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Abstract

The focus of this thesis was on the implementation of software tools and biological

models that simulate the neuronal behavior of the first stages of the visual system,

retina, lateral geniculate nucleus (LGN) and primary visual cortex (V1), and can

serve as a realistic experimentation framework within which several hypotheses of

the neural coding of visual processing can be explored.

First, we developed an efficient software platform that facilitates the implementa-

tion of retina models at different abstraction levels, from single-cell to large-scale

network levels. The platform provides a set of computational retinal microcircuits

as basic building blocks that can be combined to form different retina architec-

tures. To show the configurability and potential of the proposed framework, we

constructed a series of different retina models that capture the properties of the

retina response for some of the best-known phenomena observed in the retina:

adaptation to the mean light intensity and temporal contrast, and differential mo-

tion sensitivity.

The next stage that was investigated was the LGN. A striking feature of the LGN

circuit is that LGN cells, both relay cells (RCs) and interneurons (INs), not only

receive feedforward input from retinal ganglion cells (GCs), but also a prominent

feedback from cells in layer 6 of V1. We explored the spatial effects of cortical

feedback on the relay-cell response by means of a biophysically detailed network

model. We considered two different arrangements of synaptic feedback from the

ON and OFF zones in V1 to the LGN, as well as different spatial extents of the cor-

ticothalamic projection pattern. Our simulation results are in agreement with the

feedback-evoked increase in center-surround antagonism observed in experiments

both for flashing spots and, even more prominently, for patch gratings.

Finally, we developed a comprehensive network model of the first stages in the

primate parvocellular pathway, built upon two-dimensional grids of point neurons,

which represent the retina, the LGN and a simplified version of the multilayered

structure of V1. Special attention was given to ensuring that the morphological

properties of the network (e.g., spatial extent of connections) were based strictly on

experimental data of the primate visual system. We exhaustively benchmarked the

model against well-established chromatic and achromatic visual stimuli, showing

spatial and temporal responses of the model to light flashes of different shapes,

spatially uniform squares and sine-wave gratings of varying spatial frequency. The

model was used to validate a hypothesis that is under debate and concerns the spa-

tial properties of the V1 response to surfaces of uniform color. According to this

hypothesis, V1 population responses to chromatic and achromatic surfaces remain
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both edge-enhanced throughout the stimulus presentation but only achromatic sur-

faces elicit a neuronal filling-in response of the center.

In parallel, different optimization strategies based on genetic algorithm (GA) were

investigated to fit parameters of some of the models proposed in this work.
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Resumen

El trabajo de esta Tesis se ha centrado en la implementación de herramientas soft-

ware y modelos biológicos que simulan el comportamiento neuronal de las primeras

etapas del sistema visual, retina, núcleo geniculado lateral (LGN) y corteza vi-

sual primaria (V1), y que constituyen una plataforma de experimentación realista

en la cual se pueden explorar diferentes hipótesis de la codificación neuronal del

procesamiento visual.

En primer lugar hemos desarrollado una plataforma software eficiente que facilita

la implementación de modelos de retina a diferentes niveles de abstracción, desde

el nivel celular hasta niveles de red de gran escala. La plataforma proporciona un

conjunto de microcircuitos computacionales de la retina que pueden ser combina-

dos como unidades básicas de procesamiento para formar diferentes arquitecturas

de retina. Para demostrar la configurabilidad y el potencial de la plataforma,

se han desarrollado una serie de modelos diferentes de retina que reproducen las

propiedades de la respuesta retiniana para algunos de los fenómenos mejor cono-

cidos: adaptación al nivel medio de intensidad lumı́nica y al contraste temporal, y

sensibilidad al movimiento.

La siguiente etapa que se ha investigado es el LGN. Una propiedad sorprendente de

este circuito es que las células del LGN, tanto las “relay-cells” (RCs) como las in-

terneuronas (INs), no sólo reciben entrada “feedforward” de las células ganglionares

(GCs) de la retina, sino que también reciben un marcado “feedback” de las células

de capa 6 de V1. Hemos explorado los efectos del “feedback” cortical en la respuesta

espacial de las RCs usando para ello un modelo de red biof́ısicamente detallado. Se

han considerado dos organizaciones distintas de las conexiones sinápticas de “feed-

back” que provienen de las zonas ON y OFF en V1, aśı como diferentes tamaños

de la proyección espacial corticotalámica. Nuestros resultados de simulación están

en conformidad con el aumento del antagonismo centro-periferia, evocado por la

señal de “feedback”, observado en experimentos con destellos de forma circular y,

de forma más prominente, con rejillas sinusoidales.

Finalmente se ha desarrollado un modelo de red exhaustivo de las primeras etapas

del camino parvocelular del primate, construido en base a capas bi-dimensionales

de neuronas unicompartimentales, que representan la retina, el LGN y una versión

simplificada de la estructura multi-capas de V1. Se ha prestado especial atención

en asegurar que las propiedades morfológicas de la red (e.g., la extensión espacial

de las conexiones) estén basadas estrictamente en datos experimentales del sistema

visual del primate. El modelo se ha evaluado de forma minuciosa, usando est́ımulos

cromáticos y acromáticos, y mostrando las respuestas espaciales y temporales del

iv



modelo a destellos lumı́nicos de diferentes formas, cuadrados espacialmente uni-

formes y rejillas sinusoidales de distinta frecuencia espacial. El modelo ha sido

usado para validar una hipótesis que todav́ıa está siendo debatida y que está rela-

cionada con las propiedades espaciales de la respuesta de V1 a superficies uniformes

de color. Esta hipótesis postula que las respuestas de la población de V1 para super-

ficies cromáticas y acromáticas permanecen ambas con un nivel alto de activación

en los bordes a lo largo de la presentación del est́ımulo pero sólo las superficies

acromáticas provocan una respuesta de “filling-in” en el centro de la superficie.

En paralelo, hemos investigado diferentes estrategias de optimización basadas en

algoritmo genético (GA) para ajustar los parámetros de algunos de los modelos

propuestos en este trabajo.
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“Junta de Andalućıa” (Spain), cofinanced by the European Regional Development

Fund (ERDF).

vii



viii



Contents

Abstract ii

Resumen iv

Acknowledgements vii

1 Introduction 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introducción 7

2.1 Motivación y objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Aportaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Publicaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ix



x CONTENTS

3 Contextualization of the work 13

3.1 General anatomy and function of the early visual system . . . . . . . 14

3.1.1 Parallel pathways in the retina . . . . . . . . . . . . . . . . . 14

3.1.2 Lateral geniculate nucleus . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Primary visual cortex: local circuitry and color mechanisms . 18

3.2 Previous modeling studies . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Types of models used in Computational Neuroscience . . . . 20

3.2.2 Models of the retina . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Models of the lateral geniculate nucleus . . . . . . . . . . . . 22

3.2.4 Models of the primary visual cortex . . . . . . . . . . . . . . 23

4 Methods 25

4.1 Simulators of neurons and networks of neurons . . . . . . . . . . . . 25

4.2 Implementing our own retina simulator . . . . . . . . . . . . . . . . . 27

4.3 Genetic algorithm for optimization of model parameters . . . . . . . 28

4.4 Distributed computing in a cluster . . . . . . . . . . . . . . . . . . . 29

5 Results 31

5.1 COREM: A configurable retina simulation environment . . . . . . . 31

5.2 Connecting COREM with the Neurorobotics platform of the HBP . 33

5.3 Genetic algorithm for automated parameter search . . . . . . . . . . 34

5.4 Biophysical network modeling of the dLGN circuit . . . . . . . . . . 35



5.5 A conductance-based network model of the primate visual system . . 36

6 Conclusions 41

6.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Conclusiones 45

7.1 Principales aportaciones . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Trabajo futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 49

Appendix A 68

Appendix B 87

Appendix C 96

xi



xii



List of Figures

3.1 General architecture of the retina and the different neuron classes.

Circularly symmetric center-surround receptive field of retinal cells. . 14

3.2 Feedforward inputs to LGN cells and local inhibitory connections. . 17

3.3 Simplified representation of the multilayered structure of V1 and the

main connectivity patterns. . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Schematic view of COREM simulator. . . . . . . . . . . . . . . . . . 32

5.2 Circuit model of the primate visual system and spatial profiles of

receptive fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Spatial frequency tuning curves. . . . . . . . . . . . . . . . . . . . . 39

xiii



xiv



Acronyms

AC: Amacrine cell

BC: Bipolar cell

CL: Color-luminance (cell)

CP: Color-preferring (cell)

DoG: Difference-of-Gaussians

GA: Genetic algorithm

GC: Ganglion cell

HBP: Human Brain Project

HC: Horizontal cell

IF: Integrate-and-fire (model)

IN: Interneuron

LGN: Lateral geniculate nucleus

LP: Luminance-preferring (cell)

RC: Relay cell

V1: Primary visual cortex



Chapter 1

Introduction

1.1 Motivation and Objectives

This thesis falls within the field of Computational Neuroscience. Computational

Neuroscience comprises the study of the brain function in terms of the informa-

tion processing properties and the network architecture that make up the neuronal

system. It is an interdisciplinary science that links the diverse fields of Neuro-

science, Cognitive science and Psychology with Electrical Engineering, Computer

Science, Mathematics and Physics. Computational Neuroscience is currently at the

epicenter of one of the most important European project, the H2020 FET Flag-

ship Project Human Brain Project (HBP) [HBP18], in which our research group is

involved in. Part of the work presented here has also been focused on the HBP.

Mathematical and computational modeling have played a crucial role to understand

the functionality of the visual, auditory and olfactory systems, as well as the neural

basis of learning and memory [Min18]. There exist computational models of other

types of physical systems (e.g., planetary systems, fluid flows, and so on). However,

biological structures of the nervous system can be seen as processors of information

so that computational models in these systems are not just tools for calculation or

prediction, but often for inferring their functionality.

To extract the functionality of the nervous system, it is essential to explain how

phenomena at each level arise from those at lower levels (e.g., how neuronal activ-

ity of cells in the visual cortex produce the perception of color). Unfortunately,
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2 Chapter 1. Introduction

experimental methods often do not provide the data necessary for this. Electrode

arrays, for example, provide extracellular access only to a few hundred neurons at

best. Computational modeling bridges the gap between incomplete experimental

data and a coherent quantitative and testable functional description of the brain.

Computational modeling allows us to develop large-scale network models, based

on data obtained from experiments, and simulate them computationally under a

variety of situations to gain insight into how the corresponding networks in the

brain might work.

Computational models of the visual system have been of particular interest. The

visual system has drawn the attention of many scientists over the last sixty years,

since the seminal work of Hubel and Wiesel [HW62, HW59], which was the land-

mark in exploring how neurons in the brain could be organized to produce visual

perception. Vision is the primary sensory modality in primates such ourselves, and

the complexity of the visual system is reflected in the extent of the cerebral cortex

used for the analysis of visual information [KVE92]. The working of the visual sys-

tem is a matter of fascination not only for our understanding of visual perception,

but also for its relevance to other cortical functions, including cognitive processing.

A great number of models have been proposed to explain the properties of the

visual processing. One of the pioneers in the field, and maybe the best known

mathematical model in visual neuroscience, was the Difference-of-Gaussians (DoG)

introduced in 1965 by R.W. Rodieck [Rod65]. Descriptive models, such as the DoG,

have been essential to understand how neurons convert visual stimuli into a neural

response. With recent advancements in neuroimaging techniques, availability of

an increasing amount of physiological data and current computational capabilities,

we now have powerful resources for developing biologically more realistic models

of the brain.

This thesis has been primarily focused on the development of computational models

of the early stages of the visual system that could bring novel and valuable tools

to the Neuroscience community. In general terms, we set the following goals:

• To generalize the computational basis of the visual processing, rather than

fitting the model response to a single experimental observation. While many

of the proposed models for vision share common computational stages, pre-

vious efforts have been more focused on fitting specific experimental data

rather than generalizing the model beyond a particular result. We exhaus-

tively benchmarked our models against a large repertoire of different visual

stimuli, in which the model responses were well within the range of values ex-

perimentally reported for all types of stimuli. We believe that a general and
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unified modeling framework should be pursued to facilitate the construction

of a coherent description of the visual system.

• To achieve the best tradeoff between complexity of the models to explain

functionality and biological accuracy. Thus, our proposed models are as

simple as possible (e.g., they are mainly built upon point neuron models)

but are able to capture most properties of the neural response. Although

the models have been largely simplified, it does not mean their parameter

values do not correspond to biological values. In fact, it is just the opposite.

Special attention was given to ensuring that morphological and physiological

properties of the models were based strictly on experimental data.

• For the purpose of independent validation and further scientific exploration,

these models were implemented using well-established simulation tools, such

as NEST [NES18], and all the code projects have been released as open source

software [Git18].

1.2 Contributions

The biologically realistic models presented in this Thesis have the ultimate goal

of gaining insight into the neural mechanisms underlying the early processing of

visual information. A number of hypotheses raised on the basis of experimental

findings were evaluated by means of model simulations under different scenarios.

Compared to other biological models for vision, our models make the following

contributions:

• Our software might be considered as an evolutionary tool for neuroscientists

who need realistic large-scale and relatively detailed models of the visual

system. The category of large-scale models appears under-represented in the

literature. We will illustrate the importance of large-scale models to connect

lower level phenomena with the perceptual response.

• Model parameters were carefully tuned based on physiological and anatomical

data. In this manner, we ensure that our models are reliable and perfectly

suited for applications that require a high level of biological realism, such as

the study of visual diseases.

• Following the idea of generalization of the modeling presented above, we ex-

haustively benchmarked our models against a large set of different visual
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stimuli, showing that the model responses were in agreement with the re-

sponses observed in the laboratory for all types of stimuli.

• The software was designed for easy use and to be interfaced with other well-

established simulation tools used by the Neuroscience community. A resound-

ing success here was the integration of our retina simulation platform within

the Neurorobotics Platform of the HBP.

1.3 Publications

We have published 5 journal articles during the thesis research period. In three of

them, the PhD candidate is the first author.

• Mobarhan, M. H., Halnes, G., Mart́ınez-Cañada P., Hafting, T., Fyhn, M.,

& Einevoll, G. T. (2018). Firing-Rate Based Network Modeling of

the dLGN Circuit: Effects of Cortical Feedback on Spatiotempo-

ral Response Properties of Relay Cells. PLoS Computational Biology,

accepted for publication.

• Mart́ınez-Cañada P., Mobarhan, M. H., Halnes, G., Fyhn, M., Morillas, C.,

Pelayo, F., & Einevoll, G. T. (2018). Biophysical network modeling of

the dLGN circuit: Effects of cortical feedback on spatial response

properties of relay cells. PLoS Computational Biology, 14(1).

• Mart́ınez-Cañada P., Morillas, C., Plesser, H. E., Romero, S., & Pelayo, F.

(2017). Genetic algorithm for optimization of models of the early

stages in the visual system. Neurocomputing, 250.

• Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez

Tieck, J. C., Hinkel, G., Kaiser, J., Peric, I., Denninger, O., Cauli, N., Kirtay,

M., Roennau, A., Klinker, G., Von Arnim, A., Guyot, L., Peppicelli, D.,

Mart́ınez-Cañada, P., Ros, E., Maier, P., Weber, S., Huber, M., Plecher,

D., Röhrbein, F., Deser, S., Roitberg, A., van der Smagt, P., Dillman, R.,

Levi, P., Laschi, C., Knoll, A. C., & Gewaltig, M. O. (2017). Connecting

artificial brains to robots in a comprehensive simulation framework:

The neurorobotics platform. Frontiers in Neurorobotics, 11.

• Mart́ınez-Cañada P., Morillas, C., Pino, B., Ros, E., & Pelayo, F. (2016). A

computational framework for realistic retina modeling. International

Journal of Neural Systems, 26(07).
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Another 2 journal articles have been submitted for publication.

• Mart́ınez-Cañada P., Morillas, C., & Pelayo, F. (2018). A Neuronal Net-

work Model of the Primate Visual System: Coding of Color Sur-

faces. Journal of Computational Neuroscience. Submitted for publication.

• Mart́ınez-Cañada P., Morillas, C., & Pelayo, F. (2017). A Neuronal Net-

work Model of the Primate Visual System: Color Mechanisms in

the Retina, LGN and V1. International Journal of Neural Systems. Sub-

mitted for publication.

And there are 5 conference papers.

• Mart́ınez-Cañada P., Morillas, C., & Pelayo, F. (2017, June). A Conductance-

Based Neuronal Network Model for Color Coding in the Primate

Foveal Retina. In International Work-Conference on the Interplay Between

Natural and Artificial Computation (pp. 63-74). Springer, Cham.

• Ambrosano, A., Vannucci, L., Albanese, U., Kirtay, M., Falotico, E., Mart́ınez-

Cañada, P., Hinkel, G., Kaiser, J., Ulbrich, S., Levi, P., Morillas, C., Knoll,

A., Gewaltig, M. O., & Laschi, C. (2016, July). Retina color-opponency

based pursuit implemented through spiking neural networks in the

neurorobotics platform. In Conference on Biomimetic and Biohybrid Sys-

tems (pp. 16-27). Springer, Cham.

• Mart́ınez-Cañada P., Morillas, C., Romero, S., & Pelayo, F. (2015, June).

Modeling Retina Adaptation with Multiobjective Parameter Fit-

ting. In International Work-Conference on Artificial Neural Networks (pp.

175-184). Springer, Cham.

• Mart́ınez-Cañada P., Morillas, C., Pino, B., & Pelayo, F. (2015, June). To-

wards a generic simulation tool of retina models. In International

Work-Conference on the Interplay Between Natural and Artificial Computa-

tion (pp. 47-57). Springer, Cham.

• Mart́ınez-Cañada P., Morillas, C., Nieves, J. L., Pino, B., & Pelayo, F. (2015,

March). First Stage of a Human Visual System Simulator: The

Retina. In International Workshop on Computational Color Imaging (pp.

118-127). Springer, Cham.
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Chapter 2

Introducción

2.1 Motivación y objetivos

Esta tesis queda englobada en el campo de la Neurociencia Computacional. La

Neurociencia Computacional comprende el estudio de la función del cerebro en

términos de las propiedades del procesamiento de la información y de la arquitec-

tura de red que compone el sistema nervioso. Se trata de una ciencia interdis-

ciplinar que conecta diversos campos de investigación como son la Neurociencia,

las Ciencias Cognitivas y la Psicoloǵıa con la Ingenieŕıa Eléctrica, las Ciencias de

la Computación, las Matemáticas y la F́ısica. La Neurociencia Computacional se

encuentra actualmente en el epicentro de uno de los proyectos europeos más impor-

tantes, el proyecto H2020 “Human Brain Project” (HBP), del cual nuestro grupo

de investigación forma parte. Parte del trabajo que aqúı se presenta se centra en

el HBP.

El modelado computacional y matemático ha desempeñado un papel crucial para

entender la funcionalidad de los sistemas visual, auditivo y olfativo, aśı como la

base neuronal de los mecanismos de aprendizaje y de la memoria [Min18]. Existen

modelos computacionales de otros tipos de sistemas f́ısicos (e.g., los sistemas plan-

etarios). Sin embargo, las estructuras biológicas del sistema nervioso se pueden

considerar como procesadores de información por lo que los modelos computa-

cionales de estos sistemas no son sólo herramientas para el cálculo o la predicción,

sino también para inferir su funcionalidad.

7



8 Chapter 2. Introducción

Para extraer la funcionalidad del sistema nervioso, es esencial explicar cómo sur-

gen los fenómenos de cada nivel en base a los fenómenos de niveles inferiores (e.g.,

cómo la actividad neuronal de las células en corteza visual da lugar a la percepción

del color). Desafortunadamente, los métodos experimentales a menudo no pro-

porcionan los datos necesarios para ello. Los arrays de electrodos, por ejemplo,

proporcionan acceso extracelular sólo a unos cientos de neuronas en el mejor de los

casos. El modelado computacional permite acortar las distancias entre los datos

experimentales incompletos y la posibilidad de generar una descripción funcional

coherente y cuantitativa del cerebro. El modelado computacional nos permite de-

sarrollar modelos de gran escala, basados en datos obtenidos en el laboratorio,

y realizar múltiples simulaciones en diferentes situaciones para obtener un mayor

conocimiento de cómo funcionan las redes correspondientes del cerebro.

De especial interés han sido los modelos computacionales del sistema visual. El

sistema visual ha atráıdo la atención de muchos cient́ıficos a lo largo de los últimos

sesenta años, desde el influyente trabajo de Hubel y Wiesel [HW62, HW59], que

marcó un referente en la investigación de cómo se organizan las neuronas del cerebro

para producir la percepción visual. La visión es una modalidad sensorial funda-

mental en primates, como nosotros, y la complejidad del sistema visual se refleja en

la gran extensión de corteza cerebral que se dedica al análisis de la información vi-

sual [KVE92]. Entender el funcionamiento del sistema visual es un tema fascinante

no sólo por el conocimiento que podamos llegar a alcanzar de los mecanismos de

percepción visual, sino también por su relevancia para otras funciones corticales,

incluyendo el procesamiento cognitivo.

Se han propuesto un gran número de modelos para explicar las propiedades del

procesamiento visual. Uno de los pioneros en este campo, y quizás el modelo

matemático más conocido en Neurociencia de la Visión, es la Diferencia de Gaus-

sianas (DoG, del inglés) introducida en 1965 por R.W. Rodieck [Rod65]. Los

modelos descriptivos, como la DoG, han sido esenciales para entender cómo las

neuronas convierten los est́ımulos visuales en una respuesta neuronal. Con los

avances recientes en las técnicas de “neuroimagen”, la disponibilidad de un volumen

cada vez mayor de datos fisiológicos y las capacidades computacionales actuales,

disponemos de recursos más que suficientes para desarrollar modelos del cerebro

que sean biológicamente más realistas.

Esta Tesis ha estado enfocada principalmente en el desarrollo de modelos computa-

cionales de las primeras etapas del sistema visual que puedan proporcionar her-

ramientas novedosas y de utilidad para la comunidad Neurocient́ıfica. En términos

generales, nos marcamos los siguientes objetivos:
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• Generalizar los fundamentos computacionales del procesamiento visual, en

vez de ajustar la respuesta del modelo a una única observación experimental.

Aunque muchos de los modelos de visión propuestos comparten etapas com-

putacionales similares, se ha prestado más interés a ajustar el modelo a datos

experimentales espećıficos en vez de generalizar el modelo más allá de un

resultado concreto. Hemos evaluado de forma exhaustiva nuestros modelos

usando un gran repertorio de est́ımulos visuales diversos, para los cuales las

respuestas de los modelos estaban dentro del rango de valores experimental-

mente medidos para todos los tipos de est́ımulos. Pensamos que los esfuerzos

de investigación deben buscar un marco de modelado general y unificado que

facilite la formulación de una descripción coherente del sistema visual.

• Conseguir el mejor compromiso entre la complejidad de los modelos para

explicar la funcionalidad y su precisión biológica. De esta forma, los modelos

que proponemos son lo más simples posible (e.g., están implementados en

base a modelos de neurona unicompartimentales) pero al mismo tiempo son

capaces de reproducir la mayoŕıa de las propiedades de la respuesta neuronal.

Aunque los modelos han sido simplificados en gran medida, esto no significa

que los valores de sus parámetros no se correspondan con valores biológicos.

De hecho, es justo lo contrario. Se ha tenido especial cuidado en asegurar que

las propiedades morfológicas y fisiológicas de los modelos estén estrictamente

basadas en datos experimentales.

• Para que puedan ser validados de forma independiente y se pueda seguir

avanzando en su investigación, los modelos han sido implementados usando

herramientas de simulación estandarizadas, como lo es NEST [NES18], y todo

el código de los proyectos ha sido liberado como software de código abierto

[Git18].

2.2 Aportaciones

Los modelos biológicamente realistas presentados en esta Tesis tienen como objetivo

último la adquisición de un mayor conocimiento de los mecanismos neuronales

subyacentes al procesamiento de la información en las primeras etapas del sistema

visual. Una serie de hipótesis planteadas a partir de resultados experimentales han

sido evaluadas por medio de simulaciones de los modelos en diferentes y múltiples

escenarios. Comparados con otros modelos biológicos de visión, nuestros modelos

aportan las siguientes contribuciones:
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• Nuestro software puede ser considerado como una herramienta gradual y

evolutiva para neurocient́ıficos que necesiten modelos de gran escala relati-

vamente detallados. La categoŕıa de los modelos de gran escala parece estar

poco representada en la literatura. Ilustraremos la importancia de los mod-

elos de gran escala para conectar fenómenos de bajo nivel con respuestas

perceptuales.

• Los parámetros de los modelos han sido ajustados de forma minuciosa basándonos

en datos fisiológicos y anatómicos. De esta forma, nos aseguramos de que nue-

stros modelos son fiables y están perfectamente indicados para aplicaciones

que requieran un alto nivel de realismo biológico, como es el estudio de en-

fermedades visuales.

• Siguiendo la idea previamente presentada de generalización del modelado,

hemos evaluado exhaustivamente nuestros modelos en base a un gran número

de est́ımulos visuales diferentes, demostrando que las respuestas de los mode-

los se corresponden con las respuestas observadas en el laboratorio para todos

los tipos de est́ımulos.

• El software ha sido diseñado para un uso sencillo y para ser conectado con

otras herramientas de simulación estándar en la comunidad Neurocient́ıfica.

Un éxito rotundo en este ámbito ha sido la integración de nuestra plataforma

de simulación de modelos de retina con la Plataforma de Neurorobótica del

HBP.

2.3 Publicaciones

Se han publicado 5 art́ıculos de revista durante el periodo de investigación de la

tesis. En tres de ellos, el estudiante de doctorado es el primer autor.

• Mobarhan, M. H., Halnes, G., Mart́ınez-Cañada P., Hafting, T., Fyhn, M.,

& Einevoll, G. T. (2018). Firing-Rate Based Network Modeling of

the dLGN Circuit: Effects of Cortical Feedback on Spatiotempo-

ral Response Properties of Relay Cells. PLoS Computational Biology,

accepted for publication.

• Mart́ınez-Cañada P., Mobarhan, M. H., Halnes, G., Fyhn, M., Morillas, C.,

Pelayo, F., & Einevoll, G. T. (2018). Biophysical network modeling of

the dLGN circuit: Effects of cortical feedback on spatial response

properties of relay cells. PLoS Computational Biology, 14(1).
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• Mart́ınez-Cañada P., Morillas, C., Plesser, H. E., Romero, S., & Pelayo, F.

(2017). Genetic algorithm for optimization of models of the early

stages in the visual system. Neurocomputing, 250.

• Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez

Tieck, J. C., Hinkel, G., Kaiser, J., Peric, I., Denninger, O., Cauli, N., Kirtay,

M., Roennau, A., Klinker, G., Von Arnim, A., Guyot, L., Peppicelli, D.,

Mart́ınez-Cañada, P., Ros, E., Maier, P., Weber, S., Huber, M., Plecher,

D., Röhrbein, F., Deser, S., Roitberg, A., van der Smagt, P., Dillman, R.,

Levi, P., Laschi, C., Knoll, A. C., & Gewaltig, M. O. (2017). Connecting

artificial brains to robots in a comprehensive simulation framework:

The neurorobotics platform. Frontiers in Neurorobotics, 11.

• Mart́ınez-Cañada P., Morillas, C., Pino, B., Ros, E., & Pelayo, F. (2016). A

computational framework for realistic retina modeling. International

Journal of Neural Systems, 26(07).

Otros 2 art́ıculos de revista han sido enviados para su publicación.

• Mart́ınez-Cañada P., Morillas, C., & Pelayo, F. (2018). A Neuronal Net-

work Model of the Primate Visual System: Coding of Color Sur-

faces. Journal of Computational Neuroscience. Submitted for publication.

• Mart́ınez-Cañada P., Morillas, C., & Pelayo, F. (2017). A Neuronal Net-

work Model of the Primate Visual System: Color Mechanisms in

the Retina, LGN and V1. International Journal of Neural Systems. Sub-

mitted for publication.

Y hay 5 art́ıculos de conferencias.

• Mart́ınez-Cañada P., Morillas, C., & Pelayo, F. (2017, June). A Conductance-

Based Neuronal Network Model for Color Coding in the Primate

Foveal Retina. In International Work-Conference on the Interplay Between

Natural and Artificial Computation (pp. 63-74). Springer, Cham.

• Ambrosano, A., Vannucci, L., Albanese, U., Kirtay, M., Falotico, E., Mart́ınez-

Cañada, P., Hinkel, G., Kaiser, J., Ulbrich, S., Levi, P., Morillas, C., Knoll,

A., Gewaltig, M. O., & Laschi, C. (2016, July). Retina color-opponency

based pursuit implemented through spiking neural networks in the

neurorobotics platform. In Conference on Biomimetic and Biohybrid Sys-

tems (pp. 16-27). Springer, Cham.
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• Mart́ınez-Cañada P., Morillas, C., Romero, S., & Pelayo, F. (2015, June).

Modeling Retina Adaptation with Multiobjective Parameter Fit-

ting. In International Work-Conference on Artificial Neural Networks (pp.

175-184). Springer, Cham.

• Mart́ınez-Cañada P., Morillas, C., Pino, B., & Pelayo, F. (2015, June). To-

wards a generic simulation tool of retina models. In International

Work-Conference on the Interplay Between Natural and Artificial Computa-

tion (pp. 47-57). Springer, Cham.

• Mart́ınez-Cañada P., Morillas, C., Nieves, J. L., Pino, B., & Pelayo, F. (2015,

March). First Stage of a Human Visual System Simulator: The

Retina. In International Workshop on Computational Color Imaging (pp.

118-127). Springer, Cham.



Chapter 3

Contextualization of the

work

In Section 3.1 we provide an overview of the morphological organization of the

retina, LGN and V1, and the essential properties of the spatiotemporal dynamics

of the different cell classes. The focus is on the processing pathways and neuronal

structures that are present in our computational models (e.g., the rod pathway is

not included). We hope that this overview can help non-specialist readers to be-

come familiarized with the theoretical framework used to formulate vision models.

For a more detailed explanation, please refer to the following references: for the

retina, the web page “Webvision” [KFN18], the reviews of the primate retina by

Lee and coauthors [LMG10] and Dacey [Dac00], and the reviews of the mammalian

retina by Masland [Mas12, Mas01]; for the LGN, the well-known book by Sherman

and Guillery [SG01], the overview by Usrey and Alitto [UA15] and the most rel-

evant reviews describing the corticothalamic function [AU03, SJ02]; for V1, our

focus is on color coding (studies by Shapley and Johnson [SH11, JHS01]) and the

functional organization of the primate cortex (studies by Callaway [Cal98]).

Section 3.2 presents the literature review on the previous biological models devel-

oped for each of the stages in the early visual pathway. There is a substantial

number of models that have been proposed over the last few decades and it is out

of the scope of this thesis to include all. Here we primarily focus on those models

that have served as a reference for our work.

13
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3.1 General anatomy and function of the early vi-

sual system

3.1.1 Parallel pathways in the retina

The retina is a multilayered structure in all mammals. The neural architecture

of the retina can be seen as a three-neuron vertical pathway (see Figure 3.1 A)

composed of excitatory cells: 1) photoreceptors (cones and rods) that transform

the light stimulus into a neural signal, 2) bipolar cells (BCs) that relay the photore-

ceptor signals to 3) ganglion cells (GCs), the output neurons of the retina [Dac00].

Added to this pathway, there are two inhibitory pathways, whose cells’ activity

spreads horizontally. It is formed by horizontal cells (HCs) that modify the trans-

fer at the photoreceptor-bipolar-cell synapse and the amacrine cells (ACs), modu-

lating the synapse between BCs and GCs. The interplay between excitatory and

inhibitory pathways is the origin of the fundamental center-surround antagonistic

receptive field characteristic of retinal cells. Receptive fields of BCs already show

this center-surround antagonistic structure [DPD+00]. The circularly symmetric

center-surround mechanism at the bipolar-cell stage is created by combination of

signals from HCs and cones that are opposite in sign and have different horizontal

extents (Figure 3.1 B).

