 

how to estimate the parameters encountered in real problems. The problem for the 

identifiability for the two-state Markovian arrival process is analysed by Ramírez-Cobo 
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et al. (2010) [50] and the non-stationary version of MAPs is considered by Rodríguez 

(2015) [51]. An MMAP enables us to model complex multi-state systems in a well-

structured way, and to obtain results in an algorithmic and computational form. This 

approach is of interest in telecommunication, where different types of events are counted. 

In this respect, approaches based on PH and the MAP have been extensively considered 

in reliability studies. 

This class of counting processes makes it possible to model complex systems with 

well-structured results, thanks to their matrix-algebraic form. Many reliability systems 

have inputs to the system over time, such as a repairable failure, a non-repairable failure, 

preventive maintenance or an external shock. When a multi-state system is considered, 

the number of events over time can be modelled through a Markovian arrival process 

(MAP). A warm standby system, considering a MMAP, was recently analyzed by Ruiz-

Castro (2016a) [54]. Ruiz-Castro (2016b) [55] modelled redundant complex MSS with 

different types of events, considering PH and MAPs, while Okamura et al. (2009) [46] 

addressed a parameter estimation problem of the MAP by proposing a numerical 

procedure for fitting a MAP and a MMPP in order to group data with an algorithm based 

on the expectation-maximisation (EM) approach.   

Discrete time  

Most queueing and reliability models in the literature before the early 1990s were 

developed in continuous time. Only the models such as the M/G/1 and GI/M/1 that were 

based on the embedded Markov chains studied the systems in discrete times. Such 

models were well studied in the 1950s (Kendall (1951) Kendall (1953) [20, 21]). The 

discrete time models developed before then were few and far between. The other discrete 

time models that were later studied are those by Galliher and Wheeler (1958) [14], 

Dafermos and Neuts (1971) [8], Neuts and Klimko (1973) [45], and Minh (1978) [37], 

just to name a few. However, researchers then did not see any major reasons to study 

queues in discrete time, except when it was felt that by doing so made difficult models 

easier to analyze. Examples of such cases include the embedded systems and the queues 

with time-varying parameters. Modelling of a communication system is an area that uses 

queueing models significantly and continuous time models were seen as adequate for the 
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purpose. However now that communication systems are more digital than analogue, and 

we work in time slots, discrete time modelling has become more appropriate. Hence new 

results for discrete time analysis and books specializing on this approach are required. 

Time is a continuous quantity, however, for practical measurement related purposes, this 

quantity is sometimes considered as discrete, especially in modern communication 

systems where we work in time slots. If for example we observe a system every minute, 

how do we relate the event occurrence times with those events that occur in between our 

two consecutive observation time points? This is what makes discrete time systems 

slightly different from continuous time systems. Besides most models, for practical large 

systems, end up getting solved using numerical methods. Most numerical methods 

usually require some form of discretization. Therefore, reliability modelling in discrete 

time is necessary. In this respect, it is important to note that discrete time is not an 

immediate consequence of continuous time, and that relatively little research has focused 

on this question. In fact, discrete case is more difficult in the most of the cases given that 

events can occur simultaneously. 

Reliability systems that evolve in discrete time have been proposed to analyse the 

behaviour of devices in fields such as civil and aeronautical engineering. Thus, 

Warrington and Jones (2003) [66] proposed a method that integrates discrete event 

simulation with path sets to achieve a dynamic system. This method was applied to the 

analysis of Tornado aircraft movements. In the software reliability engineering literature, 

studies of the fault debugging environment have been made using discrete-time 

modelling. A discrete-time model suitable for a periodic debugging schedule, describing 

maximum likelihood estimation for the model parameters, was presented by Dewanji et 

al. (2011) [11]. Another discrete-time model of software reliability for such a scenario of 

periodic debugging has been developed by Das et al. (2016) [10]. Discrete-time non-

homogeneous Poisson process-based software reliability models must be developed and 

formulated taking into account the diversity of debugging scenarios. In this respect, 

Shatnawi (2016) [65] provides a new insight into the development of discrete-time 

modelling in software reliability engineering. Semi-Markov processes have also been 

considered to model discrete-time reliability systems (Barbu and Limnios (2008) [3], 

Georgiadis and Limnios (2014) [15]). Also, redundant Markovian multi-state systems 
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have been studied in discrete time (Li et al. (2017) [29], Ruiz-Castro and Li (2011) [64]). 

Therefore, reliability modelling in discrete time is necessary. In this respect, it is 

important to note that discrete time is not an immediate consequence of continuous time, 

and that relatively little research has focused on this question. 

Project aims 

The overall aim of this project is to model complex systems that evolve in discrete time 

through Markovian Arrival Processes with marked arrivals (D-MMAP) in an algorithmic 

and computational form. These systems are subject to several types of failure, repairable 

and/or non-repairable, as a consequence of internal wear or external shocks. Random 

inspections are included in the models and preventive maintenance is carried out as a 

consequence of this. Loss of units is introduced; i.e. each time that a non-repairable 

occurs, it is removed and no replaced. Variable numbers of repairpersons are considered; 

i.e. each time that a non-repairable occurs, (the number of repairpersons changes and 

depends on the number of units in the system). The system will be optimised by 

considering two different standpoints: the profitability of preventive maintenance and the 

number of repairpersons present according to the number of units in the system.  

In particular, the following complex multi-state systems are developed; complex 

one-unit system, complex cold standby systems, complex warm standby systems and k-

out-of-n: G system, in a well structured and algorithmic form. The following aspects are 

analyzed for each system proposed. 

 The system is subject to multiple failure factors (internal and accidental external 

failures, repairable or non-repairable). 

 Preventive maintenance is included as a consequence of random inspections. 

 We build new models with loss of units and with a non-fixed number of 

repairpersons. The number of repairpersons will vary according to the number of 

units in the system. 

 Phase type distributions and D-MMAPs are considered in the modelling. Thus, the 

results are given in an algorithmic and computational way.  

 A transient analysis is carried out and the stationary distribution is worked out by 

considering matrix analytic methods. 
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 For both cases, transient and stationary regime, several reliability measures of interest 

such as the availability, reliability, conditional probability of different types of 

failures, etcetera are calculated in a well-structured way. 

 Rewards and costs are included in the models to optimize the behavior of the system 

according to preventive maintenance and number of repairpersons. 

 All results are expressed in algorithmic and computational form and they have been 

implemented computationally with Matlab. 

Structure of the work 

This work has been performed in a sequential form, from a multi-state complex one-unit 

system to complex redundant systems. 

 Chapter 1 presents the basic theory that is going to play an important role 

throughout this work. Phase type distributions, Markovian Arrival Processes, 

BMAP, MMAP, Costs, etc will be introduced in this chapter. 

 Chapter 2 analyzes the behavior of one unit multi-state dynamic system subject to 

multiple events through a Markovian arrival process with marked arrivals 

(MMAP). This study considers if preventive maintenance is profitable or not, and 

also shows how the system can be optimised according to its internal performance 

and the external cumulative damage states revealed by inspection. A numerical 

example, optimising the system by determining the optimum states from an 

economic standpoint, illustrates the versatility of the model proposed. The results 

achieved in this chapter were presented at the conference. 

  

 SEIO 2018 (J.E. Ruiz-Castro and Mohammed Dawabsha (2018). [60]). A 

Markovian arrival process with marked transitions to model multi-state 

complex system subject to multiple events. 

 

This chapter is submitted to be published to the journal (2nd revision), 
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 Discrete Events Dynamic Systems (Ruiz-Castro and Mohammed Dawabsha, 

2017). A discrete MMAP for analysing the behaviour of a multi-state complex 

dynamic system subject to multiple events. 

 Chapter 3 describes cold standby systems with multiple variable repairpersons, 

evolving in discrete time. The online unit works as the one of chapter 2. This 

complex system is modelled by a MMAP in an algorithmic and computational 

form. Two interesting contributions are made in the present study. The number of 

repairpersons is indeterminate and variable depending on the number of units in 

the system. This chapter has been published in the journal,  

 

 Reliability Engineering and System Safety (Ruiz-Castro ; Mohammed 

Dawabsha, and  Francisco Javier Alonso (2018). [62]). Discrete-time 

markovian arrival processes to model multi-state complex systems with loss of 

units and an indeterminate variable number of repairpersons. 

DOI: 10.1016/j.ejor.2018.02.019 

 

And the contents of the chapter were presented at the international 

conferences, 

 

 MMR 2017 (Ruiz-Castro and Mohammed Dawabsha (2017). [59]). Modeling 

a redundant multi-state system with loss of units through a MMAP. 

 EMS 2017 (Ruiz-Castro and Mohammed Dawabsha (2017). [57]). A 

Markovian arrival process with marked transitions to model a complex system 

with loss of units. 

 Chapter 4 shows complex multi-state warm standby systems subject to different 

types of failures with loss of units. In this study we extend chapter 3 to the warm 

standby case. We model general reliability systems and associated measures to 

analyse the behaviour and effectiveness of preventive maintenance depending on 

the number of repairpersons and net rewards. The content of this chapter was 

presented at the international conference,  



XII 

 

 CMStatistics2017 (Mohammed Dawabsha and Ruiz-Castro (2017). [58].   

Modeling a complex multi-state warm standby system with loss of units 

through a D-MMAP. 

 Chapter 5 describes a multi-state complex k-out-of-n: G system with loss of units. 

Due to the complexity of this model, this chapter is a first step to model a 

complex system where each unit has similar features than the online units 

described in previous chapters. Several interesting reliability measures are 

obtained, for both transient and stationary regime. A numerical example is given 

to show the versatility of the model. The contents of this chapter has been 

published as chapter of book in,  

 Reliability Engineering. Theory and Applications. Taylor and Francis (Ruiz-

Castro and Mohammed Dawabsha (2018) [61]). Modelling a multi-state k-out-

of-n: G system with loss of units. 
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Chapter 1  
 

Preliminaries 
 

1.1 Introduction 

In this chapter we first provide the basic definitions for discrete-time Markov-chains and 

several results are given for absorbing Markov chains. Costs and rewards are introduced 

in an algorithmic matrix form. Phase type distributions and an introduction to the 

Markovian Arrival Processes are given. We discuss the basic concepts of Batch 

Markovian arrival processes (BMAPs) and marked Markovian arrival Process (MMAP). 

1.2. Discrete-time Markov chains 

This section concerns discrete-time Markov chains (DTMC) defined on a finite state 

space with order m+a. These Markov chains are assumed to be homogeneous. 

1.2.1 Definitions 

The basic concepts about a discrete-time Markov chain are given in this section. 

Definition 1.1. (Discrete-time Markov chain) A stochastic process  on state 

space E is said to be a Dicrete-Time Markov Chain if, for any integer n and for all in+1, in, 

…, i0 in E, 

   1 1 1 1 0 0 1 1| , , , |n n n n n n n n n nP X i X i X i X i P X i X i            . 

This Markov chain is said to be homogeneous if for any n = 0, 1,… and for any i and j in 

E, then 

 ; 0nX n 
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. 

Sometimes the Markov property is described in words as “given the present state of the 

system, the future state is independent of its past”. The probability pij is called one-step 

transition probability of the DTMC and it can be expressed as an element of the one-step 

transition probability matrix. If the finite state space is given by E={1, 2, …, m+a}, this 

matrix is defined as a (m+a) x (m+a) matrix as follows, 

11 12 13 1,

21 22 23 2,

31 32 33 3,

,1 ,2 ,3 ,

m a

m a

m a

m a m a m a m a m a

p p p p

p p p p

p p p p

p p p p







    

 
 
 
 
 
 
 
 

P





    


. 

Clearly, each element of this matrix is greater or equal than zero and the addition of each 

row is equal to one (stochastic matrix). And reciprocally, any square matrix, with both 

properties mentioned above, can be thought of as a transition probability matrix of a 

DTMC. 

It is of interest to work out the probability of occupying a determinate state after n 

steps given the initial state. It is named as the n-step transition probability. This 

probability is, 

  ( )
0| n

n ijP X j X i p   . 

The n-step transition probability matrix is the matrix whose elements are ( )n
ijp . Then, 

 

( ) ( ) ( ) ( )
11 12 13 1,
( ) ( ) ( ) ( )
21 22 23 2,
( ) ( ) ( ) ( )
31 32 33 3,

( ) ( ) ( ) ( )
,1 ,2 ,3 ,

n n n n
m a

n n n n
m a

n n n n n
m a

n n n n
m a m a m a m a m a

p p p p

p p p p

p p p p

p p p p







    

 
 
 
 
 
 
 
 

P





    


. 

The n-step transition probability matrix can be worked out from the well-known 

Chapman-Kolmogorov equation, ( ) ( ) ( )n n P P P  for any integer  less or equal to n. 

   1 1 0| |n n ijP X j X i P X j X i p      
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Given that (2) 2P P , by a simple induction, we will know ( )n nP P  holds for any non-

negative integer n. 

If the initial distribution of the process is known,  1, , m ab b b   where 

 0ib P X i   for i = 1,…, m+a, then the probability  ( )n
j nb P X j   for all j in E and 

n  0 (transient distribution of the process) can be calculated as the j-th element of the 

following vector, 

( ) (0) ( ) (0)n n n b b P b P . 

1.2.2 Occupancy times 

The occupancy time is the expected amount of time the DTMC spends in a given state 

during a given interval of time. Let Nj(n) be the number of times the DTMC visits state j 

over the time {0, 1, 2, … , n} and the expected value when the DTMC was in state i 

initially,     0|ij jm n E N n X i     . Then, the occupancy times matrix, whose 

elements are mij(n), is given by 

 
0

n
r

r

n


 M P  . 

1.2.3 Limiting, stationary and occupancy distributions 

We assume a DTMC with finite state space E. In this section we study the limiting 

behavior of Xn as n tends to infinity, the stationary distribution and the occupancy 

distribution and when they exist. Definitions are given and then existence and uniqueness 

results are shown. 

Definition 1.2.  The limiting or steady-state distribution (if it exists) is defined as 

 1, , ,m m a   π   where  limj nn
P X j


    for j in E. 

Definition 1.3. A distribution  1, , ,m m a   π   is called stationary distribution if 

   0  for all 1      for all 1  and 0i n iP X i i m a P X i i m a n               . 
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Definition 1.4. A distribution  1, , ,m m a   π   is called occupancy distribution if 

  
lim

1
j

j n

E N n

n
 


. 

This value can be interpreted as the long-run fraction of the time the DTMC spends in 

state j. 

The following property plays an important role in the analysis of the existence and 

uniqueness of these distributions.  

A DTMC is called irreducible if, for every i and j in E, there is a k > 0 such that 

 0| 0kP X j X i   . This condition holds if and only if it is possible to go from any 

state i to any state j in one or more steps. 

A DTMC is periodic with period d if d is the largest integer for all i in E such that 

 0| 0  is an integer multiple dnP X i X i n    . 

If d = 1 then the DTMC is called aperiodic. 

The following result shows the existence and uniqueness for finite DTMC. A finite 

state irreducible aperiodic DTMC has a unique limiting distribution and it coincides with 

the stationary and occupancy distribution. This one is the solution of the equation system 

πP π  and 
1

1
m a

i
i





  . 

1.2.4. Costs 

Throughout this work, costs are included in the models to study the effectiveness from an 

economic standpoint. It has been performed by using the following results for a DTMC. 

Let nX  be the state of a system at time n. We assume that  ; 0nX n   is a discrete time 

markov chain on state space with transition probability matrix P. Assume the system 

incurs a random cost of ( )C i  monetary units every time it visits the state i. Let 

( ) ( ( ))c i E C i  be the expected cost incurred at every visit to state i. Despite our thinking 
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of ( )C i  as a cost per visit, it may be any other quantity, like reward per visit, loss per 

visit, profit per visit, etc. (Kulkarni, 1999, [23]). 

1.2.4.1 Expected Total Cost over a finite Horizon 

In this subsection a way to develop methods of computing expected total cost (ETC) up 

to a given finite time n, called the horizon. The cost incurred up to time n is given by  

                                                          
0

r

n

r

C X

 ,                                                                                                   

and the expected value up to time n when X0 = i  for 1 i m a   can be expressed as 

                                   0
0 1

( , ) . ( )
n m a

r ij
r j

g i n E C X X i m n c j


 

 
   

 
  ,                                                                

where c ( j ) is the cost produced each time that the state j is visited. 

This result can be expressed in a matrix form as  

   
0

n
r

r

n ng M c P c


    , 

where  

 
 

 

1,

2,

,

g n

g n
n

g m a n

 
 
   
   

g


 and 

 
 

 

1

2

c

c

c m a

 
 
   
   

c


. 

1.2.4.2 Long-Run Expected Cost per unit time  

In reliability is important to study the net reward or cost per unit of time. Thus, the 

measure worked out in section above can be expressed per unit of time as 
 ,

1

g i n

n 
. When 

n tends to infinity this measure is the long-run cost rate. It can be proved that this value is 

given by 
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     
1

,
lim

1

m a

j
n

j

g i n
g g i c j

n






     
  π c , 

being  the stationary distribution of the DTMC.  

1.2.5 Absorbing Markov Chains 

A Markov chain with at least one absorbing state is called an absorbing Markov chain. If 

the state space is finite all the states are absorbing or transient. We assume that there are a 

absorbing states and m transient states. Then, the transition probability matrix associated 

to the Markov chain can be expressed by considering matrix blocks in the following way 

0 
   
 

T T
P

0 I
 , 

where T is a square matrix with order m whose elements are the transition probabilities 

between any two transient states, I is the identity matrix with order a, and T0 is a matrix 

with order m x a that contains the one-step transition probabilities from a transient state 

up to an absorbing one. The matrix T is a sub-stochastic matrix given the structure of the 

matrix P and given that the states related to T are transient, the matrix IT is non-

singular. 

Several characteristics of an absorbing Markov chain are shown next. 

 Time to absorption and state of absorption. In an absorbing Markov chain the 

absorption occurs with a probability equal to one. Let B(n) a matrix whose element (i, 

j) is the probability that the process is absorbed into state j at the n-th step, given that 

initially the process started in state i. Then, 

  1 0  ;   1n n n B T T  . 

Let B a matrix whose element (i, j) is the probability that the process eventually gets 

absorbed in state j given that initially the process started in the transient state i. Then, 

    11 0 0

1 1

n n

n n

 


 

    B B T T I T T . 

 Mean time to absorption. Let D be the matrix whose element (i, j) is the mean time 

to absorption in state j given that initially the process started in the transient state i. 

This measure is given by 
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    21 0 0

1 1

n n

n n

n n
 



 

    D B T T I T T . 

Given the initial distribution, b, the mean time to absorption by any absorbing state is 

given by 

  2 0 bDe b I T T e .1 

Given that the matrix P is a stochastic matrix, then it is clear that  0  T e I T e .             

Therefore,  

  1 bDe b I T e . 

1.3 Discrete phase-type (DPH) distributions 

Phase-type distributions were introduced by Neuts (1975) [44] as a generalization of the 

exponential distribution, and are getting to be very commonly used these days after Neuts 

(1981) [42] made them very popular and easily accessible. They are often referred to as 

the PH distribution. The PH distribution class is a highly versatile class of probability 

distributions. It is well known that the main barrier to the explicit solution of even very 

simple stochastic models is the increasing complexity of the conditional probability 

distributions that arise in their analysis. The pervasiveness in stochastic modeling of the 

exponential distribution and of the related Poisson process is rarely due to persuasive 

empirical evidence in support of their assumption, but, far more so, to the ease of 

conditioning which results from the lack-of-memory property. Many well known 

distributions are PH. In fact, Johnson and Taaffe (1989) [18] have shown that most of the 

commonly occurring distributions can be approximated by the phase type distributions 

using moment matching approach based on three moments. The approach is based on 

using mixtures of two Erlang distributions - not necessarily of common order. They seem 

to obtain very good fit for most of the cases which they studied. There are other works by 

Telek and his team for the fitting discrete PH (Bobbio et al (2004) [5]). 

                                                            
1 Throughout this work the vector e and ea denotes a column vector of ones’s with appropriate order and a 
column vector of one’s with order a, respectively.  
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1.3.1 Definition 

We consider a Markov process on the states {1,…, m+1} with transition probability 

matrix 

0

1

 
   
 

T T
P

0
, 

where T is a square matrix with order m and T0 is a matrix with order m x 1 that contains 

the one-step transition probabilities from a transient state up to the absorbing one2. Let  

be the initial distribution for the transient states (we assume that e=1).  

Definition 1.5. A probability density  kp  on the set of nonnegative integers is called a 

discrete phase type (DPH) distribution if it is the density of the time until absorption in an 

absorbing finite state Markov chain.  

The pair  ,α T  is called the representation of DPH and m is the order of the phase 

type distribution. The probability mass function of the time until absorption is given by 

for 1 0,    for   1k
kp k αT T . 

The value 0p  is the probability that the process is initially in the absorbent state (in this 

work we suppose that it is equal to zero) while kp  is the probability of absorption at time 

k. 

Its probability generating function and the factorial moments are given by  

1 0( ) ( )H z z z  α I T T , for 1z   and   1(1) ! ( )k k kH k   αT I T e ,  

respectively.  

It follows that the mean time to absorption is 1( )  α I T e . 

1.3.2 Some properties of Phase Type distributions 

Some well-known discrete distributions are phase type. Some of them are degenerate 

distribution, geometric distribution, negative binomial distribution and mixed geometric 

distribution. But, not only some well-known distributions are phase type, but also any 

general discrete distribution with finite support is a PH distribution.   

                                                            
2 Throughout  this work, given a matrix A the column vector A0 is defined as A0=Ae 
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A number of operations on PH lead again to distributions of phase type. Let X and Y two 

PH distributions with representation  ,α T  and  ,β S  respectively. Then, 

1. The sum is a PH distribution with representation  , U  where  ,  α 0  and 

0 
  
 

T T β
U

0 S
 . 3 

2. The mixture with 0 1i    for i = 1, 2 and 1 2 1   , is PH distributed with 

representation  , U  where  1 2,   α β  and 

 
  
 

T 0
U

0 S
. 

3. The minimum is a PH distribution with representation  , U  where    α β  and 

 U T S . 

4. The maximum is a PH distribution with representation  , U  where  ,  α β 0  and  

0 0   
 

  
 
 

T S T S T S

U 0 S 0

0 0 T

. 

These results can be extended to the case of any finite number of PH distributions.  

1.4 Phase type renewal process 

Renewal processes have been analyzed extensively in the literature.  

Deninition 1.6. A counting process  ; 0N   is called a renewal process if the inter-

event times  ; 1X    are independent and identically distributed. 

Phase type distributions are distributions of the time until the absorption in an 

absorbing Markov chain. If after absorption the chain is restarted, then it represents the 

distribution of a renewal process. Let N be the number of renewals in the interval (0, ) 

and J the phase of the PH distribution at time . Then, if we define 

   0 0, , | 0,ijp k P N k J j N J i        , 

                                                            
3 Given the matrices  ijaA  and B, with order m x n and  p x q respectively, the Kronecker product 

AB is a matrix with order mp x nq defined as  ija A B B . 



10                                                                                                                                                   Preliminaries                                    
 

 

as the element (i, j) of the matrix P(k, ), then we have 

 0,0 P I , 

   0, 1 0,    ;    0      P T P  

     0, 1 , + 1,    ;    1, 2,...   ;    0k k k k         P T P T αP . 

The probability generating matrix function is defined as 

   *

0

, ,    ;    0k

k

z z k




    P P   and |z|<1 

then 

   * 0,    ;    0z z


    P T T α   and |z|<1. 

The mean number of events up to time  is given by 

       
0* 1

0 0

1 01
1

,
,    ;    1

k

k kz
z

zz
k k

z z


 

 


  
       

  
T T αP

α P e α e α e α T T α T αe . 

If initially the process begins in a transient state with probability equal to one then this 

mean number is  
1

0 0

0

  ;    1
k

k





  α T T α T . 

The matrix * 0 T T T α  is a stochastic matrix that represents the transition matrix 

of the phase process associate with this process. 

1.5 Discrete Time Markovian Arrival Processes (DMAP) 

The phase type renewal process can be extended to the case when inter-events times are 

correlated with tractable mathematically results. The resulting model is denoted as 

Markovian Arrival Processes (MAPs). Earlier Neuts (1979, 1992) [41, 43] and Lucantoni 

(1991) [34] presented the Markovian arrival process (MAP). MAPs are a very flexible 

with interesting computational and algorithmic properties.  

Define two sub-stochastic matrices 0D  and 1D , both of the dimensions n. The 

elements 0( )ijD  refer to transition from state i to state j without an (event) arrival because 
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the transitions are all within transient states. The elements 1( )ijD  refer to transition from 

state i  into the absorbing state 0 with an instantaneous restart from the transient state j  

with an (event) arrival during the absorption. The matrix D0+D1 is a stochastic matrix and 

we assume that it is irreducible. Let N be the number of arrivals up to time , and  I the 

state of the Markov process at time . 

