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Abstract 

The octahedron family of tensegrity structures is presented in this research. The octahedron and the 

expanded octahedron (well-known tensegrities in the literature) are the first and second components of 

the family. A new tensegrity is presented: the double-expanded octahedron. This new tensegrity form 

was obtained following the connectivity pattern of the octahedron family presented in this work. The 

values of the force densities or force:length ratios that satisfy the minimum required rank deficiency of 

the force density matrix were computed analytically. Two types of solutions are obtained: full and 

folded forms. Results show that each lower member of the octahedron family is a folded form of a 

superior member of this family. Several examples are shown. 
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1. Introduction 

Tensegrity structures were first introduced by Fuller (Fuller, 1975). They have had a great development 

in the last years owing to their ingenious forms, lightweight, deployability and controllability. A 

tensegrity is defined as a prestressed discontinuous set of compression and tension members that are 

self-equilibrated. This type of structures is present in a wide diversity of fields as civil engineering 

(Adam and Smith, 2008), aerospace (Tibert and Pellegrino, 2002), biology (Ingber, 1998) and robotic 

(Graells Rovira and Mirats Tur, 2009). One of the key aspects in the design of tensegrity structures is 

to find a configuration of their members that leads to an equilibrium shape, process so-called form-

finding. 

Tibert and Pellegrino (Tibert and Pellegrino, 2003) presented a review of form-finding methods of 

tensegrity structures. One of these methods is the Force Density Method (FDM) proposed by Schek 

(Schek, 1974), which was originally conceived for the form-finding of tension only structures. The 

FDM is based on the concept of force:length ratio or force density q (Linkwitz and Schek, 1971; 

Schek, 1974) and it is widely used in the context of form-finding methods of tensegrity structures (Tran 

and Lee, 2010; Zhang and Ohsaki, 2006). Other alternative methods, such as the dynamic relaxation 

method introduced by Otter (Otter, 1965), can also be applied to the form-finding of tensegrity 

structures (Bel Hadj Ali et al., 2011; Zhang et al., 2006). 

A challenge related to the design of tensegrity structures is the development of an analytical form-

finding method with application to high-order tensegrity structures. There are many works related to 

numerical methods using FDM (Estrada et al., 2006; Masic et al., 2005; Tran and Lee, 2010; Zhang 

and Ohsaki, 2006) but little has been published in the literature about analytical methods (Hernández-

Montes et al., 2017; Vassart and Motro, 1999; Zhang et al., 2013). The analytical method consists on 
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finding a set of force densities in a symbolic analysis that achieve an equilibrium shape of the 

tensegrity. In order to simplify the computation, some symmetric properties are considered. Indeed, 

symmetry of tensegrity structures has been a great source to obtain equilibrium configurations for 

form-finding methods (Masic et al., 2005). 

The octahedron family is defined as a group of tensegrity structures which share the same connectivity 

pattern. Both the octahedron and the expanded octahedron (well-known tensegrity forms in the 

literature) belong to the so-called octahedron family as it is proved in the present work. In this work, 

the double-expanded octahedron is obtained following a certain connectivity pattern which is 

applicable to the members of the octahedron family. Due to their special characteristics, the members 

of the octahedron family can be used as modules in tensegrity domes, towers and bridges and as 

actuators or absorbers (expanded octahedron in (Xu and Luo, 2011)), as well as to many others 

potential applications. An analytical method is used to solve the form-finding problem obtaining both, 

full and folded forms (Hernández-Montes et al., 2017). Full forms are tensegrity structures where all 

the nodes in the equilibrium shape have different coordinates while in the folded forms some nodes 

share the same position in the equilibrium configuration. It is interesting to remark that the equilibrium 

shape of the double-expanded octahedron was not known a priori but it was obtained from the 

connectivity matrix which in turn depends on a connectivity pattern.  

 

2. Equilibrium, rank deficiency and stability of tensegrity structures 

2.1 Equilibrium of tensegrity structures 

The equilibrium equations of a general mesh composed by n + nf nodes (being n the free nodes and nf 

the fixed nodes) and m members are linearized by giving values of force:length ratios q to each 

member of the mesh (Linkwitz and Schek, 1971; Schek, 1974). The topology of the mesh is described 

by the connectivity matrix CS (ÎÂm´(n+nf)) as discussed in (Hernández-Montes et al., 2006; Jurado-Piña 
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et al., 2009). If the member j connects nodes i and k (i < k), then the ith and kth elements of the jth row 

of CS are set to 1 and -1 respectively, as follows: 

          (1) 

In Eq. (1), r denotes the rth column of the jth row in CS. The connectivity matrix can be partitioned 

into two parts as CS = [CïCf] if the free nodes are numbered first. In that case C (ÎÂm´n) represents the 

connectivity of free nodes and Cf (ÎÂm´nf) represents the connectivity of the fixed nodes. In tension 

(Hernández-Montes et al., 2006) and compression structures (Fernández-Ruiz et al., 2017) where the q 

value of all the members is of the same sign and fixed nodes are present, the form-finding problem is 

well-solved (Levy and Spillers, 2004).  