Figure 3.1: A: Neuron populations of the retina and representation of the vertical
excitatory pathway and the horizontal inhibitory pathways. B: Top view and spa-
tial profile of the schematized center-surround organization of the receptive field
of an ON-center BC, where a narrow excitatory center is surrounded by a wider
inhibitory surround.
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The neural code for trichromatic color vision in primates begins with the sam-

pling of visual stimuli by the three cone photoreceptor types, sensitive to long

(L cones), middle (M cones), or short (S cones) wavelengths. Cone signals are

subsequently transformed into spectrally opponent responses through two differ-

ent parallel processing streams in the retina, commonly known as red-green and

blue-yellow pathways, or parvocellular and koniocellular pathways [Dac00]. A third

pathway, the magnocellular pathway, is not spectrally opponent but shows a broad

spectral sensitivity created by additive input from L and M cones. Each pathway

is associated with distinctive retinal architectures.

The vertical pathway of the red-green opponent pathway is well-established, con-

sisting of L and M cones, midget BCs and midget GCs. Midget GCs are small and

has a compact dendritic arbor [Cal05]. In the fovea, there is a one-to-one relation-

ship between cones to midget BCs, which receive input from a single cone type,

L or M type, and between midget BCs to midget GCs. Horizontal connections

in the parvocellular pathway are formed by H1 HCs and different types of ACs.

Anatomically, it has been seen that H1 HCs receive indiscriminate input from an

extended region of L and M cones and do not transmit an S-cone signal [Dac00].

Midget BCs react to visual stimuli with two different responses, ON-center and

OFF-center responses [SKSN08, NJ90]. ON-center BCs depolarize with light in-

crements while OFF-center BCs depolarize when the intensity of the stimulus is

reduced. The center and surround mechanisms of the parvocellular receptive fields

are approximately linear and show low contrast sensitivity. It has been proposed

that parvocellular cells are used for the analysis of form, texture, and color [KB01].

The blue-yellow pathway in the retina is transmitted to higher visual areas via a less

common type of GC, the small bistratified GC. The substrate of the mechanisms of

the blue-ON pathway is better known than that of the blue-OFF pathway. Blue-

ON GCs receive parallel ON-depolarizing and OFF-hyperpolarizing inputs from S-

cones and combined L- and M-cones, respectively [CDP+09, Dac00]. Interestingly,

the receptive field of the small bistratified GC is spatially coextensive, i.e., it has

nearly spatially matched ON and OFF fields that only differ in spectral tuning. The

synaptic mechanisms that create the cone opponency in the yellow-blue pathway

remain controversial. One hypothesis is that the opponent S-ON and LM-OFF

responses of the ganglion-cell receptive field originate from the excitatory receptive

field centers of S-ON and LM-OFF cone BCs [CDP+09].

The magnocellular pathway is formed by diffuse BCs and parasol GCs, which have a

much larger cell body and dendritic arbor than midget cells [Cal05]. The receptive-

field center of parasol cells near the fovea receives random sampling from about 6-8

cones [LMG10]. These inputs are primarily seen to be additive inputs from L- and
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M-cones. The magnocellular-cell response is largely achromatic and more transient

(or phasic) than the response of parvocellular cells. The temporal responses of

magnocellular cells are nonlinear, and with increasing contrast they show the effects

of a contrast gain control [KB01]. The contrast gain of cells in the magnocellular

layers is about 10 times higher than that of the cells in the parvocellular layers. It

is suggested that these cells are involved in motion analysis.

The parallel pathways in the cat are organized in many critical ways like those of

the primate [She79]. There are different proposals for grouping primate GCs in a

correspondence with cat GCs. One idea is that parvocellular cells in the primate

are functionally similar to X cells in the cat, and magnocellular cells are similar

to Y cells. However, some authors argue that the parvocellular type has no exact

functional equivalent in the cat and magnocellular cells are actually composed of

two subgroups which correspond to X and Y cells [Bra92]. The most accurate

correspondence seems to be at the morphological level. Parvocellular cells are

considered to be equivalent to β cells of cat. Magnocellular cells, on the other

hand, are probably equivalent to α cells of cat [KFN18].

3.1.2 Lateral geniculate nucleus

Visual signals from the retina pass through the LGN of the dorsal thalamus, the

visual part of thalamus, on the way to the visual cortex [UA15]. The LGN contains

two types of cells: a excitatory class, the relay cell (RC), and a local inhibitory in-

terneuron (IN). GCs provide the feedforward input to the LGN circuit. In primate,

there are about as many RCs as GCs and there is nearly a one-to-one anatomical

mapping from GCs to RCs [HWSM15, SKAT96]. In cat, there are approximately

twice as many RCs as GCs [MMMW+14].

Inhibition in the LGN is mediated by INs, which synapse both on RCs, incorporat-

ing typically both axonal and triadic inhibition [HWSM15] (Figure 3.2), and other

INs. In macaque monkeys, though, triads appear to be common in the magnocellu-

lar layers and much rarer in the parvocellular layers [Kre05]. Local INs are not the

only elements involved in the role of inhibition in the thalamus: the GABAergic

neurons of the reticular nucleus also project to the dorsal thalamic nuclei in all

mammalian species. However, the role of the reticular nucleus in the processing of

visual information is under debate. It has been hypothesized that the function of

the reticular nucleus becomes more focused on the regulation of the sleep-waking

cycle, acting as an internal thalamic pacemaker, rather than on direct inhibition

of RCs [AFR+97].
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Figure 3.2: Feedforward inputs to LGN cells, RCs and INs, and local inhibitory
connections. INs receive input from GCs via the triadic synapse and the prox-
imal interneuron dendrite. RCs are contacted by the IN axon, receiving axonal
inhibition, and by the IN dendrite at the triadic synapse, resulting in direct tri-
adic inhibition. Figure adapted from https://doi.org/10.1371/journal.pcbi.

1005930.g001.

In the cat, the receptive-field center of RCs is driven by excitation of GCs of the

same sign (ON or OFF) and the surround apparently emerges through inhibition

of INs that receive input from GCs of the opposite sign [HWSM15, WVS+11].

Although there are some recordings of INs in the parvocellular laminae having

center responses that are of the opposite sign of the RCs around them [Wil89],

evidence suggests that same-sign inhibition of RCs is rather the general trend

in the primate: first, ON and OFF cells, both RCs and INs, remain functionally

separated at the level of the LGN [Wil89, Mic88]; second, axons of INs often ramify

locally within the boundaries of the thalamic nucleus of origin [ZUL99, AFR+97].

A fascinating feature of the LGN circuit is the prominent feedback received from

cells in layer 6 of visual cortex, which extends significantly beyond the classical

receptive field of RCs, and it has influence on the firing pattern, synchronization

and sensory response mode of RCs [AU03, SJ02]. Perhaps, the most studied effect

of cortical feedback is the increase of the center-surround antagonism of thalamic

receptive fields, i.e., the suppression of the response to very large stimuli compared

to smaller, more optimal stimuli [JAA+12, SJ02, SCM93]. In this manner, corti-

cal feedback may be understood as a mechanism that dynamically sharpens the

spatial focus of the receptive field and increases its spatial resolution. A stronger

https://doi.org/10.1371/journal.pcbi.1005930.g001
https://doi.org/10.1371/journal.pcbi.1005930.g001
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enhancement of the strength of the inhibitory surround has been observed in the

presence of moving stimuli, rather than flashing spots [SJ02].

3.1.3 Primary visual cortex: local circuitry and color mech-

anisms

The geniculate inputs from parvocellular and magnocellular cells in the LGN are

segregated in the primary visual cortex. Parvocellular cells project to layer 4Cβ

and the upper part of layer 6, whereas magnocellular innervate layer 4Cα and the

lower part of layer 6 [SH05] (Figure 3.3). The third pathway, formed by koniocel-

lular cells, provides direct geniculate input to superficial layers (layers 2-3). There

is an additional connection, to layer 4A, although the innervation of this layer

is uncertain. Interestingly, this connectivity scheme, with stream-specific feedfor-

ward projections to V1, seems to be replicated for the corticothalamic feedback

connections. Recent studies have demonstrated that neurons in the upper part of

layer 6, which receive thalamocortical connections from parvocellular LGN cells,

project exclusively to the parvocellular LGN layers [BU11]. Neurons in the lower

part of layer 6 (the target of magnocellular LGN cells) project primarily to the

magnocellular layers and perhaps the koniocellular layers.

Figure 3.3: Simplified representation of the multilayered structure of V1 and
the main connectivity patterns: thalamocortical connections from parvocellular,
magnocellular and koniocellular layers, vertical interlaminar connections and corti-
cothalamic connections from layer 6 cells to parvocellular and magnocellular cells.
For the sake of clarity, horizontal intralaminar connections in V1 are not shown.

This neat segregation of thalamocortical and corticothalamic connections has moti-

vated some researchers to propose a functional organization of V1 where the analy-
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sis of visual attributes of color, form, and motion remain separate and independent

[LH88, Zek78]. However, recent anatomical and functional studies imply that mag-

nocellular, parvocellular, and koniocellular pathways intermingle extensively within

V1, supporting a more integrated view in which the processing of color, form and

motion is multiplexed in cortical signals [SH11, SH05, FZH03, LTL+95].

Over the past few decades, much progress has been made in unraveling a detailed

understanding of the organization of intracortical connections. Understanding the

precise connectivity patterns between neurons is complicated because of the mul-

tiple neuron types that are found within a cortical layer and the different sources

of inputs. Here we present a simplified view of the main vertical interlaminar con-

nections (Figure 3.3). Spiny stellate cells of layer 4Cβ project to layers 2-3, where

about half their synaptic connections are made [CW96]. They also make numerous

synapses in layers 4Cα, and 4A-4B. Cells in layer 4Cα project to all superficial

layers and to layer 4A-4B. Although layers 4Cβ and 4Cα project axons primarily

to superficial layers, they also have weaker connections with layer 5-6 [Cal98]. In

the second stage of intracortical projections, infra- and supragranular layers make

recurrent connections. Layers 2-3 provide a connection to layers 5-6. Layer 5-6

neurons, in turn, provide feedback projections to layers 2-3 and layers 4Cβ and

4Cα.

There exist numerous classification schemes of the different cell types found in vi-

sual cortex, which vary depending on the properties of cells that are evaluated, e.g.,

their morphology. Since our focus is on color coding in V1, we will use the classifica-

tion proposed by Johnson and Shapley [JHS01], based on the ratio of the neurons’

peak responses to luminance and equiluminant gratings. The population of cortical

cells is divided into three groups: luminance-preferring (LP), color-luminance (CL)

and color-preferring (CP) cells. LP cells show a minimal response to equiluminant

gratings, but respond well to luminance patterns, CL cells are spatially tuned for

equiluminant and also for luminance patterns and CP cells give large responses

to equiluminant gratings and little response to luminance gratings. LP cells are

roughly 60 % of the total amount of cortical cells, CL cells are 30 % and CP cells

are 10 % [SH11, JHS01]. Most LP and CL cells have oriented receptive fields with

odd-symmetry: receptive fields formed by two adjacent elongated subregions, ON

and OFF, of similar weights. Most CL cells were seen, in fact, to correspond with

double-opponent cells [SH11]. Double-opponent cells respond strongly to color pat-

terns and edges, but respond poorly to extended areas of color, or to color patterns

of low spatial frequency. The last group, CP cells, is not orientation selective and

has subregions that are approximately circular in shape and concentric.
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3.2 Previous modeling studies

3.2.1 Types of models used in Computational Neuroscience

Computational Neuroscience provides tools and methods for “characterizing what

nervous systems do, determining how they function, and understanding why they

operate in particular ways” [DA01]. The answers to each of these questions will

give us the different levels of modeling employed in Computational Neuroscience:

• Descriptive models (what): specify the transform between the input and

the output of the neural system. In the visual system, these models often

correspond to convolution and linear filters. They may be based loosely on

biophysical, anatomical, and physiological findings, but their primary purpose

is to describe phenomena not to explain them.

• Mechanistic models (how): describe the lower-level mechanisms used

by the neural system to produce a specific response on the basis of known

anatomy, physiology, and circuitry.

• Interpretive models (why): use computational and information-theoretic

principles to investigate the behavioral and cognitive significance of various

aspects of a nervous system function.

The models implemented in this work fall into the categories of descriptive and

mechanistic models, which will be the focus of the review presented below. Our

models are multi-stage models developed with the aim of understanding the prop-

erties of some specific visual phenomena. Those stages of the model that play a

major role in describing the mechanisms of the target visual phenomena were im-

plemented as mechanistic models. The remaining stages, less relevant, were defined

as descriptive models. This is a common strategy used in other large-scale models

of the visual system (e.g., the retina input of LGN models is often implemented as

a descriptive filter [HHHE16, HT05]).

3.2.2 Models of the retina

The retina is certainly the visual stage that has received most attention from sci-

entists, with numerous models, ranking from detailed models that target a specific
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physiological property [KMB11, vH05, KR03, SPLD01, BIBJM99, FM97] to large-

scale models of the whole retina [WK09, POR09, MRM+07, HW07, HFW02, Hér96,

DVDV93].

Most models use linear filters to approximate signal transformations that occur in

the successive layers of the retina. The typical example is the first-order low-pass

temporal filter employed to simulate synaptic delays and membrane integration of

synaptic currents [WK09, vH05]. Multiple distributed low-pass stages occur along

the retinal pathway. Moreover, some single cells already integrate several low-pass

filters. An example is the phototransduction cascade at photoreceptors, which

roughly includes three processing stages: the outer segment transduction cascade,

inner segment ion channel interactions and interactions in the cone pedicle [vH05].

The other commonly used linear filter is the Gaussian filter [WK09, BIBJM99], a

low-pass spatial filter. Since the early studies of the cat retinal GCs by Enroth-

Cugell [ECR66], the Gaussian filter has become the model of the retinal receptive

field par excellence. Sensitivity of the antagonistic center-surround receptive field

of GCs is often described by difference of two Gaussian kernels (DoG) with different

space constants. At single-cell level, a Gaussian kernel is used to approximate the

biophysics of spatial synaptic integration through dendrites of retinal cells and

also electrical couplings between neighboring cells. The computational operation

underlying these biological mechanisms can be interpreted in terms of a spatial

averaging of the neural signal.

Some models include more sophisticated mechanisms to describe nonlinear dy-

namics of retinal cells. A contrast gain control is used to capture the influence

of the local contrast of visual stimuli on the transfer properties of the retina

[WK09, BIBJM99]. In these models, if the stimulus provides strong excitation

for an extended period of time, a negative feedback loop reduces the gain at the

input and consequently the response to subsequent stimulation. Other models were

also cascaded with negative feedback loops to adjust the photoreceptors’ dynamics

to the steady illumination level [vH05]. Another type of functions, static nonlinear-

ities, is used to introduce some important signal corrections performed by neurons

(e.g. thresholds and saturation). These functions typically perform polynomial,

rectification or sigmoidal transformations of the neural signal [WK09].

Realistic biophysical models, closer to the mechanistic approach, employ networks

of passive point neurons [HW07, HFW02] or conductance-based neurons with a

minimal set of ion currents [POR09]. The dynamics of GCs are often modeled with

single-compartment models that include a full repertoire of ion currents [KMB11,

FM97] or by means of the Hodgkin-Huxley formalism [KR03].
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3.2.3 Models of the lateral geniculate nucleus

The DoG model has also been widely used to describe receptive fields of RCs

in dorsal lateral geniculate nucleus [KMS79]. This simple descriptive model was

extended to include information about the neuronal circuitry of the LGN, incorpo-

rating feedforward inhibition from intrageniculate INs [EH00] and cortical feedback

[EP12, PE02]. The extended DoG model was employed to study effects of cortical

feedback on relay-cell responses to flashing circular spots and patch-grating stim-

uli. Other projects have also investigated feedback effects on the spatial response

[HT01] and the temporal processing of RCs [NWNE12, YD07, KG98, WNLF98,

KW96].

To gain a deeper understanding of the transmission of visual signals from retina to

the LGN, some authors have proposed simplified models of the relay-cell response

[CHXK08, CHS07]. With these models, it is demonstrated that postsynaptic sum-

mation is sufficient to predict the geniculate spike trains under certain conditions,

ruling out a major role for presynaptic mechanisms such as synaptic facilitation. A

different model of the relay-cell response was developed to capture both tonic and

burst firing modes of RCs [SCSR00]. It was later extended, in a minimal thalamic

model that also included a reticular neuron, to explain the distinctive properties

of thalamic bursting as an effective relay mode [Bab05].

The opposite extreme, in terms of biological detail, is the model by Heiberg and

coworkers [HHHE16]. The model includes a biophysically detailed multicompart-

mental model of an IN [HAH+11] interconnected with five single-compartment

RCs. This work investigated the effects of the different inhibitory actions of INs,

i.e., triadic inhibition and standard axonal inhibition, on the response properties

of RCs. A model based on single-compartment Hodgkin-Huxley neurons was used

to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological

cells and simulated circuits [BDG+13]. The study in [BUL03] incorporated multi-

compartmental thalamic cell models to investigate passive properties of LGN cells.

Destexhe and coworkers [DCS98, DNUH98] also employed biophysically detailed

model neurons in their well-known series of studies of the synchronized oscillations

in the thalamus and in the thalamocortical system.

Last but not least, it is worth mentioning the two well-known large-scale models of

the mammalian thalamocortical system that were proposed to explain spontaneous

activity and the emergence of propagating waves and rhythms (e.g., sleep slow

waves) on different scales [IE08, HT05].
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3.2.4 Models of the primary visual cortex

The model of V1 presented in this thesis aligns with the network models of macaque

primary visual cortex developed by Shapley’s research team [CSY16, ZXSS10,

TSMS04, MSS03, MSSW00] in terms of the type of neuron model used, integrate-

and-fire (IF) conductance-based point neuron, and the care given to choose param-

eter values that are strictly based on experimental data. These models investigate

orientation selectivity and dynamics in layer 4Cα and how recurrent cortical con-

nections cause the network to sharpen its selectivity. Another interesting question

these models aim to clarify is how orientation selectivity can emerge from very

sparse LGN inputs. Besides the models of the thalamocortical system [IE08, HT05]

cited before, another important large-scale spiking network model of V1 that in-

tegrates a large body of experimental data is the recent model by Potjans and

Diesmann [PD12]. However, none of these latter models are based on data from

the primate. We have observed that the major limiting factor that continue to

hinder the development of biophysical models of the primate visual system is the

scarcity of physiological data from this species.

With the exception of the remarkable modeling work by De Valois and De Valois

[DVDV93], there are simply few biological models of color processing specifically

tuned to the primate primary visual cortex [SE02, Bil95]. We found, though,

some models with application in image processing and computer vision that imple-

ment single- and double-opponent receptive fields of color-responsive cells [WS16,

GYLL15, YGLL13, GYLL13]. In this context, we can conclude that our cortical

model provides an excellent opportunity to gain insights into the principles of color

processing in V1.
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Chapter 4

Methods

In this Chapter, we overview the different software tools that have been employed

for model simulations, methods for automated parameter search and the parallel

processing architecture used to accelerate computations. We particularly aim to

justify the suitability of every chosen method for our work. We start by reviewing

the different simulators and simulation environments used for spiking neurons in

Section 4.1. We next review the implementation of our own retina simulation soft-

ware in Section 4.2. Section 4.3 summarizes the optimization strategy followed for

automated model tuning. Finally, the scheme developed for distributed computing

in a cluster is described in Section 4.4.

4.1 Simulators of neurons and networks of neu-

rons

Over the last 20 years a growing number of tools have appeared that allow simula-

tions at different scales, from very detailed biophysical representations of individual

neurons to large-scale spiking neural networks. Such tools facilitate precise sim-

ulations of a given computational paradigm, as well as publishable results in a

relatively short amount of time [BRC+07]. These simulation environments have

also standardized the definition and documentation of models, making the code

more shareable and favoring independent validation by a wider scientific commu-

nity.

25
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For large-scale network simulations, one does not need to realistically capture the

spike generating mechanisms and the effects of ion channels on the neural response,

and simpler models, such as the integrate-and-fire (IF) model, are sufficient. This

is the paradigm used by NEST [GD07], one of the most popular simulators of

large networks of point neurons or neurons with a small number of compartments.

NEST has allowed researchers to simulate about 10 % of the human cortex at a

resolution of individual neurons and synapses on contemporary supercomputers

[JIH+18]. NEST is an open-source simulation platform in widespread use by the

neuroscientific community and a core simulator of the Human Brain Project.

We used NEST to implement the whole structure of the model of the primate vi-

sual system [MCMP18, MCMP17a]. We evaluated two different conductance-based

neuron models, both with synaptic alpha functions. To explain the formation of re-

ceptive fields in layer 4Cβ in V1 [MCMP17a], a simple conductance-based IF model

(iaf cond alpha) was sufficient. For the second version of the primate network

model [MCMP18], we found that more complex phenomena such as wave propaga-

tion in V1 required incorporating additional mechanisms to the neuron dynamics.

In this scenario, we employed the adaptive exponential IF model (aeif cond alpha),

which does not increase significantly the complexity of simulation and captures

the complex intrinsic properties seen in neurons of the LGN and V1, such as low-

threshold spike, regular spiking or fast-spiking [BG05]. Connectivity of the network

was implemented by using the Topology Module included in NEST [PE10]. The

Topology Module is an interface for creating complex layers of neurons with spa-

tial structure, perfectly suited for modeling the spatial arrangement of the different

stages in the early visual system.

At the other end of the spectrum, there exist simulation environments, such as

GENESIS [BB12] and NEURON [HC97], which provide the tools for biologically

realistic modeling of individual neurons and small networks of neurons. NEURON

is, perhaps, the most widely used simulator and it was our choice to develop the

model of the dLGN that receives cortical feedback [MCMH+18]. With NEURON,

we defined a relatively small network of single-compartment and multicompart-

ment neuron models that represent RCs and INs in the dLGN and a population of

orientation-selective layer 6 pyramidal cells. We opted for this type of simulator,

instead of NEST, because we were not only interested in studying the network

effects of cortical feedback but also in exploration of the lower-level mechanisms

behind the effects observed for cortical feedback. With this type of modeling we

could analyze the excerpts of membrane potentials for various cells in the circuit

and for the different compartments of the IN model, i.e., soma and dendrites, and

visualize the sequence of subthreshold events that lead to extra action potentials
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or suppression of action potentials being fired by RCs.

We also employed the Python package LFPy [LHL+14] for object representations

of individual cells. LFPy provides a set of easy-to-use classes for defining cells,

synapses and recording electrodes as Python objects. It relies on the NEURON

simulation environment to solve the membrane potentials of cells.

4.2 Implementing our own retina simulator

During the ramp-up phase of the HBP, the main task of our research group was to

develop a simulation environment where different retina models could be evaluated

and that could be interfaced with the Neurorobotics platform, serving as the sensory

input of models of higher visual areas. After an extensive review of literature, we

found a limited number of software tools that give us the possibility to configure

different retina models (e.g., Virtual Retina [WK09]). However, these tools often

include ad hoc models whose parameters can be modified but not their retina

architecture. Generally, their primary goal is to fit some properties of the retina

processing, though, none of them can be fully configured to reproduce different

physiological results than those that have been intentionally designed for.

Neural simulators, such as NEST or NEURON, exploit common properties of neu-

rons (e.g. their ionic-selective channels) to provide researchers with a general and

unified framework for neural modeling. Following this idea, we made a selection

of those algorithms that had been recurrently used in the literature to describe

some properties of the retina processing. We implemented a configurable simu-

lator, COREM, that gives the opportunity of using these computational units as

basic building blocks to construct different retina models [MCMP+16]. This con-

figurable C++ retina simulation software aims to provide scientists with a rapid

prototyping tool for retina modeling, which facilitates the study of low-level visual

mechanisms, and to optimize efficiency of all its modules.

Computations of spatiotemporal equations performed by retinal microcircuits are

formulated as recursive filters. We also employ OpenMP to gain thread-level par-

allelism in the Gaussian filter. Unlike a conventional neural simulator, layers of

neurons in the retina are handled as images (using CImg library [Tsc12]), with all

the benefits that this entails, such as simultaneous access to internal variables of

multiple neurons in a SIMD processor. The modular structure of COREM allows

for more flexibility of use than other retina simulators. The user can create and

connect any number of computational retinal microcircuits by configuring a simu-
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lation script that follows a similar syntactic structure of a typical neural-simulator

script. Moreover, built-in tools for visual stimulation and data analysis give the

possibility to reproduce some of the most common experimental setups used in

electrophysiology of the retina (e.g. sinusoidal drifting gratings or uniform white

flashes). Integration with models of higher visual areas is easily carried out by sim-

ply instantiating COREM as an extension module in the script used for simulation

in NEST.

4.3 Genetic algorithm for optimization of model

parameters

Neuron models often have multiple parameters and a great number of them are

difficult to extract from experimental measures. Additionally, the model response

depends often on several parameters and it is complicated to tune manually all

of them to fit some physiological response. Parameter optimization is facilitated

by automated search methods that minimize an error metric representing differ-

ences between simulated and experimental data [VGDSA08]. Traditionally, mod-

els of the early visual pathways are either hand-tuned, using a trial-and-error

method, or defined in terms of the well-known linear-nonlinear (LN) modeling

[WK09, YD07, BÖMM08, HT01]. Although we can also find other models whose

parameters are tuned by an optimization algorithm [MÁCCDT+16, CCMÁDT+15,

OB12, MBC08, vH05].

In our work [MCMP+17c], we used a genetic algorithm (GA) to facilitate the pa-

rameter search of the retina models implemented with COREM and of the large-

scale model of the thalamocortical system proposed by Hill and Tononi [HT05]. We

chose a GA optimization because of several reasons. A GA is a popular, biologically

inspired optimization method that can prevent the search from converging on local

minima. In addition, GAs do not need a differentiable mathematical expression,

or an estimate, of the objective function, like in gradient methods. Therefore, GAs

are more likely to find the global optimum, and require relatively little knowledge

of the problem being solved. Although the computation of the fitness function can

be time-consuming, the inherently parallel nature of GAs simplifies their imple-

mentation on a multiprocessing architecture.

A critical component of the optimization algorithm is the error metric. For the

retina models, we were interested in fitting all properties of the temporal response.

We have shown that a standard point-by-point comparison of traces (e.g., by using
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only the mean-squared error, MSE) was insufficient to characterize high-frequency

components of the response. We defined a multiobjective fitness function that

combines two types of error metrics, the normalized root-mean-square error and a

shape error descriptor. We have demonstrated that these new metrics allow the

model to capture high-frequency oscillations of the temporal response. Parameters

of the large-scale model of the thalamocortical system were fitted by a metric that

computes the root-mean-square error between the average and target membrane

potentials of the population over given time intervals.

4.4 Distributed computing in a cluster

A single-trial simulation of a large-scale network model is computationally demand-

ing. When we want to search for the optimal set of parameter values or to explore

different responses of the model to varying input stimuli, multiple simulations of

the model are required and their computations may be unfeasible for a conven-

tional desktop computer. To illustrate this, I will provide the following example.

One evaluation of Hill-Tononi’s thalamocortical system model by the GA fitness

function takes up to 180 s using an Intel Core i7-3630QM CPU. When 512 indi-

viduals are evaluated along 100 generations (51200 evaluations in total), the GA

optimization would be completed after 2560 h using a single processor. To address

this drawback, we developed a parallel processing architecture in a computer clus-

ter based on the MPI interface [GLS99] that distributes model simulations across

different processes. For the previous example, the fitness functions of 512 individ-

uals would be computed in parallel, with 512 processes running in 512 CPUs, and

the GA would be executed in only 5 h.

Distributed computing allows the use of multiple computers simultaneously and

enables larger simulations. One critical aspect of simulations of our models is the

memory usage, which can increase up to 10 GB as a result largely of the storage of

synaptic connections. We chose an MPI distributed-memory parallelization based

on the Python library mpi4py [DPKC11], in which we map every process to one

CPU, exploiting most memory resources of every computation node. The two

computer clusters employed for this work are the Alhambra supercomputer of the

University of Granada [Alh18] and the Stallo supercomputer of the National High

Performance Computing Consortium (NOTUR) in Norway [Sta18].

To distribute every simulation to the different computation nodes we used a well-

known master-slave configuration whereby a root process evenly splits the number

of simulations and scatters them to the rest of processes. All processes then com-
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pute in parallel the model responses of the assigned simulations. Once all simu-

lations are completed, the root node gathers results from all processes and store

them to hard disk.



Chapter 5

Results

With the exception of Section 5.5, which covers the model of the primate visual

system (submitted for publication), the preceding Sections provide an overview of

the main results obtained in each publication. Further information can be found

in the annexed articles (Appendix A, Appendix B and Appendix C).

5.1 COREM: A configurable retina simulation en-

vironment

The software of COREM [MCMP+16] was developed within the context of the

HBP. The main task of our research group was to implement a simulation tool

where different retina models could be evaluated and that offered an interface with

the HBP Neurorobotics platform, so that it could serve as the sensory input of

models of other brain areas. Most modeling studies of the retina have been more

focused on fitting specific physiological data rather than extrapolating results be-

yond a particular model. Even those models that show some level of configurability

[WK09] are often ad hoc models whose parameters can be modified but not their

retina architecture.

On the contrary, neural simulators, such as NEST or NEURON, exploit common

properties of neurons (e.g. their ionic-selective channels) to provide researchers

with a general and unified framework for neural modeling. Following this idea, we
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made a selection of those computational algorithms that had been recurrently used

in the literature to describe some properties of the retina processing (Figure 5.1).

The user can create and connect any number of these computational units to con-

struct different retina models. COREM provides scientists with a rapid prototyping

tool for retina modeling where computations of spatiotemporal equations were op-

timized by means of recursive filtering and multithreading. We also include built-in

tools for visual stimulation and data analysis that give the possibility to reproduce

some of the most common experimental setups used in electrophysiology of the

retina (e.g. sinusoidal drifting gratings or uniform white flashes). Integration with

models of higher visual areas is easily carried out by simply instantiating COREM

as an extension module in the script used for simulation in NEST.

Figure 5.1: Schematic view of the simulation platform COREM connected to a
spiking neural network simulator. The user can select and connect different retinal
microcircuits through a retina script, and also configure the type of visual input and
the method for analysis of simulation results. During simulation, while COREM
sends data of the analog presynaptic current of ganglion cells, the ganglionar spiking
response is reproduced by the spiking neural network simulator.

The development of COREM is a research result by itself. The other type of result

presented here corresponds to the evaluation of COREM in terms of its potential

to generate different retina models that can capture diverse properties of the retina

processing. We constructed three different retina models that describe some well-

known properties of the retina processing (see Fig. 5 in Appendix A), adaptation

to the mean light intensity and temporal contrast and differential motion sensi-

tivity, and fitted them to published electrophysiological recordings. Our proposed

models were adapted from some relevant models described in the literature, but
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they present some new features and in themselves constitute novel models.

We demonstrated that these models accurately fit different experimental results

[MCMP+16]. For instance, our model of photoreceptors and horizontal cells repro-

duce adaptation to the mean light intensity in response to uniform white pulses at

different Weber contrasts, background luminances and as a function of the stimulus

drifting frequency (Figs. 6 and 7 in Appendix A). A different retina model accu-

rately predicts temporal contrast adaptation by capturing all adaptive features of

temporal filtering and the static nonlinearity in the linear-nonlinear (LN) analysis

(Fig. 8 in Appendix A). Finally, we also fitted the neural behavior of Object Motion

Sensitive GCs for a jittering stimulus that approximates fixational eye movements

(Fig. 10 in Appendix A).

Simulation frameworks that unify different computational theories, as COREM

does, facilitate gaining a general understanding of the visual function of the retina,

linking together representations at different levels of abstraction.

5.2 Connecting COREM with the Neurorobotics

platform of the HBP

The HBP Neurorobotics Platform is a web-based environment that allows scientists

to connect brain models to detailed simulations of robot bodies and environments

and to use the resulting neurorobotic systems for in silico experimentation [Neu18].

