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Departamento de F́ısica Atómica, Molecular y Nuclear

Instituto Carlos I de F́ısica Teórica y Computacional
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Moreno-Cid garantizan, al firmar esta tesis doctoral, que el trabajo ha sido realizado por

el doctorando bajo la dirección del director de tesis y hasta donde nuestro conocimiento

alcanza, en la realización del trabajo se han respetado los derechos de otros autores a

ser citados cuando se han utilizado sus resultados o publicaciones.

Granada, 9 de Abril de 2018

Director de la Tesis
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1. La tesis está redactada en inglés con una introducción en español.

2. Al menos uno de los miembros del tribunal provienen de una universidad no

española.
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tundencia que merece. La confianza, el ánimo y el conocimiento que d́ıa a d́ıa ha

derrochado conmigo han sido esenciales. Es muy destacable decir que todo el esfuerzo
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esfuerzo conmigo, lo cual ha supuesto un punto de inflexión en mi trayectoria vital.
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no me olvido.

También debo dedicar alguna palabra al que fue mi profesor de matemáticas durante
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Summary

Multidimensional quantum systems consisting of many particles are a major challenge

in Quantum Physics, since their behavior can be determined only with immense com-

putational power. Physicists are trying to discover elegant notions and techniques to

simplify the problem. The internal complexity of quantum systems, the uncertainty of

their constituents beyond the Heisenberg one (i.e., beyond the standard deviation of the

associated probability densities) and the dimensionality of their associated configuration

spaces are the leit motiv of this Thesis.

The quantum many-particle systems are not merely complicated in the way that ma-

chines are complicated but they are intrinsically complex in ways that are fundamentally

different from any product of design. The fundamental issue is to find quantifiers which

are able to capture the intuitive idea that complexity lies between perfect order and

perfect disorder [1, 2]. The formalization of this intuition is a non-trivial task. Most

probably it cannot be formalized by a single complexity quantifier because of the so many

facets of the term complexity. Based on Information Theory [3, 4] and Density Functional

Theory [5, 6], various computable and operationally meaningful density-dependent mea-

sures have been proposed for the internal complexity of the many-electron systems: the

entropy and complexity measures of the electron probability density of the system. The

former ones (Fisher information, Shannon entropy) capture a single macroscopic facet

of the internal disorder of the system. The latter ones capture two or more macroscopic

facets of the quantum probability density which characterize the system, being the most

relevant ones up until now the complexity measures of Cramer-Rao, Fisher-Shannon and

LMC (Lopez-Ruiz-Mancini-Calvet) type, which are composed by two entropic factors

[7].

Quantum uncertainties are not errors. Werner Heisenberg (NP 1932) in a seminal article

[8] used the term mean error for the uncertainties in the position and momentum spaces,

a terminology that evokes error theory and standard deviations. Even so, Heisenberg

hailed the Kennard inequality [9], ∆x∆p ≥ 1/2 (in natural units with ~ = 1), as the

precise mathematical expression of the uncertainty principle [10] for one-dimensional

quantum systems and apart from a few dissident voices, the physics community has

followed him almost until recently. But considering the Kennard inequality as an ad-

equate expression of the uncertainty principle is just another remnant of the old days

1
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of quantum theory. Nowadays we have entropy-like functionals of the position and mo-

mentum probability densities, such as e.g. the Rényi and Shannon entropies, which are

much more adequate uncertainty measures to mathematically formalize the Heisenberg

uncertainty principle of Quantum Physics.

Space dimensionality D is a fundamental variable in the analysis of the structure and

dynamics of quantum systems and phenomena. Basically this is because the wave func-

tions of the quantum wave equations (Schrödinger, Dirac,. . . ), and consequently all the

chemical and physical properties of these systems crucially depend on the dimensionality

[11]. In addition, D is the basic variable of a very useful strategy, the D-dimensional

scaling method, which Dudley Herschbach (NP 1986) et al [12–14] have developed to

study the atomic and molecular systems. This method requires to solve a finite many-

electron problem in the (D →∞)-limit and then, perturbation theory in 1/D is used to

have an approximate result for the standard dimension (D = 3), obtaining at times a

quantitative accuracy comparable to the self-consistent Hartree–Fock calculations. Fur-

thermore, it has been recently shown that space dimensionality is a physico-technological

resource in a number of scientific and technological fields ranging from fluids [15, 16] to

ion Coulomb crystals (i.e., ordered structures of atomic and molecular ions stored in ion

traps at temperatures close to the absolute zero point) [17], quantum criticality [18, 19],

quantum information science and quantum information technologies [20–27]. Nowadays,

there is an increasing interest on the dimensional dependence of the entropic properties

for the stationary states of the multidimensional quantum systems [1, 28–37] in order to

contribute to the emergent informational representation of the quantum systems which

extends and complements the standard energetic representation; to this respect, let us

keep in mind that the entropic properties do not depend on the energy eigenvalues but

on the eigenfunctions of the states.

The goal of the Thesis is twofold: the determination of the entropic uncertainty of

the Coulomb and harmonic systems, and the quantification of complexity attributed

to many-particle systems. The latter task is closely connected with evolution from or-

der to disorder which is among the most important scientific challenges in the theory

of complex systems [1, 2, 38–40]; that is, to quantify how simple or how complex are

the multidimensional many-particle systems in terms of the information-theoretic mea-

sures of their one-particle probability density which, according to the Density Functional

Theory, characterize their physical and chemical properties. In this dissertation we have

first provided various novel multiparametric complexity measures, which extend and

generalize the previous intrinsic complexities encountered in the literature. Then, we

have analytically calculated and numerically discussed these complexity quantities and

the entropic uncertainty measures of various multidimensional quantum phenomena and

systems, such as the black body radiation in standard and non-standard universes and

the multidimensional hydrogenic and harmonic systems, which are the reference systems

in D-dimensional Coulomb and harmonic physics, respectively. Emphasis has been done
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on the analytical side for the extreme stationary states of high-energy (Rydberg) and

high-dimensional (pseudoclassical) types, whose numerical computation is a practically

imposible task.

The methodology of the Thesis includes a diversity of methods extracted from

Information Theory [3, 4, 30, 41, 42], Probability Theory [43], and algebraic and asymp-

totic techniques from Approximation Theory and the theory of orthogonal polynomials

[44–55], hyperspherical harmonics [37, 56–58] and other special functions of Applied

Mathematics and Mathematical Physics [46, 59].

The structure of the Thesis, presented in the modality of a collection of articles, is

composed by two parts and seven chapters which are self-contained to a great extent.

Part I, which contains an introduction and chapters 1–3, is devoted to the entropic

uncertainty measures of the Coulomb and harmonic systems. Part II, which gathers

an introduction and chapters 4–7, is devoted to the multiparametric complexity mea-

sures and their application to the generalized Planck distribution and hydrogenic and

harmonic systems. Finally, some conclusions and open problems are given.

Chapter 1 has a methodological character. It contains (i) the basic dispersion and en-

tropic notions of the multidimensional continuous probability distributions which we

have used throughout the dissertation (see section 1.1), (ii) various mathematical the-

orems and propositions which give the degree and parameter asymptotics of various

entropic functionals of the orthogonal hypergeometric polynomials which control the

wave functions of the Coulomb and harmonic systems analyzed in this work (see section

1.2), and (iii) the scarcely known linearization methods of Srivastava type for the powers

of these polynomials (see section 1.3) which will be used later on for the determination

of the entropic uncertainty measures of Rényi type.

Chapter 2 is devoted to the analytical determination and discussion of the Rényi and

Shannon entropies for the discrete stationary states of the multidimensional hydrogenic

systems, with emphasis in the two following groups of extreme states: the highly-excited

(Rydberg) and the high-dimensional (pseudoclassical). In Chapter 3 a similar work is

done for the multidimensional harmonic systems.

Chapter 4 has a descriptive character. It contains a brief summary of the main two-factor

complexity measures of the multidimensional continuous probability distributions used

in the literature which have been applied in electronic structure and their generalizations

[1, 7, 30, 60] as well as their inequality-type properties.

In Chapter 5 we introduce three biparametric measures of complexity for general con-

tinuous probability distributions and discuss their fundamental properties. Later on, we

apply them to the multidimensional Planck distribution which characterizes the spectral

frequency of the blackbody radiation at standard and non-standard universes.
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In Chapter 6 we present the notion and the properties of a novel type of escort dis-

tributions for univariate probability distributions, the differential-escort distributions,

which have a number of advantages with respect to the standard escort ones. Then, we

illustrate its utility to prove the monotonicity property of the LMC-Rényi complexity

measure and we study its behaviour of general distributions in the two extreme cases of

minimal and very high complexity.

In Chapter 7 we introduce a triparametric Fisher-Rényi complexity for a univariate

probability density ρ which is based on the biparametric extensions of the Fisher infor-

mation and the Rényi entropies of ρ. This novel measure quantifies the combined balance

of the spreading and the gradient contents of ρ, and has the three main properties of

a statistical complexity: the invariance under translation and scaling transformations,

and a universal bounding from below. For this purpose we use the Gagliardo-Nirenberg

inequality, and a generalization of the Stam inequality is required, as well as the dif-

ferential escort notion, which has been the keystone to obtain the sharp inequality, the

expression of the minimizers and the exact value of the optimal bound.

The main results of the Thesis are given in chapters 2 and 3 of Part I, as well

as in chapters 5, 6 and 7 of Part II. They correspond to the contents of two preprints

and eight articles published (as indicated in the paragraph Author’s Publications) in the

following reviews:: Journal of Physics A: Mathematical and Theoretical, Entropy (2),

International Journal of Quantum Chemistry, Journal of Mathematical Physics, Journal

of Statistical Mechanics: Theory and Experiment, Physica A: Statistical Mechanics and

its Applications, European Physical Journal-Special Topics.

One more publication of the author, related to but not included in this Thesis, has ap-

peared (as indicated in the paragraph Author’s Publications) in the Journal of Statistical

Mechanics: Theory and Experiment.



Resumen

El estudio de los sistemas cuánticos multidimensionales de muchas part́ıculas consti-

tuyen un reto de primer orden en F́ısica Cuántica, debido fundamentalmente a que su

comportamiento solo puede determinarse con una capacidad computacional inmensa.

Actualmente los f́ısicos tratan de descubrir ideas y técnicas elegantes para simplificar

el problema. La complejidad interna de los sistemas cuánticos, la incertidumbre de sus

constituyentes más allá de la formulación de Heisenberg (i.e., más allá de la desviación

t́ıpica asociada a las densidades de probabilidad monoparticulares de posición y mo-

mento) y la dimensionalidad de los correspondientes espacios de configuración son el leit

motiv de esta Tesis.

Los sistemas cuánticos de muchas part́ıculas no son meramente complicados en el sen-

tido en el que lo es una máquina, sino que son intŕınsicamente complejos en el sentido

de que son fundamentalmente diferentes a cualquier producto de diseño. La cuestión

fundamental es encontrar cuantificadores que sean capaces de capturar la idea intuitiva

de que la complejidad se encuentra comprendida entre el orden perfecto y el desorden

total [1, 2]. La formalización de esta intuición es una tarea no-trivial. Lo más probable

es que no pueda llevarse a cabo matemáticamente mediante un único cuantificador de-

bido a las muchas facetas que tiene el término complejidad. En base a la Teoŕıa de la

Información [3, 4] y la Teoŕıa Funcional de la Densidad [5, 6], se han propuesto varias

medidas dependientes de la densidad, computables y operacionalmente significativas,

para la complejidad intŕınseca de los sistemas electrónicos: las medidas de entroṕıa y

complejidad de la densidad de probabilidad monoparticular del sistema. Las primeras

(información de Fisher, entroṕıa de Shannon) capturan una sola faceta macroscópica

del desorden interno del sistema. Las últimas capturan dos o más facetas macroscópicas

de la densidad de probabilidad cuántica que caracteriza al sistema, siendo las más rel-

evantes hasta ahora las medidas de complejidad de tipo Cramer-Rao, Fisher-Shannon

y LMC (López-Ruiz-Mancini-Calvet), que están compuestas por dos factores entrópicos

[1, 7, 61].

La incertidumbre cuántica no es propiamente un error. Werner Heisenberg (NP 1932) en

un art́ıculo seminal [8] usó el término error medio para las incertidumbres en los espacios

de posiciones y momentos, una terminoloǵıa que evoca la teoŕıa de errores y la desviación

estándard. No obstante, Heisenberg eligió la desigualdad de Kennard [9], ∆x∆p ≥ 1/2

5
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(en unidades naturales con ~ = 1), como la expresión matemática precisa del principio

de incertidumbre [10] para sistemas cuánticos monodimensionales y, salvo unas pocas

voces disidentes, la comunidad f́ısica lo ha aceptado aśı hasta muy recientemente. Pero

considerar la desigualdad de Kennard como una expresión adecuada del principio de

incertidumbre es sólo otro remanente de los viejos tiempos de la teoŕıa cuántica. Hoy

en d́ıa tenemos funcionales entrópicos de las densidades de probabilidad de posiciones

y momentos, tales como e.g. las entroṕıas de Fisher, Rényi y Shannon, las cuales son

medidas de incertidumbre mucho más adecuadas para formalizar matemáticamente el

principio de incertidumbre de Heisenberg de la F́ısica Cuántica.

La dimensionalidad espacial D es una variable fundamental en el análisis de la estruc-

tura y la dinámica del los sistemas y fenómenos cuánticos. Básicamente esto se debe a

que las funciónes de onda (o sea, las soluciones f́ısicas de la ecuaciónes de onda cuánticas

de tipo Schrödinger, Dirac,...), y consecuentemente todos las propiedades f́ısico-qúımicas

de estos sistemas dependen crucialmente de la dimensionalidad [11]. Además, D es la

variable básica de una estrategia muy útil, el método de escalamiento D-dimensional,

que Dudley Herschbach (NP 1986) et al. [12–14] han desarrollado para estudiar los

sistemas atómicos y moleculares. Este método requiere resolver un problema finito de

muchos electrones en el ĺımite (D → ∞) y despues usar la teoŕıa de perturbaciones

en 1/D para tener un resultado aproximado en la dimensión estándar (D = 3); los

resultados obtenidos presentan, en ocasiones, una exactitud cuantitativa comparable a

los cálculos auto-consistentes de Hartree-Fock. Estas ideas están siendo utilizadas para

estudiar numerosos sistemas y fenómenos f́ısicos desde los fluidos reales [15, 16] y los

cristales de iones coulombianos (i.e., estructuras ordenadas de iones atómicos y molecu-

lares confinados en trampas iónicas a temperaturas cercanas al cero absoluto) [17] hasta

la criticalidad cuántica [18, 19]. Además, se ha probado recientemente que la dimen-

sionalidad espacial es un recurso f́ısico-tecnológico en la ciencia y las tecnoloǵıas de la

información cuántica [20–27]. Actualmente existe un creciente interés en la dependen-

cia con la dimensionalidad de las propiedades entrópicas de los estados estacionarios

de los sistemas cuánticos multidimensionales [1, 28–37] con el fin de contribuir a la

emergente representación informacional de los sistemas cuánticos que extiende y com-

plementa la representación energética estándar. A este respecto, ha de tenerse presente

que las propiedades entrópicas no dependen de los autovalores de la enerǵıa sino de las

autofunciones de los estados del sistema.

El objetivo de esta Tesis es doble: el análisis de la incertidumbre entrópica en los

sistemas Coulombianos y armónicos, y la cuantificación de la complejidad de los sis-

temas de muchas part́ıculas. Esta última tarea está estrechamente relacionada con la

evolución del orden al desorden que es un desaf́ıo cient́ıfico de primer nivel en la teoŕıa

de los sistemas complejos [1, 2, 38–40]. En esta disertación, primero proponemos nuevas

medidas de complejidad multiparamétrica que extienden y generalizan las medidas de

complejidad conocidas. Después calculamos anaĺıticamente y discutimos numéricamente
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estos cuantificadores de la complejidad y las medidas de incertidumbre entrópica en

varios fenómenos y sistemas cuánticos multidimensionales, tales como la radiación de

cuerpo negro en universos de dimensionalidad estándar y no-estándar y los sistemas

hidrogenoideos y armónicos multidimensionales, que son los sistemas de referencia en

la f́ısica D-dimensional coulombiana y armónica, respectivamente. Se hace énfasis en

la determinación anaĺıtica de los cuantificadores teórico-informacionales de los estados

estacionarios extremos de alta enerǵıa (Rydberg) y de alta dimensionalidad (pseudo-

clásicos), cuyo cálculo numérico es una tarea computacional prácticamente imposible.

La metodoloǵıa de la Tesis incluye una gran diversidad de métodos procedentes

de la Teoŕıa de la Información Clásica y Cuántica [3, 4, 30, 41, 42] y de la Teoŕıa

de la Probabilidad [43], aśı como de técnicas algebráicas y asintóticas de la Teoŕıa

de Aproximación y de la teoŕıa de los polinomios ortogonales [44–55], los armónicos

hiperesféricos [37, 56–58] y otras funciones especiales de la Matemática Aplicada y la

F́ısica Matemática [46, 59].

La estructura de la Tesis, que se presenta en la modalidad de agrupamiento de

publicaciones, se compone de dos partes y siete caṕıtulos que son autocontenidos en

gran medida. La Parte I, que contiene los caṕıtulos 1, 2 y 3, está dedicada a las me-

didas de incertidumbre entrópica de los sistemas armónicos y coulombianos. La Parte

II, que abarca los caṕıtulos 4, 5, 6, y 7, está dedicada a las medidas de complejidad

multiparamétricas y su aplicación a la distribución de Planck generalizada y a los sis-

temas armónicos e hidrogenoideos. Finalmente, se dan algunas conclusiones y se señalan

algunos problemas abiertos de forma no-exhaustiva.

El caṕıtulo 1 tiene carácter metodológico. En él se describen (i) las nociones básicas

de dispersión y entroṕıa de distribuciones de probabilidad cont́ınuas multidimensionales

que se usan en esta disertación (ver sección 1.1), (ii) varios teoremas y proposiciones

matemáticas que describen la asintótica en el grado y en el parámetro de distintos

funcionales entrópicos de los polinomios hipergeométricos ortogonales que controlan las

funciones de onda de los sistemas coulombianos y armónicos analizados en este trabajo

(ver sección 1.2), y (iii) los métodos de linealización de tipo Srivastava para las potencias

de estos polinomios (ver sección 1.3) que serán después usados para la determinación de

las medidas de incertidumbre entrópicas de tipo Rényi.

El caṕıtulo 2 está dedicado a la determinación anaĺıtica y discusión de las entroṕıas de

Rényi y Shannon para los estados estacionarios discretos de los sistemas hidrogenoideos

multidimensionales, haciendo hincapié en dos tipos de estados extremos: los estados

altamente excitados (Rydberg) y los estados de gran dimensionalidad (pseudoclásicos).

En el caṕıtulo 3 se lleva a cabo un trabajo similar para los sistemas armónicos multidi-

mensionales.
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El caṕıtulo 4 tiene un carácter descriptivo. En él se hace un breve resumen de las

principales medidas de complejidad de densidades de probabilidad continuas multidi-

mensionales de dos factores usadas en la literatura, las cuales han sido aplicadas en

estructura electrónica para interpretar un gran número de fenómenos mecano-cuánticos

de los sistemas atómicos y moleculares [1]. Se describen tambien las generalizaciones de

estas medidas, aśı como sus propiedades de tipo desigualdad.

En el caṕıtulo 5 introducimos tres medidas de complejidad biparamétricas para densi-

dades de probabilidad generales y discutimos sus propiedades fundamentales. Después

las aplicamos a la distribución de Planck generalizada que caracteriza el espectro de

frecuencias de la radiación del cuerpo negro en universos de dimensionalidad estándar y

no estándar.

En el caṕıtulo 6 presentamos la noción y las propiedades de un nuevo tipo de distribu-

ciones escort para densidades de probabilidad univaluadas, las distribuciones escort-

diferenciales, que presentan ciertas ventajas con respecto a las escort estandar. Después

mostramos su utilidad para probar la propiedad de monotonicidad de la medida de com-

plejidad de LMC-Rényi y analizamos su comportamiento para distribuciones generales

en los dos casos extremos de mı́nima y muy alta complejidad.

En el caṕıtulo 7 introducimos la medida de complejidad de Fisher-Rényi triparamétrica

para una densidad de probabilidad univaluada ρ. Esta nueva medida cuantifica el bal-

ance combinado del esparcimiento y el contenido en gradiente de ρ, y tiene las tres

propiedades principales de una medida de complejidad estad́ıstica: la invarianza bajo

transformaciones de escala y traslación y una cota mı́nima universal. Para ello ha sido

necesario la utilización de la desigualdad de Gagliardo-Nirenberg con el fin de extraer

una generalización de la desigualdad de Stam, aśı como la noción de transformación

escort-diferencial, que ha sido la clave fundamental para obtener la expresión de las

densidades minimizantes y el valor exacto de la cota óptima.

Los resultados principales de la Tesis se describen en los caṕıtulos 2 y 3 de la

Parte I, aśı como en los caṕıtulos 5, 6 y 7 de la Parte II. Tales resultados han dado

lugar, tal como se detalla en el apartado Author’s Publications, a dos preprints y ocho

art́ıculos publicados en las revistas: Journal of Physics A: Mathematical and Theoreti-

cal, Entropy (2), International Journal of Quantum Chemistry, Journal of Mathematical

Physics, Journal of Statistical Mechanics: Theory and Experiment, Physica A: Statisti-

cal Mechanics and its Applications, European Physical Journal-Special Topics.

Otra publicación del autor, relacionada con los tópicos de esta Tesis pero no incluida en

ella, ha aparecido publicada en la revista Journal of Statistical Mechanics: Theory and

Experiment, tal como se menciona tambien en el apartado Author’s Publications.
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Introduction

Uncertainty is the word which better defines our time but it is very difficult to intro-

duce it into our mathematical models. Perhaps this is because it is a primary concept

of the same cathegory as e.g. energy, information and complexity. So, it has many

different facets which are characterized by a variety of physico-mathematical quantities,

the uncertainty measures. Since the early times of quantum mechanics [8, 10], the stan-

dard deviation has been considered as an obvious measure of uncertainty in quantum

mechanics. Heisenberg used it to express the first precise mathematical formalization

of the position-momentum Quantum Uncertainty Principle in the form of the so-called

Kennard inequality [9].

Actually, however, the standard deviation is neither a natural nor a generally adequate

measure of quantum uncertainty so that the Kennard inequality, though mathematically

correct, is not always an adequate expression of the uncertainty principle. The reason

for this inadequacy is because the standard deviation gives a large weight to the tails

of the probability distribution. This strong tail dependence of the standard deviation is

not relevant when the tails fall off exponentionally, as for a Gaussian or quasi-Gaussian

distribution, but the probabilities associated to an arbitrary quantum-mechanical wave

function are not generally of this type.

The advent of Information Theory [3, 4] leads to the introduction of various information

entropies (e.g., Fisher information and Shannon, Rényi and Tsallis entropies) as more

appropriate measures of uncertainty. The amount of information which one obtains by

observing the result of an experiment depending on chance, can be taken numerically

equal to the amount of uncertainty concerning the outcome of the experiment before

carrying it out. Opposite to the standard deviation, these entropic uncertainty measures

do not depend on a specific point of the support of the probability distribution. It is

amazing the scarce knowledge about these quantities for multidimensional quantum sys-

tems taken into account their relevance in so many fields like e.g. atomic and molecular

physics [12, 14, 30] , quantum information science and quantum technologies [25, 26]

and string theory [72]. Indeed, of all the grand attempts to establish an ultimate theory

of particles and forces of nature, none has been as popular, ambitious and controversial

as the theory of superstrings living in a space-time of many dimensions; perhaps five

or eleven according to Kaluza-Klein and Hawking, respectively. There are authors who

12
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hope that the eleven-dimensional supergravity theory is a strong candidate for a theory

of everything in the sense that it might be a complete, consistent and unified theory

which would describe all possible interactions.

This Part of the Thesis is devoted to the description of the main entropic uncertainty

measures of multidimensional quantum physics and their exact determination for the

main prototypes of the multidimensional Coulomb and harmonic systems; namely, the

multidimensional hydrogenic and harmonic (oscillator-like) systems, respectively.

Three chapters compose Part I. In Chapter 1, we first give in Section 1.1 the main

entropic uncertainty measures of the multidimensional probability distributions and

the associated mathematical formalizations of the uncertainty principle, the so-called

uncertainty relations, for general and central (i.e., spherically-symmetric) quantum-

mechanical potentials. In Section 1.2 we briefly describe some known asymptotical

methods for the hypergeometric orthogonal polynomials, which are later used to cal-

culate the entropic uncertainty measures of some extreme states: the highly-excited

states and the high-dimensional states of the quantum systems of hydrogenic and har-

monic types. And in Section 1.3 we gather some linearization methods for powers of

hypergeometric orthogonal polynomials, which are later used to determine the entropic

uncertainty measures of Rényi type for Coulomb and harmonic systems.

In Chapters 2 and Chapter 3 we use the previous entropic notions and mathematical

methodology to determine the uncertainty measures of Rényi and Shannon types for the

Rydberg and pseudoclassical states and for the general discrete stationary states of the

hydrogenic and harmonic systems, respectively.



Chapter 1

Entropy measures and orthogonal

polynomials

In this chapter we give the dispersion and entropic notions together with the main

mathematical tools used in Part I to determine the entropic uncertainty measures for the

stationary states of the multidimensional Coulomb and harmonic systems, with emphasis

in the Rydberg (i.e., high energy) and pseudo-classical (i.e., high dimensional) states.

The chapter is composed of three sections: In Sec. 1.1, the very notions of Heisenberg-

like measure, Shannon entropy, Fisher information and the Rényi and Tsallis entropies

will be presented together with some generalizations, and the associated uncertainty

properties will be discussed. In Sec. 1.2, the asymptotical methods for the orthogonal

polynomials which control the quantum-mechanical wave functions of the hydrogenic and

harmonic systems, namely the Laguerre and Gegenbauer polynomials, will be presented.

Finally, in Sec. 1.3, the linearization methods for the integer powers of the orthogonal

polynomials used in this work will be described.

1.1 Information entropies and their uncertainty properties

The physical properties of a single-particle d-dimensional quantum system are controlled

by means of the spatial delocalization of the single-particle density ρ(~r) = |Ψ(~r)|2, ~r =

(x1, ..., xd) ∈ ∆ ⊆ Rd, being Ψ(~r) the physical solution of the Schrödinger equation of the

system in position space. In the following γ(~p), ~p = (p1, ..., pd), denotes the probability

density in momentum space so that γ(~p) = |Ψ̃(~p)|2 where Ψ̃(~p) denotes the d-dimensional

Fourier transform of Ψ(~r).

Here we will gather the notions and some properties of the Shannon, Renyi and Tsal-

lis entropies and Fisher information of d-dimensional quantum systems which describe

the uncertainty of their single-particle density in a more appropriate manner than the

14
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Heisenberg-like quantities given by the radial expectation values

〈r2〉 =

∫

Rd
|~r|2 ρ(~r)d~r, 〈p2〉 =

∫

Rd
|~p|2 γ(~p)d~p (1.1)

These Heisenberg-like uncertainty measures in position and momentum spaces have

allowed for the first mathematical formalizations [35, 73] of the position-momentum

uncertainty principle of Quantum Physics as

〈
r2
〉 〈
p2
〉
≥ d2

4
(1.2)

which are the straighforward generalization of the primitive Kennard inequality men-

tioned above, with the assumption 〈~r〉 = 〈~p〉 = 0. This uncertainty relation has been

generalized by means of the radial expectation values of arbitrary order 〈rα〉 and
〈
pβ
〉

obtaining [35, 74–76] the inequality

〈ra〉 2
a 〈pb〉 2

b ≥ C(a, b) = max
α∈A

B(α)M(a, α)M(b, α∗) (1.3)

where B(α) is

B(α) =
α

1
α−1α∗

1
α∗−1

4e2
for α 6= 1 y B(1) =

1

4
, (1.4)

α∗ = α/(2α− 1),

A =

(
max

(
1

2
,

d

d+ a

)
; 1

]
, (1.5)

and the function M has the form

M(l, λ) =





2πe


 l

ΩB
(
d
l , 1− λ

λ−1 − d
l

)




2
d( −d (λ− 1)

d(λ− 1) + lλ

)2
l
(

lλ

d(λ− 1) + lλ

) 2
d(λ−1)

,

1− l
l+d < λ < 1

2πe

(
l

Ω Γ
(
d
l

)
)2
d ( d

le

)2
l

, λ = 1

2πe


 l

ΩB
(
d
l ,

λ
λ−1

)




2
d(

d(λ− 1)

d(λ− 1) + lλ

)2
λ
(

lλ

d(λ− 1) + lλ

) 2
d(λ−1)

, λ > 1

(1.6)

with Ω = 2πd/2

Γ(d/2) and the Beta function B(x, y) [59]. A detailed study of the accuracy of

this relation (1.3) is carried out in [35] for various prototypical d-dimensional systems.

Note that in the case a = b = 2 boils down to the previous expression (1.2)
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The Shannon entropy of the d-dimensional quantum probability density ρ(~r) is known

[77, 78] to be given by the following logarithmic funcional of the density

S[ρ] = −
∫

Rd
ρ(~r) log ρ(~r) d~r. (1.7)

This quantity is not only relevant in information theory and quantum physics but also

in numerous areas of mathematics, statistics, science and technology (see e.g. [79, 80]).

The Shannon entropy becomes the well-known thermodynamical entropy in the case

of a thermal ensemble [81]. It is worth nothing that, unlike the more familiar entropy

−∑i pi ln pi (also due to Shannon) of a probability on a discrete sample space, S [ρ] can

have any values in [−∞,∞]. Any sharp peaks in ρ(~r) will tend to make S[ρ] negative,

whereas positive values fo S[ρ] are provoked by a slowly decaying tail; hence the Shannon

entropy S[ρ] is a measure of how localized [78] the density ρ(~r) is. Moreover, this measure

of uncertainty fulfills a number of important properties [77, 81], higlighting the following

position-momentum uncertainty relation [78, 82, 83]

S[ρ] + S[γ] ≥ d (1 + lnπ) , (1.8)

where S[γ] denotes the momentum Shannon entropy of the system. This Shannon-

entropy-based uncertainty relation is a more appropriate mathematical formalization

of the position-momentum uncertainty principle, which expresses that the total uncer-

tainty in position and momentum is necessarily bigger than the value d (1 + lnπ) for any

quantum state of the system. Moreover, assuming the quantum-mechanical potential

VD(r) to be central (i.e., spherically symmetric) Rudnicki et al [84] have improved the

previous entropic uncertainty relation as

S[ρ] + S[γ] ≥ Bl,{µ} (1.9)

where the lower bound is

Bl,{µ} = 2l + d+ 2 ln

[
Γ
(
l + d

2

)

2

]
− (2l + d− 1)ψ

(
l +

d

2

)

+ (d− 1)

[
ψ

(
2l + d

4

)
+ ln 2

]
+ 2S(Yl,{µ}),

The symbol ψ (x) denotes the digamma function [59]), and the symbol Yl,{µ}(Ωd−1)

denotes the hyperspherical harmonics [41, 85] characterized by the d − 1 hyperangular

quantum numbers (l ≡ µ1, µ2, . . . , µd−1 ≡ m) ≡ (l, {µ}), which are integer numbers with

values l = 0, 1, 2, . . ., and l ≥ µ2 ≥ . . . ≥ µd−2 ≥ |µd−1| ≥ 0. Notice that for d = 2 we

only have one quantum number l ∈ Z. Moreover, the symbol S(Yl,{µ}) denotes [85] the

Shannon-type entropic funcional of the well-known hyperspherical harmonics S(Yl,{µ})
which are under control in the sense that they do not depend on the analytical form of

the potential and so, they can be calculated both numerically and analytically [84]. The
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bound (1.8) depends on the dimensionality d and on the angular hyperangular numbers

{µi, i = 1, . . . , d− 1} of the quatum state of the system, but not on the hyperquantum

principal number because the explicit analytical form of the potential is unknown.