Definition 1.7. Define  , ; 0N I     as a discrete time Markov chain with state space

   0,1,2, x 1, 2, , n  , where n is a positive integer, and transition probability matrix 

0 1

0 1

0 1=

 
 
 
 
 
 
 
 

D D

D D

P D D . 

Assume that 0 0N  . Then  , ; 0N I     is called a Markovian arrival process (MAP) 

with representation 0 1( , , )α D D , being  the initial distribution for {I ;   0}. 

If we define 

   0 0, , | 0,ijp k P N k J j N J i        , 

as the element (i, j) of the matrix P(k, ), then we have 

 0,0 P I , 

    00, 1 0,    ;    0      P P D  

     0 1, 1 , + 1,    ;    1, 2,...   ;    0k k k k          P P D P D , 

where I is the identity matrix and  ,k  P 0  for k  ≥  + 1.  

The matrix probability generating function is  

   *
0 1,    ;    0z z

    P D D , z 1 . 

The mean number of events up to time  is given by 

     * 1
0 1

1
1 01 1

,
,    ;    1k

k kz z

z z
k k

z z

 

  

   
      

  
P D D

α P e α e α e α D D e , 
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where 0 1 D D D .  

1.6 Discrete Time Batch Markovian Arrival Processes (BMAP) 

The Markovian arrival processes are extended by considering batch arrivals. Define sub-

stochastic matrices kD , k = 0, 1, 2, …, m, such that 
0

m

k
k

D D  is stochastic and 

irreducible. The elements  k ij
D refer to transition from state i  into the absorbing state 0 

with an instantaneous restart from the transient state j  with k (event) arrival during the 

absorption. Let N be the number of arrivals up to time , and  I the state of the Markov 

process at time . 

Definition 1.8. Define   , ; 0N I     as a discrete time Markov chain with state space

   0,1,2, x 1, 2, , n  , where n is a positive integer, and transition probability matrix 

0 1

0 1=

m

m

 
 
 
 
 
 

D D D

D D D
P




   
  

. 

Assume that 0 0N  . Then   , ; 0N I     is called a Batch Markovian Arrival Process 

(BMAP) with representation  0 1, , ,..., mα D D D , being  the initial distribution for {I ;   

0}. 

If we define 

   0 0, , | 0,ijp a P N a J j N J i        , 

as the element (i, j) of the matrix P(k, ), then we have 

 0,0 P I , 

    00, 1 0,    ;    0      P P D  

   
 min ,

0

, 1 ,
m a

k
k

a a k


     P P D . 

The matrix probability generating function is  
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 *
0

1

,    ;    0
m

k
k

k

z z




 
     

 
P D D , z 1 . 

The mean number of events up to time  is given by 

   * 0 1
1

1 0 11

1

,
,    ; 1.

m
k

k m
k k

l
k k lz

z

z
z

k k l
z z



 


  



                 


  

D D
P

α P e α e α e α D D e

If we define  such that 

πD π   , πe e . 

then the mean number of events up to time   in stationary regime is given by 

1

  ; 1.
m

l
l

l


   πD e  

 

1.7 Marked Markovian Arrival Processes (MMAP) 

Markovian Arrival processes with marked arrivals (MMAP) are generalizations of 

BMAPs that accommodate processes with different types of events. Define sub-stochastic 

matrices  0;h h CD  such that 
0

h
h C

 D D  is stochastic and irreducible. The elements 

 h ij
D refer to transition from state i  into the absorbing state 0 with an instantaneous 

restart from the transient state j  with one (event) arrival type h during the absorption. Let 

{ ( ); 0}hN     and { ( ); 0}X     be the number of events of type 0h C  (C0 being the 

set composed of all types of events) and the underlying Markov process associated with 

the MMAP respectively.  

Definition 1.9. The process   0( ), , ( )  ;  0hN h C X       is called MMAP. 

To analyse the number of events in [0, ], several functions must be defined. The 

probability distribution of the MMAP is given by the matrix 

 0 0({ , }, ) { ( ) , ( ) , | (0) }h h hn h C P X j N n h C X i        P . 

The joint probability generating function for the number of arrivals in [0, ] is defined as 
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0 0

* 0 0

{ 0, }

({ , }, ) ({ , }, ) h

h

n
h h h

n h C h C

z h C n h C z
  

     P P . 

The MMAPs are used throughout this work and the main results have been developed for 

discrete case in Section 2.5.  
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Chapter 2  
 

A multi-state dynamic one-unit system subject 

to multiple events 
 

2.1 Introduction 

The present chapter focuses on modelling a complex multi-state system that evolves in 

discrete time through a Markovian arrival process with marked arrivals (MMAP). This 

system is subject to several types of failure, repairable and/or non-repairable, as a 

consequence of internal wear or external shocks. Random events occur over time and if 

they impact on the system, diverse consequences can occur, including deterioration of 

internal performance, extreme failure or cumulative external damage. The internal 

performance state and that of cumulative external damage are partitioned according to the 

risk of failure: minor or major. Preventive maintenance is introduced, in conjunction with 

random inspection. If major internal or external damage is observed, the unit is sent to the 

repair facility for preventive maintenance. If a repairable failure occurs the unit is sent to 

the repair facility for corrective repair. The corrective repair and the preventive 

maintenance times have different distributions depending on the system state at which it 

failed or was observed. When a non-repairable failure occurs the device is replaced by an 

identical one. In this study, measures such as reliability, availability and expected number 

of events over time are obtained, and the correlation coefficient between two different 

types of events is determined and applied. Rewards and costs depending on the system 

state at which it failed or was inspected are included in the model. The model determines 

when preventive maintenance should be applied to optimise the behaviour of the system, 
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from different standpoints. The modelling and the results obtained are presented in a 

matrix-algorithmic computational form, and are implemented computationally with 

Matlab. 

2.1.1 Motivation and contribution 

The model we present can be applied in fields such as civil, industrial and computer 

engineering. For instance, in computer engineering, the hard drive attached to a computer 

server is periodically inspected by an installed monitoring program that analyses logic 

and physics parameters to detect possible errors caused by internal and external events. In 

industrial engineering, any facility that requires a reliable electrical supply must have 

available generating sets capable of generating electricity in case of need. A genset is a 

diesel motor with a generator subject to repairable or total failures, for which preventive 

maintenance is necessary.  

An interesting situation that can arise regarding preventive maintenance in the 

context of complex systems in which different types of failure may occur is when 

inspection reveals major damage to the system, which must then go to the repair facility 

for preventive maintenance, where different cost and time distributions may be present. 

We analyse this question by considering optimisation from the standpoints of cost and 

reliability.  

This study extends previous research in this area in the following ways:  

 The system passes through an indeterminate level of degradation, associated with 

its performance status. The unit is subject to failures that may be repairable or 

non-repairable, internal or external shocks. 

 External shocks can produce consequences such as extreme failure, cumulative 

external damage (a non-repairable failure if a threshold is reached), and 

aggravation of the internal degradation or internal failure.   

 Preventive maintenance is performed in response to random inspections. 

 The major and minor states for internal performance and cumulative external 

damage can vary in number. 
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 The repair time distribution depends on the internal degradation status of the 

system. 

 The preventive maintenance time distribution depends on the internal degradation 

and external cumulative damage observed by inspection.  

 All results are expressed in algorithmic form, with PH distributions and 

Markovian Arrival Processes, with marked arrivals in discrete time (D-MMAP). 

 Transient and long-term algorithmic analyses are performed. The stationary 

distribution is constructed using matrix analytic methods. 

 Rewards and costs of repair and preventive maintenance, depending on the system 

state at which the unit failed or was inspected, are included. 

 In addition to the optimisation analysis performed with respect to preventive 

maintenance, we also calculated the optimum internal status and the optimum 

level of external cumulative damage when preventive maintenance should be 

carried out.  

 

         This chapter is organised as follows. The system and its modelling are described in 

Section 2.2. The MMAP that governs the system is given in Section 2.3. The following 

section presents the transient and stationary distributions in an algorithmic form. 

Measures such as reliability, availability and the analysis of the time between events are 

addressed in Section 2.4. Section 2.5 then focuses on the mean number of events and 

correlations. Rewards are considered in Section 2.6, after which in Section 2.7 we 

analyse the optimisation process. A numerical example to illustrate the versatility of the 

model is given in Section 2.8. Finally, an Appendix is given in Section 2.9. 

 2.2 The system and the model 

In this section, the assumptions underlying the system are described in detail. To model 

the system, the state-space must be well structured and so the system behaviour is 

modelled in a matrix-algorithmic form. 
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2.2.1 Assumptions of the system  

We assume a multi-state complex system subject to repairable and/or non-repairable 

internal failures, external shocks and inspections. The internal performance of the system 

is composed of several states which are partitioned into two well-differentiated groups: 

minor and major damage states, which reflect a low and high risk of failure, respectively. 

From each of these operational states a repairable or non-repairable failure may occur. 

The unit is also exposed to external shocks. When a shock occurs and the system is 

operational, it may undergo one of three possible consequences: internal deterioration, 

cumulative external damage or extreme failure. Each time an external shock takes place, 

the cumulative external damage increases by passing through an external damage state. 

When the cumulative external damage reaches a given threshold, the unit undergoes a 

non-repairable failure. In addition, when the unit undergoes an internal repairable failure, 

the system is sent to the repair facility for corrective repair. Analogously to the internal 

case, the cumulative external damage states are partitioned into minor and major damage 

states. Finally, an external shock may produce an extreme non-repairable failure. After a 

non-repairable failure, whether internal or the consequence of an external shock, the unit 

is removed and replaced by an identical one. Preventive maintenance is introduced into 

the system in response to random inspections, of which periodic inspection is a particular 

case. When an inspection takes place, the internal and the cumulative external damage 

states are observed. If a major internal or cumulative external damage state is observed, 

the unit is sent to the repair facility for preventive maintenance. The time distributions for 

repairs and preventive maintenance depend on the system state when inspection was 

performed. The repair facility is staffed by one repairperson. The system is based on the 

following assumptions. 

Assumption 2.1. The internal operational time of the unit system is PH-distributed with 

representation (, T) with order n. The n operational states are partitioned into minor 

damage states (the first n1 states) and major damage states (states n1+1,…, n). State 1 

indicates that the system does not present significant damage. 

Assumption 2.2. When an internal failure occurs, it may be repairable or non-repairable. 

The probability of the system undergoing a repairable or non-repairable failure from a 
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transient state is given by the column vectors  and , respectively. The probability 

of failure from the internal state i at one step is given by the i-th element of the column 

vector 0 0 0
r nr T T T . 

Assumption 2.3. Events that may produce failures of the system due to external shocks 

occur according to a phase-type renewal process. If the system is operational, the unit 

undergoes the effect of this shock. The time between two consecutive events is PH 

distributed with representation (, L). The order of the matrix L is equal to t. 

Assumption 2.4. If the unit is operational, an external shock produces one of three 

different effects: extreme failure (non-repairable), external cumulative damage or 

aggravation of internal degradation.  

Assumption 2.5. An extreme (non-repairable) failure occurs with a probability equal to 

0 after an external shock. 

Assumption 2.6. External damage may pass through an indeterminate number of external 

degradation states, d, which are partitioned into minor damage states (the first d1 states) 

and major damage states (states d1+1,..., d). If the external degradation state is i, then the 

external shock changes to state j with probability qij. These probabilities are contained in 

the matrix Q. A cumulative external damage threshold is reached from the external 

damage states after an external shock, which is reflected in the probability column vector 

Q0. If this threshold is reached, the unit undergoes a non-repairable failure. Prior to such 

an external shock, the unit is in external degradation state 1 (no damage due to external 

shock). The initial distribution for external damage when a unit is at its initial online 

situation = (1,0,...,0)1xd.  

Assumption 2.7. An external shock modifies the internal degradation state while the unit 

is operational. If the internal degradation state is i, then the external shock changes it to 

state j with probability wij. These probabilities are included in matrix W. An internal 

repairable failure may occur for this reason from any performance state with a probability 

column vector W0. 

0
rT 0

nrT
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Assumption 2.8. When a repairable failure occurs from operational state i, the unit 

system is sent to the repair facility. The repair time required depends on the state i and it 

is PH distributed with representation (c,i, Sc,i) with order zc,i for i = 1,…,n.  

Assumption 2.9. While the unit is operational, random inspections may be made. The 

time between two consecutive inspections is PH distributed with representation (, M) 

with order . 

Assumption 2.10. If an inspection observes major internal damage (state i) or major 

external cumulative damage (state j) then the unit goes to the repair facility for preventive 

maintenance. The preventive maintenance time depends on these states and it is PH 

distributed with representation (p,i,j, Sp,i,j) with order zp,i,j for i = n1+1, …, n and                 

j = d1+1, …, d. We assume i = 0 or j = 0 if minor internal or external damage is observed 

respectively. 

Assumption 2.11. When the online unit undergoes a non-repairable failure, it is replaced 

by an identical unit. 

Te operation of the system is given in Figure 2.1. 

 

Figure 2.1. Diagram of the system 
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2.2.2 The Model 

The system described above is governed by a vector Markov process. The state space E is 

composed of the macro-states E={E1, E2, E3}, where Ek contains the phases when the unit 

is operational (k = 1), the unit is in corrective repair (k = 2) and the unit is in preventive 

maintenance (k = 3). The macro-states E2 and E3 are composed of macro-states E2,i and 

E3,i,j respectively depending on the state at which the system failed or was inspected 

respectively. The phases of these macro-states are given by 

1 {( , , , );1 ,1 ,1 ,1 }E i j u m i n j t u d m          , 
2 2,{ ;1 }iE E i n   , 

  2,
,, ;1 ,1i

c iE j a j t a z     , for i = 1, …, n, 

      3 3, ,
1 1 1 1; 1 , 0 , 1 , 0 , 1 , 1 ,i jE E n i n j d j d i n i n d j d              

  3, ,
, ,, ;1 ,1i j

p i jE j a j t a z     , 

where i denotes the phase of the internal operational time, j the phase of the external 

shock time, u the cumulative external damage, m the phase of the inspection time and a 

the phase of the corrective repair or the preventive maintenance time.  

When a complex system is subject to several types of events, it is important to 

analyse their behaviour in order to avoid or delay economic or catastrophic failures. The 

unit is subject to several types of events which may cause failures. Three different 

impacts on the online unit are considered; repairable internal failure (A), inspection 

revealing major internal and/or external damage (B) and non-repairable failure (C).    

The transition probabilities associated with these events are modelled in a well-

structured way. Before discussing these probabilities, some auxiliary matrices are 

introduced. 

The matrices 1U , 2
iU and 1V , 2

iV  are square matrices of order n and d respectively, 

whose elements (s, t) are given by, 

  1
1

1 ; 1
,

0 ; otherwise

s t n
s t

  
 


U  ,  2

1 ;
,

0 ; otherwise
i s t i

s t
 

 


U , 

  1
1

1 ; 1
,

0 ; otherwise

s t d
s t

  
 


V  ,  2

1 ;
,

0 ; otherwise.
i s t i

s t
 

 


V  
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These matrices are applied when minor internal or cumulative external damage is 

observed by inspection (U1 and V1, respectively), or when an event occurs specifically 

and exclusively during state i  ( 2
iU  and 2

iV ).  

The transition probabilities for the complex system, depending on the type of event 

(repairable failure, major damage revealed by inspection, non-repairable failure), are 

given as follows. 

No events 

These transitions take place when no events occur, with or without inspection (inspection 

only reveals minor damage). There are four possible outcomes: 

a. No inspection is made (M), there is no external shock (L) and the internal 

performance can modify its state without failure (T).  

b. No inspection is made (M) but an external shock takes place (L0) producing 

external damage without non-repairable failure (  01Q ) and the internal 

performance can be modified (TW).  

c. An inspection is made (M0), no external shock takes place and the internal 

performance and external cumulative damage are in a minor damage state that can 

be modified without failure ( 1 1 U T L V ).  

d. Inspection (M0) and external shock both take place. There is no failure. The 

external shock may provoke internal and/or external cumulative damage, but in 

either/both cases, inspection reveals the damage to be minor                              

(  0 0
1 1 1  U TW L γ V Q ). 

     The transition probability matrix is 

 
 

0 0
0

0 0 0
1 1 1 1

1

     1 .

         
          

H T L I TW L γ Q M

U T L V U TW L γ V Q M
  

Internal Repairable failure (A) 

The unit may undergo a repairable failure from the operational internal state i due to wear 

or external shock. In the first case, this occurs because the repairable internal failure is 
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produced from state i ( 0
2
i

rU T ). In the second case, an internal failure may take place 

because a shock modifies the internal behaviour ( 0
2
iU TW ) without producing an extreme 

failure or causing the external threshold damage state to be reached (  01Qeω ).  

The matrix that governs this transition is given by 

   0 0 0 0 0
1 2 2 2 1i i i i

r d r 
          H U T L e U T U TW L γ Qe e , for i = 1,…,n. 

Inspection reveals major internal and/or external damage (B) 

While the online unit is working, an inspection may take place. If it reveals any of the 

following situations, the unit must go the repair facility: 

a. Major internal damage from state i without external shock,  0
2
i U e T  and 1Ve , 

or with external shock, 2
iU TWe  and  0

1 1V Qe . 

b. Major cumulative external damage from state j without external shock, 

 0
1 U e T or 2

jV e , and with external shock, 1U TWe  and  0
2 1j  V Qe . 

c. Major internal and external cumulative damage from state i and j, respectively, 

without external shock  0
2
i U e T and 2

jV e , or with external shock 2
iU TWe  and

 0
2 1j  V Qe . 

Therefore, 

   ,0 0 0 0 0
2 2 1 2 1 1 ,i i i          H U e T L V e U TWe L γ V Qe M       

   0, 0 0 0 0
2 1 2 1 2 1j j j          H U e T L V e U TWe L γ V Qe M , 

   , 0 0 0 0
2 2 2 2 2 1i j i j i j          H U e T L V e U TWe L γ V Qe M , 

for i = n1+1,…, n and j = d1+1,…, d. 

Non-repairable failure (C) 

While the unit is working, a non-repairable failure may occur, due to wear from any 

internal operational state ( 0
nrT α ) or as a consequence of an external shock. This situation 

is arises when an external shock causes an extreme failure ( 0 ) or when the cumulative 



24                                                                                                              Multi-state complex one-unit system                                    
 

 

external threshold is reached ( 0Q ). In either case, the operational time of the online unit, 

the cumulative external damage and the inspection time are all reinitialised ( , , α ω η ). 

The matrix is given by   

    0 0 0 0 0 0 0
3 1 1nr

                H T α L eω L γ Qeω eα L γ eω Q ω eη . 

The state space and the model when preventive maintenance is not considered (case for 

n1 = n and d1 = d) are described in the Appendix 2A. 

2.2.3 The Markovian Arrival Process with marked arrivals 

The system for the model with preventive maintenance is governed by the Markovian 

arrival process with marked arrivals (MMAP) with representation 0 1 2 3( , , , )D D D D , 

where D1 denotes the matrix associated with the repairable failure event, D2 denotes a 

major positive inspection with preventive maintenance and D3 denotes a non-repairable 

failure. The transition probability matrix of the Markov chain is given by 

0 1 2 3   D D D D D . This matrix is built by considering the macro-states E1, E2 and E3 

given in Section 2.2.2.     

Matrix D0 

The matrix D0 contains the transitions when no failure or preventive maintenance take 

place. This matrix is given by 
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0

1 2 3

1

0

0 0
,1

0
2

3

                                                                                                                                                       

( )

( )
c

E E E

E

E

E



    
  

D

H 0 0

α L L γ ω η S

α L L γ ω

1

1

1 1

0
,2 0 0

,1 ,

0 0
,

0 0
, 1,0

0 0
, ,0

0 0
,0, 1

0 0
,0,

0 0
, 1, 1

(( ) , , ( ) )

( )

( )

( )

( )

( )

( )

(

c
c c n

c n

p n

p n

p d

p d

p n d

diag





 

 
 

       
       

    

    
    

    
    



η S
L L γ S L L γ S 0

α L L γ ω η S

α L L γ ω η S

α L L γ ω η S

α L L γ ω η S

α L L γ ω η S

α L L γ ω η S

α L










1

0 0
, 1,0 , ,

0 0
, ,

(( ) , , ( ) )

)

p n p n d

p n d

diag 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
       
  
  
  
  
  
       

0 L L γ S L L γ S

L γ ω η S



  
 

Matrix D1 

The matrix D1 contains the transitions when a repairable internal failure occurs. This 
matrix is given by 

 
1 2 3

1 1 ,1 ,
1 1

1 2

3

                                      

( ,..., )c n c n

E E E

E

E

E

  
  

 
 
 

0 H β H β 0
D

0 0 0

0 0 0

. 

 

Matrix D2 

The matrix D2 contains the transitions when preventive maintenance takes place. This 
matrix is given by 
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1 1

1 2 3

1 1,0 , 1,0 , , ,
2 2

2 2

3

                                                   

( ,..., )n p n n d p n d

E E E

E

E

E

   
  

 
 
 

0 0 H β H β
D

0 0 0

0 0 0

. 

 
Matrix D3 

The matrix D3 contains the transitions when a non-repairable failure occurs. This matrix 
is given by  

1 2 3

1

3
3 2

3

     E E E

E

E

E

   
 
 
 

H 0 0
D

0 0 0

0 0 0

.  

 

2.3 Transient and stationary distributions 

The transition probabilities are presented in a computational, algorithmic way by 

considering matrix blocks. The transition probability matrix is given by 

, 

and can be expressed by considering the blocks of the macro-states Ek, for k = 1,2,3 as 

 

1 2 3

1

11 12 13
2

21 22 23

3
31 32 33

                       E E E

E

E

E

    
  

D D D
D

D D D 0

D D 0 D

. 

 

External shocks may occur independently of whether the system is operational or not. For 

this reason, the initial distribution for the time of the external shock is the stationary 

distribution of the process with transition probability matrix 0L L γ . This stationary 

distribution is equal to 

* 0 * 1[1, ]( ( ) )t
  γ 0 e I L L γ , 

where 0 *( ) I L L γ   is the matrix 0 I L L γ  without the first column. 

The initial distribution of the system is given by 

0 1 2 3= + + +D D D D D
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 *( , )    α γ ω η 0 ,  

and so the transient distribution is given by ( )   a D . 

The transition probability matrix in n steps has been calculated by matrix blocks to 

minimise the computational cost in a recursive form. Then, 

( ) ( ) ( )
11 12 13
( ) ( ) ( )
21 22 23
( ) ( ) ( )
31 32 33

n n n

n n n n

n n n

 
 

  
 
 

D D D

D D D D

D D D

, 

where 

      

(1)

3
( ) ( 1)

1

, 2,3 , 3,2

.

ij ij

n n
ij ik kj

k

k j

D 






 

D D

D D  

The stationary distribution vector of D is denoted by θ and verifies θD θ  and 1θe . 

This stationary distribution is partitioned according to the macro-states,  1 2 3, ,θ θ θ θ , 

and it is calculated by considering matrix-analytic methods. The balance equations are 

expressed by blocks as 

   1 11 2 21 3 31 1  θ D θ D θ D θ                                                           (2.1)                              

1 12 2 22 2 θ D θ D θ                                                                    (2.2) 

                                         1 13 3 33 3 θ D θ D θ .                                                                 (2.3) 

From (2.2) and (2.3)  

                                             1
2 1 12 22( ) θ θ D I D                                                         (2.4) 

                      1
3 1 13 33( ) θ θ D I D .                                                        (2.5) 

From (2.1), (2.2), (2.3) and from the normalization equation, 1 2 3 1  θ e θ e θ e , we have 

that 

1 1
1 11 12 22 21 13 33 31( ) ( )        θ D D I D D D I D D I 0 ,  

 

1 1
1 12 22 13 33( ) ( ) 1       θ I D I D D I D e . 
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If we denote as 1 1
1 11 12 22 21 13 33 31( ) ( )      R D D I D D D I D D I  and 

1 2

1 1
2 12 22 13 33( ) ( )ntd tz tz

 
    R e D I D e D I D e   then 

1*
1 2 1[1,0] |


   θ R R , 

 

where *
1R  is the matrix 1R  without the first column vectors 2θ  and 3θ  are obtained from 

(2.4) and (2.5) respectively. 

2.4 Measures: Availability, reliability and distribution of time between events  

The following measures associated with this system were determined. 

Availability 

The availability is the probability that the unit will be operational (macro-state E1) at a 

certain time. If initially the system is operational then 

   * ( )
11A     α γ ω η D e .  