In the case of tensegrities some members are in tension (q > 0, cables) and others in compression (q < 

0, struts) and because they are free-standing structures no supports exist (that is: nf  = 0). Accounting 

for this, the equilibrium equations of tensegrity structures can be formulated as (Schek, 1974; Tran and 

Lee, 2010): 

                   (2) 

where D = CTQC (ÎÂn´n) is the force density matrix and x, y and z (ÎÂn) are the nodal coordinate 

vectors of the nodes. The values of the force:length ratio of each member are collected in the vector q = 

(q1, q2, q3, …, qm) being Q the diagonal square matrix of vector q. 

2.2 Rank deficiency 

It can be proved that, in order to obtain a structure with dimension d, it is necessary that the rank 

deficiency of the force density matrix has to be at least d + 1 (Hernández-Montes et al., 2017), what is 

called non-degeneracy condition. 
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According to its definition (D = CTQC), matrix D is a symmetric real matrix, so it is orthogonally 

diagonalizable by the spectral theorem: , where  is a diagonal matrix that contains all the 

eigenvalues of D (l1, l2, l3, …,ln) and P is an orthogonal matrix (that is P-1 = PT) in which  columns 

are an orthonormal base of eigenvectors of D. By definition ker(D) is the eigenspace of eigenvalue 0, 

so the dimension of ker(D) coincides with the multiplicity of 0 as eigenvalue of D. The eigenvalues of 

D are the solution of the characteristic polynomial p(l) of D, which has the form p(l) = ln + an-1ln-1 + 

… + a1l + a0. The determinant of D is always 0 since the row and column sums are zero and so a0 = 0 

(Hernández-Montes et al., 2017). As a consequence, a necessary condition for the development of a 

tensegrity in the space (three-dimensional, d = 3) is that: a1 (q1, …, qm) = a2 (q1, …, qm) = a3 (q1, …, qm) 

= 0. In this way, the characteristic polynomial is collected in the form p(l) = (ln-4 + … + a4) l4, being 0 

a solution of power l4 (which corresponds to a multiplicity of the eigenvalue 0 equal to d + 1 = 4). The 

condition a1 (q1, …, qm) = a2 (q1, …, qm) = a3 (q1, …, qm) = 0 is a system of polynomial equations in the 

force:length ratios q, which can be solved analytically if some relations between q values are imposed 

(Hernández-Montes et al., 2017).  

2.3 Stability of tensegrity structures 

This section is introduced in order to present this work in a self-contained format. In the following 

sections the study of the stability of the different equilibrium shapes presented herein are going to be 

analized. It is known that a tensegrity is stable if it returns to its equilibrium configuration after release 

of small enforced deformations or, in other words, any enforced deformation applied to a stable 

structure leads to an increase of its total potential energy. Mathematically the former condition implies 

that the potential energy has a minimum for the configuration for which the structure is stable. 

Assuming linear elastic relationship between normal stresses and strains and accounting for the 

definition of force:length ratio coefficient , the axial load 

acting in the member k of the tensegrity, Nk, can be expressed as: 
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                       (3) 

Being Ek and Ωk the Young´s modulus and the cross-sectional area and Lk and  the final and initial 

lengths of the member k, respectively. 

The elastic potential energy of a discrete structure of m members, such as a tensegrity, accounting Eq. 

(3) can be expressed as follow: 

                    (4) 

Using a Taylor series expansion in displacements, the deformation energy associated with a differential 

deformation of a tensegrity with n nodes and dimension d can be approximated by: 

                     (5) 

Being δ the vector of nodal coordinates: 

                            (6) 

Therefore, if the equilibrium configuration of the tensegrity is to be stable, then . 

It can be proved that if Eq. (4) is derived, the first term of the series in Eq. (5) corresponds to the 

equilibrium of the tensegrity: 

 being                        (7) 

with AÎÂd·n´m the equilibrium matrix of the tensegrity. As a result, the first term of the series in Eq. 

(5) vanishes according to Eq. (7), that is: 

                       (8) 
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Regarding the second term of the series in Eq. (5), it is evident that it corresponds to the derivative of 

the equilibrium condition: 

                (9) 

Accounting that:  

                     (10) 

Operating and rearranging conveniently, the following expression is obtained: 

            (11) 

In Eq. (11) the symbol denotes tensor product (Kronecker product), KElast is the elastic stiffness 

matrix in the global coordinate system and KGeom is the geometric stiffness matrix or initial stress 

matrix when both small deformations and Green-Lagrange strain tensor are considered being invariable 

with respect to the coordinate system (Gil-Martín et al., 2017a, 2017b). As the condition is 

always fulfilled because corresponds to the equilibrium condition (see Eq. (7) and Eq. (8)), the 

tensegrity is stable if the second term of , Eq. (9), finally expressed in Eq. (11) is always positive 

for all the values of , vector of differential displacements of the nodes others than the rigid-body 

displacements, that is: 

                    (12) 

The former inequality is true if the tangent stiffness matrix is a positive semi-

definite matrix. 