To illustrate the capabilities of the platform during the ramp-up phase of the HBP,

some case-study examples were developed. COREM was used in a experiment of vi-

sual tracking that embedded a color-opponent retina model on the iCub humanoid

robot [FVA+17]. The retina model was fed by the sequence of camera images from

the simulated robot, which was tracking a green target on a red background, and

provided, as an output, analog values representing the intensity of presynaptic cur-

rents of GCs. These currents were later integrated by 1280 IF neurons located at a

subsequent stage, within the simulated brain model of the robot. This brain model

was able to correctly detect a moving target and to generate motor commands for

the eye that make the robot performs visual tracking of the moving target.
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5.3 Genetic algorithm for automated parameter

search

Neuronal models often have multiple parameters that are difficult to estimate man-

ually. In our work [MCMP+17c], we proposed a GA optimization as an effective

method for automated parameter search of large-scale models of the visual sys-

tem pathway. We applied our optimization framework to two different models of

the visual system. The first one is a model of cone photoreceptors and horizontal

cells that reproduces adaptation to the mean light intensity in the retina. It was

configured using the simulation platform COREM. The second model is an imple-

mentation of the large-scale thalamocortical system developed by Hill and Tononi

[HT05].

Neural records of cells in the visual system are often analyzed in terms of the cell’s

receptive field and its temporal response. We have shown that a standard point-

by-point comparison of traces (e.g., by using only the mean-squared error) was

insufficient to characterize high-frequency components of the temporal response of

a example retina model (see Fig. 1 in Appendix B). This type of data requires a

fine point-by-point comparison of response traces between the simulated output and

the recorded data in order to understand all possible mechanisms that modulate

the visual response. To address this challenge, we defined a multiobjective fitness

function that combines two types of error metrics, the normalized root-mean-square

error and a shape error descriptor.

Two extreme solutions to the multiobjective optimization were shown in Fig. 3

in Appendix B. High-frequency oscillations are seen to be better captured by the

minimum shape-error solution of the Pareto-optimal front, particularly within the

first 100 ms of the 100 td response. However, this solution presents also significant

deviations from the target data in some specific points. On the contrary, the

other solution has a smaller square error but does not reproduce all high-frequency

features of the data. By analyzing this type of results we can modify the model

specifications and reconsider the initial hypotheses about the mechanisms that

shape the visual response.

Parameters of the large-scale model of the thalamocortical system were fitted by an

error metric that compares the average and target membrane potentials of popula-

tions over given time intervals. We used the target membrane potentials estimated

from results of the modeling study of this system [HT05]. The GA optimization

allowed us to bring the model of the thalamocortical system into a stable parameter

regime where it reproduces qualitatively the neural behavior of the original model
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(see Figs. 4 and 5 in Appendix B).

5.4 Biophysical network modeling of the dLGN

circuit

This work was developed in collaboration with the research group at the Centre for

Integrative Neuroplasticity, CINPLA (University of Oslo) [CIN18]. We constructed

a biophysically detailed model of the dLGN circuit to study the effects of cortical

feedback on spatial response properties of RCs [MCMH+18]. The network model

consists of two-dimensional grids of synaptically connected dLGN neurons (RCs

and INs) and cortical neurons (orientation-selective layer-6 simple cells) of ON and

OFF receptive-field arrangements (Fig. 1 in Appendix C).

The main focus of the study was exploration of the effects of cortical feedback on

the spatial responses of RCs to flashing-spot and patch-grating stimuli. However,

before studying the effects of cortical feedback on the RC response, we evaluated

the feedforward response of the different cell types in the network model when the

cortical feedback is deactivated. The main result here is that the spatiotemporal

receptive-field profiles of cortical cells were seen to resemble the experimentally-

observed receptive field for a “separable simple cell” (Fig. 4 in Appendix C).

We further computed two receptive-field measures: an overlap index assessing the

spatial segregation of subregions within the receptive field and a push-pull index

determining the relative weight of the antagonistic response to stimuli of opposite

contrast, and confirmed that they were compatible with what has been observed

for cortical simple cells.

After exploring the feedforward response of the different cell types in the network

model, we then moved on to investigate how cortical feedback affects the spa-

tial response properties of RC cells. We considered two different arrangements of

synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN:

phase-reversed (“push-pull”) and phase-matched (“push-push”), as well as different

spatial extents of the corticothalamic projection pattern. We primarily employed

the so-called area-response curves, a commonly used measure of visual responses for

cells in the early stages of the visual system. Our simulation results support that

a phase-reversed arrangement provides a more effective way for cortical feedback

to provide the increased center-surround antagonism seen in experiments both for

flashing spots and, even more prominently, for patch gratings, as shown in Figs.

10 and 14 in Appendix C. An additional effect of the phase-reversed feedback is
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the shrinking of the stimulus size that gives the maximum response in the area-

response curves, clearly observed for the phase-reversed feedback, but largely absent

for phase-matched feedback (Figs. 10 and 14 in Appendix C). When comparing the

different spatial divergences of the feedback, the 2 × 2 feedback pattern was seen

to be more effective in increasing surround suppression in the RC response than

the 1 × 1 (Figs. 16-20 in Appendix C), which is in accordance with anatomical

observations of the spatial spread of corticothalamic axons.

The feedback-induced increase in the center-surround antagonism of RCs may be

understood as a top-down phenomenon that dynamically sharpens the spatial focus

of the receptive field and increase its spatial resolution.

5.5 A conductance-based network model of the

primate visual system

The last research work of this Thesis corresponds to the biologically realistic im-

plementation of a network model of the primate visual system (retina, LGN and

V1) with the focus on studying color mechanisms at the different stages of the

visual pathway. The results of this work are included in the two journal articles

submitted for publication [MCMP18, MCMP17a]. Here, we will review the main

properties of the model and present our main simulation results.

The network model consists of two-dimensional grids of neurons that represent

the retina, LGN and layers 2-3, 4Cβ and 5-6 in V1. The architectures of the

LGN and V1 are shown in the left diagram of Figure 5.2. The representation

of the multilayered retina model can be found in [MCMP+17b]. Each layer is

scaled to span a patch of 2◦ × 2◦ or a patch of 3◦ × 3◦ of the foveal visual

field and contains 40 × 40 neurons or 60 × 60 neurons respectively. The cortical

magnification factor of a foveal region in V1 (< 2◦) is estimated to be between 4 and

16 mm/◦ [CYR13, SWT07, DSVB81]. Assuming the most conservative estimate

of 4 mm/◦, a 2◦ × 2◦ patch in the fovea of our model V1 would correspond to 64

mm2 of striate cortical surface, and a 3◦ × 3◦ patch, would be 144 mm2 of striate

cortical surface.

In the LGN, every RC and IN receive as input the spike trains from retinal GCs

(more details about the retina model used to generate the spike train input can be

found in [MCMP+17b]). INs, in turn, inhibit both RCs and other INs (Figure 5.2).

In primate, there are about as many RCs as GCs and there is an approximate

one-to-one anatomical mapping from retina to RCs [HWSM15, SKAT96]. As a
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Figure 5.2: Schematic of the circuit model and spatial profiles of receptive fields
of LGN RCs and some example subpopulations of cortical cells. The diagram of
the circuit model depicts the main connections of the network: retinal inputs to
RCs and INs, inhibitory connections from INs, thalamocortical connections (from
RCs to layer 4Cβ cells), vertical interlaminar connections in V1 and corticothalamic
connections (from layer 5-6 cells to LGN cells). Horizontal intralaminar connections
in V1 (both excitatory and inhibitory) are not shown. The spatial profiles of
receptive fields are composed of subregions (subregions above the black line are
excitatory and below are inhibitory). Within each subregion, it is indicated the
type of cone input received by the subregion, L- or M-cone, or a mixture of both.
Figure adapted from [MCMP18].

result, the receptive-field properties of GCs and RCs are similar and display the

classical center-surround antagonistic structure where a narrow excitatory center

is surrounded by a wider inhibitory surround (ON-center cells) or a narrow in-

hibitory center is surrounded by a wider excitatory surround (OFF-center cells)

(see receptive-field profiles in Figure 5.2). Combining the different alternatives,

i.e., the type of cone that drives the receptive-field center and the type of response,

ON or OFF, there are 4 possible receptive fields of RCs in the model: L-ON,

L-OFF, M-ON and M-OFF.

RCs project to layer 4Cβ neurons in V1, where the thalamic information is trans-

mitted to other layers of the cortical circuitry. Figure 5.2 shows the vertical inter-

laminar connections included in the model network of V1, which were configured

based on the simplified circuit model of V1 proposed by Callaway [Cal98]. Layer

4Cβ neurons project axons primarily to layer 2-3, but also to layer 5-6. Layer 2-3

neurons in turn project to layer 5-6. Layer 5-6 neurons provide feedback projec-
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tions to layers 2-3 and layer 4Cβ. The model also includes the corticothalamic

connection from cells in layer 5-6 to LGN cells, both RCs and INs.

Cortical cells are classified based on their physiological response to chromatic and

achromatic patterns [JHS01]. The population of cortical cells is divided into three

groups: luminance-preferring, color-luminance and color-preferring cells. LP cells

give a minimal response to equiluminant gratings, but respond well to luminance

patterns, CL cells are spatially tuned for both equiluminant and luminance patterns

and CP cells show large responses to equiluminant gratings and little response to

luminance gratings. In the last version of the model [MCMP18], LP cells are 64

% of the total amount of cortical cells, CL cells are 29 % and CP cells are 7 %, in

agreement with experimental data of V1 cells [SH11].

Spatial profiles of cortical receptive fields are shown on the right in Figure 5.2.

LP and CL cells have oriented receptive fields with odd-symmetry: receptive fields

formed by two adjacent elongated subregions, ON and OFF, of similar weights

[SH11, JHS04]. The cross-section spatial profiles of these two subregions, as imple-

mented in our model, are depicted in Figure 5.2. Receptive fields of CL cells have

subregions that are fed only by a single type of RC. For example, the L-ON/L-OFF

receptive field has a left subregion that receives input from L-ON RCs and a right

subregion that receives input from L-OFF RCs. LP receptive-fields have subre-

gions that merge inputs from two types of RCs of the same sign. CP cells are not

orientation selective and have subregions that are approximately circular in shape

and concentric [JHS08]. The receptive-field centers of CP cells receive inputs from

L- and M- cones that are of opposite sign. Unlike LGN cells, receptive fields of CP

cells may be designated as Type II [SH11] because the spatial spread of center and

surround are roughly identical.

Two different conductance-based neuron models were employed for representing

spiking neurons. To explain the formation of receptive fields in layer 4Cβ in V1

[MCMP17a], a simple conductance-based IF model (iaf cond alpha) was sufficient.

For the second version of the primate network model [MCMP18], we found that

more complex phenomena such as wave propagation in V1 required incorporating

additional mechanisms to the neuron dynamics. In this scenario, we employed the

adaptive exponential IF model (aeif cond alpha), which does not increase signifi-

cantly the complexity of simulation and captures the complex intrinsic properties

seen in neurons of the LGN and V1, such as low-threshold spike, regular spiking

or fast-spiking [BG05].

Next we focus on simulation results obtained with the network model. In the

first article [MCMP17a], we exhaustively evaluated the model response against
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well-established chromatic and achromatic visual stimuli (disk- and ring-shaped

light flashes, spatially uniform squares and sine-wave gratings of varying spatial

frequency). Of particular importance are the model responses to the different kinds

of grating patterns, as shown for some representative neuron types in Figure 5.3.

Spatial frequency tuning curves have been widely used to understand the neuronal

basis of color mechanisms [LSHS12, CMPD11, JHS08, JHS01]. Parvocellular LGN

cells multiplex luminance information at high spatial frequencies and chromatic

information at low spatial frequencies [KB01]. As shown for the L-ON RC in

Figure 5.3, the response to chromatic gratings is low-pass in shape but the response

to luminance gratings is band-pass. In agreement with physiological data from

parvocellular cells near the fovea [LSHS12], the luminance response of model cells

shows a peak at about 3 cpd. Their responses to L- and M-cone-isolating gratings

are also consistent with the responses measured experimentally to cone-isolating

gratings: almost low-pass in shape but with a 180-degree phase difference at low

spatial frequencies (not shown here), indicating opponency.

Figure 5.3: Spatial frequency tuning curves of neurons situated in the center
of each grid using four different kinds of grating patterns: luminance, chromatic
equiluminant red/green, and M- or L-cone-isolating gratings. Figure adapted from
[MCMP17a].

Spatial frequency tuning curves of cortical cells in Figure 5.3 are in conformity

with the responses described by Johnson et al. [JHS08, JHS01]. LP cells show

little or no response to chromatic gratings, but respond well to luminance gratings.

The response to the luminance grating is band-pass in shape, with a peak at 3-4

cpd that is not significantly different from the range of values reported [JHS01]

for LP cells (2-3 cpd). CL cells give comparable responses to both luminance and
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chromatic gratings. The preferred spatial frequency of these cells is also in the

range 3-4 cpd. CP cells give large responses to chromatic gratings (low-pass in

shape) and no response to luminance gratings. A qualitative evaluation of the

degree of similarity between simulated and experimental responses can be made by

visual comparison with Fig. 1 in the referenced paper [JHS01].

In the second article [MCMP18], we investigated V1 population responses to chro-

matic and achromatic surfaces of different sizes (1◦ and 2◦) and compared our

simulation results with the findings of a recent neuroimaging study [ZZSS15]. Ac-

cording to this study, V1 population responses to chromatic and achromatic sur-

faces remain both edge-enhanced throughout the stimulus presentation but only

achromatic surfaces elicit a neuronal filling-in response of the center. We repli-

cated the conditions of their experiment and observed similar properties of the

population responses.

Intracortical interactions between the different types of cortical populations play a

major role in shaping the population-average response. The populations of oriented

cells that respond to edges, LP and CL cells, represent the largest percentage

of cortical cells (more than 90 % in our model). Therefore, for the achromatic

square, the summed response of these two populations results in a more pronounced

edge response of the population average that, in turn, favors a gradual horizontal

propagation of the signal from the edges to center. The chromatic square activates

solely the CL population at the edges, which is not sufficient to evoke a strong

neuronal filling-in of the center.
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Conclusions

In this Thesis we have presented, by using the format of “group of publications”,

novel computational tools and models of the early visual system that could help

the Neuroscience community to gain insight into the neural mechanisms underlying

the early processing of visual information. The objectives and contributions of this

Thesis were presented in Chapter 1. Here we summarize the main contributions of

this work adding some concluding remarks (Section 6.1). Future work is described

in Section 6.2.

6.1 Main contributions

We have developed a configurable software platform that facilitates the implemen-

tation of retina models at different abstraction levels, from single-cell to large-scale

levels. We have also investigated the spatial effects of cortical feedback on the

relay-cell response by means of a biophysically detailed network model of the LGN.

Color mechanisms were explored by using a comprehensive network model of the

first stages in the primate parvocellular pathway, which represent the retina, the

LGN and a simplified version of the multilayered structure of V1. In parallel, dif-

ferent optimization strategies based on genetic algorithm were investigated to fit

parameters of some of the models proposed in this work.

In general terms, compared to other biological models for vision, our models make

the following contributions:
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• They are large-scale realistic implementations whose parameters were care-

fully tuned based on physiological and anatomical data. In this manner, we

ensure that our models are reliable enough to validate hypotheses raised on

the basis of experimental findings.

• They generalize the computational basis of the visual processing, rather than

fitting the model response to a single experimental result. While many of

the proposed vision models share common computational stages, previous

efforts have been more focused on fitting specific experimental observations

rather than generalizing the model beyond a particular result. We believe

that a general and unified modeling framework may facilitate bridging the

gap between lower level mechanisms and a coherent functional description of

the visual system.

• They achieve the best tradeoff between complexity to describe functionality

and biological accuracy. Thus, when designing a new model we have always

tried to find the appropriate level of abstraction necessary to capture most

properties of the neural response.

• For the purpose of independent validation and further scientific exploration,

these models were implemented using well-established simulation tools, such

as NEST [NES18], and all the code projects have been released as open source

software [Git18]. The software was designed for easy use and to be interfaced

with other well-established simulation tools used by the Neuroscience com-

munity. An important goal achieved here was the integration of our retina

simulation platform within the Neurorobotics Platform of the HBP.

The software has been implemented using C++ and Python as programming lan-

guages. One of our goals when designing this software has been to optimize ef-

ficiency of all its modules. An example of this optimization effort is reflected in

computations of spatiotemporal equations performed by the space-variant Gaus-

sian receptive field and the low-pass temporal filter in COREM. Both modules are

formulated as recursive filters and, also, the Gaussian filter is based on OpenMP

to gain thread-level parallelism. We have also implemented a parallel processing

architecture in a computer cluster based on the MPI interface, as described pre-

viously (4.4). To generate all simulation results presented in this Thesis, we have

spent approximately more than 500000 CPU hours in the Stallo supercomputer

[Sta18].
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6.2 Future work

The most interesting future application of the present work would be to further

explore color mechanisms in V1. In particular, brightness-color interactions seen in

V1 have recently drawn attention to the role which the different cortical cell types

can play in shaping color information. The interaction between brightness and color

can cause that the color appearance of an object changes when viewing the object

against surrounds of different brightness. It has been shown that brightness and

color interact strongly already within V1 by using chromatic visual-evoked poten-

tials [XOC+15]. The main finding is that brightness-color interactions take place

at the edges of the surface, where LP cells may produce an amount of inhibition

proportional to the level of luminance contrast. A promising next application of

our model of the primate visual system would be to explore its response properties

to color surfaces when the luminance of the surround is changed and to evaluate

whether the model can capture the brightness-color interactions observed in V1.

Another interesting topic for a future study would be to investigate the applicability

of this model in other perceptual phenomena of filling-in. Perceptual filling-in

occurs in a variety of situations [Kom06]: when there are deficits of visual inputs,

when steady fixation is maintained, or by using some well-known illusions (e.g.,

colour spreading). Neurophysiological and neuroimaging studies have shown that

in most of these situations, early visual areas are activated. Experimentation with

the present model might be of great help to answer the important question on

whether the different phenomena of filling-in share common mechanisms.

Other model that can be further investigated is the biophysically detailed network

model of the LGN. There are many aspects of the thalamocortical and corticothala-

mic circuits that have been disregarded in the present model and it would be worth

studying their influence on the relay-cell response. For example, our LGN model

assumes static synapses while a number of studies have observed short-term plas-

ticity in different synapses of the thalamocortical circuit. Short-term depression

has been seen at the retinogeniculate [TS98] and geniculocortical [BF05] synapses,

as well as in the feedback connection from cortex to INs [AYH11]. In contrast, the

feedback connection from cortex to RCs appears to be facilitating [TS98]. Such

plasticity opens up for an even richer dynamical repertoire of the circuit, and would

be an interesting topic for a future study.

Further in the LGN model, there are several neural mechanisms that our simplified

circuit of cortical orientation tuning does not account for, such as recurrent cortical

excitation or horizontal inhibitory connections [FM00], which can amplify a weak
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orientation bias. Stimuli presented at non-preferred orientations do not suppress

cortical response of the model to the background rate as observed experimentally

in some cells [SF82]. However, we can take advantage of the experience gained with

the model of the primate visual system, which incorporates recurrent intracortical

connections and horizontal inhibitory connections, to introduce a stronger orien-

tation selectivity of cortical cells and see whether it affects the feedback-induced

changes in the relay-cell response.



Chapter 7

Conclusiones

En esta Tesis se han presentado, utilizando la modalidad de “agrupación de publi-

caciones”, nuevos modelos y herramientas computacionales de las primeras etapas

del sistema visual con objeto de ayudar a la comunidad Neurocient́ıfica a obtener

un mayor conocimiento de los mecanismos neuronales subyacentes al procesamiento

de la información visual. Los objetivos y contribuciones de esta Tesis han sido ex-

puestos en el Caṕıtulo 2. En este caṕıtulo nos limitamos a resumir las principales

contribuciones del trabajo añadiendo algunas observaciones finales (Sección 7.1).

El trabajo futuro se describe en la Sección 7.2.

7.1 Principales aportaciones

Se ha desarrollado una plataforma software configurable que facilita la imple-

mentación de modelos de retina a diferentes niveles de abstracción, desde el nivel

unicelular a niveles de red de gran escala. También hemos investigado los efectos del

“feedback” de corteza visual en la respuesta espacial de las RCs usando un modelo

del LGN biof́ısicamente detallado. Los mecanismos de color han sido investigados

en base a un modelo completo de las primeras etapas del camino parvocelular del

primate, que representa la retina, el LGN y una versión simplificada de la estruc-

tura multi-capas de V1. En paralelo, diferentes estrategias de optimización basadas

en algoritmo genético han sido investigadas para ajustar los parámetros de algunos

de los modelos propuestos en este trabajo.
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En términos generales, comparados con otros modelos biológicos de visión, nuestros

modelos aportan las siguientes contribuciones:

• Son implementaciones realistas de gran escala cuyos parámetros han sido

cuidadosamente ajustados basándose en datos fisiológicos y anatómicos. De

esta forma, nos aseguramos que nuestros modelos son lo suficientemente fi-

ables para validar hipótesis planteadas en base a resultados experimentales.

• Generalizan los fundamentos de computación del procesamiento visual, en

vez de ajustar la respuesta del modelo a un único resultado experimental.

Aunque muchos de los modelos de visión propuestos comparten etapas com-

putacionales similares, se ha prestado más atención a ajustar el modelo a

datos experimentales espećıficos en vez de generalizar el modelo más allá de

un resultado concreto. Pensamos que los esfuerzos de investigación deben bus-

car un marco de modelado general y unificado que relacione los conocimientos

que tenemos de los mecanismos neuronales de bajo nivel y la posibilidad de

generar una descripción funcional coherente y cuantitativa del sistema visual.

• Alcanzan un buen compromiso entre la complejidad en el diseño del modelo y

su precisión biológica. Es decir, a la hora de diseñar nuestros modelos hemos

intentado siempre alcanzar el nivel apropiado de abstracción necesario para

reproducir la mayoŕıa de las propiedades de la respuesta neuronal.

• Para que puedan ser validados de forma independiente y se pueda seguir

avanzando en su investigación, los modelos han sido implementados usando

herramientas de simulación estandarizadas, como lo es NEST [NES18], y

todo el código de los proyectos ha sido publicado como software de código

abierto [Git18]. El software ha sido diseñado para un uso sencillo y para ser

conectado con otras herramientas de simulación estándar en la comunidad

Neurocient́ıfica. Un éxito rotundo en este ámbito ha sido la integración de

nuestra plataforma de simulación de modelos de retina con la Plataforma de

Neurorobótica del HBP.

El software ha sido implementado haciendo uso de C++ y Python como lenguajes

de programación. Uno de nuestros objetivos al diseñar este software ha sido opti-

mizar la eficiencia de todos sus módulos. Un ejemplo del esfuerzo de optimización

realizado se encuentra en los cálculos de las ecuaciones espacio-temporales llevadas

a cabo por el filtro Gaussiano con variación espacial y el filtro paso-baja temporal

de COREM. Ambos módulos han sido formulados como filtros recursivos y, además,

el filtro Gaussiano hace uso de OpenMP para conseguir paralelismo a nivel de he-

bra. Se ha implementado también una arquitectura de procesamiento en paralelo
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en cluster basada en la interfaz MPI, como se ha descrito previamente (4.4). Para

generar todos los resultados de simulación presentados en esta Tesis, hemos usado

aproximadamente más de 500000 horas de cómputo en CPU en el supercomputador

Stallo [Sta18].

7.2 Trabajo futuro

La aplicación futura más interesante del presente trabajo seŕıa explorar en mayor

detalle los mecanismos de color en V1. En particular, las interacciones color-brillo

observadas en V1 han atráıdo recientemente la atención respecto al papel que los

distintos tipos de células corticales puedan desempeñar en la formación de la señal

de color. La interacción entre el color y el brillo puede dar lugar a que la apariencia

de color de un objeto cambie cuando el objeto se está viendo rodeado de entornos

de diferente brillo. Se ha demostrado que el color y el brillo interactúan ya de

forma marcada en V1 haciendo uso de potenciales visuales evocados [XOC+15].

El descubrimiento principal es que las interacciones color-brillo tienen lugar en los

bordes de las superficies, donde las células que responden preferentemente a la

luminancia producen una cantidad de inhibición proporcional al nivel de contraste

en luminancia. Una aplicación futura de nuestro modelo del sistema visual del

primate consistiŕıa en explorar las propiedades de la respuesta a las superficies de

color cuando la luminancia del entorno que las rodea cambia y evaluar aśı si el

modelo es capar de reproducir las interacciones color-brillo observadas en V1.

Otro tema interesante para un estudio futuro seŕıa la investigación de la aplicabil-

idad de este modelo a otros fenómenos perceptuales de “filling-in”. El “filling-in”

perceptual ocurre en diversas situaciones [Kom06]: cuando hay un déficit de en-

tradas visuales, cuando se mantiene la vista fija en un punto, o usando ilusiones

ópticas bien conocidas (e.g., “colour spreading”). Estudios neurofisiológicos y de

“neuroimagen” han mostrado que en la mayoŕıa de estas situaciones, las áreas tem-

pranas de procesamiento visual se activan. La experimentación usando el modelo

presente podŕıa ser de gran ayuda para responder a la importante pregunta de si

los diferentes fenómenos de “filling-in” comparten mecanismos comunes.

Otro modelo con el que se podŕıa continuar la investigación es el modelo biof́ısicamente

detallado del LGN ya que hay numerosos aspectos de los circuitos talamocortical

y corticotalámico que han sido obviados en la versión presente y seŕıa interesante

estudiar cómo su inclusión en el modelo influiŕıa en la respuesta de las RCs. Por

ejemplo, nuestro modelo del LGN asume que todas las sinapsis son estáticas, sin

embargo un número de estudios han constatado que existe plasticidad de tipo
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“short-term” en diferentes sinapsis del circuito talamocortical. Se ha observado

depresión sináptica en las sinapsis retinogeniculadas [TS98] y geniculocorticales

[BF05], aśı como en las conexiones de “feedback” desde corteza a las INs [AYH11].

Por el contrario, la conexión de “feedback” de corteza a las RCs parece ser de tipo

facilitadora [TS98]. Las distintas combinaciones de plasticidad sináptica abren

un mayor repertorio de posibilidades para el diseño del circuito, y seŕıa un tema

interesante de estudio futuro.

Siguiendo con el modelo del LGN, hay distintos mecanismos neuronales que nue-

stro modelo simplificado de respuesta a la orientación en corteza visual no ha

tenido en cuenta, como son las conexiones recurrentes excitatorias o las conex-

iones horizontales inhibitorias [FM00], que pueden amplificar una respuesta inicial

a la orientación débil. Los est́ımulos que se han presentado en orientaciones no

óptimas no han conseguido suprimir la respuesta cortical del modelo hasta el nivel

de respuesta espontánea tal y como se ha observado experimentalmente en algunas

células [SF82]. Sin embargo, podemos aprovechar la experiencia adquirida con el

modelo del sistema visual del primate, que incorpora conexiones recurrentes excita-

torias intracorticales y conexiones horizontales inhibitorias, para dotar a las células

corticales de una mayor selectividad a la orientación y observar si esto afecta a los

cambios inducidos por la señal de “feedback” en la respuesta de las RCs.
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Florian Röhrbein, Stefan Deser, Alina Roitberg, Patrick van der
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Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal

activity and processing principles. A great number of retina models have been proposed to reproduce

the behavioral diversity of the different visual processing pathways. While many of these models share

common computational stages, previous efforts have been more focused on fitting specific retina functions

rather than generalizing them beyond a particular model. Here we define a set of computational retinal

microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms.

To validate the hypothesis that similar processing structures may be repeatedly found in different

retina functions, we implemented a series of retina models simply by combining these computational

retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting

published electrophysiological recordings that characterize some of the best-known phenomena observed

in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion

sensitivity. The retinal microcircuits are part of a new software platform for efficient computational

retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks

that allows simulation of the spiking response of ganglion cells and integration with models of higher

visual areas.

Keywords: computational retina modeling; large-scale retina model; single-cell retina model; retina sim-
ulator; visual adaptation; contrast adaptation; adaptation to the mean light intensity; object motion
sensitive cells; space-variant Gaussian filter; low-pass temporal filter; single-compartment model; static
nonlinearity; short-term plasticity; spiking neural networks.

1. Introduction

Although the retina is one of the most extensively

studied neural circuits in the visual system, from

the first findings by Cajal1 up to the present day,

many aspects of retinal connectivity are still contro-

versial and certain functional mechanisms are not en-

tirely clear 2–5. Retinal cells connect in different and

complex neural structures that provide a wide reper-

toire of visual functions. Numerous computational

models have been proposed to accurately predict

the different retina functionalities on the response to

artificial and natural visual patterns. However, the

aim has been to perfectly describe the retina behav-

ior observed in a specific physiological experiment

rather than extrapolating results. On the contrary,

neural simulation tools such as NEST6, NEURON7,

BRIAN8 or GENESIS9, exploit common properties

of neurons (e.g., their ionic-selective channels) to pro-

vide researchers with a general and unified frame-

work for neural modeling that facilitates the study

of the underlying neural mechanisms.

A remarkable amount of research has also pur-

∗Corresponding author.

1

This is the author accepted manuscript. Link to the DOI of the published manuscript: https://doi.org/10.1142/S0129065716500301



March 28, 2016 11:12 manuscript
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sued a generalization of common features of retina

processing and unification of different retina models
10–18. However, these are often ad hoc models whose

parameters can be modified but not their retina ar-

chitecture. Generally, their primary goal is to pro-

pose a functional model of the whole retina, though,

none of the previously cited models can be fully con-

figured to reproduce different physiological experi-

ments than those they have been intentionally de-

signed for.

We present a new framework for computational

retina modeling that is based on interconnection

of basic processing modules to reproduce different

retina behaviors. Our work addresses the following

issues with the ultimate purpose of validating, by

computational simulations, the hypothesis that a few

retinal structures may be repeatedly involved in dif-

ferent retina functions:

• Computational retinal microcircuits. There exist

sufficient examples of single neural structures that

play quite different roles in the retina processing to

motivate the generalization of basic retinal build-

ing blocks3. We implemented a set of computa-

tional retinal microcircuits at different abstraction

levels that have been recurrently used in the litera-

ture for modeling different stages of the retina. We

show that different retina models can then be sim-

ulated by creating and combining these circuits to

form different retina architectures. To the best of

our knowledge, this idea, inspired by neural sim-

ulators, of computational retinal microcircuits as

basic building blocks is a novel concept in retina

modeling.

• Functional and biologically accurate models. Al-

though we employed more detailed processing mi-

crocircuits (e.g., a single-compartment model) in

some retina stages to better fit electrophysiologi-

cal recordings, our main objective was to provide

functional models and descriptions as simple as

possible to describe the retina phenomena. More-

over, the focus of this framework is on generalizing

and summarizing the computational basis of retina

modeling, and therefore this premise goes against

any specificity in the model description. In spite

of the constraints that such an approach raises, we

achieved a remarkable level of biological accuracy,

comparable to some of the most accurate retina

models proposed heretofore 19; 20.

• Association of every retina stage with a plausi-

ble biological mechanism. Amongst models of reti-

nal processing as a whole, some of them focus on

a more functional modeling of every retina stage
10; 12 and other models include some stages that

have a stronger relationship to biophysical prop-

erties, while some fixed processing behaviors are

assumed for the rest19; 15. Some of the latter mod-

els use multi-state kinetic modules that group to-

gether different components of the retina behavior

(e.g., fast and slow components of temporal con-

trast adaptation) and may blur the understanding

of the biological mechanisms underlying different

retina stages19. In contrast, the retina models we

developed using the computational retinal micro-

circuits, connect every retina stage with a plausi-

ble biological mechanism in accordance with other

authors 11.

• Retina simulation software interfaced with spik-

ing neural networks. To provide researchers with

a simulation tool that reflects all these concepts,

we developed a new software platform for efficient

computational retina modeling, called COREM.