The availability in the stationary regime is given by 1A  θ e . 

Reliability 

Regarding system reliability, various situations can be considered. The first is that of the 

time elapsed to first failure or preventive maintenance. This time is PH distributed and is 

represented as *
0( , )  α γ ω η H . 

On the other hand, we may be interested in the time elapsed until the first time that 

the unit stops working. As non-repairable failures do not interrupt system performance, 

this time is PH distributed, and is described as *
11( , )  α γ ω η D . In both cases the 

reliability function is given by *( ) ( )R     α γ ω η A e , being A the matrix 0H  or 

11D  respectively. 
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2.5 Mean number of events and correlations 

In this section, we consider the mean number of events associated with the Markovian 

arrival process with marked arrivals and correlations. 

2.5.1 Mean and variance of the number of events at a certain time 

Let { ( ); 0}hN     and { ( ); 0}X    be the number of events of type 0h C  (C0 being 

the set composed of all types of events) and the underlying Markov process associated 

with the MMAP respectively.  

To analyse the number of events in [0, ], several functions must be defined. The 

probability distribution of the MMAP is given by the matrix 

0 0({ , }, ) ( { ( ) , ( ) , | (0) })h h hP n h C P X j N n h C X i         . 

The joint probability generating function for the number of arrivals in [0, ] is defined as 

0 0

* 0 0

{ 0, }

({ , }, ) ({ , }, ) h

h

n
h h h

n h C h C

P z h C P n h C z
  

       

and it is equal to 

* *( , ) ( )


    P z D z , 

where 
0

* * 0
0( ) ({ , })h h h

h C

z h C z


    D z D D D . 

It is well known that 

 

*

(1,...,1)

( , )
[ ( )]h

h

E N
z



 
  


z

P z
e  and 

2 *

2

(1,...,1)

( , )
[ ( )[ ( ) 1]]h h

h

E N N
z



 
    


z

P z
e  for hC0. 

Mean number of events 

The mean number of events type 0h C  up to time   1 is given by 

* *1 1* *

0(1,...,1) (1,...,1)

1 1
1

0 0

( , ) ( , )
[ ( )] ( ) ( )

                                               ,          

i i

h
ih h

i i i
h h

i i

E N
z z

  

 

 
 

 

             

 



 

z z

P z D z
e D z D z e

D D D e D D e

 

given that D is a stochastic matrix. If the initial distribution is given by  then 
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1

0

[ ( )] .i
h h

i

E N





  D D e  

If the model is in the stationary regime then    

1

0

[ ( )] ,i
h h h

i

E N




   θ θ D D e θD e
                                    

(2.6) 

as  verifies .θ θD θ  

Variance 

The variance is obtained from the second partial derivative of the joint probability 

generating function with respect to zh. 

 

Thus, for   2 

2 * 2 * * *21 2* * *
2 2

0

* *2 1 1 1* * *

1 0

( , ) ( , ) ( ) ( )
( ) + ( ) ( )

( ) ( )
                 ( ) ( ) ( )

                 

i i

ih h h h

i j i j i

i j h h

z z z z

z z

  



     

 

                   

               





 

P z P z D z D z
D z D z D z

D z D z
D z D z D z

D
2 *

1* *
2

* *2 2* * *

0

* *2 2 1* * *

0

( , )
( ) ( )

( ) ( )
                 ( ) ( ) ( )

( ) ( )
                 ( ) ( ) ( )

i i

h

ii j i j

jh h

j j

j h h

z

z z

z z

 

    



   



       

              
             





P z
z D z

D z D z
D z D z D z

D z D z
D z D z D z

2 *

2

( , )
.

h

P

z

 


z

 

This function evaluated in (1, ...,1)z  is equal to 

 

2 *

2

(1,...,1)

2 2 1 2
1

0 1 0 0

2
2

0

( , )
[ ( )[ ( ) 1]]

                              

                              .

h h
h

i i
i j i j i j

h h h
i i j j

j j
h h

j

P
E N N

z


    
 

   


 



 
    



  
    
  


 



   



z

z
e

D D D D D D D D

D D D D e

 

Given the initial distribution , the variance is equal to  
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2

2 2 1 2 2
1 2

0 1 0 0 0

2

[ ( )] [ ( )[ ( ) 1]] [ ( )] [ ( )]

                   

                   [ ( )] [ ( )]

h h h h h

i i
i j i j i j j j

h h h h h
i i j j j

h h

Var N E N N E N E N

E N E N

   

     
   

    

 

        

   
       

   
   

    D D D D D D D D D D D D e  

(2.7) 

If initially the system is in the stationary regime then, 

1 1

1 0

[ ( )[ ( ) 1]] 2
i

j
h h h h

i j

E N N
 

 

    θ θD D D e . 

The variance for ( )hN   is then given by 

 

2

1 1
2

1 0

[ ( )] [ ( )[ ( ) 1]] [ ( )] [ ( )]

                   2 ( ) .

h h h h h

i
j

h h h
i j

Var N E N N E N E N

I
 

 

        

 
     

 


θ θ θ θ

θ D D D e θD e

            

(2.8)  

Covariance 

The covariance between ( )hN   and ( )kN   at time   2 for k h can be described as 

follows,  

                1
, .

2h k h k h kCov N N Var N N Var N Var N                
 
(2.9) 

The process    h kN N    is the number of events type h or k in [0, ], therefore from 

(2.7) 

        

     

   

2 2 1
1

0 1 0

2 2
2

0 0

                                   

                                   

i
i j i j

h k h k h k
i i j

i
i j j j

h k h k h k
j j

h k

Var N N

E N E N

  
 


  

  
 

 

 

 
        

 
 

     
 

     

  

 

D D D D D D D

D D D D D D D D D D e

    2
.h kE N E N              

 

For the stationary version of the MMAP we have from (2.8) that

           
1 1

2

1 0

2 .
i

j
h k h k h k h k

i j

Var N N
 

 

 
           

 
θ θ I D D D D D e θ D D e  

(2.10) 

From (2.8), (2.9) and (2.10), this yields 
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    

      

1 1 1 1

1 0 1 0

22 2

1 1 1 1

1 0 1 0

,

1
                                   +

2

                                  

i i
j j

h k h k k h
i j i j

k h k h

i i
j j

h k k
i j i j

Cov N N
   

   

   

   

 
    

 

      
 

 

 

 

θ θ D D D D D D e

θD e θ D D e θD e

θ D D D D D

2                                   .

h

h k

 
 
 

 

 D e

θD eθD e

 

Correlation coefficient functions  

The correlation coefficient at time  between ( ) and ( )h kN N   is given by 

,

( ( ), ( ))
( ) ,

( ( )) ( ( ))
h k

h k

h k

Cov N N
r

Var N Var N

 
 

 
φ

φ

φ φ
                                 

(2.11) 

where  or   φ φ θ  for the transient or stationary regime respectively.  

The square of this value is the determination coefficient function. 

2.5.2 Covariance between the numbers of events in non-overlapping intervals 

Let { ( , ); 0}hN        be the number of events type h in the interval  ,    , i.e. 

( , ) ( ) ( )h h hN N N          . The numbers of events in non-overlapping intervals are 

correlated for a MMAP, but the numbers are conditionally independent, i.e. if ( )X   is 

known, then the number events process in  ,     is independent of that in [0, ]. Let 

the probability matrix be 

 
0 0

1 2

0
1 2

({ , }, ,{ , }, )

{ ( ) , ( , ) ; , , ( ) | (0) } ,

h k

h h k k

n h C n k C

P N n N n h k C X j X i

   

             

P
 

then, the joint probability generating function for the number of arrivals in [0, ] and in 

 ,     is defined as 

1 2

0 0
1

00
2

* 0 0
1 2

0 0
1 2 1 2

{ 0, }
{ 0, }

({ , }, ,{ , }, )

({ , }, ,{ , }, ) ,h h

h

k

h k

n n
h k h h

n h C h C
k Cn k C

P z h C z h C

P n h C n k C z z
  

 

   

       

and from the Markov property it is equal to 



Mohammed Dawabsha                                                                                                                                   33 
 

     
 

* 0 0 * * *
1 2 1 2 1 2({ , }, ,{ , }, ) ( , , , ) [ ( )] [ ( )]h hz h C z h C         P P z z D z D z . 

From this result, 

 1 2

2 * 1 1
11 2

0 01 2 , 1,...,1

( , , , )
[ ( ) ( , )] i j i

h k h k
i jh k

P
E N N

z z

 
  


 

  
        

   
z z

z z
e D D D D e , 

and then 

1 1 1
1

0 0

[ ( ) ( , )] i j i j
h k h k

i j j

Cov N N
  

  


  

  
          

   
  D D D e D D e . 

If the system is initially in the stationary regime then 

1 1
1

0 0

[ ( ) ( , )] j i
h k h k h k

i j

Cov N N
 

  

 

        θ θ D D D e θD eθD e . 

2.6 Rewards 

To optimise the performance of a system, it is useful to examine its work times, repair 

times, corrective and preventive maintenance actions, rewards and costs. The system 

described considers repairable and non-repairable failures and preventive maintenance. It 

is also interesting to examine whether preventive maintenance is economically profitable 

and what are the optimum states at which preventive maintenance should be applied after 

observation.  

In this analysis, we assume that the expected reward is equal to b while the system is 

operational and that the expected costs while the unit is operational, per unit of time if the 

system is in a minor or major damage internal state, are equal to 1c  and 2c  respectively. 

While the system is in the repair facility, a cost depending on the state from where the 

unit has come is produced. We assume a cost equal to a
icr per unit of time when it is in 

corrective repair phase a from operational state i and ,
a

i jpr per unit of time when it is in 

preventive maintenance phase a from internal operational state i and external cumulative 

damage j. These costs are arranged in the column vectors  ,
'

1, , c iz
i i icr crcr  and 

 , ,
'

1
, , ,, , p i jz

i j i j i jpr prpr   respectively. A fixed expected cost, for one or more of various 
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possible causes, is introduced for each time that a corrective repair or a preventive 

maintenance takes place, equal to CR and PM respectively. 

While the unit is not operational the system experiences a loss equal to A per unit of 

time. Finally, each new unit has a cost of C. Figure 2.2 shows the complexity of costs and 

rewards.   

 

Figure 2.2. Diagram of costs and rewards 

2.6.1 The net reward vector 

A net reward vector is built according to the state space described in Section 2.2.2. The 

net reward vector when the system is in the macro-state E1 is given by 

1

1

1

1
2

n

ntd td
n n

c
b e

c 


 
    

 

e
nr e

e
 . 
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The cost vectors for the macro-states E2 and E3 (when the system is in corrective repair 

and in preventive maintenance respectively) are 
,

1

1

2 n

c i
i

t

t z

t n

A



 
       

e cr

nr e

e cr

  and 

1

1

, ,0 ,0, , ,
1 1 1 11 1 1 1

1 1

1,0

,0

0, 1

3

0,

1, 1

,

,
n d n d

p i p j p i j
j n j d i n j d

t n

t n

t d

t z z z

t d

t n d

t n d

A

e pr

e pr

e pr

nr e

e pr

e pr

e pr

       





 
  
 
 

 

 
 
 
 
 

 
    

     
 

 
 
 
  







 

respectively. 

Finally, the net reward vector associated to the state space is given by 

                              

1

2

3

 
 

  
 
 

nr

c nr

nr

. 

2.6.2 Expected net rewards 

An interesting aspect associated with the performance of a reliability system is that of the 

net reward per unit of time up to a certain time. This measure is composed of the 

expected net reward per unit of time minus the fixed cost for corrective repair, preventive 

maintenance and new units (the cost of the initial unit is included in this measure). 

The cumulative expected net reward from the beginning up to time  is given by 

 1 2 3
0

( ) [ ( )] [ ( )] 1 [ ( )]n

n

ENR CR E N PM E N C E N


   


            D c . 

Per unit of time this is equal to  

( )
( )

1

ENR



  

 
. 
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If initially the system is in stationary regime then from (9) and (15), 

     1 2 31 1ENR CR PM C               θ θc θD e θD e θD e  

 and 

   1 2 31
1 1 1

CR PM C   
       

     θ θc θD e θD e θD e . 

Finally, independently of the initial distribution, the net reward per unit of time (steady 

state) is given by 

                               1 2 3CR PM C       θc θD e θD e θD e    .                            (2.12) 

2.7 Optimization 

When preventive maintenance is introduced, the lifetime of the unit is of course 

extended, but at what price? Is this maintenance profitable? Multiple rewards and costs 

and corrective repair and preventive maintenance time distributions depend on the system 

state at which the unit failed and on the major damage state observed by inspection as it 

is shown in Figures 2.1 and 2.2.  

An important question is that of when preventive maintenance should be carried out, 

i.e. what is the threshold between minor and major damage? To answer this question, the 

expected net reward in the stationary regime should be taken into account. This measure 

is developed in (16). In fact, this function depends on the structure of the matrices from 

n1, d1. When an inspection takes place, the unit goes to the repair facility for preventive 

maintenance if the internal performance state and/or external cumulative damage 

observed are greater than n1 and d1 respectively.  

Accordingly, a preventive maintenance policy is carried out adjusting n1 and d1 such 

that the net reward per unit of time, 1 1( , )n dY   is maximum, for n1 = 1, …, n and d1 = 1,…, 

d. Figure 2.3 shows a diagram of the maintenance policy. 

Other measures could be taken into account such as reliability and availability, both 

of them depend on the barrier between minor and major internal and external damage, n1, 

d1, respectively.   
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Figure 2.3. Diagram of the preventive maintenance policy 

2.8 A numerical example 

This section highlights the value of preventive maintenance by comparing similar 

systems with and without preventive maintenance and with different maintenance 

policies, depending on the states at which inspection reveals major internal (n1) and 

external cumulative damage (d1). We assume a system composed of a generating set in a 

facility that requires a reliable electrical supply. This generating set is subject to 

degradation and may fail for the same reasons as any motor, provoking either a total or a 

repairable failure. The generating set passes through various degradation stages, and an 

internal repairable or non-repairable failure may occur from any of the different states. In 

addition, this device is subject to external failures which can modify its internal 

behaviour or even produce a non-repairable failure. Random inspections take place and 

the level of internal degradation and of cumulative external damage is observed. Lifetime 

distributions for the repair and preventive maintenance times depend, logically, on the 

level of degradation at which the system failed or was inspected. We assume a system 

with five internal states. The phase-type distributions embedded in the system – internal 
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failure time, time between two consecutive external shocks, inspection time, corrective 

repair and preventive maintenance times depending on the previous state – are shown in 

Tables 2.1, 2.2 and 2.3.   

 

Internal failure time External shock time Inspection time 

 1,0,0,0,0

0.99 0.001 0 0 0

0 0.99 0.001 0 0

0 0 0.8 0.003 0

0 0 0 0.8 0.003

0 0 0 0 0.8



 
 
 
 
 
 
 
 

α

T

Mean time: 110.0508 

 1,0

0.88 0.08

0.98 0.008



 
  
 

γ

L
 

 

Mean time: 26.3780 

 1,0,0

0.86 0.01 0.05

0.8 0.04 0

0.8 0.1 0.04



 
   
 
 

η

M
 

Mean time: 12.4671 

Table 2.1. Internal failure, external shock and inspection phase-type distributions 

 

 

Corrective repair time 
from state 1 

Corrective repair time 
from state 2 

Corrective repair time 
from state 3 

 ,1

,1

1,0

0.6 0.25

0.03 0.8

c

c



 
  
 

β

S
 

Mean time: 6.2069 

 ,2

,2

1,0

0.68 0.15

0.03 0.9

c

c



 
  
 

β

S
 

Mean time: 9.0909 

 ,3

,3

1,0

0.19 0.05

0.05 0.19

c

c



 
  
 

β

S
 

Mean time: 10.2703 
Corrective repair time 

from state 4 
Corrective repair time 

from state 5 
 

 ,4

,4

1,0

0.85 0.1

0.04 0.8

c

c



 
  
 

β

S
 

Mean time: 11.5385 

 ,5

,5

1,0

0.87 0.1

0.04 0.75

c

c



 
  
 

β

S
 

Mean time: 12.2807 

 

Table 2.2. Corrective repair phase-type distributions 

 

Two types of internal failures are considered, repairable and non-repairable. The 

probability of either case occurring, from a transient state, is given by the column vectors 

 and  respectively. 

We assume that an external shock can produce an extreme non-repairable failure with 

 0 0.008,0.008,0.195,0.195,0.1 'r T  0 0.001,0.001,0.002,0.002,0.1 'nr T
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probability 0.4 and that the matrix governing the transitions between cumulative episodes 

of external damage is 

0 0.2 0.8 0

0 0 0.5 0.5

0 0 0 0.5

0 0 0 0.3

 
 
 
 
 
 

Q . 

 

When an external shock is produced, the cumulative threshold damage is reached from 

any transient state according to the column vector  0 0,0,0.5,0.7 'Q . In this case a non-

repairable failure occurs. 

While the unit is operational and an external shock occurs, the internal state may be 

modified.  The matrix governing this transition after an external shock is 

 

0.6 0.2 0.1 0.1 0

0 0.6 0.2 0.1 0.1

0 0 0.6 0.2 0.2

0 0 0 0.5 0.3

0 0 0 0 0.4

 
 
 
 
 
 
 
 

W . 

 

From the matrix W, it can be seen that if an external shock occurs then an internal 

repairable failure will take place only if the system is in state 4 or 5 (W0=(0,0,0,0.2,0.6)’). 

Rewards 

An interesting aspect regarding a complex reliability model subject to different types of 

failure and of repair (corrective and preventive), is to analyse the economic profit 

obtainable. 

It is assumed that while the system is operational a reward equal to b=10 per unit of 

time is produced. However, while the system is active, a cost is also incurred. This cost 

per unit of time varies according to whether the system is working in a minor or a major 

state of internal damage. If the system is working in a minor damage state, a cost equal to 
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2 monetary units is incurred and this cost is 4 per unit of time if the system is in a major 

damage state. 

If the system is in the repair facility, different costs arise. Each time the system 

undergoes a repairable failure, a fixed cost equal to CR=10 is incurred and a cost of 1, 2, 

4, 7 or 10 monetary units per unit of time is incurred while the system is in corrective 

repair and if it failed from internal operational state 1, 2, 3, 4 or 5 respectively. An 

analogous outcome is obtained for preventive maintenance. Each positive inspection 

provokes a fixed cost of 2 monetary units and the costs per unit of time in preventive 

maintenance are as shown in Table 2.4. 

Finally, while the system is in the repair facility, economic losses of 10 monetary 

units per unit of time are incurred. Each new unit installed has a value equal to 200 

monetary units.  

The proportional time spent in each macro-state and the net reward per unit of time 

in the stationary regime from (2.12) for the different systems according to d1 and n1 are 

shown in Table 2.5. 

The proportional number of failures and major inspections per unit of time in the 

stationary regime were analysed for different systems according to d1 and n1. The values 

obtained are given in Table 2.6. 

Table 2.5 shows that the maximum net reward per unit of time is reached for n1 = 3 

and d1= 2. Then, given the operational time, the corrective repair times, the preventive 

maintenance times and the costs and rewards, the most profitable policy is to undertake 

preventive maintenance when the internal performance is in state 4 or 5 and when the 

cumulative external damage is in state 3 or 4.  

Next, we focus on the behaviour of the optimum model n1 = 3 and d1= 2. If a new 

system, with an initial distribution of  is considered, then a comparison can be drawn 

between the net reward per unit of time for this optimum model and one without 

preventive maintenance. Figure 2.4 shows the net reward up to a certain time and per unit 

of time for both models (optimum and without preventive maintenance). 
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Preventive maintenance time 
from only internal state 2 

Preventive maintenance time 
from only internal states 3 or 4 

Preventive maintenance time 
from only internal state 5 

 ,2,0

,2,0

1,0

0.02 0.02

0.01 0.01

p

p



 
  
 

β

S
 

Mean time: 1.0412 

 , ,0

, ,0

1,0

0.3 0.2

0.1 0.2

p i

p i



 
  
 

β

S
 

Mean time: 1.8519 

 ,5,0

,5,0

1,0

0.5 0.2

0.1 0.4

p

p



 
  
 

β

S
 

Mean time: 2.8571 
Preventive maintenance time 

from only external cumulative 
damage 2 

Preventive maintenance time 
from only external cumulative 

damage 3 

Preventive maintenance time 
from only external cumulative 

damage 4 

 ,0,2

,0,2

1,0

0.01 0

0 0.01

p

p



 
  
 

β

S

Mean time: 1.0101 

 ,0,3

,0,3

1,0

0.02 0

0 0.02

p

p



 
  
 

β

S

Mean time: 1.0204 

 ,0,4

,0,4

1,0

0.2 0.01

0.02 0.1

p

p



 
  
 

β

S

Mean time: 1.2642 
Preventive maintenance time 

from internal state 2 and 
external cumulative damage 2  

Preventive maintenance time 
from internal state 2 and 

external cumulative damage 3 

Preventive maintenance time 
from internal state 2 and 

external cumulative damage 4 

 ,2,2

,2,2

1,0

0.4 0.15

0.05 0.02

p

p



 
  
 

β

S

Mean time: 1.9466 

 ,2,3

,2,3

1,0

0.4 0.2

0.01 0.01

p

p



 
  
 

β

S
 

 Mean time: 2.0101 

 ,2,4

,2,4

1,0

0.5 0.05

0.05 0.02

p

p



 
  
 

β

S
    

Mean time: 2.1128 
Preventive maintenance time 
from internal state 3 or 4 and 
external cumulative damage 2  

Preventive maintenance time 
from internal state 3 or 4 and 
external cumulative damage 3 

Preventive maintenance time 
from internal state 3 or 4 and 
external cumulative damage 4 

 , ,2

, ,2

1,0

0.3 0.2

0.4 0.5

p i

p i



 
  
 

β

S
 

Mean time: 2.5926 

 , ,3

, ,3

1,0

0.56 0.1

0.3 0.1

p i

p i



 
  
 

β

S
 

Mean time: 2.7322 

 , ,4

, ,4

1,0

0.3 0.5

0.25 0.2

p i

p i



 
  
 

β

S

Mean  
Mean time: 2.9885 

Preventive maintenance time 
from internal state 5 and 

external cumulative damage 2  

Preventive maintenance time 
from internal state 5 and 

external cumulative damage 3 

Preventive maintenance time 
from internal state 5 and 

external cumulative damage 4 

 ,5,2

,5,2

1,0

0.56 0.2

0.2 0.4

p

p



 
  
 

β

S
 

Mean time: 3.5714 

 ,5,3

,5,3

1,0

0.58 0.2

0.15 0.45

p

p



 
  
 

β

S

Mean     
Mean time: 3.7313 

 ,5,4

,5,4

1,0

0.62 0.2

0.2 0.45

p

p



 
  
 

β

S
 

Mean time: 4.4379 

Table 2.3. Preventive maintenance phase-type distributions 
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States observed by inspection 
(i, j) 

(2, 0) (3, 0) 
(4, 0) 

(5, 0) (0, 2) (0, 3) 
(0, 4) 

(2, 2) (2, 3) 
(2, 4) 

Monetary units per unit of time  
if the unit goes to repair facility 

0.2 0.5 1 0.1 1 0.2 1.1 

States observed by inspection 
(i, j) 

(3, 2) (3, 3) (3, 4)  (4, 2) (4, 3) 
(4, 4) 

(5, 2) (5, 3) 
(5, 4) 

Monetary units per unit of time 
 if the unit goes to repair facility 

0.6 1.5 1.2 0.5 1 0.9 2 

Table 2.4. Cost per unit of time when the unit goes to the repair facility after inspection has revealed major 

internal damage state i and major external cumulative damage j (0 indicates minor damage on inspection) 

 

 

 
1 θ e  2 θ e  3 θ e   1 1,n d  

d1=1 ; n1=1 0.9222 0.0625 0.0153 3.0492 
d1=1 ; n1=2 0.9246 0.0630 0.0124 3.0830 
d1=1 ; n1=3 0.9253 0.0630 0.0116 3.0940 
d1=1 ; n1=4 0.9260 0.0631 0.0109 3.1041 
d1=1 ; n1=5 0.9261 0.0631 0.0108 3.1054 
d1=2 ; n1=1 0.9239 0.0626 0.0136 3.0709 
d1=2 ; n1=2 0.9260 0.0634 0.0106 3.0965 
d1=2 ; n1=3 0.9266 0.0636 0.0098 3.1056 
d1=2 ; n1=4 0.9266 0.0643 0.0091 3.1004 
d1=2 ; n1=5 0.9267 0.0643 0.0090 3.1014 
d1=3 ; n1=1 0.9316 0.0621 0.0063 2.9890 
d1=3 ; n1=2 0.9328 0.0635 0.0036 2.9329 
d1=3 ; n1=3 0.9332 0.0640 0.0028 2.9322 
d1=3 ; n1=4 0.9308 0.0670 0.0022 2.8701 
d1=3 ; n1=5 0.9310 0.0670 0.0020 2.8726 
d1=4 ; n1=1 0.9334 0.0620 0.0046 2.9690 
d1=4 ; n1=2 0.9347 0.0636 0.0017 2.8836 
d1=4 ; n1=3 0.9351 0.0641 0.0008 2.8797 
d1=4 ; n1=4 0.9322 0.0676 0.0001 2.8078 
d1=4 ; n1=5 0.9321 0.0679 0 2.8003 

Table 2.5. Proportional time spent in each macro-state and net reward per unit of time in the stationary 

regime 
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For both models, the expected net reward up to a certain time increases with 

time, and both models are loss-making up to a certain time. The optimum system with 

(without) preventive maintenance incurs losses up to time 60 (63). The expected profit 

from the start until this time is 2.4332 (2.2585) and, from then on, the expected profit per 

unit of time from the start is equal to 0.0406 (0.0358). Taking into account the transient 

analysis, the expected net reward up to time 1000 for the optimum model with preventive 

maintenance is equal to 2921.7, in contrast to the 2626.5 for the model without 

preventive maintenance. 