Relevant intermediate steps from Eq. (5) to Eq. (11) have been included in Section A.1 of Appendix A. 
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Accounting that the compatibility matrix of the tensegrity is   (see Section A.2 of Appendix A) 

the compatibility conditions in the structure corresponds to: 

                       (13) 

Being the vector of infinitesimal displacements of the nodes, L= diag (l) where l is the vector 

containing the length of the members and  the vector containing the variations of lengths of the 

elements of the tensegrity.  

If mechanisms are defined as non-trivial displacements, other than rigid-body motions, preserving the 

lengths of the members then if the increment displacement  in Eq. (12) corresponds to a mechanism, 

, according to Eq. (13) the term corresponding to the elastic stiffness matrix vanishes and the 

tensegrity is stable if: 

                    (14) 

which is true if the geometrical stiffness matrix is a positive-semidefinite matrix. This latter condition 

is called prestress-stability.  

According to (Zhang and Ohsaki, 2007) a d dimensional tensegrity structure is super-stable if the 

following three conditions are all satisfied: i. The force density matrix D has the minimum necessary 

rank deficiency d + 1 (see Section 2.2); ii. The force density matrix D (or the geometric stiffness 

matrix, KGeom) is positive semi-definite, and iii. The member lengths of the structure are not changed 

by the non-trivial affine (infinitesimal) motions of the structure, or equivalently, the rank of the 

geometry matrix G (see A.3 of Appendix A) is . 

A deeper explanation of this section can be found in (Zhang and Ohsaki, 2015).  

 

3. The octahedron family: connectivity pattern 

The octahedron family is a group of tensegrity forms that share a common connectivity pattern. The 

first and simplest component of the family is the octahedron (see Figure 1.a), composed by 6 nodes and 
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15 members (3 struts and 12 cables). The second component of the family is the expanded octahedron 

(see Figure 1.b), which has 12 nodes and 30 members (6 struts and 24 cables). Both tensegrities are 

well-known tensegrity forms widely studied in the literature. 

 

Figure 1. Octahedron (a) and expanded octahedron (b). Black lines correspond to cables and grey lines to struts. 

Black numbers correspond to nodes and grey numbers to struts, respectively. 

In general, each individual of the octahedron family comes from the expansion of a previous member 

of the family. The name “expanded octahedron” itself indicates that it comes from the expansion of the 

octahedron in such a way that each node, cable and strut of the octahedron is duplicated during the 

expansion process.  

All the components of the octahedron family can be obtained from the diamond pattern presented in 

(Pugh, 1976), that is, cables form diamonds or rhombic cells with a strut defining one diagonal, Figure 

2. 

It can be proved that each tensegrity of the octahedron family has as many rhombic cells as number of 

struts. A plane connection graph is the graphical representation of the connectivity between the nodes 

of each tensegrity. It is composed by rhombic cells connected among them and it is very useful for the 

construction of the connectivity matrix, C.  

3.1. Connectivity rules 

In order to obtain the graphical plane representations of the members of the octahedron family the 

following rules regarding the connectivity pattern need to be considered: 
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a) Each member of the family has twice the number of rhombic cells of the previous member of 

the family (and consequently twice the number of nodes, cables and struts). 

b) Each node connects 4 cables and 1 strut (struts do not contact with each other, Figure 2). 

c) Struts and cells are arranged in three groups.  

In Figure 1.b, corresponding to the expanded octahedron, it can be seen that the pair of struts 1-

2 comes from strut 2 of the octahedron (see Figure 1.a); analogously, the pairs of struts 3-4 and 5-6 in 

Figure 1.b come from struts 1 and 3 in Figure 1.a, respectively. Following the expansion pattern, one 

strut of the octahedron is the origin of two struts of the expanded octahedron and of four struts of the 

double-expanded octahedron. In general, all the struts of an upper member of this family will be 

overlapped in one strut of the octahedron (Figure 1.a) at the end of the folding process and so, because 

the octahedron has three struts, three groups of struts exist. Accordingly, the expanded octahedron 

(Figure 1.b) has three groups of struts with two struts per group. It is interesting to remark that, as there 

is a strut per cell there is an equivalence between strut and cell. 

d) Nodes are arranged in pairs. Each pair of nodes is part of the same rhombic cell and they 

are not connected between them. This pair constitutes the principal nodes of the cell, being the other 

the secondary nodes (Figure 2). The principal nodes are called “top principal node” and “bottom 

principal node” so that they are numbered in order starting from the top. 