Computations of spatiotemporal equations per-

formed by retinal microcircuits take advantage of

recursive filtering techniques and multithreading.

COREM uses a time-driven simulation approach

to update functions that describe neuron mem-

brane potential and synaptic currents. An inter-

face with spiking neural network simulators allows

generation of the spiking response of ganglion cells.

The retina model can be easily loaded in the script

of the neural network simulator as an extension

module, facilitating its connection to models of

higher visual areas, such as the Lateral Geniculate

Nucleus (LGN) and the visual cortex.

2. Computational retinal microcircuits

In spite of the wide variety of existing retinal cells

(there are more than 50 clearly distinct cell types)

some neural circuits are encountered repeatedly in

many different retina behaviors3. This suggests func-

tionality arises from connectivity of the neural net-

work and not so significantly from features of every

individual cell. Moreover, after an extensive review

of the literature about retina modeling, we observed

that some computational algorithms have been re-

peatedly used to explain different properties of the

retina processing (e.g., a Gaussian filter to character-
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ize the receptive field of a cell, as discussed below).

We made a selection of 5 computational micro-

circuits (Fig. 1) that can be combined to reproduce

single-cell and large-scale retina models at different

abstraction levels. They can be classified as block-

structured models, block-compartment models and

single-compartment models according to the scheme

proposed by Guo et al.4. With this set of micro-

circuits our aim was to summarize the basic prin-

ciples of the retina modeling and embrace some of

the most significant algorithms proposed in the lit-

erature, without going into depth on the description

of the neural morphology.

Fig. 1. Computational retinal microcircuits that are
used as basic building blocks within COREM. They con-
sist of one spatial processing module, a space-variant
Gaussian filter, two temporal modules, a low-pass tempo-
ral filter and a single-compartment model, a configurable
time-independent nonlinearity and a STP function.

2.1. Space-variant Gaussian receptive
field

Since the early studies of the cat retinal ganglion cells

by Enroth-Cugell 21, the Gaussian filter has become

the model of the retinal receptive field par excellence.

Sensitivity of the antagonistic center-surround recep-

tive field of ganglion cells is often described by a Dif-

ference of two Gaussian kernels, called DOG, with

different space constants. However, some cells show

a more complex receptive structure than a simple

DOG model and different combinations of Gaussian

filters are proposed to capture the neural response

more accurately22–24.

At single-cell level, a Gaussian kernel is used to

approximate the biophysics of spatial synaptic inte-

gration through dendrites of retinal cells and also

electrical couplings between neighboring cells. The

computational operation underlying these biological

mechanisms can be interpreted in terms of a spa-

tial averaging of the neural signal. The mathematical

formulation is a two-dimensional isotropic Gaussian

filter, Gσ(x, y), of space constant σ.

To counterbalance the low density of cells in the

periphery of the retina, the receptive field of cells

increases with eccentricity. This retina property is

modeled by a space-variant Gaussian filtering scheme

that gradually blurs out details as the radial distance

to the fovea increases (as shown in Fig. 2).

Fig. 2. Increase in kernel size of the Gaussian filter that
simulates the change of the receptive field with eccentric-
ity. Coefficients are recurrently computed at each pixel
by using a Deriche’s recursive filtering adapted to the
space-variant case by Tan et al.25. Amplitude and phase
distortion at the right boundary of the image is fixed by
including the algorithmic modification by Triggs et al.26.

The traditional convolution algorithm has to

deal with two implementation issues: first, a Gaus-

sian convolution is a computationally expensive op-

eration that critically limits the performance of the

simulator and, on the other side, in a space-variant

approach the convolution kernel is different at each

pixel. Our software performs a Deriche’s recursive

filtering27; 28, which approximates the Gaussian ker-

nel, and has been extended to the space-variant case

described by Tan et al.25.

Other retina simulators11 also include a space-

variant Deriche’s filtering although a second order

smoothing function27 is preferred to reduce the pro-

cessing time over a more realistic Gaussian approx-

imation. In addition, the inherent amplitude and

phase distortion produced by this type of recursive

filtering at the right boundary of the image is fixed by

embodying the corrected version by Triggs et al.26.

When running the simulation in a multicore com-

puter we also take advantage of the fact that every

row and every column of the image are processed in-

dependently and can be executed in different threads
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to parallelize simulations.

2.2. Low-pass temporal filters

Low-pass temporal filters have been often used to

model synaptic delays and temporal membrane in-

tegration of synaptic currents29; 15; 20; 30; 11; 31. The

standard equation describing the impulse response of

a low-pass filter with time constant τ is:

Lτ (t) =
exp(−t/τ)

τ
(1)

Multiple distributed low-pass stages occur along

the retinal pathway. Moreover, some single cells al-

ready integrate several low-pass filters. An example

is the phototransduction cascade at photoreceptors,

which roughly includes three processing stages: the

outer segment transduction cascade, inner segment

ion channel interactions and interactions in the cone

pedicle. A cascade of low-pass filters can be expressed

in a compact format:

Ln,τ (t) =
(nt)n exp(−nt/τ)

(n− 1)!τn+1
(2)

If t > 0, and zero otherwise (causal filters). Tem-

poral low-pass filters also use a recursive approach.

We decided to employ an implementation of tempo-

ral filters that is based on the Infinite Impulse Re-

sponse (IIR) approach by Virtual Retina11, which

requires less memory and calculations than a similar

Finite Impulse Response (FIR) filter. In this type of

filtering, preceding output values, Y (k− i), are used

in the calculation of the new output values, Y (k), at

the current time step k:

Y (k) =
∑

j

bjX(k − j)−
∑

i

aiY (k − i) (3)

where X(k − j) are the preceding input values.

Coefficients ai and bj are calculated for each filter

according to the equations provided in the above-

mentioned publication11.

2.3. Single-compartment model

Single-compartment models such as the classic

Hodgkin-Huxley model32 neglect the neuron’s spa-

tial structure and focus entirely on how its various

ionic currents modulate the subthreshold response33.

Thus, spatial description of a neuron is simplified to

a point neuron and its membrane potential repre-

sented by a single variable, V . The basic equation

for a single-compartment model is34; 35:

Cm
dV (t)

dt
=
∑

i

Ii(t) +
∑

j

gj(t)(Ej − V (t)) (4)

where Cm is the membrane capacitance, Ii(t)

represent external currents (e.g., electrode currents

or synaptic inputs), gj(t) are conductances of ionic

channels (including a leak conductance) and Ej their

reversal potentials. Provided that the simulation step

∆t is sufficiently small, numerical integration of the

single-compartment model is approximated by the

Euler method34; 36:

V (t+ ∆t) = V∞ + (V (t)− V∞) exp(−∆t/τV ) (5)

with

V∞ =

∑
j gj(t)Ej +

∑
i Ii(t)∑

j gj(t)
(6)

and

τV =
Cm∑
j gj(t)

(7)

Most of the interesting electrical properties of

neurons arise from nonlinearities associated with

changes of membrane conductances over time34.

Models of membrane conductances describe the

probability that a channel is in an open, ion-

conducting state at any given time. This probability,

formulated in terms of gating equations, depends on

the time course of membrane potential (for a voltage-

dependent conductance), the presence or absence of

a neurotransmitter (for a synaptic conductance), or

other factors such as the concentration of calcium

(for a calcium-dependent conductance).

Our interest in modeling membrane conduc-

tances lies in their functional properties to imple-

ment intrinsic and inter-cell mechanisms of feedback

that allow gain control of the neural signal. There-

fore, a rapid increase in the membrane potential of

a cell, as an example, would elicit a proportional

rise in the value of a voltage-dependent conductance

gj(t), which would produce the consequent decrease

of the neural gain dV (t)/dt (Eq. 4). In the same

manner, gj(t) defines the time constant τV of the

single-compartment model and accounts for adaptive

changes of the dynamics in the cell processing (Eq.

7). A gain control serves a dual purpose by adapt-

ing the dynamic range of the visual pathway, avoid-

ing response saturation, and protecting the cell from
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quick and large synaptic currents that could damage

its internal structure.

Besides our implementation, which provides a

description of this feedback mechanism based on

changes in membrane conductances, many other

retina models also use a feedback component to

explain neural gain control in early stages of the

visual system. This mechanism is sometimes also

called shunting inhibition, divisive feedback or neu-

ral normalization37. There are several models that

reproduce the phenomenon of contrast gain con-

trol in the retina38; 11; 15, LGN39, and primary vi-

sual cortex40. Other models also include a feed-

back loop to simulate adaptation to the mean light

intensity41; 20 or directional selectivity to motion
42; 43. We can also find models in silicon of gain

controls that reproduce wide-field motion-sensitive

neurons44.

2.4. Static nonlinearity

Some common time-independent transformations of

the neural signal, such as polynomial, rectification

or sigmoidal transformations (Fig. 3), are accounted

for by a configurable static nonlinearity. A static non-

linearity captures the input-output relationship be-

tween synaptic input of a neuron and its postsynaptic

response. They are used to introduce some impor-

tant signal corrections performed by neurons (e.g.,

thresholds and saturation) into accurate estimates

of neural responses34; 45.

A static nonlinearity is one of the two differ-

ent processing stages described by the well-known

Linear-Nonlinear (LN) analysis46–50. In this scheme,

the input stimulus is convolved with a linear tem-

poral filter and the result is transformed by a static

nonlinearity to the neuron’s response. The linear fil-

ter represents the temporal relationship between the

stimulus and the neuron’s response, whereas the non-

linearity represents the instantaneous mapping be-

tween the filtered stimulus and the response.

Within the different transformations imple-

mented, a rectification function prevents the pre-

dicted neural response (and the firing rate in the case

of ganglion cells) from becoming negative:

yx>thr(x) = ax+ c (8)

If needed, a saturating nonlinearity can be in-

cluded, and a sigmoidal function is often used for

this purpose:

y(x) =
b

1 + exp(−ax+ c)
(9)

Other polynomial transformations, used to

model, for example, convex functions of a contrast

feedback mechanism11, are defined by:

y(x) = axb + c (10)

in which, a, b and c are configurable parameters

that can be tuned to fit a specific neural transforma-

tion.

Fig. 3. Functions that represent the main nonlinearities
that can be configured in COREM: polynomial, rectifica-
tion and sigmoidal (apart from the other two nonlineari-
ties not cited in the text but also implemented: threshold
function and a piecewise function). Parameters of these
functions and x values have been arbitrarily chosen to
provide a graphical example.

2.5. Dynamic nonlinearity with
short-term synaptic plasticity

Short-term plasticity (STP) refers to a phenomenon

in which synaptic strength changes over time in

a way that reflects the history of presynaptic ac-

tivity and it lasts from milliseconds to tens of

seconds51; 34; 52. There are two types of STP, with

opposite effects on synaptic efficacy, which are known

as short-term depression and short-term facilitation.

The main type of adaptation observed in the retina is

depression (although another forms of plasticity are

also reported31) and it is caused by depletion of neu-

rotransmitter release when a strong input stimulus

is maintained over time.

Our main motivation to implement a plasticity

microcircuit lies in recent findings hypothesizing that

depression at the bipolar-to-ganglion cell’s synapse

is responsible for retinal adaptation to contrast53–55

and object motion56. We propose a STP function
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that modulates the baseline of the bipolar cell’s

output response, at the bipolar-to-ganglion cell’s

synapse. It mainly affects the static nonlinearity of

the LN analysis by shifting its offset and accounts

for the two different forms of adaptation studied for

contrast and object motion, fast (smaller than 100

ms) and slow (in the range of a few seconds).

To reproduce fast adaptation timescale, our

STP model implements a simple updating rule based

on cell’s presynaptic activity, which is used in spiking

network models and has been adapted to the analog

neural processing of the retina34. Assuming the input

function is normalized to have zero mean, the offset

S(t) is continuously augmented an amount propor-

tional to the variance of the input:

S(t) = S(t) + kf (ks(t)|input(t)| − S(t)) (11)

where kf is a parameter that specifies the fast

adaptation rate and ks(t)|input(t)|, with ks(t) the

slow adaptation term (explained below), limits the

maximum value the offset can reach. The term

|input(t)| provides a rectified measure of the input

synaptic activity.

Over the period of slow adaptation, the base-

line shows an exponential decay and recovery

for steady input patterns of high and low con-

trast respectively48; 55; 57. The slow recovery of

the membrane offset following high contrast stim-

ulation is often called prolonged membrane after-

hyperpolarization (AHP). Synaptic depression ex-

plains slow adaptation, not only in the retina but also

in the visual cortex58; 59. We adapted the basic first-

order differential equation that is widely used in neu-

ral dynamics to describe transitions between differ-

ent neural states (e.g., active and inactivated states

in the four-state system by Ozuysal and Baccus19).

Slow system transitions during prolonged periods of

low and high contrast are governed then by the fol-

lowing equation:

ks(t+ ∆t) = k∞(t) + (ks(t)− k∞(t)) exp(−∆t/τs)

(12)

where τs is the temporal constant of the slow

adaptation mechanism and k∞(t) is inversely mod-

ulated by the input activity scaled by a plasticity

factor kd:

k∞(t) =
kd

|input(t)| (13)

3. Overview of COREM

The retinal microcircuits described above are im-

plemented in COREM, a configurable C++ retina

simulation software. Our two goals when designing

COREM have been to provide scientists with a rapid

prototyping tool for retina modeling, which facili-

tates the study of low-level visual mechanisms, and

to optimize efficiency of all its modules. An example

of this optimization effort is reflected in computa-

tions of spatiotemporal equations performed by the

space-variant Gaussian receptive field and the low-

pass temporal filter. Both modules are formulated

as recursive filters and, besides, we employ OpenMP

to gain thread-level parallelism in the Gaussian fil-

ter (see Section 2 for further details). On the other

hand, unlike a conventional neural simulator, layers

of neurons in the retina are handled as images (us-

ing CImg library60), with all the benefits that this

entails, such as simultaneous access to internal vari-

ables of multiple neurons in a SIMD processor.

Fig. 4. Interface of COREM with a spiking neural net-
work simulator. While COREM sends data of the analog
presynaptic current of ganglion cells, the ganglionar spik-
ing response is reproduced by the spiking neural network
simulator.

The modular structure of COREM allows

for more flexibility of use than other retina

simulators10; 11. The user can create and connect

any number of computational retinal microcircuits

by configuring a simulation script that follows a simi-

lar syntactic structure of the neural simulator scripts.

Computational retinal microcircuits do not repre-

sent specific neuron types but rather basic retina

operations that can be combined to reproduce the

behavior of single neurons or networks of neurons.

We formulated these units in this manner to endow

the simulation software with a higher configurability
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that allows implementation of different retina mod-

els. Moreover, built-in tools for visual stimulation

and data analysis give the possibility to reproduce

some of the most common experimental setups used

in electrophysiology of the retina (e.g., sinusoidal

drifting gratings or uniform white flashes). Visual

stimulus functions, as well as methods for data anal-

ysis, were implemented according to the descriptions

given in publications referenced in Section 4.

Equations of neuron dynamics are updated in a

time-driven fashion consistent with the analog pro-

cessing architecture inherent to the retina. COREM

does not provide retinal microcircuits to explicitly

generate the spiking response of ganglion cells. In-

stead, an interface with spiking neural network simu-

lators allows bidirectional communication with them

to simulate firing mechanisms (see Figure 4). Thus,

when connecting COREM with a spiking neural net-

work simulator, simulation is driven by the latter

one, which periodically sends update requests and re-

ceives data of the analog presynaptic current of gan-

glion cells. Ganglion cells can be simulated as simple

integrate-and-fire or more complex models of spiking

neurons62 in the neural network simulator. Integra-

tion with models of higher visual areas is therefore

carried out by simply instantiating COREM as an

extension module in the script of the neural network

simulator.

4. Simulation results of
electrophysiological experiments

To show the potential of the proposed framework,

we constructed three different retina models that de-

scribe some well-known properties of the retina pro-

cessing (see Figure 5), and we fitted them to pub-

lished electrophysiological recordings. Our contribu-

tion in this aspect has been to adapt and combine

some representative models proposed in the litera-

ture so that they can be implemented using the com-

putational microcircuits described in Section 2.

Consistent with the premise of repeatability in

the retina processing pathway3, our retina models

comprise some processing steps that are common to

all of them. For example, a divisive feedback loop is

present in many stages of different models, such as

the inner segment of the cell’s model for adaptation

to the mean light intensity in Figure 5A, and bipolar

cells of the contrast gain control shown in Figure 5B.

Inspired by the numerous approaches that have

been proposed for describing the different retina

functions, these retina models provide a simple but

biologically realistic description of the retina process-

ing. We wanted them to be sufficiently representative

and general with the aim of including most of the

concepts that characterize retina computations.

4.1. Adaptation to the mean light
intensity

The visual system routinely copes with the problem

of processing the high dynamic range of light inten-

sities in natural environments by regulating sensi-

tivity to light at early stages of visual processing.

This dynamic range is obtained mainly by gain con-

trol mechanisms that adjust the cell’s dynamics to

the steady illumination level. Although post-receptor

adaptation has been also reported, the outer retina

is suggested to be the major locus for adaptation to

the mean light intensity30; 63; 64. We simplified and

adapted the molecular model of cones and horizontal

cells proposed by van Hateren20 to fit electrophysi-

ological data obtained from horizontal cells of the

macaque retina30.

4.1.1. Model of cones and horizontal cells

Figure 5A shows a model of the cone photoreceptor,

which comprises the outer segment (phototransduc-

tion and calcium feedback) and the inner segment,

coupled to a horizontal cell’s feedback mechanism.

The first stage reproduces the temporal low-pass fil-

tering followed by a static nonlinearity of phototrans-

duction by cones. A cascade of first-order low-pass

filters is commonly used as initial stage in differ-

ent models of retinal light adaptation to approxi-

mate the retina response when the mean light level

is low65; 41; 30; 66. In other words, this initial low-

pass filtering is the low-light limit of the temporal

frequency response.

By contrast, when the mean light level increases,

gain at low frequencies is inversely proportional to

the mean light level. Divisive feedback20; 65; 41 and

feedforward67; 63 gain controls have been proposed

to shape this adaptation phenomenon. Some authors

noted that feedback gain controls tend to be too slow

to account for measured cell’s response63. However, it

was demonstrated that an inhibitory feedback split

into three stages, calcium feedback, inner segment

and horizontal cell’s feedback, gives a remarkable
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Fig. 5. Retina models implemented by connection of the retinal microcircuits described in Section 2. They reproduce
adaptation to the mean light intensity (A) and to temporal contrast (B), and differential motion sensitivity (C). Inter-
connections are either sign preserving (excitatory, black circles) or sign inverting (inhibitory, white circles). A circle with
the plus sign (+) represents linear addition of neural signals. Feedback mechanisms formed by a single-compartment
model, a static nonlinearity and a low-pass temporal filter connect the input from the preceding retina stage to the
current port (Ii(t) in Eq. 4) and the feedback branch to the conductance port (gj(t) in Eq. 4). Thus, conductance of the
single-compartment model is modulated by the feedback signal. Cone inputs correspond to the transformation that maps
the input visual stimuli to the cone spectral sensitivities by using the Hunt-Pointer-Estevez (HPE) matrix 61. For these
experiments, the type of cone (L, M or S) is not specified because a spatially uniform achromatic stimulus is employed.

good fitting and better reflects the inherent biology

of photoreceptors and horizontal cells20.

While formal definition of some of the differ-

ent feedback loops proposed in our retina models

includes a calcium-dependent mechanism (e.g., the

calcium feedback in the model presented here or the

intrinsic adaptive mechanism at bipolar cell level

in Figure 5B), we have implemented them using a

single-compartment model and a feedback conduc-

tance that resembles a voltage-gated conductance.

Calcium- and voltage-dependent conductances can

be roughly described by the same set of equations,

although physiological interpretation of their param-

eters is different34; 35. In a calcium-dependent sys-

tem, the adaptive conductance would depend on the

concentration of calcium inside the neuron instead

of a direct relationship with its membrane potential.

Calcium-activated channels are opened by increases

in concentration of intracellular calcium occurring

during synaptic transmission. Thus, a rise of calcium

influx produces an increase of the calcium-dependent

conductance that feedbacks the current neural state

and results in a similar gain control of the neural

system.

In the model, the calcium feedback pathway con-

sists of a low-pass filter with a small time constant (5

ms) and a polynomial static nonlinearity that mod-

ulates strong feedback by using an exponent of value

4 (both time constant and exponent values are com-

parable to τc and nc in the model by van Hateren20).
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Fig. 6. Simulation results for the model of adaptation to the mean light intensity (color solid lines) and electrophysio-
logical recordings (color markers) obtained from horizontal cells of the macaque retina30. Data points have been sampled
from Figure 6 in the publication30. Input stimuli are spatially uniform white pulses of 10, 100, and 160 ms at a fixed
Weber contrast of 8 and background illuminances of 1, 10 and 100 trolands. All pulses start at 0 ms. A gray dashed line
has been used to interpolate electrophysiological data and improve visualization.

Much of the adaptation process is rapidly driven by

the calcium feedback, which is mainly responsible for

reducing the response gain. The inner segment feed-

back has a higher time constant and an exponent of

value 2 to follow up finer adaptation features (e.g.,

resonant oscillations in the impulse response, repre-

sented in Fig. 6). A linear subtractive scheme is used

for the horizontal feedback shown in the last stage of

Figure 5A.

While modeling similar feedback architectures

for the inner segment and horizontal cells, we have

largely simplified the circuitry proposed by van

Hateren20 and slightly modified their roles in the

adaptation process. A divisive feedback loop, such

as the inner segment feedback, can be easily tuned

to produce high-frequency oscillations, which repre-

sents a simpler design approach. On the other hand,

a linear subtractive scheme at the horizontal cell’s

level, which doesn’t include complex nonlinear com-

ponents, is consistent with the slow linear inhibition

performed by horizontal cells and implemented also

in the rest of retina models.

4.1.2. Responses to pulses

Figure 6 shows simulated and measured responses to

uniform white pulses of 10, 100, and 160 ms at a fixed

Weber contrast of 8 and background illuminances of

1, 10 and 100 trolands (td). The model fittings (red,

green and blue solid lines) were made to all stimu-

lus conditions simultaneously, and are generally quite

good approximations, considering the wide range of

stimulus conditions. Details of multiobjective param-

eter fitting of the model are given in appendix A.

It is possible to identify the main stages of the

model responsible for various aspects of the response

shapes. The calcium feedback plays a key role in gain

control, preventing the response from scaling propor-

tionally with the background luminance. It may be

noted that high-frequency oscillations due to the in-

ner segment feedback, shown at the onset and re-

moval of the stimulus, are more prominent for a 100

td background and nearly imperceptible for the 1

td background. At low mean light intensities the in-

ner segment cannot produce a strong feedback and

its effects are less prominent, compared to the pre-

vious stage, because of the lower value of the expo-

nent in the static nonlinearity. Slow decrease in the

steady response and rebounds after stimulus removal

are motivated by the linear horizontal cell’s feedback.

4.1.3. Responses to sinusoidal gratings

By using the same model parameters of the previous

experiment, a new stimulus is simulated to represent

sensitivity as a function of frequency and background

illuminance (see Figure 7). For each background il-

luminance, temporal frequency of a low-contrast si-

nusoidal grating, at three different background illu-

minances (10, 100 and 1000 td) is progressively in-

creased and the response amplitude divided by the

background illuminance to calculate sensitivity (in

mV/td) at different frequencies.

The model captures the main features of the ex-

perimentally measured response30 and simulated re-

sponses resemble those obtained in other models20:

a decrease of responsivity as a function of the back-

ground level for low frequencies, and asymptotic con-

vergence at high frequencies; an increase of the cut-

off frequency as a function of background level; and
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a resonance peak at higher frequencies, particularly

visible at the 100 and 1000 td background levels.

Fig. 7. Logarithm of the amplitude sensitivity of the
simulated model (in mV/td) plotted as a function of the
grating frequency for different background illuminances
(10, 100 and 1000 td). Physiological recordings are not
included in this figure because authors30 do not provide
an averaged inter-cell response that could be used as op-
timization target. Our results reproduce remarkably well
all features of the neural behavior (e.g., cutoff frequency)
and simulated values are within the range of measured
values for the different cells.

4.2. Fast and slow temporal contrast
adaptation

Adaptation to the variance of light intensities is

known as temporal contrast adaptation. After a

change in contrast, retinal cells express at least two

adaptive mechanisms: a fast change in the response

occurs within the first tens of milliseconds and a

slow component over some tens of seconds follow-

ing the contrast switch48; 46; 68. When the stimulus

environment changes from a low to high variance,

temporal filtering quickly accelerates, sensitivity de-

creases, and the average response increases. For a

high-contrast pattern maintained over time, a slow

decay in the average response is produced that op-

poses the fast change in the cell’s baseline. Upon

a decrease in contrast, all these changes reverse di-

rection. The time constants for slow adaptation are

asymmetric, with the baseline decaying faster in high

contrast than it rises in low contrast48; 19.

Contrast adaptation originates in bipolar cells

and neither photoreceptors nor horizontal cells are

involved in the process 69; 46. Some experiments

have shown that contrast adaptation effects are still

present under physiological blockade of amacrine

synapses, ruling out a critical role for amacrine

cells in driving contrast adaptation 69; 47. Slow

adaptation mechanisms are apparently driven by

prolonged reduction of glutamate release at the

bipolar-to-ganglion synapse53–55. Gain of spike gen-

eration at the level of ganglion cells adapts to con-

trast by slow inactivation of voltage-dependent Na+

channels70; 48. Recordings in bipolar cells suggested

that another intrinsic gain control mechanism lies in

the bipolar cell dendrites and depends on calcium

feedback47; 54.

Our goal was to accurately predict intracellular

recordings of ganglion cell’s membrane potential19 by

capturing all adaptive features of temporal filtering

and the static nonlinearity in the LN analysis. Gain

control in the subthreshold response of ganglion cells

originates from gain control of its excitatory bipolar

cell inputs69. We implemented an intrinsic mecha-

nism for gain control at the level of bipolar cells,

which can account for most of the fast-onset contrast

adaptation46; 47, and another mechanism of STP at

the bipolar-to-ganglion synapse55.

4.2.1. Retina model

Figure 5B shows a whole retina model that accounts

for fast and slow contrast gain control. The first stage

is a linear subtraction at the Outer Plexiform Layer

(OPL) to represent the well-known opposition be-

tween the center of the receptive field, driven by pho-

toreceptors, and the surround signal transmitted by

horizontal cells. In the time domain, a biphasic im-

pulse response results from subtraction of photore-

ceptor signal and its delayed version by horizontal

cells, and this is the characteristic temporal shape

observed throughout all retina stages. We decided

to implement this OPL model, rather than using a

predefined linear filter19, because each of its com-

ponents has direct connection with biological mech-

anisms. Note that the center-surround structure at

OPL is repeated for the other retina models in Figure

5 but including spatial filtering modules (i.e., Gaus-

sian filters) that have been omitted here since they

are not relevant for the processing of a spatially uni-

form stimulus.

Bipolar cells implement a contrast gain control

based on a divisive feedback loop11; 39; 15; 38 and

may be associated with the calcium-dependent mech-
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Fig. 8. LN analysis of the simulated response of the model for contrast adaptation (solid lines) fit to intracellular record-
ings (color markers) of salamander ganglion cells19. Data points have been sampled from Figure 3 in the publication19.
Four different contrast intervals are considered in the average of measurements: Learly corresponds to the first 10 seconds
after a low contrast step and Llate to the period from 10 to 20 seconds after a low contrast step. Hearly and Hlate are
defined similarly for a high contrast step. LC refers indistinctly to Learly and Llate. Similarly for HC. They are used
in the linear filter because measured curves over the contrast periods are identical. The input stimulus is an alternating
spatially uniform sequence of high and low contrast periods of 20 s. Values of the sequence are chosen every 5 ms, which
corresponds to the simulation step, from a Gaussian probability distribution with normalized mean intensity 0.5. Con-
trast, defined as the quotient between standard deviation and mean intensity of the Gaussian distribution, was 0.1 for
low contrast patterns and 0.5 for high contrast patterns. We have followed the correlation method described by Baccus
and Meister46 to generate results of the LN analysis.

anism observed in the bipolar cell dendrites47. Neu-

ral state of bipolar cells is driven by the local mea-

sure of contrast provided by the OPL signal. The

feedback pathway rectifies and amplifies the current

neural signal of bipolar cells to continuously modify

an adaptive conductance of the single-compartment

model, in a similar manner to other approaches for

contrast adaptation11; 39. An increase of the adaptive

conductance has the double effect on bipolar cells of

reducing its neural gain dV (t)/dt (Eq. 4) and de-

creasing the temporal constant τV (Eq. 7). Thus, a

stimulus switch to high contrast decreases sensitivity

and accelerates temporal filtering of bipolar cells.

Most of retina models for contrast gain control

do not reproduce all adaptive features of the static

nonlinearity in the LN anlysis11; 39; 38; 15. By intro-

ducing a STP at the bipolar synaptic terminal our

goal was to reproduce offset changes in the bipolar

cell’s response. The main effects that are modeled by

the STP module are a fast increase in the response

to the onset of high contrast adaptation, slow decay

of the response for a maintained high-contrast pat-

tern and the consequent membrane AHP recovery

afterwards.

4.2.2. LN analysis of ganglion cell’s
membrane potential

Figure 8 compares the LN analysis of simulation re-

sults and intracellular recordings of salamander gan-

glion cells19. We have presented results of a prelimi-

nary version of this retina model in Ref. 71, 72. Here,

parameters of the model in Figure 5B have been opti-

mized for fitting simultaneously to both the linear fil-

ter and the static nonlinearity (see appendix A). The

model captures fast adaptation changes in the tem-

poral filter: a high contrast step decreases the time

to peak with a consequent acceleration of the neu-

ral dynamics, and makes the temporal response more

differentiating. Fast adaptation changes are also ob-

served in the static nonlinearity by a decrease of the

sensitivity, which is defined as the average slope of

the nonlinearity, and a quick depolarizing offset, as

measured by the increase of the average value. Slow

adaptation mainly affects the offset of the static non-

linearity, by decreasing it during a high contrast pe-

riod and motivating its slow recovery after a switch

to low contrast (Figure 9).

Experimentally we observed that gain control at

bipolar cells can be understood as a push-pull mech-

anism between the OPL biphasic signal and feedback

response. A weak feedback would result in a perfect
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fit of the OPL biphasic shape (characterized by the

first negative peak and maximum value of the lin-

ear filter within the first 150 ms in Figure 9) and a

complete removal of the second minimum reflected

in the measured data (after 200 ms). By contrast,

an increase in the feedback signal would worsen ap-

proximation of the first negative peak and pull the

response after 150 ms towards this second minimum.

Since both minimum values of the linear filter cannot

be perfectly fit simultaneously we present a trade-

off solution by a multiobjective optimization that

slightly deviates from measures of late values in the

high-contrast curve but produces a fairly well fitting

of the rest of curves.

Fig. 9. Simulated membrane potential of ganglion cells
over time. In this figure, the first 20 s correspond to a high
contrast period and the following 20 s to a low contrast
period. The red solid line approximates the offset of the
neural response. The contribution of two distinct tempo-
ral components, fast and slow, to the onset of high con-
trast adaptation is suggested by asymmetric time courses
of the different contrast periods. Fast adaptation changes
are more significant for an increase in contrast, which re-
sults in a peak of the membrane potential after a contrast
switch (at 0 s). A slow decay in the membrane potential
is produced afterwards. By contrast, when a low con-
trast step occurs (at 20 s), AHP restores the baseline and
opposes previous changes. This figure has been adapted
from Figure 3 in a previous publication71.

One of the most detailed retina models for

contrast adaption, which also reproduces all adap-

tive features, has been proposed by Ozuysal and

Baccus19. In their model, the late values of the high-

contrast are approximated by a flat response of the

system (Figure 3 of the publication19), whereas our

model shows somehow a tendency to reproduce this

rebound of the measured neural response. Strong os-

cillations of the high contrast curve do not repre-

sent the neural response of all cells measured but

they often appear in cells that strongly adapt to

contrast73; 46. We could hypothesize that another

adaptive mechanism (e.g., a second feedback stage

with different time constants), which activates for

high contrast stimuli, could account for this negative

rebound.