The Rényi entropiesRq[ρ] [43, 86] and the Tsallis entropies Tq[ρ] [87], which are monopara-

metric extensions of the Shannon entropy, are defined by

Rq[ρ] =
1

1− q ln

(∫

Rd
[ρ(~r)]qd~r

)
; q > 0, q 6= 1 (1.10)

and

Tq[ρ] =
1

1− q

(
1−

∫

Rd
[ρ(~r)]qd~r

)
; q > 0, q 6= 1, (1.11)

respectively. Note that in the limit q → 1, both entropies reduce to the Shannon en-

tropy S[ρ]. It is interesting to remark that these three quantities are global measures

of spreading of the density ρ(~r) because they are power (Renyi, Tsallis) and logarith-

mic (Shannon) functionals of ρ(~r). The Renyi entropies are additive while the Tsallis

entropies are non-negative, extremal at equiprobability, concave for q > 0 and pseu-

doadditive (i.e. Tq [ρ1 ⊗ ρ2] = Tq [ρ1] + Tq [ρ2] + (1 − q)Tq [ρ1]Tq [ρ2]). Moreover, both

Rényi and Tsallis entropies characterize separately the probability density under certain

Hamburger-like conditions [88, 89]. Finally, most interesting is that they allow for the

following mathematical formalizations of the quantum uncertainty principle found by

Rajagopal [90]

{1 + (1− p)Tp[ρ]}
−1
2p × {1 + (1− q)Tq[γ]}

1
2q ≥

( q
π

) d
4q
( p
π

)−d
4p

(1.12)

(with 1
q + 1

p = 2) for Tsallis entropies, and by Bialynicki-Birula, Zozor and Vignat [91–94]

Rp[ρ] +Rq[γ] ≥ d log
(
πp

1
2(p−1) q

1
2(q−1)

)
, (1.13)

for the Rényi entropies, respectively. For completeness, let us point out that although

the case out of the conjugation curve 1
p + 1

q > 2 have been proved to be a non-trivial

bound [93] the sharp bound in this case is not known yet. Recently, Dehesa et al [95]

have heuristically obtained the Rényi-entropy-based uncertainty relation 1.13 can be

improved as

Rp[ρ] +Rq[γ] ≥ 2p lnA(2p)

p− 1
+

2q lnA(2q)

q − 1
+Rp(Y) +Rq(Y)

for d-dimensional physical systems subject to a central quantum-mechanical potential,

where the A-constant is given by

A(q) =
2

2−d
2q q

lq+d
2q

Γ
(

1
2 (lq + d)

) 1
q
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and the symbol Rp(Y) denote the Rényi-like integral functional of the hyperspherical

harmonics Yl,{µ}(Ωd−1), which is under control in the sense we have mentioned above.

Let us comment that this lower bound improves the general lower bound, finding more-

over that in the limit p, q → 1 the new bound for central potentials boils down to

the Shannon-entropy-based lower bound (1.9) valid for central potentials, as one would

expect.

The (translationally invariant) Fisher information of the d-dimensional probability den-

sity ρ(~r) is defined [41] by the following gradient funcional of the density

F [ρ] =

∫

Rd
ρ(~r)

∣∣∣~∇d log ρ(~r)
∣∣∣
2
d~r =

∫

Rd

∣∣∣~∇d ρ(~r)
∣∣∣
2

ρ(~r)
d~r, (1.14)

where ~∇d denotes the d-dimensional gradient of the particle. The corresponding quantity

for the momentum-space probability density γ(~p) will be denoted by F [γ]. This concept

was firstly introduced for one-dimensional random variables in statistical estimation [96]

but nowadays it is playing an increasing role in numerous fields [97–104], including

electronic structure; this is partially because of its formal resemblance with kinetic

[97, 105–107] and Weiszäcker [6, 108] energies. The Fisher information, contrary to the

Shannon entropy (and its generalizations of e.g. Rényi and Tsallis types), is a local

measure of spreading of the density ρ(~r) because it is a gradient functional of ρ(~r). The

higher this quantity is, the more localized is the density, the smaller is the uncertainty

and the higher is the accuracy in predicting the localization of the particle. It has,

however, an intrinsic connection with various spreading measures (variance, Shannon’s

entropy) by means of a number of celebrated information-theoretic inequalities such

as e.g. the de Bruijn inequality [3, 109], the Stam-like inequalities [110–112] and the

Cramer-Rao inequality [3, 109, 113].

The notion of Fisher information has been shown to be very fertile to identify, character-

ize and interpret numerous phenomena and processes in atomic and molecular physics

such as e.g., correlation properties in atoms, spectral avoided crossings of atoms in ex-

ternal fields [98], the periodicity and shell structure in the periodic table of chemical

elements [111] and the transition state and other stationary points in chemical reac-

tions [113]. Moreover, it has been used for the variational characterization of quantum

equations of motion [97] as well as to rederive the classical thermodinamics without re-

quiring the usual concept of Boltzmann’s entopy [114]. Most important for our purposes

is to highlight that the Fisher information allows us to obtain [115] another mathema-

tical formalization of the position-momentum uncertainty principle in the form of the

uncertainty relation

F [ρ]× F [γ] ≥ 4d2, (1.15)

where F [γ] denotes the Fisher information of the d-dimensional quantum system in
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momentum space. Moreover, for quantum systems with a central potential the position-

momentum Fisher uncertainty product is related [116] to the Heisenberg uncertainty

product as

F [ρ]× F [γ] ≥ 16

[
1− (2l + d− 2)|m|

2l(l + d− 2)

]2

〈r2〉〈p2〉, (1.16)

(where r2 = x2
1 +x2

2 +...+x2
D and p2 = p2

1 +p2
2 +...+p2

D) which illustrates the uncertainty

character of the Fisher-information product F [ρ]×F [γ]. Moreover, by using (1.16) and

the general Heisenberg-like inequality for d-dimensional quantum-mechanical potentials

〈
r2
〉 〈
p2
〉
≥
(
l +

d

2

)2

=

(
L+

3

2

)2

, (1.17)

we obtain [117] the following Fisher-information-based uncertainty relation

F [ρ]× F [γ] ≥ 16

[
1− (2l + d− 2)|m|

2l(l + d− 2)

]2(
l +

d

2

)2

(1.18)

which extends and improves a similar relation previously obtained in three [118] and

d [116] dimensions. Note that the equality is reached for the ground-state oscillator

wavefunctions. Moreover, for S states (i.e. when l = 0), this inequality boils down to

Eq. (1.15). This illustrates the improvement of Eq. (1.18) with respect to Eq. (1.15)

due to consideration of the spherical symmetry.

Finally, let us mention here for completeness that the Fisher notion has been extended to

the biparametric case for one-dimensional probability densities by Lutwak et al [119], and

more recently for multi-dimensional probability densities by Bercher [120] and Lutwak

et al [121] as

Fp,λ[ρ] =

∫

Rd
ρ(~r)

(
ρ(~r)λ−2 |~∇ρ(~r)|

)p
d~r, (1.19)

These quantities will not be analyzed in this Part but in Part II, where some properties

will be taken into account and novel quantities of similar type will be proposed. It is

interesting to remark that no uncertainty relations associated to this generalized Fisher

information have been encountered yet. Let us comment that for pure convenience we

use, at times, the quantity φp,λ[ρ] = Fp∗,λ[ρ]
1
p∗λ where p∗ is the conjugated number of p

in the following sense 1
p + 1

p∗ = 1.

1.2 Asymptotics for integral functionals of orthogonal po-

lynomials

In this section we briefly review the asymptotical methods for orthogonal polynomials

used in this work. First, in subsection 1.2.1, we give the Theorem of Aptekarev et

al [122] which describes the asymptotics of the Rényi-type integral functionals of the

Laguerre polynomials L
(α)
n (x), α > −1, (see e.g., [59]) in the limit of a very large degree
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n >> 1. This theorem, which is an extension of a previous similar result for integral

functionals of Hermite polynomials [50], allows to calculate the radial part of the physical

Rényi entropies for the highly and very highly excited states of both multidimensional

harmonic and hydrogenic systems [31, 64, 122]. Then, in subsection 1.2.2, we state the

Theorems of Temme et al [123] which describe the asymptotics of of the Rényi-type and

Shannon-type integral functionals of the Laguerre and Gegenbauer polynomials when

the parameter is very large, α >> 1. These quantities control the physical Rényi and

Shannon entropies for the pseudo-classical states (i.e., the highest dimensional states)

of the multidimensional harmonic and hydrogenic systems [63, 65].

1.2.1 Degree asymptotics of Laguerre entropic functionals

The Rényi-like integral functional, Nn(D, p), of the orthonormal Laguerre polynomials

L̂
(α)
n (x) with respect to the weight function ωα(x) = xαe−x, α > −1, on the interval

[0,∞), given by

Nn(D, p) =

∫ ∞

0

(
[L̂(α)
n (x)]2ωα(x)

)p
xβdx, p > 0, (1.20)

essentially controls the behaviour of the physical Rényi entropies for all the stationary

states of the D-dimensional harmonic systems in both position and momentum spaces

[64] and of the D-dimensional hydrogenic systems in position space [122]. In the hydro-

genic case one has α = 2l +D − 2, with l = 0, 1, 2..., n− 1, and β = (2−D)p+D − 1,

while in the oscillator-like (i.e., harmonic) case one has α = l + 1
2 , l = 0, 1, 2, . . ., and

β = 1
2(1− p). Note that the condition β + pα > −1, required for the convergence of the

integral, is satisfied for all physical parameters.

In this subsection we give the asymptotics of the integral functionals Nn(D, p) of La-

guerre polynomials for the hydrogenic and harmonic sets of parameters (α, l, β) just

mentioned in the form of the two following theorems, recently found .

Theorem 1.1. [122] The asymptotics (n→∞) of the Rényi-type Laguerre hydrogenic

functionals N
(H)
n,l (D, p) defined by Eq. (1.20) with the parameters α = 2l +D − 2, with

l = 0, 1, 2..., n− 1, and β = (2−D)p+D − 1, is given for all possible values of D and

p > 0 as follows:

1. If β > 0, there are two subcases:

(a) If D > 2, and p ∈
(

0, D−1
D−2

)
then

N
(H)
n,l (D, p) = C(β, p) (2(n− l − 1))1+β−p (1 + ¯̄o(1)),
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(b) If D = 2 (so, β = 1), then

N
(H)
n,l (D, p) =





C(1, p) (2(n− l − 1))2−p (1 + ¯̄o(1)) , p ∈ (0, 2)
ln(n− l − 1) +O(1)

π2
, p = 2

CA(p)

πp
(4(n− l − 1))

2
3

(2−p)(1 + ¯̄o(1)) p ∈ (2, 5)(
CA(p)

πp42
+ CB(α, 1, p)

)
(n− l − 1)−2, p = 5

CB(α, 1, p) (n− l − 1)−2 , p ∈ (5,∞).

2. If β = 0 (so, D 6= 2 and p = D−1
D−2), then

N
(H)
n,l (D, p) =





C(0, p) (2(n− l − 1))(1−p) (1 + ¯̄o(1)) , p = D−1
D−2

ln(n− l − 1) +O(1)

π2(n− l − 1)
, p = 2, (D = 3) .

3. If β < 0 (so, either p < D−1
D−2 and D < 2 or p > D−1

D−2 and D > 2), then

N
(H)
n,l (D, p) =





C(β, p) (2(n− l − 1))1+β−p (1 + ¯̄o(1)), p ∈
(
D−1
D−2 ,

2D
2D−3

)

2 Γ(p+ 1/2) (lnn+O(1))

πp+1/2 Γ(p+ 1) (4(n− l − 1))1+β
, p = 2 + 2β = 2D

2D−3 ,

CB(α, β, p) (n− l − 1)−(1+β) (1 + ¯̄o(1)), p > 2 + 2β = 2D
2D−3

where the constants C,CB, CA are given by

C(β, p) :=
2β+1

πp+1/2

Γ(β + 1− p/2) Γ(1− p/2) Γ(p+ 1/2)

Γ(β + 2− p) Γ(1 + p)
,

CA(p) :=

∫ +∞

−∞

[
2π
3
√

2
Ai2

(
− t

3
√

2

2

)]p
dt ,

and

CB(α, β, p) := 2

∞∫

0

t2β+1|Jα(2t)|2p dt ,

respectively. The symbols Ai(t) and Jα(z) denote the Airy and the Bessel functions

(see [59, 124]) defined by

Ai(y) =
3
√

3

π
A(−3

√
3y), A(t) =

π

3

√
t

3

[
J−1/3

(
2

(
t

3

) 3
2

)
+ J1/3

(
2

(
t

3

) 3
2

)]
.

and

Jα(z) =
∞∑

ν=0

(−1)ν

ν! Γ(ν + α+ 1)

(z
2

)α+2ν
.

respectively.
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A similar result can be obtained for the asymptotics (n→∞) of the Laguerre oscillator-

like (harmonic) functionals N
(O)
n,l (D, p) defined by Eq. (1.20) with the parameters α =

l+ D
2 −1 and β = (p−1)(1− D

2 ). This D-dimensional oscillator-like asymptotical result

can be expressed for three-dimensional systems as follows:

Theorem 1.2. [64, 122] The asymptotics (n→∞) of the Rényi-type Laguerre oscillator-

like (i.e., harmonic) functionals Nn,l(D, p) defined by Eq. (1.20) with the parameters

D = 3 , α = l + 1
2 , l = 0, 1, 2, . . ., and β = 1

2(1− p) is given by

N
(O)
n,l (3, p) =





λ
3
2

(p−1)C(β, p) (2n3)
1−p

2 (1 + ¯̄o(1)), p ∈ (0, p∗)

λ3/4 8
√

2
3π5/2n

−3/4 (lnn+O(1)) , p = p∗

(2λ
3
2 )p−1CB(α, β, p)n(p−3)/2 (1 + ¯̄o(1)), p > p∗

, (1.21)

with p∗ = 3
2 .

This theorem will be used to determine the Rényi entropies for the Rydberg states of

both three-dimensional Coulomb (see Sec. 2.1) and harmonic systems (see Sec. 3.1).

1.2.2 Parameter asymptotics of Laguerre and Gegenbauer entropic

functionals

In this subsection the asymptotics (α→∞) of some Rényi-like integral functionals of the

orthogonal Laguerre polynomials L(α)
n (x) and Gegenbauer polynomials C(α)

n (x) is given

by means of the two following theorems recently found by Temme et al [123]. They will

be later used to determine the physical Rényi entropies for the pseudoclassical states

(i.e., the highest dimensional states) of both D-dimensional hydrogenic (Sec. 2.2) and

harmonic systems (Sec. 3.2).

Theorem 1.3. [123] Let α, κ be positive real numbers, 0 < λ 6= 1, σ real and m a positive

natural number. Then, the Rényi-type functional of the Laguerre polynomials L(α)
m (x)

J1(σ, λ, κ,m;α) =

∞∫

0

xα+σ−1e−λx
∣∣∣L(α)

m (x)
∣∣∣
κ
dx (1.22)

has the following (α→∞)-asymptotic behavior

J1(σ, λ, κ,m;α) ∼ αα+σe−αλ−α−σ−κm |λ− 1|κm
√

2π

α

ακm

(m!)κ

∞∑

j=0

Dj

αj
, (1.23)
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with the first coefficients D0 = 1 and

D1 = 1
12(λ−1)2

(
1− 12κmσλ+ 6σ2λ2 − 12σ2λ− 6σλ2 + 12σλ +

6κ2m2 + 12κmσ − 12κm2λ− 12κmλ+ 6κmλ2+

6κm2λ2 + λ2 + 6σ2 − 2λ− 6σ + 6κm2
)
.

(1.24)

Moreover, in the particular case λ = 1 and κ = 2, i.e. for the functional

J1(σ, 1, 2,m;α) =

∞∫

0

xα+σ−1e−x
∣∣∣L(α)

m (x)
∣∣∣
2
dx (1.25)

we have the (α→∞)-asymptotic behavior

I5(m,α) ∼ αα+σ+me−α

m!

√
2π

α
. (1.26)

See [123] for further details including the knowledge of the remaining coefficients and

the proof of the theorem.

Theorem 1.4. [123] Let a, b, c, d, and κ be positive real numbers, c < d, and m a

positive natural number. Then, the Rényi-type functional of the Gegenbauer polynomials

C(α)
m (x) given by

J2(a, b, c, d, κ,m;α) =

∫ 1

−1
(1− x)cα+a(1 + x)dα+b

∣∣∣C(α)
m (x)

∣∣∣
κ
dx (1.27)

has the following asymptotics:

J2(a, b, c, d, κ,m;α) ∼ e−αφ(xm)

√
2π

α

2κm
(
(α)m

)κ

(m!)κ

∞∑

k=0

Dk

αk
, α→∞ (1.28)

where the coefficients Dk do not depend on α. The first coefficient is given by

D0 = a1

(
2c

c+ d

)a( 2d

c+ d

)b(d− c
c+ d

)κm
, (1.29)

and the symbols xm = (d−c)/(d+c), φ(xm) = −c log 2c
c+d−d log 2d

c+d and a1 = 2
√

cd
(c+d)3 .

Moreover, if c = d, the corresponding Rényi-type functional

J2(a, b, c, κ,m;α) =

∫ 1

−1
(1− x)a(1 + x)be−αφ(x)

∣∣∣C(α)
m (x)

∣∣∣
κ
dx, (1.30)

has the asymptotic behavior

J2(a, b, c, κ,m;α) ∼
√

π

αc

(2α)m

m!
, α→∞. (1.31)
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Finally, the asymptotics of the Rényi-like functional with c > d follows from the one with

c < d by interchanging a and b and c and d. The case c > d is useful for the determination

of the Rényi entropy of the high dimensional hydrogenic states in momentum space with

q < 1. For further details about the theorem and its proof, see [123].

1.3 Linearization methods of orthogonal polynomials

The linearization problem in the theory of orthogonal polynomials has a long history

[46, 51, 55, 125]. It is equivalent to the problem of the evaluation of the integral of the

product of three or more orthogonal polynomials of the same kind. A procedure to ob-

tain linearization formulas uses the generating function but it is not hopeful in general.

In fact they have been obtained by means of one or more characterizations of the hyper-

geometric orthogonal polynomials (e.g., orthogonality relation, second-order differential

equation, three-term recurrence relations,...) [126? –133] with different success. In this

section we briefly describe two scarcely known methods of linearization of natural pow-

ers of polynomials: the Srivastava-Niukkanen approach [49, 134] which linearizes the

power of an orthogonal polynomial of hypergeometric type (Hermite, Laguerre, Jacobi),

and an expansion method [135] of powers of arbitrary polynomials which is based on

the Bell polynomials used in combinatorial mathematics [136]. These methods play a

predominant role for the analytical determination of the Rényi entropies for both mul-

tidimensional hydrogenic and harmonic systems as will be discussed in subsections 2.3

and 3.3, respectively.

1.3.1 Srivastava-Niukkanen approach

The calculation of the integrals containing arbitrary (i.e., non-necessarily integer) powers

of a given hypergeometric orthogonal polynomial are relevant from both fundamental

and applied standpoints. Indeed, they are closely related to its Lq norms (see e.g.

[50, 137]) and to different quantifiers of the polynomial spreading all over its orthogo-

nality interval such as the information-theoretic lengths [54, 115, 135, 138] and various

entropic quantities of the Rakhmanov probability density of the polynomial. Moreover,

they admit combinatorial [46, 133] and entropic [54, 115, 135, 138] interpretations, and

they describe the expectation values of some quantum observables of the Hilbert space

of numerous physical systems (which are the quantum-mechanical predictions of the

experimentally accessible physical quantities) [139].

In this subsection we give two Theorems which provide linearization formulas for the

integer rth-power of Laguerre L
(α)
n (ty) and Jacobi P

(α,β)
n (z) polynomials obtained by

Sánchez-Moreno et al. [134] using the linearization method of Srivastava-Niukannen

[49]. The associated linearization coefficients are expressed in terms of a multivariate



Chapter 1 Entropy measures and orthogonal polynomials 25

Lauricella functions F
(r+1)
A (t, . . . , t, 1) and the Srivastava-Daoust generalized function

F 1:2;...;2
1:1;1...;1(1, . . . , 1) for the Laguerre and Jacobi cases, respectively.

Theorem 1.5. [49, 134] The orthogonal Laguerre polynomials L
(α)
n , α > −1, satisfy the

linearization formula

xµ
[
L(α)
n (t x)

]r
=
∞∑

i=0

ci (µ, r, t, n, α, γ)L
(γ)
i (x), (1.32)

where x ∈ (0,∞), the parameters µ ∈ R, t > 0, r ∈ N and γ > −1 is a free parameter,

and the linearization coefficients are given by

ci (µ, r, t, n, α, γ) = (γ + 1)µ

(
n+ α

n

)r

×F (r+1)
A




γ + µ+ 1;

r︷ ︸︸ ︷
−n, . . . ,−n,−i

;

r︷ ︸︸ ︷
t, . . . , t, 1

α+ 1, . . . , α+ 1︸ ︷︷ ︸
r

, γ + 1



.

The symbol F
(s)
A denotes the Lauricella function of type A of s variables and 2s + 1

parameters is defined [49] as follows:

F
(s)
A




a; b1, . . . , bs

;x1, . . . , xs

c1, . . . , cs


 =

∞∑

j1,...,js=0

(a)j1+...+js(b1)j1 · · · (bs)js
(c1)j1 · · · (cs)js

xj11 · · ·xjss
j1! · · · js!

.

where the symbol (y)z denotes the Pochhammer symbol (y)z = Γ(y+z)
Γ(y) . Note that when

the number of variables is s = 1, one recovers the Gauss’ hypergeometric function 2F1(x)

[59].

Theorem 1.6. [49, 134] The orthogonal Jacobi polynomials P
(α,β)
n (z), z ∈ [−1,+1],

satisfy the linearization formula

zµ
[
P (α,β)
n (z)

]r
=
∞∑

i=0

c̃i(µ, r, n, α, β, γ, δ)P
(γ,δ)
i (z) (1.33)
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where α, β, γ, δ > −1, µ ∈ R, r ∈ N, and the series coefficients are expressed as

c̃i (µ, r, n, α, β, γ, δ) =

(
n+ α

n

)r
(γ + 1)µ

(γ + δ + 2i+ 1) (−µ)i
(γ + 1)i (γ + δ + i+ 1)µ+1

× F 2:2;··· ,2
2:1;··· ,1




µ+ 1, γ + µ+ 1 :

r︷ ︸︸ ︷
−n, α+ β + n+ 1; . . . ,−n, α+ β + n+ 1

;

r︷ ︸︸ ︷
1, . . . , 1

µ− i+ 1, γ + δ + µ+ i+ 2 : α+ 1 . . . , α+ 1︸ ︷︷ ︸
r



.

The symbol F 1:2;...;2
1:1;1...;1(1, . . . , 1) is a particular instance of the Srivastava-Daoust genera-

lized function F p0:p1;··· ;pr
q0:q1;··· ;qr (x1, . . . , xr) which is defined [49] as follows: Given two sets

of r + 1 integer numbers p0, · · · , pr and q0, · · · , qr and two sets of r + 1 real vectors

ai = (a
(1)
i , · · · , a(pi)

i ), bi = (b
(1)
i , · · · , b(qi)i ) with i = 0, · · · , r, and taking the notation

(ai)j = (a
(1)
i )j · · · (a(pi)

i )j , (bi)j = (b
(1)
i )j · · · (b(qi)i )j ,

the r-variate Srivastava-Daoust function of r variables (x1, · · · , xr) and N =
∑r

i=0(pi +

qi) real parameters, is defined as

F p0:p1;··· ;pr
q0:q1;··· ;qr




a0 : a1; . . . ; ar,

;x1, . . . , xr

b0 : b1; . . . ; br


 =

∞∑

j1,...,jr=0

(
r∏

i=0

(ai)ji
(bi)ji

xjii
ji!

)
, (1.34)

where j0 ≡ j1 + j2 + · · ·+ jr, and
x
j0
0
j0! ≡ 1 is understood.

These two theorems will be used to carry out the computation of the exact Rényi en-

tropies for both hydrogenic (see Sec. 2.3) and harmonic states (see Secs. 3.1 and 3.3).

1.3.2 Bell-polynomial-based method

In this subsection we give a Lemma which provides an expansion method of powers

of arbitrary polynomials in which the expansion coefficients are given by means of the

multivariate Bell polynomials of combinatorial mathematics [136]. This method has

been recently used [54, 135, 138] to obtain a number of entropy-like integral functionals

of the hypergeometric orthogonal polynomials.

Definition 1.7. Bell polynomials

Given natural numbers n ≥ k, the Bell polynomial of the second kind with n − k + 1

variables is defined as

Bn,k(x1, x2, · · · , xn−k+1) =
∑

j1,··· ,jn−k+1

n!

j1! · · · jn−k+1!

(x1

1!

)j1 · · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1



Chapter 1 Entropy measures and orthogonal polynomials 27

where the sum indices are restricted for the following relations j1 + j2 + · · ·+ jn−k+1 = k

and j1 + 2j2 + · · ·+ (n− k + 1)jn−k+1 = n.

Lemma 1.8. [135] The p-th power of a given polynomial yn(x) =
∑n

k=0 ck x
k can be

expressed as

(yn(x))p =

np∑

k=0

Ak,p(c0, · · · , cn)xk (1.35)

with

Ak,p(c0, · · · , cn) =
p!

(p+ k)!
Bp+k,p(c0, 2! c1, · · · , (k + 1)! ck) (1.36)

=
∑

j1,...,jn

p!

j0!j1!, · · · , jn!
cj00 c

j1
1 , · · · , cjnn (1.37)

where the sum indices are restricted for the following relations j1 + j2 + · · ·+ jn = p and

j1 + 2j2 + · · ·+ njn = k.

This method will be used later in this work (Sec. 3.1) for the determination of the angular

part of the physical Rényi entropies of the three-dimensional quantum harmonic systems

[64].



Chapter 2

Rényi and Shannon entropies of

Coulomb systems

The goal of this chapter is to investigate the internal disorder of the D-dimensional

Coulomb systems of hydrogenic type by means of the analytical information theory.

This includes the quantification of the multiple facets of the multi-dimensional geome-

tries of the charge and momentum probability distributions of the discrete stationary

quantum-mechanical states of the systems by means of their associated Rényi and Sha-

nnon entropies.

The analytical determination of the Rényi and Shannon entropies of the main proto-

type of the D-dimensional Coulomb many-body systems, the D-dimensional hydrogenic

system, from first principles (i.e., in terms of the hyperquantum numbers of the state

and the nuclear charge) has been recently undertaken [31, 41, 74, 140]. This is rele-

vant per se and for a reference point of view. The D-dimensional hydrogenic system

is a negatively-charged particle moving in a space of D dimensions around a positively

charged core which electromagnetically binds it in its orbit [37, 41, 57, 141, 142]. This

system allows for the modelling of numerous three-dimensional physical systems (e.g.,

hydrogenic atoms and ions, exotic atoms, antimatter atoms, Rydberg atoms) and a num-

ber of nanotechnological objects (quantum wells, wires and dots) and qubits which have

been shown to be very useful in semiconductor physics [143, 144] and quantum tech-

nologies [145, 146], respectively. Moreover, it plays a crucial role for the interpretation

of numerous phenomena of quantum cosmology and quantum field theory [147, 148]. In

addition the D-dimensional hydrogenic wavefunctions have been used as complete or-

thonormal sets for many-body atomic and molecular problems [57, 58] in both position

and momentum spaces.

The calculation of the hydrogenic Rényi and Shannon entropies is a formidable task

except for the lowest-lying energy states. This is because these quantities are described
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by means of some power and logarithmic functionals of the electron density, respec-

tively, which cannot be easily handled in an analytical way nor numerically computed.

The latter is basically because a naive numerical evaluation using quadratures is not

convenient due to the increasing number of integrable singularities when the principal

hyperquantum number n is increasing, which spoils any attempt to achieve reasonable

accuracy even for rather small n [149].

Up until now, these quantities have been only calculated for the standard (three-dimensional)

hydrogenic system in a closed form [31, 140] at the high-energy (Rydberg) limit. In this

Chapter we extend this achievement for the Rydberg and the pseudo-classical states of

D-dimensional hydrogenic systems [31, 63] by use of modern asymptotical techniques

[122, 123] of the Laguerre and Gegenbauer polynomials which control the state’s wave-

functions in position and momentum spaces. Furthermore we obtain the Rényi entropies

for all discrete stationary states of the standard and non-standard multidimensional hy-

drogenic systems [70] by means of the linearization techniques of orthogonal polynomials

described in the previous chapter.

This chapter is composed by three sections. Shortly, the main results of each section are

the following:

2.1 We determine the three main entropic measures (Rényi, Shannon, Tsallis) of the

quantum probability density of the D-dimensional Rydberg hydrogenic states in

terms of the basic parameters which characterize them; namely, the dimension-

ality D, the hyperquantum numbers (n, l, {µ}) and the nuclear charge Z of the

system. The Theorem of Aptekarev et al discussed in Chapter 1, which gives the

asymptotics of the entropy-like integral functionals of Laguerre polynomials, has

been used.

2.2 We calculate the high-D behavior of the position and momentum Rényi entropies of

theD-dimensional hydrogenic states in terms of the state’s hyperquantum numbers

and the nuclear charge Z of the system. We have used a recent constructive

methodology based on Temme et al’s Theorem (see Chapter 1) which allows for

the calculation of some Rényi-like integral functionals of Laguerre L(α)
k (x) and

Gegenbauer C(α)
k (x) polynomials with a fixed degree k and large values of the

parameter α.

2.3 We obtain the position Rq[ρn,l,{µ}] and momentum Rq[γn,l,{µ}] Rényi entropies

(with integer q greater than 1) for all the multidimensional hydrogenic states in

terms of the Rényi parameter, q, the spatial dimension D, the nuclear charge Z

as well as the hyperquantum numbers, (n, l, {µ}), which characterize the corres-

ponding wavefunction of the states. The linearization and expansion techniques

of Laguerre and Jacobi polynomials described in Chapter 1 have been used.
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2.1 Rydberg states

Coulomb systems at Rydberg states are huge-size atoms which can be made by exciting

the outermost electron in certain elements, so that all the inner electrons can lumped

together and regarded, along with the atom’s nucleus, as a unified core, with the lone

remaining electron lying outside. Thus, they are as if the atom were a hydrogenic system,

a heavy version of hydrogen. Due to their extraordinary properties (high magnetic

susceptibility, relativily long lifetime, high kinetic energy,. . . ) these systems, where

the outermost electrons are highly excited but not ionized, have been used in multiple

scientific areas ranging from plasmas and diamagnetism to astrophysics, quantum chaos

and strongly interacting systems. Recently it has been argued that they might be just the

basic elements for processing quantum information (see e.g., [150, 151]). Indeed, these

outsized atoms can be sustained for a long time in a quantum superposition condition

(what is very convenient for creating qubits) and they can interact strongly with other

such atoms; this property makes them very useful for devising the kind of logic gates

needed to process information.

The multidimensional Rydberg hydrogenic states (i.e. states where the electron has

a large principal hyperquantum number n, so being highly excited), with standard

and non-standard dimensionalities, has been investigated (see section 5 of [41], and

[48, 54, 113, 152]) up until now by means of the following spreading measures: central

moments, variances, logarithmic expectation values, Shannon entropy and Fisher infor-

mation. In this Section we go much beyond this study by calculating the Rényi and

Tsallis entropic measures of the highly excited or Rydberg states of the D-dimensional

hydrogenic systems in terms of the principal and orbital hyperquantum numbers and

the space dimensionality D. This has been possible through the use of the novel mathe-

matical technique developed by Aptekarev et al. [122] which has been briefly described

in the Sec. 1.2.1.