 

Figure 2. Rhombic cell and nomenclature of its nodes 

The nodes of the expanded octahedron in Figure 1.b can be arranged in 6 pairs (1-2; 3-4; 5-6; 7-8; 9-

10; 11-12). As in the case of the struts, a duplication of nodes occurs in the evolution from the 

i: top principal node

j: bottom principal node

k: left 
secondary 
node

l: right 
secondary 
node

i<j & k<l
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octahedron to the expanded octahedron: nodes 1 and 2 of the expanded octahedron come from node 1 

of the octahedron in Figure 1.a. As can be seen in Figure 1.b in the rhombic cell defined by the nodes 

1-7-2-5, the principal nodes 1-2 are not connected between them. 

e) Each pair of nodes is connected with other pair of nodes through a pair of struts.  

In Figure 1.b it can be seen that the pairs of nodes 1-2 and 3-4 are connected through the paired struts 3 

and 4 in such a way that strut 3 links nodes 1 and 3 while strut 4 links nodes 2 and 4. 

 f) Each pair of nodes is connected through cables with other two nodes linked by a strut of 

another group. 

For example, in Figure 1.b the pair of nodes 1-2 (which are linked to other nodes by two paired struts, 

3 and 4) are connected through cables with the nodes 5-7, which are linked by the strut 1 (which is not 

part of the group of struts 3 and 4).  

3.2. Graphical plane representation 

Let us define p as the number that indicates the position of each tensegrity into the family (being p = 1 

for the octahedron, p = 2 for the expanded octahedron and p = 3 for the tensegrity presented in this 

work which has been called as double-expanded octahedron). It can be proved that all of the previous 

rules are fulfilled for the members of the octahedron family up to the one corresponding to p = 3 if the 

plane representation graph of the member p is built as indicated below: 

1- Draw a 3×2(p-1) matrix of rhombic cells so that the rows correspond to each group of cells 

(or struts). 

For example, the octahedron has 3×2(1-1) = 3 rhombic cells (see Figure 3.a). In this case, each 

group has only one rhombic cell and so each strut corresponds to a different group (see rule c)).  

2- Number consecutively only principal nodes of each rhombic cell. 

 See Figure 3.b. In this step, the pairs of nodes defined in rule d) are numbered.  

 3- Number the secondary nodes of each group of rhombic cells employing the numbers of the 

principal nodes corresponding to the next group following this particular protocol: firstly use in order 
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the number of the top principal nodes and secondly the corresponding to the bottom principal nodes. 

Take into account that groups form a closed loop and so after group 3 is group 1 (Figure 3.c). 

 4- Construct the plane connection graph assembling the rhombic cells. 

 The plane connection graph of the octahedron is the one shown in Figure 3.d, which can be 

obtained matching the identical nodes in the rhombic cells in Figure 3.c, as if it was a puzzle. Arrows 

in Figure 3.d point out identical nodes in the graph.  

Figure 3.d shows how the diamond cells need to be linked among them in order to get the 3D 

octahedron. It is evident that connectivity in Figure 3.d fulfils rules b), e) and f). 

 

Figure 3. Plane connection graph of the octahedron. Black and grey lines correspond with cables and struts 

respectively. a) Rhombic cells, b) numbering of the not linked nodes, c) numbering of all nodes, d) connection graph. 

In the case of the expanded octahedron (p = 2), there are 3×2(2-1) = 6 rhombic cells arranged in three 

groups of two (Figure 4.a, 4.b and 4.c). The numbering of nodes and the plane connection graph 

corresponding to the expanded octahedron obtained according to the former connectivity rules is 

shown in Figure 4.b to 4.d. As in the previous case, arrows in Figure 4.d indicate the correspondence 

between identical nodes.  
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Figure 4. Plane connection graph of the expanded octahedron. Black and grey lines correspond with cables and 

struts respectively. a) Rhombic cells arranged in three groups, b) numbering of the not linked nodes, c) detail of step 

3 in the numbering procedure, d) numbering of all nodes, d) connection graph. 

Finally, the double-expanded octahedron (p = 3) has 3×2(3-1) = 12 rhombic cells arranged in groups of 

three (with four cells per group). Both the plane connection graphs as well as the numbering of the 

nodes are shown in Figure 5 (the corresponding author, by request, will provide the connectivity matrix 

C of all the plane connection graphs shown in this work). 
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Figure 5. Plane connection graph of the double-expanded octahedron. a) Numbering of the not linked nodes of the 

rhombic cells arranged in three groups, b) numbering of all nodes, c) detail of step 3 in the numbering procedure, d) 

connection graph. 

The former numbering procedure is valid for tensegrity structures of the octahedron family up to p = 3 

due to the complexity of rule f) for higher members. The interaction between pairs of nodes and groups 

of struts change for each member and the proposed numbering procedure is not able to obtain the plane 
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connection graph bigger than p = 3 because it does not allow to link more than four cells per group. So, 

more research is needed in order to obtain higher superior members of this family, if they exist. 