 

 

 Repairable 
failure ratio 

Major 
inspection ratio 

Non-repairable 
failure ratio 

d1=1 ; n1=1 0.0098 0.0109 0.0163 
d1=1 ; n1=2 0.0099 0.0105 0.0163 
d1=1 ; n1=3 0.0099 0.0105 0.0163 
d1=1 ; n1=4 0.0099 0.0105 0.0163 
d1=1 ; n1=5 0.0099 0.0105 0.0163 
d1=2 ; n1=1 0.0098 0.0097 0.0163 
d1=2 ; n1=2 0.0099 0.0088 0.0164 
d1=2 ; n1=3 0.0100 0.0087 0.0164 
d1=2 ; n1=4 0.0100 0.0086 0.0164 
d1=2 ; n1=5 0.0101 0.0086 0.0164 
d1=3 ; n1=1 0.0098 0.0046 0.0175 
d1=3 ; n1=2 0.0098 0.0023 0.0179 
d1=3 ; n1=3 0.0101 0.0019 0.0179 
d1=3 ; n1=4 0.0104 0.0016 0.0179 
d1=3 ; n1=5 0.0104 0.0016 0.0179 
d1=4 ; n1=1 0.0097 0.0038 0.0178 
d1=4 ; n1=2 0.0098 0.0009 0.0184 
d1=4 ; n1=3 0.0102 0.0004 0.0184 
d1=4 ; n1=4 0.0105 0.0000 0.0184 
d1=4 ; n1=5 0.0105 **** 0.0184 

Table 2.6. Proportional number of repairable and non-repairable failures and preventive maintenance per 

unit of time in stationary regime 
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Figure 2.4. Expected net reward up to a certain time and per unit of time (with preventive maintenance, 

continuous line; without preventive maintenance, dashed line) 

After including the times, several measures were calculated. Table 2.7 shows the 

probability of the system being in any of the macro-states (operational, corrective repair 

or preventive maintenance) at various times for each model: optimum and without 

preventive maintenance. 

Time () E1 E2 E3 

10 0.9440 
(0.9500) 

0.0485 
(0.0500) 

0.0075 

20 0.9313 
(0.9371) 

0.0594 
(0.0629) 

0.0093 

50 0.9270 
(0.9324) 

0.0632 
(0.0676) 

0.0098 

100 0.9266 
(0.9322) 

0.635 
(0.0678) 

0.0098 

 0.9266 
(0.9321) 

0.0636 
(0.0679) 

0.0098 

Table 2.7. Probability of the system being in each macro-state (in parentheses, the optimum model without 

preventive maintenance) 

The mean number of events is described in Section 2.5. If we assume that the model is in 

a stationary regime, then the mean number of repairable and non-repairable failures and 

the mean number of major inspection events for both models can be calculated from 

(2.6). These details are shown in Table 2.8. 
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Time () Repairable failure 

 1E N     
Preventive maintenance 

 2E N     
Non-repairable failure 

 3E N     

50 0.4954 
(0.5220) 

0.3757 0.8180 
(0.8716) 

100 0.9947 
(1.0470) 

0.8095 1.6370 
(1.7858) 

200 1.9934 
(2.0957) 

1.6771 3.2749 
(3.6244) 

500 4.9895 
(5.2419) 

4.2799 8.1888 
(9.1379) 

1000 9.9830 
(10.4854) 

8.6180 16.3786 
(18.3270) 

Table 2.8. Mean times of events up to a certain time (in parentheses the model without preventive 

maintenance) 

 

The difference between the number of repairable and non-repairable failures is 

considerable. Thus, up to time 1000 the mean number of non-repairable failures 

decreases by almost two units and the mean number of repairable failures decreases by 

half a unit.  

The correlation between the numbers of events is also described. Figure 2.5 shows 

the correlation coefficient function obtained from (2.11). 

All correlations between events decrease with time and are negative. The events 

repairable failure, preventive maintenance and non-repairable failure are denoted by 1, 2 

and 3 respectively. In the optimum model with preventive maintenance, the maximum 

negative correlation occurs between repairable failure and preventive maintenance. 

Comparison of the models with and without preventive maintenance shows that the 

negative correlation between repairable and non-repairable failures decreases in both 

cases, but is considerably larger for the second model. The correlation between the 

number of repairable failures and non-repairable failures at time 1000 is equal to 0.1083 

for the model with preventive maintenance and 0.1649 for the model without preventive 

maintenance. 
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Figure 2.5. Correlation Coefficient function (model with preventive maintenance, continuous line; model 

without preventive maintenance, dashed line) 

2.9 Appendix 2A 

In a similar way to the procedure described in Section 2.2, the state space and events are 

built for the model without preventive maintenance, n1=n and d1=d. In this case, the state 

space E is composed of the macro-states  1 2,E E E , where Ek contains the phases 

when the unit is operational (k = 1) and the unit is in corrective repair (k = 2). The phases 

are given by 

1 {( , , , );1 ,1 ,1 ,1 }E i j u m i n j t u d m          , 

                            2 2,{ ;1 }iE E i n   , 

                           2,
,{( , );1 ,1 }i

c iE j a j t a z     ,  for i = 1,…, n, 

For this new situation the matrices are given by  

 0 0
0 1      H T L I TW L γ Q ,  

   0 0 0 0 0
1 2 2 2 1i i i i

r d r       H U T L e U T U TW L γ Qe ; i = 1,…, n. 

    0 0 0 0 0 0 0
3 1 1nr

             H T α L eω L γ Qeω eα L γ eω Q ω . 
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Chapter 3  

 

Multi-state complex cold standby systems 

subject to multiple events with loss of units 

 

3.1 Introduction 

This chapter describes the algorithmic procedure used to model three multi-state complex 

cold standby systems with loss of units and an indeterminate variable number of 

repairpersons, using MMAPs. Two main contributions are making: on the one hand, we 

consider the loss of units with variable numbers of repairpersons; on the other, complex 

MMAPs are used to model complex systems with multiple events, after which the 

stationary distribution is determined. In the first of these systems, the online unit is only 

subject to failure by wear; the second extends this by including external shocks with 

diverse consequences, and the third includes inspections, so that the effects of preventive 

maintenance and of the variable number of repairpersons, depending on the number of 

units present in the system, are analysed. An optimal maintenance policy enables 

policymakers to decide what level of degradation should be taken into account for 

preventive maintenance in response to an inspection, whether preventive maintenance is 

profitable and the optimum number of repairpersons at a given time. This study extends 

previous research in this area in the following ways: the online multi-state unit passes 

through an indeterminate level of degradation, external shocks can produce several 

consequences (extreme failure, cumulative external damage, aggravation of the internal 

degradation or internal failure), preventive maintenance is performed in response to 

random inspections, the loss of units is considered (when a non-repairable failure occurs, 
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the unit is not replaced while the system is operational), variable numbers of 

repairpersons are considered (the number of repairpersons depends on the number of 

units in the system),  rewards and costs are included in the system and an optimising 

example is shown and all results are expressed in algorithmic form, with PH distributions 

and Markovian Arrival Processes, with marked arrivals in discrete time (D-MMAP). 

The applications considered range from performance and reliability/availability 

analyses of different configurations of non-repairable and repairable systems, to the 

development of maintenance strategies providing the desired system functioning, to the 

optimisation of system structure, performance and maintenance schedules. In this respect, 

Markopoulos and Platis (2017) [36] considered MSS and semi-Markov modelling to 

restructure an IEEE 6 BUS RBTS energy system in order to enhance its reliability. Real-

life systems are modelled in the present chapter. The model presented can be applied in 

fields such as civil, industrial and computer engineering. For instance, in computer 

engineering, a computer server with three hard drives, two of which are available in cold 

standby, might be assumed. The online hard drive is periodically inspected by an 

installed monitoring program that analyses logic and physics parameters to detect 

possible errors. In civil engineering a fundamental element in well machinery is the drill 

bit. This is essential to advance the construction and it is subject to wear and/or breakage. 

Drill bits are very expensive and so they are regularly inspected and preventive 

maintenance is considered. New drill bits are kept in cold standby.  

The rest of this chapter is organised as follows. The systems and the state-spaces are 

detailed in Section 3.2. In Section 3.3 the online unit and the repair facility are modelled. 

The MMAP for each system are developed in section 3.4. Measures of the transient and 

the stationary distributions are obtained by considering matrix-analytics methods in 

Section 3.5, after which costs and rewards are introduced in Section 3.6. A numerical 

application illustrating the versatility of the model is presented in Section 3.7, section 3.8 

presents the main conclusions drawn and finally an Appendix with the main expressions 

is given in Section 3.9. 
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3.2 The systems  

Three complex systems are described and modelled. The first is the most basic and the 

last, the most complex. The systems are available in cold standby, and the online unit is 

multi-state and subject to different types of events. 

SYSTEM I 

The online unit is multi-state and subject to internal repairable or non-repairable failure. 

The internal performance of the system is composed of several states which are 

partitioned into two well-differentiated groups: minor and major damage states, which 

reflect a low and high risk of failure, respectively. 

 

SYSTEM II 

The online unit is multi-state and subject to internal repairable or non-repairable failure 

and external shocks with different consequences, such as extreme failure of the online 

unit (non-repairable), degradation of the internal performance of the online unit, caused 

by a repairable internal failure, and cumulative external damage where if a threshold is 

reached a non-repairable failure occurs. Each time an external shock takes place, the 

cumulative external damage increases by passing through an external damage state. 

These cumulative external damage states are also well-differentiated in two groups: 

minor and major cumulative external damage states. 

 

SYSTEM III 

Random inspections are added to system II. If a major internal stage is reached and/or 

major external cumulative damage is observed by the inspection, the unit is sent to the 

repair facility for preventive maintenance. The time distributions for repairable failures 

and for preventive maintenance may be different.  

Three main contributions are incorporated in these systems. The initial number of 

units in the system is general, K, each time that a unit undergoes a non-repairable failure 

is removed and the number of repairpersons in the repair facility is general and varies 

each time that a non-repairable failure occurs. The system continues working while there 



50                                                                                                       Multi-state complex cold standby system                                    
 

 

are units in the system. The number of repairpersons when there k units in the system is 

denoted by Rk where 1  Rk  k. 

The systems are modelled and presented sequentially; the state-space, the modelling 

of the online unit, that of the repair facility, the associated MMAPs (from the online unit 

and the repair facility), the measures used and the costs produced. Examples are given in 

the modelling of the repair facility to illustrate the algorithmic approach used.   

3.2.1 Assumptions 

The cumulative assumptions for the systems are the following. 

SYSTEM I 

The behavior of the operational time of the online unit works as assumptions 2.1 and 2.2, 

given in Section 2.2.1. New assumptions are supposed for this new system. 

Assumption 3.1. When the online unit undergoes a non-repairable failure then it is 

removed and the number of the repairpersons is modified. 

Assumption 3.2. The corrective repair time when the online unit fails is PH distributed 

with representation (1, S1). The order of this matrix is equal to z1 (number of corrective 

repair phases).  

Assumption 3.3. When the system is composed of only one unit and this one undergoes a 

non-repairable failure, the system is replaced by new and identical K-units system. 

SYSTEM II 

The system described above is extended by including external shocks over the online 

unit. Then, the assumptions 2.3, 2.4, 2.5, 2.6 and 2.7, given in Section 2.2.1, are added to 

the assumptions described for System I. Figure 3.1 shows a diagram for systems I and II. 

SYSTEM III 

Preventive maintenance as response to random inspections is considered in System III. 

The assumptions for System II are extended with the following new assumptions. 

Assumption 3.4. While the online place is busy, random inspections can occur. The time 

between two consecutive inspections is PH distributed with representation (, M). The 

order of the matrix M is equal to . 
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Assumption 3.5. When all standby units in repair facility, none unit is repaired and one 

inspection occurs then the online unit is continuous working. 

Assumption 3.6. When major internal or/and cumulative external damage is observed 

then the unit goes to repair facility for preventive maintenance. Preventive maintenance 

time is PH distributed with representation (2, S2). The order of this matrix is equal to z2 

(number of preventive maintenance states). 

Figure 3.2 shows a diagram of system III. 

 

 

 

 

Figure 3.1. Diagram of systems I and II 
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Figure 3.2. Diagram of system III 

 

3.2.2 The state-space 

The state-space of the system is composed of macro-states. This state-space is different 

according to the systems.  

SYSTEM I 

The state space of the system is composed of two levels of macro-states. This state space 

is denoted by  1 1, , ,K KS  U U U , where Uk is the second level, containing the phases 

when there are k units in the system. These macro-states are composed of the macro-

states of the first level,  0 1, , ,k k k k
kU E E E where k

sE contains the phases when there are 

k units in the system and s units are in the repair facility. The phases of the system if the 

online unit is in state i and the units in corrective repair, if any, are in states  1 min ,, ,
ks Rr r  

are for k = 1,…, K and s = 1,…, k1, 
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  0 ; ; 1,...,k k i i n E ; 

     1 1min ,, ; , , , ; 1,..., ,  r 1,..., , 1, , min ,
k

k
s h ks Rk s i r r i n z h s R   E    

     1 1min ,, ; , , ; r 1,..., , 1, , min ,
k

k
k h ks Rk k r r z h s R  E   . 

SYSTEM II 

The state-space of system II is again composed of two levels, but in this case the states of 

the inspection time, j, and the external cumulative damage, u, are included. Then, for k = 

1,…, K and s = 1,…, k1, 

  0 ,0; , , ; 1,..., ,  1,..., ,  1,...,k k i j u i n j t u d   E ; 

     1 1min ,, ; , , , ;  1,..., ,  r 1,..., , 1, , min ,
k

k
k h ks Rk s j r r j t z h s R   E    

  
 

1 min ,

1

, ; , , , , , ; 1,..., ,  1,..., ,  1,..., ,  

           r 1,..., , 1, , min , .

k

k
s s R

h k

k s i j u r r i n j t u d

z h s R

   

 

E 


  

SYSTEM III 

The state space of System III is composed of three levels of macro-states. In this case the 

order of the units in the repair facility has to be saved in memory, as there are two types 

of repair, corrective and preventive maintenance. For this reason, the macro-state k
sE  is 

composed of the first level of macro-states 
1, , s

k
i iE  . These macro-states contain the phases 

when there are k units in the system, with s of them in the repair facility, and the type of 

repair is given by the ordered sequence i1, … , is. The values of il are equal to 1 or 2 if the 

unit is in corrective repair or preventive maintenance, respectively. Then, for k = 1,…, K, 

  0 ,0; , , , ; 1,..., ,  1,..., ,  1,..., ,  1,...,k k i j u m i n j t u d m     E  

 
1, , ; 1,2; 1,..., ,  1,...,

s

k k
s i i li l s j s   E E   for s = 1,…,k where 

  
 

1 , , 1 min ,, ; , , , , , , ; 1,..., ,  1,..., ,  

                 1,..., ,  1,..., ,  r 1,..., , 1, , min ,

s k

h

k
i i s R

h i k

k s i j u m r r i n j t

u d m z h s R

  

    

E  


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for s = 1,…,k1 and   1 , , 1, ; , , , ;  1,..., , 1,..., , 1, ,
k k h

k
i i R h i kk s j r r j t r z h R   E    . 

The phase   1 min ,, ; , , , , , ,
ks Rk s i j u m r r  indicates that there are k units in the system of 

which s of them are in the repair facility, the internal performance is in state i, the 

external shock time is in state j, the cumulative damage undergone by external shocks is 

given by u, m is the phase of the inspection time and r is the corrective repair/preventive 

maintenance phase for the units that are being repaired in the repair facility. 

3.3 Modelling the systems 

The systems are governed by a Markov process vector in discrete time with the state 

space described in Section 3.2.2. To model any proposed complex system, the behaviour 

of the online unit and of the repair facility must be described separately. This section 

shows the case of System III but analogous reasoning can be performed for Systems I and 

II. The corresponding matrices for all systems are given in Appendices 3A and 3B. 

3.3.1 Modelling the online unit 

The online unit of system III can undergo different types of events. These ones are 

partitioned as:       

A1: Internal repairable failure due to internal degradation 

A2: Internal repairable failure due to external shocks 

B1: Major revision for only major internal degradation after inspection 

B2: Major revision for only major external cumulative damage after inspection 

B3: Major revision in both cases (internal and external cumulative damage) 

C1: Non-repairable failure due to internal degradation 

C2: Non-repairable failure due to one external shock 

O: No events 

The transition for each event affecting the online unit is obtained as follows. The 

repairable case (A1, A2) is discussed below, and the remaining cases are shown in 

Appendix 3A. An internal repairable failure (A1) can occur due to internal degradation or 

after an external shock. In the first case, the online unit undergoes an internal repairable 

failure and another unit occupies the online place ( 0
rT α ); an external shock occurs or 
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does not ( 0 ,L γ L respectively); if it does, cumulative damage occurs but there is no non-

repairable failure,  01Deω . If an inspection takes place at the same time, the unit 

undergoes a repairable failure and the inspection time begins for the new online unit

( )e . This transitions is governed by  

 1 0 0 0 0
rep 1 .r r 

          H T α L eω T α L γ Deω e   

If the online unit is the only operational unit and a repair does not occur, then none unit 

will occupy the online place at the next time. In this case, 

 '1 0 0 0 0
rep 1r d r 

         H T L e T L γ De e . 

A similar reasoning can be applied when an external shock provokes an internal 

repairable failure (A2). In this case, an external shock occurs ( 0L γ ) and the internal 

behaviour is modified to address the internal failure ( 0TW α ). This shock does not 

provoke a non-repairable failure (  01Deω ). The transition matrix is governed by 

 2 0 0 0
rep 1 

       H TW α L γ Deω e . 

Analogously, if at the next time the online place is empty then 

 '2 0 0 0
rep 1 

      H TW L γ De e . 

The rest of the matrices are given in Appendix 3A. 

3.3.2 Modeling the repair facility 

As mentioned above, the modelling is developed for System III, but the method described 

is valid for Systems I and II if only corrective repair and non-repairable failures are 

considered. The transition matrix for the repair facility depends on the number of 

repairpersons, the number of units in the repair facility, the number of units that are 

successfully repaired and the type of failure (if any) of the online unit. The number of 

repairpersons when there are k units in the system, with k ≤ K, is given by Rk ≤ k and the 

number of units in the repair facility is denoted as l. Let a be the number of units which 

finish the repair. Let kh be the ordinal of the repairpersons who concluded the repair, and 

let ih and jh be the type of repair (corrective, 1, preventive maintenance, 2) for the ordered 
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units, after and before the transition, respectively. The online unit can undergo two types 

of events that can require the unit to be sent to the repair facility: repairable failure or 

major inspection. This fact is included in the modelling through the variable mr, which is 

equal to 0 if the unit does not undergo an event and 1 if a repairable failure or a major 

inspection occurs. The online unit is also subject to non-repairable failure. If this occurs, 

it is denoted by nr = 1, otherwise it is equal to 0.When a non-repairable failure occurs, the 

number of repairpersons can be modified. In this case, if there are fewer repairpersons 

after a transition than remaining units being repaired, some of these units will be returned 

to the queue in the repair facility. The number of units to be returned is denoted by b. 

This value is given by  

      11 0max min , ,0k k knr nrb l R a I R I R     . 

To model the behavior of the repair facility we define the following matrix function that 

governs the behavior in one transition of the units that are being repaired where the order 

of the units repaired are specified. This function is given by 

 
    

 
1

1 1 1, , , ; , , ; , , ; , ,

1 min , ; ; 1, , ; ,

; otherwise

a

k sz
z

a l a mr l

k s z
s I

C k l a b k k i i j j

l R i j s l s k z




 





      
 


S S

0

  

 
 

for  k  K, l  1, a  1,b  0, where 

 
 0

0

; 1, , |

;  is the ordinal of the last  units being repaired without ending 

; otherwise

h

h

h

j z

j

j

z a h k

S h h b

   
 



S

e S

S



. 

 

If a = 0, then the definition is analogous but we will consider the following notation 

 

       1 min , min , 1 min ,

1 1

0 0

, , 0, ; , , ; , ,

; ;1

; otherwise

l R b l R b l Rk k k

l mr l

j j j j s s

C k l a b i i j j

S S S S i j s l
  

 

          



e e

0

 

   
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If  min , ka l R , then the definition is analogous but we will consider the following 

notation 

  
 1 min ,

0 0
1, , min , ,0; , ,

l Rk
k l j jC k l a l R j j S S     . 

Example 3.1. For instance, we assume a system composed of 4 repairpersons and 6 units 

(k=6, R6=4), 5 of them in the repair facility (l = 5; preventive maintenance, corrective 

repair, preventive maintenance, corrective repair and preventive maintenance 

respectively). At the next time three unit that are being repaired finishes the repair, and 

the online unit undergoes a non-repairable failure. The number of repairpersons is only 

two when the system is composed of 5 units (R5=2) and the units in the repair facility 

after non-repairable failure are types corrective repair and preventive maintenance 

respectively.  

In this case the number of units that are devolved to the queue in the repair facility is

  max min 5,4 3 2,0 0b     . If the first three units are repaired then this transition 

for the units that was being repaired with the established order is 

 1 2 3 1 2 1 2 3 4 5

0 0 0
2 1 2 1

6, 5, 3, 0; 1, 2, 3; 1, 2; 2, 1, 2, 1, 2

.

C k l a b k k k i i j j j j j

S S S S

             

   
 

From this matrix function the transition probability, if only a is known and the order is 

not specified, is given by 

 
 

 
   

 

   
1 2 1 1

1 1

1 1

min , 1 min , 2 min ,

1 1 1
1 1 1

1

, , , ; , , ; , ,

, ,0, ; , , ; , , ; 0, 0, 0

, , , ; , , ; , , ; , , ; 0, min ,

, , ,0; , , ; min , ,

k k k

a a

l a mr l

l mr l

l R a l R a l R

a l a mr l k
k k k k k

l k

B k l a b i i j j

C k l b i i j j a b l

C k l a b k k i i j j a a l R

C k l a j j a l R


 



   

 
    

  

 




  

 

 

   


1 ; 0, 0, 0a b l







   

 

Example 3.2. If the example 3.1 is considered, then transition probability matrix when 

the order of the units repaired are not specified is given by 

 1 2 1 2 3 4 56, 5, 3, 0; 1, 2; 2, 1, 2, 1, 2B k l a b i i j j j j j            

                  0 0 0 0 0 0
2 1 2 1 2 1 2 1S S S S S S S S         0 0   . 
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After one transition, new units that were in queue or not can entry in repair. The number 

of units that will begin the repair at the next time is given by 

     
      

11 0

11 0

min max 0, ,

              min min , , .

k k knr nr

k k knr nr

l R mr I R I R

R l a I R I R

 

 

    

  
  

The matrix function that governs the transition probability of the repair facility when a of 

l units are repaired for l >0 and al is given by 

 
     

 

min , 1 min ,

1 1

1 1

1 1

, , , ; , , ; , , ; ,

, , ,0; , , ; , , ; 0

, , , ; , , ; , , ; 0

; otherwise

l R a l R ak k

l a mr l

i i

l a mr l

l a mr l

E k l a b i i j j mr nr

B k l a i i j j

B k l a b i i j j

   

 

 

 



     


 



β β

0

 

  
 

  

  If l = 0 or a = l with l  Rk then this function is denoted as 

 , 0, 0, 0; 0, 0,1 1E k l a b mr nr      ,  , 0, 0, 0; ; 1, 0 mri
mrE k l a b i mr nr      β

,    1 1, , , 0; , , ; 0, 0,1 , , ,0; , ,l lE k l a l b j j mr nr B k l l j j      ,

   1 1, , , 0; ; , , ; 1, 0 , , ,0; , , mri
mr l lE k l a l b i j j mr nr B k l l j j     β  . 