Precisely, we have carried out the following tasks:

• The Rényi entropy has been calculated by first decomposing it into two parts of

radial and angular types, and realizing that the angular part does not depend on

n, so that the true problem to be solved is the calculation of the radial Rényi

entropy in the limit of large n.

• The radial Rényi entropy has been shown to be expressed in terms of the Lp-norms

of the Laguerre polynomials which control the Rydberg states we are interested

in.

• The remaining asymptotics of these Laguerre norms is determined by means of a

recent asymptotical technique of approximation theory given by Theorem 1.1 of

Aptekarev et al [122].
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• We numerically apply this theoretical methodology to some particular Rydberg

hydrogenic states of s and p types.

• We find that the Rényi entropy monotonically decreases (increases) when the nu-

clear charge (the dimensionality) is decreasing (increasing) for some s and p states.

• The Shannon and Tsallis entropies can be obtained from the Rényi one.

These results have been published in the article [31] with coordinates: Toranzo I. V.,

Puertas-Centeno D. and Dehesa J. S. Entropic properties of D-dimensional Rydberg

systems. Physica A: Statistical Mechanics and its Applications, 462:1197-1206, 2016,

which is attached below.
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Departamento de F́ısica Atómica, Molecular y Nuclear,

Universidad de Granada, Granada 18071, Spain and

Instituto Carlos I de F́ısica Teórica y Computacional,
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The fundamental information-theoretic measures (the Rényi Rp[ρ] and Tsallis Tp[ρ] en-

tropies, p > 0) of the highly-excited (Rydberg) quantum states of the D-dimensional (D > 1)

hydrogenic systems, which include the Shannon entropy (p → 1) and the disequilibrium

(p = 2), are analytically determined by use of the strong asymptotics of the Laguerre or-

thogonal polynomials which control the wavefunctions of these states. We first realize that

these quantities are derived from the entropic moments of the quantum-mechanical proba-

bility ρ(~r) densities associated to the Rydberg hydrogenic wavefunctions Ψn,l,{µ}(~r), which

are closely connected to the Lp-norms of the associated Laguerre polynomials. Then, we

determine the (n→∞)-asymptotics of these norms in terms of the basic parameters of our

system (the dimensionality D, the nuclear charge and the hyperquantum numbers (n, l, {µ})
of the state) by use of recent techniques of approximation theory. Finally, these three en-

tropic quantities are analytically and numerically discussed in terms of the basic parameters

of the system for various particular states.

PACS numbers: 89.70.Cf, 89.70.-a, 32.80.Ee, 31.15.-p

Keywords: Entropic uncertainty measures of Shannon, Rényi and Tsallis types, D-dimensional

hydrogenic systems, D-dimensional quantum physics, Rydberg states.

I. INTRODUCTION

Rydberg systems are ballooned-up atoms which can be made by exciting the outermost electron

in certain elements, so that all the inner electrons can lumped together and regarded, along

with the atom’s nucleus, as a unified core, with the lone remaining electron lying outside [1, 2].

Thus, they are as if the atom were a hydrogenic system, a heavy version of hydrogen. Due to

their extraordinary properties (high magnetic susceptibility, relativily long lifetime, high kinetic
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energy,. . . ) these systems, where the outermost electrons are highly excited but not ionized, have

been used in multiple scientific areas ranging from plasmas and diamagnetism to astrophysics,

quantum chaos and strongly interacting systems. Recently it has been argued that they might

be just the basic elements for processing quantum information (see e.g., [3, 4]). Indeed, these

outsized atoms can be sustained for a long time in a quantum superposition condition (what is

very convenient for creating qubits) and they can interact strongly with other such atoms; this

property makes them very useful for devising the kind of logic gates needed to process information.

The D-dimensional hydrogenic system (i.e. an electron or a negatively-charged particle moving

around a nucleus or a positively-charged core which electromagnetically binds it in its orbit),

with D > 1, is the main prototype to model the behavior of most multidimensional quantum

many-body systems with standard (D = 3) and non-standard (D 6= 3) dimensionalities [5–10].

It embraces a large variety of three-dimensional physical systems (e.g., hydrogenic atoms and

ions, exotic atoms, antimatter atoms, Rydberg atoms,. . . ) and a number of nanotechnological

objects which have been shown to be very useful in semiconductor nanostructures (e.g., quantum

wells, wires and dots) [11, 12] and quantum computation (e.g., qubits) [13, 14]. Moreover, it

plays a crucial role for the interpretation of numerous phenomena of quantum cosmology [15] and

quantum field theory [5, 16, 17]. As well, the D-dimensional hydrogenic wavefunctions have been

used as complete orthonormal sets for many-body atomic and molecular problems [18–20] in both

position and momentum spaces. Finally, the existence of non-standard hydrogenic systems has

been proved for D < 3 [12, 21] and suggested for D > 3 [7].

The multidimensional extension of Rydberg hydrogenic states (i.e. states where the electron

has a large principal quantum number n, so being highly excited), with standard and non-standard

dimensionalities, has been investigated (see section 5 of [22], and [23–26]) up until now by means

of the following spreading measures: central moments, variances, logarithmic expectation values,

Shannon entropy and Fisher information. These measures were found to be expressed in terms of

the principal and orbital hyperquantum numbers and the space dimensionality D. In this work we

go much beyond this study by calculating the Rényi [27] and Tsallis [28] entropies (also called by

information generating functionals [29]) of the Rydberg states defined by

Rp[ρ] =
1

1− p lnWp[ρ]; 0 < p <∞, (1)

Tp[ρ] =
1

p− 1
(1−Wp[ρ]); 0 < p <∞, (2)
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where the symbol Wp[ρ] denotes the entropic moments of ρ(~r) defined as

Wp[ρ] =

∫

RD

[ρ(~r)]p d~r = ‖ρ‖pp; p > 0. (3)

The symbol ‖ · ‖p denotes the Lp-norm for functions: ‖Φ‖p =
(∫

RD |Φ(~r)|pd~r
)1/p

. Note that both

Rényi and Tsallis measures include the Shannon entropy, S[ρ] = limp→1Rp[ρ] = limp→1 Tp[ρ],

and the disequilibrium, 〈ρ〉 = exp(R2[ρ]), as two important particular cases. Moreover, they are

interconnected as indicated later on. Their properties have been recently reviewed [25, 30, 31];

see also [32–37]. Moreover, the Rényi entropies and their associated uncertainty relations have

been widely used to investigate a great deal of quantum-mechanical properties and phenomena

of physical systems and processes [25, 30, 38], ranging from the quantum-classical correspondence

[39] and quantum entanglement [40] to pattern formation and Brown processes [41, 42], quantum

phase transition [43] and disordered systems [44].

The structure of this work is the following. First, in Section II, we give the wavefunctions of

the stationary D-dimensional hydrogenic states in position space and their squares, the quantum

probability densities ρ (~r). Then we define the entropic moments and the Rényi entropy of this

density, and we show that for the very excited states the calculation of the latter quantity essentially

converts into the determination of the asymptotics of the Lp-norm of the Laguerre polynomials

which control the states’ wavefunctions. In Section III we use a powerful technique of approximation

theory recently developed by Aptekarev et al [26, 45, 46] to determine these Laguerre norms in

terms of D and the hyperquantum numbers of the system. In Section IV the Shannon, Rényi and

Tsallis entropies are studied both analytically and numerically for the D-dimensional hydrogenic

states by means of D, the hyperquantum numbers and the nuclear charge Z of the system. Finally,

some concluding remarks are given.

II. THE D-DIMENSIONAL RYDBERG PROBLEM: ENTROPIC FORMULATION

In this section we briefly describe the quantum probability density of the stationary states of

the D-dimensional hydrogenic system in position space. Then, we pose the determination of the

entropic moments and the Rényi entropies of this density in the most appropriate mathematical

manner for our purposes. Atomic units will be used throughout.

The time-independent Schrödinger equation of a D-dimensional (D > 1) hydrogenic system (i.e.,

an electron moving under the action of the D-dimensional Coulomb potential V (~r) = −Z
r

) is given
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by

(
−1

2
~∇2
D −

Z

r

)
Ψ (~r) = EΨ (~r) , (4)

where ~∇D denotes the D-dimensional gradient operator, Z is the nuclear charge, and the electronic

position vector ~r = (x1, . . . , xD) in hyperspherical units is given as (r, θ1, θ2, . . . , θD−1) ≡ (r,ΩD−1),

ΩD−1 ∈ SD−1, where r ≡ |~r| =
√∑D

i=1 x
2
i ∈ [0 ; +∞) and xi = r

(∏i−1
k=1 sin θk

)
cos θi for 1 ≤ i ≤ D

and with θi ∈ [0 ; π), i < D − 1, θD−1 ≡ φ ∈ [0 ; 2π). It is assumed that the nucleus is located at

the origin and, by convention, θD = 0 and the empty product is the unity. .

It is known [16, 22, 47, 48] that the energies belonging to the discrete spectrum are given by

E = − Z
2

2η2
, η = n+

D − 3

2
; n = 1, 2, 3, ..., (5)

and the associated eigenfunction can be expressed as

Ψη,l,{µ}(~r) = Rη,l(r) Yl,{µ}(ΩD−1). (6)

Then, the quantum probability density of a D-dimensional hydrogenic stationary state (n, l, {µ})
is given by the squared modulus of the position eigenfunction as

ρn,l,{µ}(~r) = ρn,l(r̃) |Yl,{µ}(ΩD−1)|2, (7)

where the radial part of the density is the univariate function

ρn,l(r̃) = [Rn,l(r)]2 =
λ−d

2η

ω2L+1(r̃)

r̃d−2
[L̂(2L+1)
η−L−1(r̃)]2 (8)

with L, defined as the “grand orbital angular momentum quantum number”, and the adimensional

parameter r̃ given by

L = l +
D − 3

2
, l = 0, 1, 2, . . . (9)

r̃ =
r

λ
, λ =

η

2Z
. (10)

The symbols L(α)
n (x) and L̂(α)

n (x) denote the orthogonal and orthonormal, respectively, Laguerre

polynomials with respect to the weight ωα(x) = xαe−x on the interval [0,∞), so that

L̂(α)
m (x) =

(
m!

Γ(m+ α+ 1)

)1/2

L(α)
m (x), (11)

and finally

Kη,L = λ−
D
2

{
(η − L− 1)!

2η(η + L)!

} 1
2

=





(
2Z

n+ D−3
2

)D
(n− l − 1)!

2
(
n+ D−3

2

)
(n+ l +D − 3)!





1
2

≡ Kn,l (12)
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represents the normalization constant which ensures that
∫ ∣∣Ψη,l,{µ}(~r)

∣∣2 d~r = 1. The angular

eigenfunctions are the hyperspherical harmonics, Yl,{µ}(ΩD−1), defined as

Yl,{µ}(ΩD−1) = Nl,{µ}eimφ ×
D−2∏

j=1

C(αj+µj+1)
µj−µj+1

(cos θj)(sin θj)
µj+1

with the normalization constant

N 2
l,{µ} =

1

2π
×

D−2∏

j=1

(αj + µj)(µj − µj+1)![Γ(αj + µj+1)]2

π 21−2αj−2µj+1Γ(2αj + µj + µj+1)
,

where the symbol Cλn(t) denotes the Gegenbauer polynomial of degree n and parameter λ.

Now we can calculate any spreading measure of the D-dimensional hydrogenic system beyond

the known the variance and the ordinary moments (or radial expectation values) of its density,

which are already known [22]. The most relevant spreading quantities are the entropic moments

Wp[ρn,l,{µ}], because they characterize the density and moreover we can obtain from them the main

entropic measures of the system such as the Rényi, Shannon and Tsallis entropies. They are given

as

Wp[ρn,l,{µ}] =

∫

RD

[ρn,l,{µ}(~r)]
p d~r

=

∞∫

0

[ρn,l(r)]
p rD−1 dr × Λl,{µ}(ΩD−1), (13)

where we have used that the volume element is

d~r = rD−1dr dΩD−1, dΩD−1 =



D−2∏

j=1

sin2αj θj


 dφ,

(with 2αj = D − j − 1) and the angular part is given by

Λl,{µ}(ΩD−1) =

∫

SD−1

|Yl,{µ}(ΩD−1)|2p dΩD−1. (14)

Then, from Eqs. (1) and (13) we can obtain the Rényi entropies of the D-dimensional hydrogenic

state (n, l, {µ}) as follows

Rp[ρn,l,{µ}] = Rp[ρn,l] +Rp[Yl,{µ}], (15)

where Rp[ρn,l] denotes the radial part

Rp[ρn,l] =
1

1− p ln

∫ ∞

0
[ρn,l]

prD−1 dr, (16)
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and Rp[Yl,{µ}] denotes the angular part

Rp[Yl,{µ}] =
1

1− p ln Λl,{µ}(ΩD−1). (17)

In this work we are interested in the entropic properties of the high extreme region of the system,

embracing the highly and very highly excited (Rydberg) states (recently shown to be experimentally

accessible [1]) where these properties are most difficult to compute because they possess large and

very large values of n. Since the dependence of both the entropic moments and the Rényi entropies

on the principal hyperquantum number n is concentrated in their radial parts according to Eqs.

(13)-(17), the computation of Rp[ρn,l,{µ}] for the Rydberg states of D-dimensional hydrogenics

systems practically reduces to determine the value of the radial Rényi entropy, Rp[ρn,l], in the

limiting case n → ∞. Moreover, by taking into account the expression (8) of the radial density

and Eqs. (13) and (16), this problem converts into the study of the asymptotics (n → ∞) of the

Lp-norm of the Laguerre polynomials

Nn(α, p, β) =

∞∫

0

([
L̂(α)
n (x)

]2
wα(x)

)p
xβ dx , α > −1 , p > 0 , β + pα > −1. (18)

Indeed, from Eq. (16) one has that the radial Rényi entropy can be expressed as

Rp[ρn,l] =
1

1− p ln

[
ηD(1−p)−p

2D(1−p)+pZD(1−p)Nn,l(D, p)

]
, (19)

where the norm Nn,l(α, p, β) ≡ Nn,l(D, p) is given by

Nn,l(D, p) =

∞∫

0

([
L̂(α)
n−l−1(x)

]2
wα(x)

)p
xβ dx, (20)

with

α = 2L+ 1 = 2l +D − 2 , l = 0, 1, 2, . . . , n− 1, p > 0 and β = (2−D)p+D − 1 (21)

We note that (21) guarantees the convergence of integral (20); i.e. the condition

β + pα = 2lp + D − 1 > −1 is always satisfied for physically meaningful values of the pa-

rameters.

III. LAGUERRE Lp-NORMS AND RADIAL ENTROPIES: ASYMPTOTICS

Let us now study the asymptotics at large n of the Laguerre hydrogenic norms Nn,l(D, p)

given by Eq. (20) in terms of all possible values of the involved parameters (D, p). It controls
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the asymptotic values of the radial Rényi entropy Rp[ρn,l] given by Eq. (19) and, because of Eq.

(15), the total Rényi entropy of the Rydberg D-dimensional hydrogenic states. Since the exact

evaluation of these norm-like functionals is a very difficult task, not yet solved, we will tackle

this problem by means of the determination of the asymptotical behavior (i.e., at large n) of the

general functional Nn(α, p, β) by extensive use of the strong asymptotics of Laguerre polynomials.

The results obtained are contained in the following theorem.

Theorem. The asymptotics (n→∞) of the Laguerre hydrogenic functionals Nn,l(D, p) defined

by Eq. (20) are given by the following expressions for all possible values of D and p > 0:

1. If β > 0, there are two subcases:

(a) If D > 2, then

Nn,l(D, p) = C(β, p) (2(n− l − 1))1+β−p (1 + ¯̄o(1)), for p ∈
(

0,
D − 1

D − 2

)
(22)

(b) If D = 2 (so, β = 1), then

Nn,l(D, p) =





C(1, p) (2(n− l − 1))2−p (1 + ¯̄o(1)) , p ∈ (0, 2)

ln(n− l − 1) +O(1)

π2
, p = 2 (Cosine-Airy regime)

CA(p)

πp
(4(n− l − 1))

2
3

(2−p)(1 + ¯̄o(1)) p ∈ (2, 5)

(
CA(p)

πp42
+ CB(α, 1, p)

)
(n− l − 1)−2, p = 5

CB(α, 1, p) (n− l − 1)−2 , p ∈ (5,∞).

(23)
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2. If β = 0 (so, D 6= 2 and p = D−1
D−2), then

Nn,l(D, p) =





C(0, p) (2(n− l − 1))(1−p) (1 + ¯̄o(1)) , p = D−1
D−2

ln(n− l − 1) +O(1)

π2(n− l − 1)
, p = 2, (D = 3) (Cosine-Airy regime).

(24)

3. If β < 0 (so, either p < D−1
D−2 and D < 2 or p > D−1

D−2 and D > 2), then

Nn,l(D, p) =





C(β, p) (2(n− l − 1))1+β−p (1 + ¯̄o(1)), p ∈
(
D−1
D−2 ,

2D
2D−3

)

2 Γ(p+ 1/2) (lnn+O(1))

πp+1/2 Γ(p+ 1) (4(n− l − 1))1+β
, p = 2 + 2β = 2D

2D−3 (Cosine-Bessel regime),

CB(α, β, p) (n− l − 1)−(1+β) (1 + ¯̄o(1)), p > 2 + 2β = 2D
2D−3

(25)

where the constants C,CB, CA are given by

C(β, p) :=
2β+1

πp+1/2

Γ(β + 1− p/2) Γ(1− p/2) Γ(p+ 1/2)

Γ(β + 2− p) Γ(1 + p)
, (26)

CA(p) :=

∫ +∞

−∞

[
2π
3
√

2
Ai2

(
− t

3
√

2

2

)]p
dt , (27)

and

CB(α, β, p) := 2

∞∫

0

t2β+1|Jα|2p(2t) dt , (28)

respectively, α = 2l+D− 2 and β = (2−D)p+D− 1. The symbols Ai(t) and Jα(z) denote

the Airy and the Bessel functions (see [49]) defined by

Ai(y) =
3
√

3

π
A(−3

√
3y), A(t) =

π

3

√
t

3

[
J−1/3

(
2

(
t

3

) 3
2

)
+ J1/3

(
2

(
t

3

) 3
2

)]
.

and

Jα(z) =

∞∑

ν=0

(−1)ν

ν! Γ(ν + α+ 1)

(z
2

)α+2ν
.
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respectively.

Comment : For D = 3 it happens that 2D
2D−3 = D−1

D−2 = 2, and then the quantities Nn,l(D, p)

are given by the third asymptotical expression in (25). For higher dimensions one has

2D
2D−3 >

D−1
D−2 , and the three expressions in (25) hold.

Hints. We use the effective Aptekarev et al’s technique [26, 45, 46] recently applied for oscillator-

like systems. This technique determines the (n → ∞)-asymptotics of the Laguerre hydrogenic

norms Nn(α, p, β) by taking care of the values of the parameters α, β and p. It turns out that the

dominant contribution to the asymptotical value of the integral (18) comes from different regions of

integration defined according to the values of the involved parameters, which characterize various

asymptotic regimes. Thus, we have to use various asymptotical representations for the Laguerre

polynomials at the different scales.

Altogether there are five asymptotical regimes which can give (depending on α, β and p) the

dominant contribution in the asymptotics of Nn(α, p, β). Three of them exhibit the growth of

Nn(α, p, β) as some nth-power law with an exponent which depends on α, β and p. We call them

by Bessel, Airy and cosine (or oscillatory) regimes, which are characterized by the constants CB,

CA and C, respectively, mentioned above. The Bessel regime corresponds to the neighborhood

of zero (i.e. the left end point of the interval of orthogonality), where the Laguerre polynomials

can asymptotically be expressed by means of Bessel functions (taken for expanding scale of the

variable). Then, at the right of zero (cosine regime) the oscillatory behavior of the polynomials

(in the bulk region of zeros location) is modeled asymptotically by means of the trigonometric

functions; and at the neighborhood of the extreme right of zeros (Airy regime) the asymptotics

of the Laguerre polynomials is controlled by Airy functions. Finally, in the neighborhood of the

infinity point of the orthogonality interval the polynomials have growing asymptotics. Moreover,

there are regions where these asymptotics match each other. Namely, asymptotics of the Bessel

functions for big arguments match the trigonometric function, as well as the asymptotics of the

Airy functions do the same.

In addition, there are two transition regimes: cosine-Bessel and cosine-Airy. If the contributions

of these regimes dominate in the integral (18), then the asymptotics ofNn(α, p, β) besides the degree

on n have the factor lnn. Note also that if these regimes dominate, then the gamma factors in

constant C(β, p) in (26) for the oscillatory cosine regime blow up. For the cosine-Bessel regime

this happens when β + 1− p/2 = 0, and for the cosine-Airy regime when 1− p/2 = 0.
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IV. INFORMATION ENTROPIES OF THE D-DIMENSIONAL RYDBERG STATES

In this section we determine the Rényi, Shannon and Tsallis entropies of the D-dimensional

Rydberg hydrogenic states in terms of the spatial dimension D, the order parameter p, the hyper-

quantum numbers (n, l, {µ}) and the nuclear charge Z. First, attention is focussed on the Rényi

and Shannon entropies since the Tsallis entropy can be obtained from the Rényi one by means of

the relation

Tp[ρ] =
1

1− p [e(1−p)Rp[ρ] − 1]. (29)

Then, for illustration, we numerically discuss the Rényi entropy Rp[ρn,0,0] of some hydrogenic

Rydberg (ns)-states in terms of D, p, n and Z.

Let us start by pointing out that the total Rényi entropy Rp[ρn,l,{µ}] of the Rydberg states can

be obtained in a straightforward manner by taking into account Eq. (15), the values of the radial

Rényi entropy Rp[ρn,l] derived from Eq. (19), the asymptotical (n → ∞) values of the Laguerre

norms Nn,l(D, p) given by the previous theorem, and the angular Rényi entropy Rp[Yl,{µ}] given

by Eqs. (14) and (17); keep in mind that the angular part of the Rényi entropy does not depend

on the principal quantum number n.

What about the Shannon entropy S[ρn,l,{µ}] of the Rydberg hydrogenic states?. To calculate

its value for any stationary state (n, l, {µ}), we take into account (a) that limp→+1Rp[ρ] = S[ρ]

for any probability density ρ, (b) the expression (15), (c) the following limiting value of the radial

Rényi entropy Rp[ρn,l,{µ}] of the Rydberg hydrogenic states obtained for a fixed dimension D from

(19)-(20) and the previous theorem,

lim
p→+1

Rp[ρn,l] = lim
p→+1

1

1− p ln

[
ηD(1−p)−p

2D(1−p)+pZD(1−p)C(β, p) (2n)1+β−p
]

= 2D lnn+ (2−D) ln 2 + lnπ −D lnZ +D − 3, (30)

(d) the condition n >> l and (e) that

lim
p→+1

Rp[Yl,{µ}] = lim
p→+1

1

1− p ln Λl,m(ΩD−1) = S[Yl,{µ}], (31)

(remember (14) and (15) for the first equality) where S[Yl,{µ}] is the Shannon-entropy functional

of the spherical harmonics [50] given by

S[Yl,{µ}] = −
∫

SD−1

[Yl,{µ}]2 ln [Yl,{µ}]2 dΩD−1. (32)
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which does not depend on n and can be calculated as indicated in [24]. In particular, from the

previous indications we find the following values

Rp[ρn,0,0] = Rp[ρn,0] +Rp[Y0,0] = Rp[ρn,0] +
1

1− p ln f(p,D) (33)

for p 6= 1, and

S[ρn,0,0] = 2D lnn+ (2−D) ln 2 + lnπ −D lnZ +D − 3 + S(Y0,0) + o(1) (34)

for the Rényi and Shannon entropy of the (ns)-Rydberg hydrogenic states, respectively, where

f(p,D) and S(Y0,0) have the values (see Appendix A):

f(p,D) =

∫

ΩD−1

|Y0,0(ΩD−1)|2p dΩD−1

= 2D(1−p)π
1
2

(−Dp+D+p−1)

[
Γ(D)

Γ
(
D+1

2

)
]p−1

(35)

and

S(Y0,0) = − lnN 2
0,0

= D ln 2 +
D − 1

2
lnπ + ln

Γ
(
D+1

2

)

Γ(D)
,

(36)

respectively. Note that limp→+1
1

1−p ln f(D, p) = S(Y0,0). In the particular case D = 3 (i.e., for

real hydrogenic systems), one has that limp→+1
1

1−p ln f(3, p) = S(Y0,0) = ln(4π), as expected.

Finally, for illustrative purposes, we first numerically investigate the dependence of the Rényi

entropy Rp[ρn,0,0] for some Rydberg (ns)-states on the quantum number n, the order parameter p

and the nuclear charge Z. First, we study the variation of the p-th order Rényi entropy of these

states in terms of n, within the interval n = 50 − 200, when p is fixed. As an example, the cases

p = 5
4 ,

10
7 ,

3
4 , 3 for the D-dimensional hydrogenic Rydberg (ns)-states with D = 6, 5, 4, and 2,

respectively, are plotted in Fig. 1. We observe that the behavior of the Rényi entropy has always

an increasing character for any dimensionality D > 2.

Second, in Fig. 2, we analyze the dependence of the Rényi entropy, Rp[ρ], on the order p for the

Rydberg hydrogenic state (n = 100, l = 1, D = 4). We observe that the Rényi entropy decreases

monotonically as the integer order p is increasing. This behavior indicates that the quantities with

the lowest orders (particularly the cases p = 1 and p = 2, which correspond to the Shannon entropy
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and the disequilibrium or second-order Rényi entropy) are most significant for the quantification

of the spreading of the electron distribution of the system. In fact, this behavior occurs for all the

D-dimensional states; we should expect it since the Rényi entropy is defined by (1) as a continuous

and non-increasing function in p.

Third, in Fig. 3, we illustrate the behavior of the Rényi entropy, Rp[ρ], as a function of the

atomic number Z of the Rydberg hydrogenic states (n = 100, l = 0) with (p = 3, D = 2) and

(p = 3
4 , D = 4), where Z goes from 1 (hydrogen) to 103 (lawrencium). We observe that the Rényi

entropy decreases monotonically as Z increases, which points out the fact that the probability

distribution of the system tends to separate out from equiprobability more and more as the

number of electrons in the nucleus of the atom increases; so, quantifying the greater complexity

of the system as the atomic number grows.

Finally, we investigate the behavior of the Rényi entropy, Rp[ρ], of the Rydberg hydrogenic state as

a function of the dimensionality D. We show it in Fig. 4 for the Rydberg state (n = 100, l = 0) with

p = 1
2 and 4 of the hydrogen atom with various integer values of the dimensionality D ∈ [50, 200].

We observe that in both cases the Rényi entropy has a monotonically increasing behavior as D

grows, which indicates that the larger the dimension, more classically the system behaves (or in

other words, the closer is the system to its classical counterpart).

 15

 30

 45

 60

 50  100  150  200

Rp[ρn,0,0]

n

FIG. 1: Variation of the Rényi entropy, Rp[ρ], with respect to n for the Rydberg hydrogenic (ns)-

states with (p = 5
4 , D = 6)(�), (p = 10

7 , D = 5)(•)), (p = 3
4 , D = 4)(◦)) and (p = 3, D = 2)(�)).
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 17

 18

 19

 20

 8  12  16  20  24

Rp[ρn,1,0]

p

FIG. 2: Variation of the Rényi entropy Rp[ρn,1,0], respectively, with respect to p for the Rydberg

state (n = 100, l = 1) of the hydrogen atom (Z = 1) with D = 4.

 10

 20

 30

 40

 20  40  60  80  100

Rp[ρn,0,0]

Z

FIG. 3: Variation of the Rényi entropy, Rp[ρ], with respect to the nuclear charge Z for the Rydberg

hydrogenic state (n = 100, l = 0) of the D-dimensional hydrogen atom with D = 2(�) and

D = 4(•).
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 0

 40

 80

 120

 160

 3  6  9  12  15

Rp[ρn,0,0]

D

FIG. 4: Variation of the Rényi entropy, Rp[ρ], with respect to the dimensionality D for the Rydberg

hydrogenic state (n = 100, l = 0) of the D-dimensional hydrogen atom with p = 1
2(�) and p = 4(•).

V. CONCLUSIONS

In this work we determine the three main entropic measures (Rényi, Shannon, Tsallis) of the

quantum probability density of all stationary D-dimensional Rydberg (n >> 1) hydrogenic states

in terms of the basic parameters which characterize them; namely, the dimensionality D, the

hyperquantum numbers (n, l, {µ}) and the nuclear charge Z of the system. In fact, the Shannon

and Tsallis entropies can be obtained from the Rényi one. The Rényi entropy has been calculated

by first decomposing it into two parts of radial and angular types, and realizing that the angular

part does not depend on n, so that the true problem to be solved is the calculation of the radial

Rényi entropy in the limit of large n. The radial Rényi entropy has been shown to be expressed

in terms of the Lp-norms of the Laguerre polynomials which control the Rydberg states we are

interested in. Then, the remaining asymptotics of these Laguerre norms is determined by means

of a recent technique of approximation theory. Finally, we numerically apply this theoretical

methodology to some particular Rydberg hydrogenic states of s and p types. We find that the

Rényi entropy monotonically decreases (increases) when the nuclear charge (the dimensionality) is

decreasing (increasing) for some s and p states.
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Appendix A: Calculation of f(p,D) and S(Y0,0)

Let us first calculate the factor f(p,D) which appears in Eq. (33):

f(p,D) =

∫

ΩD−1

|Y0,0(ΩD−1)|2p dΩD−1

=

∫

ΩD−1

(N 2
0,0)p dΩD−1

= (N 2
0,0)p 2π

D−2∏

j=1

√
π Γ
(
D−j

2

)

Γ
(

1
2(D − j + 1)

)

= (2π)1−p



D−2∏

j=1

(D − j − 1)Γ
(

1
2(D − j − 1)

)2

π 2−D+j+3Γ(D − j − 1)



p
D−2∏

j=1

√
π Γ
(
D−j

2

)

Γ
(

1
2(D − j + 1)

) ,

= 21−pπ
D
2

(1−p)



D−2∏

j=1

Γ
(

1
2(D − j + 1)

)

Γ
(
D−j

2

)



p
D−2∏

j=1

Γ
(
D−j

2

)

Γ
(

1
2(D − j + 1)

)

= 21−pπ
D
2

(1−p)
[
Γ

(
D

2

)]p−1

(A1)
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Let us now compute the factor S(Y0,0) which appears in Eq. (34):

S(Y0,0) = − lnN 2
0,0

= − ln


 1

2π

D−2∏

j=1

(D − j − 1)Γ
(

1
2(D − j − 1)

)2

π 2−D+j+3Γ(D − j − 1)


 ,

= ln 2π − ln
D−2∏

j=1

Γ
(

1
2(D − j + 1)

)
√
π Γ
(
D−j

2

)

= ln 2π −
(

1− D

2

)
lnπ − ln

D−2∏

j=1

Γ
(

1
2(D − j + 1)

)

Γ
(
D−j

2

)

= ln 2π −
(

1− D

2

)
lnπ − ln Γ

(
D

2

)

= ln 2 +
D

2
lnπ − ln

21−Dπ1/2(D − 1)!(
D−1

2

)
!

= D ln 2 +
D − 1

2
lnπ + ln

Γ
(
D+1

2

)

Γ(D)
.

(A2)
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central potentials, J. Math. Phys. 52 (2011) 022105.

[40] F. A. Bovino, G. Castagnoli, A. Ekert, P. Horodecki, C. M. Alves, and A. V. Sergienko, Direct Mea-

surement of Nonlinear Properties of Bipartite Quantum States, Phys. Rev. Lett. 95 (2005) 240407.