 

4. The octahedron family: form-finding 

4.1 Octahedron 

The equilibrium shape of the octahedron is obtained solving Eq. (2). The connectivity matrix CÎÂ15´6 

is obtained from the plane connection graph in Figure 3.d and it is defined according to Eq. (1). Only 

two force:length ratios are considered: q1 for cables (black lines in Figure 3.d) and q2 for struts (grey 

lines in Figure 3.d), resulting in a diagonal matrix QÎÂ15´15. Then the characteristic polynomial p(l) 

of matrix DÎÂ6´6 is computed and the non-degeneracy condition in 3D leads to the system of 

equations a1 (q1, q2) = a2 (q1, q2) = a3 (q1, q2) = 0. The expressions of the polynomials a1, a2 and a3 are 

shown in Appendix B in Eqs. (B1), (B2) and (B3) respectively. The former equation system implies 

ker(D) = 4 as it has been explained in Section 2.2. This system has two possible solutions: q1 = q2 = 0 

(not considered) and q2 = −2q1. For the latter solution, D and the eigenvectors corresponding to the 

eigenvalue 0 (base of ker(D)) are calculated and the coordinates of the nodes are obtained as a linear 

combination of these eigenvectors (see Figure 6). 

 

Figure 6. Final equilibrium shape of the octahedron. Black lines correspond with cables and grey lines with struts. 

4.2 Expanded octahedron 

As before, the connectivity matrix of the expanded octahedron CÎÂ30´12 is obtained from its plane 

connection graph (Figure 4.d). Again, two values of the force:length ratio, q, are considered: q1 for 
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cables (black lines in Figure 4.d) and q2 for struts (grey lines in Figure 4.d), resulting in QÎÂ30´30. The 

characteristic polynomial p(l) of DÎÂ12´12 is calculated and the system of equations a1 (q1, q2) = a2 

(q1, q2) = a3 (q1, q2) = 0 solved (a1, a2 and a3 are shown in Appendix B in Eqs. (B4), (B5) and (B6) 

respectively), obtaining the following solutions: q1 = 0 (not considered), q2 = −2q1 and q2 = −3/2q1. The 

first considered solution corresponds to the octahedron (see Figure 7.a) but, in this case, there are two 

nodes at the same position in the space (that is, duplicated) and that is why it is called a folded form 

(Hernández-Montes et al., 2017). The other solution, q2 = −3/2q1, corresponds to the expanded 

octahedron (see Figure 7.b) which is a full form (Hernández-Montes et al., 2017) since all the nodes of 

the resultant equilibrium shape have different coordinates one to one. The latter solution agrees with 

the solution obtained analytically by Tibert and Pellegrino (Tibert and Pellegrino, 2003) and 

numerically by Gómez-Estrada et al. (Estrada et al., 2006). So, based on the former result, it can be 

concluded that the octahedron is a folded form of the expanded octahedron. 

 

Figure 7. Equilibrium shapes of the octahedron (a) and the expanded octahedron (b) from graph in Figure 4.d. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

Intermediate equilibrium configurations between the octahedron and the expanded octahedron (Figure 

7.a and 7.b) can be obtained if three values of q are considered instead of two: q1 for all the cables  

(black lines in Figure 4.d), q2 for one group of struts (for example, members connecting nodes 5-7 and 

6-8 in Figure 4.d) and q3 for the other two groups of struts. The polynomials a1 (q1, q2, q3), a2 (q1, q2, 

q3) and a3 (q1, q2, q3) are not shown due to its length. In this case, seven solutions are obtained when the 

(a) (b)

Single node Single cable          Single strut
Double node Double cable         Double strut
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non-degeneracy condition ker(D) = 4 is imposed: (1) q1 = 0, (2) q1 = q2 = 0, (3) q1 = q3 = 0, (4) q2 = q3 = 

−2q1, (5) q2 = q3 = −3/2q1, (6) q2 = −2q1 & q3 = −3/2q1 and (7) q2 = −3/2q1 & q3 = −2q1. The first three 

solutions are not considered and the equilibrium configurations corresponding to the other solutions are 

depicted in Figure 8. 

 

Figure 8. Equilibrium shapes obtained from the plane connection graph shown in Figure 4.d considering three 

different values of q. (a) Expanded octahedron, (b) intermediate state corresponding to q2 = −2q1 & q3 = −3/2q1, (c) 

intermediate state corresponding to q2 = −3/2q1 & q3 = −2q1, (d) octahedron. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article). 

In Figure 8, the only full form is the expanded octahedron (Figure 8.a). It can be seen that the folded 

forms depicted in Figure 8.b and Figure 8.c are intermediate states in the folding process from the 

expanded octahedron to the octahedron (Figure 8.d). Members and nodes overlapped at each 

equilibrium configuration are indicated in Figure 8.b to 8.d with different colour lines and black points, 

q2=-2q1 ; q3=-2q1

(d)

q2=-3/2q1 ; q3=-2q1

(c)

q2=-2q1 ; q3=-3/2q1

(b)

q2=-3/2q1 ; q3=-3/2q1

(a)

Single node
Double node
Single cable q1

Double cable q1

Single strut q2

Double strut q2

Single strut q3

Double strut q3
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respectively. Videos of tensegrity structures shown in Figure 8 are included as Supplementary 

Material. 