4.3. Object motion sensitive (OMS)
cells

The visual task of detecting objects moving within a

scene is not a trivial task. Image motion on the retina

can be produced by two different reasons. One is the

movement of objects in the scene. The other results

from self-motion, such as translation when walking

or movements of the head, and eye movements, large

gaze-shifting eye movements and the incessant fixa-

tional eye movements.

To detect moving objects, a type of ganglion

cells, referred as object motion sensitive cells (OMS),

distinguish differential motion, between the recep-

tive field center and surround, from the global reti-

nal image drift74; 56; 75. An OMS ganglion cell re-

mains silent under global motion of the entire image

but fires when the image patch in its receptive field

moves differently from the background. To accom-

modate all kinds of observer motion, this selectivity

for differential motion does not depend on direction

of motion, nor the image pattern, only on the speed.

4.3.1. Retina model

Our retina model (Figure 5C) is a computational im-

plementation of previous models74; 75 that includes

as a novelty the STP microcircuit at the ganglion

cell’s synaptic input to produce differential motion

adaptation. In this model, ganglion cells pool neu-

ral signals within its receptive field from many reti-

nal structures formed by the bipolar cell’s process-

ing pipeline shown in Figure 5C (the Gaussian filter

at ganglion cell’s synapse is not represented in this

figure). One can identify two key components that

modulate the OPL biphasic response from photore-

ceptors and horizontal cells and account for differ-

ential motion detection in the subthreshold response

of ganglion cells. The first one is formed by spatial

pooling of rectified responses of bipolar cells. It ex-
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Fig. 10. (A) Simulated firing rates of OMS cells in response to a jittering grating alternating between 40 s of differential
motion (red markers) and a varying interval of global motion (blue markers). A dashed blue line interpolates simulated
values for the differential motion interval. Global motion corresponds to the first 40 s in the first graph, 20 s in the second
and 10 s in the last graph. (B) Firing rate at the onset of differential motion divided by the final value of this interval,
plotted as a function of the preceding duration of global motion (B). The jittered gratings consisted of black and white
bars with a spatial periodicity of 0.57 degrees of retina visual angle. The object region (a circle) was 1.14 degrees in
diameter and the whole retina surface simulated encompassed 5.7 degrees. The jitter trajectory was generated by stepping
the background and object gratings periodically in 1D every 15 ms with a step size of 0.029 degrees, synchronously for
global motion and asynchronously for differential motion. The retina model is connected with NEST6 to simulate leaky
integrate-and-fire ganglion cells and generate the spike train data. Parameters of the model have been tuned manually
to approximate the neural behavior, assuming firing rates which would be registered for a single trial, of Figure 2 in the
publication by Ölveczky et al.56.

plains the fact that OMS cells respond to gratings

much finer than the receptive field center, and inde-

pendently of the phase of the grating76.

The second important computational property

of the OMS circuit arises in this model from back-

ground inhibition, possibly driven by polyaxonal

amacrine cells, of the central region of the ganglion

receptive field. Both the excitatory signal from bipo-

lar cells and inhibition from amacrine cells are deliv-

ered to ganglion cells in a sparse sequence of tran-

sient pulses, which correlate with shifts of a jittering

motion stimulus. Thus, if the background trajectory

matches the object trajectory in the center of the

receptive field, inhibition and excitation synchronize

and the OMS ganglion cell remains silent.

The retina model adds a STP microcircuit at

the synapse from bipolar to ganglion cell. Based on

the same concept of slow contrast adaptation dis-

cussed above, the STP microcircuit reproduces dif-

ferential motion adaptation by synaptic depression.

Therefore, during continued exposure to differential

motion, the firing rate of OMS cells exponentially de-

creases with average time constants in the range 2-20

s56. A similar asymmetry is also found in time con-

stants of global and differential motion adaptation.

Recovery from differential motion adaptation occurs

more slowly, with an average time constant of 52 s.

4.3.2. Recovery from differential motion
adaptation

A jittering grating has been used to reproduce

the experimental setup that simulates fixational eye

movements74; 56; 75. This grating stimulus divides

the image region into an object region covering

mainly the ganglion cells receptive field center and a

peripheral large background region covering the rest

of the retina. Both the background and the object

gratings jittered periodically with the same statis-

tics, either coherently (global motion), simulating a

stationary background scanned by eye movements,

or with different trajectories (differential motion).

Figure 10A shows firing rates of OMS cells in

response to this stimulus alternating between 40 s of

differential motion and a varying interval of global

motion. Our simulation results reproduce the neu-

ral tendency of cells registered by Ölveczky et al.56:

slow exponential decay for differential motion and

changes in the onset of differential motion after dif-

ferent intervals of global motion. The OMS response

at the onset of differential motion presents its max-

imum value when the time interval of global motion

is closer to the average time constant of 52 s and

the neuron has enough time to recover its membrane

baseline (Figure 10B). Longer intervals of global mo-
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tion do not significantly increase the OMS response

at the onset of differential motion.

5. Conclusions

We have presented a new framework for realistic

computational retina modeling that is based on three

main contributions: definition of a set of computa-

tional retinal microcircuits that can be used as basic

building blocks, use thereof to develop retina mod-

els that reproduce some of the most characteristic

retina functionalities, and implementation of an ef-

ficient and configurable retina simulation tool called

COREM.

Parameters of the different retina models

were optimized to fit published electrophysiological

recordings. Our model of photoreceptors and hori-

zontal cells reproduce adaptation to the mean light

intensity in response to uniform white pulses at dif-

ferent Weber contrasts, background luminances and

as a function of the stimulus drifting frequency. A

different retina model accurately predicts temporal

contrast adaptation by capturing all adaptive fea-

tures of temporal filtering and the static nonlinearity

in the LN analysis. Finally, we also fitted the neural

behavior of OMS ganglion cells for a jittering stimu-

lus that approximates fixational eye movements.

On the other side, we have already published

preliminary results77 of models that implement dif-

ferent retina architectures in the red-green pathway.

A retina circuit that reproduces the coextensive re-

ceptive field structure in the blue-yellow pathway78 is

currently being developed as well. Both models of the

chromatic pathways can be implemented in terms of

the computational retinal microcircuits. While our

retina models fulfill the goal of this study, future

work will require validating these models against new

physiological data. Model validation will provide us

with a measure of how accurate these models are to

predict outcome values for previously unseen data.

Retina models proposed in the literature are of-

ten ad hoc models whose parameters can be mod-

ified but not their connection scheme. The modu-

lar structure of COREM allows for more flexibility

of use than other retina simulators10; 11. The user

can configure different retina architectures through

a simulation script that follows a similar syntactic

structure of the neural simulator scripts. Following

the example of neural simulators, the computational

retinal microcircuits implemented in COREM unify

different concepts found in the literature and repre-

sent some of the most recurrently used algorithms

for retina modeling.

With this framework, we have shown by com-

putational simulations that a single processing struc-

ture can be plausibly involved in the processing path-

way of different retina behaviors. This goes in line

with the evidence (see Ref. 37 for a review) that the

brain performs a set of canonical neural computa-

tions to solve similar problems across different brain

regions. A clear example is the feedback mechanism

which we have recurrently used to perform gain con-

trol (also called divisive normalization) of the neural

signal.

While we now have a good understanding of

most of the constituent cell types in the retina and

some general ideas of their connectivity, computa-

tional operations performed by the retina remain as

an open research topic. Unified frameworks of differ-

ent computational theories proposed for the retina

modeling are valuable tools that can facilitate future

studies in this area.
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Appendix A Multiobjective parameter fitting

A multiobjective genetic algorithm automati-

cally optimizes parameters of the retina models for

adaptation to the mean light intensity and tempo-

ral contrast. A general evolutionary search was con-

figured whereby the random initial population of

solutions is evolved by applying uniform crossover

and Gaussian mutation operators in combination

with a well-known multiobjective selection algorithm

(NSGA-II79).

Different error functions have been proposed to

optimize parameters of neuron models and for model
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assessment80–82. We can distinguish three types of

error functions commonly used in neuron model op-

timization: feature-based, point-by-point comparison

of voltage traces and multi-objective functions. To

fit the temporal response of our models, we employ

a multiobjective function that combines two type of

metrics based on point-by-point comparison of volt-

age traces, the normalized root-mean-square error

(NRMSE) and a shape error descriptor.

The first error metric, the (NRMSE) is used to

estimate the scale distance between simulated values

(yi) and physiological values (xi):

NRMSE =

√∑
i(yi − xi)2/n

ymax − ymin
(A.1)

for vectors of length n. A second error metric,

which computes the shape error, is based on local

measures of angles between line segments of the sim-

ulated curve (v1) and physiological results (v2):

anglej(v1, v2) = arccosine

(
v1 · v2
‖v1‖‖v2‖

)
/π (A.2)

where j is the number of segments. Thus, the

first fitness function evaluated by NSGA-II accumu-

lates the NRMSE for the k responses to optimize

simultaneously:

fitness1 =
∑

k

(NRMSEk) (A.3)

A regularization term is also included, as a sec-

ond fitness function, to account for shape errors be-

tween simulated and physiological results, which are

determinant, for instance, in the response oscillations

shown in Figure 6:

fitness2 =
∑

k

(shapek) (A.4)

where shapek is an algorithm that computes the

sum of the angular errors (according to Eq. A.2) for

all segments of the curve k.

Appendix B Model parameters

Best fits of parameters found for the different

retina models are shown below.

• Adaptation to the mean light intensity: τphoto =

20.0 ms, nphoto = 2.0, aphoto = −0.1, bphoto = 1.0,

cphoto = 0.0, Ccalcium = 1.0 µF/cm2, Ecalcium =

0.0, τcalcium = 5.0 ms, ncalcium = 2.0, acalcium =

1.5, bcalcium = 4.0, ccalcium = −1.0, Cinner = 1.0

µF/cm2, Einner = 0.0, τinner = 10.0 ms, ninner =

3.0, ainner = 1000.0, binner = 2.0, cinner = −2.0,

thresholdinner = −0.1, τhorizontal = 55.0 ms,

nhorizontal = 1.0, ahorizontal = 230.0, bhorizontal =

20.0, chorizontal = 4.0.

• Fast and slow temporal contrast adaptation:

τphoto = 75.7 ms, nphoto = 9.7, aphoto = −1.0,

bphoto = 1.0, cphoto = 0.0, τhorizontal = 45.5 ms,

nhorizontal = 6.4, ahorizontal = 1.0, bhorizontal =

1.0, chorizontal = 0.83, Cbipolar = 1.2 µF/cm2,

Ebipolar = 0.0, abipolar = 66.8, bbipolar = 1.0,

cbipolar = 4.2, τfeedback = 31.0 ms, nfeedback =

5.0, afeedback = 70.8, bfeedback = 2.0, cganglion =

6.6, aganglion = 0.5, bganglion = 1.0, cganglion =

−95.0, k(f)ganglion = 0.5, τ(s)ganglion = 12000 ms,

k(d)ganglion = 6.0.

• Object motion sensitive (OMS) cells: τphoto = 30.0

ms, nphoto = 5.0, aphoto = −1.0, bphoto = 1.0,

cphoto = 0.0, τhorizontal = 20.0 ms, nhorizontal =

10.0, ahorizontal = 1.0, bhorizontal = 1.0,

chorizontal = 0.0, σhorizontal = 0.05◦, Cbipolar =

1.0 µF/cm2, Ebipolar = 0.0, abipolar = 10.0,

bbipolar = 1.0, cbipolar = 0.0, thresholdbipolar =

0.0, σbipolar = 0.05◦, τamacrine = 5.0 ms,

namacrine = 0.0, aamacrine = 30.0, bamacrine =

2.0, camacrine = 2.0, σamacrine = 0.3◦, aganglion =

1.0, bganglion = 2.0, cganglion = 0.0, σganglion =

0.1◦, k(f)ganglion = 0.1, τ(s)ganglion = 10000 ms,

k(d)ganglion = 0.05.
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Abstract

Automated parameter search methods are commonly used to optimize neuron

models. A more challenging task is to fit models of neural systems since the

model response is determined by both intrinsic properties of neurons and the

neural wiring and architecture of the network. Neural records of cells in the

visual system are often analyzed in terms of the cell’s receptive field and its

temporal response. This type of data requires a finer point-by-point compari-

son of response traces between the simulated output and the recorded data. To

address these issues, we applied a genetic algorithm optimization in conjunction

with a multiobjective fitness function and a population-based error metric. Two

different models of the early stages in the visual system were fitted to electro-

physiological recordings and results from a modeling study, respectively. The

first one is a model of cone photoreceptors and horizontal cells that reproduces

adaptation to the mean light intensity in the retina. A multiobjective fitness

function based on the normalized root-mean-square error (NRMSE) and a shape

error descriptor captures high-frequency oscillations in the impulse response to

uniform white flashes. The second one is a large-scale model of the thalamo-

cortical system that accounts for the slow rhythms observed during sleep. An
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error metric of the population neural activity is used in this case. We argue

that the optimization framework proposed in this paper could serve as an useful

tool for parameter fitting of neuron models and large-scale models in the visual

pathway.

Keywords: Genetic algorithm, multiobjective parameter fitting, neural system

optimization, retina model, thalamocortical system

1. Introduction

Neuron models often have many parameters that are difficult to estimate

manually. Parameter optimization is facilitated by automated search methods

that minimize an error metric representing differences between simulated and

experimental data[1, 2, 3, 4, 5, 6]. Traditionally, models of the early visual

pathways, referred to the retina, Lateral Geniculate Nucleus (LGN) and pri-

mary visual cortex (V1), are hand-tuned, using a trial-and-error method. No

automated optimization method is present and, if any, it is not described in their

respective publications[7, 8, 9, 10, 11, 12]. Although some of the model param-

eters are constrained experimentally, yet some of them cannot be measured by

simple electrophysiological methods, specially when the model is complex and

its response described by a large number of parameters. However, there are

some important exceptions here. In the retina model proposed by Ozuysal and

Baccus[13], multiple initial points are used by a nonlinear programming solver

to converge to different local optima and then choose the best solution. Be-

sides, a function that computes the error of the estimated membrane potential

across the time and frequency domains, allows capturing both slow shifts in

potential and high-frequency fluctuations. Mante et al.[14] optimized indepen-

dently each stage of their LGN model in a multi-step fitting process based on

the mean-squared error (MSE). In the photoreceptor model by van Hateren[15],

the parameter fitting is based on linear programming for minimizing the root-

mean-square deviation (RMSD) between model responses and measurements.

In simultaneous-response fitting, the RMSD of the highest responses are multi-
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plied by a scaling factor to prevent biased results.

A genetic algorithm (GA)[16] is a popular, biologically inspired optimization

method that can prevent the search from converging on local minima. In addi-

tion, GAs do not need a mathematical model, or an estimate, of the objective

function, like in gradient methods. Therefore, GAs are more likely to find the

global optimum, and require relatively little knowledge of the problem being

solved. Although computation of the fitness function can be time-consuming,

the inherently parallel nature of GAs simplifies the implementation of a mul-

tiprocessing architecture. In this paper, a GA optimization is shown to be

an effective solution that facilitates parameter search of neural models with a

minimal configuration setup.

The second critical component of the optimization algorithm is the error

metric. We can distinguish three types of error metrics commonly used in neu-

ron model optimization: feature-based, point-by-point comparison of response

traces and multi-objective functions[1]. In experiments that study the visual

processing pathway, neurons are often stimulated by synthetic input patterns

(e.g., sinusoidal drifting gratings) and their neural outputs characterized by

changes produced in their receptive fields and temporal responses[17, 18, 19, 20].

Fitting every feature of this type of responses is crucial to understand the mecha-

nisms involved in the visual function and, as discussed in Section 2.2, a standard

point-by-point comparison of traces (e.g., by using only the MSE) is insufficient

to characterize high-frequency components of the neural signal. Here, we de-

scribe a multiobjective fitness function that combines two types of error metrics,

the normalized root-mean-square error (NRMSE) and a shape error descriptor.

Our approach captures high-frequency oscillations of the temporal response and

overcomes also the problem of rescaling the data to prevent biased results.

Parameters of the large-scale model of the thalamocortical system were fitted

by a feature-based error metric that compares the average membrane potential

of the population in specific time intervals. We used the target membrane

potentials estimated from results of the modeling study of this system. The GA

optimization allowed us to bring the model of the thalamocortical system into a
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stable parameter regime where it reproduces qualitatively the neural behavior

of the original model.

2. Methods

2.1. Genetic algorithm optimization

Genetic algorithms have shown to be an effective method for constraining

conductance-based compartmental models[2, 3, 21]. In brief, a genetic algorithm

is a search heuristic wherein a population of candidate solutions (called individu-

als) is iteratively evolved toward better solutions. In each iteration (generation),

a fitness function assesses deviations of the results generated by individuals in

the population from the target data. The most fit individuals are selected from

the current population and their values modified, according to the well-known

genetic operators of crossover and mutation, to form a new generation. The al-

gorithm is iterated until a maximum number of generations has been produced,

or a satisfactory fitness level has been reached for the population.

In our implementation, an individual is an array of real numbers that rep-

resent parameters of the simulation model to be optimized. These parameters

are constrained to be within a biological range (e.g., time constants are between

1 and 100 ms). We use two different selection operators, tournament selection

for single-objective optimization, which has several benefits over alternative se-

lection methods[22], and one of the most commonly used Pareto optimization

algorithm, NSGA-II[23]. The genetic operator selected for crossover is uniform

crossover. Different operators were tested (such as one-point and two-point

crossover algorithms) but we found no difference in results, only in the conver-

gence speed of the genetic algorithm. Similarly, in the chosen Gaussian mutation

operator, different values of µ and σ were evaluated, observing some slight dif-

ferences in the convergence rate. The genetic algorithm is implemented by using

the Python library DEAP[24].

Evaluation of the fitness function for each individual represents the bot-

tleneck in the processing of the genetic algorithm. In order to overcome this
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drawback, we implemented a parallel processing architecture in a computer

cluster based on the MPI interface[25] that distributes evaluation of individuals

across different processes. In particular, we use the MPI specification included

in the Python library mpi4py [26]. A master-slave configuration selects a root

process that evenly splits the population every generation and scatters data to

the rest of processes. Once all individuals assigned to each process are evalu-

ated, the root node gathers individual fitnesses from all processes and resumes

the evolutionary algorithm.

2.2. Error metrics and fitness functions

2.2.1. Multiobjective optimization

When comparing point-by-point voltage traces of the simulated model re-

sponse and target data, a mere MSE-based metric may provide misleading re-

sults (as illustrated in the example of Fig. 1). In this figure, the temporal

response of a fictional neuron is generated (labeled as data) and compared with

the temporal responses of two different models (model 1 and model 2 ), hand-

made as well. A MSE-based metric (NRMSE) and an shape error descriptor,

detailed below, are computed between data and model responses, shown in

Table 1. Although the voltage trace of model 1 reproduces better the target os-

cillatory behavior, its NRMSE is higher when compared with model 2 because

of an offset difference. It is therefore necessary to add a second metric that

considers also the shape of responses, where the information of high-frequency

components lies. In other fields, as in hyperspectral imaging, the joint effect

of these two types of metrics has been also employed to accurately compare

spectral data in terms of shape and offset[27, 28].

We define the NRMSE as:

NRMSE =

√∑
i(datai −modeli)2/n

datamax − datamin
(1)

The error is computed between n samples of target data (datai) and model

response (modeli), and normalized within the data range (datamax − datamin).
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Figure 1: Example that illustrates the different values provided by the two error metrics

implemented in the multiobjective optimization, NRMSE and shape error, computed between

the handmade responses of two arbitrary models (model 1 and model 2 ) and recorded data.

Table 1: NRMSEs and shape errors obtained for models in Fig. 1.

model 1 model 2

NRMSE 0.1404 0.1104

Shape error 0.0114 0.1487

Error normalization to the data range prevents biased results in simultaneous-

response fitting for different input stimuli.

We also introduce a shape error metric that is calculated by averaging an-

gular differences between line segments that connect target and model samples:

shapeerror = min
s



∑

i

(
arccosine

(
~ai· ~bi,s

‖~ai‖‖ ~bi,s‖

)
/π
)

n− 1


 (2)

every line segment i connecting data samples is defined as a vector ~ai wherein

coordinates along the x-axis refer to the time (or spatial) axis, and along the

y-axis to the target response: ~ai = (ti+1 − ti, datai+1 − datai). Similarly, the

y-axis of the vector ~bi,s is referred to the model response: ~bi,s = (ti+1+s −
ti+s,modeli+1+s−modeli+s). Since an exact shape matching of model and data

responses may be considerably difficult to achieve, a more flexible approach is
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selected so that we allow a small shift of the traces in the x-axis by s positions

when computing the error. The minimum error for all shifts is selected as the

final shape error. A shift of ±1 was fixed for our simulations. We apply this

metric to monotonically increasing functions, e.g., temporal series and spatial

responses, so that the arccosine is always positive within the range [0, π] and,

thus, the shape error is normalized as well.

These two metrics are integrated in the multiobjective optimization algo-

rithm as follows: given that there are M responses to optimize simultaneously,

corresponding to k different input stimuli, the two fitness functions are simply

formulated as average sums of the NRMSE and shape errors, respectively, for

all responses:

fitnessmultobj1 =
∑

k

(NRMSEk)/M (3)

fitnessmultobj2 =
∑

k

(Shapek)/M (4)

2.2.2. Single-objective optimization

On the other hand, parameters of the large-scale model of the thalamocorti-

cal system were fitted by a feature-based error metric that compares the average

neural responses of the population in specific time intervals. Our goal for this

model was to bring it into a stable parameter regime where it reproduces qual-

itatively the simulation results of the original publication. We found that a

single-objective optimization is sufficient to fit the target membrane potentials

estimated from the original study.

The following fitness function computes the RMSE between the average

membrane potential of the simulated population in a time interval t, Vsim(t),

and the target average membrane potential, Vtar(t):

fitnesssingobj =

∑
l

√∑
t(Vtar(t) − Vsim(t))2/T

L
(5)

where T is the total number of time intervals. For a multi-layered model,
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responses of L neural layers (from l = 1 to L) are optimized simultaneously by

averaging as well this error across them. We achieved a reasonably good fit of

our model by simply using the average membrane potential of the population.

Nevertheless, different feature-based error metrics (e.g., after-hyperpolarizing

potential or firing rate[1, 2]) can be easily embedded in our single-objective op-

timization scheme to consider other properties that may be more discriminative

depending on the target data.

2.3. Models of the early stages in the visual system

The above-described optimization framework was applied to models of the

retina cones and horizontal cells and the thalamocortical system (shown in

Fig. 2). The first model was implemented using COREM[29, 30, 31], a soft-

ware platform that provides a set of computational retinal microcircuits that

can be used as basic building blocks for the modeling of different retina mecha-

nisms. We simplified and adapted the molecular model of cones and horizontal

cells proposed by van Hateren[15] to fit electrophysiological data obtained from

horizontal cells of the macaque retina[19]. There are 22 parameters distributed

across the three principal stages of the model: outer segment (phototransduction

and calcium feedback), inner segment and horizontal cell’s feedback mechanism.

Photoreceptors’ neural response to uniform white flashes of different time length

was recorded at a fixed Weber contrast of 8 and varying background illuminance.

The model fittings were made to nine stimulus conditions simultaneously (re-

sulting from all possible combinations of three different time lengths and three

background light intensities), which means a value of M = 9 in Eqs. 3 and 4.

We applied the multiobjective optimization approach to fit a target set of tem-

poral impulse responses. Further details on the model are provided in reference

[29].

The second model is an implementation of the thalamocortical system devel-

oped by Hill and Tononi[32] using NEST 2.8.0[33]. This is a large-scale model

that encompasses portions of two cortical visual areas and associated thalamic

and reticular thalamic nuclei, with thousands of model neurons that incorporate
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Figure 2: Schematic of the two models. A: Model of the retina cones and horizontal cells.

B: Thalamocortical system. The primary visual area includes a 3-layered cortical area (Vp),

reticular nucleus (Rp) and dorsal thalamus (Tp). The secondary visual area is formed by its

associated cortical area (Vs), reticular nucleus (Rs) and dorsal thalamus (Ts). Implemented

according to the system developed by Hill and Tononi[32].

both intrinsic and synaptic currents. It accounts for transition from wakefulness

to sleep and the generation of the slow oscillation. We decided to maintain the

same network configuration (e.g., synaptic masks, kernels and weights) as in the

original model so that only peak conductances of intrinsic ion channels are opti-

mized, allowing to countervail slight deviations in the model output as a result

of using different simulators. We studied how the increase in the potassium leak

conductance and the four intrinsic conductances can drive the transition from

the waking mode to the sleep mode. This transition is simulated in two time-

discrete steps: initial peak conductances are first set to half of their values for

the waking mode, temporal simulation advances for 400 ms and then these peak

values are set to the final values maintained during the waking mode. Therefore,

there is a total of 10 parameters to optimize: initial and end peak conductance

values. For this purpose, we applied the single-objective optimization to fit the
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average membrane potential of the different neural layers.

The model neuron of the thalamocortical system is a single-compartment

spiking neuron incorporating Hodgkin-Huxley currents:

Ichannel = gpeakm
Nh(V − Echannel) (6)

where gpeak is the maximal conductance of the channel, m and h determine

its activation and inactivation respectively, V is the membrane potential and

Echannel is the reversal potential for the given channel. The factor N allows the

activation to occur on a different order than inactivation. Optimization is con-

ducted on the following intrinsic channels: persistent sodium current (INa(p)),

pacemaker current (Ih), low-threshold calcium current (IT ) and depolarization-

activated potassium current (IDK), in addition to the potassium leak conduc-

tance (see reference [32] for further details on these conductances).

3. Results

3.1. Model of the retina cones and horizontal cells

We experimented with different combinations of the following GA parame-

ters: number of generations, population size, crossover and mutation rates. In

Fig. 3, we plot optimization results when the GA is configured with 200 gen-

erations, 800 individuals in the population and crossover and mutation rates of

0.5 and 0.3, respectively. Under other conditions, the GA does not converge or

its convergence rate is lower. Evolution of the hypervolume shows that approxi-

mately after 50 generations the GA converges to an optimal solution. However,

a slightly better tune of model parameters is found when the hypervolume rises

again after 160 generations, decreasing to a greater extent the shape error.

Two extreme solutions of the Pareto front are also shown as an example of

results reached by emphasizing one or the other error metric. High-frequency

oscillations are better captured by the solution depicted at the bottom of the

figure, where the shape error is minimum, particularly within the first 100 ms

of the 100 td response. However, this solution presents also significant offset
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Figure 3: Results of the multiobjective optimization applied to the model of the retina cones

and horizontal cells. Evolution of the hypervolume over generations and the estimated Pareto

front are shown in the center of the figure. Two extreme solutions of the Pareto front are

depicted at the top (minimum NRMSE) and bottom (minimum shape error). They represent

simulation results of the model (color solid lines) and electrophysiological recordings (color

markers) obtained from horizontal cells of the macaque retina[19]. Data points have been

sampled from Figure 6 in the publication[19]. Input stimuli are spatially uniform white flashes

of 10, 100, and 160 ms at a fixed Weber contrast of 8 and background illuminances of 1, 10

and 100 trolands (td). All flashes start at 0 ms.

errors in some specific points (observe the minimum value of the 100 and 10

td responses). On the other hand, the solution at the top of the figure limits

this high-frequency behavior but the squared-error is minimized for all samples.

Intermediate solutions provide a trade-off between these two error functions.
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3.2. Thalamocortical system

In this model, the transition from the waking mode to the sleep mode (see

Fig. 4) comes about by increasing the potassium leak conductance and the four

intrinsic conductances. The single-objective fitness function (Eq. 5) averages

the error across the 5 populations shown in Fig. 4 A and the following 5 time

intervals: wakefulness (from 0 to 200 ms), transition to the sleep mode (from

200 to 600 ms), first oscillation of the sleep mode (from 600 to 1100 ms), down-

state (from 1100 ms to 1600 ms) and second oscillation (from 1600 to 2100 ms).

During the first time interval, peak conductances are set to a initial value (gI)

and afterwards, in the second time interval, they are modified to half of their

maximum values in the sleep mode. From the third time interval on, conduc-

tances take their maximum value (gE). Although conductances were fitted only

to the first 2100 ms, the model remains stable afterward for an extended period

of time showing that the fit is reasonably robust.

We used the target average membrane potentials shown in Table 2. Average

membrane potentials of the up- and down-states of the cortical layers are -58

and -75 mV respectively, according to values provided in reference [32]. Other

values are interpolated by visual inspection of results published by Hill and

Tononi[32].

The GA is configured with 100 generations, 512 individuals in the population

and crossover and mutation rates of 0.5 and 0.3, respectively. Optimal peak

conductances are: potassium leak conductance gKL, between 1.0 (initial value)

and 2.2 (end value); persistent sodium current INa(p), 1.0 and 5.0; pacemaker

current Ih, 0.01 and 4.61; low-threshold calcium current IT , 0.97 and 2.07; and

depolarization-activated potassium current IDK , 0.17 and 2.27.

With the increase in the potassium leak conductance (its peak value goes

from 1.0 to 2.2) the network enters the hyperpolarized state of around -75 mV.

The 3 primary active intrinsic currents underlying the up- and down-states in

cortical neurons are Ih, INa(p) and IDK , as shown in Fig. 5. These 3 currents

experience a significant increase during the sleep mode compared to the wak-

ing mode. Ih is hyperpolarization-activated, shifting the membrane potential

12
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Figure 4: Simulation of the transition from the waking mode to the sleep mode in the tha-

lamocortical visual system (see Fig. 4 in the reference publication[32]) with the optimal set

of parameters found by the single-objective optimization. gI and gE are the initial and end

values of intrinsic conductances. A: membrane potential rasters of 100 neighboring cells in the

primary visual area over 5.1 s (cortical layers L2-3, L4 and L5-6, and reticular nucleus cells

(Rp) and thalamocortical neurons (Tp)). B: membrane potential traces from excitatory and

inhibitory cells in cortical layer L2-3, Rp and Tp. C: topographical activity plots show the

average membrane potential during wakefulness (green), and the upstate and downstate of

the slow oscillations in the sleep mode (green and red). Red and green boxes (in A) during the

waking mode and the sleep mode indicate the time window (10 ms) of the averaged activity.
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Figure 5: Membrane potential raster of cortical layer L5-6 compared with the individual

intrinsic current traces for a selected cell in this layer. Conductance units are dimensionless

since the neuron model does not have a defined area or volume.

Table 2: Target average membrane potentials (mV) used in the optimization.

L2-3 L4 L5-6 Rp Tp

0-200 ms -65 -65 -65 -68 -68

200-600 ms -75 -75 -75 -70 -70

600-1100 ms -58 -58 -58 -65 -68

1100-1600 ms -75 -75 -75 -75 -75

1600-2100 ms -58 -58 -58 -65 -68

towards a more depolarized level during the down-state. When the membrane

potential exceeds certain threshold, INa(p) activates, promoting a spike burst.

This burst initiates the depolarized phase of the slow oscillation until IDK ,

also activated during spiking, progressively forces the cell to enter again the

hyperpolarized state. The interplay among INa(p), IDK and Ih during sleep is

determinant for shaping oscillations of the slow wave. IT , only present in tha-

lamus cells, does not increase significantly during the sleep mode (results not

shown here), what discards a key role of this current.
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4. Conclusion

Numerous approaches have been proposed to automatically search for sets

of parameters of neuron models that best fit available experimental data[1, 2,

34]. The response of a neural system, however, is described by both intrinsic

parameters that define the cells’ morphology and biophysical dynamics and

parameters of the network architecture and connections. We employed a genetic

algorithm optimization, implemented with the Python library DEAP[24], to fit

parameters of two different models of the visual system. The first one is a

model of cone photoreceptors and horizontal cells that reproduces adaptation

to the mean light intensity in the retina. It was configured using the simulation

platform COREM[29]. The second model is an implementation of the large-scale

thalamocortical system developed by Hill and Tononi[32] using NEST 2.8.0[33].