[41] O. Cybulski, D. Matysiak, V. Babin, R. Holist, Pattern formation in nonextensive thermo-dynamics:
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[47] R. J. Yáñez, W. Van Assche, J. S. Dehesa, Position and momentum information entropies of the

D-dimensional harmonic oscillator and hydrogen atom, Phys. Rev. A 50 (1994) 3065.

[48] M. M. Nieto, Hydrogen atom and relativistic pi-mesic atom in N -space dimensions, Am. J. Phys. 47(12)

(1979) 1067.
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2.2 High-dimensional states

Witten, Herschbach and other authors [12, 13, 15–19, 147, 153, 154] realize the relevance

of the investigation of the properties of the pseudoclassical or high-dimensional states

of numerous systems from atoms, molecules and fluids up until quarks and gluons.

Basically, this is because physics in the large-D limit becomes much simpler. Indeed, in

this limit the electrons of a many-electron system assume fixed positions relative to the

nuclei and each other, in the D-scaled space. Moreover, the large-D electronic geometry

and energy correspond to the minimum of an exactly known effective potential and can

be determined from classical electrostatics for any atom or molecule, what remembers

the prequantum models of Lewis and Langmuir.

The spreading properties of the electronic distribution of the D-dimensional hydrogenic

atom have been analyzed by means of its moments around the origin (radial expectation

values) in both position and momentum spaces [41, 48, 155] . These quantities are

formally given in terms of D, the hyperquantum numbers of the hydrogenic states and

the nuclear charge Z through a generalized hypergeometric function p+1Fp(1), which

cannot be easily calculated unless the hyperquantum numbers and/or the dimension D

are sufficiently small. However, for the high-dimensional (pseudo-classical) states the

position and momentum moments around the origin of the D-dimensional hydrogenic

atom have been determined [41, 48] in a simple and compact form by means of powerful

asymptotical tools of the modern approximation theory related to the varying Laguerre

and Gegenbauer polynomials which control the corresponding position and momentum

wavefunctions.

In this section we extend the previous work by determining in an analytical way the

entropic uncertainty measures, precisely the Rényi entropies, of the high-dimensional

hydrogenic system in position and momentum spaces and their associated uncertainty

relation in terms of the state’s hyperquantum numbers and the nuclear charge Z of the

system. This has been carried out through the asymptotics (α → ∞) of the Laguerre

L(α)
k (x) and Gegenbauer C(α)

k (x) polynomials given by Theorems 1.3 and 1.4 of Temme

et al discussed in subsection 1.2.2.

Specifically, the following results have been achieved:

• The Rényi entropies with a natural parameter have been explicitly determined

for the pseudoclassical (high-D) states of the D-dimensional hydrogenic system in

both position and momentum spaces.

• The dependence of the Rényi entropies for these high-dimensional states on the

main hyperquantum number n, is obtained and discussed.

• Especially simple expressions of these quantities for some concrete classes of hy-

drogenic states (ns and circular states), which include the ground state, are given.
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• Saturation of the known position-momentum Rényi-entropy-based uncertainty re-

lations of Bilaynicki-Birula-Zozor-Vignat [91–93] is reached. To this respect we

should keep in mind that we are assuming that the dimensionality is very large

and the hyperquantum numbers are small. The exceptional case when both dimen-

sionality and hyperquantum numbers are simultaneously large has not yet been

explored; in particular, we cannot assure saturation.

These results have been published [63] in the article with coordinates: Puertas-Centeno

D., Temme N. M., Toranzo I. V. and Dehesa J. S. Entropic uncertainty measures for

large dimensional hydrogenic systems. Journal of Mathematical Physics, 58:103302,

2017, which is attached below.
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The entropic moments of the probability density of a quantum system in position and

momentum spaces describe not only some fundamental and/or experimentally accessible

quantities of the system, but also the entropic uncertainty measures of Rényi type which

allow one to find the most relevant mathematical formalizations of the position-momentum

Heisenberg’s uncertainty principle, the entropic uncertainty relations. It is known that the

solution of difficult three-dimensional problems can be very well approximated by a series

development in 1/D in similar systems with a non-standard dimensionality D; moreover, sev-

eral physical quantities of numerous atomic and molecular systems have been numerically

shown to have values in the large-D limit comparable to the corresponding ones provided

by the three-dimensional numerical self-consistent field methods. The D-dimensional hydro-

genic atom is the main prototype of the physics of multidimensional many-electron systems.

In this work we rigorously determine the leading term of the Rényi entropies of the D-

dimensional hydrogenic atom at the limit of large D. As a byproduct, we show that our

results saturate the known position-momentum Rényi-entropy-based uncertainty relations.

Keywords: Entropic uncertainty measures, D-dimensional hydrogenic systems, D-dimensional quan-

tum physics, radial and momentum expectation values, hydrogenic states at large dimensions
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I. INTRODUCTION

In an excellent tutorial article about quarks, gluons and impossible problems of quantum chro-

modynamics, Edward Witten [1] illustrated the utility of the large-dimension D limit with a rough

calculation for helium. This prompted Dudley R. Herschbach et al [3, 4] and other authors (see the

review [2]) to develop a new strategy, the dimensional scaling method, to solve first the quantum

problems with one degree of freedom [2] and later the much more difficult Coulomb problems

involving two or more non-separable, strongly-coupled degrees of freedom which usually take place

in physics of atoms and molecules [3, 4]. With this method a finite many-body problem is typically

solved in the large-D limit, most often in an analytical way, and then perturbation theory in 1/D

is used to obtain an approximate result for the standard dimension (D = 3).

Physics in the large-D limit becomes much simpler. Indeed, in this limit the electrons of a

many-electron system assume fixed positions relative to the nuclei and each other, in the D-scaled

space. Moreover, the large-D electronic geometry and energy correspond to the minimum of an

exactly known effective potential and can be determined from classical electrostatics for any atom

or molecule, what remembers the prequantum models of Lewis and Langmuir [5, 6]. The (D →∞)-

limit is called pseudoclassical, tantamount to h → 0 and/or me → ∞ in the kinetic energy. This

limit is not the same as the conventional classical limit obtained by h → 0 for a fixed dimension

[7, 8]. Although at first sight the electrons at rest in fixed locations might seem violate the uncer-

tainty principle, this is not true because that occurs only in the D-scaled space (see e.g., [6]). For

D finite but very large, the electrons are confined to harmonic oscillations about the fixed positions

attained in the (D → ∞)-limit. Moreover, the large-D limit of numerous physical properties of

almost all atoms with up to 100 electrons and many diatomic molecules have been numerically eval-

uated, obtaining values comparable to or better than single-zeta Hartree-Fock calculations [3, 4, 9].

The main prototype of the D-dimensional Coulomb many-body systems, the D-dimensional

hydrogen atom (i.e., a negatively-charged particle moving in a space of D dimensions around a

positively charged core which electromagnetically binds it in its orbit), has been investigated in

detail starting from its wave functions which are analytically known [10–12] in the two conjugated

position and momentum spaces for any dimension. This system includes a wide variety of physical

objects, such as e.g. hydrogenic atoms and ions, some exotic atoms and antimatter atoms, excitons

in semiconductors and qubits.
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The spreading properties of the electronic distribution of the D-dimensional hydrogenic atom

have been analyzed by means of its moments around the origin (radial expectation values) in

both position [13–18] and momentum [19, 20] spaces. However, these quantities are formally given

in terms of D, the hyperquantum numbers of the hydrogenic states and the nuclear charge Z

through a generalized hypergeometric function p+1Fp(1), which cannot be easily calculated unless

the hyperquantum numbers and/or the dimension D are sufficiently small. Recently the position

and momentum moments around the origin of the D-dimensional hydrogenic atom have been

determined in a simple and compact form for the highly and very-highly excited (i.e., Rydberg)

states [12, 21] as well as for any excited state at large D [22].

The determination of the entropic measures of the D-dimensional hydrogenic atom, which

describe most appropriately the electronic uncertainty of the system, is far more difficult except

for the lowest-lying energy states despite some efforts [12]. This is because these quantities are

described by means of some power or logarithmic functionals of the electron density, which cannot

be calculated in an analytical way nor numerically computed; the latter is basically because a

naive numerical evaluation using quadratures is not convenient due to the increasing number of

integrable singularities when the principal hyperquantum number n is increasing, which spoils any

attempt to achieve reasonable accuracy even for rather small n [23]. Recently, the main entropic

properties of the D-dimensional Rydberg hydrogenic states (namely, the Rényi, Shannon and

Tsallis entropies) have been explicitly calculated in a compact form [24, 25] by use of modern

techniques of approximation theory based on the strong asymptotics (n → ∞) of the Laguerre

L(α)
n (x) and Gegenbauer C(α)

n (x) polynomials which control the state’s wave functions in position

and momentum spaces, respectively [26].

In this work we first determine the Rényi entropy and then we conjecture the Shannon entropy

in both position and momentum spaces for the large-dimensional hydrogenic states in terms of the

dimensionality D, the nuclear charge Z and the principal and orbital hyperquantum numbers of

the states. The Rényi entropies Rq[ρ], q > 0 are defined [27, 28] as

Rq[ρ] =
1

1− q log

∫

RD
[ρ(~r)]q d~r, q 6= 1. (1)

Note that the Shannon entropy S[ρ] = −
∫
ρ(~r) log ρ(~r)d~r = limq→1Rq[ρ]; see e.g. [29]. These

quantities completely characterize the density ρ(~r) [30] under certain conditions. In fact, we can cal-
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culate from (1) other relevant entropic quantities such as e.g. the disequilibrium 〈ρ〉 = exp(−R2[ρ]),

and the Tsallis entropies Tq[ρ] = 1
q−1

(
1−

∫
RD [ρ(~r)]q d~r

)
, q > 0 [31] as

Tq[ρ] =
1

1− q [e(1−q)Rq [ρ] − 1]. (2)

which holds for q 6= 1. Here again, the Shannon entropy S[ρ] = limq→1 Tq[ρ]. The properties of

the Rényi entropies and their applications have been widely considered; see e.g. [29, 32, 33] and

the reviews [34–36]. The use of Rényi and Shannon entropies as measures of uncertainty allow a

wider quantitative range of applicability than the moments around the origin and the standard or

root-square-mean deviation do. This permits, for example, a quantitative discussion of quantum

uncertainty relations further beyond the conventional Heisenberg-like uncertainty relations [22, 34,

35, 37].

The structure of this work is the following. In section II the wave functions of the D-dimensional

hydrogenic states in both position and momentum spaces are briefly described, and the correspond-

ing probability densities are given. In section III we determine the physical Rényi entropies of the

D-dimensional hydrogenic atom at large D by use of some recent theorems relative to the asymp-

totics (α → ∞) of the underlying Rényi-like integral functionals of Laguerre polynomials L(α)
k (x)

and Gegenbauer polynomials C(α)
k (x) which control the hydrogenic wavefunctions as described in

the previous section. The dominant term of the joint position-momentum uncertainty sum for the

general states of the large dimensional hydrogenic systems is also given and, what is most interest-

ing, shown to saturate the known position-momentum Rényi-entropy-based uncertainty relations

[38–40]. Finally, some conclusions, open problems and three appendices are given.

II. THE D-DIMENSIONAL HYDROGENIC PROBLEM: BASICS

In this section we briefly summarize the physical solutions of the Schrödinger equation of the

D-dimensional hydrogenic system in both position and momentum spaces. Then we give the

associated position and momentum D-dimensional probability densities of the system.

The time-independent Schrödinger equation of a D-dimensional (D > 1) hydrogenic system

(i.e., an electron moving under the action of the D-dimensional Coulomb potential V (~r) = −Z
r

) is

given by

(
−1

2
~∇2
D −

Z

r

)
Ψ (~r) = EΨ (~r) , (3)
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where ~∇D denotes the D-dimensional gradient operator, Z is the nuclear charge, and the electronic

position vector ~r = (x1, . . . , xD) in hyperspherical units is given as (r, θ1, θ2, . . . , θD−1) ≡ (r,ΩD−1),

ΩD−1 ∈ SD−1, where r ≡ |~r| =
√∑D

i=1 x
2
i ∈ [0, +∞) and xi = r

(∏i−1
k=1 sin θk

)
cos θi for 1 ≤ i ≤ D

and with θi ∈ [0, π), i < D − 1, θD−1 ≡ φ ∈ [0, 2π). It is assumed that the nucleus is located at

the origin and, by convention, θD = 0 and the empty product is the unity. Atomic units are used

throughout the paper.

It is known [10–12] that the energies belonging to the discrete spectrum are given by

E = − Z
2

2η2
, η = n+

D − 3

2
; n = 1, 2, 3, . . . , (4)

and the associated eigenfunction can be expressed as

Ψn,l,{µ}(~r) = Rn,l(r) Yl,{µ}(ΩD−1), (5)

where (l, {µ}) ≡ (l ≡ µ1, µ2, . . . , µD−1) denote the hyperquantum numbers associated to the angu-

lar variables ΩD−1 ≡ (θ1, θ2, . . . , θD−1), which may take all values consistent with the inequalities

l ≡ µ1 ≥ µ2 ≥ . . . ≥ |µD−1| ≡ |m| ≥ 0. The radial eigenfunction is given by

Rn,l(r) = Nn,l

( r
λ

)l
e−

r
2λL(2l+D−2)

n−l−1

( r
λ

)
(6)

= Nn,l

[
ω2L+1(r̃)

r̃D−2

]1/2

L(2L+1)
η−L−1(r̃)

=

(
λ−D

2η

)1/2 [
ω2L+1(r̃)

r̃D−2

]1/2

L̂(2L+1)
η−L−1(r̃),

where the “grand orbital angular momentum quantum number” L and the dimensionless parameter

r̃ are

L = l +
D − 3

2
, l = 0, 1, 2, . . . (7)

r̃ =
r

λ
, λ =

η

2Z
, (8)

and ωα(x) = xαe−x, α = 2L+ 1 = 2l +D − 2, is the weight function of the Laguerre polynomials

L(α)
k (x), x ∈ [0,∞). Note that α ≥ 0 for D ≥ 2. The symbols L(α′)

k (x) and L̂(α′)
k (x) denote the

orthogonal and orthonormal Laguerre polynomials, so that

L̂(α′)
k (x) =

(
k!

Γ(k + α′ + 1)

)1/2

L(α′)
k (x), (9)

for any parameter α′ > −1, and finally

Nn,l ≡ λ−
D
2

{
(η − L− 1)!

2η(η + L)!

} 1
2

=





(
2Z

n+ D−3
2

)D
(n− l − 1)!

2
(
n+ D−3

2

)
(n+ l +D − 3)!





1
2

(10)
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represents the normalization constant which ensures that
∫ ∣∣Ψη,l,{µ}(~r)

∣∣2 d~r = 1. Note that the

D-dimensional volume element is d~r ≡ dDr = rD−1 dr dΩD−1 and

dΩD−1 =



D−2∏

j=1

(sin θj)
2αjdθj


 dθD−1.

where 2αj = D−j−1. The angular eigenfunctions are the hyperspherical harmonics, Yl,{µ}(ΩD−1),

defined [10, 12, 42] as

Yl,{µ}(ΩD−1) = Nl,{µ}eimφ ×
D−2∏

j=1

C(αj+µj+1)
µj−µj+1

(cos θj)(sin θj)
µj+1 (11)

with the squared normalization constant given as

N 2
l,{µ} =

1

2π

D−2∏

j=1

(αj + µj)(µj − µj+1)![Γ(αj + µj+1)]2

π 21−2αj−2µj+1Γ(2αj + µj + µj+1)
,

=
1

2π

D−2∏

j=1

A(j)
µj ,µj+1

, (12)

where the symbol C(α′)
k (t) denotes the Gegenbauer polynomial [41] of degree k and parameter α′.

Then, the quantum probability density of a D-dimensional hydrogenic stationary state (n, l, {µ})
is given in position space by the the squared modulus of the position eigenfunction given by (5) as

ρn,l,{µ}(~r) = ρn,l(r̃) |Yl,{µ}(ΩD−1)|2, (13)

where the radial part of the density is the univariate radial density function

ρn,l(r̃) = [Rn,l(r)]2 =
λ−D

2η

ω2L+1(r̃)

r̃D−2
[L̂(2L+1)
η−L−1(r̃)]2. (14)

On the other hand, the Fourier transform of the position eigenfunction Ψη,l,{µ}(~r) given by (5)

provides the eigenfunction of the system in the conjugated momentum space as

Ψ̃n,l,{µ}(~p) =Mn,l(p) Yl,{µ}(ΩD−1), (15)

where the radial part is

Mn,l(p) = Kn,l
(ηp̃)l

(1 + η2p̃2)L+2
C(L+1)
η−L−1

(
1− η2p̃2

1 + η2p̃2

)
(16)

with p̃ = p
Z and the normalization constant

Kn,l = Z−
D
2 22L+3

[
(η − L− 1)!

2π(η + L)!

] 1
2

Γ(L+ 1)η
D+1
2 . (17)

59



Journal of Mathematical Physics, 58:103302, 2017

Then, the expression

γn,l,{µ}(~p) = |Ψ̃n,l,{µ}(~p)|2 =M2
n,l(p) |Yl,{µ}(ΩD−1)|2

= K2
n,l

(ηp̃)2l

(1 + η2p̃2)2L+4

[
C(L+1)
η−L−1

(
1− η2p̃2

1 + η2p̃2

)]2

|Yl,{µ}(ΩD−1)|2 (18)

gives the momentum probability density of the D-dimensional hydrogenic stationary state with

the hyperquantum numbers (n, l, {µ}).

III. RÉNYI ENTROPIES OF LARGE DIMENSIONAL HYDROGENIC STATES

In this section we obtain the Rényi entropies of a generic D-dimensional hydrogenic state

(n, l, {µ}) in the large-D limit in both position and momentum spaces. We start with the expres-

sions (13) and (18) of the position and momentum probability densities of the system, respectively.

To calculate the position Rényi entropy we decompose it into two radial and angular parts. The

radial part is first expressed in terms of a Rényi-like integral functional of Laguerre polynomials

L(α)
n−l−1(x) with α = D+2l−2, and then this functional is determined in the large-D limit by means

of Theorem 1 (see Appendix A). The angular part is given by a Rényi-like integral functional of

hyperspherical harmonics, which can be expressed in terms of Rényi-like functionals of Gegenbauer

polynomials C(α′′)
n−l−1 with α′′ = D/2 + l − 1/2 ; later on, we evaluate these Gegenbauer functionals

at large D by means of Theorem 2 (see Appendix B), with emphasis in the circular and (ns)

states which are characterized by the hyperquantum numbers (n, l = n − 1, {µ} = {n − 1}) and

(n, l = 0, {µ} = {0}), respectively.

Operating similarly in momentum space we can determine the momentum Rényi entropy of

the system. In this space both the radial and angular parts of the momentum wave functions

of the hydrogenic states are controlled by Gegenbauer polynomials as follows from the previous

section. Consequently, the two radial and angular contributions to the momentum Rényi entropy

are expressed in terms of Rényi-like functionals of Gegenbauer polynomials.
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A. Rényi entropy in position space

Let us obtain the position Rényi entropy of the probability density ρn,l,{µ}(~r) given by (13),

which according to (1) is defined as

Rq[ρn,l,{µ}] =
1

1− q logWq[ρn,l,{µ}]; 0 < q <∞, q 6= 1, (19)

where the symbol Wq[ρn,l,{µ}] denotes the entropic moments of the density

Wq[ρn,l,{µ}] =

∫

RD
[ρn,l,{µ}(~r)]

q d~r

=

∞∫

0

[ρn,l(r̃)]
q rD−1 dr × Λl,{µ}(ΩD−1), (20)

with the angular part given by

Λl,{µ}(ΩD−1) =

∫

SD−1

|Yl,{µ}(ΩD−1)|2q dΩD−1. (21)

Then, from Eqs. (20) and (19) we can obtain the Rényi entropies of the D-dimensional hydro-

genic state (n, l, {µ}) as follows

Rq[ρn,l,{µ}] = Rq[ρn,l] +Rq[Yl,{µ}], (22)

where Rq[ρn,l] denotes the radial part

Rq[ρn,l] =
1

1− q log

∫ ∞

0
[ρn,l(r̃)]

qrD−1 dr, (23)

and Rq[Yl,{µ}] denotes the angular part

Rq[Yl,{µ}] =
1

1− q log Λl,{µ}(ΩD−1). (24)

Here our aim is to determine the large-D behavior of the Rényi entropy Rq[ρn,l,{µ}] when all the

hyperquantum numbers are fixed. According to (22) this issue requires the knowledge at D >> 1 of

the radial and angular Rényi entropies, i.e. Rq[ρn,l] andRq[Yl,{µ}] respectively, whose determination

is done in the following.

1. Radial position Rényi entropy

According to Eq. (23), the radial Rényi entropy can be expressed as

Rq[ρn,l] =
1

1− q log

[
ηD(1−q)−q

2D(1−q)+qZD(1−q)Nn,l(D, q)

]
, (25)
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where Nn,l(D, q) denotes the following Lq-norm of the Laguerre polynomials

Nn,l(D, q) =

∞∫

0

([
L̂(α)
n−l−1(x)

]2
wα(x)

)q
xβ dx, (26)

with r̃ ≡ x and

α = D + 2l − 2 , l = 0, 1, 2, . . . , n− 1, q > 0 and β = (2−D)q +D − 1. (27)

We note that (27) guarantees the convergence of integral (26); i.e., the condition β + qα = 2lq +

D − 1 > −1 is always satisfied for physically meaningful values of the parameters. Moreover, the

norm Nn,l(D, q) can be rewritten as

Nn,l(D, q) =

∞∫

0

([
L̂(D+2l−2)
n−l−1 (x)

]2
wD+2l−2(x)

)q
x2q−1+(1−q)D dx

=

[
Γ(n− l)

Γ(n+ l +D − 2)

]q ∞∫

0

xD+2lq−1e−qx
[
L(D+2l−2)
n−l−1 (x)

]2q
dx.

(28)

Then, the determination of the large-D behavior of the radial Rényi entropy Rq[ρn,l] requires

the calculation of the asymptotics of the Laguerre functional Nn,l(D, q) defined by (26); that is, the

evaluation of the Rényi-like integral functional given by (28) when D >> 1. We do it by applying

Theorem 1 (see Appendix A) to the functional Nn,l(D, q) given by (28) with (n, l) fixed, obtaining

for every non-negative q 6= 1 that

Nn,l(D, q) ∼
[

Γ(n− l)
Γ(n+ l +D − 2)

]q √
2π

[Γ(n− l)]2q |q − 1|2(n−l−1)q

×e−D−2l+2(D + 2(l − 1))D+2q(n−1)− 1
2 q−D−2q(n−1)

=

√
2π|q − 1|2(n−l−1)q

Γ(n− l)q e−D−2l+2 (D + 2l − 2)D+2q(n−1)− 1
2 q−D−2q(n−1)

Γ(D + n+ l − 2)q

∼ (2π)
1−q
2 |q − 1|2(n−l−1)q

Γ(n− l)q q−2q(n−1)

(
D

e

)D(1−q)
q−DDq(n−l+ 1

2
)− 1

2

(29)

where we have used the Stirling’s formula [41] for the gamma function Γ(x) = e−xxx−
1
2 (2π)

1
2

[
1 +O

(
x−1

)]
.

Then, Eqs. (25)-(29) allow us to find the following large-D behavior for the radial Rényi entropy:

Rq[ρn,l] ∼
1

1− q log

{
(2π)

1−q
2 |q − 1|2(n−l−1)q

Γ(n− l)q q−2q(n−1)D
D(1−q)−qe(2n−3)(1−q)

4D(1−q)ZD(1−q)

(
D

e

)D(1−q)
q−DDq(n−l+ 1

2
)− 1

2

}

=
1

1− q log

{
(2π)

1−q
2 |q − 1|2(n−l−1)q

Γ(n− l)q
e(2n−3)(1−q)

q2q(n−1)

(
D2

4Ze

)D(1−q)
q−DDq(n−l− 1

2
)− 1

2

}

(30)
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which can be rewritten as

Rq[ρn,l] ∼ 2D log [D] +D log

[
q

1
q−1

4Ze

]
+
q(n− l − 1

2)− 1
2

1− q logD +
1

1− q logF(n, l, q), (31)

where F(n, l, q) = (2π)
1−q
2 |q−1|2(n−l−1)q

Γ(n−l)q
e(2n−3)(1−q)

q2q(n−1) . Further terms in this asymptotic expansion can

be obtained by means of Theorem 1 (see Appendix A).

Note that, since q
1
q−1 → e when q → 1, we have the following conjecture for the value of the

Shannon entropy

S[ρn,l] ∼ 2D log [D]−D log [4Z] , (32)

which can be numerically shown to be correct. However a more rigorous expression for this quan-

tity remains to be proved.

Then, according to Eq. (22), to fix the total Rényi entropy Rq[ρn,l,{µ}] at large D it only remains

the evaluation of the corresponding large-D behavior of the angular part Rq[Yl,{µ}] which will be

done in the following.

2. Angular Rényi entropy

Here we will effort to calculate the large-D behavior of the angular part Rq[Yl,{µ}] of the total

position and momentum Rényi entropies defined by Eq. (24). Therein, according to (11) and (21),

the Rényi-like functional Λl,{µ}(ΩD−1) of the hypersherical harmonics can be expressed as

Λl,{µ}(ΩD−1) =

∫

SD−1

|Yl,{µ}(ΩD−1)|2q dΩD−1

= N 2q
l,{µ}

∫

SD−1

D−2∏

j=1

[C
(αj+µj+1)
µj−µj+1

(cos θj)]
2q(sin θj)

2qµj+1 dΩD−1

= 2πN 2q
l,{µ}

D−2∏

j=1

∫ π

0
[C

(αj+µj+1)
µj−µj+1

(cos θj)]
2q(sin θj)

2qµj+1+2αj dθj

where the normalization constant Nl,{µ} is given by (12). Moreover, note that the integrals within

the product are Rényi-like functionals of Gegenbauer polynomials of the type considered in Theorem

2 (see Appendix B).

To calculate the dominant term of Λl,{µ}(ΩD−1) at large D we use the Theorem 2 at zeroth-order

63



Journal of Mathematical Physics, 58:103302, 2017

or, what is equivalent, we use the following limiting expressions of the Gegenbauer polynomials to

monomials (see [41], Eq. 18.6.4)

lim
α′→∞

(2α′)−kC(α′)
k (x) =

xk

k!
, (33)

which allows us to find

Λl,{µ}(ΩD−1) ∼ 2πN 2q
l,{µ}

D−2∏

j=1

[2(αj + µj+1)]2q(µj−µj+1)

[Γ(µj − µj+1 + 1)]2q

∫ π

0
(cos θj)

2q(µj−µj+1)(sin θj)
2(qµj+1+αj) dθj

= 2πN 2q
l,{µ}

D−2∏

j=1

[2(αj + µj+1)]2q(µj−µj+1)

[Γ(µj − µj+1 + 1)]2q
B

(
qµj+1 +

1

2
+ αj , q(µj − µj+1) +

1

2

)

= (2π)1+(1−D)q



D−2∏

j=1

Γ
(
q(µj − µj+1) + 1

2

)

Γ
(
µj − µj+1 + 1

)q





D−2∏

j=1

(αj + µj)(αj + µj+1)2(µj−µj+1)



q

×



D−2∏

j=1

Γ(αj + qµj+1 + 1
2)

Γ(αj + qµj + 1)





D−2∏

j=1

4q(αj+µj)
Γ(αj + µj+1)2q

Γ(2αj + µj+1 + µj)q


 .

(34)

Further algebraic manipulations, which are detailed in Appendix C, have allowed us to obtain that

Λl,{µ}(ΩD−1) ∼
(

21−qΓ(1 + qµD−1)

Γ(1 + µD−1)q
M̃(D, q, {µ})

)
(35)

×
(
Ẽ(D, {µ})qπD2 (1−q) Γ(D2 + l)q

Γ(D2 + q l)

)

where

M̃(D, q, {µ}) ≡ 4q(l−µD−1)π1−D
2

D−2∏

j=1

Γ
(
q(µj − µj+1) + 1

2

)

Γ
(
µj − µj+1 + 1

)q (36)

and

Ẽ(D, {µ}) ≡
D−2∏

j=1

(αj + µj+1)2(µj−µj+1)

(2αj + 2µj+1)µj−µj+1

1

(αj + µj+1)µj−µj+1

. (37)

Note that Ẽ = M̃ = 1 for any configuration with µ1 = µ2 = · · · = µD−1. Finally, as explained in

Appendix C, we have the following expression

Rq[Yl,{µ}] ∼
1

1− q log

(
Γ
(
D
2 + l

)q

Γ
(
D
2 + ql

)
)

+
D

2
log π

+
1

1− q log

(
Ẽ(D, {µ})qM̃(D, q, {µ})Γ(1 + qµD−1)

Γ(1 + µD−1)q
21−q

)

∼ − log

(
Γ

(
D

2

))
+
D

2
log π +

1

1− q log

(
Ẽ(D, {µ})qM̃(D, q, {µ})Γ(1 + qµD−1)

Γ(1 + µD−1)q
21−q

)

∼ −D
2

logD +
D

2
log(2πe) +

1

2
logD +

1

1− q log

(
Ẽ(D, {µ})qM̃(D, q, {µ})Γ(1 + qµD−1)

Γ(1 + µD−1)q

(π
2

) q−1
2

)

(38)
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for the angular Rényi entropy of the generic hydrogenic state with hyperquantum numbers (l, {µ}),
which holds for every non-negative q 6= 1.

For completeness, we will determine this asymptotic behavior in a more complete manner for some

physically-relevant and experimentally accessible states like the (ns) and circular ones, which are

described by the hyperquantum numbers (n, l = 0, {µ} = {0}) and (n, l = n− 1, {µ} = {n− 1}),
respectively. First we obtain from (34) the following values

Λ0,{0}(ΩD−1) ∼ 2πN 2q
0,{0}

D−2∏

j=1

Γ(1
2)Γ(αj + 1

2)

Γ(αj + 1)
=

(
2π

D
2

Γ
(
D
2

)
)1−q

(39)

and

Λn−1,{n−1}(ΩD−1) ∼ 2πN 2q
n−,1{n−1}

D−2∏

j=1

Γ(1
2)Γ(αj + q(n− 1)1

2)

Γ(αj + q(n− 1) + 1)

=
(

2π
D
2

)1−q D−2∏

j=1

(
Γ(αj + n)

Γ(αj + n− 1
2)

)q
Γ(αj + q(n− 1) + 1

2)

Γ(αj + q(n− 1) + 1)

=

(
1

2π
D
2

)q−1

(
(n)D

2
−1

)q

(1 + q(n− 1))D
2
−1

, (40)

respectively. Note that (x)a = Γ(x+a)
Γ(x) is the well-known Pochhammer symbol. Then, from Eqs.