4.3 Double-expanded octahedron 

As well as the octahedron (p = 1) is a folded form of the expanded octahedron (p = 2, see Figure 8), the 

expanded octahedron itself is a folded form of a superior member of the family (p = 3). The presented 

double-expanded octahedron is a tensegrity which has not been studied up to now in the literature. The 

connectivity matrix CÎÂ60´24 has been defined using the plane connection graph shown in Figure 5.c, 

which has been obtained following the connectivity pattern of the octahedron family presented in 

Section 3.  

As in the previous cases only two values of the force:length coefficients are considered: q1 for cables 

(black lines in Figure 5.c) and q2 for struts (grey lines in Figure 5.c), resulting in Q ÎÂ60´60. Once the 

characteristic polynomial p(l) of D ÎÂ24´24 is calculated and the system of equations a1 (q1, q2) = a2 

(q1, q2) = a3 (q1, q2) = 0 solved (a1, a2 and a3 are shown in Appendix B in Eqs. (B7), (B8) and (B9) 

respectively) the following four solutions are obtained: (1) q1 = 0 (not considered), (2) q2 = −2q1, (3) q2 

= −3/2q1 and (4) q2 = −4/3q1. It can be proved that the solution q2 = −2q1 corresponds to the octahedron 

with all its members and nodes quadruplicated whereas than the solution q2 = −3/2q1 correspond to the 

expanded octahedron with all its members and nodes duplicated. Finally, the solution q2 = −4/3q1 

corresponds to the double-expanded octahedron represented in Figure 9. A video is included in the 

Supplementary Material to better visualise the double-expanded octahedron final shape. In addition to 

this, a video constructing a real model of the double expanded octahedron is also included in the 

Suplementary Material. 
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Figure 9. Double-expanded octahedron obtained from graph in Figure 5.c. 

So, both the octahedron and the expanded octahedron are folded forms of the double-expanded 

octahedron, proving that the tensegrity structure shown in Figure 9 is the third component of the so-

called octahedron family. 

As in the case of the expansion from the octahedron to the expanded octahedron (Figure 8), 

intermediate states can be obtained if three (instead of two) different values of the force:length ratios 

are considered: q1 for all the cables (black lines in Figure 5.d), q2 for a group of struts (for example, 

members connecting nodes 9-11, 13-15, 10-12 and 14-16 in Figure 5.d) and q3 for the other two groups 

of struts. As in the expanded octahedron case, polynomials a1 (q1, q2, q3), a2 (q1, q2, q3) and a3 (q1, q2, 

q3) are not shown due to its length. The following solutions are obtained: (1) q1 = 0, (2) q1 = q2 = 0, (3) 

q1 = q3 = 0, (4) q2 = q3 = −2q1, (5) q2 = q3 = −3/2q1, (6) q2 = q3 = −4/3q1, (7) q2 = −2q1 & q3 = −3/2q1, (8) 

q2 = −3/2q1 & q3 = −2q1, (9) q2 = −3/2q1 & q3 = −4/3q1 and (10) q2 = −4/3q1 & q3 = −3/2q1. The first 

three solutions are not considered. Solutions (4), (5) and (6) correspond to the octahedron, the 

expanded octahedron and the double-expanded octahedron, respectively; being the two first solutions 

folded forms and the last one the full form of the tensegrity. Solutions (7) and (8) correspond to 

intermediate states in the folding process from the expanded octahedron to the octahedron, both folded 

forms (see Figure 8.b and 8.c, respectively). The two last solutions correspond to intermediate states in 

the folding process from the double-expanded octahedron to the expanded octahedron and its 
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equilibrium configuration have been represented in Figure 10.b and 10.c, respectively. Videos of 

tensegrity structures shown in Figure 10 are included as Supplementary Material.  

 

Figure 10. Equilibrium shapes obtained from the plane connection graph in Figure 5.d considering three different 

values of q. (a) Double-expanded octahedron, (b) intermediate state corresponding to q2 = −3/2q1 & q3 = −4/3q1, (c) 

intermediate state corresponding to q2 = −4/3q1 & q3 = −3/2q1, (d) expanded octahedron. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article). 

4.4 Stability of the octahedron family 

In this section the stability of the tensegrities shown in Figure 8 and Figure 10 is studied. The cross-

sectional areas and the material properties of the elements (cables and struts) and the level of prestress 

have to be known to analyse the stability but this information is not necessary in order to study the 

super-stability (Zhang and Ohsaki, 2015). For the sake of simplicity, the maximum force:length ratio 

q2=-4/3q1 ; q3=-3/2q1

(c)

q2=-3/2q1 ; q3=-4/3q1

(b)

q2=-4/3q1 ; q3=-4/3q1

(a)

q2=-3/2q1 ; q3=-3/2q1

(d)

Single node
Double node
Single cable q1

Double cable q1

Single strut q2

Double strut q2

Single strut q3

Double strut q3
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for all the elements (cables and struts) has been taken as 1% of the product EΩ (where Ω is the cross-

sectional area of the member) as in (Zhang and Ohsaki, 2015).  