Example 3.3. If the example 3.1 and 3.2 are considered, then the number of units that 

entry in repair is given by     min max 0,1 0, 2 min 4 3, 2 1.      Therefore, the 

transition probability for the repair facility is given by 

 1 2 1 2 3 4 56, 5, 3, 0; 1, 2; 2, 1, 2, 1, 2; 0, 1E k l a b i i j j j j j mr nr              

  2 20 0 0 0 0 0
2 1 2 1 2 1 2 1

iS S S S S S S S         β . 

 3.4 The Markovian Arrival Processes with marked arrivals 

The systems I, II and III, are modeled by different MMAPs by considering the different 

types of events described in section 3.3.1. The MMAPs for the different systems have the 

following representations, 

Model I:  1 1 1, , ,A C FCOD D D D  

Model II:  1 2 1 2 1 2, , , , , ,A A C C FC FCOD D D D D D D  

Model III:  31 2 1 2 1 2 1 2, , , , , , , , ,BA A B B C C FC FCOD D D D D D D D D D . 
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FC1 and FC2 denote the same that C1 and C2 respectively when only one unit is present in 

the system. These events will be used to count the number of new systems by time. 

The matrix DY contains the transition probabilities when the event Y has occurred for Y = 

O, A1, A2, B1, B2, B3, C1, C2, FC1, FC2. 

The matrix DY is built following three matrix block levels, always when the event Y 

occurs. The third level corresponds to the transitions from the macro-state Uk to Uk or 

Uk1. These matrix blocks are composed of the matrices ,Y k
lhD which correspond to the 

transitions between the macro-states from k
lE  to either k

hE or 1k
h
E  (level 2).  

Finally, when preventive maintenance is introduced (system III) several types of 

repairing can be produced. Therefore, the type of failure of the units in the repair facility 

has to be saved in memory. The matrices ,Y k
lhD are composed of matrix blocks 

corresponding to the transition from the macro-states 
1 , , l

k
i iE   to 

1, , h

k
i iE  or 

1

1
, , h

k
i i
E  . The 

matrix block  ,
1 1, , ; , ,Y k

lh h li i j jD    contains the transition probabilities described above 

where the type of repair in the repair facility is ordered for the case before and after 

transition. These blocks are built by considering the matrices H defined in section 3.1 and 

developed in Appendix 3.A (level 1). Next, the case A1 for the Model III, a repairable 

internal failure occurs, is described in detail. The rest is given in an algorithmic form in 

Appendix 3B.   

Building the matrix 1AD  

This matrix 1AD  is a matrix block that governs the transitions when an internal repairable 

failure occurs. Then this matrix is a diagonal matrix block

 1 1 1 1 1, , 1 , 2 ,1, , , ,A A K A K A K Adiag  D D D D D given that a non-repairable failure does not 

occur. The matrix block ,iA kD contains the transitions when this fact occurs with k units in 

the system. The elements of the matrix  1 ,A kD  for k = 1,..., K are matrix blocks by 

considering the number of units in the system, l and h before and after the transition 

respectively. It is given by  

 1 1, ,

, 0,...,

A k A k
lh l h k

D D  

where 1,A k
lh D 0  if h > l +1 or h <l+1 min{l, R(k)} or l = k. 
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Finally, these matrices are again composed of matrix blocks by taking into account 

the order of the units in the repair facility. Thus, if there are k units in the system, l of 

them in the repair facility with ordered type of failure  1, , lj j , a units are repaired and 

one repairable failure occurs then the transition matrix is given by  

      
 

1 , 1 '1
, 1 1 1 1 1 rep rep1 or 0 1 and 0

1 1 1 1

, , ,1; , ,

                                               , , ,0; , , ,1; , , ;1,0 ,

A k
l l a l a l l k a l k a

l a l

i i j j I I

E k l a i i j j

          

  

 



D H H 

 
 

for l=1,…,k1; a=0,…,min{l, Rk} and k > 1. 

The matrix is obtained according to the following algorithm.   

1.  1 1 1 1 1, , 1 , 2 ,1, , , ,A A K A K A K Adiag  D D D D D  

2.  1 1, ,

, 0,...,

A k A k
lh l h k

D D  for k =1,..., K 

3. Building blocks 1,A k
lhD  for  l+1 min{l, R(k)} h  l +1 and l  k 

 3.1. If l = 0 

  a. Calculating  1 ,
01 1A kD       1 '1

rep rep1 1 ,0,0,0;1;1,0k kI I E k   H H  

   a.1. If  1k    1
repH  else '1

repH  

   a.2. Function  ,0,0,0;1;1,0E k =   1,0,0,0;1B k β  

    a.2.1. Calculating  and b (in this case it is equal to one  
              and zero respectively) 

               a.2.2. Calculating function  ,0,0,0;1B k =1 

 3.2. For l=1,…,k1; a=0,…,min{l, Rk} with k > 1 
  a. Calculating  

   
      

 

1 , 1 '1
, 1 1 1 1 1 rep rep1 or 0 1 and 0

1 1 1 1

, , ,1; , ,

                                                , , ,0; , , ,1; , , ;1,0

A k
l l a l a l l k a l k a

l a l

i i j j I I

E k l a i i j j

          

  

 



D H H 

 
 

   a.1. If  1 or 0l k a     1
repH  else '1

repH  

   a.2. Function  1 1 1 1, , ,0; , , ,1; , , ;1,0l a lE k l a i i j j     

    a.2.1. Calculating  and b (in this case b is equal to zero) 
               a.2.2. Calculating function 
      1 1 1 1, , ,0; , , ,1; , ,l a lB k l a i i j j     

 

The rest of matrices are given in Appendix 3B. 
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3.5 The transient and stationary distribution and Measures 

The transient and stationary distributions have been built so as several measures of 

interest. These measures are developed for the system III. The other models can be 

achieved in a similar way. 

3.5.1 The transient distribution 

Once built the D-MMAP, the transition probability matrix that governs the discrete 

Markov chain associated to the system III and it is given by

31 2 1 2 1 2 1 20 BA A B B C C FC FC         D D D D D D D D D D D . Given the initial distribution 

of the system , the transient distribution is worked out as  p θD . Therefore, the probability 

of being in the macro-state k
sE  at time  is the corresponding part of  p  and it is denoted by k

s


E

p . 

3.5.2 Stationary distribution 

The stationary distribution, , has been built solving the balance equations by applying 

matrix analytic methods. It is well known that the stationary distribution verifies πD π

and 1πe . This system has been solved for the macro-state Ek, k units in the system. The 

stationary distribution for this macro-state is denoted by kE
π . Then, the stationary 

distribution is  1 1, , ,K K
E E E

π π π π . From the MMAP the transition probability 

matrices for the transition from Ek to Ek or Ek1 are denoted by  

 

31 2 1 2

1 2

1 2

,, , , ,,
,

, ,
, 1

,1 ,1
1,

  ;   1, ,

                                            ;   2, ,

                                             

B kA k A k B k B kO k
k k

C k C k
k k

FC FC
K

k K

k K

      

  

 

D D D D D D D

D D D

D D D



  

The stationary distribution has been worked out from the balance equations. These 

probabilities are equal to 

1 1,k k
E E
π π R , for k = 2,…,K, 

Being 

  1

1, 1, ,K K K K


 R D I D   
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  1

1, 1, 1 1, ,k k k k k k



  R R D I D   for k =2,…,K1. 

The vector 1E
π  can be expressed as 

 1

1
*

1, 1,1 1,2 2,1
2

1,
K

k
k





              
E

π 0 I R e D R D I , 

Where the matrix A* is the matrix A without the first column. 

 

The stationary distribution associated to the macro-state k
sE  is given by the 

corresponding part of kE
π and it is denoted by k

sE
π . 

3.5.3 Measures 

Several interesting reliability measures such as availability, reliability, mean times and 

mean number of events are calculated in this section for the transient and stationary 

regime. 

3.5.3.1 Availability 

The availability is the probability that the system is operational at time. It is given by 

 
1

1 k
k

K

E
k

A 



   p e . 

This measure is also calculated in the stationary case and it is equal to
1

1 k
k

K

E
k

A


  π e . 

3.5.3.2 Reliability 

Two different reliability functions have been built: the time up to the first time that the 

system in non-operational (all units in the repair facility) and the time up to the first time 

that the system is replaced (all units have undergone a non-repairable failure). 

In the first case, the probability distribution is given by the phase-type distribution with 

representation  ', 'θ D where the vector and the matrix are equal to  ,θ D  restricted to 

the macro-states k
sE  for k = 1,…, K and s = 0,…,k1. 
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In the second case, the time up to the first time that the system is replaced by another 

an identical one is phase-type distributed with representation  , *θ D  where the matrix is 

given by D  with the blocks 1,1 2,1FC FC D D 0 . 

3.5.3.3 Mean time in each macro-state 

The mean time that the system is in macro-state k
sE  (k units in the system and s of them 

in the repair facility) up to time  is given by 

 ,
0

k
s

m
k s E

m





   p e . 

From this expression, the mean time in macro state kE  (k units in the system) is given by 

   ,
0

k

k k s
s

     . 

The corresponding stationary values are ,
0

k
s

k s E
m





   π e  and ,
0

k

k k s
s

   . 

3.5.3.4 Mean operational time up to time  

From the measures described above in section 3.5.3, the mean time that the system is 

operational up to time  can be calculated. It is given by 

   
1

,
1 0

K k

op k s
k s



 

     . 

This mean time in stationary regime is the operational time ratio and it is
1

,
1 0

K k

op k s
k s



 

   . 

3.5.3.5 Mean time that the repairpersons are idle and busy 

The systems proposed in this work have different number of repairpersons depending on 

the number of units in the system. One interesting aspect is to analyse the mean 

cumulative time that the repairpersons are idle up to a certain time. This measure is given 

by 

      
1

,
1 0

min ,
K k

idle k k k s
k s

R R s


 

      . 

In the stationary regime this measure is the mean number of idle repairpersons per unit of 

time, 
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  
1

_ ,
1 0

min ,
K k

idle s k k k s
k s

R R s


 

    . 

Following a similar reasoning to analyse the number of repairpersons that are busy  

     ,
1 1

min ,
K k

busy k k s
k s

R s
 

     , 

and in the stationary regime  _ ,
1 1

min ,
K k

busy s k k s
k s

R s
 

   . 

3.5.3.6 Mean time working on corrective and preventive repair 

The repairpersons can be working on corrective repair or preventive maintenance. The 

mean time that the repairpersons are working on corrective repair and preventive 

maintenance up to time  is given respectively by 

   
0 1 1

1k
s

K k
k

corr sE
m k s




  

   p q  And    
0 1 1

2k
s

K k
k

pm sE
m k s




  

   p q , 

Where  1k
sq  and  2k

sq  are column vectors that contains the number of repairpersons 

that are working on corrective repair and preventive maintenance respectively according 

to the macro-state k
sE . These column vectors are given by 

 

 
         

 
         

    
         

min , 11
1 2

min , 22
1 2

min ,
1 2

1

1

2
1

2 2

kkI s R dd k ss k s

kkI s R dd k ss k s

kkI s R d id i k ss k s

k
s

t nd z z

k
s

t nd z zk
s

k K s
s s K s K

t nd z z

d

d

d I I












  

 
 
 
   
 
  
 

e

e
q

e


,           

for  

 

 
         

 
         

    
         
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being  k
sd i  the i-th element of the vector 

 

 max ,0

min ,

2

1 1

0 0

k

s Rk

s R
k
s 

   
    
   

d e    with  
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   1 1

1

2 2

1 1 1 1

0 0 0 0
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k k Rkk k

Rk
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k k R k RI I  



 

        
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        
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sg i  the i-th 

element of the vector 
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 max ,0
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0 0

1 1
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s 

   
    
   

g e    and 

    1

1

2

0 0 0 0

1 1 1 1

k

k Rkk k

Rk
k
k k R k RI I  



 

       
         

       
g e  for k = 1,…, K and s = 1,…,k 

where m n   a b a e e a  being a and b column vectors with order n and m 

respectively. 

These measures in stationary regime are  _
1 1

1k
s

K k
k

corr s sE
k s 

  π q  and 

 _
1 1

2k
s

K k
k

pm s sE
k s 

   π q  respectively. 

 3.5.3.7 Mean number of events 

Thanks to the structure built, the expected number of events up to a certain time  is 

worked out. It is given by   1

1

Y u Y

u






  p D e , for Y = A1, A2, B1, B2, B3, C1, C2 FC1, FC2. 

In stationary regime, the mean number of events per unit of time is Y Y  πD e . 

3.6 Costs and Rewards 

Several costs and rewards have been included in the model to study the effectiveness of 

the model from an economic standpoint. Thus, we assume that there is a gross profit per 

unit of time while the system is operational equal to B. While the system is operational a 

mean cost per unit of time depending on the operational phase occurs. This cost is given 

by the vector c0. There are two different types of repair, corrective repair and preventive 

maintenance. The mean cost per unit of time when a unit is in corrective repair or 

preventive maintenance depending on the repair phase is given by the vectors cr1 and cr2 

respectively. Also, we assume a fixed cost per unit of time for each repairperson equal to 

H and a loss per unit of time while the system is not operational equal to C. Finally, each 

time that the online unit undergoes a repairable failure or a major inspection a fixed cost 

is produced equal to fcr or  fpm respectively. The mean cost per one new unit is fnu (the 

cost of a new system is Kfnu).  
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To calculate the total net profit up to time   is necessary to build the vector cost for 

the macro-state k
sE  and several rewards and costs functions. 

3.6.1 Net profit vector associated to the phases  

When the systems is composed of k units and s of them are in the repair facility, then the 

online unit provokes a net reward for the different phases of the system given by 
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Then, for the state space it is  

 1 1 1 1
0 1 0 1 1 0 1', ', , ', ', ', , ', , ', ' 'K K K K K K

K K
 

nr nr nr nr nr nr nr nr nr   . 

 

If the repair facility is considered, the cost vector per unit of time depending on the type 

of repair associated to the macro-state k
sE  for s = 1,…, k, is 
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. 

The total vector for the cost due to repair is given by 

 1 1 1 1
0 1 0 1 1 0 1', ', , ', ', ', , ', , ', ' 'K K K K K K

K K
 

nc nc nc nc nc nc nc nc nc   . 

Thus, the net profit vector associated to the macro-state k
sE  is given by 0 0

k kc nr , 

k k k
s s s c nr nc for s =1,…,k. Finally, the net column profit vector associated to the macro-

state kE  is given by  0 , , 'k k k
kc c c thus the global net column profit vector associated to 

the macro-state E is given by 

1

1

K

K

 
 
     
  
 

c

c
c nr nc

c


. 

3.6.2 Rewards Measures 

Several rewards measures have been built in transient and stationary regime.  

Mean net profit up to time  

The mean net profit by considering only the online unit up to time  is given by 
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m
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m






  p nr , 

and it is in stationary regime the meat neat profit per unit of time, _w s  π nr . 

Mean cost due to corrective and preventive repair 

The mean cost due to corrective repair and preventive maintenance up to time up  is 

given respectively by 

0

m cr
cr

m






  p mc and 
0

m pm
pm

m






  p mc where crmc  is the vector nc  with 
22 zcr 0   

and pmmc  is the vector nc  with 
11 zcr 0 , being 0a a column vector of zeros with order a. 

These measures in stationary regime, net cost per unit of time due to corrective or 

preventive maintenance, are _
cr

cr s  π mc   and _
pm

pm s  π mc  respectively. 

Total net profit 

The total net profit up to time  is worked out by adding costs and profits produced by 

the events. If the fixed cost per event are included then it is equal to 
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Finally, the total net profit per unit of time (stationary regime) is 
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3.7 A numerical example 

Any facility that requires a reliable electrical supply (such as department stores, hospitals, 

military installations and hydroelectric plants) must have additional generating resources 

available. When the ordinary electricity supply fails, a cold standby generating set comes 

into action. For a large dam, at least two such generating sets must be installed in cold 

standby. The generating set may fail for the same reasons as any motor, provoking either 

a total failure of the motor or a repairable failure, and preventive maintenance may be 



Mohammed Dawabsha                                                                                                                                 69 
 

     
 

necessary. Therefore, we assume a cold standby system composed of three units, as 

Systems II and III. To optimise the system, two questions must be answered. Is 

preventive maintenance profitable? How many repairpersons, depending on the number 

of units in the system, would have to be deployed to optimise the profit? In this numerical 

example, the effectiveness of preventive maintenance is analysed and the optimum 

number of repairpersons is calculated. 

 

System times 

The internal behaviour of the online unit passes through five performance levels, 

where the degradation is minor in the first three stages and major in the last two. The 

online unit is also subject to external shocks and inspections. The operational time 

distribution of the online unit, the inspection time distribution and the external shock time 

are PH distributed with representation given in Table 3.1. 

 

Internal operational time External shock Inspection time 

 1,0,0,0,0α  

0.99 0.002 0 0 0

0 0.9 0.001 0 0

0 0 0.9 0.002 0

0 0 0 0.6 0

0 0 0 0 0.6

 
 
 
 
 
 
 
 

T  

Mean time: 102.0201 

 1,0γ  

 

0.89 0.1

0.1 0.8

 
  
 

L  

 

Mean time: 25 

 1,0η  

 

0.85 0.1

0.45 0.4

 
  
 

M  

 

Mean time: 15.56 

Table 3.1. Internal operational, external shock and inspection time distributions. 

 

Each time that the online unit undergoes an external shock, a total non-repairable failure 

occurs with a probability equal to 0.05. If no such failure occurs, the internal performance 

may be degraded according to the following probability matrix 
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0.6 0.2 0.1 0.1 0

0 0.6 0.2 0.1 0.1

0 0 0.6 0.2 0.2

0 0 0 0.5 0.3

0 0 0 0 0.4

 
 
 
 
 
 
 
 

W . 

When an external shock takes place, cumulative external damage occurs. Four external 

degradation levels are assumed, the first two of which are minor and the last two, major. 

Changes in the external degradation levels are governed by the matrix 

0 0.3 0.7 0

0 0 0.6 0.4

0 0 0 0.5

0 0 0 0.3

 
 
 
 
 
 

D , 

where initially the external degradation level is the stage 1 (without external damage). 

Each time that a repairable failure or a major inspection occurs, the online units goes to 

the repair facility. The corrective repair time and the preventive maintenance time 

distributions are given in Table 3.2. 

Performance of the systems according to the number of repairpersons 

As mentioned above, the systems with and without preventive maintenance (Systems III 

and II, respectively) are compared by considering all possibilities for the number of 

repairpersons. Thus, the system i_j_k denotes a system with i, j, k repairpersons when 

there are 1, 2, 3 units in the system respectively for i =1, j =1, 2 , k = 1, 2, 3. In total there 

are 12 possible systems, six with preventive maintenance and six without. Several 

measures have been worked out and compared in transient and stationary regime.    

Corrective repair time distribution Preventive maintenance time distribution 

 1 1,0β  

1

0.91 0.01

0 0.8

 
  
 

S  

Mean time: 11.67 

 2 1,0β  

2

0.1 0.1

0 0.1

 
  
 

S  

Mean time: 1.23 

Table 3.2. Corrective repair and preventive maintenance time distributions 
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Figure 3.3 shows the mean operational time and the mean number of idle 

repairpersons per unit of time for Systems II and III. The optimum mean operational time 

ratio is reached for System 1_2_3 when the operational time ratio in a stationary regime 

is equal to 0.9467 for the system with preventive maintenance and 0.9346 for the case 

without preventive maintenance. This outcome is to expected but as the repairpersons 

have a cost, it is interesting to analyse the mean number of idle repairpersons. In this 

case, the maximum is reached for System 1_2_3 with a mean number of idle 

repairpersons per unit of time in the stationary regime equal to 1.8847 and 1.7663 for the 

systems with and without preventive maintenance, respectively. 

 

Figure 3.3.  Mean operational ratio (first row) and mean number of idle repairpersons per unit of time 
(second row) with preventive maintenance (first column) and without preventive maintenance (second 

column) 

 

Another interesting aspect to study is that of the mean number of events up to a certain 

time. This measure was calculated for every system and for several units of time. Table 

3.3 shows the results obtained for 1500 units of time. 

The number of new systems up to time 1500 is given by the last column of the Table 3.3. 

The minimum is reached when always one repairperson is assumed. 
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SYSTEM         1 1500A

 

 2 1500A

 

 1 1500B

 

 2 1500B

 

 3 1500B

 

 1 1500C

 

 2 1500C

 

 
 

1

2

   1500

1500

FC

FC




 

T
im

e 
15

00
  

1_2_3  21.6051  

(22.3598) 

0.0160  

(0.0158)  

0.0741  

(----)  

12.1965  

(----)  

0.2521  

(----)  

3.5750  

(3.1678)  

5.6187  

(8.5369)  

4.1283  

(5.3222)  

1_2_2  21.6038  

(22.3585) 

0.0160  

(0.0158)  

0.0741  

(----)  

12.1957  

(----)  

0.2521  

(----)  

3.5748  

(3.1676)  

5.6184  

(8.5365)  

4.1280  

(5.3219)  

1_2_1  21.5840  

(22.3403) 

0.0160  

(0.0157)  

0.0733  

(----)  

12.1253  

(----)  

0.2499  

(----)  

3.5703  

(3.1651)  

5.6237  

(8.5298)  

4.1283  

(5.3177)  

1_1_3  21.5328  

(22.2864) 

0.0159  

(0.0157)  

0.0738  

(----)  

12.1531  

(----)  

0.2512  

(----)  

3.5634  

(3.1577)  

5.6012  

(8.5098)  

4.1136  

(5.3037)  

1_1_2  21.5315  

(22.2850) 

0.0159  

(0.0157)  

0.0738  

(----)  

12.1522  

(----)  

0.2512  

(----)  

3.5632  

(3.1575)  

5.6009  

(8.5093)  

4.1133  

(5.3034)  

1_1_1  21.5053  

(22.2638) 

0.0159  

(0.0157)  

0.0730  

(----)  

12.0797  

(----)  

0.2489  

(----)  

3.5577  

(3.1546)  

5.6045  

(8.5016)  

4.1123  

(5.2985)  

Table 3.3. Mean number of events up to time 1500 (without preventive maintenance in parenthesis) 

 

Analysis of systems when costs and rewards are included 

Rewards and costs have been included in the analysis to optimize the model form an 

economical standpoint. Each time that the system is operational a reward equal to B=100 

is produced and a lost with the same quantity is considered while the system is not 

operational. The operational cost per unit of time while the online unit is working 

depends on the internal degradation level according to the vector  0 10, 20,30, 40,50 .c  

While the unit is being repaired two different costs per unit of time can be produced 

according if they are corrective repair or preventive maintenance. In the first case a cost 

equal to 5 is given and in the second case 0.5. Finally when a repairable failure occurs a 

fixed cost equal to 20 is produced and if it is a major inspection this cost is 1. A new unit 

of the system costs 200 and any repairperson has a cost of one per unit of time.  

The mean net reward has been calculated for any system to achieve the more 

profitable system. Figure 3.4 shows them per unit of time for the cases with and without 

preventive maintenance. 

If the mean net profit is observed in stationary regime the most profitable situation is 

for system 1_2_1 with preventive maintenance. Initially the number of repairpersons 

should be only one, when the first non-repairable failure occurs then one repairperson is 
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added and finally only one repairperson should be when another non-repairable failure 

occurs. The optimum mean net profit in this case is equal to 74.0513 in stationary regime. 

 

Figure 3.4. Mean net profit per unit of time up to time 25, 500 and the stationary case for system II (with 
preventive maintenance) and system III (without preventive maintenance) 

3.8 Conclusions 

In this study, three multi-state cold standby systems, evolving in discrete time, are 

modelled in an algorithmic and computational form using Markovian arrival processes 

with marked arrivals. The online unit is a multi-state device depending on 

degradation/performance levels. The three systems are modelled following similar 

methods, ranked from simplest to most complex. The latter includes multiple events: 

internal failure, external shocks with different consequences and inspections. Corrective 

repair and preventive maintenance are included as responses to a repairable failure and to 

major damage (internal or external) when the unit is inspected, respectively. Non-

repairable failures, whether internal or due to an external shock, are possible and in this 

case the unit is removed.  

Two interesting contributions are made in the present study. The number of 

repairpersons is indeterminate and variable depending on the number of units in the 

system. A system can be optimised by considering two different standpoints: the 

profitability of preventive maintenance and the number of repairpersons present 

according to the number of units in the system.  
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This complex system is modelled by a MMAP, which is shown to be useful for 

expressing the modelling and its associated measures in a well-structured form. 