(24), (39) and (40), we have that the angular part of the Rényi entropy at large D is given by

Rq[Y0,{0}] ∼ log

(
2π

D
2

Γ
(
D
2

)
)

(41)

and

Rq[Yn−1,{n−1}] ∼
1

1− q log



(

1

2π
D
2

)q−1

(
(n)D

2
−1

)q

(1 + q(n− 1))D
2
−1


 (42)

for the (ns) and circular states, respectively. Note that for very large D the dominant term of the

angular Rényi entropy of these two classes of physical states is the same; namely, − log
(
Γ
(
D
2

))
+

D
2 log π. Moreover and most interesting: this is true for any hydrogenic state by taking into account

the general expression (38). This observation allows us to conjecture the expression

S[Yl,{µ}] ∼ − log

(
Γ

(
D

2

))
+
D

2
log π. (43)

for the large-D behavior of the angular Shannon entropy of the hydrogenic states.
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3. Total position Rényi entropy

To obtain the total Rényi entropy Rq[ρn,l,{µ}] in position space for a general (n, l, {µ})-state,

according to (22), we have to sum up the radial and angular contributions given by (31) and (38),

respectively. Then, we obtain that

Rq[ρn,l,{µ}] ∼ log

(
D2D

Γ
(
D
2

)
)

+D log

(
q

1
q−1
√
π

4Ze

)
+
q(n− l − 1

2)− 1
2

1− q logD

+
1

1− q log

(
Ẽ(D, {µ})qM̃(D, q, {µ})F(n, l, q)

Γ(1 + qµD−1)

Γ(1 + µD−1)q

(π
2

) q−1
2

)

∼ 3

2
D logD +D log

(
q

1
q−1

Z

√
π

8e

)
+
q(n− l − 1)

1− q logD

+
1

1− q log

(
Ẽ(D, {µ})qM̃(D, q, {µ})F(n, l, q)

Γ(1 + qµD−1)

Γ(1 + µD−1)q

(π
2

) q−1
2

)

(44)

which holds for every non-negative q 6= 1. Now, for completeness we calculate this quantity in an

explicit manner for the (ns) and circular states, which both of them include the ground state. For

the (ns) and circular states we have the asymptotical expressions

Rq[ρn,0,{0}] ∼ log

(
D2D

Γ
(
D
2

)
)

+D log

(
q

1
q−1
√
π

4Ze

)
+
q(n− 1)

1− q logD +
1

1− q log (F(n, 0, q))− 1

2
log

π

2
,

(45)

(with F(n, 0, q) = |q−1|2(n−1)q

(2π)
1
2 (q−1)[(n−1)!]q

) and

Rq[ρn,n−1,{n−1}] ∼
1

1− q log




(
(n)D

2
−1

)q

(1 + q(n− 1))D
2
−1


+ 2D logD

+D log

(
q

1
q−1
√
π

4Ze

)
+

1

1− q log

(
F(n, n− 1, q)

Γ(1 + q(n− 1))

Γ(n)q

)
− 1

2
log

π

2

∼ log

(
D2D

Γ
(
D
2

)
)

+D log

(
q

1
q−1
√
π

4Ze

)
+

1

1− q log

(
Γ(1 + q(n− 1))

q2q(n−1)Γ(n)q

)
+ 2n+ log 2− 3,

(46)

respectively. Most interesting, we realize that the large-D behavior of the total Rényi entropy in

the position space for the hydrogenic ground state Rq[ρ1,0,{0}] is given by the last expression above

indicated.
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Finally, from (44) one can conjecture that the Shannon entropy S[ρn,l,{µ}] in position space for

a general (n, l, {µ})-state is given by

S[ρn,l,{µ}] ∼ log

(
D2D

Γ
(
D
2

)
)

+D log

(√
π

4Z

)
(47)

∼ 3

2
D logD +D log

(√
eπ√
8Z

)

but this is somehow risky because of the unknown (q → 1)-behavior of the angular part, coming

from the second line of Eq. (44).

B. Rényi entropy in momentum space

Let us now determine the momentum Rényi entropy of the probability density γn,l,{µ}(~p) given

by (18), which is defined as

Rq[γn,l,{µ}] =
1

1− q logWq[γn,l,{µ}]; 0 < q <∞, q 6= 1, (48)

where

Wq[γn,l,{µ}] =

∫

RD
[γn,l,{µ}(~p)]

q d~p (49)

denote the momentum entropic moments. Then, operating in a similar way as in position space,

we obtain that

Rq[γn,l,{µ}] = Rq[γn,l] +Rq[Yl,{µ}], (50)

where Rq[γn,l] denotes the radial part

Rq[γn,l] =
1

1− q log

∫ ∞

0
[Mn,l(p)]

2qpD−1 dp, (51)

and Rq[Yl,{µ}] denotes the angular part given by (24).

Since the angular entropy Rq[Yl,{µ}] has been already calculated and discussed, it only remains

to determine at large D the radial Rényi entropy Rq[γn,l], given by (51), being all the hyperquantum

numbers fixed.

67



Journal of Mathematical Physics, 58:103302, 2017

1. Radial momentum Rényi entropy

To find the radial momentum Rényi entropy (51) at D >> 1, we first rewrite for convenience

the radial part of the wave function, Mn,l(p), given by (18) as

Mn,l(p) =
( η
Z

)D
2

(1 + y)
3
2

(
1 + y

1− y

)D−2
4 √

wα(y) Ĉ(α)
n−l−1(y) (52)

=
( η
Z

)D
2
A(n, l;D)

1
2 (1− y)

l
2 (1 + y)

D+l+1
2 C(l+D−1

2
)

n−l−1 (y),

with y = 1−η2p̃2
1+η2p̃2

, p̃ = p/Z, α = l + D−1
2 , and Ĉ(α)

n−l−1(x) denotes the orthonormal Gegenbauer

polynomials with respect to the weight function wα(x) = (1 − x2)α−
1
2 , so that Ĉ(l+D−1

2
)

n−l−1 (x) =

A(n, l;D)
1
2C(l+D−1

2
)

n−l−1 (x), where the constant

A(n, l;D) =
(n− l − 1)!(n+ D−3

2 )[Γ(l + D−1
2 )]2

22−2l−DπΓ(n+ l +D − 2)
. (53)

The radial momentum Rényi entropy (51) together with (52) can be expressed as

Rq[Mn,l] = −D log
η

Z
+

1

1− q {q logA(n, l;D) + log In,l(q,D)}

(54)

and the following Rényi-like functional of Gegenbauer polynomials

In,l(q,D) =

∫ 1

−1
(1− y)lq−1+D

2 (1 + y)(l+1)q−1+(q− 1
2

)D[C(l+D−1
2

)

n−l−1 (y)]2q dy. (55)

It only remains to find the large-D behavior of the two terms in (54) when (n, l, q) are fixed. The

asymptotic estimate of A(n, l;D) turns out to be given by

A(n, l;D) ∼ Γ(n− l)√
2π

Dl−n+ 3
2 . (56)

On the other hand, the behavior of In,l(q,D) at large D can be obtained from Theorem 2 (see

Appendix B) by studying the large-α behavior of the integral J2(a, b, c, d, κ,m′;α) with the pa-

rameters a = l(q − 1) − 1
2 , b = l(1 − q) + 2q − 3

2 , c = 1, d = 2q − 1, κ = 2q, m′ = n − l − 1 and

α = l + D−1
2 . Note that the condition c < d of the theorem provokes that q > 1. We have found

that

In,l(q,D) ∼
(

(2q − 1)2q−1

q2q

)D
2

(
Γ(D2 + n− 3

2)

Γ(D2 + l − 1
2)

)2q

(D + 2l − 1)−
1
2Q0(n, l, q)

∼
(

(2q − 1)2q−1

q2q

)D
2
(
D

2

)2q(n−l−1)

(D + 2l − 1)−
1
2Q0(n, l, q)

∼
(

(2q − 1)2q−1

q2q

)D
2

D2q(n−l−1)− 1
2
Q0(n, l, q)

4q(n−l−1)
(57)
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for q > 1 and where Q0(q) is given by

Q0(q, n, l) =

√
2π 4q(n−l−1)

Γ(n− l)2q

(2q − 1)q(l+1)− 1
2 (q − 1)2q(n−l−1)

qq(2n−1)− 1
2

. (58)

Using (56) and (57) we obtain the following behavior at large D for the radial part of the momentum

Rényi entropy:

Rq[Mn,l] ∼ −D log
( η
Z

)
+

D

1− q log

√
(2q − 1)2q−1

q2q
+
q(n− l − 1

2)− 1
2

1− q logD

+
1

1− q logQ0(q, n, l)

∼ −D log

(
D

2Z

)
+

D

1− q log

√
(2q − 1)2q−1

q2q
+
q(n− l − 1

2)− 1
2

1− q logD (59)

+
1

1− q logQ0(q, n, l)

with Q0(q, n, l) = Γ(n−l)q
(2π)

q
2 4q(n−l−1)

Q0(q, n, l) = (2π)
1−q
2

Γ(n−l)q
(2q−1)q(l+1)− 1

2 (q−1)2q(n−l−1)

qq(2n−1)− 1
2

(where we have used

in the second expression that η = n + D−3
2 ∼ D

2 for fixed n) for a general (n, l)-state. Note that

in the limit q → 1 this expression suggests that the behavior of the radial Shannon entropy in the

momentum space can be conjectured at large D as

S[Mn,l] ∼ −D log

(
D

2Z

)
. (60)

Then, according to Eq. (50), to fix the large D-behavior of the total Rényi entropy Rp[γn,l,{µ}] it

only remains the evaluation of the corresponding behavior of the angular part Rp[Yl,{µ}] which was

found in (38).

2. Total momentum Rényi entropy

To obtain the total Rényi entropy in momentum space for a general (n, l, {µ})-state of a large-

dimensional hydrogenic system we have to sum up the radial and angular contributions, given by

(50), and then to take into account the final expressions (59) and (38) for these contributions.
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Then, it follows the expression

Rq[γn,l,{µ}] ∼ − log

(
ηD Γ

(
D
2

)

ZD

)
+D log

(
√
π

(
(2q − 1)2q−1

q2q

) 1
2−2q

)

+
q(n− l − 1

2)− 1
2

1− q logD +
1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Q0(q, n, l)π

q−1
2

)

∼ −3

2
D logD +D log

(
Z
√

8eπ

(
(2q − 1)2q−1

q2q

) 1
2−2q

)

+
q(n− l − 1)

1− q logD +
1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Q0(q, n, l)π

q−1
2

)
,

(61)

(with q 6= 1 and η ∼ D
2 ) for the large-D behavior of the total momentum Rényi entropy of the

generic hydrogenic state (n, l, {µ}), where the symbols M̃(D, q, {µ}) and Ẽ(D, {µ}) are defined in

Eqs. (36) and (37), respectively . For completeness and illustration, let us give in a more complete

manner the behavior of this quantity at D >> 1 for some particular quantum states such as the

(ns) and circular states. For the (ns)-states we found

Rq[γn,0,{0}] ∼ −
3

2
D logD +D log

(
Z
√

8eπ

(
(2q − 1)2q−1

q2q

) 1
2−2q

)

+
q(n− 1)

1− q logD +
1

1− q log
(
Q0(q, n, 0)π

q−1
2

)

(62)

with

Q0(q, n, 0) =
(2π)

1−q
2

Γ(n)q
(2q − 1)q−

1
2 (q − 1)2q(n−1)

qq(2n−1)− 1
2

. (63)

And for the circular states we obtained the following large-D behavior

Rq[γn,n−1,{n−1}] ∼ −
3

2
D logD +D log

(
Z
√

8eπ

(
(2q − 1)2q−1

q2q

) 1
2−2q

)

+
1

1− q log
(
Q0(q, n, n− 1)π

q−1
2

)

(64)

with

Q0(q, n, n− 1) = (2π)
1−q
2

(2q − 1)qn−
1
2

qq(2n−1)− 1
2

. (65)
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Note now that either from (62) or from (64) with n = 1 we have the following large-D behavior

Rq[γ1,0,{0}] ∼ −
3

2
D logD +D log

(
Z
√

8eπ

(
(2q − 1)2q−1

q2q

) 1
2−2q

)

+
1

1− q log
(
Q0(q, 1, 0)π

q−1
2

)

(66)

with q 6= 1 and Q0(q, 1, 0) = (2π)
1−q
2

(
2− 1

q

)q− 1
2

for the total momentum Rényi entropy of the

ground hydrogenic state.

Finally, from (61) one can conjecture that the Shannon entropy S[ρn,l,{µ}] in momentum space

for a general (n, l, {µ})-state is given by

S[γn,l,{µ}] ∼ −
3

2
D logD +D log

(
Z
√

8eπ
)

(67)

in the limiting case q → 1.

C. Position-momentum Rényi-entropy-based uncertainty sum

From Eqs. (44) and (61) we can obtain the dominant term for the joint position-momentum

Rényi-entropy-based uncertainty sum of a large-dimensional hydrogenic system for a pair of pa-

rameters p and q which fulfill the Holder conjugacy relation 1
p + 1

q = 2. We found that

Rq[ρn,l,{µ}] +Rp[γn,l,{µ}] ∼ D log


π
(

(2p− 1)(2p−1)

p2p

) 1
2−2p

q
1
q−1




= D log
[
2π (2p)

1
2p−2 (2q)

1
2q−2

]
, q 6= 1 (68)

for all (n, l, {µ})-states, which saturates the known position-momentum Rényi-entropy-based un-

certainty relation [38–40]. Note that out of the so called conjugacy curve (i.e., for arbitrary positive

pairs of values of p and q), there is a dependence at second order on the quantum numbers n and l;

this dependence just disappears onto the conjugation line. A more detailed study of this behaviour

out of the conjugacy curve remain as an open problem. Finally, the conjectured expressions for

Shannon entropy in both spaces (47), (67) allows one to write

S[ρn,l,{µ}] + S[γn,l,{µ}] ∼ D log [2πe] (69)

which saturates the general Bialynicki-Birula-Mycielski entropic relation [35, 38].
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IV. CONCLUSIONS

In this work we have determined the large-D behavior of the position and momentum Rényi

entropies of the D-dimensional hydrogenic states at large D in terms of the state’s hyperquantum

numbers and the nuclear charge Z of the system. We have used a recent constructive methodology

which allows for the calculation of some Rényi-like integral functionals of Laguerre L(α)
k (x) and

Gegenbauer C(α′′)
k (x) polynomials with a fixed degree k and large values of the parameters α

and α′′. This has been possible because the hydrogenic states are controlled by the Laguerre

and Gegenbauer polynomials in position space, and by the Gegenbauer polynomials in momentum

space, keeping in mind that the hyperspherical harmonics (which determine the angular part of the

wave functions in the two conjugated spaces) can be expressed in terms of the latter polynomials.

Then, simple expressions of these quantities for some specific classes of hydrogenic states (ns and

circular states), which include the ground state, are given. Moreover, as a byproduct, our results

reach the saturation of the known position-momentum Rényi-entropy-based uncertainty relations.

To this respect we should keep in mind that we are assuming that the dimensionality is very

large and the hyperquantum numbers are small. The exceptional case when both dimensionality

and hyperquantum numbers are simultaneously large has not yet been explored; in particular, we

cannot assure saturation.

We should highlight that to find the Shannon entropies of the large-dimensional hydrogenic

systems have not yet been possible with the present methodology, although the dominant term has

been conjectured. A rigorous proof remains open.

Finally, let us mention that it would be very relevant for many quantum-mechanical problems

other than the hydrogenic ones (e.g., the harmonic systems) the determination of the behavior of

integral functionals of Rényi and Shannon types for hypergeometric polynomials other than the

Laguerre and Gegenbauer ones at large values of the polynomials’ parameters and fixed degrees.

This is yet another open problem for the future.
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Appendix A: Rényi-like functionals of Laguerre polynomials with large parameters

In this appendix the asymptotics (α → ∞) of some Rényi-like functionals of the Laguerre

polynomials is given by means of the following theorem which has been recently found [43] (see

also [44, 45]). Herein, the involved parameters are just algebraic numbers without any quantum

interpretation.

Theorem 1. The Rényi-like functional of the Laguerre polynomials L(α)
m (x) given by

J1(σ, λ, κ,m;α) =

∞∫

0

xα+σ−1e−λx
∣∣∣L(α)

m (x)
∣∣∣
κ
dx, (A1)

(with σ real, 0 < λ 6= 1, κ > 0) has the following (α→∞)-asymptotic behavior

J1(σ, λ, κ,m;α) ∼ αα+σe−αλ−α−σ−κm |λ− 1|κm
√

2π

α

ακm

(m!)κ

∞∑

j=0

Dj

αj
, (A2)

with the first coefficients D0 = 1 and

D1 =
1

12(λ− 1)2

(
1− 12κmσλ+ 6σ2λ2 − 12σ2λ− 6σλ2 + 12σλ +

6κ2m2 + 12κmσ − 12κm2λ− 12κmλ+ 6κmλ2+

6κm2λ2 + λ2 + 6σ2 − 2λ− 6σ + 6κm2
)
.

(A3)

For the knowledge of the remaining coefficients and further details about the theorem, see [43].

Appendix B: Rényi-like functionals of Gegenbauer polynomials with large parameters

In this appendix the asymptotics (α→∞) of some Rényi-like functionals of Gegenbauer poly-

nomials is given by means of the following theorem which has been recently found [43] (see also

[44, 45]). Herein, the involved parameters are just algebraic numbers without any quantum inter-

pretation.
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Theorem 2. Let a, b, c, d, and κ be positive real numbers, c < d, and m a positive natural number.

Then, the Rényi-like functional of the Gegenbauer polynomials C(α)
m (x) given by

J2(a, b, c, d, κ,m;α) =

∫ 1

−1
(1− x)cα+a(1 + x)dα+b

∣∣∣C(α)
m (x)

∣∣∣
κ
dx (B1)

has the following asymptotics:

J2(a, b, c, d, κ,m;α) ∼ e−αφ(xm)

√
2π

α

2κm
(
(α)m

)κ

(m!)κ

∞∑

k=0

Dk

αk
, α→∞ (B2)

where the coefficients Dk do not depend on α. The first coefficient is given by

D0 = a1

(
2c

c+ d

)a( 2d

c+ d

)b(d− c
c+ d

)κm
, (B3)

and the symbols xm = (d− c)/(d+ c), φ(xm) = −c log 2c
c+d − d log 2d

c+d and a1 = 2
√

cd
(c+d)3

.

Moreover, if c = d, the corresponding Rényi-like functional

J2(a, b, c, κ,m;α) =

∫ 1

−1
(1− x)a(1 + x)be−αφ(x)

∣∣∣C(α)
m (x)

∣∣∣
κ
dx, (B4)

has the asymptotic behavior

J2(a, b, c, κ,m;α) ∼
√

π

αc

(2α)m

m!
, α→∞. (B5)

Finally, the asymptotics of the Rényi-like functional with c > d follows from the one with c < d

by interchanging a and b and c and d. The case c > d is useful for the determination of the Rényi

entropy of the large dimensional hydrogenic states in momentum space with q < 1. For further

details of the theorem, see [43].

Appendix C: Large-D behavior of the angular Rényi factor Λl,{µ}(ΩD−1)

Here we gather the necessary steps to obtain the final asymptotical expression (35) for the

angular Rényi factor Λl,{µ}(ΩD−1) from Eq. (34). First of all we have that since αj+1 = αj − 1
2

one has that

D−2∏

j=1

Γ(αj + qµj+1 + 1
2)

Γ(αj + qµj + 1)
=

Γ(αD−2 + qµD−1 + 1
2)

Γ(α1 + qµ1 + 1)
=

Γ(1 + q µD−1)

Γ(D2 + q l)

Then, we can express the product

D−2∏

j=1

4q(αj+µj)
Γ(αj + µj+1)2q

Γ(2αj + µj+1 + µj)q
=

D−2∏

j=1

4q(αj+µj)
Γ(αj + µj+1)2q

Γ(2αj + 2µj+1)q

D−2∏

j=1

Γ(2αj + 2µj+1)q

Γ(2αj + µj+1 + µj)q
,
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whose first factor can be rewritten as
D−2∏

j=1

4q(αj+µj)
Γ(αj + µj+1)2q

Γ(2αj + 2µj+1)q
=

D−2∏

j=1

4q(µj−µj+1)(2
√
π)q

Γ(αj + µj+1 + 1)q

Γ(αj + µj+1 + 1
2)q

(αj + µj+1)−q

= 4q(l−µD−1)(2
√
π)q(D−2) Γ(D2 + l)q

Γ(1 + µD−1)q

D−2∏

j=1

Γ(αj + µj+1 + 1)q

Γ(αj + µj + 1)q
(αj + µj+1)−q

Taking into account these previous observations, Eq. (34) becomes

Λl,{µ}(ΩD−1) ∼ 21−q4q(l−µD−1)π1−qD
2M(D, q, {µ}) (A(D, {µ}))q × (C1)

Γ(D2 + l)q

Γ(D2 + q l)

Γ(1 + qµD−1)

Γ(1 + µD−1)q

D−2∏

j=1

Γ(2αj + 2µj+1)q

Γ(2αj + µj+1 + µj)q
Γ(αj + µj+1 + 1)q

Γ(αj + µj + 1)q

where

M(D, q, {µ}) ≡
D−2∏

j=1

Γ
(
q(µj − µj+1) + 1

2

)

Γ
(
µj − µj+1 + 1

)q

and

A(D, {µ}) ≡
D−2∏

j=1

(αj + µj)(αj + µj+1)2(µj−µj+1)−1

Now, for convenience we introduce the notation

Ẽ(D, {µ}) ≡ A(D, {µ})×
D−2∏

j=1

(2αj + 2µj+1)−1
µj−µj+1

(αj + µj+1 + 1)µj−µj+1

=

D−2∏

j=1

(αj + µj+1)2(µj−µj+1)

(2αj + 2µj+1)µj−µj+1

1

(αj + µj+1)µj−µj+1

,

so that we have

Λl,{µ}(ΩD−1) ∼
(
π21−q+2q(l−µD−1) Γ(1 + qµD−1)

Γ(1 + µD−1)q

)

×
(
M(D, q, {µ}) Ẽ(D, {µ})q

πq
D
2

Γ(D2 + l)q

Γ(D2 + q l)

)

where the dominant factor is
Γ(D

2
+l)q

Γ(D
2

+q l)
∼ Γ(D2 )q−1. Moreover we can still simplify this expression

by the use of the notation M̃

M̃(D, q, {µ}) ≡ 4q(l−µD−1) π1−D
2M(D, q, {µ})

to have M̃ ≡ 1 for all configurations with µ1 = µ2 = ... = µD−1. Thus, we can finally obtain the

searched expression (35); namely,

Λl,{µ}(ΩD−1) ∼
(

21−qΓ(1 + qµD−1)

Γ(1 + µD−1)q

)

×
(
M̃(D, q, {µ})Ẽ(D, {µ})qπD2 (1−q) Γ(D2 + l)q

Γ(D2 + q l)

)
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This expression together with (24) allow us to determine the dominant term of the angular Rényi

entropy for fixed l as

Rq[Yl,{µ}] ∼ − log

(
Γ

(
D

2

))
+
D

2
log π +

1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})

)
(C2)

(where the third term vanishes for µ1 = µ2 = ... = µD−1) which correponds to expression (38) with

the values of M̃(D, q, {µ}) and Ẽ(D, {µ}) given above.
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2.3 General stationary states

In the two previous sections we have tackled, calculated and discussed the dominant

term of the Rényi entropies of D-dimensional hydrogenic system for the two extreme

high-energy (Rydberg) and high-dimensional (pseudo-classical) states, expressing them

in a simple, closed form. In this Section we extend these previous achievements by de-

termining the position and momentum Rényi entropies (with natural order q other than

unity) for all the discrete stationary states of the multidimensional hydrogenic system

directly in terms of the hyperquantum numbers which characterize the states, the nuclear

charge and the space dimensionality. The found expressions are given through the not-

so-well-known multivariate hypergeometric function of Lauricella and Srivastava-Daoust

types evaluated at 1/q and unity. Then, we also determine their associated uncertainty

relations. To do that we use the Srivastava-Niukkanen linearization of Laguerre and

Jacobi polynomials given by Theorems 1.5 and 1.6 of Section 1.3.

The following specific tasks have been done:

• Calculation of the position and momentum Rényi entropies for all quantum states

of the multidimensional hydrogenic system from first principles; i.e., by means of

the hyperquantum numbers, the Coulomb strength and the space dimensionality.

• Use of a recent methodology which allows to determine the involved integral func-

tionals by taking into account the linearization formula and orthogonality condi-

tions of the Laguerre and Jacobi polynomials; the latter ones are closely connected

to the Gegenbauer polynomials which control the angular part of the wavefunc-

tions in both conjugated spaces as well as the radial wavefunction in momentum

space.

• Expression of the Rényi entropies in position and momentum spaces in a closed

form by use of the hypergeometric function of Lauricella and Srivastava-Daoust

types evaluated at 1/q and unity, respectively.

• Determination of the corresponding global position-momentum uncertainty sum.

It remains as an open problem, the extension of this result to the limiting case q → 1,

which corresponds to the Shannon entropy, and the Rényi entropies for any real value

of the parameter q. The latter requires a completely different approach, still unknown

to the best of our knowledge.

These results are contained in the submitted paper [70] with coordinates: Puertas-

Centeno D., Toranzo I. V. and Dehesa J. S. Analytical determination of position and

momentum Rényi entropies for multidimensional hydrogenic systems. Preprint UGR

2018, which is attached below.
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multidimensional hydrogenic systems in position space, Rényi entropies of multidimen-
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1. Introduction

In a seminal paper Alfréd Rényi [1] found axiomatically a set of mono-parametric infor-

mation entropies of a probability density ρ(x) which includes the Shannon entropy as

a limiting case. These Rényi quantities are logarithms of integral functionals of powers

of ρ(x) (Yule-Sichel frequency moments [2, 3, 4]) appropriately renormalized to have

an entropic character. They describe numerous spreading facets of the density and,

moreover, completely characterize the density under certain conditions [5, 6]. Moreover,

they are closely related to other information-theoretic quantities such as e.g., the Tsallis

entropies [7] which play a very important role in systems with strong long-range corre-

lations and nonextensive statistical mechanics [8, 9].

The properties of the Rényi entropies and their applications have been widely con-

sidered/applied (see e.g., [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]

and reviewed [27, 28, 29, 30] in a broad variety of fields ranging from applied mathemat-

ics, quantum physics, Rydberg physics, complexity theory to non-linear physics, option

price calibration, nanotechnology and neuroscience. However, these quantities have not

yet been exactly calculated except for a few one-dimensional exponential densities (see

e.g., [17]) and some probability densities of a single-particle system moving in the ele-

mentary multidimensional quantum potentials of infinite well [18] and rigid rotator [25])

types. Moreover, the dominant term for the Rényi entropies of the multidimensional

harmonic oscillator has been determined at the high-dimensional (pseudoclassical) and

high-energy (Rydberg) limits [31, 32], and then the entropy values for both ground and

excited oscillator-like states have been analytically calculated [33] in terms of the hy-

perquantum numbers and the oscillator strength.

Recently, the analytical determination of the Rényi entropies of the main prototype

of the D-dimensional Coulomb many-body systems, the D-dimensional hydrogenic sys-

tem, from first principles (i.e., in terms of the hyperquantum numbers of the state and

the nuclear charge) has been undertaken [34, 35, 36]. This is relevant per se and for a

reference point of view. The D-dimensional hydrogenic system is a negatively-charged

particle moving in a space of D dimensions around a positively charged core which elec-

tromagnetically binds it in its orbit [37, 38, 39, 34, 40, 53, 42, 43]. This system allows for

the modelling of numerous three-dimensional physical systems (e.g., hydrogenic atoms

and ions, exotic atoms, antimatter atoms, Rydberg atoms) and a number of nanotech-

nological objects (quantum wells, wires and dots) and qubits which have been shown

to be very useful in semiconductor physics [44, 45] and quantum technologies [46, 47],

respectively. Moreover, it plays a crucial role for the interpretation of numerous phe-

nomena of quantum cosmology [48] and quantum field theory [49, 50, 51]. In addition

the D-dimensional hydrogenic wavefunctions have been used as complete orthonormal

sets for many-body atomic and molecular problems [52, 53] in both position and mo-

mentum spaces.
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The calculation of the hydrogenic Rényi entropies is a difficult task except for the

lowest-lying energy states. This is because these quantities are described by means of

some power or logarithmic functionals of the electron density, which cannot be easily

handled in an analytical way nor numerically computed; the latter is basically because

a naive numerical evaluation using quadratures is not convenient due to the increasing

number of integrable singularities when the principal hyperquantum number n is in-

creasing, which spoils any attempt to achieve reasonable accuracy even for rather small

n [54]. Up until now, these quantities have been only calculated in a compact form

[35, 55, 56] at the high-dimensional (pseudoclassical) and high-energy (Rydberg) limits

by use of modern asymptotical techniques of the Laguerre and Gegenbauer polynomials

which control the state’s wavefunctions in position and momentum spaces [26, 57].

In this work we determine the Rényi entropies Rp[ρ] (with integer p greater than

1) for the electron density ρ(~r) of all the discrete stationary states of the D-dimensional

hydrogenic system directly in terms of the hyperquantum numbers which characterize

the states, the nuclear charge and the space dimensionality D. The structure of the

manuscript is the following. In Sec. 2 the notion of the pth-order Rényi entropy for a

D-dimensional probability is given, and then the wavefunctions of the hydrogenic states

in the D-dimensional configuration space are briefly described so as to express the

associated probability densities. In Sec. 3 the position and momentum Rényi entropies

are analytically determined by means of the little known polynomial linearization

methodology of Srivastava-Niukkanen type [59, 60, 61, 62]. In Sec. 4 the specific values

for the entropies of some particularly relevant hydrogenic states are given to illustrate

the applicability of our procedure. Finally, some concluding remarks and open problems

are given.

2. D-dimensional hydrogenic system: An entropic view

In this section we briefly describe the quantum position and momentum probability

setting of the D-dimensional hydrogenic system where the Rényi entropies are

applied. For convenience we start with the definition of these entropies for a general

multidimensional probability density, and then we give the known wavefunctions

[37, 38, 39, 40] of the system in both position and momentum spaces as well as the

corresponding quantum probability densities.

2.1. Rényi entropy

The Rényi entropies Rp[ρ] of a D-dimensional probability density ρ(~r) are defined as

Rp[ρ] =
1

1− p lnWp[ρ]; 0 < p <∞, p 6= 1, (1)
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where Wp[ρ] denotes the entropic or Yule-Sichel frequency moment of order p of ρ(~r) is

given by

Wp[ρ] =

∫

RD
[ρ(~r)]p d~r = ‖ρ‖pp; p > 0, (2)

where the position ~r = (x1, . . . , xD) is given in hyperspherical units as

(r, θ1, θ2, . . . , θD−1) ≡ (r,ΩD−1), ΩD−1 ∈ SD−1; and the volume element is

d~r = rD−1drdΩD, dΩD−1 =

(
D−2∏

j=1

sin2αj θj dθj

)
dφ, (3)

with 2αj = D − j − 1. We have used r ≡ |~r| =
√∑D

i=1 x
2
i ∈ [0 ; +∞) and

xi = r
(∏i−1

k=1 sin θk

)
cos θi for 1 ≤ i ≤ D and with θi ∈ [0 ; π), i < D − 1,

θD−1 ≡ φ ∈ [0 ; 2π). By convention θD = 0 and the empty product is the unity.

2.2. Hydrogenic system

The discrete stationary states of the D-dimensional hydrogenic system (i.e., a particle

moving in the Coulomb potential VD(r) = −Z
r
, where Z denotes the nuclear charge;

atomic units are used throughout the paper) are known to be expressed [38, 34] in

position space by the energy eigenvalues

E = − Z
2

2η2
, η = n+

D − 3

2
; n = 1, 2, 3, ..., (4)

and the associated eigenfunctions

Ψn,l,{µ}(~r) = Nn,l

( r
λ

)l
e−

r
2λ L(2l+D−2)

n−l−1

( r
λ

)
Yl,{µ}(ΩD−1)

= Nη,l

[
ω2L+1(r̃)

r̃D−2

]1/2

L(2L+1)
η−L−1(r̃)Yl,{µ}(ΩD−1), (5)

with

η = n+
D − 3

2
, n = 1, 2, 3, . . .

L = l +
D − 3

2
, l = 0, 1, 2, . . .

r̃ =
r

λ
with λ =

η

2Z
, (6)

The symbol η denotes the principal hyperquantum number of the state associated to the

radial coordinate, and (l, {µ}) ≡ (l ≡ µ1, µ2, ..., µD−1) denote the orbital and magnetic

hyperquantum numbers associated to the angular variables ΩD−1 ≡ (θ1, θ2, ..., θD−1),

which may take all values consistent with the inequalities l ≡ µ1 ≥ µ2 ≥ ... ≥ |µD−1| ≡
|m| ≥ 0. In addition, ωα(x) = xαe−x, α = 2l + D − 2 is the weight function of the

orthogonal and orthonormal Laguerre polynomials [63, 64] of degree n and parameter

α, here denoted by L
(α)
n (x) and L̂

(α)
n (x), respectively and

Nn,l = λ−
D
2

(
(η − L− 1)!