The coordinates of the nodes are obtained using directly the eigenvectors corresponding to the d + 1 

zero eigenvalues. As it has been shown in Section 2.2, the row and column sums of D are zero, so 

vector [1, 1, 1, …] is always solution of Eq. (2) (and consequently it is the corresponding eigenvector 

of a zero eigenvalue). Estrada et al. (Estrada et al., 2006) avoid this vector because it adds little 

information for the nodal coordinates. For this reason and without loss of generality in this work the 

other d eigenvectors are taken as the nodal coordinates of the tensegrity. 

Table 1 shows, for the studied connectivity patterns, the full and folded forms of the members of the 

octahedron family which have been obtained using the analytical method to solve the form-finding 

problem. The corresponding values of the force:length ratios, the values of ker(D) and the stability 

classification of each tensegrity (Eq. (12) and Eq. (14)) have also been summarized. It can be proved 

that the condition iii (see Section 2.3) defined by (Zhang and Ohsaki, 2007) is fulfilled in all the cases 

studied in this paper because the rank of the structural geometry matrix is 6 (see A.3 Appendix A). 

Table 1. Stability of the first three members of the octahedron family 

Pattern Double-expanded 
octahedron Expanded octahedron Octahedron 

n = 24 
m = 60 

 
(Figure 5) 

q2 = q3 = −4/3q1 q2 = q3 = −3/2q1 q2 = q3 = −2q1 

Full form Folded form 
duplicated members and nodes 

Folded form 
quadruplicated members and nodes 

ker(D) = 4 ker(D) = 4 ker(D) = 7 

Super-stable Unstable Unstable 

n = 12 
m = 30 

 
(Figure 4) 

 
 
 
− 
 
 
 

q2 = q3 = −3/2q1 q2 = q3 = −2q1 

Full form Folded form 
duplicated members and nodes 

ker(D) = 4 ker(D) = 4 

Super-stable Unstable 

n = 6 
m = 15 

 
(Figure 3) 

− − 

q2 = q3 = −2q1 

Full form 

ker (D) = 4 
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Super-stable 

 

All the full forms of the family (octahedron Figure 4, expanded octahedron Figure 8.a and double 

expanded octahedron Figure 9) are super-stable according to (Zhang and Ohsaki, 2015). On the other 

hand, folded forms shown in Figure 8.d and Figure 10.d (duplicated members and nodes) are unstable 

taking into account the materials properties and the level of prestress indicated above.  

Now the stability and super-stability of the intermediate equilibrium configurations between the 

octahedron and the expanded octahedron (Figure 8.b and 8.c) and between the expanded octahedron 

and the double-expanded octahedron (Figure 10.b and 10.c) respectively are studied. Stability is 

analysed by means of the minimum eigenvalue of K for each configuration and super-stability is 

accounted taking into consideration the minimum eigenvalue of matrix D or, equivalently, KGeom (ii 

condition according to (Zhang and Ohsaki, 2007)). As the eigenvalues depends on a particular 

realisation of the matrices, a range of values for q1 (in the same way for q2 = f (q1) and q3 = f (q1)) is 

considered. Figure 11 shows those minimum eigenvalues for each tensegrity structure as a function of 

q1. The minimum eigenvalue of D is always negative in all the intermediate equilibrium configurations 

studied so none of them can be considered super-stable. However, the minimum eigenvalue of K in the 

tensegrities shown in Figure 8.b and Figure 10.b is zero and in the case of tensegrities shown in Figure 

8.c and Figure 10.c is negative (see Figure 11). For these reasons, tensegrities in Figure 8.c and Figure 

10.c are unstable and the tensegrities in Figure 8.b and Figure 10.c are stable but not super-stable. 
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Figure 11. Study of stability and super-stability of the intermediate equilibrium configurations between the 

octahedron and the expanded octahedron (Figure 8.b and 8.c) and between the expanded octahedron and the 

double-expanded octahedron (Figure 10.b and 10.c). 

The former results show that the more overlapped bars exist, the worse the stability is in the 

equilibrium configuration of the tensegrity (Gil-Martín et al., 2017a). 

 

5. Conclusions 

The first three members of the so-called octahedron family of tensegrities have been presented. The 

octahedron and the expanded octahedron are well-known examples of tensegrity structures. However, 

the double-expanded octahedron was not obtained until now. Both, the expanded and the double-

expanded octahedrons have been obtained following some connectivity pattern rules presented in this 

work. Some simplifications in the value of the force:length ratio of each member have been introduced 

based on symmetry. The system of equations has been solved analytically, obtaining both full and 

folded forms. It has been proved that both, the octahedron and the expanded octahedron, are folded 

forms of the double-expanded octahedron (full form) proving that the latter is the third component of 

the family. 
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Appendix A (Adapted from Zhang & Ohsaki, 2015). 