In the electrophysiology of the visual system, fitting every feature of the

neuron’s receptive field or the temporal response to specific stimulus conditions,

is crucial to understand the mechanisms involved in the visual function. We

have shown that a standard point-by-point comparison of response traces (e.g.,

by using only the MSE) is insufficient to accurately compare data and model

responses. A multiobjective error metric has been proposed based on combi-

nation of the normalized root-mean-square error (NRMSE) and a shape error

descriptor. We used this metric in conjunction with the well-known algorithm

NSGA-II[23] to search for parameters of the model of cone photoreceptors and

horizontal cells. Secondly, parameters of the model of the thalamocortical sys-

tem are fitted by a single-objective feature-based error function. This function

computes differences between data and model responses in terms of the average

membrane potential of a set of neuron populations in specific time intervals.

Two extreme solutions of the multiobjective optimization have been used in

Fig. 3 as an example of the type of results reached by giving more weighting

to the NRMSE or to the shape error. High-frequency oscillations are better

captured by the minimum shape-error solution of the Pareto front, particularly

within the first 100 ms of the 100 td response. However, this solution presents
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also significant deviations from the target data in some specific points. On

the contrary, the other solution has a smaller NRMSE but does not reproduce

all high-frequency features of the data. We argue that results of the fitting

can modify the model specifications and make us reconsider the mechanisms

that shape the visual response. For example, the minimum shape-error solution

justifies the inclusion of a second feedback component in the model of the cone

photoreceptors and horizontal cells (see reference [29] for further discussion).

In the thalamocortical system model, the transition from the waking mode

to the sleep mode is initiated by the increase of the potassium leak conductance,

which triggers the hyperpolarized state of the network. During the sleep mode,

the most significant changes in the intrinsic conductance values have been calcu-

lated for Ih, INa(p) and IDK . The interaction among these 3 currents provides a

description of the up- and down-states of the slow oscillation in agreement with

the study by Hill and Tononi[32]. We reproduced their simulation results by

changing peak conductances of intrinsic ion channels but keeping the same net-

work setup of the original publication. One challenge is to explore the possibility

of including more parameters, in addition to peak conductances, and assess if

the genetic algorithm is robust enough to provide a set of optimal parameters

correlated with those computed in this work.

Another interesting issue involves adapting our approach to calculate also

the confidence interval of every single parameter wherein the model output

does not deviate considerably from the optimal behavior. There are cases in

which small deviations of parameters from their optimal values put the system

into a different dynamical regime. Finding the bounds of the optimal regime of

each parameter would help neuroscientists to better understand the mechanisms

underlying the neural function.
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[29] P. Mart́ınez-Cañada, C. Morillas, B. Pino, E. Ros, F. Pelayo, A compu-

tational framework for realistic retina modeling, International Journal of

Neural Systems. Under review.
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Abstract

Despite half-a-century of research since the seminal work of Hubel and Wiesel, the role of

the dorsal lateral geniculate nucleus (dLGN) in shaping the visual signals is not properly

understood. Placed on route from retina to primary visual cortex in the early visual pathway,

a striking feature of the dLGN circuit is that both the relay cells (RCs) and interneurons (INs)

not only receive feedforward input from retinal ganglion cells, but also a prominent feedback

from cells in layer 6 of visual cortex. This feedback has been proposed to affect synchronic-

ity and other temporal properties of the RC firing. It has also been seen to affect spatial

properties such as the center-surround antagonism of thalamic receptive fields, i.e., the sup-

pression of the response to very large stimuli compared to smaller, more optimal stimuli.

Here we explore the spatial effects of cortical feedback on the RC response by means of a a

comprehensive network model with biophysically detailed, single-compartment and multi-

compartment neuron models of RCs, INs and a population of orientation-selective layer 6

simple cells, consisting of pyramidal cells (PY). We have considered two different arrange-

ments of synaptic feedback from the ON and OFF zones in the visual cortex to the dLGN:

phase-reversed (‘push-pull’) and phase-matched (‘push-push’), as well as different spatial

extents of the corticothalamic projection pattern. Our simulation results support that a

phase-reversed arrangement provides a more effective way for cortical feedback to provide

the increased center-surround antagonism seen in experiments both for flashing spots and,

even more prominently, for patch gratings. This implies that ON-center RCs receive direct

excitation from OFF-dominated cortical cells and indirect inhibitory feedback from ON-domi-

nated cortical cells. The increased center-surround antagonism in the model is accompa-

nied by spatial focusing, i.e., the maximum RC response occurs for smaller stimuli when

feedback is present.
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Author summary

The functional role of the dorsal lateral geniculate nucleus (dLGN), placed on route from

retina to primary visual cortex in the early visual pathway, is still poorly understood. A

striking feature of the dLGN circuit is that dLGN cells not only receive feedforward input

from the retina, but also a prominent feedback from cells in the visual cortex. It has been

seen in experiments that cortical feedback modifies the spatial properties of dLGN cells in

response to visual stimuli. In particular, it has been shown to increase the center-surround

antagonism for flashing-spot and patch-grating visual stimuli, i.e., the suppression of

responses to very large stimuli compared to smaller stimuli. Here we investigate the puta-

tive mechanisms behind this feature by means of a comprehensive network model of bio-

physically detailed neuron models for RCs and INs in the dLGN and orientation-selective

cortical cells providing the feedback. Our results support that the experimentally observed

feedback effects may be due to a phase-reversed (‘push-pull’) arrangement of the cortical

feedback where ON-symmetry RCs receive (indirect) inhibitory feedback from ON-domi-

nated cortical cell and excitation from OFF-dominated cortical cells, and vice versa for

OFF-symmetry RCs.

Introduction

Visual signals from the retina pass through the dorsal geniculate nucleus (dLGN), the visual

part of thalamus, on the way to the visual cortex. However, this is not simply a one-way flow of

information: cortical cells feed back to both relay cells (RCs) and interneurons (INs) in the

dLGN and thus shape the transfer of visual information in the circuit [1–6]. Although there is

no broad consensus about the effects of cortical feedback on sensory processing, there are

many experimental studies that provide insight into its potential roles [7–20]. For example,

cortical feedback has been observed to switch the response mode of RCs between tonic and

burst modes [21, 22] and to synchronize the firing patterns of groups of dLGN cells [17]. Fur-

ther, the studies have reported both enhanced and reduced responses of dLGN neurons from

cortical feedback, and the functional role of cortical feedback is still debated [3, 23, 24].

One line of inquiry has addressed the question of how cortical feedback modulates the

receptive-field properties of RCs. Cortical feedback was early shown to affect the length tuning

of RC responses [12], and a series of studies from Sillito and co-workers have investigated how

cortical feedback influences the RC responses to flashing spots and patch gratings, i.e., circular

patches of drifting gratings [4, 13, 15, 16, 18, 19]. Retinal ganglion cells (GCs) provide the

feedforward input to the dLGN circuit, and the receptive fields of both GCs and RCs have a

roughly circular shape where an excitatory center is surrounded by an inhibitory surround

[25–27]. For a flashing-spot stimulus the maximum response occurs for a spot centered on the

receptive field which exactly covers the receptive-field center [27]. When the spot size is gradu-

ally increased to also stimulate the inhibitory surround, the response is gradually reduced until

the entire surround is also covered. This phenomenon is referred to as center-surround sup-
pression, and it is known that such suppression is increased for RCs compared to the GCs that

provide the dominant feedforward input [27]. A part of this increased suppression likely stems

from feedforward mechanisms in the dLGN circuit, i.e., a broad feedforward retinal input to

LGN interneurons, in turn providing increased feedforward surround inhibition to the RCs

[27, 28]. Increased center-surround suppression implies that the neurons are less responsive to

broad visual stimuli and instead more tuned to narrow stimuli or sharp spatial variations in

the visual scene. Thus dynamical tuning of this suppression may be a mechanism for the

Cortical feedback effects on visual response properties of dLGN relay cells
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nervous system to adapt to changing light conditions and viewing demands to create an effi-

cient representation of the stimulus [29].

Although the receptive fields of dLGN cells appear largely determined by the feedforward

retinogeniculate input, corticothalamic feedback has been shown to increase the inhibitory

surround, i.e., increase the suppression to very large stimuli [4, 12, 13, 15, 16, 19, 30]. Other

studies have reported enhanced responses of dLGN neurons [18, 30, 31] when using smaller

stimuli. Interestingly, cortical feedback has been experimentally observed to increase the sur-

round suppression both for flashing spots [32] and patch gratings [4, 19], though, the increase

has been found to be larger for patch gratings [2, 4]. The topic of the present modeling study is

to investigate what aspects of the thalamocortical loop, and in particular what type of cortical

feedback pattern, may underlie these observed changes in RC center-surround antagonism.

While the use of computational modeling to study the effect of cortical feedback on visual

processing is not new, previous projects have investigated feedback effects on the temporal

processing of RCs [33–38]. Modeling studies of spatial aspects have to our knowledge been

limited to relatively simple firing-rate models [39, 40] where, for example, dLGN INs have not

been explicitly included. The focus in [39] was on exploring cortical feedback effects on

observed effects of RC responses to discontinuity in orientations in gratings in bipartite sti-

muli. In [40] the extended DOG (eDOG) model was introduced, allowing for analytical explo-

rations of effects of cortical feedback in certain settings, i.e., with certain combinations of

excitatory and (indirect) inhibitory feedback from ON- and OFF-center cortical cells onto

RCs. In that study a preliminary use-case showed that a phase-reversed (‘push-pull’) arrange-

ment of cortical feedback where ON-center RCs receive direct excitation from OFF-driven

cortical cells and balanced indirect inhibitory feedback from ON-driven cortical cells, may

provide increased center-surround antagonism.

Here we instead consider a biophysically detailed model where RCs and INs, as well as ori-

entation-selective layer-6 pyramidal cortical cells (PYs), are explicitly included. The model is

an extension of a recently developed network model of the feedforward part of the dLGN cir-

cuit [41]. The neuron models include a host of Hodgkin-Huxley type active conductances [42–

44], and an important feature is the multicompartment IN model that incorporates both axo-

nal and triadic inhibition of RCs [45]. Another key element of our model circuit is the explicit

incorporation of both ON-symmetry and OFF-symmetry cells which, unlike for the rate-based

eDOG model [40], allows exploration of a wide range of putative synaptic patterns for the feed-

back from cortical cells to RCs and INs, i.e., both same symmetry (ON to ON, OFF to OFF)

and cross-symmetry (ON to OFF, OFF to ON). By comparing results from a wide range of

feedback patterns, we find that our results support that a phase-reversed arrangement of the

cortical feedback seems most effective in increasing the center-surround antagonism observed

both for flashing spots and, even more significantly, for patch gratings.

Methods

Overview of the network model and feedforward connections

The core of the network model comprises two-dimensional grids of synaptically connected

dLGN and cortical neurons of ON and OFF receptive-field arrangements. The network is

driven by dLGN neurons that receive spikes encoding visual input from the retina. The net-

work includes populations of retinal ganglion cells (GC), dLGN RCs and INs, and PYs of layer

6 in the primary visual cortex (Fig 1). Each layer is scaled to span a monocular patch of 10

deg × 10 deg in the visual field and contains 10 × 10 neurons of each symmetry type (ON/

OFF), except in the case of dLGN INs for which there are 25 per symmetry type (20% of the

total number of dLGN cells [46]). Based on the wiring rules of the cat dLGN, it has been

Cortical feedback effects on visual response properties of dLGN relay cells
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Fig 1. Schematic of the model circuit and feedforward connections. A: Neuronal populations and their connectivity patterns. On the left,

each arrow represents synaptic connections between a source and a target population. On the right, a detailed view is shown of the spatial

organization of input synapses for an ON-center PY (top) and for RCs and INs in the LGN (bottom). PYs with ON symmetry receive strong

input from an elongated area of three ON-symmetry RCs and weak input from an adjacent row of three OFF-symmetry RCs. In the LGN,

every IN receives input from GCs via the triadic synapse and the proximal IN dendrite. RCs are contacted by the IN axon, receiving axonal

Cortical feedback effects on visual response properties of dLGN relay cells
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estimated that a 1 deg × 1 deg patch of the dLGN contains about 10 RCs of one symmetry type

on average at an eccentricity of 7 deg [47]. Thus, one simulated RC in our model would corre-

spond to about 10 RCs of the cat dLGN. In the tuning of the model, we have chosen model

parameters giving GC and RC responses similar to the cat experiments described in [27, 28].

Here the recordings were done on cells with receptive fields centered in areas of the visual field

some distance away from the center of gaze (area centralis in cat).

Retinal GCs have a circularly symmetric center-surround receptive field that is inherited by

dLGN RCs through one-to-one excitatory synapses as shown for cells of the ON and OFF

pathways in Fig 1. In these receptive fields, the center and surround present an antagonistic

push-pull arrangement [48]. A bright stimulus confined to the center of the ON-cell receptive

field or a dark stimulus placed on the surround of the receptive field evoke a depolarization of

the ON cell. By contrast, an ON cell is hyperpolarized by projecting either a dark stimulus to

the center of the receptive field or a bright stimulus to the surround. The opposite behavior

applies for OFF-center cells.

The feedforward elements of the dLGN are the same as in [41]. LGN INs receive input from

four retinal ganglion cells via the triadic synapses and the proximal IN dendrites. RCs receive

axonal inhibition through the IN axon and triadic inhibition by the IN dendrites at the triadic

synapses, resulting in fast inhibition.

The cortical populations of PYs receive strong input from an elongated area of three RCs of

the same symmetry and weak input from an adjacent row of three RCs of the opposite symme-

try. PYs come in two different orientation-selectivity variants: horizontally-selective or verti-

cally-selective. Further, each of these two cortical populations also come with ON and OFF

symmetry making a total of four distinct cortical populations. This is a simplified representa-

tion of the thalamocortical loop as it neglects that the strongest thalamic input to primary

visual cortex arrives in layer 4 while the feedback inputs to dLGN cells come from cells in layer

6.

The models for the dLGN and cortical neurons are all biophysically detailed in the sense

that they include a variety of Hodgkin-Huxley type active conductances explicitly reproducing

generation of action potentials. The GC spiking mechanism is not modeled explicitly, instead

this input is modeled by means of phenomenological filter models as in [41].

Retinal input

Descriptive filter model of retinal ganglion cells. The input spike trains from GCs were

generated by non-stationary Poisson processes with firing rates determined by a response

function Rg(r, t). The response function Rg(r, t) is defined as a non-separable center-surround

filter that takes into account the additional delay between the center and surround signals [49–

51]:

RON
g ðr; tÞ ¼ H½Cðr; tÞ � Sðr; tÞ�: ð1Þ

Here the response is the difference between the center signal, C(r, t), and the surround signal,

S(r, t).H[x] = xθ(x) is introduced to enforce nonnegative firing rates, where θ(x) is the

inhibition, and by the IN dendrite at the triadic synapse, resulting in direct triadic inhibition. For the sake of clarity, only excitatory

connections of a single GC to the IN are shown. B: Illustration of formation of receptive fields at each stage based on the spatial arrangement

of receptive fields of the synaptic afferents. RCs with ON (OFF) symmetry receive input from single ON-symmetry (OFF-symmetry) GCs

with circular center-surround receptive fields. INs with ON symmetry receive input from four ON-symmetry GCs. The strong flank of the

PY’s receptive field is shown in solid color and the weak flank is represented by a pattern fill. PYs both with horizontal and vertical

orientation-selectivity are shown.

https://doi.org/10.1371/journal.pcbi.1005930.g001
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Heaviside step function. The difference between the center and the surround is reversed for

the OFF-center ganglion cell:

ROFF
g ðr; tÞ ¼ H½Sðr; tÞ � Cðr; tÞ�: ð2Þ

The center and surround signals are obtained by convolution between the stimulus signal,

s(r, t), and linear spatial (GaC
, GaS

) and temporal (TnO;tO
, EnC;tC

, EnS;tS
) filters:

Cðr; tÞ ¼ GaC
ðrÞ � TnO;tO

ðtÞ � EnC;tC
ðtÞ � sðr; tÞ; ð3Þ

Sðr; tÞ ¼ o � GaS
ðrÞ � EnS ;tS

ðtÞ � sðr; tÞ: ð4Þ

Temporal filters En,τ(t) are normalized low-pass filters implemented as an exponential cascade:

En;tðtÞ ¼
ðntÞne� nt=t

tnþ1ðn � 1Þ!
; ð5Þ

where τ is the time constant and n the number of low-pass filtering stages. TnO;tO
is a high-pass

temporal filter that modulates the overshoot that follows the stimulus onset, observed experi-

mentally [25, 27]. It is computed as the difference between the Dirac function, weighted by the

overshoot amplification factor β, and a low-pass temporal filter:

TnO;tO
ðtÞ ¼ bd0ðtÞ � EnO;tO

ðtÞ: ð6Þ

Spatial filters are implemented by means of the well-known normalized Gaussian function [25,

28, 49, 50]:

GaðrÞ ¼
1

pa2
e� r2=a2

; ð7Þ

with a the spatial extent of the kernel. Thus, aC defines the size of the center receptive field and

aS, of the surround.

Visual stimuli. With the spatiotemporal stimulus function s(r, t) specified, the GC

response can be computed by means of Eqs 1 and 2. The two main visual stimuli explored in

the present work were (i) flashing circular spots and (ii) circular drifting patch gratings. In

addition, separate simulations with flashed bright and dark spots within the ON and OFF sub-

regions of different cell types were done to map out the receptive fields.

Each trial of the flashing-spot stimulus consisted of a 500 ms period of full-field isoluminant

background followed by a 500 ms period in which the circular spot was superimposed on the

background. The luminance profile of the flashing-spot stimulus can be described mathemati-

cally as

Lðr; tÞ ¼
Lbkg for t < 500 ms;

Lbkgð1 � yðds=2 � rÞÞ þ Lstimð1 � yðr � ds=2ÞÞ for 500 ms � t < 1000 ms;

8
<

:
ð8Þ

where ds is the diameter of the circular spot. The circular spot was concentric with the recep-

tive field of the central GC, located in the 6th row and 6th column of the 10 × 10 grid where we

set r = 0. In our formalism the stimulus s(r, t) is represented via an (unspecified) sigmoidal

function of the luminance L(r, t), that is, s(r, t) = l(L(r, t)), where l is a sigmoidal activity func-
tion of some form, converting luminance to firing rates [28].

For the second stimulus, a circular patch of sinusoidal grating with horizontal orientation

was presented for 2000 ms on a full-field isoluminant background. The luminance profile of

Cortical feedback effects on visual response properties of dLGN relay cells
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this stimulus can mathematically be described as [40]:

Lðr; tÞ ¼ Lbkg þ ðLstim � LbkgÞð1 � yðr � dpg=2ÞÞ cos ðkpgr � opgtÞ; ð9Þ

kpg and ωpg are the wave vector and the angular frequency of the patch grating, respectively,

and dpg is the diameter of the circular patch. Note that a circular spot stimulus is obtained for

|kpg| = ωpg = 0. νpg = |kpg|/2π and fpg = ωpg/2π are the spatial and temporal frequencies of the

patch grating, respectively. In the present applications we used νpg = 0.15 cycles/ deg and

fpg = 1 Hz. While the activity function l(L) could have an arbitrary sigmoidal form for the flash-

ing-spot stimulus, it is assumed to be linear for the patch-grating stimulus, i.e., s(r, t) = l(L(r,

t)), where l is of the form l(x) = cx for some (unspecified) constant c [52].

The spatial part of the convolution between the stimulus and GaC
and GaS

can be computed

analytically both when the Gaussian is concentric with the spot stimulus and when it is non-

concentric [28, 40]. Parameters listed in Table 1 were tuned to approximate simultaneously

the spatial properties of the GC response to the experimental results obtained with a spot stim-

ulus [27] and the temporal properties to the range of values reported by Usrey et al. [53]. The

two values of lbkg� l(Lbkg) and lstim� l(Lstim) in Table 1 correspond to the GC response for the

flashing spot (left) and the patch grating (right). A larger background level was used for the

patch-grating stimulus to avoid rectification of the GC response for the negative period of the

sinusoid and to assure a roughly linear GC response.

Neuron models

dLGN interneuron (IN). We used the same IN and RC models as in previous work [41].

The IN model consisted of a cylindrical soma of radius 8.72 μm and length 15.3 μm, with four

identical linear ‘stick’-like dendrites of length 500 μm, a set of passive membrane properties,

and seven active channel conductances including the traditional Hodgkin-Huxley type sodium

and potassium channels for generating action potentials, a hyperpolarization-activated cation

channel, a low-threshold, T-type calcium channel, a high-threshold, L-type calcium channel, a

medium-duration, calcium-dependent afterhyperpolarization channel, and a long-lasting cal-

cium-activated non-specific cation channel. The IN model was an adapted version of the

Table 1. Parameters of the response function of GCs. The two values of lbkg and lstim in the last two rows correspond to the GC response for the flashing spot (left) and

the patch grating (right).

Parameter Description Units Value

β Overshoot amplification factor 2.0

ω Center-surround relative strength 0.85

nO Filtering stages of the overshoot 1.0

τO Time constant of the overshoot ms 30.0

nC Filtering stages of the center signal 4.0

τC Time constant of the center signal ms 20.0

nS Filtering stages of the surround signal 5.0

τS Time constant of the surround signal ms 50.0

aC Center width deg 0.62

aS Surround width deg 1.26

νpg Spatial frequency of the patch grating cycles/ deg 0.15

fpg Temporal frequency of the patch grating Hz 1.0

lbkg(1 − ω) GC response rate to the background s−1 36.8 78.75

lstim(1 − ω) GC response rate to the stimulus s−1 56.5 89.25

https://doi.org/10.1371/journal.pcbi.1005930.t001
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multicompartmental interneuron model in [45, 54]. For a list of the model parameters, see

Table 2 in [41].

dLGN relay cell (RC). RCs can be considered electronically compact [55] and thus we

used a single-compartment model. The RC model corresponds to the model in [42] and

includes the standard Hodgkin-Huxley type sodium and potassium channels, as well as the T-

type calcium channel. While most of the parameters of the RC model are maintained as in

[41], the maximal conductance of the T-type calcium channel, gCaT, was reduced to 0.2 mS/

cm2 to force the RC to respond in the tonic firing mode even with strong disynaptic inhibition

from cortical cells. For further details on the model parameters, see Table 4 in [41].

Cortical pyramidal cell (PY). The thalamocortical feedback loop in mammalian brain

involves more than just a single cortical population and a single cortical layer. Both neurophys-

iological and neuroanatomical studies have shown that layers 4 and 6 of the visual cortex are

the main postsynaptic targets of the geniculate inputs and that dLGN cells receive cortical-

feedback afferents only from layer 6 of the visual cortex (reviewed in [2, 4, 5]). While a mono-

synaptic excitatory feedback loop thalamus-cortex-thalamus involving only layer 6 is possible,

intracortical processing is expected to affect the action of the thalamocortical feedback loop.

Detailed modeling of this intracortical processing is beyond the scope of this work, and we

instead represented the effect of cortical feedback in a reduced way by neglecting the layered

organization of cortical processing (which is in accordance with other modeling approaches

[33, 35, 38–40, 43]). Further, only one type of cortical neuron was included in the model, a PY.

The single-compartment model of cortical PYs was taken from [43, 44]. This model was

originally developed to investigate spindle oscillations in a network of cortical neurons, tha-

lamic reticular neurons and RCs. The model includes the classical Hodgkin-Huxley type

sodium and potassium channels for action potential generation, and a slow voltage-dependent

potassium channel, IM. IM accounts for the classic ‘regular-spiking’ behavior that generates

adapting trains of action potentials in response to depolarizing current injection (see Fig 2).

Parameters of this cell type are summarized in Table 2.

Synaptic connections in the network

Conductance-based synapses were assumed, i.e.,

IsynðtÞ ¼ wfsynðt � ts � tDÞðV � EsynÞyðt � ts � tDÞ; ð10Þ

for a presynaptic spike arriving at ts. Here the weight w is the maximal conductance of the

postsynaptic receptors and Esyn is the reversal potential. fsyn is the temporal envelope of the

synaptic conductance modeled as the difference between two exponential functions specified

by time constants τrise and τdecay (Eqs. 6.4–6.6 in [56]). tΔ is the conduction time delay from

the generation of the presynaptic spike to the initiation of the postsynaptic response and was

set to a fixed value of 1 ms for all synaptic connections. Action potentials of RCs, INs and PYs

were detected by upward somatic voltage crossings at −10 mV.

While AMPA receptors mediate all excitatory connections in this model, GABAA receptors

mediate all inhibitory synaptic interactions. Parameters of synaptic connections are shown in

Table 3. Parameters of retinogeniculate and intrathalamic connections remain similar to those

presented in [41]. An exception is the GC input to the IN part of the triad, for which we

reduced the synaptic weight to compensate for the added excitatory input from corticothala-

mic connections not present in the previous model [41].

Feedforward excitation and inhibition of RCs. Following our previous network scheme

[41], each GC axon synapses at two different locations, i.e., in the triadic synapse where the RC

and the IN receive excitatory input, and in a proximal IN dendrite, both dependent on AMPA

Cortical feedback effects on visual response properties of dLGN relay cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005930 January 29, 2018 8 / 45



receptors. In particular, each GC synapses the IN in two spatially separated locations of the

corresponding IN dendrite, either at the proximal dendrite (65 μm from the soma) or in the

triadic synapse located distally on the dendrite (434 μm from the soma). Conversely, all four

RCs are contacted by the IN axon, receiving the same GABAA axonal inhibition, and by the IN

dendrites at the triadic synapse, where local GABAA release results in direct triadic inhibition.

The triadic inhibition was modeled by means of Eq (10), and GABA release from the IN den-

drites was assumed to occur whenever the local IN membrane potential at the triad crossed

−10 mV (on the way upward).

Table 2. Parameters of cortical PY.

Parameter Description Units Value

A Neuron surface area μm2 28950

Cm Membrane capacitance μF/cm2 1.0

Rm Membrane resistivity Ocm2 34000

Epas Passive leak reversal potential mV -70.0

gNa Max. Na conductance mS/cm2 50.0

ENa Na reversal potential mV 50.0

gK Max. K conductance mS/cm2 5.0

EK K reversal potential mV -100.0

gM Max. M conductance mS/cm2 0.07

https://doi.org/10.1371/journal.pcbi.1005930.t002

Fig 2. Spiking patterns of model neurons for somatic current injection. Somatic membrane potentials of the model

neurons following injection of depolarizing (positive) and hyperpolarizing (negative) current steps lasting 900 ms (first

of the two numbers in parenthesis). A depolarizing current step of 0 or 20 pA (second number in parenthesis) is

applied afterwards.

https://doi.org/10.1371/journal.pcbi.1005930.g002
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Thalamocortical connections. Receptive fields of simple cortical cells are orientation-

selective, arising primarily from oriented convergence of thalamocortical excitatory inputs of

ON and OFF elongated subregions of the dLGN [48, 57–59]. On average, simple cells present

two to three subregions, each with a length/width ratio of 2.5. In addition, the width of the sub-

region has been measured to match approximately the center of a geniculate receptive field

[60, 61].

From these studies it appears that three geniculate receptive fields would be sufficient to

cover one subregion of the cortical receptive field [60]. To impose such receptive fields on the

cortical cells, receptive fields of model cortical PYs are formed by synaptic integration of 3 ON

and 3 OFF RCs as shown in Fig 1. This minimal model of the cortical network is a base case

scenario that facilitates the understanding of the key features of the circuit behavior and whose

results can be easily extrapolated to more complex network architectures. Monosynaptic corti-

cal excitation from RCs is assumed to be mediated by similar parameters of AMPA receptors

as the retinal input.

Cortical feedback to LGN. Cortical feedback projections are mediated by a full set of cor-

tical populations preferring different orientations [13], with a resulting net effect expected to

be essentially isotropic [40]. In the model, only two orientation-selective populations are

included, one preferring horizontal stimuli while the other preferring vertical stimuli.

The detailed arrangement of the synapses of the cortical afferents in dLGN is less known,

and in the present work several possible arrangements were explored (see Fig 3). In terms of

spatial symmetry of receptive fields, the arrangement can be either phase-matched (A) or

phase-reversed (B). With the phase-reversed feedback, effects mediated by OFF-center cortical

cell drive direct excitatory input to ON-center RCs (and the opposite for ON-center cortical

cells on OFF-center RCs) [62]. In the phase-matched feedback, the ON-center cortical cell syn-

apses both ON-center INs and RCs.

For each of the two options (A,B) above, we explored two configurations for the spatial

extent of the corticothalamic axon: 1 × 1 and 2 × 2 (C). In the 1 × 1 feedback, every PY synap-

ses one spatially overlapping RC and the corresponding IN dendrite. The 1 × 1 feedback was

used as a theoretical base case scenario. It has, however, been demonstrated that individual

corticothalamic axons innervate an area of the dLGN that extends significantly beyond the

classical receptive fiels of RCs [63]. We thus also considered a case with a spatially more wide-

spread feedback, i.e., a 2 × 2 feedback where every PY connects an extended region of 4 RCs

and the four dendrites of the IN.

The majority of retinal terminals synapse on dendritic appendages of interneurons, while

cortical synapses typically establish their connections on the dendritic trunks of interneurons

Table 3. Parameters of synaptic connections. Each synaptic weight w represents a monosynaptic connection between each source and target cell. For corticothalamic

connections, instead of one synaptic weight w, we compared the model response for a range of different values, between the listed values.

Receptor Location w (nS) Esyn (mV) τrise (ms) τdecay (ms)

AMPA GC! IN triad 0.4 10.0 0.3 2.0

AMPA GC! IN prox. 0.3 10.0 1.6 3.6

AMPA GC! RC 15.6 10.0 0.1 1.2

GABAA IN triad! RC 6.0 -80.0 0.45 5.0

GABAA IN axon! RC 4.0 -60.0 0.45 5.0

AMPA RCON! PYON 50.0 10.0 0.2 1.2

AMPA RCOFF! PYON 20.0 10.0 0.2 1.2

AMPA PY! RC 0.0–6.0 10.0 0.2 1.2

AMPA PY! IN dend. 0.0–6.0 10.0 0.2 1.2

https://doi.org/10.1371/journal.pcbi.1005930.t003
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[64]. In the model, we placed cortical synapses on the trunk, 391 μm from the soma. With this

relatively distal location, the cortical synapses could contribute to triadic inhibition of relay

cells, but had a relatively minor impact on the somatic action potential generation in INs,

which is predominantly driven by retinal input [64, 65].

Simulation and analysis of results

Area-response curves. Area response curves were computed for two types of stimuli:

flashing circular spots and patch gratings. Simulations were repeated by varying the spot diam-

eter (patch diameter), ranging from smaller than, to larger than the receptive field center of the

central RC. In particular, the spot diameter was increased from 0 to 10 degrees, every 0.2

degrees, giving a total of 51 different stimulus sizes. Raw poststimulus time histograms

(PSTHs) were collected for all cells in the model. These PSTHs were averaged over 100 trials

for the flashing spot and over 400 trials for the patch grating.

Averaged PSTHs were used to obtain the firing rates within specific time intervals of the

stimulus. The firing rates for each stimulus diameter were used to construct the area-response

curves, also known as area-summation curves [19, 27, 66]. For the flashing spot, each data

point of the area-response curve corresponds to the mean firing rate computed during the sec-

ond 500 ms period of the simulation [27].