2η(η + L)!

) 1
2

(7)
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is the normalization constant which ensures the unit norm of the wavefunction. The

angular part of the eigenfunctions is given by the hyperspherical harmonics as

Yl,{µ}(ΩD−1) = Nl,{µ}eimφ ×
D−2∏

j=1

C(αj+µj+1)
µj−µj+1

(cos θj)(sin θj)
µj+1 (8)

where Nl,{µ} is the normalization constant

N 2
l,{µ} =

1

2π
×

D−2∏

j=1

(αj + µj)(µj − µj+1)![Γ(αj + µj+1)]2

π 21−2αj−2µj+1Γ(2αj + µj + µj+1)
, (9)

the symbol C(λ)
n (t) denotes the Gegenbauer polynomial [63, 64] of degree n and param-

eter λ, and 2αj = D − j − 1.

Then, the position probability density of a D-dimensional hydrogenic state

characterized by the hyperquantum numbers (n, l, {µ}) is given by the squared modulus

of the position eigenfunction as

ρn,l,{µ}(~r) = N2
η,l

[
ω2L+1(r̃)

r̃D−2

]
[L(2L+1)

η−L−1(r̃)]2 |Yl,{µ}(ΩD−1)|2

= N2
n,lr̃

2le−r̃[L(2l+D−2)
n−l−1 (r̃)]2 |Yl,{µ}(ΩD−1)|2

≡ ρn,l(r̃) |Yl,{µ}(ΩD−1)|2. (10)

Moreover, the Fourier transform of the position eigenfunction Ψη,l,{µ}(~r) given by

(5) provides the eigenfunction of the system in the conjugated momentum space as

Ψ̃n,l,{µ}(~p) =Mn,l(p) Yl,{µ}(ΩD−1), (11)

where the radial part is

Mn,l(p) = Kn,l
(ηp̃)l

(1 + η2p̃2)L+2
C(L+1)
η−L−1

(
1− η2p̃2

1 + η2p̃2

)
(12)

with p̃ = p
Z

and the normalization constant

Kn,l = Z−
D
2 22L+3

[
(η − L− 1)!

2π(η + L)!

] 1
2

Γ(L+ 1)η
D+1
2 . (13)

Then, the momentum probability density of the D-dimensional hydrogenic stationary

state with the hyperquantum numbers (n, l, {µ}) is

γn,l,{µ}(~p) = |Ψ̃n,l,{µ}(~p)|2 =M2
n,l(p) |Yl,{µ}(ΩD−1)|2

= K2
n,l

(ηp̃)2l

(1 + η2p̃2)2L+4

[
C(L+1)
η−L−1

(
1− η2p̃2

1 + η2p̃2

)]2

|Yl,{µ}(ΩD−1)|2. (14)

3. Exact Rényi entropies of the hydrogenic system

In this section we determine the position and momentum Rényi entropies Rp[ρ] (with

natural p other than unity) for all the discrete stationary states of the D-dimensional
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hydrogenic system in an analytical way. First we note that these entropies can be de-

composed into two radial and angular parts in both conjugated spaces. Then, we use

a recent procedure [58] based on the Srivastava-Niukkanen method [59, 60, 65] which

linearize integer powers of Laguerre and Jacobi polynomials. The involved linearization

coefficients are expressed via some multiparametric hypergeometric functions of Lauri-

cella and Srivastava-Daoust types, respectively.

From Eqs. (1), (2) and (10) the Rényi entropies of the D-dimensional hydrogenic

state (n, l, {µ}) in position space can be written as

Rq[ρn,l,{µ}] = Rq[ρn,l] +Rq[Yl,{µ}], (15)

where Rq[ρn,l] denotes the radial part

Rq[ρn,l] =
1

1− q ln

∫ ∞

0

[ρn,l]
qrD−1 dr, (16)

and Rq[Yl,{µ}] denotes the angular part

Rq[Yl,{µ}] =
1

1− q ln Λl,{µ}(q), (17)

with

Λl,{µ}(q) =

∫
|Yl,{µ}(ΩD−1)|2q dΩD−1. (18)

3.1. Radial Rényi entropy in position space

Taking into account Eqs. (10) and (16), the radial Rényi entropy can be written as

Rq[ρn,l] =
1

1− q ln

[
N2q
n,l

∫ ∞

0
r̃2lqe−qr̃[L(2l+D−2)

n−l−1 (r̃)]2q rD−1dr

]
,

=
1

1− q ln

[
λD(1−q)

(
Γ(n− l)

2ηΓ(n+ l +D − 2)

)q]

+
1

1− q ln

∫ ∞

0
r̃2lq+D−1e−qr̃[L(2l+D−2)

n−l−1 (r̃)]2q dr̃. (19)

To evaluate the integral first we perform the change of variable x = qr̃ to have

Rq[ρn,l] =
1

1− q ln

[
λD(1−q)

(
Γ(n− l)

2ηΓ(n+ l +D − 2)

)q]

+
1

1− q ln q−D−2lq

∫ ∞

0

x2lq+D−1e−x
[
L(2l+D−2)
n−l−1

(
x

q

)]2q

dx, (20)

and then we apply the linearization formula of the (2q)th-power of the Laguerre

polynomial L
(2l+D−2)
n−l−1

(
x
q

)
given by

ya
[
L(α)
k (ty)

]r
=
∞∑

i=0

ci (a, r, t, k, α, γ)L(γ)
i (y), (21)
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with a > 0, t > 0, α > −1, γ > −1, the integer k ≥ 0, i ≥ 0, and the linearization

coefficients

ci (a, r, t, k, α, γ) = (γ + 1)a

(
Γ(k + α + 1)

Γ(α + 1)Γ(k + 1)

)r

× F (r+1)
A




γ + a+ 1;

r︷ ︸︸ ︷
−k, . . . ,−k,−i

; t, . . . , t︸ ︷︷ ︸
r

, 1α + 1, . . . , α + 1︸ ︷︷ ︸
r

, γ + 1



, (22)

where the Pochhammer symbol (z)a = Γ(z+a)
Γ(z)

and the symbol F
(s)
A (x1, . . . , xr) denotes

the Lauricella function of type A of s variables and 2s+ 1 parameters defined as [65]

F
(s)
A




a; b1, . . . , bs ;x1, . . . , xs

c1, . . . , cs




=
∞∑

j1,...,js=0

(a)j1+...+js(b1)j1 · · · (bs)js
(c1)j1 · · · (cs)js

xj11 · · ·xjss
j1! · · · js!

.(23)

Now, taking a = 2lq + D − 1, r = 2q, t = 1
q
, k = n − l − 1, α = 2l + D − 2,

inserting (21) in the integral kernel of (20) and using the orthogonalization condition

of the Laguerre polynomials [64], after some algebraic manipulations one finds that the

final expression of the radial Rényi entropy is given by

Rq[ρn,l] = D ln
( η

2Z

)
+

q

1− q ln

(
(η − L)2L+1

2η

)
+

1

1− q lnFq(D, η, L) +
1

1− q lnAq(D,L) (24)

where

Fq(D,n, l) ≡ F
(2q)
A




2lq +D;

2q︷ ︸︸ ︷
−n+ l + 1, . . . ,−n+ l + 1

;
1

q
, . . . ,

1

q︸ ︷︷ ︸
2q

2l +D − 1, . . . , 2l +D − 1︸ ︷︷ ︸
2q




, (25)

and Aq(D,L) ≡ Γ(D+2lq)

qD+2lqΓ(2L+2)2q
. Note that when l = n−1 the function Fq(D,n, l) is equal

to unity, so that the third term of the entropy expression (24) vanishes. Moreover, let us

highlight that, from Eq. (23), this function defines a finite sum by taking into account

the properties of the involved Pochhammer symbols with negative integer arguments.

3.2. Angular Rényi entropy

Now, from Eqs. (1), (2), (17), (18) and (8) one has that the angular Rényi entropy has

the form

Rq[Yl,{µ}] =
1

1− q ln

∫
N 2q
l,{µ}

D−2∏

j=1

[C(αj+µj+1)
µj−µj+1

(cos θj)]
2q| sin θj|2qµj+1 dΩD−1(26)
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With the change of variable t = cos θj, this integral can be rewritten as

Rq[Yl,{µ}] =
1

1− q ln
(

2πN 2q
l,{µ}

)
+

1

1− q ln

[
D−2∏

j=1

Ij(q)
]
, (27)

where

Iq(D,µj, µj+1) =

∫ 1

−1

[C(αj+µj+1)
µj−µj+1

(t)]2q|(1− t2)|qµj+1+αj− 1
2 dt. (28)

To calculate this integral we use the known relationship between the Gegenbauer and

Jacobi polynomials [64],

C(λ)
κ (x) =

Γ
(
λ+ 1

2

)

Γ(2λ)

Γ(κ+ 2λ)

Γ
(
κ+ λ+ 1

2

)P(λ− 1
2
,λ− 1

2)
κ (x) (29)

together with the Srivastava-Niukkanen-based linearization formula of the Jacobi

polynomials [58]

[P(α,β)
κ (x)]2q =

∞∑

i=0

c̃i(0, 2q, κ, α, β, γ, δ)P(γ,δ)
i (x), (30)

with α > −1, β > −1, γ > −1, δ > −1 and where the linearization coefficients c̃i are

given by

c̃i(0, 2q, κ, α, β, γ, δ) =

(
Γ(κ+ α + 1)

Γ(α + 1) Γ(κ+ 1)

)2q
γ + δ + 2i+ 1

γ + δ + i+ 1

× F 1;2···2
1;1···1




γ + 1 : −κ, α + β + κ+ 1; . . . ;−κ, α + β + κ+ 1,−i

; 1, . . . , 1

γ + δ + i+ 2 : α + 1; . . . ;α + 1, γ + 1




(31)

The symbol F 1;2···2
1;1···1 (x1, · · · , xr) denotes the r-variate Srivastava–Daoust function [59]

defined as

F 1;2···2
1;1···1




a
(1)
0 : a

(1)
1 , a

(2)
1 ; . . . ; a

(1)
r , a

(2)
r

;x1, . . . , xr

b
(1)
0 : b

(1)
1 ; . . . ; b

(1)
r




=

=
∞∑

j1,...,jr=0

(
a

(1)
0

)
j1+...+jr(

b
(1)
0

)
j1+...+jr

(
a

(1)
1

)
j1

(
a

(2)
1

)
j1
· · ·
(
a

(1)
r

)
jr

(
a

(2)
r

)
jr(

b
(1)
1

)
j1

(
b

(1)
r

)
jr

xj11 x
j2
2 · · ·xjrr

j1!j2! · · · jr!
,

(32)
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Then, the orthogonalization relation of the Jacobi polynomials [64]
∫ 1

−1

(1− x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x) dx =
2α+β+1

n!

Γ(α + n+ 1)Γ(β + n+ 1)

(α + β + 2n+ 1)Γ(α + β + n+ 1)
δm,n,

(for α, β > −1, and where δn,m denotes the Kronecker’s delta function) reduces the

infinite number of infinite terms of the sum involved in our Gegenbauer linearization to

a single one: that for i = 0. Then, after some algebraic manipulations one obtains that

the analytical expression of the angular Rényi entropy is given by

Rq[Yl,{µ}] = ln(2π
D
2 ) +

1

1− q ln

[
Γ(l + D

2
)q

Γ
(
ql + D

2

) Γ (qm+ 1)

Γ(m+ 1)q

]

+
1

1− q
D−2∑

j=1

ln [Bq(D,µj, µj+1)Gq (D,µj, µj+1)] (33)

where

Bq (D,µj, µj+1) =
1

[(µj − µj+1)!]q

(2αj + 2µj+1 + 1)q2(µj−µj+1)

(2αj + µj + µj+1)qµj−µj+1

(qµj+1 + αj + 1)q(µj−µj+1)

(αj + µj+1 + 1)qµj−µj+1

(34)

and

Gq(D,µj, µj+1) = F 1:2;...;2
1:1;...;1




aj : bj, cj; . . . ; bj, cj

; 1, . . . , 1

dj : ej; . . . ; ej




=

µj−µj+1∑

i1,...,i2q=0

(aj)i1+...i2q

(dj)i1+...+i2q

(bj)i1(cj)i1 · · · (bj)i2q(cj)i2q
(ej)i1 · · · (ej)i2q i1! · · · i2q!

(35)

with aj = αj + qµj+1 + 1
2
, bj = −µj + µj+1, cj = 2αj + µj+1 + µj, dj = 2qµj+1 + 2αj + 1

and ej = αj + µj+1 + 1
2
. Note that the sum becomes finite because bj is a negative

integer number, and so (bj)i =
Γ(bj+i)

Γ(bj)
= 0, ∀i > |bj|. Let us also highlight that when

µj = µj+1, the function Aq(D,µj, µj+1) = Gq(D,µj, µj+1) = 1.

3.3. Total Rényi entropy in position space

Finally, from Eqs. (15), (24) and (33) one has that the total Rényi entropy of the

D-dimensional hydrogenic system in position space is given by

Rq[ρn,l,{µ}] = D ln

(
π

1
2η

2Z

)
+

q

1− q ln

(
(η − L)2L+1

2η

)

+
1

1− q lnFq(D, η, L)Aq(D,L) +
1

1− q ln

[
Γ(l + D

2
)q

Γ
(
ql + D

2

) Γ (qm+ 1)

Γ(m+ 1)q

]
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+
1

1− q
D−2∑

j=1

ln [Bq(D,µj, µj+1) Gq (D,µj, µj+1)] + ln 2 (36)

in terms of the hyperquantum numbers, the nuclear charge and the space dimensionality.

3.4. Radial and total Rényi entropy in momentum space

Operating in momentum space in a similar way as done for the position space in

subsection 3.1, one has from Eqs. (1), (2) and (14) that the momentum radial Rényi

entropy is given by

Rq[γn,l] =
1

1− q log

(
ZD

ηD
K2q
n,l

2q(L+2)

)

+
1

1− q log

∫ 1

−1

(1− y)lq+
D
2
−1(1 + y)D(q− 1

2
)+q(l+1)−1C(L+1)

n−l−1(y)2q dy

Again the use of the relation (29) and the Srivastava-Niukkanen-based linearization

formula (30) of the Jacobi polynomials has led us to find the following expression of the

radial part of the Rényi entropy in momentum space:

Rq[γn,l] = D log
Z

η
+

q

1− q log [2η (η − L)2L+1] (37)

+
1

1− q logF q(D, η, L) +
1

1− q logAq(D,L)

where

F q(D, η, L) ≡ F 1:2;...;2
1:1;...;1




a : b, c; . . . ; b, c

; 1, . . . , 1

d : e; . . . ; e




=
n−l−1∑

i1,...,i2q=0

(a)i1+...i2q

(d)i1+...+i2q

(b)i1(c)i1 · · · (b)i2q(c)i2q
(e)i1 · · · (e)i2q i1! · · · i2q!

(38)

with a = (L+ 3
2
)q+ D

2
(1− q), b = −(η−L− 1), c = η+L+ 1, d = q(2L+ 4), e = L+ 3

2

and

Aq(D,L) ≡ 22q−1 Γ
(
D
2

+ ql
)

Γ
(
−D

2
+ q(D + l + 1)

)

Γ
(
D
2

+ l
)2q

Γ (q(D + 2l + 1))
(39)

Note that, when l = n− 1 the function Fq(D, η, L) = 1.

Finally, since the angular part of the momentum Rényi entropy is the same as in

position space, one obtains from Eqs. (38) and (33) that the total Rényi entropy in
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momentum space Rq[γη,L,{µj}] = Rq[γn,l] +Rq[Yl,{µ}] has the following expression

Rq[γn,l,{µ}] = D log

(
π

1
2Z

η

)
+

q

1− q log [2η (η − L)2L+1]

+
1

1− q log

[
F q(D, η, L)Aq(D,L)

Γ(l + D
2

)q

Γ
(
ql + D

2

) Γ (qm+ 1)

Γ(m+ 1)q

]

+
1

1− q
D−2∑

j=1

log [Bq(D,µj, µj+1)Gq (D,µj, µj+1)] + log 2 (40)

in terms of the hyperquantum numbers, the nuclear charge and the space dimensionality.

3.5. Rényi entropies for the quasi-spherical ns states

To illustrate the applicability of the previous position and momentum Rényi entropies,

we calculate them for a relevant class of specific states of the D-dimensional hydrogenic

system which include the ground state: the quasi-spherical ns states, which are

characterized by the angular hyperquantum numbers µ1 = µ2 . . . = µD−1 = l. First,

since l = n− 1, the Lauricella function of Eq. (24) is equal to unity. Then, we find the

values

Rq[ρn,n−1] = D log
η

2Z
− q

1− q log [Γ (2η + 1)]+
1

1− q log

(
Γ (D + 2nq − 2q)

qD+2nq−2q

)
(41)

for the radial Rényi entropy of the ns states in position space, and

Rq[ρ1,0] = Γ(D) +D log

[
D − 1

4Z q
1

1−q

]

for the corresponding one of the ground state (n=1). In addition, we have found the

values

Rq[Yl,{µ}] = log(2π
D
2 ) +

1

1− q log

[
Γ(l + D

2
)q

Γ(l + 1)q
Γ (ql + 1)

Γ
(
ql + D

2

)
]

and

Rq[Y0,{0}] = log

[
2 π

D
2

Γ
(
D
2

)
]

for the angular Rényi entropy of the ns states and the ground state, respectively. Similar

operations in the momentum space have allowed us to have the values

Rq[γn,n−1] = D log
Z

η
+

q

1− q log [4 Γ(2η + 1)]

+
1

1− q log

[
Γ
(
D
2

+ qn− q
)

Γ
(
−D

2
+ q(D + n)

)

2Γ
(
n+ D

2
− 1
)2q

Γ (q(D + 2n− 1))

]

and

Rq[γ1,0] = D log

[
2Z

D − 1

]
+

q

1− q log [4 Γ(D)]
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+
1

1− q log

[
Γ
(
D
2

)1−2q
Γ
(
D(q − 1

2
) + q

)

2Γ (Dq + q)

]

for for the radial Rényi entropy of the ns states and the ground state in momentum

space, respectively.

Finally, we gather in Tables 1 and 2 the exact values of the position and momentum

Rényi entropies R2[ρn,l,m] and R2[γn,l,m], respectively, of various quasi-circular circular

states of the three-dimensional hydrogen atom.

R2[ρn,l,m] n = 1 n = 2 n = 3

l = 0,m = 0 log(8π) log
(

2048π
5

)
log
(

84934656π
5

)

l = 1,m = 0 - log
(

2048π
9

)
log
(

27648π
11

)

l = 1,m = 1 - log
(

1024π
3

)
log
(

41472π
11

)

l = 2,m = 0 - - log
(

9216π
5

)

l = 2,m = 1 - - log
(

13824π
5

)

l = 2,m = 2 - - log
(

13824π
5

)

Table 1. Exact values of the total position Rényi entropy R2[ρn,l,m] for various quasi-

circular states of the three-dimensional hydrogen atom.

R2[γn,l,m] n = 1 n = 2 n = 3

l = 0,m = 0 log(16π2

33
) log

(
2π2

151

)
log
(

16π2

7533

)

l = 1,m = 0 - log
(

2π2

39

)
log
(

160π2

36207

)

l = 1,m = 1 - log
(
π2

13

)
log
(

80π2

12069

)

l = 2,m = 0 - - log
(

1120π2

78489

)

l = 2,m = 1 - - log
(

560π2

26163

)

l = 2,m = 2 - - log
(

560π2

26163

)

Table 2. Exact values of the total momentum Rényi entropy R2[γn,l,m] for various

quasi-circular states of the three-dimensional hydrogen atom.
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4. Position-momentum Rényi-entropy sum

Here we give the joint position-momentum Rényi uncertainty sum for all the discrete

stationary states of the D-dimensional hydrogenic system from Eqs. (36) and (40). We

obtain

Rq[ρn,l,{µ}] +Rp[γn,l,{µ}] = D log
(π

2

)
+

2q

q − 1
log [2η]

+ log
[
Fq(D, η, L)

1
1−qFp(D, η, L)

1
1−p Aq(D,L)

1
1−qAp(D,L)

1
1−p
]

+ log



(

Γ (qm+ 1)

Γ
(
ql + D

2

)
) 1

1−q
(

Γ (pm+ 1)

Γ
(
pl + D

2

)
) 1

1−p



+
D−2∑

j=1

log

[
(qµj+1 + αj + 1)

1
1−q
q(µj+1−µj) (pµj+1 + αj + 1)

1
1−p
p(µj+1−µj)

]

+
D−2∑

j=1

log
[
(Gq(D,µj, µj+1))

1
1−q (Gp (D,µj, µj+1))

1
1−p
]

+ log 4 (42)

with 1
p

+ 1
q

= 2‡. When the spatial dimension is D = 3 this expression boils down to

Rq[ρn,l,m] +Rp[γη,L,{µj}] = 3 log
(π

2

)
+

2q

q − 1
log [2n]

+ log
[
Fq(3, n, l)

1
1−qFp(3, n, l)

1
1−p Aq(3, l)

1
1−qAp(3, l)

1
1−p
]

+ log
[
(Gq(3, l,m))

1
1−q (Gp (3, l,m))

1
1−p
]

+ log


4

(
Γ (qm+ 1)

Γ
(
qm+ 3

2

)
) 1

1−q
(

Γ (pm+ 1)

Γ
(
pm+ 3

2

)
) 1

1−p

 (43)

Finally and most interesting, the expression (42) in the limit D →∞ becomes

Rq[ρη,L,{µj}] +Rp[γη,L,{µj}] ∼ D log
(

2π(2q)
1

2−2q (2p)
1

2−2p

)
, (44)

which is the saturation value of the Rényi-entropy-based uncertainty relation found

independently by Bialynicki-Birula [66] and Zozor-Portesi-Vignat [67, 68].

Rq[ρ] +Rp[γ] ≥ D log
(

2π(2q)
1

2−2q (2p)
1

2−2p

)
,

1

p
+

1

q
= 2. (45)

This fact is not only a partial checking of our results but also it is in accordance with

similar findings obtained in a very different way.

‡ In fact, this is only valid provided the functions Fq,Fq and Gq exist for any p, q ∈ R.
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5. Conclusions

In this work we have explicitly calculated the total position Rq[ρn,l,{µ}] and momentum

Rq[γn,l,{µ}] Rényi entropies (with integer q greater than 1) for all the quantum-

mechanically allowed hydrogenic states in terms of the Rényi parameter q, the spatial

dimension D, the nuclear charge Z as well as the hyperquantum numbers, (n, l, {µ}),
which characterize the corresponding wavefunction of the states. To do that we

have used a recent methodology which allows to determine the involved integral

functionals by taking into account the linearization formula and orthogonality conditions

of the Laguerre and Jacobi polynomials; the latter ones are closely connected to the

Gegenbauer polynomials which control the angular part of the wavefunctions in both

conjugated spaces as well as the radial wavefunction in momentum space. The final

expressions for the Rényi entropies in position and momentum spaces are expressed

in a compact way by use of a multivariate hypergeometric function of Lauricella and

Srivastava-Daoust types evaluated at 1/q and unity, respectively; indeed, note that all

sums to be evaluated are finite. Finally, it remains as an open problem the extension

of this result to the limiting case q → 1, which corresponds to the Shannon entropy,

and the Rényi entropies for any real value of the parameter q. The latter requires a

completely different approach, still unknown to the best of our knowledge.
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Chapter 3

Rényi and Shannon entropies of

harmonic systems

The study of the harmonic (oscillator-like) systems has been central in the development

of classical and quantum mechanics. This is because when a particle is close to its

equilibrium position, the potential which governs the dynamics can be approximated

by the harmonic potential. The multidimensional harmonic system (i.e., a particle

moving under the action of a quadratic quantum-mechanical potential) [56] is, together

with the hydrogenic system, the main prototype of the physics of multidimensional

quantum systems. This model have long been regarded as an important laboratory

toolbox in numerous scientific fields from quantum chemistry to quantum information,

mainly because it is a completely integrable analogue of many body systems due to

their remarkable analytic properties. Indeed, the multidimensional harmonic system

has been shown to be very effective in the description of e.g. quantum dots, ultracold

gases in harmonic traps, fractional quantum Hall effect and quark confinement [156–

165]. Despite this increasing interest from both theoretical and applied standpoints,

there does not exit a deep knowledge about the Heisenberg and entropy-like uncertainty

measures of the D-dimensional harmonic oscillator, although a number of related works

have been carried out [34, 35, 37, 42, 117, 166–182].

These measures, which quantify the spreading properties of the harmonic probability

density, are respectively characterized by the radial expectation values and the Rényi

and Shannon entropies of the corresponding quantum probability density of the system

in position and momentum spaces.

The goal of the present Chapter is to determine the Heisenberg-like and entropic un-

certainty measures (as given by the radial expectation values and the Rényi entropies,

respectively) of the multidimensional harmonic system for the extreme states of Ryd-

berg [64] and pseudo-classical states [65] and for general stationary states [66] in the two

conjugated spaces of position and momentum types.
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The chapter is composed by three sections. Briefly, the main results of each section are

the following:

3.1 The angular and radial contributions to the position and momentum entropic un-

certainty measures for the higly-excited (Rydberg) states of the multidimensional

harmonic system are analytically expressed in terms of the hypequantum numbers

which characterize the corresponding quantum states and, for the radial part, the

oscillator strength [64].

3.2 The leading term of the Heisenberg-like and entropy-like uncertainty measures for

the high-dimensional states of the multidimensional harmonic system is obtained in

a closed form. The associated multidimensional position-momentum uncertainty

relations are discussed, showing that they saturate the corresponding general ones

[65].

3.3 The exact values of the Rényi uncertainty measures of the D-dimensional har-

monic system are determined for all ground and excited quantum states directly

in terms of D, the potential strength and the hyperquantum numbers. They can

be expressed in a compact way by use of a generalized hypergeometric Lauricella

function of type A [66].

3.1 Rydberg states

In this section we explicitly determine the Shannon, Rényi and Tsallis information-

theoretic measures of the highly excited (i.e., Rydberg) quantum states of the multi-

dimensional harmonic system in terms of the basic parameters which characterize the

system; that is, the dimensionality D, the hyperquantum numbers and the oscillator

strength. This has been possible through the use of the novel mathematical technique

developed by Aptekarev et al. [122] which has been briefly described in the Section

1.2, and the use of the linearization and expansion methods for orthogonal polynomials

described in Section 1.3.

This aim has required to carry out the following tasks:

• To obtain two equivalent analytical expressions for the angular contribution to the

Rényi entropy of the probability density which characterizes the quantum states

of any central potential. They have been developed by means of the polynomial

linearization and expansion methodologies described in Theorems 1.6 and Lemma

1.8 of Section 1.3, respectively.

• To determine the leading term of the radial contribution to the Rényi entropy

for the Rydberg states of the D-dimensional harmonic system, what is specially
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remarkable because it is a serious problem even numerically. This has been done

by Theorem 1.1 of Aptekarev et al. [122] briefly described in the Sec. 1.2

• To illustrate the applicability of the previous findings by applying them to some

specific Rydberg harmonic states of ns and np types.

• To calculate and discuss the position-momentum Rényi and Shannon uncertainty

sums for a large class of Rydberg harmonic states which include the ground state.

These results have been published in the article [64] with coordinates: Dehesa J. S.,

Toranzo I. V. and Puertas-Centeno D. Entropic measures of Rydberg-like harmonic

states. International Journal of Quantum Chemistry, 117:48-56, 2017, which is attached

below.



Entropic measures of Rydberg-like harmonic states
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The Shannon entropy, the desequilibrium and their generalizations (Rényi and Tsallis entropies)
of the three-dimensional single-particle systems in a spherically-symmetric potential V (r) can be
decomposed into angular and radial parts. The radial part depends on the analytical form of the
potential, but the angular part does not. In this paper we first calculate the angular entropy of any
central potential by means of two analytical procedures. Then, we explicitly find the dominant term
of the radial entropy for the highly energetic (i.e., Rydberg) stationary states of the oscillator-like
systems. The angular and radial contributions to these entropic measures are analytically expressed
in terms of the quantum numbers which characterize the corresponding quantum states and, for
the radial part, the oscillator strength. In the latter case we use some recent powerful results of
the information theory of the Laguerre polynomials and spherical harmonics which control the
oscillator-like wavefunctions.

Keywords: Entropic measures of Rydberg oscillator states, Information theory of the harmonic
oscillator, Angular entropies of any central potential, Rényi and Tsallis entropies of the harmonic
oscillator, Shannon entropy of the harmonic oscillator.

I. INTRODUCTION

The classical and quantum entropies of the many-particle systems, which are functionals of the one-particle
quantum-mechanical probability density, do not only quantify the spatial delocalization of this density in various
complementary ways and describe a great deal of physical and chemical properties of the systems but also they
are the fundamental variables of the information theory of quantum systems which is at the basis of the modern
Quantum Information. The computational determination of these quantities is a formidable task (not yet solved,
except possibly for the ground and a few lowest-lying energetic states), even for the small bunch of elementary
quantum potentials which are used to approximate the mean-field potential of the physical systems [1–5].

The harmonic oscillator is both a pervasive concept in science and technology and a fundamental building
block in our system of knowledge of the physical universe [6, 7]. Indeed it has been applied from the physics of
quarks to quantum cosmology. The harmonic oscillator is, together with the Coulomb potential, the most relevant
quantum-mechanical potential for the description of the structure and dynamics of natural systems. It has played
per se a crucial role in the development of quantum physics since its birth [8], mainly because the wave functions
of its quantum-mechanically allowed oscillator-like states can be explicitly expressed in terms of special functions of
mathematical physics (namely, the Laguerre polynomials and spherical harmonics). Moreover, it has provided an
approximate model for the physically-correct quantum-mechanical potentials of many-particle systems what is very
useful for the the interpretation and quantitative estimation of numerous microscopic and macroscopic properties of
natural systems. Indeed, it seems that this paradigmatic oscillator-like formalisation relies on the so-called mean-field
approximation: each particle harmonically interacts with all others in the system, regardless of their reciprocal
distance. Moreover, the solutions of the wave equations of complex physical systems within this approximation are
very valuable, referencial tools for checking and improving complicated numerical methods used to study such systems.

Let us just highlight that the oscillator wave functions saturate the most important mathematical realizations
of the quantum uncertainty principle such as the Heisenberg-like [9, 10] uncertainty relations, which are based on
the variance and/or higher-order moments, and the entropic uncertainty relations based on the Shannon entropy
[11, 12], the Rényi entropy [13, 14] or the Fisher information [9, 15]. Furthermore, they have been used in numerous
scientific fields ranging from quantum many-body physics [16–24], heat transport [25], quantum entanglement [26, 27],
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‡vidda@correo.ugr.es
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Keppler systems [28], quantum dots [18, 29, 30] and cold atomic gases [31, 32] to fractional and quantum statistics
[33, 34] and black-holes thermodynamics [35, 36]. However, the information-theoretic properties of the three (or
higher)-dimensional harmonic oscillator are not yet settled down in spite of numerous efforts (see e.g., [2, 3, 37]),
mainly because of the yet incomplete knowledge of the information theory of orthogonal polynomials and spherical
harmonics [38–41].