A.1. Relevant steps from Eq. (5) to Eq. (11) in Section 2.3: Stability of tensegrity structures 

According to Eq. (5) the deformation energy associated with a differential deformation of a tensegrity 

with n nodes and dimension d can be approximated using a Taylor series expansion in displacements 

as: 

             (A1) 

being  the vector of nodal coordinates and the elastic potential energy of a discrete structure with 

m members, defined as (Eq. (6) and Eq. (4) of the paper, respectively): 

                        (A2) 

                 (A3) 

Regarding the first term of Eq. (A1), substituting Eq. (A3) and accounting Eq. (3) of the paper it can be 

rewritten as: 

           (A4) 
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             (A5) 

being the matrix Ψ: 

              (A6) 

According to the Euclidian distance, the vector length of the members is related with the vectors of 

nodal coordinates by (see Eq. (A6)): 

            (A7) 

being l the vector containing the length of the members and 

               (A8) 

Deriving Eq. (A7) and accounting (A8): 

             (A9) 
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and accounting that the coordinate difference vector in x-direction u is independent of both y and z 

coordinates (and analogously v is independent of x and z and w is independent of x and y), Eq. (A9) can 

be written as: 

             (A11) 

Going back to the matrix Ψ defined in (A6), it is evident that the i row of Ψ can be expressed as: 

               (A12) 

And according to Eq. (A16) and the definition of the equilibrium matrix A in Eq. (7) of the paper, 

matrix Ψ can be expressed as:  

           (A13) 
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            (A14) 

The former expression corresponds to the equilibrium of the tensegrity and vanishes (see Eq. (7) of the 

paper). 
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Where K is a matrix (dn × dn) whose entry ij is . Henceforth by convenience and without 

loss of generality is going to be considered instead of . Accounting Eq. (A14) 

and Eq. (10) of the paper: 

        (A16) 

Let us consider one of the 3×3 submatrices of the diagonal of the matrix K above, for example : 

           (A17) 

Accounting the definition of the force density matrix, Eq. (3) of the paper and Eqs. (A8) and (A9): 

          (A18) 

being the first derivative of U: 
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       (A21) 

being . 

Analogously: 

        (A22) 

Let us now consider now any of the 3×3 submatrices out of the diagonal of the matrix K (Eq. (A16)), 

such : 

           (A23) 

being On×n the zero matrix n × n dimension. In a similar way to how it was done in Eq. (A21), the 

following expressions can be obtained for the entries of the matrix K: 
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Accounting Eqs. from (A17) to (A24), the matrix K in Eq. (A16) can be re-written as: 
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where the symbol denotes the Kronecker product. 

A.2. Compatibility matrix 
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Applying the principle of virtual work (the virtual work done by the external loads is equal to virtual 

internal work done by member forces) for the arbitrary virtual displacements  and their 

corresponding virtual member extensions the following equation is satisfied:  

             (A27) 

Being  the vector containing the axial force of each member of the structure. Accounting Eq. 

(A26), Eq. (A27) can be re-written: 

            (A28) 

Accounting for the relationship between the vector of external loads p and the vector of axial load or 

prestresses, N (or equivalently the one of force-length ratio coefficients q = L-1N being L = diag(l) 

being l the vector containing the length of the members), in Eq. (A28): 

               

(A29) 

being  the equilibrium matrix of the structure (Eq. (7) of the paper). 

Combining Eqs. (A28) and (A29) the following expression for the compatibility matrix is obtained: 

            (A30) 

A.3. Geometry matrix. 

The matrix  is called the geometry matrix because it is only related to the geometry of 

the structure. It is defined as: 

           (A31) 
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For the octahedron presented in Section 4.1 the polynomials a1, a2 and a3 of its corresponding 

characteristic polynomial p(l) = ln+an-1ln-1+…+ a3l3+a2l2+a1l+a0 are the following: 

            (B1) 

            (B2) 

                              (B3) 

For the expanded octahedron presented in Section 4.2 the polynomials a1, a2 and a3 are the following: 

                                 (B4) 

                     (B5) 

                                 (B6) 

For the double-expanded octahedron presented in Section 4.3 the polynomials a1, a2 and a3 are the 

following: 

             (B7) 

            (B8) 

  a1 = -2304q1
5-3456q1

4q2-1728q1
3q2

2-288q1
2q2

3

  a2 = 2496q1
4 + 2880q1

3q2 +1008q1
2q2

2 + 96q1q2
3

  a3 = -1072q1
3-888q1

2q2-192q1q2
2-8q2

3

  

a1 = -3981312q1
11-13934592q1

10q2-20238336q1
9q2

2

-15611904q1
8q2

3-6746112q1
7q2

4-1548288q1
6q2

5

-147456q1
5q2

6

  

a2 = 12275712q1
10 + 38154240q1

9q2 + 48522240q1
8q2

2

+32188416q1
7q2

3 +11676672q1
6q2
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5q2

5
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4q2

6
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            (B9) 

 

Appendix C. Supplementary data 

Supplementary data associated with this article can be found in the web version of this article. 
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