A standard way to analyze the response for harmonically oscillating stimuli such as patch

gratings is to compute the amplitude of the first harmonic. However, in the present

Fig 3. Cortical feedback configurations. Phase arrangements explored for connections between receptive fields of PYs and RCs: phase-matched (panel

A) vs phase-reversed (panel B). Additionally, every RC receives feedback both from PYs with horizontal and vertical orientation-selectivity. C: The effect

of the spatial spread of corticothalamic axons onto LGN cells is analyzed for another two feedback configurations: 1 × 1 and 2 × 2 cells. In the latter case,

only synapses made by one PY are shown.

https://doi.org/10.1371/journal.pcbi.1005930.g003
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simulations the duration of the patch-grating stimulus was too short to reliably compute this

first-harmonic amplitude by a conventional Fourier transform. We instead estimated the

amplitude of the first harmonic as follows: (1) Pick a time range corresponding to one com-

plete period of of the oscillation. Here we chose the time period from 1000 to 2000 ms to avoid

any transient effects from the upstart of the simulation. (2) Compute the DC component [67],

i.e., the mean firing rate in this time window. (3) Subtract the DC component to the patch-

grating response and (4) rectify the resulting signal by using the absolute value. The mean

value of the rectified response over one full cycle corresponds to the mean rectified deviation

of the response. For a sinusoidal modulation of the firing rate, this mean rectified deviation

corresponds to 2/π* 0.64 of the amplitude of the modulation.

Area-response curves were computed from the mean rectified deviation over one full cycle.

The DC component was added to the mean rectified deviation to facilitate a visual compari-

son, in absolute terms, between the flashing-spot and patch-grating results. The area-response

curves of both the flashing circular spots and patch gratings were filtered with a seven-point

rectangular window to produce smoother curves. Additionally, the 0-degree response was

added to the interpolated area-response curve to have the reference of background firing for

computing the normalized response.

The normalized firing rate of area-response curves R̂ðdÞ is calculated as

R̂ðdÞ ¼
RðdÞ � minðRðdÞÞ

maxðRðdÞ � minðRðdÞÞÞ
; ð11Þ

where R(d) is the unnormalized area-response. Two quantities extracted from the area-

response curves are of particular interest here: the stimulus diameter giving the largest

response (corresponding to the RF center size for the case of flashing spots) and the center-sur-

round antagonism coefficient [27, 28]:

a ¼ 100% � ðRc � RcsÞ=ðRc � RbkgÞ; ð12Þ

where Rc is the maximum response, Rcs is the minimum response to spot/patch diameters

larger than the receptive field center diameter, and Rbkg is the background firing rate. α pro-

vides a measure of the receptive-field surround suppression, where a value of 100% means that

the surround suppression is strong enough to cancel out the visually-driven response to center

stimulation.

Receptive fields. We here used two types of receptive fields: both the traditional spike
receptive field where the trial-averaged spiking response to visual test stimuli is considered [26,

68] and themembrane-potential receptive field where the corresponding trial-averaged mem-

brane-potential response is considered [48, 69].

We characterized the spike receptive fields of RCs and PYs by computing their spatiotem-

poral profiles (x-y-t receptive field maps and x-t plots) [26, 68]. The space was divided in a grid

of 20 × 20 sampling points, i.e., one point every 0.25 degrees, and bright and dark spots were

briefly flashed for 40 ms at every point. For every trial we ran a simulation of 300 ms where the

spot was ON from 100 to 140 ms. PSTHs of the center cell (located in the 6th row and 6th col-

umn of the 10 × 10 grid) were collected and averaged across 100 trials. The spot has a diameter

of 1 degree, which is the optimal stimulus size to cover the thalamic receptive field and was

flashed at 50% contrast.

A composite receptive-field profile is obtained by computing the difference between the

PSTHs for the bright and dark stimuli [68]. With this approach we obtained a complete x-y-t
receptive field map over a range of values of t. Given that x is the dimension that cuts across

the elongated bright- and dark-excitatory subregions, we integrated along y the different x-y
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receptive field maps at spaced time intervals (10 ms) to obtain the x-t plot. Plots were

smoothed with the use of a Gaussian filter (σ = 1 deg) and displayed as contour plots.

To further characterize the spike receptive fields of PYs we used a measure to assess the spa-

tial segregation of subregions within the receptive field, the overlap index, as described in refer-

ences [48, 69]. The overlap index was computed as follows:

Overlap index ¼
0:5Wp þ 0:5Wn � D
0:5Wp þ 0:5Wn þ D

; ð13Þ

where Wp and Wn are the widths of the ON and OFF subregions, respectively, and D is the

distance between peak positions of each subregion. Values� 0 denote separated subregions

and values close to 1 mean symmetrically overlapped subregions. These parameters are com-

puted from the raw x-y-t receptive field maps (before Gaussian smoothing) of the PY to bright

and dark stimuli, within the time window from 130 to 150 ms. First, we search for the x-y posi-

tions of the peak responses to bright and dark stimuli and the corresponding value of D. From

the peak responses, moving to the right and to the left in the x dimension, the two points

whose responses were 1=
ffiffi
e
p

of the peak response delimit the values of Wp and Wn.

To characterize the mebrane-potential receptive fields of the different cells, bright and dark

spots were flashed only within the center of the ON and OFF subregions of a PY and on the

center of a thalamic RC. For every trial we ran a simulation of 300 ms where the spot was ON

from 100 to 140 ms. In this case, somatic potentials of the center cell were collected and aver-

aged across 100 trials. A push-pull index, as described in [48, 69], was used to determine the rel-

ative weight of the antagonistic response to stimuli of opposite contrast:

Push-pull index ¼
jP þ Nj

max ðjPj; jNjÞ
; ð14Þ

where P and N represent synaptic responses to the bright and the dark stimuli, respectively.

Synaptic responses are defined as the average membrane potential that was above or below the

baseline within a time interval centered near the peak response (also a time window from 130

to 150 ms) [48, 69]. The baseline is computed from the first 100 ms preceding stimulus onset.

While the index is 0 for stimuli of opposite contrast that evoke excitatory and inhibitory

responses of identical magnitude, the index is 1 for stimuli in which only one contrast gener-

ates significant responses.

Numerical implementation. The network model was implemented in Python using

Object Oriented Programming [70], which defines a set of classes of objects describing the

attributes and methods of the different neuron types and the ganglionar input. Individual cells

were created with the Python package LFPy [71] that relies on the NEURON simulator [72] to

compute their membrane potentials. Neurons of the network were connected by means of

NetCon objects and synaptic connections simulated as discrete events [73]. In addition, we

implemented an interface for creating two-dimensional layers of neurons placed in space and

connecting them through topology masks. By contrast, the input spike trains from GCs were

simulated using NEST 2.8.0 [74, 75] as a Poisson spike generator (poisson_generator).
Simulations of the model for the different stimulus sizes were parallelized in the Stallo

supercomputer cluster [76] based on the MPI interface [77]. The Stallo cluster has 304 com-

pute nodes that embed Intel Xeon E5 2670/2680 processors of 16 cpu-cores and 32/128 GB

memory. We chose an MPI distributed-memory parallelization implemented with the Python

library mpi4py [78] whereby simulation of every spot size is mapped to one MPI process. Sim-

ulation of 1 of the 51 different stimulus conditions within a trial took on average 2.4 minutes.

By running 64 processes in parallel, computation of the area-response curves took 4 and 16
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hours on average for the flashing spot (100 trials) and the patch grating (400 trials), respec-

tively. We computed 16 area-response curves simultaneously by using up to 1024 processes.

Results

The results are divided into two distinct parts. In the first part results for the feedforward part

of the circuit is presented, mainly to validate the model against previous findings in the litera-

ture. The studies of the effects of cortical feedback are presented in the second part where the

feedforward circuit explored in the first section is used as a starting point.

Network response without cortical feedback

Before studying the effects of cortical feedback on the RC response specifically, we describe the

feedforward response of the different cell types in the network model when the cortical feed-

back is deactivated, i.e., corticothalamic synapses from PYs to dLGN relay cells (RCs) and

interneurons (dLGN INs) are disconnected. In this situation the RC response is driven only by

excitation from its GC afferents and feedforward inhibition from INs.

Spike receptive fields. The most common way to characterize response properties of cells

in the early visual pathway is to measure their spike receptive fields, i.e., the trial-averaged

spike response to visual test stimuli [26, 68]. In Fig 4, we show the spatiotemporal dynamics of

receptive fields of cells in our network model. Panel A depicts spatial receptive field profiles at

two different time intervals: one time interval centered near the peak of the center response

(from 130 to 150 ms) and a second time interval centered near the minimum of the rebound

decrease in the firing rate (from 200 to 220 ms). Receptive fields of GCs and RCs exhibit the

characteristic properties of these cell types: circular receptive fields, with center-surround

organization, and their center and surround responses are biphasic in time, consisting of an

initial firing-rate increase of the center response followed by a slow rebound firing-rate

decrease (the surround has a similar behavior but the respective polarities are reversed). The

biphasic structure is further illustrated in the spatiotemporal x-t receptive field profiles (panel

B): for t between 130 and 150 ms, the receptive fields of GCs and RCs show a bright-excitatory

center, i.e., an increased firing to a bright spot, but for t larger than 200 ms, on the other hand,

the polarity of the response of the receptive field center is reversed and it is seen to be dark-

excitatory, i.e, increased firing-rate for dark spots.

The receptive field of the cortical cells is formed by a strong ON subregion and a weaker

flanking OFF subregion. Both the center and flank subregions show also a biphasic structure

in time, a feature that is inherited from the ON and OFF cells providing their afferent inputs.

A visual comparison of our model receptive fields in Fig 4 with experimentally measured

receptive fields shown in [26] reveals that our RC receptive field qualitatively resembles the

experimental receptive field for the ‘non-lagged RC’ while our cortical-cell receptive field simi-

larly resembles the experimental receptive field for the ‘separable simple-cell’, i.e., ON and

OFF subregions are separable in the space-time domain.

From the spatial receptive field maps of the PY to bright and dark stimuli (before calculat-

ing the composite receptive-field profiles shown in Fig 4A), we estimated the widths of the ON

and OFF subregions, Wp and Wn, and the distance D between peak positions of each subre-

gion. The position of the peak response to the bright stimulus was situated at (0, 0) degrees

and the position of the peak response to the dark stimulus was at (1.25, 0) degrees, providing a

distance D of 1.25 degrees. The widths of the ON and OFF subregions were nearly identical

(Wp = Wn’ 1.3 degrees), as expected from the symmetrical design of the network. The over-

lap index was 0.02 (see Eq 13), a value that is within the range of values of cells quantitatively

described as simple cells according to their membrane-potential receptive fields [48, 69].
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Membrane-potential receptive fields. To further illustrate the structure of receptive fields

and the antagonism between ON and OFF inputs, we show in Fig 5 the membrane-potential

receptive fields of RCs and PYs to bright and dark spots, i.e., trial-averaged membrane-poten-

tial responses to bright and dark spots [79]. The push-pull effect (in terms of stimulus

response) is observed both for the RC and in the different subregions of the PY, that is, stimuli

of the reverse contrast evoke responses of the opposite sign. When positioned both in the

receptive-field center of the ON-center RC (left panel) and in the ON subregion of the ON-

center PY (center panel), a bright spot evoked a strong depolarization followed by a rebound

hyperpolarization while a dark spot evoked pronounced hyperpolarization followed by

rebound depolarization. The responses when stimulating the OFF subregion of the present

cortical cell (right panel), were much weaker. However, as for the stimulation of the ON subre-

gion, a push-pull pattern was observed here as well, although of opposite polarity. We also

noted that the trial-averaged membrane-potential traces for the PY in Fig 5 show a higher vari-

ance because they integrate synaptic inputs from a larger pool of neurons than RCs do.

Fig 4. Spatiotemporal structure of spike receptive fields. x-y-t receptive field maps averaged over two different time windows, shortly after stimulus onset and at

a later time (panel A), and spatiotemporal x-t receptive field profiles (panel B) of an ON-center GC, an ON-center RC and an ON-center vertically oriented PY. All

cells correspond to the center cell (positioned at the 6th row and 6th column in 10 × 10 grid). Firing rates are normalized to the maximal firing rate. For details

about computation of these receptive fields, see Methods.

https://doi.org/10.1371/journal.pcbi.1005930.g004
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Further, the presently used test spot is a suboptimal stimuli for PY receptive fields, and thus

does not evoke responses as strong as for the RC.

To compare our model responses with experimental results we computed another measure,

the push-pull index (see Eq 14), used previously to determine the relative weight of the antago-

nistic response to stimuli of opposite contrast [69]. For our model, the push-pull index was

found to be 0.32 for the RC and 0.68 for the PY. The observation of a larger push-pull index

for PYs compared to RCs is in general accordance with the findings of [69] (cf. Fig 4 therein),

and a push-pull index of PYs between 0.6 and 0.7 is also seen for some simple cells (though

here a large variation is observed in the experiments). While a comprehensive comparison

with experiments is prohibited by lack of experimental data, as well as the simplistic descrip-

tion of cortical circuitry, we conclude that the feedforward aspects of our model circuit appear

to produce plausible receptive fields.

Temporal response to flashing spots and patch gratings. We next explored the temporal

response of the model to flashing spots and patch gratings. Fig 6 shows the trial-averaged post-

stimulus time histograms (PSTHs) for cells at the center of the grid stimulated by concentric

flashing spots (left column) or patch gratings (right column). For the ON GC response to flash-

ing spots we observe similar overshoot responses to the stimulus onset for the two spot sizes

considered, i.e., the 2-degree spot, which essentially covers the receptive-field center, and the

8-degree spot also covering the surround (Fig 6A).

However, the surround-inhibition evoked by the 8-degree spot substantially reduced the

response after stimulus onset, resulting in a more pronounced exponential-like decay of the

ON GC as observed experimentally [27]. The response of the OFF GC is suppressed for the

entire time the flashing spot is on for the 2-degree spot, while for the 8-degree spot some firing

is seen after approximately 200 ms.

The RC response is qualitatively similar to the response of the ON GC but the overall firing

rate is lower in accordance with the lower retinogeniculate transfer ratio of the firing rate

reported in [27]. The overshoot responses of the IN and PYs to the flashing spot were more

Fig 5. Membrane-potential receptive fields of RCs and PYs to bright and dark stimulation. Averaged somatic membrane potentials over 100 trials to bright or

dark spots flashed in the receptive-field center of a RC (left) or within the ON (center) or OFF (right) subregions of a PY cell. Both cells are ON-center cells. Dashed

lines indicate baseline computed from the first 100 ms preceding stimulus onset. The thick bar under the traces marks the time the stimulus is on (from 100 to 140

ms).

https://doi.org/10.1371/journal.pcbi.1005930.g005
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Fig 6. PSTHs of cells for the flashing spot and patch grating. Trial-averaged PSTHs of ON- and OFF-center GCs, ON-center RC, ON-

center IN and ON-center vertically and horizontally oriented PYs for two spot/patch diameters: 2 and 8 degrees. All cells correspond to

the center cells (6th row, 6th column) in the two-dimensional grids. The 8-degree responses of the IN and PYs are plotted in the front of

graph for better visualization.

https://doi.org/10.1371/journal.pcbi.1005930.g006
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pronounced for a 8-degree spot because this stimulus size better stimulates their receptive

fields during the transient response. As for the GC response, the RC response reached a steady

state after an exponential-like decay.

Inspection of the patch-grating responses in the right column of Fig 6 reveals that the

response, i.e., amplitude modulation, to the 2-degree patch is slightly larger than the response

to the 8-degree patch for both the ON and OFF GCs, as well as the ON RC. More noticeable

differences were observed between responses to 2-degree and 8-degree patches when choosing

smaller values of the spatial frequency νpg of the patch grating (see Eq 9). However, the spatial

frequency selected in this work evokes smaller surround suppression in the GC response and

thus facilitates the study of cortical-feedback induced effects of the increase in the surround

suppression in RCs. Another noteworthy feature of both the GC and RC responses are that the

2-degree response is seen to be slightly phase-delayed compared to the 8-degree response.

For the ON IN the patch-grating results are similar to that observed with the flashing spot:

there is a significant increase of the firing rate for the largest patch diameter. However, unlike

for GCs and RCs, the 8-degree response is seen to be slightly phase-delayed compared to the

2-degree response. This reflects the spatial arrangement of synaptic inputs from GCs to the IN.

For PYs, an interesting difference is seen between responses of the horizontally-selective

and vertically-selective cells. While the 8-degree response was substantially larger than the

2-degree response when the stripe orientation matched the orientation selectivity (horizon-

tally-selective PY), this difference was barely noticeable when they were non-matched (verti-

cally-selective cells PY).

Two-dimensional spatial representation of the network response. The spatial profile of

the network response is depicted in Fig 7 for the various cell types in the model. Here each

Fig 7. Time-averaged topographic representation of responses of cells in the network grids. Two-dimensional representations of time-averaged PSTHs of ON-

center GCs, RCs and horizontally- and vertically-selective PYs. Four leftmost columns: Averaged PSTHs for the flashing-spot stimulus at four different time

windows as indicated (in ms). Four rightmost columns: Averaged PSTHs for the patch-grating stimulus at the same time windows. A pixel in every panel

represents time-averaged activity of one cell in the corresponding 10 × 10 grid. Color bars include values of the time-averaged firing rates. The stimuli are centered

on the cell at the 6th row and 6th column of the 10 × 10 grid, and the stimulus diameter is 4 degrees.

https://doi.org/10.1371/journal.pcbi.1005930.g007
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color panel shows a topographic representation that includes the activity of every cell in the

corresponding 10 × 10 grid, averaged across four different time intervals.

The four leftmost columns of plots show flashing-spot responses. Following the spot onset

at 500 ms, the response of GCs and RCs covering the spot area reproduce the overshoot

response seen in experiments [25, 27, 80], reflected in an increase of the activity that progres-

sively diminishes and reaches a steady state for the last time interval (from 750 to 1000 ms). In

the response of GCs and RCs after spot onset, we can observe the clear effects of the center-sur-

round antagonism of their receptive fields. Thus, cells at the edge of the spot, whose receptive-

field center is covered by the stimulus while a significant portion of the receptive-field sur-

round is not, show a larger response than cells situated in the stimulus center. The response

drops below the background firing for those cells whose receptive field lies just beyond the

edge of the spot, producing a dark annulus of reduced activity surrounding the stimulating

spot. The spatial pattern of the flashing-spot response for the RCs is qualitatively similar to

that of the GCs, but the firing rates are generally smaller (similar to what was seen in the

PSTHs depicted in Fig 6). The spatial profile of the flashing-spot responses of the PYs resem-

bled those of RCs, but the orientation selectivity of the PYs has some notable effects: the hori-

zontally selective population enhances horizontal edges of the spot stimulus while the

vertically selective population enhances vertical edges (see, for example, activity of the four

cells flanking the cell situated in the center of the grating).

The four rightmost columns of plots in Fig 7 show the responses to a patch grating for one

complete oscillatory cycle. The circular patch contains a horizontal-striped sine wave grating

moving upward. For this stimulus one expects the horizontally selective cortical neurons (PY

hor.) to respond more vigorously than the vertically selective population (PY ver.). This is also

what is observed: compare, for example, responses of the center cells of the horizontally-selec-

tive and the vertically-selective populations for the period between 250 and 500 ms.

Area-response curves. The measurement of the so-called area-response curves has been a

common way to quantify the spatial response properties of cells in the early visual pathway, in

particular for LGN RCs [4, 18, 19, 27, 81]. Here the response to circular spots (patches) cen-

tered on the receptive-field center is measured as a function of the spot (patch) diameter. Of

particular interest for the present study is the area-response curves measured for LGN RCs

since the main focus is on the role of cortical feedback on the RC response. Interestingly, the

measured RC area-response curves have been observed in experiments to depend on whether

cortical feedback is present or not [4]. A key goal of the present modeling study is to investigate

possible mechanisms for these observed differences. Most of the following results are thus

focused on such area-response curves, in particular on specific features of these curves such as

the stimulus diameter giving the maximum response (corresponding to the receptive-field

center size in the case of flashing spots) and the center-surround antagonism coefficient α
defined in Eq 12.

Fig 8 shows area-response curves for the different types of cells in our model circuit. Panel

A (left column) shows results for GCs, both ON and OFF cells, when bright flashing spots are

used as stimuli. For the ON cell, the area-response curve reaches a maximum for a spot diame-

ter of about 2 degrees, corresponding to the size of the receptive-field center [27, 28]. For this

diameter the stimulus spot fits the excitatory center exactly. For larger spots the stimulus also

covers part of the inhibitory surround, and the response is correspondingly reduced. When

the spot diameter increases beyond also the surround, the response no longer changes with

diameter, i.e., the area-response curve reaches a plateau level. For the OFF GC, the area-

response curve has instead a dip for spot sizes similar to the receptive-field center but the

response recovers when the spot diameter is increased to cover also part of the now excitatory

surround.
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Fig 8. Area-response curves of cells in the model circuit including only feedforward connections. Area-response curves of GCs (A), RCs and INs

(B) and PYs with horizontal and vertical orientation-selectivity (C) for the flashing spot and patch grating. For the flashing spot, each data point of the

area-response curve represents the mean firing rate computed during the second 500 ms period of the simulation. For the patch grating, each data

point corresponds to the mean firing rate of the rectified response over one full cycle (see Methods for further details). ON and OFF responses for the

patch grating are 180 degrees out of phase.

https://doi.org/10.1371/journal.pcbi.1005930.g008
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In Fig 8B (left column), area-response curves for dLGN cells are depicted for the flashing-

spot stimulus. While the magnitude of the firing rate is much reduced, the RC area-response

curve qualitatively resembles that of the ON GC (panel A) that provides the feedforward excit-

atory input. The patch size giving the maximum response is, for example, very close to that of

its retinal afferent, i.e., about 2 degrees. However, we observe a larger center-surround antago-

nism for the RC compared to the GC that feeds into it, i.e., the center-surround antagonism

coefficient α is increased from 41.8% to 50.1% (see Table 4). As there are only feedforward

connections in this configuration of the dLGN model circuit, the larger center-surround

antagonism of the RC compared to the GC is due the feedforward inhibition via INs [41].

The flashing-spot area-response curves of INs in Fig 8B are distinguished from the RC

curves by the much larger receptive-field center diameter, i.e., about 4 degrees rather than 2

degrees. This reflects the spatially more widespread feedforward input from four neighboring

GCs. We also observe a much reduced center-surround antagonism compared to RCs, in

accordance with previous experimental [82] and modeling studies [28, 41]. The flashing-spot

curves for the PY in panel C exhibit similar qualitative features of the INs: larger receptive-

field center sizes (about 3 degrees) and smaller center-surround antagonism than for the RC.

We also observe essentially identical area-response curves for the horizontally and vertically-

selective PYs, reflecting the circular symmetry of the flashing-spot stimulus.

Panels in the right column of Fig 8 show the area-response curves for patch gratings. For

the ON-center GC response (panel A), the shape of the curve follows the same tendency as

shown for the flashing spot, in which the maximal response is seen at about 2 degrees and the

response is reduced for larger diameters. However, this reduction of the response is less pro-

nounced for the patch-grating stimulus as observed experimentally in decorticate conditions

where only feedforward inputs are present like here [4].

Note, also, that the shape of the patch-grating curve depends on the chosen value of the spa-

tial frequency νpg of the grating. With a lower spatial frequency than the one used here (0.15

cycles/deg; cf. Table 1), i.e., thicker grating stripes, the area-response curves would be more

similar to the flashing-spot curves. The patch-grating curves for the RC in panel B also show a

maximum at around 2 degrees and the center-surround antagonism α is increased compared

to the GC curve, from 6.6% to 11.2% (see Table 4). It should be noted that the patch-grating

response of OFF-center cells is 180 degrees out of phase compared to the response of ON-cen-

ter cells.

The IN area-response curve for the patch grating does not exhibit a clear maximum, but is

instead monotonously increasing even for patch diameters beyond the IN receptive-field cen-

ter size of about 4 degrees. The patch-grating area-response curves of the PYs are shown in

Fig 8C. Unlike for the flashing-spot stimulus, the response to the grating is different for the

Table 4. Response measures for GC and RC for example area-response curves for flashing spots and patch grat-

ings. dc is the spot size giving the largest response (and corresponds to the receptive-field center size for flashing spots).

The center-surround antagonism α is defined in Eq 12. Results from upper two rows are extracted from Fig 8. Results

from the third, fourth and fifth rows are extracted from Figs 10 and 14, respectively.

Flashing spot Patch grating

dc (deg) α (%) dc (deg) α (%)

GC 2.0 41.8 2.4 6.6

RC (without feedback) 2.0 50.1 2.4 11.2

RC (phase-reversed feedback) 1.8 61.6 2.0 26.0

RC (phase-matched feedback, Fig 14A) 2.0 49.1 2.4 11.3

RC (phase-matched feedback, Fig 14B) 2.0 54.6 2.0 18.3

https://doi.org/10.1371/journal.pcbi.1005930.t004
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horizontally-oriented and vertically-oriented PYs when the diameter of the patch is greater

than 2 degrees. While the receptive field of the horizontally-oriented PY perfectly matches the

horizontal stripes of the stimulus, the receptive field of the vertically-oriented PY is perpendic-

ular to the grating stripes, resulting in a lower firing rate as shown for the area-response curves

in panel C.

Effects of cortical feedback on the RC response

After exploring above the feedforward response of the different cell types in the network

model, we now move on to investigate how cortical feedback to the dLGN circuit affects the

spatial response properties of RC cells. This will depend on the detailed corticothalamic con-

nectivity pattern which is not yet experimentally fully resolved. In the next sections, we thus

present simulation results for the different alternatives considered in Fig 3.

Functional organization schemes of the feedback signal. One key aspect of the feedback

signal is its spatial organization, i.e., whether each PY only feeds back to a single RC (1 × 1 con-

figuration) or whether each PY feeds back to a cluster of four neighboring RCs (2 × 2 configu-

ration), see Fig 3C. For the 1 × 1 case a qualitative account of the effect of the corticothalamic

feedback on the RC area-response curves is obtained from the PY curves in Fig 8C, while for

the 2 × 2 feedback the aggregate activity of the four PYs connected to a RC is more relevant. In

Fig 9 we show this aggregate response computed by averaging the area-response curves of the

four PYs in every cortical population that connect to the same RC: ON and OFF vertically-ori-

ented, and ON and OFF horizontally-oriented. Comparison of the area-response curves for

single PYs in Fig 8C, and the corresponding curves for the aggregate PY responses in Fig 9

reveals similar characteristics. As expected, the area-response curves for aggregate feedback is

independent of orientation selectivity for flashing spots, both for ON and OFF cells, but not

for the patch grating.

For the flashing-spot curves a difference between the aggregate area-response curves in Fig

9 and the area-response curves for single PYs in Fig 8 is that the maximum occurs for a larger

Fig 9. Aggregate corticothalamic signals from ON- and OFF-center PYs. ON PY (hor.) and ON PY (ver.) are the aggregate area-response

curves of the 4 horizontally oriented and the 4 vertically oriented ON-center PYs, respectively, that feedback to one RC (and one dendrite of the

IN) in the 2 × 2 configuration of Fig 3C. The same notation is used for the OFF-center cells.

https://doi.org/10.1371/journal.pcbi.1005930.g009
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spot diameter for the aggregate. Likewise, for the patch-grating curves, the plateau level is

reached for a larger patch size for the aggregate. As shown below, these differences between

the feedback curves from single PYs and 2 × 2 PYs for large stimulus diameters are key for

understanding how the different spatial feedback configurations affect the RC response.

Another key aspect of the cortical feedback is the functional organization of synapses

between ON and OFF PYs and their target ON and OFF RCs. We consider two different con-

figurations: (i) ON PYs excite both ON RCs and ON INs (phase-matched feedback, Fig 3A) and

(ii) OFF PYs excite ON RCs (phase-reversed feedback, Fig 3B). The latter arrangement implies

that there is a phase-reversed push-pull influence from layer 6 simple cells providing feedback

to the LGN, a set-up that has received support both in experimental [62] and modeling studies

[40]. In analogy, the phase-matched arrangement can be also called push-push feedback [48,

69].

Phase-reversed (push-pull) cortical feedback. Corticothalamic feedback has been

observed to exert both excitatory and inhibitory influences on RCs [1, 2, 4, 83]. By itself, direct

excitatory feedback to RCs will generally increase the RC firing rate, while indirect inhibitory

feedback via INs will reduce the firing rate. In the present model study we are particularly

interested in regimes with a rough balance between excitatory and inhibitory effects so that the

main effect of cortical feedback is the change in the shapes of the area-response curves, not

their overall magnitude. Further, the model set-up and parameters values are chosen so that

the IN firing rate is only modestly altered [64], i.e., all inhibitory effects from cortical feedback

are mediated via triadic action from INs to RCs with little effect on IN firing. This is in accor-

dance with the idea that the corticothalamic pathway is primarily modulatory rather than driv-

ing in nature [5]. Although we focus on ON-center RCs, a similar behavior is found for OFF-

center RCs.

Area-response curves: In Fig 10 we compare the RC responses with and without cortical

feedback (absolute firing rates on top, normalized firing rates below). Firstly, we describe the

Fig 10. Area-response curves for ON-center RC with and without cortical feedback for the phase-reversed

configuration. The RC receives feedback from a set of 2 × 2 PYs. The synaptic weight of the monosynaptic connection

between PYs and RCs is set to 1.5 nS and to 0.3 nS between PYs and INs. Other parameters are listed in Tables 1–3.

https://doi.org/10.1371/journal.pcbi.1005930.g010
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inhibitory effects of cortical feedback on the RC response. As observed for both stimuli, the

major effect is that cortical feedback increases surround suppression on RCs, which results in

a reduction of the response for stimulus diameters larger than 2 degrees. The center-surround

antagonism α is increased compared to the RC curve without feedback, from 50.1% to 61.6%

for the flashing spot and from 11.2% to 26.0% for the patch grating (see Table 4).

The additional surround suppression is seen to have the signature of the aggregate response

of ON-center PYs (shown in Fig 9) that feed back to the IN. Indeed, the flashing-spot response

in Fig 10 has a dip for a spot size similar to the maximum of the ON-center aggregate response

in Fig 9 (at about 5 degrees). Likewise, the continuous decrease of the patch-grating response

with increasing patch sizes is seen to match the corresponding increase in the patch-grating

aggregate response. In addition, the effectively reduced excitatory feedback from OFF-center

PYs (since this feedback is out of phase with the ON-center RC) for large spot sizes (Fig 9) may

also contribute to the increased center-surround antagonism.

The increase of surround suppression has been observed in experiments with both flashing

spots [32] and patch gratings [4, 19], although the effect seems to be less prominent with flash-

ing spots [2, 4]. Our example results in Fig 10 also show a larger increase of surround suppres-

sion for the patch-grating stimulus, but not as prominent as the increase reported in [4].

As seen below where the dependency of model behavior on the corticothalamic synapse

weights are systematically explored, the amount of suppression and center-surround antago-

nism vary with model parameters. However, a general trend is that cortical feedback appears

more effective in increasing surround suppression for patch gratings than for flashing spots.

Unlike for the flashing spot, cortical feedback also amplifies the patch-grating response for

the smallest patches, i.e., for diameters smaller than the diameter of the receptive-field center

(upper right panel in Fig 10). Thus, in this stimulus range, the competition between excitatory

feedback from OFF PYs and inhibitory feedback from ON PYs results in a net excitation. This

model prediction is in accordance with experimental observations of patch-grating responses

on primate LGN RCs [18].

The third effect produced by cortical feedback is the reduction of the stimulus diameter giv-

ing the maximum response. For the example results in Fig 10, close inspection reveals that the

size of this maximum-response diameter is slightly reduced from 2.0 degrees without feedback

to 1.8 degrees with feedback for the flashing spot (where this maximum-response diameter

corresponds to the receptive-field center size [27]). For the patch grating the maximum-

response diameter is reduced from 2.4 to 2.0 degrees by the cortical feedback (Table 4).

Membrane potentials: We next turn to an exploration of the mechanisms behind the effects

observed for cortical feedback in the phase-reversed situation in Fig 10. In Fig 11 we show

excerpts of membrane potentials for various cells in the model circuit with patch-grating stim-

ulation. Two different patch diameters are considered, 1.8 degrees and 8 degrees. We note

that, as the RC voltage dynamics is dominated by the driving input from retina, it was close to

identical in the cases without (black lines) and with (red lines) cortical feedback included.