Furthermore, this method makes it possible to determine the transient and stationary 

distributions and measures associated with the system in a matrix-algorithmic and 

computational form.  

Other redundant systems such as warm standby systems and kout-of-n: G systems 

can be modelled following this algorithmic methodology. Also, in a similar way and 

following this methodology, repairpersons could be replaced by repair sources, a 

situation in which costs and the associated repair times need not be the same.  

Several measures, developed in an algorithmic form, are worked out in transient and 

stationary regime in an algorithmic and computational way. A numerical example 

illustrates the versatility of the modelling performed, and the optimum system is 

obtained.  

3.9 Appendices 

3.9.1 Appendix 3A 
 

MODEL I 

The transition matrices for the online unit for the system I case are, 

O: No events: 0 H T   

A1: Repairable internal failure: 0
rep rH T α ; ' 0

rep rH T   

C1: Non-repairable failure: 0
nrep nrH T α ; ' 0

nrep nrH T   

MODEL II 

The transition matrices for the online unit for the system II case are, 

O: No events:  0 0
0 1      H T L I TW L γ D   

A: Repairable internal failure  

A1: Repairable internal failure not due to shock: 
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 1 0 0 0 0
rep 1r r      H T α L eω T α L γ Deω  

 '1 0 0 0 0
rep 1r d r      H T L e T L γ De   

A2: Repairable internal failure due to shock:  2 0 0 0
rep 1   H TW α L γ Deω   

 '2 0 0 0
rep 1   H TW L γ De   

C: Non-repairable failure 

C1: Non-repairable internal failure:  1 0 0 0 0
nrep 1nr nr      H T α L eω T α L γ Deω   

 '1 0 0 0 0
nrep 1nr nr      H T L e T L γ De   

C2: Non-repairable failure due to shock:   2 0 0 0 0
nrep 1     H eα L γ eω D ω   

  '2 0 0 0 0
nrep 1     H e L γ e D . 

MODEL III 

Auxiliary matrices for minor/major inspection 

The matrix Ul and Vl, for l =1,2, are square matrices of order n and d respectively, whose 

element (s, t) is given by, 

  1
1

1 ; 1
,

0 ; otherwise

s t n
U s t

  
 


 ,   1
2

1 ;
,

0 ; otherwise

s t n
U s t

 
 


, 

  1
1

1 ; 1
,

0 ; otherwise

s t d
V s t

  
 


 ,   1
2

1 ;
,

0 ; otherwise

s t d
V s t

 
 


. 

The matrices U and V will be taken into account when one inspection occurs and the 

internal degradation level and cumulative external damage are observed respectively. The 

subscripts 1 and 2 will be considered when the damage observed is minor or major 

respectively. 

O: No events:  

 
 

0 0
0

0 0 0
1 1 1 1

1

     1

         
          

H T L I TW L γ D M

U T L V U TW L γ V D M
  


   

'
mr 1 2 2

0 0 0 0 0
1 2 2     1 1

     

         

H U T L V I U T L I

U TW L γ V D U TW L γ D M
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B: Major revision  

B1: Major revision for only internal major damage 

   1 0 0 0 0
mr 2 1 2 1 1           H U e T α L V eω U TWeα L γ V Deω M   

B2: Major revision for only external cumulative damage 

   2 0 0 0 0
mr 1 2 1 2 1           H U e T α L V eω U TWeα L γ V Deω M   

B3: Major revision for internal and external cumulative damage 

   3 0 0 0 0
mr 2 2 2 2 1           H U e T α L V eω U TWeα L γ V Deω M   

C: Non-repairable failure 

C1: Non-repairable internal failure:  

 1 0 0 0 0
nrep 1nr nr         H T α L eω eη T α L γ Deω e   

 '1 0 0 0 0
nrep 1nr nr        H T L e e T L γ De e   

C2: Non-repairable failure due to shock:   2 0 0 0 0
nrep 1       H eα L γ eω D ω e   

  '2 0 0 0 0
nrep 1      H e L γ e D e . 

3.9.2 Appendix 3B 

The matrices for the Markovian arrival processes have been developed in the following 

way. 

 , , 1 , 2 ,1, , , ,Y Y K Y K Y K Ydiag  D D D D D for Y = O, A1, A2, B1, B2 and 

,

, 1

,2

Y K

Y K

Y

Y



 
 
 
 
 
 
 
 

0 D

0 D

D

D

0 0

 


, for Y=C1, C2 and 

,1

Y

Y

 
 
 
 
 
 

0 0

D
0

D 0 0

 
  

 


             

for Y = FC1, FC2. 

 

Matrix ,Y kD  for Y = O, C1, C2, FC1, FC2 

The elements of the matrix  ,Y kD  for k=1,...,K and Y=O, C1, C2, FC1, FC2,   are given by 
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 
 
 

,

, 0,...,

, ,
0,..., 1 2
0,..., 1

,1
0,1 1 2
0,...,

;

; ,

, ; 1

Y k
lh l h k

Y k Y k
l klh
h k

Y
llh
h K

Y O

Y C C

Y FC FC k




 







 

  


D

D D

D

 

where ,O k
lh D 0  if h > l or h <l  min{l, Rk}, ,iC k

lh D 0  if h >l or h <l  min{l, Rk} or l = k 

and ,1iFC
lh D 0 for all l and h excepting for the case l = h = 0. 

For k = 1,…, K, 

 
'

0 mr1,
00

nrep

;

;  or 

kY k

type
type type

I Y O

Y C Y FC

   
 

H H
D

H
, 

For l =1,..., Rk  

 
 
 

 

0 1
,

,0 1 nrep 1

1

, , ,0; , , ;0,0 ;  and 

, , , , ,0; , , ,0,1 ;   and l

, , ,0; , , ;0,0 ;  and 

l
Y k type
l l l type

l

E k l l j j Y O l k

j j E k l l j j Y C k

E k l l j j Y O l k

  
   
   

H

D H

ζ


 


, 

with ζ α  for system I,  0  ζ α L L γ  for system II and  0    ζ α L L γ η ω  for 

system III. 

For l = 1,…, k1; a = 0,…, min{Rk, l1} with k > 1, 

 

   

      

,
, 1 1

'
0 mr 1 11 and 0

'
nrep nrep 1 11 or 0 1 and 0

, , ; , ,

, , ,0; , , ; , , ;0,0 ;

, , , ; , , ; , , ;0,1 ;

Y k
l l a l a l

l a ll k a

type type
l a l typel k a l k a

i i j j

I E k l a i i j j Y O

I I E k l a b i i j j Y C

 

  

     



     


  

D

H H

H H

 

 

 

. 

For a = 1,…, min{Rk, k1} , 

   ,
, 1 1 1 1, , ; , , , , ,0; , , ; , , ;0,0O k

k k a k a k k a ki i j j E k k a i i j j   D ζ    , with k > 1. 

For k =1,…, K, 

 
 

   
1 1,

, 1 1 0
1 1

, ,0,0; , , ; , , ;0,0 ;  
, , ; , ,

, ,0,0; , , ; , , ;0,0 ;  ,  .

k kO k
k k k k

k k

E k k i i j j system I
i i j j

E k k i i j j systems II III

 
 

D
L L γ

 
 

 
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Matrix ,iA kD  

The elements of the matrix  ,iA kD  for i=1, 2 and fork = 1,...,K are given by 

 , ,

, 0,...,

i iA k A k
lh l h k

D D  

where ,iA k
lh D 0  if h > l +1 or h <l+1 min{l, R(k)} or l = k. 

For type = 1, 2, then 

        , '
01 rep rep1 11 ,0,0,0;1;1,0typeA k type type

k kI I E k   D H H . 

For l=1,…,k1; a=0,…,min{l, Rk} with k > 1

       
 

, '
, 1 1 1 1 1 rep rep1 or 0 1 and 0

1 1 1 1

, , ,1; , ,

                                           , , ,0; , , ,1; , , ;1,0

typeA k type type
l l a l a l l k a l k a

l a l

i i j j I I

E k l a i i j j

          

  

 



D H H 

 
 

 
 

Matrix ,iB kD  

The elements of the matrix  ,iB kD  for i=1, 2, 3 and for k = 1,..., K are given by 

 , ,

, 0,...,

i iB k B k
lh l h k

D D   

where ,iA k
lh D 0   if h > l +1 or h < l+1 min{l, Rk} or l  k 1. 

For type = 1, 2, 3 then 

     ,

01 mr 12 ,0,0,0; 2;1,0typeB k type
kI E k D H . 

For l=1,…,k2; a=0,…,min{l, Rk} with k > 1

    ,

, 1 1 1 1 1 mr 1 1 1 1, , , 2; , , , , ,0; , , , 2; , , ;1,0typeB k type
l l a l a l l a li i j j E k l a i i j j        D H    . 
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Chapter 4  
 

Complex multi-state warm standby systems 
subject to multiple events and repairpersons 
with loss of units 

 

4.1 Introduction 

In chapter 3 different complex redundant multi-state systems have been developed in a 

well-structured way by using Markovian Arrival Processes with Marked arrivals. These 

three systems are extended in this chapter by considering warm standby. Again, in the 

first of these systems, the online unit is only subject to failure by wear; the second 

extends this by including external shocks with diverse consequences, and the third 

includes inspections, so that the effects of preventive maintenance and of the variable 

number of repairpersons, depending on the number of units present in the system, are 

analysed. Also, in this chapter, each warm standby unit can undergo a repairable failure 

at any time with a probability equal to p. Each time that a repairable failure occurs, the 

unit goes to the repair facility. Two different repair time distributions can be carried out, 

for the online unit and for the warm standby units. Loss of units and a variable number of 

repairpersons are included in these systems. The model is developed in an algorithmic 

way and some attractive measures have been built. Rewards and costs are introduced 

according to the operational phases and the different types of repair. An optimal 

maintenance policy enables policymakers to decide what level of degradation should be 

taken into account for preventive maintenance in response to an inspection, whether 

preventive maintenance is profitable and the optimum number of repairpersons at a given 



80                                                                                                  Multi-state complex warm standby system 
 

 

time. Phase type distributions and Marked Markovian Arrival processes play again an 

important role in this chapter. 

4.2 The systems 

Similar systems to those described in Section 3.2 are considered in this chapter. We are 

going to focus on the most complex system, external shocks and random inspections 

(System III) but with standby units subject to repairable failures.  

4.2.1 Assumptions and the state space of the system 

The system is subject to the following assumptions. Regarding the online unit we assume 

the assumptions 2.12.7 and 2.9 given in Section 2.2.1. Also, assumptions 3.13.6 from 

Section 3.2.1 are considered. These assumptions are referred to the loss of units and the 

variable number of repairpersons, the repair time distribution of the online unit, the 

renewal of the system and to the preventive maintenance time distribution respectively. 

The following specific assumptions are introduced for the warm standby system. 

Assumption 4.1. Each warm standby unit can undergo a repairable failure at any time 
with a probability equal to p. 

Assumption 4.2. The corrective repair time when a warm standby unit fails is PH 

distributed with representation  0 0,β S . The order of this matrix is equal to z0 (number of 

corrective repair phases for the repair of a warm standby unit that failed). 

Assumption 4.3. When the online unit undergoes either a repairable failure or a major 

inspection and at the same time a warm standby system fails, the online unit has priority 

in the repair facility.  

The state-space of the system is composed of macro-states. This state-space can be 

expressed as it is given in Section 3.2.2. 

4.3 Modeling the system  

The systems are governed by a Markov process vector in discrete time in a similar way as 

Section 3.3. The behaviour of the online unit is as the cold standby system given in 

Section 3.3.1 but it is more complex the modelling of the repair facility. This section 

shows the case of System III but analogous reasoning can be performed for Systems I and 

II. The corresponding matrices for all systems are given in Appendices 4A and 4B. 
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The system that is being analyzed can be modelled through a Discrete Marked 

Markov Arrival Process (MMAP).  

4.3.2 Modeling the repair facility 

The number of repairpersons when there are k units in the system, with k ≤ K, is given by 

Rk ≤ k and the number of units in the repair facility is denoted as l. Let a be the number of 

units which finish the repair and r the number of warm standby repairable failures. Let kh 

be the ordinal of the repairpersons who concluded the repair, and let ih and jh be the type 

of repair (corrective warm standby, 0, corrective online unit, 1, preventive maintenance, 

2) for the ordered units, after and before the transition, respectively. Online and warm-

standby units can undergo different types of events. Let wr be the number of warm 

standby units that undergo a repairable failure at one step.  Let mr be the variable 

indicatos that is equal to 1 if the online unit goes to the repair facility for any 

circumstances (repairable failure or major inspection) and 0 otherwise. Let nr an 

indicator which is equal to 1 if a non-repairable failure occurs and 0 otherwise. When the 

online unit undergoes a non-repairable failure, the number of repairpersons is modified. If 

there are fewer repairpersons after a transition than remaining units being repaired, some 

of these units will be returned to the queue in the repair facility. The number of units to 

be returned is denoted by b. This value is given by  

      11 0max min , ,0k k knr nrb l R a I R I R     . 

For instance, if there are 4 units in a system (k = 4), 3 of them in the repair facility with 3 

repairpersons (Rk = 3), none of them is repaired and one non-repairable occurs then the 

number of units to be returned to the queue if Rk1 = 1 is given by 

    max min 3,3 0 1,0 max 2,0 2.b       

To model the behavior of the repair facility we define the following matrix function that 

governs the behavior in one transition of the units that are being repaired where the order 

of the units repaired are specified. This function is given by 
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 

    
 

1

1 1 1

1

, , , ; , , ; , , ; , ,

; 1, , ; ,

1 min , ; 1,2;  if 1

0; 1,...,

; otherwise

a

k sz
z

a l a mr wr l

s z
s I

k l a

s

C k l a b k k i i j j

i j s l s k z

l R i mr

i s l a mr l a mr wr




  



 



   


    
        



S S

0

  



  

 

for  k  K, l  1, a  1,b  0, where 

 

 
 0

0

; 1, , |

;  is the ordinal of the last  units being repaired without ending 

; otherwise

h

h

h

j z

j

j

z a h k

S h h b

   
 



S

e S

S



. 

 

If a = 0, then the definition is analogous but we will consider the following notation 

 

 

       1 min , min , 1 min ,

1 1

0 0
1

, , 0, ; , , ; , ,

;1

; 1,2 if 1

0; 1,...,

; otherwise

l R b l R b l Rk k k

l mr wr l

s s

j j j j l

s

C k l a b i i j j

i j s l

S S S S i mr

i s l mr l mr wr
  

 



 

  
         
      


e e

0

 

   

 

If  min , ka l R , then the definition is analogous but we will consider the following 

notation 

 

  
 1 min ,

0 0
1, , min , ,0; ,..., ...

l Rk
k l j jC k l a l R j j S S    . 

 

From this matrix function the transition probability, if only a is known and the order is 

not specified, is given by 
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 
 

 
   

 

 
1 2 1 1

1 1

1 1

min , 1 min , 2 min ,

1 1 1
1 1 1

1

, , , ; , , ; , ,

, , 0, ; , , ; , , ; 0, 0, 0

, , , ; , , ; , , ; , , ; 0, min ,

, , , 0; , , ;

k k k

a a

l a mr wr l

l mr wr l

l R a l R a l R

a l a mr wr l k
k k k k k

l

B k l a b i i j j

C k l b i i j j a b l

C k l a b k k i i j j a a l R

C k l a j j a


  

 

   

  
    

  

 
   

 

 

   

  min , ,

1 ; 0, 0, 0
kl R

a b l





 
   

 

 

After one transition, new units that were in queue or not can entry in repair. The number 

of units that will begin the repair at the next time is given by 

 

         11 0min max ,0 ,max min , ,0 .k k k knr nrl R mr wr I R I R R l a          

 

The matrix function that governs the transition probability of the repair facility when a of 

l units are repaired for l >0 and al is given by 

 

 
     

 

min , 1 min ,

1 1

1 1

1 1

, , , ; , , ; , , ; , ,

, , , 0; , , ; , , ; 0

, , , ; , , ; , , ; 0

; otherwise

l R a l R ak k

l a mr wr l

i i

l a mr wr l

l a mr wr l

E k l a b i i j j mr wr nr

B k l a i i j j

B k l a b i i j j

   

  

  

  



     


 



β β

0

 

  
 

 

 

If l = 0 or a = l with l  Rk then this function is denoted as 

 

    
 

10 1min ,
0 0

0 0

, 0, 0, 0;0, ,0; 0, , 0,1

k knr nr

s

s I R I R

s s

E k l a b mr wr s nr

I I
 

 

       
 

 
    
 
 
β β





 

    
 

10 1min ,
0 0

0 0

, 0, 0, 0; , 0, , 0; 1, , 0

,
k knr nr

mr

s

mr

s I R I R
i

s s

E k l a b i mr wr s nr

I I
 

 

       
 

  
      

    
β β β




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 
    10 1

1

min ,
0 0

1

, , , 0;0, ,0; , , ; 0, , 0,1

, , ,0; , , ,
k knr nr

s

l

s I R I R

l

E k l a l b j j mr wr s nr

B k l l j j
 

      
 

   β β

 

 

 
    10 1

1

min ,
0 0

1

, , , 0; ,0, ,0; , , ; 1, , 0

, , ,0; , , .
k knr nr

mr

s

mr l

s I R I R
i

l

E k l a l b i j j mr wr s nr

B k l l j j
 

      
 

    β β β

 

 

 

 

Example 4.1. For instance, we assume a system composed of 4 repairpersons and 8 units 

(k=8, R8=4), 4 of them in the repair facility (l = 4; corrective repair online unit, corrective 

repair warm standby unit, preventive maintenance, corrective repair warm standby unit 

and preventive maintenance, respectively). At the next time three units that are being 

repaired finishes the repair, one warm standby unit fails and the online unit undergoes a 

non-repairable failure. The number of repairpersons is only two when the system is 

composed of 7 units (R7=2) and the units in the repair facility after non-repairable failure 

are types corrective repair warm standby unit, preventive maintenance and corrective 

repair warm standby unit respectively.  

In this case   max min 5,4 3 2,0 0b      and 

    min max 5 1,0 0 1,max 2 min 4,5 3,0 1        . 

   
1 2 1 3 2

2 3 4

1
1 1 1

8,5,3,0;0,2,0;1,0,2,0,2 8,4,3,0; , , ;0,2,0;1,0,2,0,2a
k k k k k

B C k k
    

      

                              

 

            

                                 0 0 0 0 0 0
1 0 2 0 1 0 2 0         S S S S 0 S S S S 0 . 

Therefore, 

    28,5,3,0;0, 2,0;1,0, 2,0,2;0,1,1 8,5,3,0;0, 2,0;1,0,2,0, 2E B β  

                                          0 0 0 0 0 0 2
1 0 2 0 1 0 2 0        S S S S S S S S β . 

   
   

8, 4,3,0;1,2,3;0,2,0;1,0, 2,0, 2 8,4,3,0;1, 2, 4;0, 2,0;1,0,2,0,2

8,4,3,0;1,3,4;0,2,0;1,0, 2,0, 2 8, 4,3,0;2,3, 4;0, 2,0;1,0,2,0,2

C C

C C

 

 
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4.3.3 Modeling the online unit and the warm standby units 

The online unit has already modeled and it is going to be extended when warm standby 

units are introduced in the analysis. 

If wr indicates the number of standby units which are broken at a certain time and l 

the number of units in the repair facility before that time, then we define the matrix  

  1

, , ,

1
1

k l wrr
k c l wr c

k l
p p

wr
    

  
 

H H , 

l = 0,…, k1; wr  kl1, 

where  0,  , , , ,
1 2 1 2 3 1 2

, ,
rep rep mr mr mr nrep nrep

c
             
             
  

 


          
 
 

. 

This matrix Hk,c,l,wr contains the transition probabilities when there are k units, l of 

them non-operational, and at next time wr warm standby units break down and the online 

unit passes to the situation c in that time; where c is equal to 0 when the online unit keeps 

on working the next time, 1 when this one undergoes a repairable failure, 2 when it 

undergoes a major inspection and 3 when the online unit undergoes a non-repairable 

failure. 

When all operational units fail and a repair does not occur then 

' 1 '
, , , 1

k l
k c l k l cp  

  H H ,    for  0,  , , ,
1 2 1 2

,mr
rep rep nr

c
ep nrep

       
       
   

 
 

   



. 

 

4.4 The Markovian Arrival Processes with marked arrivals  

The behavior of the system; when the online unit, the warm standby units, and the repair 

facility are considered, is modelled through a D-MMAP.  

When the events A, B and C have place at a certain time, the number of warm standby 

units that fail can vary from 0 to the total units in standby at the previous moment. The 

MMAPs for system III is given by the following representation, 
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 31 2 1 2 1 2 1 2, , , , , , , , ,BA A B B C C FC FCOD D D D D D D D D D . 

The matrix DY contains the transition probabilities when the event Y has occurred for Y = 

O, A1, A2, B1, B2, B3, C1, C2, FC1, FC2. A similar reasoning given in Section 3.4 can be 

done to interpret these matrices but the internal structure is different in this case. The 

third level corresponds to the transitions from the macro-state Uk to Uk or Uk1. These 

matrix blocks are composed of the matrices ,Y k
lhD  which correspond to the transitions 

between the macro-states from k
lE  to either k

hE or 1k
h
E (level 2). Finally, several types of 

repairing can be produced, repairable failure for the online unit, repairable failure for one 

warm standby unit and preventive maintenance. Therefore, the type of failure of the units 

in the repair facility has to be saved in memory. The matrices ,Y k
lhD  are composed of 

matrix blocks corresponding to the transition from the macro-states 
1 , , l

k
i iE   to 

1, , h

k
i iE  or 

1

1
, , h

k
i i
E  . The matrix block  ,

1 1, , ; , ,Y k
lh h li i j jD    contains the transition probabilities 

described above where the type of repair in the repair facility is ordered for the case 

before and after transition. These blocks are built by considering the matrices H defined 

in Section 3.3.1 and developed in Appendix 3A, the functions defined in Section 4.3.2 and 

4.3.3. They are developed in Appendix 4A. The case A1 for the Model III, a repairable 

internal failure occurs, is described in detail. 

4.4.1 Building the matrix 1AD  

The elements of the matrix 1AD  are given by  1 1 1 1 1, , 1 , 2 ,1, , , ,A A K A K A K Adiag  D D D D D , 

where  1 ,A kD  contains the transitions when one internal repairable failure of the online unit 

occurs and there k units in the system. This matrix composed of matrix blocks according 

to the number of units in the repair facility. This matrix block (from l units in the repair 

facility up to h) is 1,A k
lhD  and it is equal to 0 if h < l + 1 min{l, Rk} or l = k. 

For h = 1, …, k  then 

   
1

1 1
, '

0 1 1
, ,0, 1 , ,0, 1

1,0, ..., 0 , 0,0, 0;1,0, ..., 0;1, 1, 0
h h

A k
h h k h k

k h k h
rep rep

I I E k h
 

    
    

   

                  
D H H . 
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When there are l units in the repair facility the matrix 1 ,A k
lhD  depends on the number of 

warm standby units fail, wr. The matrix 1, ,A k wr
lhD contains the transitions when there are k 

units in the system, l of them in the repair facility; the online unit undergoes an internal 

repairable failure, wr warm standby unit fail and h units are in the repair facility after the 

transition.  

Therefore, for l=1,…, k1; a=0,…, min{l, Rk}; wr = 0,…, kl1  with k > 1,

 

   
1 , , '
, 1 1 1 1 1 or 0 1 1 and 0

, , , , , ,
,..., ,1,0,...,0; ,...,

                                                          ,

wr
A k wr
l l wr a l a l wr k l a wr k l a

k l wr k l wr
rep rep

i i j j I I

E k l

              
   
   

           



D H H

1 1, ,0; ,..., ,1,0, ,0; ,..., ;1, ,0 .
wr

l a la i i j j wr
 
 
 



Then, 

   
 

  
1 1

min ,min ,
, , , 1

1 1 1 1
max 0, 1

,..., ; ,..., ,..., ; ,...,
kk h l R

A k A k h l a
lh h l lh h l

a l h

i i j j i i j j


  

  

 D D . 

 

The rest blocks are given in the Appendix 4A. 

4.5 The transient and stationary distribution and measures 

The transient and stationary distributions can be built in a similar way as cold standby 

system shown in Section 3.5.1 and 3.5.2. Several measures can be also worked out for the 

warm standby system. Some of them have similar structure as cold standby system. Next, 

some of them are referenced. 