In this work we first realize that the information entropies (Shannon, Rényi and Tsallis) of the three-dimensional
single-particle systems in a spherically-symmetric potential V (r) can be decomposed into two angular and radial
parts. The radial part depends on the analytical form of the potential, but the angular part does not. Then, we
determine both the angular contribution to these entropies for all the quantum-mechanically allowed states of the
central potential V (r) and the radial entropy of the highly-energetic (i.e., Rydberg) states of the (three-dimensional)
harmonic oscillator in an analytical way. The latter is done by using some recent powerful results of the information
theory of Laguerre and Gegenbauer polynomials [4, 42–44] (see also [45, 46]).

The structure of the work is the following. In section II we first describe the information entropies of an arbitrary
probability density to be used; later we apply them to a single-particle system subject to a central potential V (r),
showing that they can be decomposed into radial and angular parts, with emphasis on the Rényi entropy from which
all the remaining entropies can be analytically obtained. Then, we begin to calculate the information entropies of the
oscillator-like states by collecting all the necessary data, particularly the quantum probability density which define
these states. In section III we tackle the computation of the angular part of the Rényi entropy for all quantum states
of any central potential by means of two different analytical procedures. In Section IV we first calculate the dominant
term of the radial part of the Rényi and Shannon entropies of the highly-energetic (i.e., Rydberg) oscillator-like
states. Then, the total Rényi and Shannon entropies can be analytically obtained in a straightforward way, what is
illustrated for some specific Rydberg oscillator-like states. In Section V we illustrate that the information entropies of
the low-energy states can be calculated in a analytical, much simpler way; and, moreover, we show that the position
and momentum values of the Shannon and Rényi entropies found for the states lying at the two extreme regions of the
spectrum verify the position-momentum Shannon-entropy-based [11, 12] and Rényi-entropy-based [13, 14] uncertainty
relations, respectively. Finally, some conclusions are given.

II. INFORMATION ENTROPIES OF QUANTUM STATES

In this section we define the basic information entropies of a probability density ρ(~r); namely, the Rényi and Tsallis
entropies and their instances, the Shannon entropy and the disequilibrium. Then, we study these quantities for the
quantum-mechanically allowed states of a physical system with a spherically-symmetric potential V (r), pointing out
that they can be decomposed into two angular and radial parts. Finally, we explicitly apply them to the oscillator-like
states. Atomic units are used throughout the paper.

The pth-order Rényi entropy Rp[ρ] of the density ρ(~r) is defined [47] as

Rp[ρ] =
1

1− p ln

∫

R3

[ρ(~r)]p d~r; 0 < p <∞, p 6= 1, (1)

and the Tsallis entropy [48], given by Tp[ρ] = 1
p−1 (1−

∫
R3 [ρ(~r)]pd~r), can be obtained from the Rényi one by means of

the expression

Tp[ρ] =
1

1− p
(
e(1−p)Rp[ρ] − 1

)
. (2)

These two sets of entropies globally quantify different facets of the spreading of the probability cloud all over the spa-
tial volume where the density function ρ(~r) is defined. All the members of each set completely characterize the density
under certain conditions [49, 50]. Some of them are very relevant per se such as e.g., the Shannon entropy (which
measures the total extent of the density), S[ρ] := −

∫
ρ(~r) ln ρ(~r)d~r = limp→1Rp[ρ] = limp→1 Tp[ρ]), and the disequi-

librium (which quantifies the separation of the density with respect to equiprobability), 〈ρ〉 = exp(−R2[ρ] = 1−T2[ρ]).
See [49–58] for further knowledge of these quantities. Let us just mention that the Rényi entropies and their associated
uncertainty relations have been widely used to investigate numerous quantum-mechanical properties and phenomena
of physical systems and processes [13, 56–58], the pattern formation and Brown processes [59, 60], fractality and
chaotic systems [61, 62], quantum phase transition [63] and the quantum-classical correspondence [64] and quantum
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entanglement [65, 66].

The probability density ρ(~r) of a single-particle system subject to the central potential V (r) is given by the squared
modulus of the position eigenfunction Ψ(~r), which satisfies the Schrödinger equation

(
−1

2
~∇2 − V (r)

)
Ψ (~r) = EΨ (~r) , (3)

where the position vector ~r = (x1, x2, x3) in polar spherical units is given as (r, θ, φ) ≡ (r,Ω), Ω ∈ S2, where

r ≡ |~r| =
√∑3

i=1 x
2
i ∈ [0 ; +∞) and with θ ∈ [0 ; π), φ ∈ [0 ; 2π). It is well known that the eigenfunction factorizes

as Ψn,l,m(~r) = Rn,l(r) Yl,m(Ω), where the radial part Rn,l(r) depends on the analytical form of the potential and the
angular part Yl,m(Ω) is given by the spherical harmonics defined [67] by

Yl,m(θ, ϕ) = Al,me
imϕ (sin θ)

m
C

(m+ 1
2 )

l−m (cos θ) (4)

with the normalization constant is

Al,m =

√(
l + 1

2

)
(l −m)!

[
Γ
(
m+ 1

2

)]2

21−2m π2 (l +m)!
,

and the symbol C
(λ)
n (t) denotes the Gegenbauer polynomial of degree n and parameter λ.

Then, the probability density of the quantum stationary state (n, l,m) is given by

ρn,l,m(~r) = ρn,l(r) |Yl,m(Ω)|2, (5)

where the radial part is the univariate function ρn,l(r) = [Rn,l(r)]2. Now we can compute the information entropies
of this density. From Eqs. (1) and (5) we obtain that the Rényi entropies of the quantum state (n, l,m) can be
expressed as

Rp[ρn,l,m] = Rp[ρn,l] +Rp[Yl,m], (6)

where Rp[ρn,l] denotes the radial part

Rp[ρn,l] =
1

1− p ln

∫ ∞

0

[ρn,l]
pr2 dr, (7)

and Rp[Yl,m] denotes the angular part

Rp[Yl,m] =
1

1− p ln Λl,m. (8)

with

Λl,m =

∫

S2
|Yl,m(θ, φ)|2p dΩ. (9)

For p = 1 and 2 we obtain similar expressions for the disequilibrium and Shannon entropy, respectively. In particular,
the Shannon entropy of the quantum state (n, l,m) of any central potential is decomposed as

S[ρn,l,m] = S[ρn,l] + S[Yl,m], (10)

where the radial and angular parts are given by

S[ρn,l] = lim
p→1

Rp[ρn,l], (11)

and

S[Yl,m] = lim
p→1

Rp[Yl,m], (12)

respectively. Note that, contrary to the radial parts, the angular parts Rp[Yl,m] and S[Yl,m] do not depend on the
analytical form of the potential V (r). Surprisingly, these angular Rényi and Shannon entropies have never been
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calculated up to now. We will do it in the next section III.

To go forward into the radial Rényi entropy Rp[ρn,l], we will take into account the oscillator potential V (r) = 1
2λ

2r2

whose Schrödinger equation (3) is known (see e.g., [37, 68]) to be exactly solved, so that the energetic eigenvalues are

En,l = λ

(
2n+ l +

3

2

)
, (13)

and the corresponding eigenfunctions are expressed as

Ψn,l,m(~r) =

[
2n!λl+

3
2

Γ(n+ l + 3
2 )

] 1
2

rle−
λ r2

2 L(l+1/2)
n (λ r2)

×Yl,m(Ω), (14)

with (n = 0, 1, 2, . . . ; l = 0, 1, 2, . . . ;m = −l,−l + 1, ...,+l), and L
(α)
n (t) denotes [67] the Laguerre polynomial of

paramater α and degree n.

Then, the position probability density of the isotropic harmonic oscillator has the form (5) where the radial part is
given by

ρn,l(r) =
2n!λl+

3
2

Γ(n+ l + 3
2 )
r2le−λ r

2
[
L(l+1/2)
n (λ r2)

]2

=
2n!λ

3
2

Γ(n+ l + 3
2 )
x

1
2ωl+ 1

2
(x)
[
L(l+1/2)
n (x)

]2

= 2λ
3
2

ωl+ 1
2
(x)

x−1/2
[L̂(l+1/2)
n (x)]2 (15)

where x = λ r2 and

ωα(x) = xαe−x, α = l +
1

2
, (16)

is the weight function of the orthogonal and orthonormal Laguerre polynomials of degree n and parameter α, here

denoted by L
(α)
n (x) and L̂

(α)
n (x), respectively. Moreover, it is known [37] that the probability density in momentum

space (i.e., the squared modulus of the Fourier transform of the position eigenfunction) is given by γ(~p) = 1
λ3 ρ

(
~p
λ

)
.

So, the position and momentum information entropies of the oscillator-like states have aformal expression of similar
type.

Later on, in Section IV, we will determine in an analytical way the radial Rényi and Shannon entropies not for all
quantum oscillator-like states (what is an open problem) but only for all highly energetic (i.e., Rydberg) oscillator-like
states. The Rydberg case is even a serious computational task because it involves the numerical evaluation of the
Rényi and Shannon functionals of Laguerre polynomials Ln(x) with a high and very high degree n. Indeed, a naive
use of quadratures to tackle this problem is not convenient: since all the zeros of Ln(x) belong to the interval of
orthogonality, the increasing number of integrable singularities spoil any attempt to achieve reasonable accuracy even
for rather small n [69]. Finally, let us advance here that the information entropies for the low-energy states can be
easily obtained because then the corresponding Laguerre polynomials have low degrees so that the associated entropic
integrals can be solved in a analytically simple manner, as it is illustrated in Section V.

III. ANGULAR ENTROPIES OF QUANTUM STATES OF ANY CENTRAL POTENTIAL

In this section we describe two qualitatively different analytical procedures for the evaluation of the angular Rényi
entropy Rp[Yl,m], given by (8), of any quantum state of an arbitrary central potential. Then, the corresponding
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angular Shannon entropies follow in the limit p→ 1. We start with Eqs. (9) and (4) to obtain the angular functional

Λl,m =

∫

S2
|Yl,m(θ, φ)|2p dΩ (17)

= 2π[Al,m]2p
∫ π

0

|C(m+1/2)
l−m (cos θ)|2p(sin θ)2pm+1 dθ.

= 2π[Al,m]2p
∫ 1

−1
|C(m+1/2)
l−m (t)|2p(1− t2)mp dt (18)

To compute (18) we propose the two following methods. One based on the linearization technique of Srivastava [42, 45]
and another one based on the power expansion via the Bell polynomials [44, 46].

A. Linearization-based method

The functional of Gegenbauer polynomials of (18) can be solved by means of the linearization formula of Srivastava
[42, 45] for the natural powers of Jacobi polynomials. Indeed, since the Gegenbauer polynomials are particular
instances of Jacobi polynomials as indicated by

C(λ)
n (t) =

(2λ)n(
λ+ 1

2

)
n

P
(λ− 1

2 ,λ− 1
2 )

n (t), (19)

where λ = m+ 1/2 and n = l −m. we have that the angular functional Λl,m can be rewritten as

Λl,m = A′l,m

∫ 1

−1
|P (m,m)
l−m (t)|2p(1− t)mp(1 + t)mp dt, (20)

where

A′l,m =
22(m−1)p+1(2l + 1)p

π2p−1

[
Γ
(
m+ 1

2

)2
(l −m)!(m!)2(l +m)!

(l!)2[(2m)!]2

]p
(21)

Then, the Srivastava linearization formula appropriately modified for our purposes gives [42]

[
P

(m,m)
l−m (t)

]2p
=

∞∑

i=0

c̃i(p, l,m)P
(pm,pm)
i (t), (22)

(which holds for positive integer and half-integer values of the parameter p), where the coefficients c̃i(p, l,m) (or
equivalently c̄i(0, 2p, l −m,m,m, pm, pm) in the notation of [42]) have the expression

c̃i(p, l,m) =

(
l

l −m

)2p
2mp+ 2i+ 1

2mp+ i+ 1

l−m∑

j1,...,j2p=0

i∑

j2p+1=0

(mp+ 1)j1+...+j2p+j2p+1

(2mp+ i+ 2)j1+...+j2p

× (m− l)j1(l +m+ 1)j1 · · · (m− l)j2p(l +m+ 1)j2p(−i)j2p+1

(m+ 1)j1 · · · (m+ 1)j2p(pm+ 1)j2p+1
j1! · · · j2p!j2p+1!

.

(23)

Substituting (22) into (20) and using the orthogonality property of the Jacobi polynomials

∫ 1

−1
(1− t)a(1 + t)bP (a,b)

n (t)P (a,b)
m (t) dt =

2a+b+1Γ(a+ n+ 1)Γ(b+ n+ 1)

n!(a+ b+ 2n+ 1)Γ(a+ b+ n+ 1)
δm,n, (24)

we obtain the following expression for the angular functional Λl,m:

Λl,m = A′′l,mc̃0(p, l,m) (25)

with

A′′l,m =
22p(2m−1)+2(2l + 1)p

π2p−1
Γ(mp+ 1)2

Γ(2mp+ 2)

[
Γ
(
m+ 1

2

)2
Γ(m+ 1)2Γ(l −m+ 1)Γ(l +m+ 1)

Γ(2m+ 1)2Γ(l + 1)2

]p
, (26)
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and

c̃0(p, l,m) =

(
l

l −m

)2p l−m∑

j1,...,j2p=0

(mp+ 1)j1+...+j2p
(2mp+ 2)j1+...+j2p

× (m− l)j1(l +m+ 1)j1 · · · (m− l)j2p(l +m+ 1)j2p
(m+ 1)j1 · · · (m+ 1)j2pj1! · · · j2p!

.

(27)

Then, taking (25) into (8) one finally obtains the value

Rp[Yl,m] =
1

1− p ln
[
A′′l,mc̃0(p, l,m)

]
. (28)

for the angular part for the Rényi entropy of any quantum state of an arbitrary central potencial, which again hold
for positive integer and half-integer values of the parameter p. Note that Eqs. (26) - (28) allow us to analytically
compute this entropic quantity in an straightforwrad and algorithmic way.

B. Bell-polynomials-based method

Let us now give an alternative, qualitatively different method to compute the angular Rényi functional Λl,m given
by (18) or, equivalently, (20). In this method we calculate the Gegenbauer-polynomial integral involved in (18), or
better the Jacobi-polynomial integral of (20), by means of the power expansion of its respective kernel. The latter is
done by use of the following general result [44]: The p-th power of an arbitrary polynomial yn(x) given by

yn(x) =

n∑

k=0

ckx
k (29)

can be expressed as

[yn(x)]p =

(
n∑

k=0

ckx
k

)p

=

np∑

k=0

Ak,p(c0, . . . , cn)xk, (30)

where

Ak,p(c0, . . . , cn) =
p!

(k + p)!
Bk+p,p(c0, 2!c1, . . . , (k + 1)!ck),

with ci = 0 if i > n and Bn,k(x1, x2, . . .) are the multivariate Bell polynomials of the second kind [46]

Bn,k(x1, x2, . . .) =
∑

j1+j2+...=k
j1+2j2+...=n

n!

j1!j2! · · ·
(x1

1!

)j1 (x2
2!

)j2
· · ·

From the known explicit expression of the Jacobi polynomials [67] we can write

P̃ (α,β)
n (x) =

n∑

k=0

ckx
k (31)

with the expansion coefficients

ck =

√
Γ(n+ α+ 1)(2n+ α+ β + 1)

n!2α+β+1Γ(α+ β + n+ 1)Γ(n+ β + 1)

n∑

i=k

(−1)i−k
(
n

i

)(
i

k

)
Γ(α+ β + n+ i+ 1)

2iΓ(α+ i+ 1)
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Then, according to (30) et sequel one obtains the following expression for the p-th power of the orthonormal Jacobi
polynomials

[P̃ (α,β)
n (x)]2p =

2np∑

k=0

Bk+2p,2p(c0, 2!c1, . . . , (k + 1)!ck)xk. (32)

Now, using this expression with α = β = m and n = l − m, and taking the resulting expression into the angular
functional Λl,m given by (20) one has

Λl,m =
Γ(mp+ 1)

2pπp−1

2(l−m)p∑

k=0

(2p)!

(k + p)!
Bk+2p,2p(c0, 2!c1, . . . , (k + 1)!ck)

[1 + (−1)k]Γ
(
k+1
2

)

Γ
(
1
2 (3 + k + 2mp)

)

≡ Γ(mp+ 1)

2pπp−1
Σ(l,m, p). (33)

Thus, from (8) one finds the following value

Rp[Yl,m] =
1

1− p ln Λl,m
1

1− p ln

[
Γ(mp+ 1)

2pπp−1
Σ(l,m, p)

]
. (34)

for the angular Rényi entropy of an arbitrary state (l,m) of any central potential V (r), which holds for positive
integer and half-integer values of the parameter p.

Let us finally calculate, for illustration, both the angular Rényi and Shannon entropies for some specific states by
means of Eqs. (34) and (12).

1. States (l, l). From its own definition (18) one finds the angular functional

Λl,l = 2π(Al,l)
2p

∫ π

0

(sin θ)2lp+1 dθ

=
2(2l−1)p+1

(
l + 1

2

)p

π2p− 3
2

Γ
(
l + 1

2

)2p
Γ(lp+ 1)

Γ(2l + 1)pΓ
(
lp+ 3

2

) ,

(35)

which holds for all real values of p. Then, from (8) one finds that the angular Rényi entropy of the state (l, l)
is given by

Rp[Yl,l] =
1

1− p × ln

[
2(2l−1)p+1

(
l + 1

2

)p

π2p− 3
2

Γ
(
l + 1

2

)2p
Γ(lp+ 1)

Γ(2l + 1)pΓ
(
lp+ 3

2

)
]
, (36)

Then, from this expression and (11) one has the following value

S[Yl,l] = −l
[
ψ(l + 1)− ψ

(
l +

3

2

)
+ ln 4

]
+ ln

4π2

2l + 1
+ ln

Γ(2l + 1)

Γ
(
l + 1

2

)2 , (37)

for the angular Shannon entropy of the state (l, l).

In particular, for the states (0, 0) and (1, 1) we have that

Λ0,0 = (4π)1−p

and

Λ1,1 =
21−3p3pπ

3
2−pΓ(p+ 1)

Γ
(
p+ 3

2

) ,

so that the corresponding angular Rényi entropies are given by

Rp[Y0,0] = ln(4π)
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and

Rp[Y1,1] =
1

1− p ln

[
21−3p3pπ

3
2−pΓ(p+ 1)

Γ
(
p+ 3

2

)
]
,

respectively, which both hold for all real values of p. Then, taking the limit p→ 1 in the two previous expressions
leads us to the following values

S[Y0,0] = ln(4π)

S[Y1,1] = ln

(
2π

3

)
+

5

3
,

for the angular Shannon entropies of the states (0, 0) and (1, 1), respectively.

2. States (l, l − 1). Operating similarly as in the previous case, one has the angular functional

Λl,l−1 = 2π

(
(l + 1

2 )(2l − 1)2Γ(l − 1
2 )2

23−2l(2l − 1)!π2

)p
Γ(p+ 1

2 )Γ(pl − p+ 1)

Γ(pl + 3
2 )

(which holds for all real values of p) so that the angular Rényi entropy is given by

Rp(Yl,l−1) =
1

1− p lnΛl,l−1

and the limit p→ 1 gives rise to the value

S(Yl,l−1) = − ln

(
(l + 1

2 )(2l − 1)2Γ(l − 1
2 )2

23−2l(2l − 1)!π2

)
− ψ

(
3

2

)
− (l − 1)ψ(l) + l ψ

(
l +

3

2

)
(38)

for the angular Shannon entropy. For the particular case (1, 0), one has the angular functional

Λ1,0 = 2π

(
3

4π

)p ∫ π

0

| cos θ|2p sin θ dθ

=
3p(4π)1−p

2p+ 1

and the following values

Rp[Y1,0] =
1

1− p ln

[
3p(4π)1−p

2p+ 1

]
,

S[Y1,0] =
2

3
+ ln

(
4π

3

)
.

for the angular Rényi and Shannon entropies.

IV. RÉNYI AND SHANNON ENTROPIES OF RYDBERG-LIKE HARMONIC STATES

In this section, we first determine the radial part of the position Rényi and Shannon entropies for the highly-energetic
(Rydberg) states of the (three-dimensional) isotropic harmonic oscillator from their corresponding definitions (7) and
(11). Then the resulting radial values together with the angular values derived in the previous section allows us to
calculate the total Rényi and Shannon entropies (as well as the Tsallis ones, because of Eq. (2)) of the Rydberg
harmonic states, what is illustrated for some specific oscillator-like states.

A. Radial Rényi entropies

Taking into account (7) and (15), the radial Rényi entropy of a general oscillator-like state can be expressed as

Rp[ρn,l] =
1

1− p ln
[
(2λ3/2)p−1Nn,l(p)

]
, (39)
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where Nn,l(p) denotes the Lp-norm of the Laguerre polynomials given by

Nn,l(p) =

∞∫

0

([
L̂(α)
n (x)

]2
wα(x)

)p
xβ dx , p > 0 , (40)

where α = l + 1
2 , l = 0, 1, 2, . . . and β = 1

2 (1− p). We note that the condition

β + pα = pl +
1

2
> −1 , (41)

guarantees the convergence of the integral (40) at zero, i.e., is always satisfied for physically meaningfull values of
the parameters α, β and p.

Then, the problem of determination of the radial Rényi entropy of a general oscillator-like state boils down to
the study of the asymptotics (n → ∞) of the Laguerre norm Nn,l(p). The latter problem can be solved by means
of the recent methodology of Aptekarev et al [4], which takes explicitly into account the different asymptotical
representations for the Laguerre polynomials at different regions of the real half-line.

Moreover, this technique shows that the dominant contribution in the magnitude of the integral comes from various
regions of integration in (40), which depend on the different values of the involved parameters (α, p, β). In fact, there
are five asymptotical regimes which can give (depending on α, β and p) the dominant contribution in the asymptotics
of Nn(α, p, β). First, at the neighborhood of zero (Bessel regime) the Laguerre polynomials can be asymptotically
described by means of Bessel functions. Then, to the right of zero (in the bulk region of zeros location) the oscillatory
behavior of the polynomials is asymptotically modelled via trigonometric functions (cosine regime). And at the
neighborhood of the extreme right (Airy regime), the zeros asymptotics is given by Airy functions. Finally, at the
extreme right of the orthogonality interval (i.e., near infinity) the polynomials have growing asymptotics. Moreover,
there are two transition regions (to be called by cosine-Bessel and cosine-Airy) where these asymptotics match each
other; i.e., asymptotics of the Bessel functions for big arguments match the trigonometric function, as well as the
asymptotics of the Airy functions do the same.

The application of Aptekarev et al’ technique to the Laguerre norm (40) in our three-dimensional case, together
with Eq. (39), gives rise to the following value for the radial Rényi entropy of the Rydberg harmonic states:

Rp[ρn,l] =





1
1−p ln

[
λ

3
2 (p−1)C(β, p) (2n3)

1−p
2 (1 + ¯̄o(1))

]
, p ∈ (0, p∗)

−2 ln
[
λ3/4 8

√
2

3π5/2n
−3/4 (lnn+O(1))

]
, p = p∗

1
1−p ln

[
(2λ

3
2 )p−1CB(α, β, p)n(p−3)/2 (1 + ¯̄o(1))

]
, p > p∗

, (42)

with p∗ = 3
2 and the constants C and CB are defined as

CB(α, β, p) := 2

∞∫

0

t2β+1|Jα(2t)|2p dt . (43)

for the Bessel regime,

C(β, p) :=
2β+1

πp+1/2

Γ(β + 1− p/2) Γ(1− p/2) Γ(p+ 1/2)

Γ(β + 2− p) Γ(1 + p)
. (44)

for the cosine regime, respectively (the symbol Jα(z) denotes the Bessel function, see e.g. [67]), and the parameters
α ≡ α(l) and β ≡ β(p) are given by (41).

Hints: To better understand the application of the previous technique to our case, let us note:

• that β(p∗) − p∗

2 = 1
2 − p∗ = −1 , so that from (44) we have C(β, p) = ∞. Thus, for p ∈ (0, p∗) the region of

R+ where the Laguerre polynomials exhibit the cosine asymptotics contributes with the dominant part in the
integral (40). For p = p∗ the transition cosine-Bessel regime determines the asymptotics of Nn,l(p

∗), and for
p > p∗ the Bessel regime plays the main role.
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• the Lp-norm is constant (i.e., independent of n) and equal to CB(α, β, p), only when (p − 1)3/2 − p = 0. This
means that the constancy occurs when p = 3.

A careful analysis of (42) shows that:

• for fixed n the radial entropy depends on the oscillator strength λ in the form −3/2 ln λ,

• for fixed λ the radial entropy depends on the principal quantum number n in the forms: 3/2 ln n (as p ∈]0, 3/2[,
+3/2 ln n− 2 ln ln n (as p = 3/2), constant (as p = 3), and p−3

2(1−p) ln n (as p > 3).

Since the Rényi and Tsallis entropies are related by (2), the radial Tsallis entropy, Tp[ρn,l], for the Rydberg
oscillator-like states follows from (42) in a straightforward manner.

B. Radial Shannon entropy

To determine the radial part of the Shannon entropy S[ρn,l] we need, according to (11), to compute the limit p→ 1
of the radial Rényi entropy Rp[ρn,l] given by (42). We obtain that

S[ρn,l] ≡ lim
p→1

Rp[ρn,l]

= lim
p→1

1

1− p ln
[
λ

3
2 (p−1)C(β, p) (2n3)

1−p
2 (1 + ¯̄o(1))

]

=

(
3

2
lnn− 3

2
lnλ+ lnπ − 1

)
(1 + ¯̄o(1)),

(45)

where it can be seen that the leading term of the asymptotic expression is proportional to lnn, as expected.

C. Total position Rényi and Shannon entropies

The total Rényi and Shannon entropies of the Rydberg harmonic states {n → ∞, l,m}, given by Eqs. (6) and
(10) respectively, can now be determined from the results obtained in the two previous sections in a direct, analytical
and straightfroward manner. Indeed they are given by the sum of the angular part (which does not depend on n)
obtained in section III in two different ways and the radial part which is given by Eqs. (42) and (45) for the Rényi
and Shannon entropies, respectively. When n is sufficiently large, we observe that :

1. If p 6= 3, then
∣∣Rp[ρn,l]

∣∣ >>
∣∣Rp[Yl,m]

∣∣, and so Rp[ρn,l,m] ' Rp[ρn,l]→ ±∞ with the same sign that 3− p. This
nth-asymptotical growth of the absolute value of the radial part is very very slow; the closer p to 3, the slower
is this growth.

2. If p = 3, then Rp[ρn,l] does not depend on n and so Rp[ρn,l,m] = Rp[ρn,l] +Rp[Yl,m], where the two summands
are given by Eqs. (42) and (28) or (34), respectively.

In particular, we have obtained the values

Rp[ρn,0,0] = Rp[ρn,0] +Rp[Y0,0]





' Rp[ρn,0]→ +∞ , p ∈]0, 3[

= ln(4π)− 1
2 ln[4λ3CB(α,−1, 3)], p = 3

' Rp[ρn,0]→ −∞, p > 3

, (46)

for the total Rényi entropy of the state (n→∞, 0, 0), and the values

Rp[ρn,1,0] = Rp[ρn,1] +Rp[Y1,0]





' Rp[ρn,1]→ +∞ , p ∈]0, 3[

= 1
1−p ln[ 3

p(4π)1−p

2p+1 ]− 1
2 ln[4λ3CB(α,−1, 3)], p = 3

' Rp[ρn,1]→ −∞, p > 3

, (47)
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for the total Rényi entropy of the state (n → ∞, 1, 0). Note that the radial entropies Rp[ρn,0] and Rp[ρn,1] in Eqs.
(46) and (47), respectively, can be easily derived from (42) with β = 1/2(1− p) and α = 1/2, 3/2, respectively. From
these results (46) and (47) it can be easily shown that the Shannon entropy and the disequilibrium grow as 3/2 ln n
and 1/2 ln n, respectively.

V. POSITION-MOMENTUM RÉNYI AND SHANNON UNCERTAINTY SUMS

In this section we illustrate that our entropy results for the states at both extreme regions of the oscillator’s
energetic spectrum satisfy the known entropic uncertainty relations based on the Shannon entropy [11, 12] and the
Rényi entropy [13, 14]. We begin by taking into account that, as already pointed out at the end of Section II, the
quantum probability densities in the position and momentum spaces of our system are related through

γn,l,m(~p) =
1

λ3
ρn,l,m

(
~p

λ

)
, (48)

so that the Rényi entropy in momentum space can be obtained from the position entropy as

Rp[γn,l,m] = Rp[ρn,l,m] + 3 lnλ, p 6= 1. (49)

Then, for the ns-states (i.e., states with l = m = 0) we have that the joint position-momentum Rényi-entropy-based
uncertainty sum has the value

Rp[ρn,0,0] +Rq[γn,0,0] = ln
{

[Nn,0(q)]
1

1−q [Nn,0(p)]
1

1−p
}

+ 2 ln(2π),
1

p
+

1

q
= 2, ∀(n, 0, 0). (50)

(where we have taken into account Eqs. (39) and (49)). In particular, this expression gives the value

Rp[ρ0,0,0] +Rq[γ0,0,0] = ln



(
π

1−p
2

p3/2

) 1
1−p

(
π

1−q
2

q3/2

) 1
1−q

+ 2 lnπ, (51)

for the ground state (n, l,m) = (0, 0, 0) of the harmonic oscillator, which saturates the Bialynicki-Birula-Zozor-Vignat
Rényi-entropy-based uncertainty relation [13, 14]. Moreover, for p→ 1 and q → 1, this expression gives the value

S[ρ0,0,0] + S[γ0,0,0] = 3(1 + lnπ), (52)

for the joint Shannon uncertainty sum of the oscillator ground-state, which saturates the celebrated Shannon-entropy
uncertainty relation of Bilaynicki-Birula and Mycielski [11]. Starting with Eqs. (46) and operating in a similar way
we can obtain the corresponding expressions for the position and momentum Rényi and Shannon entropies of the
Rydberg oscillator-like states (n→∞, 0, 0), which again verify the Rényi-entropy-based and Shannon-entropy-based
uncertainty relations.

Moreover, let us now consider the oscillator states (n, l,m) = (1, l, 0). Then, one has that the joint Rényi-entropy-
based uncertainty sum is

Rp[ρ1,l,0] +Rq[γ1,l,0] = Rp[ρ1,l] +Rq[γ1,l] +Rp[Yl,0] +Rq[Yl,0] (53)

which, taking into account Eq. (39), transforms into

Rp[ρ1,l,0] +Rq[γ1,l,0] = ln
{

[N1,l(p)]
1

1−p [N1,l(q)]
1

1−q
}

+Rp[Yl,0] +Rq[Yl,0]− 2 ln 2, (54)

where the radial integral can be shown (see the Appendix A) to have the value

N1,l(p) =
Γ(lp+ 3

2 )

Γ(l + 5
2 )p

(2p)!

p(l+2)p+ 3
2

L
(−(l+2)p− 3

2 )
2p

(
−
(
l +

3

2

)
p

)
, (55)

In particular for states with l = 0, since Rp[Y0,0] = ln(4π), one has from Eq. (54) that

Rp[ρ1,0,0] +Rq[γ1,0,0] = ln
{

[N1,0(p)]
1

1−p [N1,0(q)]
1

1−q
}

+ 2 ln(2π), (56)

where the integral N1,0(p) can be easily obtained from Eq. (56). Now, it is straightforward to check that this value
verifies the Rényi-entropy-based uncertainty relation. Finally, let us point out that starting with Eqs. (42), (49)
and (50) and operating similarly we can readily see that the joint Rényi uncertainty sum of the Rydberg states
(n→∞, 1, 0) satisfy this entropic uncertainty relation as well.