However, exceptions to this occurred when the membrane potential was close to the action-

potential threshold. At such instances, cortical input could either act to push (otherwise) sub-

threshold events in RCs above the threshold by providing direct excitation, or to prohibit

threshold crossings (that would otherwise occur) by providing indirect inhibition of RCs via

INs. Thus, the cortical feedback on RC responses is to either add or remove spikes, in accor-

dance with previous experimental observations [34].

In the case of the small spot (1.8 degrees) the excitatory component of the cortical feedback

dominated. Cortical feedback then acted to push occasional subthreshold events above the

threshold, and lead to extra action potentials being fired by RCs (blue arrows in Fig 11). This
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explains the observation in Fig 10 that cortical feedback increased the response for patch sizes

smaller than 2 degrees.

With a larger spot (8 degrees), a larger number of PY cells were activated, the spatially

extended INs thus received more cortical feedback (cf., Fig 3C). Then, the inhibitory compo-

nent of cortical feedback became more pronounced. The inhibitory mechanisms are complex,

as INs provide inhibition both via dendodendritic and axonal GABA-release. A close investiga-

tion of Fig 11 indicates that cortical feedback predominantly acted on INs by modulating the

timing (i.e., the spikes occurred earlier), rather than the amount (i.e., the number of spikes was

Fig 11. Membrane-potential dynamics for the patch grating at different stimulus sizes with the phase-reversed feedback. Somatic records

correspond to ON cells situated at the center of their corresponding layers. The LGN IN dendrite depicted is the dendrite connected with the

RC. Blue and green arrows indicate extra action potentials and suppression of action potentials elicited by cortical feedback, respectively.

Corticothalamic synapse weights are the same as in Fig 10.

https://doi.org/10.1371/journal.pcbi.1005930.g011
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the same) of inhibitory output. Since RCs and INs receive joint retinal input, the timing is

important, and especially so in the triadic synapses, where excitation and inhibition of RCs

tend to follow with a time-locked delay [84]. As Fig 11 indicates, an earlier occurrence of

inhibitory output from INs tended to prevent threshold crossings in RCs (green arrows), while

the opposite occurred more rarely. Therefore, cortical feedback leads to a reduced RC firing

rate. This explains the observation in Fig 10 that cortical feedback increased surround suppres-

sion for large patches.

Receptive fields:We next examined effects of the phase-reversed feedback on properties of

the spike receptive fields. Spatial x-y-t receptive-field representations and spatiotemporal x-t
receptive field profiles, analogous to Fig 4 for the case without cortical feedback, are shown in

Fig 12. Overall, the receptive field of the depicted ON-center RC (panel A) maintains the same

spatial structure as seen for the feedforward situation in Fig 4: roughly circular receptive fields

with center and surrounds both responding biphasically in time. The most striking differences

between the configurations with and without feedback arise in the relative amplitudes of the

center and surround responses. To better illustrate this, we have added a column on the right

in panel B showing the time evolution of the center and surround responses. As seen here,

Fig 12. Spike receptive fields with phase-reversed cortical feedback. x-y-t receptive field maps averaged over two different time windows (panel A) and

spatiotemporal x-t receptive field profiles (panel B) of an ON-center RC and two vertically oriented PYs of the ON and OFF-center type, respectively. The additional

column on the right of panel B shows 1D temporal profiles extracted from two locations of the x-t receptive field (see Methods), one corresponding to the receptive-

field center, the other two the receptive-field surround. Firing rates are normalized by the same values used in Fig 4. Corticothalamic synapse weights are the same as

in Fig 10.

https://doi.org/10.1371/journal.pcbi.1005930.g012
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cortical feedback reduces the RC center response and increases the RC surround response (in

terms of the absolute value of deviation from the background firing activity).

These changes in the center response of RCs can be explained by considering the time plots

of center responses of ON-center and OFF-center PYs (center and bottom right panels of Fig

12). The center response of ON PYs increases its firing rate immediately after stimulus onset,

which implies increased disynaptic inhibition (mediated by LGN interneurons) and thus a

reduced RC firing rate in the first part of the biphasic response.

OFF-center PYs, which give excitatory input to RCs in this phase-reversed configuration,

instead decrease their firing rate in the first phase of a center-stimulus response. This further

contributes to the reduced RC response to a center stimulus in the first phase of the biphasic

response. For the second phase the situation is opposite. Here the OFF-center PYs increase

their firing rate with a center-stimulus response, further contributing to the increased response

of the RC in the second phase.

The effect of cortical feedback on the RC surround response is seen to not only quantita-

tively change the amplitude of the response: here the feedback is seen to provide a substantial

dip in the RC firing rate for the first part of the response (up until about 180 ms, cf. second

panel in the right row of Fig 12). Note that this effect cannot be accounted for by the surround

responses of ON and OFF PYs shown in Fig 4 as this would give the oppositely directed change

in the RC firing rate for surround stimulation. Instead the observed response changes must

mainly stem from center responses of laterally shifted PYs, i.e., with their receptive-field cen-

ters positioned in the surround of the RC cell. Note that in the present model example each

RC receives feedback from a set of 2 × 2 PYs (each with elongated receptive-field centers as

seen in panel A).

Poststimulus time histograms (PSTHs):We finally explored the effect of phase-reversed cor-

tical feedback on PSTHs, both for flashing-spot and patch-grating responses. Fig 13 shows

results for two spot/patch diameters: the smallest (2 degree diameter) essentially covering the

receptive-field center, the largest (8 degree diameter) covering a large part of the surround. A

detailed comparison of the cases with and without cortical feedback is difficult just by visual

inspection. However, the key point is that the amplitude of the sinusoidal rate modulation is

reduced with cortical feedback for large patch gratings (cf. Fig 10), which is clearly discernible.

We also observe that the patch-grating response for the case with cortical feedback is phase-

advanced compared to no-feedback case, in accordance with previous observations of the

effect of inhibition-dominated feedback on the drifting-grating response transfer function

[85].

Phase-matched (push-push) cortical feedback. Area-response curves: In the phase-

matched configuration, both ON RCs and ON INs receive feedback from ON PYs (Fig 3A).

Fig 14A shows the area-response results obtained for the same set of parameters used for the

phase-reversed situation depicted in Fig 10. These parameter values roughly balance the excit-

atory and inhibitory feedback effects to RCs. Since these two effects have similar size but have

opposite signs, the net effect on the RC for phase-matched feedback is as expected practically

negligible both for flashing spots and patch gratings. As a consequence, the center-surround

antagonism α is now essentially unaffected by the feedback.

We find that in order for cortical feedback to increase surround suppression in the RC

response in this phase-matched configuration, the inhibitory contribution to the feedback

must be larger than the excitatory contribution. To illustrate this point we show in Fig 14B

area-response curves for the case when the excitatory feedback is turned off, i.e., the synaptic

weight between PYs and RCs is set to zero. In this situation the cortical feedback again

increases surround suppression on RCs, i.e., α is increased compared to the RC curve without

feedback, from 50.1% to 54.6% for the flashing spot and from 11.2% to 18.3% for the patch
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grating (see Table 4). However, the surround suppression is still smaller than for the phase-

reversed feedback (Fig 14) where the excitatory feedback from OFF PYs adds to center-sur-

round suppression, not subtracts from it as for feedback from ON PYs in the phase-matched

situation.

Spike receptive fields: The spike receptive-field plots in Fig 15 further illustrate this point.

For the case with phase-matched feedback effects of the cortical feedback are almost absent

both for the center and the surround responses (panel B). With only inhibitory feedback pres-

ent, the center response is reduced as for the phase-reversed situation in Fig 12. However, the

extent of the reduction is smaller.

Influence of corticothalamic synapse weights and spatial connectivity profile of cortical

feedback. In the following, we further investigate the behavior of the network model by

exploring the dependence of the area-response curves on the model parameters describing the

cortical feedback. We systematically varied weights of synapses between cortical PYs and RCs

and INs. Simulations were done for both feedback arborization configurations, 1 × 1 and

2 × 2, and also for the different phase arrangements between receptive fields of PYs and dLGN

neurons, phase-reversed (Figs 16 and 17) and phase-matched (Figs 18 and 19).

In Fig 16, we show the different RC responses to the flashing spot for the phase-reversed

case. As expected the overall firing rates of RCs are increased when increasing the feedback

weight values for RCs (moving down) and are reduced when increasing the values for INs

(moving right). This is seen for both spatial kernels, 1 × 1 and 2 × 2. However, the 2 × 2 feed-

back configuration is seen to increase surround suppression more than 1 × 1.

The upper row of panels corresponds to the case where there is no feedback excitation from

PYs to RCs and clearly illustrates how inhibitory feedback increases the surround suppression

of RCs. The first column of panels instead shows the case where feedback inhibition is turned

Fig 13. PSTHs of RCs for flashing spots and patch gratings with phase-reversed feedback and without feedback. Trial-averaged PSTHs of

ON-center RC for two spot/patch diameters: 2 and 8 degrees. PSTHs for the phase-reversed feedback are compared with PSTHs shown in Fig

6. Corticothalamic synapse weights for the feedback configuration are the same as in Fig 10.

https://doi.org/10.1371/journal.pcbi.1005930.g013
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off, and there is only feedback excitation. Here it is seen that very large values of the excitatory

connection from PYs to RCs (cf. row 4) can even result in an opposite effect, i.e., a reduced

surround suppression. However, the combined effect of feedback excitation and inhibition

enables a larger increase of the surround suppression compared to the case with only feedback

inhibition as exemplified by the lower right panel (row 4, column 4) in Fig 16.

In general terms, a similar behavior is observed for the responses to the patch grating with

phase-reversed feedback (Fig 17): there are larger firing rates when increasing the excitatory

Fig 14. Area-response curves for ON-center RC with and without feedback for phase-matched and inhibitory-

only feedback. A: phase-matched: synaptic weight between PYs and RCs set to 1.5 nS, between PYs and INs to 0.3 nS.

B: inhibitory-only: synaptic weight between PYs and RCs set to zero, between PYs and INs to 0.3 nS The RC receives

feedback from a region of 2 × 2 PYs.

https://doi.org/10.1371/journal.pcbi.1005930.g014
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connection and a marked reduction of firing rates for the greatest values of the IN synaptic

conductance. Also here the combined effect of excitation and inhibition from cortical feedback

produces the largest increase in surround suppression of RCs.

RC responses with the phase-matched configuration are shown for the flashing spot in Fig

18 and for the patch grating in Fig 19. Here the area-response curves with feedback largely

maintain the same shape of the area-response curves without feedback since both cortical

excitation and inhibition are driven by the same type of cell. Unlike for the phase-reversed

Fig 15. Spike receptive fields for RC and PY for phase-matched and inhibitory-only feedback. A–B: phase-matched: synaptic weight between PYs and RCs set to

1.5 nS, between PYs and INs to 0.3 nS. C–D: inhibitory-only: synaptic weight between PYs and RCs set to zero, between PYs and INs to 0.3 nS. The RC receives

feedback from a region of 2 × 2 PYs. x-y-t receptive-field maps of ON-center RC and ON-center vertically oriented PY are shown in A and C. Their corresponding

spatiotemporal x-t receptive-field profiles are shown in B and D. Additional column on the right of panels B and D shows 1D temporal profiles extracted from two

locations of the x-t receptive field corresponding to the receptive-field center (ON subregion) and receptive-field surround (OFF subregion). Firing rates are

normalized by the same values used in Fig 4.

https://doi.org/10.1371/journal.pcbi.1005930.g015
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feedback, the level of surround suppression in the RC is only increased when the excitatory

feedback is absent, i.e., top rows in Figs 18 and 19. With excitatory feedback added (rows 2–4),

the surround suppression is reduced. Thus with excitatory feedback present in addition to

feedback inhibition, the surround suppression is always smaller for the phase-matched set-up

compared to the phase-reversed set-up.

Two measures have been commonly been used to characterize area-response curves: the

diameter giving the largest response (corresponding to the receptive-field center size for

Fig 16. RC area-response curves for flashing spots for phase-reversed feedback. Normalized and unnormalized RC responses for different synapses

weights between PYs and dLGN neurons, ranging from 0 (without feedback) to 6 nS, and for the two feedback spatial kernels: 1 × 1 and 2 × 2. Values shown

for the synaptic weights represent the sum of all individual synaptic conductances of the same type converging to a given cell, i.e., for the 2 × 2 kernel, the

value of every monosynaptic connection is the value depicted here divided by 4. The primary vertical axis of every panel (on the left) shows the values of the

unnormalized response and the secondary vertical axis (on the right), the values of the normalized response, as shown for the panel in the first row and first

column.

https://doi.org/10.1371/journal.pcbi.1005930.g016
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flashing spots) and the center-surround antagonism [27, 28, 41]. In Fig 20 we show a summary

of these response measures from the previous area-response curves (Figs 16–19).

We first consider the effects of cortical feedback on the center-surround antagonism coeffi-

cient (Fig 20A). Independently of the type of stimulus, there is a significant difference between

the phase-reversed and phase-matched feedback configurations: in the phase-reversed case,

high values of the center-surround antagonism coefficient are achieved by those parameter

combinations that exert both strong excitation and inhibition to the RC (towards the bottom

Fig 17. RC area-response curves for patch gratings for phase-reversed feedback. Normalized and unnormalized RC responses for different synapses

weights between PYs and dLGN neurons, ranging from 0 (without feedback) to 6 nS, and for the two feedback spatial kernels: 1 × 1 and 2 × 2. Values shown

for the synaptic weights represent the sum of all individual synaptic conductances of the same type converging to a given cell, i.e., for the 2 × 2 kernel, the

value of every monosynaptic connection is the value depicted here divided by 4. The primary vertical axis of every panel (on the left) shows the values of the

unnormalized response and the secondary vertical axis (on the right), the values of the normalized response, as shown for the panel in the first row and first

column.

https://doi.org/10.1371/journal.pcbi.1005930.g017
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right corner), whereas, in the phase-matched case, only large values of inhibition can increase

the center-surround antagonism coefficient (towards the top right corner).

For the same synaptic conductances for the feedback, the phase-reversed arrangement

always gives the largest values of the center-surround antagonism coefficient. Further, with

this configuration, cortical feedback always increases the center-surround antagonism more

for the patch-grating than for the flashing spot. We also see that the wider feedback axonal

arborization, i.e., 2 × 2, always gives larger surround suppression than the narrow 1 × 1.

Fig 18. RC area-response curves for flashing spots for phase-matched feedback. Normalized and unnormalized RC responses for different synapses

weights between PYs and dLGN neurons, ranging from 0 (without feedback) to 6 nS, and for the two feedback spatial kernels: 1 × 1 and 2 × 2. Values shown

for the synaptic weights represent the sum of all individual synaptic conductances of the same type converging to a given cell, i.e., for the 2 × 2 kernel, the

value of every monosynaptic connection is the value depicted here divided by 4. The primary vertical axis of every panel (on the left) shows the values of the

unnormalized response and the secondary vertical axis (on the right), the values of the normalized response, as shown for the panel in the first row and first

column.

https://doi.org/10.1371/journal.pcbi.1005930.g018
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The sizes of the spot/patch that produce the maximal RC response are shown in Fig 20B.

For the phase-reversed feedback, a reduction of the maximum-response size is seen for the

patch grating when one or both types of cortical feedback is present. The same tendency,

though less prominent, is seen also for flashing spots. Also for the phase-matched feedback,

the maximum-response sizes are reduced by increasing inhibition to RCs. However, in the

phase-matched case, excitatory feedback had the opposite effect compared to the phase-

reversed case, i.e., excitation enlarged the maximum-response sizes.

Fig 19. RC area-response curves for patch-grating for phase-matched feedback. Normalized and unnormalized RC responses for different synapses

weights between PYs and dLGN neurons, ranging from 0 (without feedback) to 6 nS, and for the two feedback spatial kernels: 1 × 1 and 2 × 2. Values shown

for the synaptic weights represent the sum of all individual synaptic conductances of the same type converging to a given cell, i.e., for the 2 × 2 kernel, the

value of every monosynaptic connection is the value depicted here divided by 4. The primary vertical axis of every panel (on the left) shows the values of the

unnormalized response and the secondary vertical axis (on the right), the values of the normalized response, as shown for the panel in the first row and first

column.

https://doi.org/10.1371/journal.pcbi.1005930.g019
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Discussion

In the present paper we have developed a mechanistic network model of the thalamocortical

system with explicit representations of LGN cells (relay cells (RCs) and interneurons (INs))

and orientation-selective layer 6 simple cells placed on two-dimensional spatial grids. The

LGN and cortical cells are represented by biophysical neuron models based on the cable equa-

tion and Hodgkin-Huxley type active conductances. The input of the model is provided by ret-

inal ganglion cells (GCs) implemented by means of descriptive filter models.

Fig 20. Summary of response measures for area-response curves. Contour plots of the center-surround antagonism coefficient (A) and stimulus diameters

giving the largest response (corresponding to the receptive-field (RF) center for flashing spot) (B) as a function of synaptic weights and feedback spatial extent

for the two phase arrangements considered: phase-reversed and phase-matched.

https://doi.org/10.1371/journal.pcbi.1005930.g020
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The main focus of the study has been exploration of the effects of cortical feedback on the

spatial responses of RCs to flashing-spot and patch-grating stimuli as this has received substan-

tial experimental attention [2, 4, 19, 32]. Comparison of our simulation results with previous

experimental findings supports the notion that a ‘push-pull’ (phase-reversed) organization of

cortical feedback [62], i.e., ON-center RCs receive direct (monosynaptic) excitatory feedback

from OFF-dominated cortical cells and indirect inhibitory feedback from ON-dominated

cortical cells, provides a dual effect that simultaneously amplifies excitatory responses in the

receptive-field center and inhibitory responses in the receptive-field surround of RCs [18, 83].

As a result, the center-surround antagonism of RCs is amplified by cortical feedback and the

maximum RC response occurs for reduced stimulus sizes. The combination of these two

effects, excitatory in the receptive-field center [18] and inhibitory in the receptive-field sur-

round [4, 19], may be understood as complementary functions that dynamically sharpens the

spatial focus of the receptive field and increase their spatial resolution.

Model construction and validation

Feedforward model. The present work builds on our previous feedforward model that

investigated the roles of triadic and axonal inhibition from dLGN INs on the RC response

[41]. In the previous model, a single multicompartmental IN model incorporating dendroden-

dritic interaction between RCs and INs on triads [45] was used in combination with five sin-

gle-compartment RC point-neuron models (adapted from [42]). Further, the parameters of

the synaptic connections were fitted so that the model predicted flashing-spot area-response

curves for RCs and GCs in accordance with experimental data from cat dLGN [27, 28]. In the

present model the connectivity pattern for retinogeniculate and intrageniculate connections in

[41] is kept. The plausibility of the RC and GC models was supported by the observation that

their spatiotemporal receptive-field profiles (upper two rows of panels in Fig 4) were seen to

be qualitatively similar to experimental observations [26].

With the present focus on how cortical feedback affects the RC response, we constructed a

minimal model of layer 6 in the primary visual cortex including a single type of cortical cells,

pyramidal cells (PYs). Further, the model in [41] was extended to include both ON- and OFF-

center cells to allow for cross-symmetry thalamocortical and corticothalamic projections.

Receptive fields of simple cortical cells are orientation-selective, and two orientation-selective

cortical populations have been included in the model, one preferring horizontally-oriented sti-

muli, the other vertically-oriented stimuli. This orientation selectivity was constructed by tai-

loring thalamocortical excitatory inputs from 3 ON and 3 OFF RCs, each ON and OFF

subregion spanning a patch of 3 deg × 1 deg in the visual field with a length/width ratio of

about 2.5 [58–61] (Fig 1).

The resulting PY spatiotemporal receptive-field profiles was observed to resemble the

experimentally-observed receptive field for the ‘separable simple cell’ in [26] (Fig 4). We fur-

ther computed two receptive-field measures as described in [48, 69]: an overlap index (Eq 13)

assessing the spatial segregation of subregions within the receptive field and a push-pull index

(Eq 14) determining the relative weight of the antagonistic response to stimuli of opposite con-

trast, and confirmed that they were compatible with what has been observed for cortical simple

cells [48, 69].

Feedback model. The detailed arrangement of the corticothalamic feedback provided by

layer-6 cells is less known. We thus investigated several candidate feedback configurations

both in terms of (i) the different phase arrangements from the ON and OFF zones in the visual

cortex to the dLGN cells and (ii) the spatial divergence of the feedback. With regard to the

phase arrangements between receptive fields of cortical cells and LGN cells, we have
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considered two different patterns (Fig 3): In the phase-reversed arrangement (‘push-pull’)

[62], ON-center PYs synapse on ON-center INs while OFF-center PYs synapse on ON-center

RCs. In the phase-matched arrangement (‘push-push’), both ON-center INs and ON-center

RCs receive feedback from ON-center PYs.

Previous studies (on cat LGN) have indicated that most interneuron action potentials can

be accounted for by retinal input [64, 65]. Therefore, we chose to put cortical synapses distally

on INs. With this setup, cortical feedback could increase the inhibition of RCs via dendroden-

dritic interaction with little effect on the IN firing rate (cf. Fig 11).

In terms of the spatial divergence of the corticothalamic axons, we have analyzed two feed-

back configurations: 1 × 1 and 2 × 2. In the 1 × 1 feedback, every PY synapses a single spatially

overlapping RC and the corresponding IN dendrite. In the 2 × 2 feedback, every PY connects

to four neighboring RCs and the four dendrites of a single IN. Such a spatially extended

arrangement (2 × 2) is more in accordance with anatomical observations of the spatial spread

of corticothalamic axons in cat dLGN [63].

Area-response curves

The main results from our model study were the area-response curves for flashing-spot and

patch-grating stimuli, a commonly used measure of visual responses for cells in the early stages

of the visual system [2, 4, 18, 19, 27, 28, 40, 80, 81].

We first considered the case with a rough balance between excitatory and inhibitory feed-

back so that the main effect of cortical feedback is on the shape of the area-response curves,

not the magnitude (Figs 10 and 14). With a phase-reversed feedback arrangement a clear feed-

back-induced increase in surround suppression is observed both for flashing spots and patch

gratings (Fig 10), as quantified by the center-surround antagonism coefficient α (Eq 12)

(Table 4). Such a feedback-induced increase of surround suppression has been observed in

experiments with both flashing spots [32] and patch gratings [4, 19], although the effect

appears more significant for patch gratings [2, 4]. Our model results gave a larger increase of

surround suppression for the patch-grating stimulus, but not as prominent as the increase

reported by Sillito et al. [4]. With the same choice of parameters, a phase-matched feedback

arrangement resulted in very little change in surround suppression for both types of stimulus

(Fig 14).

Increased surround suppression implies that RC cells in relative terms become more

responsive to small stimuli and, thus, the cell more selective in spatial tuning. An additional

effect of the phase-reversed feedback is the shrinking of the stimulus size giving the maximum

responses in the area-response curves, clearly observed for the phase-reversed feedback, but

largely absent for phase-matched feedback (Figs 10 and 14).

We next did a parameter sweep, i.e., investigated the effects of cortical feedback on the RC

area-response curves for a wide range of different synaptic weights between PYs and dLGN

neurons and for the different spatial feedback kernels (1 × 1 and 2 × 2) (Figs 16–19). The

results for our two key area-response curve measures, the stimulus diameters giving the largest

response and the center-surround antagonism coefficient α, were summarized in Fig 20.

A first observation was that both for flashing-spot and patch-grating stimuli, the phase-

reversed and phase-matched cases gave very different dependency of the center-surround sup-

pression, i.e., center-surround antagonism coefficient α, on synaptic weights (Fig 20A). For

the phase-reversed case, high values of the center-surround antagonism coefficient were

achieved by those parameter combinations that exert both strong excitation and (indirect)

inhibition to the RC (towards the bottom right corner). Here the ON-center inhibition and

the OFF-center excitation both contribute to increasing the surround suppression. Thus large
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values of the surround suppression can be achieved even when excitatory and inhibitory effects

are roughly balanced [18, 83]. In contrast, for the phase-matched case, feedback-induced

increases in the center-surround antagonism coefficient α required the inhibition to dominate

the excitation. This reflects that the effects of ON-center inhibition and ON-center excitation

in the feedback tend to cancel each other out. This is in accordance with the observation in

Figs 10 and 14 where the area-response curve for the ‘inhibition-only’ case was seen to repre-

sent an intermediate case between the phase-reversed and phase-matched situations.

When comparing the different spatial feedback patterns for the phase-reversed case, the

2 × 2 feedback pattern was seen to be more effective in increasing surround suppression in the

RC response than the 1 × 1. Incidentally, a spatially widespread feedback pattern has been sug-

gested by anatomical studies of the innervation pattern of corticothalamic axons in the dLGN

[63].

For flashing-spot stimuli only small variations in the diameters producing the maximal RC

response were observed when varying the synaptic weights (Fig 20B). However, for patch-grat-

ing stimuli a reduction was observed in the maximum-response diameter was observed when

one or both types of cortical feedback were present.

Comparison with previous modeling approaches

Other modeling studies have also investigated the effect of cortical feedback on spatial process-

ing of RCs with different stimulus patterns [39, 40]. The focus in [39] was on exploring the

role of cortical feedback in modulating RC responses to discontinuity in orientations in grat-

ings in bipartite stimuli. In [40] the extended DOG (eDOG) model was introduced, allowing

for analytical explorations of effects of cortical feedback in certain settings, i.e., with certain

combinations of excitatory and (indirect) inhibitory feedback from ON- and OFF-center corti-

cal cells onto RCs. There a preliminary use-case showed that a phase-reversed (‘push-pull’)

arrangement of cortical feedback where ON-center RCs receive direct excitation from OFF-

driven cortical cells and balanced indirect inhibitory feedback from ON-driven cortical cells,

may provide increased center-surround antagonism.

Our biophysical model and the above-discussed firing-rate models represent opposite

extremes in terms of biological detail in LGN circuit models [86]. Models at an intermediate

complexity level where the cells are modeled as integrate-and-fire neurons have also been used

to explore cortical feedback effects on LGN cell [33–36]. However, these have focused on tem-

poral response properties such as feedback-induced spike synchronization [35], long-lasting

correlations [36] and effects of feedback on visual latency [33], not the spatial properties which

has been the main topic here.

Future model applications and model extensions

An obvious next application of the present model would be to explore temporal response prop-

erties of LGN cells and, in particular, how these are affected by various types of cortical feed-

back. One line of inquiry would be to explore the relative roles of feedforward and feedback

connections in shaping the temporal receptive fields of LGN cells, analogous to the questions

addressed by the firing-rate models in [37] and [38]. Another line of research would be on

studying spike synchronicity and correlations as addressed earlier with integrate-and-fire

models [35, 36]. A third line could be to explore in detail how the temporal structure of the

PSTH, and in particular the ‘interval histogram’ of RC spikes, is affected by feedback [34].

In addition to feedback from cortex, both RCs and INs receive inhibitory feedback from

neurons in the thalamic reticular nucleus (TRN) [5]. TRN neurons are thought to play a key

role in the process of sleep spindle oscillations generated within the thalamic circuitry [42, 43].
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The TRN also contributes to the control of visual attention and awareness [87], but the effects

on procession of visual signals remain poorly understood [88]. TRN neurons do not receive

direct input from the retina as LGN INs, instead they receive feedforward visual signals from

collaterals of geniculocortical axons. TRN neurons also receive cortical feedback through corti-

cothalamic axons, and their synapses on RCs are situated in close proximity to those of corti-

cothalamic axons [1]. Given this organization of synaptic connections and its position within

the network, TRN cells are likely to influence the transfer of visual information in a different

manner than LGN INs. Modeling studies exploring the putative role of TRN neurons on visual

processing have already been pursued [89], and the present biophysical model could be

extended to include also such neurons when more is known about these neurons and their

possible role in visual processing.

The present model assumes static synapses while a number of studies have demonstrated

short-term plasticity in different synapses of the thalamocortical circuit, i.e., short-term

depression at the retinogeniculate [90, 91] and geniculocortical [92, 93] synapses, as well as in

the feedback connection from cortex to INs [94]. In contrast, the feedback connection from

cortex to RCs appears to be facilitating [90, 95]. Such plasticity opens up for an even richer

dynamical repertoire of the circuit, and would be an interesting topic for a future study using

the present model with static synapses as a starting point. In particular, it would be interesting

to explore if short-term synaptic plasticity could affect our prediction that phase-reversed cor-

tical feedback is the most effective mechanism for increasing center-surround antagonism.

dLGN cells have two different response modes, burst and tonic, suggested to relate of the

animal [5, 96, 97]. Modulatory inputs from other parts of the brain may switch between these

modes by shifting the baseline membrane potentials of RCs and INs. Tonic firing has been sug-

gested to be more suitable for transferring visual information because it avoids nonlinear dis-

tortions created during burst firing, while burst firing was suggested to be best suited as an

‘alarm clock’, i.e., rapid stimulus detection [5]. Recent studies have demonstrated, however,

that thalamic bursts can also contribute to sensory processing [98–101]. In the current study,

our RC and IN models were based on data from dLGN neurons that rested on relatively depo-

larized membrane potentials, -60 mV and -63 mV, respectively, and fired predominantly in

the tonic mode (Fig 2). An exploration of the functional roles of the two firing modes, and

putative switches between them, would be another natural extension of the present work.

The present model of primary visual cortex is obviously simplified. Cells in layer 4 of cortex

are the main targets of projections from RCs, while the feedback from cortex to dLGN comes

from cells in layer 6. Even though there are also projections from RCs to layer-6 cells, there are

likely cross-layer processing in cortex that affects the thalamocortical feedback loop and diffi-

cult to capture by a single-layer cortex model. Despite the model simplicity, the pyramidal-cell

receptive fields produced by our network model (Figs 4, 12 and 15) are nevertheless seen to

resemble the receptive fields of simple cells which also has been observed in layer 6 of cat visual

cortex [102]. Thus the error introduced by our simplified cortical network model could be

modest for the present application, but this needs further exploration when thalamocortical

models including more comprehensive cortical circuitry becomes available.

Further, there are several neural mechanisms that our simplified model of cortical orienta-

tion tuning does not account for, such as recurrent cortical excitation or horizontal inhibitory

connections [58, 103–105], which can amplify a weak orientation bias. Although the area-

response curves of cortical cells to the patch grating in Figs 8 and 9 showed a marked differ-

ence for gratings at preferred and non-preferred orientations, stimuli presented at non-pre-

ferred orientations did not suppress cortical response to the background rate as observed

experimentally in some cells [106]. A stronger orientation selectivity of the cortical cells would
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likely affect the feedback-induced changes in RC response, but how, and to what extent,

remains to be explored.

While one option for extending the present model would be to add more neuron types to

a single-layer cortex model, it might be tempting to aim to connect the present biophysically

detailed model for the dLGN circuit with an equally detailed model for the primary visual

cortex. However, at present such models are lacking, and a comprehensive model based on

biophysical neuron models including both the dLGN and, say, V1 would anyway be compu-

tationally extremely demanding. An alternative could be to instead model V1 dynamics with

simpler neuron models such as the Potjans-Diesmann network model based on integrate-

and-fire neurons [107].

Experimental studies of cortical feedback effects on response properties in the dLGN have

been ongoing for at least 40 years (see, e.g., [7]). However, a recurring challenge has been to

reversibly remove cortical feedback in a controlled manner to compare physiological responses

of dLGN cells with and without cortical feedback. Both cooling [11] and pharmacological

manipulations [18] have been used. However, the advent of optogenetics now offers unprece-

dented opportunities for highly-controlled activation or deactivation of individual cell types.

In [108] the role of layer-6 cells in providing gain control for the visual responses in the upper

layers of mouse visual cortex was studied by such techniques. A similar study where visual

responses of dLGN cells are measured while the corticothalamic cells in layer 6 are selectively

activated or deactivated by photostimulation, would be most welcome for testing predictions

of the present model.
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