Availability: Section 3.5.3.1 

Reliability: Section 3.5.3.2 

Mean time in each macro-state: Section 3.5.3.3 

Mean operational time up to time :  Section 3.5.3.4 

Mean time that the repairpersons are idle and busy: Section 3.5.3.5 
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4.5.1. Mean time working on corrective repair for the online unit, corrective repair 
for warm standby units and preventive maintenance  

The repairpersons can be working on corrective repair for the online unit, warm standby 

units that have fail and on preventive maintenance. The mean time that the repairpersons 

are working on these different situations up to time  is given respectively by 

   
0 1 1

1k
s

K k
m k

onlinecorr sE
m k s



  

   p q ,    
0 1 1

0k
s

K k
m k

warmcorr sE
m k s



  

   p q ,   and 

   
0 1 1

2k
s

K k
m k

pm sE
m k s



  

   p q , 

where  0k
sq ,  1k

sq  and  2k
sq  are column vectors that contains the number of 

repairpersons that are working on corrective repair for warm standby units, corrective 

repair for online units and preventive maintenance respectively according to the macro-

state k
sE . These column vectors are given by 

 

 
             

 
             

    
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e
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e
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for  

 

 
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 
             
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 
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, 

being  k
sh i  the i-th element of the vector 1  s < k;  
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and  k
sd i  the i-th element of the vector .. and  
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and  k
sg i  the i-th element of the vector 
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0 0
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s R
k
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   
       
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   
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   

   

1
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

   

    

          
                      
                    
       
                 
       
       

g e

e e

 

  1Rk 

 

for k = 1,…, K and s = 1,…,k . 

These measures in stationary regime are  

 
1 1

0k
s

K k
k

warmcorr sE
k s 

  π q ,  
1 1

1k
s

K k
k

onlinecorr sE
k s 

  π q  and  
1 1

2k
s

K k
k

pm sE
k s 

  π q . 
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4.5.2 Mean number of events 

Thanks to the structure built, the expected number of events up to a certain time  is 
worked out. The expressions are the same than the ones given in Section 3.5.3.7 for the 

cold standby system.  It is given by   1

1

Y u Y

u






  p D e , for Y = A1, A2, B1, B2, B3, C1, C2, 

FC1, FC2. In stationary regime, the mean number of events per unit of time is .Y Y  πD e  

The mean number of failure of warm standby units is also worked out for this new 
system. 

Warm standby failures  

The expected number of warm standby repairable failures is given by 

  1

1

w u

u






  p V , 

where V is the column vector  1 2 2 1, , , , , 'K K KV V V V V V   , where 

 0 1 2, ,..., , , 'k k k k
kV V V V 0 0  for k = 2,…, K and  1 , 'V 0 0 . The column vector k

lV  is 

given by 

     
 

 ,1 2

1 21 2 3

1 2 1 2 3 1 2 ,1 2

,
, and , ,

, , , , , , 2

1
Y C C

Y C C

k I

k Y k
l lhY C Ch k Y B B B

Y A A B B B C C h l I

I h l I






 
   

    V D e , 

for l = 0, 1, …, k2. This vector k
lV  contains the expected number of warm standby units 

that fail at one step according to the phases when there are k units in the system and l of 
them in the repair facility.  

In the stationary case it is given by w  πV . 

4.6 Costs and Rewards  

Several costs and rewards have been included in the model to study the effectiveness of 

the model from an economic standpoint. Some of them are similar to the ones described 

in Section 3.6. That is,  

B: gross profit per unit of time while the system is operational 
c0: mean cost per unit of time depending on the operational phase 
cr1: mean cost per unit of time when a unit is in corrective repair from online depending 

on the repair phase 
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cr2: mean cost per unit of time when a unit is in corrective repair from major inspection  
depending on the repair phase 

H: fixed cost per unit of time for each repairperson 
C: loss per unit of time while the system is not operational 
fcr: fixed cost each time that the online unit undergoes a repairable failure 
fpm: fixed cost each time that the online unit undergoes a major inspection 
fnu: cost per one new unit.  
 
New costs have been included by considering the warm standby system. Thus, the mean 

cost per unit of time when a unit is in corrective repair from warm standby depending on 

the repair phase is given by the vector cr0. Also, we assume a fixed cost each time that a 

warm standby unit undergoes a repairable failure equal to fwr.  

To calculate the total net profit up to time   is necessary to build the vector cost for 

the macro-state k
sE  and several rewards and costs functions. 

4.6.1 Net profit vector associated to the phases  

When the systems is composed of k units and s of them are in the repair facility, then the 

online unit provokes a net reward for the different phases of the system given by 

     

     

     

     

     
 
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k k kh i d i g is s s

o
i

k k kh d gs s s
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 
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
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  



 
 
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 
 

 
 

 

0e c e

e

c e
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c e
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



  3
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
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
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








 




  

Then, for the state space it is  

 1 1 1 1
0 1 0 1 1 0 1', ', , ', ', ', , ', , ', ' 'K K K K K K

K K
 

nr nr nr nr nr nr nr nr nr   . 
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If the repair facility is considered, the cost vector per unit of time depending on the type 

of repair associated to the macro-state k
sE  for s = 1,…, k, with (k, s) ≠ (K, K) is 

     

 

     

 
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. 

The total vector for the cost due to repair is given by 

 1 1 1 1
0 1 0 1 1 0 1', ', , ', ', ', , ', , ', ' 'K K K K K K

K K
 

nc nc nc nc nc nc nc nc nc   . 

Thus, the net profit vector associated to the macro-state k
sE  is given by 0 0

k kc nr , 

k k k
s s s c nr nc for s =1,…, k. Finally, the net column profit vector associated to the 
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macro-state kE  is given by  0 , , 'k k k
kc c c thus the global net column profit vector 

associated to the macro-state E is given by 

1

1

K

K 

 
 
     
  
 

c

c
c nr nc

c


. 

 

4.6.2 Rewards Measures 

Several rewards measures have been built in transient and stationary regime.  

Mean net profit up to time  

The mean net profit by considering only the online unit up to time  is given by 

0

m
w

m






  p nr , 

and it is in stationary regime the meat net profit per unit of time, _w s  π nr . 

Mean cost due to corrective (online and warm standby) and preventive repair 

The mean cost due to corrective repair and preventive maintenance up to time up  is 

given respectively by 

_
_

0

m online cr
online cr

m






  p mc ,   _
_

0

m warm cr
warm cr

m






  p mc   and   
0

m pm
pm

m






  p mc , 

where _warm crmc  is the vector nc  with 
11 zcr 0 , 

22 zcr 0 ; _online crmc  is the vector nc  

with 
00 zcr 0 , 

22 zcr 0  and  pmmc  is the vector nc  with 
00 zcr 0  and 

11 zcr 0 , being 

0a a column vector of zeros with order a. 

These measures in stationary regime, net cost per unit of time due to corrective or 

preventive maintenance, are _
_ _

online cr
online cr s  π mc , _

_ _
warm cr

warm cr s  π mc  and 

_
pm

pm s  π mc  respectively. 



94                                                                                                  Multi-state complex warm standby system 
 

 

Total net profit 

The total net profit up to time  is worked out by adding costs and profits produced by 

the events. If the fixed costs per event are included then it is equal to 

    
             

 

1 2
_ _

1 2 1 2 3

1

     

     .

FC FC
w online cr warm cr pm

w A A B B B

idle busy

K fnu

fwr fcr fpm

H

                  

                    

   

 

Finally, the total net profit per unit of time (stationary regime) is 

 
     

1 2
_ _ _

1 2 1 2 3

1

     .

FC FC
s w s cr s pm s

w A A B B B
idle busy

K fnu

fwr fcr fpm H

         

              
 

4.7 A numerical example 

We assume a warm standby system composed of three units, like Systems II and III in 

Section 3.7. We assume identical behaviour of the embedded operational times but the 

standby unit can undergo a failure. Again two questions must be answered. Is preventive 

maintenance profitable? How many repairpersons, depending on the number of units in 

the system, would have to be deployed to optimise the profit? In this numerical example, 

the effectiveness of preventive maintenance is analysed and the optimum number of 

repairpersons is calculated. 

System times 

The internal behaviour of the online unit passes through five performance levels, 

where the degradation is minor in the first three stages and major in the last two. The 

operational time distribution of the online unit, the inspection time distribution and the 

external shock time are PH distributed with representation given in Table 3.1. 

Each time that the online unit undergoes an external shock, a total non-repairable 

failure occurs with a probability equal to 0.05. If no such failure occurs, the internal 

performance may be degraded according to the following probability matrix 
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0.6 0.2 0.1 0.1 0

0 0.6 0.2 0.1 0.1

0 0 0.6 0.2 0.2

0 0 0 0.5 0.3

0 0 0 0 0.4

 
 
 
 
 
 
 
 

W . 

When an external shock takes place, cumulative external damage occurs. Four external 

degradation levels are assumed, the first two of which are minor and the last two, major. 

Changes in the external degradation levels are governed by the matrix 

0 0.3 0.7 0

0 0 0.6 0.4

0 0 0 0.5

0 0 0 0.3

 
 
 
 
 
 

D . 

The external degradation level is the stage 1 initially (without external damage). Each 
warm standby is also subject to failure. Each one can fail at any time with a probability 
equal to p = 0.05. 

Each time that a repairable failure, either online unit, warm standby unit or a major 

inspection occurs, the online units goes to the repair facility. The corrective repair times 

for each situation and the preventive maintenance time distribution are given in Table 4.1 

Corrective repair time 
distribution 

Warm standby unit 

Corrective repair time 
distribution  

Online unit 

Preventive maintenance time 
distribution 

 0 1,0β  

0

0.9 0.02

0 0.6

 
  
 

S  

Mean time: 10.5 

 1 1,0β  

1

0.91 0.01

0 0.8

 
  
 

S  

Mean time: 11.67 

 2 1,0β  

2

0.1 0.1

0 0.1

 
  
 

S  

Mean time: 1.23 

Table 4.1. Corrective repair and preventive maintenance time distributions 

As it can be seen, the corrective repair time distribution and the preventive maintenance 

time distribution are similar to the ones given in Table 3.2 in Section 3.7. 
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Performance of the systems according to the number of repairpersons 

As mentioned above, the systems with and without preventive maintenance (Systems III 

and II, respectively) are compared by considering all possibilities for the number of 

repairpersons. Again, the system i_j_k denotes a system with i, j, k repairpersons when 

there are 1, 2, 3 units in the system respectively for i =1, j =1, 2 , k = 1, 2, 3. In total there 

are 12 possible systems, six with preventive maintenance and six without. Several 

measures have been worked out and compared in transient and stationary regime for the 

warm standby system.    

Figure 4.1 shows the mean operational time and the mean number of idle 

repairpersons per unit of time for Systems II and III. The optimum mean operational time 

ratio is reached for system 1_2_2 when the operational time ratio in a stationary regime is 

equal to 0.9221 for the system with preventive maintenance and 0.9122 for system 1_2_3 

without preventive maintenance. This outcome is expected but as the repairpersons have 

a cost, it is interesting to analyse the mean number of idle repairpersons. In this case, the 

maximum is reached for system 1_2_3 with a mean number of idle repairpersons per unit 

of time in the stationary regime equal to 1.5196 and 1.4714 for the systems with and 

without preventive maintenance, respectively. 

Another interesting aspect to study is that of the mean number of events up to a 

certain time. This measure was calculated for every system and for several units of time. 

Tables 4.2 and 4.3 shows the results obtained for 1500 units of time. 

The number of new systems up to time 1500 is given by the last column of the Table 

4.3. The minimum is reached when one repairperson is assumed when there are one and 

two units in the system and two repairpersons when there are three. 
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Figure 4.1.  Mean operational ratio (first row) and mean number of idle repairpersons per unit of time 

(second row) with preventive maintenance (first column) and without preventive maintenance (second 

column) 

 

    
         SYSTEM  

 1 1500A   2 1500A   1 1500B   2 1500B   3 1500B  

T
im

e 
15

00
  

1_2_3  21.2544  
(21.8486) 

0.0157 
(0.0154) 

0.0540 9.6627 0.1861 

1_2_2  21.3005 
(21.8251) 

0.0157 
(0.0154) 

0.0555 9.8917 0.1913 

1_2_1  21.0984 
(21.6047) 

0.0156 
(0.0153) 

0.0496 9.1592 0.1726 

1_1_3  20.9670 
(21.5930) 

0.0155  
(0.0152) 

0.0532 9.5296 0.1834 

1_1_2  20.9354 
(21.4308) 

0.0155 
(0.0151) 

0.0531 9.5139 0.1831 

1_1_1  20.8079 
(21.3191) 

0.0154 
(0.0151) 

0.0488 9.0283 0.1699 

Table 4.2. Mean number of events up to time 1500 (without preventive maintenance in parenthesis) 
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         SYSTEM  

 1500w   1 1500C   2 1500C   
 

1

2

  1500

1500

FC

FC




 

T
im

e 
15

00
  

1_2_3  1.3608 
(1.2314)  

 3.4413 
(3.1035) 

5.9919  
(8.3642) 

4.2381 
 (5.2012) 

1_2_2   1.4167 
(1.2294) 

3.4562  
(3.1002) 

5.9599 
(8.3552) 

4.2316 
(5.1956) 

1_2_1   1.2622 
(1.1244) 

3.4030  
(3.0703) 

6.0309 
(8.2748) 

4.2391 
(5.1445) 

1_1_3  1.3422  
(1.2156) 

 3.3965 
(3.0686) 

5.9151 
(8.2701) 

4.1770 
(5.1370) 

1_1_2  1.3395  
(1.1689) 

3.3913  
(3.0469) 

5.9065 
(8.2116) 

4.1708 
 (5.0970) 

1_1_1   1.2444 
(1.1079) 

 3.3579 
(3.0314) 

5.9534 
(8.1700) 

4.1774 
(5.0730) 

Table 4.3. Mean number of events up to time 1500 (without preventive maintenance in parenthesis) 

Analysis of systems when costs and rewards are included 

Rewards and costs have been included in the analysis to optimize the model form an 

economical standpoint in a similar way as given in Section 3.7. The following costs and 

rewards have been considered, 

B=100 Reward per unit of time while the system is operational. 

 0 10, 20,30, 40,50 'c  Operational cost per unit of time while the online unit is working.

cr0=(3, 3)’ Cost per unit of time while a unit is being repaired from warm 
standby. 

cr1 = (5, 5)’ Cost per unit of time while a unit is being repaired from online 
unit. 

cr2=(0.5, 0.5)’ Cost per unit of time while a unit is in preventive maintenance. 
fcr = 20 Fixed cost due to repairable failure of the online unit is produced. 
fwr = 5 Fixed cost each time that a warm standby unit undergoes a 

repairable failure. 
fpm = 1 Fixed cost due to one major inspection. 

fnu = 200 Cost of one new unit. 
The mean net reward has been calculated for any system to achieve the more 

profitable system. Figure 4.2 shows them per unit of time for the cases with and without 

preventive maintenance. 

If the mean net profit is observed in stationary regime the most profitable situation is 

for system 1_2_2 with preventive maintenance. Initially the number of repairpersons 
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should be only two, when the first non-repairable failure occurs then the number of 

repairpersons continues being two and finally only one repairperson should be when 

another non-repairable failure occurs. The optimum mean net profit in this case is equal 

to 68.3350 in stationary regime. 

Figure 4.2. Mean net profit per unit of time up to time 25, 500 and the stationary case for System II (with 

preventive maintenance) and System III (without preventive maintenance) 

Table 4.4 shows the mean net reward per unit of time for the cases with and without    

preventive maintenance. The most profitable situation of mean net profit is for system 

1_2_2 with preventive maintenance. 

  / 1    

System 1_2_3 1_2_2 1_2_1 1_1_3 1_1_2 1_1_1 

 = 25 58.8789 
(58.8882) 

59.9001 
(59.6256) 

59.9360 
(59.7518) 

58.6865 
(58.7034) 

59.4086 
(59.1121) 

59.6707 
(59.5156) 

 = 500 68.4357 
(66.9176) 

69.4783 
(67.0815) 

67.5566 
(65.6270) 

66.4923 
(65.2530) 

66.6263 
(64.2267) 

65.5385 
(63.6981) 

Stationary 67.3379 
(65.8385) 

68.3350 
(65.9736) 

66.6226 
(64.6795) 

65.3496 
(64.1894) 

65.4558 
(63.1707) 

64.6127 
(62.7953) 

 
Table 4.4. Mean net profit per unit of time up to time 25, 500 and the stationary case for system II (with 

preventive maintenance) and system III (without preventive maintenance) 



100                                                                                                  Multi-state complex warm standby system 
 

 

4.8 Appendix 4A  

Blocks of the Markovian Arrival Process  31 2 1 2 1 2 1 2, , , , , , , , ,BA A B B C C FC FCOD D D D D D D D D D  

 

 , , 1 , 2 ,1, , , ,Y Y K Y K Y K Ydiag  D D D D D , for Y = O, A1, A2, B1, B2, B3 and 

,

, 1

,2

Y K

Y K

Y

Y



 
 
 
 
 
 
 
 

0 D

0 D

D

D

0 0

 


, for Y=C1, C2, and

,1

Y

Y

 
 
 
 
 
 

0 0

D
0

D 0 0

 
  

 


,  

for Y=FC1, FC2. 

 

Matrix ,Y kD for Y = O, C1, C2, FC1, FC2 

The elements of the matrix  ,Y kD  for k = 1,...,K and Y = O, C1, C2, FC1, FC2,   are given by 

 
 
 

,

, 0,...,

, ,
0,..., 1 2
0,..., 1

,1
0,1 1 2
0,...,

;

; ,

, ; 1,

Y k
lh l h k

Y k Y k
l klh
h k

Y
llh
h K

Y O

Y C C

Y FC FC k




 







 

  


D

D D

D

 

where ,O k
lh D 0  if h = k  for l < k or h <l  min{l, Rk}, ,iC k

lh D 0  if h <l  min{l, Rk} or     

l = k and ,1iFC
lh D 0 for all l and h excepting for the case l = h = 0. 

For k = 1,…, K, 

 
'

,0,0,0 , ,0,01
,

00

, ,0,0

;

;  or 

k k mrk
Y k

type typetype
k

nrep

I Y O

Y C Y FC



 
 
 

  
   



H H
D H . 

For l =1,..., Rk,  

 
 

 
 

,0, ,0 1
,

,0 1 ,( , ), ,0 1

1

, , ,0; , , ;0,0,0 ;  and 

, , , , ,0; , , ;0,0,1 ;   and 

, , ,0; , , ;0,0,0 ;  and ,

k l l
Y k
l l k nrep type l l type

l

E k l l j j Y O l k

j j E k l l j j Y C l k

E k l l j j Y O l k

  
   
   

H

D H

ζ


 


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with ζ α  for system I,  0  ζ L L γ  for system II and  0    ζ L L γ η ω  for 

system III. 

For wr = 1,…, k1  with k > 1

 

 

   

,
0,

'
,0,0, , ,0,1

'
1 1

, ,0, , ,0,

0, ,0

,0,0,0;0, ,0;0, ,0 ;

,0,0,0;0, ,0;0, ,1 ; .

wr
Y k

wr

wr

k wr k mr wrwr k

wr

typetype wr k type wr k
k wr k wr

nrep nrep

I E k wr Y O

I I E k wr Y C

 

      
   
   

   
 

          
           

D

H H

H H








 

For l = 1,…, k1; a = 0,…, min{Rk, l} ; wr = 0,…, kl1  with k > 1 and l + wr a > 0

 

 

 

, ,
, 1 1

'
,0, , , , ,1 and 0

1 1

1 or 0
, , , , , ,

, , ,0, ,0; , ,

;
, , ,0; , , ,0, ,0; , , ;0, ,0

wr
Y k wr
l l wr a l a l

k l wr k mr l wrwr k l a

wr

l a l

type wr k l a type
k l wr k l

nrep nrep

i i j j

I

Y O
E k l a i i j j wr

I

  

   



      
   
   

   
 

  
   

 



D

H H

H H

  

  

 

 

'
1 and 0

1 1

; .

, , , ; , , ; , , ;0, ,1

wr k l a
wr

type

l a l

I
Y C

E k l a b i i j j wr

   








     
  

 

Then, 

   
 

  min 1,min ,
, , ,

1 1 1 1
max 0,

, , ; , , , , ; , ,
kk h l R

Y k Y k h l a
lh h l lh h l

a l h

i i j j i i j j
 

 

 

 D D     . 

For a = 1,…, min{Rk, k1} ,  

   ,
, 1 1 1 1, , ; , , , , ,0; , , ; , , ;0,0,0O k

k k a k a k k a ki i j j E k k a i i j j   D ζ    , with k > 1. 

For k =1,…, K, 

 
 

   
1 1,

, 1 1 0
1 1

, ,0,0; , , ; , , ;0,0,0 ;  
, , ; , ,

, ,0,0; , , ; , , ;0,0,0 ;  ,  

k kO k
k k k k

k k

E k k i i j j system I
i i j j

E k k i i j j systems II III

 
 

D
L L γ

 
 

 
. 
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Matrix ,iA kD  

The elements of the matrix  ,iA kD  for i=1, 2 and fork = 1,...,K are given by 

 , ,

, 0,...,

i iA k A k
lh l h k

D D , 

where ,iA k
lh D 0   if h < l+1 min{l, Rk} or l = k. 

For type = 1, 2 and h=1, …, k  then 

. 

For l=1,…,k1; a=0,…,min{l, Rk}; wr = 0,…, kl1  with k > 1,

 

   
, , '

, 1 1 1 1 or 0 1 and 0
, , , , , ,

, , ,1,0, ,0; , ,

                                                            

type
wr

A k wr

l l wr a l a l type wr k l a type wr k l a
k l wr k l wr

rep rep

i i j j I I              
   
   

           
D H H  

1 1 , , ,0; , , ,1,0, ,0; , , ;1, ,0 .
wr

l a lE k l a i i j j wr
   
 

  

Then, 

   
 

  min ,min ,
, , , 1

1 1 1 1
max 0, 1

, , ; , , , , ; , ,
k

type type

k h l R
A k A k h l a

lh h l lh h l
a l h

i i j j i i j j


  

  

 D D     . 

 

Matrix ,iB kD  

The elements of the matrix  ,iB kD  for i = 1, 2, 3 and for k = 1,..., K are given by 

 , ,

, 0,...,

i iB k B k
lh l h k

D D , 

where ,iB k
lh D 0   if h < l+1 min{l, Rk} or h = k or l = k. 

For type = 1, 2, 3 then for h = 1, …, k1 

 

1 1
,

0 1
, ,0, 1

2,0, ..., 0 ,0,0,0; 2,0, ,0;1, 1,0type
h h

B k

h type k
k h

mr

I E k h
 

 
 

 

        
   

D H  . 

For l=1,…,k1; a=0,…,min{l, Rk}; wr = 0,…, kl1  with k > 1,

 

   

1
, '

0
, ,0, 1 , ,0, 1

1

1,0, ,0

                               ,0,0,0;1,0, ,0;1, 1,0

type
h

A k

h type h k type h k
k h k h

rep rep

h

I I

E k h



    
    

   



           
   
 

D H H


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, ,

, 1 1 1

1 1
, , ,

,..., , 2,0,...,0; ,...,

, , ,0; ,..., , 2,0,...,0; ,..., ;1, ,0

type
wr

B k wr

l l wr a l a l

wr

l a ltype
k l wr

mr

i i j j

E k l a i i j j wr

   

 
 
 

 
 
 

    
 

D

H
 

Then,    
 

  min ,min ,
, , , 1

1 1 1 1
max 0, 1

,..., ; ,..., , , ; , ,
k

type type

k h l R
B k B k h l a

lh h l lh h l
a l h

i i j j i i j j


  

  

 D D    . 
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Chapter 5  
 

Modeling a multi-state koutofn: G system 
with loss of units 

 

5.1 Introduction 

In this chapter, we model a discrete-time complex multi-state k-out-of-n: G system with 

loss of units, in a well-structured form. This one is a nsystem that works if at least k 

units are operational. The lifetime of the units is governed by PH distributions in which 

different performance stages are introduced. The units of the system may undergo 

repairable and/or non-repairable failures. In the first case the unit goes to the repair 

facility and in the second, it is removed. Then, loss of units is introduced. The repair time 

is also PH distributed. When fewer than k units remain in the system, it is replaced by a 

new n-system. 

In this chapter external shocks and preventive maintenance are not included. 

Furthermore, only one repairperson is considered. A natural extension will be to include 

different types of events on the units and to introduce a variable number of repairpersons 

depending on the number of units in the system. The system has been modelled in an 

algorithmic and computational form but without considering Markovian Arrival 

Processes with Marked arrivals. Even though it is a very complex model expressed in a 

well structured form, it can be extended by following the general methodology given in 

this work.  

The chapter is organised as follows. In Section 5.2, the system is described in detail, 

setting out the assumptions made and the state space employed. The model is then 
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described in Section 5.3 in algorithmic form. The transient and the stationary 

distributions are presented in Sections 5.4 and 5.5, respectively, where matrix analytic 

methods are used. Various measures are applied in Section 5.6 and a Markov counting 

process is developed in Section 5.7 to explain the mean number of new systems obtained. 

In Section 5.8, a numerical example is given to show the applicability of the model, and 

finally, in Section 5.9, the main conclusions drawn are presented. 

5.2. Assumptions and state space 

We assume a multi-state system composed initially of n independent units subject to 

different types of failure. Each multi-state unit may experience internal repairable and/or 

non-repairable failure. In the first case, the unit is transferred to the repair facility, where 

there is one repairperson (if this one is busy then the failed unit waits for in queue). 

However, if an operational unit undergoes a non-repairable failure, it is removed and not 

replaced. We thus propose a k-out-of-n: G system, which is operational while at least k 

units are operational. Therefore, when nk+1 (or more) non-repairable failures occur, the 

system is replaced by a new, identical one (kunits system). The system satisfies the 

following assumptions. 

Assumption 5.1. The lifetime of each unit is discrete-time PH distributed with 

representation  ,α T . The order of the matrix T is the number of operational stages, m.  

Assumption 5.2. Each unit can undergo a repairable or non-repairable failure. We assume 

two absorbing states, one for each kind of failure. The probability of failure depends on 

the operational stage, thus the probability of repairable failure or non-repairable is given 

by the column vectors 0
rT  and 0

nrT , repectively. Clearly, the total absorbing vector 

produced by any transient state is given by 0 0 0
r nr   T e Te T T .  

The repair time is PH distributed with representation  ,β S  where the order of S is 

equal to t (number of repair stages). 

Assumption 5.3. When a non-repairable failure occurs, the unit is removed. The number 

of units in the system is always greater than or equal to k. 
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Assumption 5.4. While the system is operational, several transitions may occur at the 

same time (operational unit and unit under repair). 

Assumption 5.5. If the number of units in the system is l, greater than or equal to k, then 

the system is operational only if at least k units are operational (the number of units under 

repair is less than or equal to lk). Otherwise, the system is broken, in which case only 

the repairpersons continue operating, and all other operations cease.  

Assumption 5.6. After a repair the unit quality is as good as new. 

Assumption 5.7. The times involved in the model are independent. 

The discrete case is more complex than the continuous one from assumption 5.4. The 

state space of the system, denoted by E, is described as follows. 

This state space is composed of macro-states such that  1, , ,n n kE U U U   where 

Ul denotes the phases when there are l units in the system. In turn, these macro-states are 

composed of macro-states l
sU  , for l = k,…, n and s = 0,…,k; l units in the system and s of 

them in the repair facility, the first being repaired and the rest in queue. The phases are 

given by 

  0 1, , ;1 , 1, ,l
l sU i i i m s l      for l = k,…, n, 

  1, , ; ;1 , 1, , ;1l
a l a sU i i j i m s l a j t         for a = 1,…,l1, 

 ;1l
lU j j t   , 

where is indicates the state of the s-th operational unit of the system and j the repair stage. 

5.3 The model 

The k-out-of-n system with loss of units is modelled by a vector Markov process with 

state-space as described in the previous section. The transition probability matrix, P, is 

composed of two levels of matrix blocks. The first level has the matrices ,l hR  and 

contains the transition probabilities between the macro-states from Ul to Uh (i.e. from l 

units in the system to h units in the system), where lh non-repairable failures occur. The 

matrix has the following structure, 
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, , 1 , 2 , 1 ,

1, 1, 1 1, 2 1, 1 1,

2, 2, 2 2, 1 2,

1, 1, 1 1,

, ,

n n n n n n n k n k

n n n n n n n k n k

n n n n n k n k

k n k k k k

k n k k

  

       

     

   

 
 
 
 

  
 
 
  
 

R R R R R

R R R R R

R 0 R R R
P

R 0 0 R R

R 0 0 0 R





     



 . 

 

These matrices, ,l hR , are composed of matrix blocks (second level). These new matrix 

blocks, ,
,

l h
i jB  , contain the transition between the macro-states, from l

iU  (l units in the 

system of which i are in the repair facility) to h
jU  (h units in the system of which j are in 

the repair facility). 

5.3.1 Auxiliary functions 

To build these matrix blocks, the following auxiliary functions are incorporated, taking 

into account the phases of the operational units. 

1. Transition matrix for the operational units when the system is composed of l 

units, of which a are in the repair facility, when w=lh non-repairable failures 

and u repairable failures take place, in a specific failure order ( 1, , us s  is the 

ordinal of the repairable failures and 1, , wk k  is the ordinal of the non-repairable 

failures). This situation is described as  1 1, , , ; , , ; , ,w uC l a w u k k s s  . 

2. Transition matrix for the operational units when the system is composed of l 

units, of which a are in the repair facility, when w non-repairable failures and u 

repairable failures take place where the failure order is not established. This 

situation is described as  , , ,b l a w u . 

3. If there are l units is the system, a of which are in the repair facility, and the 

number of non-repairable failures at the next step is greater than or equal to 

lk+1, then the system has to be replaced. The probability of this occurring 

during the phases of the system is denoted by  , ,d k l a . 
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These functions are further developed in Appendix 5A. 

5.3.2 Transition probability matrix 

The transition probability matrix, P, is composed as follows. 

For l = k, … , n 

 
,

, , , , , , , , ,
00 01 02 0, 2 0, 1 0, 0, 1 0, 1 0,
, , , , , , , , ,

1,0 1,1 1,2 1, 2 1, 1 1, 1, 1 1, 1 1,
, , ,

2,1 2,2 2,1 2 2,

l l

l l l l l l l l l l l l l l l l l l
l k l k l k l k l l

l l l l l l l l l l l l l l l l l l
l k l k l k l k l l

l l l l l l
l k l k

       

       

   

R

B B B B B B B B B

B B B B B B B B B

B B B B

  
  
 , , , , ,

1 2, 2, 1 2, 1 2,

, , , , , ,
1, 2 1, 1 1, 1, 1 1, 1 1,

, , , , ,
,0 , 1 , , 1 , 1

l l l l l l l l l l
l k l k l l

l l l l l l l l l l l l
l k l k l k l k l k l k l k l k l k l l k l

l l l l l l l l l l
l k l k l k l k l k l k l k l k l

   

                   

          

B B B B

B B B B B B

B 0 0 0 B B B B

 
         

  
   ,

,
, , ,

1,0 1, 1, 1

, , ,
1,0 1, 2 1, 1

, ,
, 1 ,

.l l
l k l

l l l l l l
l k l k l k l k l k

l l l l l l
l l l l l

l l l l
l l l l



        

    



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B

B 0 0 0 B B 0 0 0

B 0 0 0 0 B B 0

0 0 0 0 0 0 B B

  
       

 
   

 

 

 

For l = k, … , n1  ;   

,
00

,
min , 1 ,0,

x 

l n

l n
l k kl n

l n

 

 
 
 
 
 
 
 
 
 
 

B 0 0

0 0

B 0 0
R

0

0 0 0 0 0



    
    



 and  

 

 

for l = k+1, … , n and h = l1, ... , k   
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   

, , , , , ,
00 01 02 0 2 0 1 0
, , , , , ,

10 11 12 1 2 1 1 1
, , , , ,

21 22 2 2 2 1 2
, , , ,

32 3 2 3 1 3

,

,
min , ,min , 1

l h l h l h l h l h l h
h h h

l h l h l h l h l h l h
h h h

l h l h l h l h l h
h h h

l h l h l h l h
h h h

l h

l h
h l k h l k

 

 

 

 

  



B B B B B B

B B B B B B

0 B B B B B

0 0 B B B B

R

0 0 0 0 B

  
  
  
  

        
     

, ,
min , , 1 min , ,

1 x 1

.
l h l h

h l k h h l k h

l h

  

 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

B B

0 0 0 0 0 0

0 0 0 0 0 0


 


 

The matrix ,l h
ijB   for 1  i  h2 and i +1  j  h1 is described in detail, the rest matrices 

are given in Appendix 5B. 

 

Matrix ,l h
ijB  

We assume that there are l units in the system (l = k + 1, … , n) and that i of them are in 

the repair facility (1  i  h2). We also assume that the number of the units in the repair 

facility is less than or equal to lk. Thus, the system is operational and failures may 

occur. The probability matrix of having h units in the system (h = l1, ... , k) with j of 

them in the repair facility (i +1  j  h1) is given by the following two possibilities.  

a. lh non-repairable and ji repairable failures occur. The unit in the repair facility 

is not repaired. 

 , , ,b l i l h j i  S . 

b. lh non-repairable and ji+1 repairable failures occur. The unit in the repair 

facility is repaired and the repair of another one begins. 

   0, , , 1b l i l h j i   S β . 

 

Thus, the matrix block is given by 

      , 0, , , , , , 1l h
ij i l kI b l i l h j i b l i l h j i         B S S β . 
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5.4 Transient distribution 

The transition probability at m steps can be calculated from the transition probability 

matrix described above. This is obtained by considering the matrix blocks associated with 

the macro-states Ul, when there are l units in the system. If the transition probability 

matrix from macro-state Ui to Uj is denoted by ( )
i j

m

U U
p  for i, j = k,...,n then in a recursive 

way we can obtain 

   

( ) ( 1)

i j i l

j n j n

n
m m lj

U U U U
l j I k I 



   

 p p R . 

 

If the system is initially composed of n new units, then the transient distribution is given 

by  ( ) ( )1,0, ,0 n j

n
m m

U U
j k

 p p . ( )
l

m

U
p  then denotes the values corresponding to the macro-

state derived from ( )mp . In an analogous way, ( )
l
a

m

U
p  denotes the corresponding value for 

the macro-state l units in the system, when a of them are in the repair facility. 

5.5 The long-run distribution 

The long-run distribution, , is obtained by matrix-analytic methods. This distribution has 

been calculated for the macro-states Ul, when there are l units in the system. The 

stationary probability of being in this macro-state is denoted by lπ , thus 

 1, , ,n n kπ π π π . This stationary distribution verifies πP π  where the stationary 

distribution verifies the normalization condition. These equations can be expressed as 

,
n

n s s n

s k

π π R , 

                       ,
n

l s s l

s l

 π π R ;  l = k, ..., n1, 

   1
n

s

s k

 π e . 

The solution to this system is given by 

l n lπ π R   ;   l = k,..., n1 

where 
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   
1 1, , ,

2
1

n
l n l s s l l l

l n
s l

I
 

 
 

    
 

R R R R I R   ;    l = k,...,n1. 

The vector nπ  is obtained from the first balance equation and the normalization 

condition. This is equal to 

 
1

*1 1
, ,1,

n n
n s s s n n n

s k s k


 

 

           
     

 π 0 e R e I R R R  , 

where the matrix A* is a matrix A without the first column.  

l
aπ  denotes the corresponding stationary values for the macro-state of l units in the 

system of which a are in the repair facility. 

5.6 Measures 

Several measures associated with the system have been applied, such as the availability, 

reliability and the conditional probability of failure. 

5.6.1 Availability 

The probability that at a certain time  the system is operational is named availability. In 

the stationary case, this measure is given by 

   

0

l
a

n l k

U
l k a

A




 

 p e  . 

This measure in the stationary case is given by 
0

n l k
l
a

l k a

A


 

  π e . 

5.6.2 Reliability 

The first time that the system is not operational is PH distributed, denoted by 

  *1, ,..., ,0 0 P , where P* is the matrix P restricted to the macro-state 
0

n l k
l
a

l k a

U


 
 . The 

reliability function (defined as the probability that at time  the system will be 

operational before any failure has occurred) is given by 

      1* * *01,0...,0R
   I P P P . 
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5.6.3 Conditional probability of failure 

Two different conditional probabilities of failure are defined; that of repairable failure 

and that of non-repairable failure. Both are defined in a transient and also in a stationary 

regime. 

5.6.3.1 Conditional probability of r repairable failures 

If the system is working at time 1, the probability that at the next time the system will 

have undergone only r repairable failures is given by 

         
0

1 1

1

, , 0, ,0 , , , ,0l l l l a
a

n l r

r tU m U t m
l k a

CPF b l k a r b l k a r 


 


 

             
 p e p e e  . 

5.6.3.2 Conditional probability of nr non-repairable failures  

If the system is working at time 1, the probability that at the next time the system will 

have undergone only nr non-repairable failures is given by 

         
0

1 1

1

, , 0,0, , , ,0,l l l l a
a

n l r

r tU m U t m
l k a

CPF b k l a nr b l k a nr 


 


 

             
 p e p e e  . 

5.7 Markov counting process to calculate the mean number of new systems 

In this section, a Markov counting process is developed to calculate the mean number of 

new systems up to a certain time. To achieve this objective, the transition probability 

matrix from a state to a new system is determined. This matrix is given by 

 

,

1,

,

n n

n n

ns

k n



 
 
 
 
  
 

D 0 0

D 0 0
D

D 0 0

   
 , 

where for l = k,…, n  
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 

,
00

,
min , 1 ,0,

x 

l n

l n
l k kl n

l n

 

 
 
 
 
 
 
 
 
 
 

D 0 0

0 0

D 0 0
D

0

0 0 0





,          

with  ,
00 , ,0

n
l n d k l   D α α   and for i =1,…, min{lk, k1} 

 ,
0 , ,

n
l n
i d k l i    D α α e . 

Then, the expected number of new systems up to a certain time  is given by 

                                                    
1

0

1,0,...,0 i

i





   P De  .                                           (5.1) 

In the stationary case it is given by   πDe , the number of new systems per unit of time.  

5.8 Numerical example 

Let us assume a 2-out-of-4: G system where the time of each operational unit is PH 

distributed with representation (, T) and where 

 1,0, 0α  and 

0.98 0.01 0.002

0 0.98 0.01

0 0 0.99

 
   
 
 

T  . 

Each device is composed of three different degradation levels. Each operational unit may 

undergo a repairable or a non-repairable failure. These failures can occur from states 1, 2 

or 3, respectively, in accordance with the following column probability vectors, 

0 0

0.005 0.003

0.0075 , 0.0025

0.0075 0.0025
r nr

   
       
   
   

T T  . 

Then, for instance, a repairable failure from degradation state 1 occurs with a probability 

equal to 0.005 and a non-repairable failure with a probability of 0.003. The mean time 

until a failure occurs is 110 units of time (u.t.), with mean time to repairable failure of 

114.2857 u.t. and mean time to non-repairable failure of 100 u.t. 
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When a repairable failure occurs, the unit is transferred to the repair facility. The 

repair time pass through two different phases and it is PH distributed with representation 

(, S) where 

 1,0β  , 
0.2 0.4

0.1 0.5

 
  
 

S  . 

The mean repair time is equal to 2.5 u.t. various measures can be applied. The macro-

state of the system is composed of three macro-states  4 3 2, ,E U U U  where Ul denotes 

the phases when there are l units in the system. These macro-states are composed of 

macro-states l
sU , s of them are in the repair facility. For instance, the macro-state 4

2U  is 

composed of 3x3x2 phases (two operational units, 3x3 possible phases, one unit being 

repaired, 2 possible phases and one unit in queue). For instance, the phase (1,3,2) of this 

macro-state indicates that the first operational unit is in degradation state 1, the second in 

degradation state 3 and the unit that is being repaired is in phase 2 of repairing. The 

macro-states U4, U3 and U2 are composed of 81+54+18+6+2, 27+18+6+2 and 9+6+2 

phases respectively. Thus, in a stationary regime, the ratio in each macro-state is given by 

the stationary distribution, as shown in Table 5.1. 

 

 

 Number of units in the system 
Number of units 

in the repair 
facility 

 
4 

 
3 

 
2 

0 0.2109 0.2913 0.4554 
1 0.0125 0.0141 0.0149 
2 0.0005 0.0004 0.0000 

3 0.0000 0.0000  

4 0.0000   
Table 5.1. Proportional time in each macro-state 

 

 

The availability function is shown in Figure 5.1. 
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Figure 5.1. Availability of the system 

 

The stationary availability is equal to 0.9846. This value is the operational time ratio and 

can be derived from Table 5.1. The probability of the system being operational at a 

certain time before the first system failure is given in Figure 5.2. 

 
Figure 5.2. Reliability function 

 

The mean time up to the first failure of the system is equal to 346.0609 u.t. Finally, Table 

5.2 shows the mean number of new systems calculated for different times, from (5.1). 
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 Mean number of new systems  

 100 200 300 400 500 600 700 800 900 1000 

() 0.0468 0.2071 0.4286 0.6702 0.9164 1.1629 1.4091 1.6552 1.9012 2.1472 

Table 5.2. Mean number of new system up to a certain time   

 

The stationary value, proportional to the number of new systems per unit of time is 

0.0025. 

5.9 Conclusions 

This chapter describes a multi-state complex k-out-of-n: G system, modelled in an 

algorithmic and computational form. The system is operational when at least k units are 

operational. Both repairable and non-repairable failures are included in the system. When 

a non-repairable failure occurs, the unit is removed. When the number of units in the 

system is less than or equal to nk1, it is considered to be non-operational and is 

replaced by a new one. At present, the system is modelled only for the case of internal 

failures, but more complex systems could also be modelled by the same approach. 

The transient distribution and the long-run case have also been computed, and 

several interesting reliability measures obtained, for both transient and stationary 

regimes. The mean number of new systems per unit of time is calculated by means of a 

Markov counting process. A numerical example is given to show the versatility of the 

model.  

The system modelled in this chapter can be extended by considering multiple types 

of failure with external shocks and random inspection followed by preventive 

maintenance. Also, this system can be generalized to the case of multiple and variable 

repairpersons where after each non-repairable failure the unit is removed. 

5.10 Appendices 

5.10.1 Appendix 5A 

1. Transition matrix for the operational units when the system is composed of l units, a 

of them in the repair facility, lh non-repairable failures occur and u repairable 
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failures take place when the failure order is determined ( 1, , us s  the ordinal of the 

repairable failures and 1, , wk k  the ordinal for the non-repairable failures). 

 

For h < l and u > 0,  

     1 1, , , ; , , ; , , 1w uC l a w u k k s s l a   T T   , where 

 

0
1

0
1

; , ,

; , ,

; otherwise.

r u

nr w

v s s

v v k k

 
 



T

T T

T


  

This function is denoted as follows for the following cases, 

 For w = 0 and u > 0,      1, , 0, ; , , 1uC l a w u s s l a    T T   

 For u = 0 and w > 0,      1, , , 0; , , 1l hC l a w u k k l a    T T   

 For w = 0 and u = 0,  , , 0, 0
l a

C l a w u


    T T  

 For w = la,   0 0, , , 0
l a

nr nrC l a w l a u


     T T  

 For u = la,   0 0, , 0,
l a

r rC l a w u l a


     T T . 

2. Transition matrix for the operational units when the system is composed of l units, a 

of them are in the repair facility, w non-repairable failures occur and u repairable 

failures have place where the failure order is not determined. 

For w > 0 and u > 0,  

   
1 2 1 1 1 2 1 1

1 2

1 2 1 2

1 1
1 1 1    1 1 1

        
1, , 1, , 1, ,

, , , , , , ; , , ; , ,
w w u u

v v u v

l a w l a w l a l a u l a u l a

w u
k k k k k s s s s s

s k s k s k
v w v w v w

b l a w u C l a w u k k s s
 

             

         
  

  

      
  

     

According to the specific cases described above we have the following notation. 

 For w = 0 and 0l a u   , 

   
1 2 1 1

1 2

1
1 1 1

, , 0, , ,0, ; , ,
u u

l a u l a u l a

u
s s s s s

b l a w u C l a u s s


      

    

       

 For u = 0 and 0l a w   , 

   
1 2 1 1

1 2

1
1 1 1

, , , 0 , , ,0; , ,
w w

l a w l a w l a

w
k k k k k

b l a w u C l a w k k


      

    

       
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 For w = 0 and u = 0,    , , 0, 0 , ,0,0
l a

b l a w u c l a


     T T  and if a = l 

 , , 0, 0 1b l l w u    

 For w = la,     0 0, , , 0 , , ,0
l a

nr nrb l a w l a u C l a l a


       T T  

 For u = la,     0 0, , 0, , ,0,
l a

r rb l a w u l a C l a l a


       T T . 

3. If there are l units is the system, a of them in the repair facility, and the number of 

non-repairable failures is greater or equal than lk+1, then the system has to be 

replaced. The probability of that it occurs by considering the phases of the system is 

   
1

, , , ,
l a

w l k

d k l a d l a w


  

   , 

where   

   
1 2 1 1

1 2

1
1 1 1

, , , , ; , ,
w w

l a w l a w l a

w
k k k k k

d l a w D l a w k k


      

    

      

and 

     1, , ; , , 1wD l a w k k l a   T T   with  
0

1
0

; , ,

; otherwise.
nr w

nr

v k k
v

 
 



T
T

e T


 

5.10.2 Appendix 5B 

The transition probability matrix, P, is composed by the following block matrices. 

For l = k, … , n 

,

, , , , , , , , ,
00 01 02 0, 2 0, 1 0, 0, 1 0, 1 0,
, , , , , , , , ,

1,0 1,1 1,2 1, 2 1, 1 1, 1, 1 1, 1 1,
, , ,

2,1 2,2 2,1 2 2,

l l

l l l l l l l l l l l l l l l l l l
l k l k l k l k l l

l l l l l l l l l l l l l l l l l l
l k l k l k l k l l

l l l l l l
l k l k

       

       

   

R

B B B B B B B B B

B B B B B B B B B

B B B B

  
  
 , , , , ,

1 2, 2, 1 2, 1 2,

, , , , , ,
1, 2 1, 1 1, 1, 1 1, 1 1,

, , , , ,
,0 , 1 , , 1 , 1

l l l l l l l l l l
l k l k l l

l l l l l l l l l l l l
l k l k l k l k l k l k l k l k l k l l k l

l l l l l l l l l l
l k l k l k l k l k l k l k l k l

   

                   

          

B B B B

B B B B B B

B 0 0 0 B B B B

 
         

  
   ,

,
, , ,

1,0 1, 1, 1

, , ,
1,0 1, 2 1, 1

, ,
, 1 ,

l l
l k l

l l l l l l
l k l k l k l k l k

l l l l l l
l l l l l

l l l l
l l l l



        

    



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B

B 0 0 0 B B 0 0 0

B 0 0 0 0 B B 0

0 0 0 0 0 0 B B

  
       

 
   

 

     ,
00 ,0,0,0 , ,0

n
l l

l nb l I d k l    B α α . 
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For 1  j  l ;  ,
0 , 0,0,l l

j b l j B β , 

       

 

, 0
10 1 , 1

1
0

1

, 1,0,0 , ,1

     .

n
l l

l k l n a k

l

l k

I b l a I d k l

I

    



 

           
       

B α S α α e

I I α S




  

 

For 2  i  n1 ;    ,
0 ; ; 1 , ,

n
l l
i i l k l n i kI d k l i        B α α e . 

For 1  i  l1 ;        
, 0, ,0,0 , ,0,1

l i
l l
ii i l k i l kI b l i b l i I



             B S α S β I I S , 

 

,l l
ll B S . 

 

For 2  i  l ;          
, 0
, 1 , ,0,0

l i
l l
i i i l k i l k i l i lI b l i I I I



      

               
B I I α S β . 

 

For 1  i  l2 ; i +1  j  l1 ;  

     , 0, , 0, , , 0, 1l l
ij i l kI b l i j i b l i j i           B S α S β , 

and for 1  i  l1 ;    ,
, , ,0,l l

i l i l kI b l i l i   B S  

 

For l = k, … , n1  ;   

,
00

,
min , 1 ,0,

x 

l n

l n
l k kl n

l n

 

 
 
 
 
 
 
 
 
 
 

B 0 0

0 0

B 0 0
R

0

0 0 0



 
  

  

 ,
00 , ,0

n
l n d k l   B α α .  

For i =1,…, l1  ;    ,
0 1 , ,

n
l n
i i kI d k l i     B α α e . 
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For l = k+1, … , n and h = l1, ... , k   

   

, , , , , ,
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, , , , , ,
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, , , , ,
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, , , ,
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h h h

l h l h l h l h l h l h
h h h
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l h l h l h l h
h h h
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h l k h l k
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1 x 1

l h l h
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  

 

 
 
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 
 
 
  
 

B B

0 0 0 0 0 0

0 0 0 0 0 0

  
        

  
 

 ,
00 ,0, ,0l h b l l h B . 

For 1  i  h1   ;      , 0, , ,0 , , ,1l h
ii b l i l h b l i l h     B S S β . 
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0 , 0, ,l h
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