110



International Journal of Quantum Chemistry,117:48–56, 2017

VI. CONCLUSIONS

The harmonic systems are possibly the best studied finite systems in quantum physics since their wave equation can
be exactly solved and because of their so many useful applications in science and technology. However, the knowledge
of their information-theoretic measures is scarce and little known. Indeed, the spreading or spatial extension of
the quantum-mechanical density of the isotropic harmonic oscillator has been examined by means of their central
moments, particularly the second one (i.e., the variance) [10], almost up until now. However, their entropic measures
(which are much more adequate to quantify the density of the oscillator-like states because they do not depend on
any specific point of the system’s region, contrary to what happens with the moments about the origin and the
central moments) have been scarcely studied [3, 37, 39, 70–72] and their determination is yet incomplete. This work
has partially filled up this lack in the two following analytical ways.

We have determined the angular part of the basic entropic measures (Rényi, Tsallis, Shannon, disequilibrium) of
the single-particle probability density which characterize the quantum states of ANY central potential. Then, we
have computed the values of the total (i.e., angular+radial parts) values of these entropies for the highly-energetic
oscillator-like states whose utility and multidirectional relevance is well-known. Finally we have performed the
analytical calculation of the dominant term of the radial part in the Rydberg case, what is specially remarkable
because it is a serious problem even numerically. Indeed, a naive use of quadratures for the numerical evaluation of
the involved entropic functionals of the Laguerre polynomials which control the harmonic states is not convenient
because the increasing number of integrable singularities spoil any attempt to achieve reasonable accuracy even for
rather small values of n, since all the zeros of Ln(x) belong to the interval of orthogonality. Moreover, we have
illustrated that the analytic determination of the information entropies of the low energy oscillator-like states is
much simpler. Finally, we have shown that the entropy results obtained for the joint position-momentum uncertainty
sum at both extreme regions of the harmonic energetic spectrum satisfy the known Shannon-entropy-based and
Rényi-entropy-based uncertainty relations.
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Appendix A: Derivation of Equation (55)

To obtain Eq.(55) we start with the well-known [67] Euler’s integral of the second kind Γ(z) =∫∞
0
e−t tz−1 dt, Re(z) > 0, which can be easily extended as

∫ ∞

0

xν−1 e−µ(x+a) dx = Γ(ν)
e−µa

µν
, µ > 0, ν > 0, a ∈ R.

Now, the nth-derivative with respect to µ in this expression and taking into account the Rodrigues’ formula of the
Laguerre polynomials allow us to have that

∫ ∞

0

(a+ x)n xν−1 e−µx dx = (−1)n Γ(ν) · eµa d
n

dµn
(
e−µaµ−ν

)
= (−1)n

Γ(ν)n!

µn+ν
L(−n−ν)
n (aµ), (A1)

which can be rewritten as

L(−n−ν)
n (x) =

(−1)n

n! Γ(ν)

∫ ∞

0

(x+ y)n yν−1 e−y dy, (A2)

which gives an integral representation for the varying Laguerre polynomials with a negative parameter, what is
interesting per se in the field of orthogonal polynomials. Finally, for the particular case 2p ∈ N, we can insert (A1)
into (40) to obtain the wanted expression

N1,l(p) =
Γ(lp+ 3

2 )

Γ(l + 5
2 )p

(2p)!

p(l+2)p+ 3
2

L
(−(l+2)p− 3

2 )
2p

(
−
(
l +

3

2

)
p

)
, (A3)
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which holds for the states with (n = 1, l = 0) and (n = 1, l = 1).
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Chapter 3 Rényi and Shannon entropies of harmonic systems 115

3.2 High-dimensional states

There has been a permanent interest for multidimensional harmonic systems since the

very early times of quantum physics, as can be seen e.g. in general quantum mechanics

[11, 170, 183–193], quantum chromodynamics and elementary particle physics [147, 194],

atomic and molecular physics [195, 196], heat transport [197–199], information theory

[37, 122, 174, 178, 200], fractality [200] and entanglement [201, 202]. This system is

closely related to completely classical periodic systems in Nature. In elementary particle

physics, we encounter many oscillating modes whose energy packets are the fundamental

particles which may be linked to periodic structures in a classical underlying theory

[194]. Moreover, a rather comprehensive analysis of thermodynamic properties of the

multidimensional harmonic system obeying the Polychronakos fractional statistics with

a complex parameter has been recently given [200].

Then, it is amazing that the information-theoretic properties of multidimensional har-

monic systems is very poorly known in spite of a few efforts [37, 122, 122, 173, 174, 177].

In this section we fill up this information lack by determining in an analytical way the

Rényi entropies with a natural parameter for the high-dimensional (pseudo-classical)

states of the D-dimensional harmonic system in position and momentum spaces and

their associated uncertainty relations in terms of the basic parameters which character-

ize the system. This goal has been achieved by use of modern asymptotical methods

of the hypergeometric orthogonal polynomials described in Section 1.2, which control

the harmonic stationary states of our system, and other special functions of Applied

Mathematics and Mathematical Physics.

The following specific tasks for the high-dimensional (pseudo-classical) states of the

D-dimensional harmonic system have been carried out:

• Determination of the Heisenberg-like uncertainty measures as given by the position

and momentum radial expectation values at the high D limit.

• Calculation of the Rényi entropies with natural parameter at the high D limit in

the two conjugated position and momentum spaces.

• Determination of the associated Heisenberg-like uncertainty products and Rényi-

like uncertainty sums, showing that they noy only fulfill the general Heisenberg-like

and entropic uncertainty relations but also they exhaust them.

• We conjecture the leading term of the Shannon entropy at the high D limit.

These results have been published in the article [65] with coordinates: Puertas-Centeno

D., Toranzo I. V. and Dehesa, J. S. Heisenberg and entropic uncertainty measures for

large-dimensional harmonic systems. Entropy, 19:164, 2017, which is attached below.
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The D-dimensional harmonic system (i.e., a particle moving under the action of a quadratic poten-
tial) is, together with the hydrogenic system, the main prototype of the physics of multidimensional
quantum systems. In this work we rigorously determine the leading term of the Heisenberg-like and
entropy-like uncertainty measures of this system as given by the radial expectation values and the
Rényi entropies, respectively, at the limit of large D. The associated multidimensional position-
momentum uncertainty relations are discussed, showing that they saturate the corresponding gen-
eral ones. A conjecture about the Shannon-like uncertainty relation is given and an interesting
phenomenon is observed: the Heisenberg-like and Rényi-entropy-based equality-type uncertainty
relations for all the D-dimensional harmonic oscillator states in the pseudoclassical (D →∞) limit
are the same as the corresponding ones for the hydrogenic systems, despite the so different character
of the oscillator and Coulomb potentials.
Keywords: Entropic uncertainty measures; D-dimensional harmonic oscillator; D-dimensional quan-
tum physics; radial and momentum expectation values; harmonic states at large dimensions

I. INTRODUCTION

Various analytically solvable continuous models with standard and non-standard dimensionalities have been shown
to be very effective in the description of quantum dots, ultracold gases in harmonic traps, fractional quantum Hall
effect and quark confinement. This is the case of the N-Harmonium (N harmonically interacting fermions in a
harmonic trap) [1, 2], the Spherium (two electrons trapped on the surface of a sphere) [3–5], the Hooke atom (a pair of
electrons repelling Coulombically and confined by a harmonic external potential) [6, 7], the Crandall-Whitney-Bettega
system (a two-electron atom with harmonic confinement plus inverse square law interparticle repulsion) [8] and the
celebrated Moshinsky [9, 10] and Calogero-Moser-Sutherland models [12]. These models have long been regarded
as an important laboratory toolbox in numerous scientific fields from quantum chemistry to quantum information,
mainly because they are completely integrable analogues of many body systems due to their remarkable analytic
properties.

Moreover, Herschbach et al [13, 14] and other authors (see the review [15]) have designed a very useful strategy,
the dimensional scaling method, to solve the atomic and molecular systems not in the standard three-dimensional
framework (where they possess an O(3) rotation symmetry) but in a D-dimensional theory, so that the symmetry is
O(D). This method allows to solve a finite many-body problem in the (D →∞)-limit and then perturbation theory
in 1/D is used to have an approximate result for the standard dimension (D = 3), obtaining at times a quantitative
accuracy comparable to or better than single-zeta Hartree-Fock calculations [13, 14, 16].

The main point here is that for electronic structure the (D →∞)-limit is beguilingly simple and exactly computable
for any atom and molecule. For D finite but very large, the electrons are confined to harmonic oscillations about the
fixed positions attained in the (D → ∞)-limit. Indeed, in this limit the electrons of a many-electron system assume
fixed positions relative to the nuclei and each other, in the D-scaled space. Moreover, the large-D electronic geometry
and energy correspond to the minimum of an exactly known effective potential and can be determined from classical
electrostatics for any atom or molecule. The (D → ∞)-limit is called pseudoclassical, tantamount to h → 0 and/or
me →∞ in the kinetic energy, being h and me the Planck constant and the electron mass, respectively. This limit is
not the same as the conventional classical limit obtained by h → 0 for a fixed dimension [17, 18]. Although at first
sight the electrons at rest in fixed locations might seem violate the uncertainty principle, this is not true because
that occurs only in the D-scaled space (see e.g., [19]).

The dimensional scaling method has been mainly applied to Coulomb systems but not yet to harmonic systems
to the best of our knowledge. This is highly surprising because of the huge interest for D-dimensional harmonic
oscillators in general quantum mechanics [20–32], quantum chromodynamics and elementary particle physics [33, 34],
atomic and molecular physics [35, 36], heat transport [37–39], information theory [40–44], fractality [43] and
entanglement [45, 46]. Moreover, the D-dimensional quantum harmonic oscillator is closely related to completely
classical periodic systems in Nature. In elementary particle physics, we encounter many oscillating modes whose
energy packets are the fundamental particles which may be linked to periodic structures in a classical underlying
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theory [33]. In addition, a recent effort [43] has given a rather comprehensive analysis of thermodynamic properties of
a D-dimensional harmonic oscillator system obeying the Polychronakos fractional statistics with a complex parameter.

Despite this increasing interest from both theoretical and applied standpoints, there does not exit a deep knowledge
about the Heisenberg and entropy-like uncertainty measures of the D-dimensional harmonic oscillator (i.e., a particle
moving under the action of a quadratic potential) in the quantum-pseudoclassical border although a few works have
been carried out [21, 40, 47–58]. These measures, which quantify the spreading properties of the harmonic probability
density, are respectively characterized by the radial expectation values and the Rényi and Shannon entropies of the
corresponding quantum probability density of the system in position and momentum spaces. Lately, two efforts have
been able in the last few months to determine these uncertainty measures of the main prototype of the D-dimensional
Coulomb systems (namely, the D-dimensional hydrogenic atom [59]) at the pseudoclassical limit in an analytically
compact way [60, 61]. A similar work for the D-dimensional harmonic system is the goal of the present paper.

The radial expectation values of the D-dimensional harmonic system in both position and momentum spaces have
been formally found [55] in terms of D, the hyperquantum numbers of the harmonic states and the oscillator strength
λ through a generalized hypergeometric function evaluated at unity 3F2(1), which cannot be easily calculated unless
the hyperquantum numbers and/or the dimension D are sufficiently small; nevertheless the position and momentum
expectation values of the lowest orders are explicitly known [48, 62].

The determination of the entropic measures of the D-dimensional harmonic oscillator, which describe most
appropriately the electronic uncertainty of the system, is far more difficult except for the lowest-lying energy states
despite some efforts [40, 41, 44, 47, 51–53, 63]. This is because these quantities are described by means of some power
or logarithmic functionals of the electron density, which cannot be calculated in an analytical way nor numerically
computed; the latter is basically because a naive numerical evaluation using quadratures is not convenient due to the
increasing number of integrable singularities when the principal hyperquantum number n is increasing, which spoils
any attempt to achieve reasonable accuracy even for rather small n [64]. Recently, the main entropic properties of
the multi-dimensional highest-lying energy (i.e., Rydberg) harmonic states (namely, the Rényi, Shannon and Tsallis
entropies) have been explicitly calculated in a compact form [44, 63] by use of modern techniques of approximation

theory based on the strong asymptotics (n→∞) of the Laguerre L(α)
n (x) and Gegenbauer C(α)

n (x) polynomials which
control the state’s wave functions in position and momentum spaces, respectively.

In this work we determine the position and momentum radial expectation values and the Rényi and Shannon
entropies of the large-dimensional harmonic states in terms of the dimensionality D, the oscillator constant λ and the
principal and orbital hyperquantum numbers of the states. The Rényi entropies Rq[ρ], q > 0 are defined [65, 66] as

Rq[ρ] =
1

1− q log

∫

R3

[ρ(~r)]q d~r, q 6= 1 (1)

Note that the Shannon entropy S[ρ] = −
∫
ρ(~r) log ρ(~r)d~r = limq→1Rq[ρ]; see e.g. [67, 68]. These quantities

completely characterize the density ρ(~r) [27, 69] under certain conditions. In fact, we can calculate from (1)
other relevant entropic quantities such as e.g. the disequilibrium 〈ρ〉 = exp(R2[ρ]), and the Tsallis [70] entropies
Tq[ρ] = 1

q−1 (1 −
∫
R3 [ρ(~r)]q), since Tq[ρ] = 1

1−q [e(1−q)Rq [ρ] − 1]. The properties of the Rényi entropies and their ap-

plications have been widely considered; see e.g. [66, 68, 71] and the reviews [72–74]. The use of Rényi and Shannon
entropies as measures of uncertainty allow a wider quantitative range of applicability than the moments around the
origin and the standard or root-square-mean deviation do. This permits, for example, a quantitative discussion of
quantum uncertainty relations further beyond the conventional Heisenberg-like uncertainty relations [60, 73–75].

The structure of this work is the following. In section II the quantum-mechanical probability densities of the
stationary states of the D-dimensional harmonic (oscillator-like) system are briefly described in both position and
momentum spaces . In section III we determine the Heisenberg-like uncertainty measures of the large-dimensional
harmonic system, as given by the radial expectation values of arbitrary order, in the two conjugated position and
momentum spaces. They are calculated by use of some recent asymptotical results (α→∞) of the underlying Rényi-

like integral functionals of the Laguerre polynomials L(α)
n (x) and Gegenbauer polynomials C(α)

n (x) which control the
harmonic wavefunctions. The associated Heisenberg-like uncertainty products of the system are explicitly found and
shown to satisfy the multidimensional Heisenberg uncertainty relationships for general quantum systems. In section IV
we determine the Rényi entropies of the D-dimensional harmonic system at large D in both position and momentum
spaces by means of the same asymptotical methodology. The dominant term of the associated position-momentum
uncertainty sum for the general states of the large dimensional harmonic systems is also given and shown to fulfill the
known position-momentum Rényi-entropy-based uncertainty relations [83–85]. Finally, some concluding remarks and
open problems are given.
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II. THE D-DIMENSIONAL HARMONIC PROBLEM: BASICS

In this section we briefly summarize the quantum-mechanical D-dimensional harmonic problem in both position
and momentum spaces and we give the probability densities of the stationary quantum states of the system.

The time-independent Schrödinger equation of a D-dimensional (D > 1) harmonic system (i.e., a particle moving
under the action of the D-dimensional quadratic potential V (r) = 1

2λ
2r2) is given by

(
−1

2
~∇2
D + V (r)

)
Ψ (~r) = EΨ (~r) , (2)

where ~∇D denotes the D-dimensional gradient operator, λ is the oscillator strength, and the position vector ~r =
(x1, . . . , xD) in hyperspherical units is given as (r, θ1, θ2, . . . , θD−1) ≡ (r,ΩD−1), ΩD−1 ∈ SD−1, where r ≡ |~r| =√∑D

i=1 x
2
i ∈ [0, +∞) and xi = r

(∏i−1
k=1 sin θk

)
cos θi for 1 ≤ i ≤ D and with θi ∈ [0, π), i < D−1, θD−1 ≡ φ ∈ [0, 2π).

Atomic units (i.e., h = me = e = 1) are used throughout the paper.
It is known (see e.g., [40, 76]) that the energies belonging to the discrete spectrum are given by

E = λ

(
2n+ l +

D

2

)
(3)

(with n = 0, 1, 2, . . . and l = 0, 1, 2, . . .) and the associated eigenfunction can be expressed as

Ψn,l,{µ}(~r) = Rn,l(r) Yl,{µ}(ΩD−1), (4)

where (l, {µ}) ≡ (l ≡ µ1, µ2, . . . , µD−1) denote the hyperquantum numbers associated to the angular variables ΩD−1 ≡
(θ1, θ2, . . . , θD−1), which may take all values consistent with the inequalities l ≡ µ1 ≥ µ2 ≥ . . . ≥ |µD−1| ≡ |m| ≥ 0.
The radial eigenfunctions are given by

Rn,l(r) =

(
2n!λl+

D
2

Γ
(
n+ l + D

2

)
) 1

2

e−
λ
2 r

2

rl L(l+D
2 −1)

n (λr2). (5)

The symbol L(α)
n (x) denotes the orthogonal Laguerre polynomials [77] with respect to the weight ωα(x) = xαe−x, α =

l+ D
2 − 1, on the interval [0,∞). The angular eigenfunctions are the hyperspherical harmonics, Yl,{µ}(ΩD−1), defined

[40, 59, 78] as

Yl,{µ}(ΩD−1) = Nl,{µ}eimφ ×
D−2∏

j=1

C(αj+µj+1)
µj−µj+1

(cos θj)(sin θj)
µj+1 (6)

with the normalization constant

N 2
l,{µ} =

1

2π

D−2∏

j=1

(αj + µj)(µj − µj+1)![Γ(αj + µj+1)]2

π 21−2αj−2µj+1Γ(2αj + µj + µj+1)
, (7)

with 2αj = D − j − 1 and where the symbol C(α)
m (t) in Eq. (6) denotes the Gegenbauer polynomial [77] of degree m

and parameter α.

Note that the wavefunctions are duly normalized so that
∫ ∣∣Ψη,l,{µ}(~r)

∣∣2 d~r = 1, where the D-dimensional volume

element is d~r = rD−1drdΩD−1 where

dΩD−1 =



D−2∏

j=1

(sin θj)
2αjdθj


 dθD−1,

and we have taken into account the normalization to unity of the hyperspherical harmonics given by∫
|Yl,{µ}(ΩD)|2dΩD = 1. Then, the quantum probability density of a D-dimensional harmonic stationary state

(n, l, {µ}) is given in position space by the squared modulus of the position eigenfunction given by (4) as

ρn,l,{µ}(~r) = ρn,l(r) |Yl,{µ}(ΩD−1)|2, (8)
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where the radial part of the density is the univariate radial density function ρn,l(r) = [Rn,l(r)]2. On the other hand,
the Fourier transform of the position eigenfunction Ψη,l,{µ}(~r) given by (4) provides the eigenfunction of the system

in the conjugated momentum space, Ψ̃n,l,{µ}(~p). Then, we have the expression

γn,l,{µ}(~p) = |Ψ̃n,l,{µ}(~p)|2 = λ−Dρn,l,{µ}

(
~p

λ

)
. (9)

for the momentum probability density of the D-dimensional harmonic stationary state with the hyperquantum num-
bers (n, l, {µ}).

III. RADIAL EXPECTATION VALUES OF LARGE-DIMENSIONAL HARMONIC STATES

In this section we obtain the radial expectation values of the D-dimensional harmonic state (n, l, {µ}) in the large-D
limit in both position and momentum spaces, denoted by 〈rk〉 and 〈pt〉, respectively, with k and t = 0, 1, .... We start
with the expressions (8) and (9) of the position and momentum probability densities of the system, respectively,
obtaining the expressions

〈rk〉 =

∫
rkρn,l,{µ}(~r)d~r =

∫ ∞

0

rkρn,l(x)rD−1dr

∫
|Yl,{µ}(ΩD)|2dΩD

=

∫ ∞

0

rk+D−1ρn,l(x) dr

=
n!λ−k/2

Γ(n+ l +D/2)

∫ ∞

0

xα+βe−x[L(α)
n (x)]2 dx (10)

(with x = λr2, α = l +D/2− 1, β = k/2) for the radial expectation values in position space, and

〈pt〉 =

∫
ptγn,l,{µ}(~p)d~p =

∫ ∞

0

ptγn,l(u)pD−1dp

∫
|Yl,{µ}(ΩD)|2dΩD

=
n!λt/2

Γ(n+ l +D/2)

∫ ∞

0

uα+εe−u[L(α)
n (u)]2 du, (11)

(with u = p2/λ, α = l + D/2 − 1, and ε = t/2) for the radial expectation values in momentum space. Note that
we have taken into account the unity normalization of the hyperspherical harmonics in writing the third equality
within the expressions (10) and (11). These quantities can be expressed in a closed form by means of a generalized
hypergeometric function of the type 3F2(1) [55] and as well they have been proved to fulfill a three-term recurrence
relation [48]. These two procedures allow to find explicit expressions for a few expectation values of lowest orders
[48]. However, the expression for the expectation values of higher orders is far more complicated for arbitrary states.

In this work we use a method to calculate the radial expectation values of any order for arbitrary D-dimensional
harmonic states in the pseudoclassical (D → ∞)-limit which is based on the asymptotics of power functionals of
Laguerre functionals when the polynomial parameter α → ∞. This method begins with rewriting the two previous
integral functionals in the form (A4) (see Corollary 1 in Appendix). Thus, we have the following expressions

〈rk〉 =
n!λ−k/2

Γ(n+ l +D/2)

∫ ∞

0

xα+σ−1e−x[L(α)
n (x)]2 dx (12)

〈pt〉 =
n!λt/2

Γ(n+ l +D/2)

∫ ∞

0

uα+σ−1e−u[L(α)
n (u)]2 du, (13)

(with σ = β + 1 and σ = ε+ 1, respect.) for the position and momentum radial expectation values, respectively. The
application of this corollary to Eqs. (12) and (13) has lead us to the following (α → ∞)-asymptotics for the radial
expectation values

〈rk〉 ∼
√

2πλ−k/2e−α
αα+n+β+1/2

Γ(n+ l +D/2)
(14)

〈pt〉 ∼
√

2πλt/2e−α
αα+n+ε+1/2

Γ(n+ l +D/2)
(15)
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(with α = l + D/2 − 1, β = k/2 and ε = t/2) of the harmonic states with fixed l. Now, we use the first order

(z → ∞)-asymptotic expansion of the Gamma function [77], Γ(z) ∼
√

2πzz−1/2e−z, and we take into account that
(y + D)D ∼ DDey when D → ∞. Then, from (14) one has that the dominant term of the (D → ∞)-asymptotics of
the radial expectation values in position space is given by

〈rk〉 ∼
(
D

2λ

) k
2

(16)

Note that in the large-dimensional limit the dependence on the quantum numbers is lost, what is a manifestation
of the closeness to the (pseudo-) classical situation. The intrinsic quantum-mechanical structure of the system gets

hidden in such a limit. In addition, we observe the existence of a characteristic length for this system, rc =
(
D
2λ

) 1
2 at

the pseudoclassical limit since then we have that 〈r〉 → rc and 〈rk〉 → rkc . Moreover the energy (3) can be written as
E → λD2 = λ2r2

c . This characteristic length corresponds to the distance at which the effective potential becomes a
minimum and the ground state probability distribution has a maximum [48]. Therefore, the D-dimensional oscillator
in the D →∞ can be viewed as a particle moving in a classical orbit of radius rc with energy E = λ2r2

c and angular
momentum L = D

2 .

Similarly, from (15) one has the following expression for the (D →∞)-asymptotics of the radial expectation values
in momentum space

〈pt〉 ∼
(
λD

2

)t/2
, (17)

so that the generalized Heisenberg-like position-momentum uncertainty product at large D is given by

〈rk〉〈pt〉 ∼ λ t−k2
(
D

2

) k+t
2

. (18)

Note that when k = t we have the Heisenberg-like uncertainty product for the large-dimensional harmonic system

〈rk〉〈pk〉 ∼
(
D

2

)k
, (19)

which does not depend on the oscillator strength λ, as one would expect because of the homogenous property of

the oscillator potential [79]. Thus, for k = 2 we have the position-momentum uncertainty product 〈r2〉〈p2〉 = D2

4
in the pseudoclassical limit, which saturates not only the Heisenberg formulation of the position-momentum

uncertainty principle of D-dimensional quantum physics (namely, the Heisenberg uncertainty relation 〈r2〉〈p2〉 ≥ D2

4 )

but also the uncertainty relation for quantum systems subject to central potentials (namely, 〈r2〉〈p2〉 ≥
(
l + D

2

)2
) [80].

Finally, let us compare these D-oscillator results with the corresponding ones obtained at the pseudoclassical limit
for the D-dimensional hydrogenic atom which have been recently found [58, 60]. For example, it is known that the

(D → ∞)-asymptotic second-order radial expectation values are 〈r2〉H = D4

16Z2 and 〈p2〉H = 4Z2

D2 in position and

momentum spaces, respectively, so that the associated Heisenberg uncertainty product is given by 〈r2〉H〈p2〉H = D2

4 .
It is most interesting to realize that the Heisenberg uncertainty product in the pseudoclassical limit has the same
value for both multidimensional oscillator and hydrogenic systems, which is somehow counterintuitive taken into
account that the quantum-mechanical potential is so different in the two systems.

IV. RÉNYI ENTROPIES OF LARGE-DIMENSIONAL HARMONIC STATES

In this section we obtain in the cuasiclassical limit (D → ∞) the Rényi entropies of a generic D-dimensional
harmonic state with the fixed hyperquantum numbers (n, l, {µ}) in both position and momentum spaces. Then, we
express and discuss the corresponding position-momentum entropic uncertainty relation to end up with a conjecture
on the Shannon-entropy-based position-momentum uncertainty relation for large-dimensional quantum systems. This
might recall us some recent research on the entropic motion on curved statistical manifolds [81, 82]
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We start with the expressions (8) and (9) of the position and momentum probability densities of the system,
respectively. To calculate the position Rényi entropy we decompose it into two radial and angular parts. The radial

part is first expressed in terms of a Rényi-like integral functional of Laguerre polynomials L(α)
m (x) with α = D

2 + l− 1,
and then this functional is determined in the large-D limit by means of Theorem 1 (see Appendix A). The angular
part is given by a Rényi-like integral functional of hyperspherical harmonics, which can be expressed in terms of

Rényi-like functionals of Gegenbauer polynomials C(α)
m with α = D

2 + l − 1
2 ; later on, we evaluate this Gegenbauer

functional at large D, with emphasis in the circular and (ns) states which are characterized by the hyperquantum
numbers (n, l = n− 1, {µ} = {n− 1}) and (n, l = 0, {µ} = {0}), respectively.

Operating similarly in momentum space we can determine the momentum Rényi entropy of the system. In this
space both the radial and angular parts of the momentum wave functions of the harmonic states are controlled by
Gegenbauer polynomials as follows from the previous section.

A. Rényi entropy in position space

Let us obtain the position Rényi entropy of the probability density ρn,l,{µ}(~r) given by (8), which according to (1)
is defined as

Rq[ρn,l,{µ}] =
1

1− q logWq[ρn,l,{µ}]; 0 < q <∞, q 6= 1, (20)

where the symbol Wq[ρn,l,{µ}] denotes the entropic moments of the density

Wq[ρn,l,{µ}] =

∫

RD
[ρn,l,{µ}(~r)]

q d~r

=

∞∫

0

[ρn,l(r)]
q rD−1 dr × Λl,{µ}(ΩD−1), (21)

with the angular part given by

Λl,{µ}(ΩD−1) =

∫

SD−1

|Yl,{µ}(ΩD−1)|2q dΩD−1. (22)

Then, from Eqs. (21) and (20) we can obtain the total Rényi entropies of the D-dimensional harmonic state
(n, l, {µ}) as follows

Rq[ρn,l,{µ}] = Rq[ρn,l] +Rq[Yl,{µ}], (23)

where Rq[ρn,l] denotes the radial part

Rq[ρn,l] =
1

1− q log

∫ ∞

0

[ρn,l(r)]
qrD−1 dr, (24)

and Rq[Yl,{µ}] denotes the angular part

Rq[Yl,{µ}] =
1

1− q log Λl,{µ}(ΩD−1). (25)

Here our aim is to determine the asymptotics of the Rényi entropy Rq[ρn,l,{µ}] when D →∞, all the hyperquantum
numbers being fixed. According to (23), this issue requires the asymptotics of the radial Rényi entropy Rq[ρn,l] and
the asymptotics of the angular Rényi entropy Rq[Yl,{µ}] given by Eqs. (24) and (25), respectively.

1. Radial position Rényi entropy

From Eq. (24) the radial Rényi entropy can be expressed as

Rq[ρn,l] = − log(2λ
D
2 ) +

1

1− q logNn,l(D, q) (26)
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where Nn,l(D, q) denotes the following weighted-norm of the Laguerre polynomials

Nn,l(D, q) =

(
n!

Γ(α+ n+ 1)

)q ∫ ∞

0

rα+lq−le−qr
[
L(α)
n (r)

]2q
dr (27)

with

α = l +
D

2
− 1 , l = 0, 1, 2, . . . , q > 0 and β = (1− q)(α− l). (28)

Note that (28) guarantees the convergence of integral functional; i.e., the condition β + qα = D
2 + lq − 1 > −1 is

always satisfied for physically meaningful values of the parameters.
Then, the determination of the asymptotics of the radial Rényi entropy Rq[ρn,l] requires the calculation of the

asymptotics of the Laguerre functional Nn,l(D, q); that is, the evaluation of the Rényi-like integral functional given by
(27) when D →∞. We do it by applying Theorem 1 (see Appendix) at zero-th order approximation to the functional
Nn,l(D, q) given by (27) with (n, l) fixed, obtaining for every non-negative q 6= 1 that

Nn,l(D, q) ∼
√

2π

(n!)q
ql(1−q)−1

( |q − 1|
q

)2qn
αα+q(l+2n)−l+ 1

2

[Γ(α+ n+ 1)]q
(qe)−α, (29)

where we have used Stirling’s formula [77] for the gamma function Γ(x) = e−xxx−
1
2 (2π)

1
2

[
1 +O

(
x−1

)]
.

Then, Eqs. (26)-(29) allow us to find the following asymptotics for the radial Rényi entropy:

Rq[ρn,l] ∼
1

1− q log

(
α
D
2

Γ(D2 + n+ l)q

)
+

D
2

1− q log
λq−1

qe
+
q(l + 2n)− 1

2

1− q logα+
1

1− q logC(n, l, q), (30)

(with C(n, l, q) = 2q−1
√

2π
(n!)q

q−lq

el−1

(
|q−1|
q

)2qn

) which can be rewritten as

Rq[ρn,l] ∼
D

2
log

(
D

2

)
+
D

2
log

(
q

1
q−1

λe

)
+

(
qn

1− q −
1

2

)
log

(
D

2

)
+

1

1− q log C̃(n, l, q) (31)

(with C̃(n, l, q) = el−1

(2π)
q
2
C(n, l, q)) or as

Rq[ρn,l] ∼
1

2
D logD +

1

2
log

(
q

1
q−1

2λe

)
D +

(
qn

1− q −
1

2

)
logD, (32)

which holds for q > 0, q 6= 1. Further terms in this asymptotic expansion can be obtained by means of Theorem 1.

Note that, since q
1
q−1 → e when q → 1, we have the following conjecture for the value of the radial Shannon entropy

S[ρn,l] ∼
D

2
log

(
D

2

)
− D

2
log (λ)

=
1

2
D logD − 1

2
D log(2λ) (33)

which can be numerically shown to be correct. However a more rigorous proof for this quantity is mandatory.

Then, according to Eq. (23), to fix the asymptotics (D →∞) of the total Rényi entropy Rq[ρn,l,{µ}] it only remains
the evaluation of the corresponding asymptotics of the angular part Rq[Yl,{µ}] which will be done in the following.
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2. Angular Rényi entropy

Recently it has been shown [61] that the asymptotics (D →∞) of the angular part Rp[Yl,{µ}] of the total position
and momentum Rényi entropies, as defined by Eq. (25), is given by the following expression

Rq[Yl,{µ}] ∼
1

1− q log

(
Γ
(
D
2 + l

)q

Γ
(
D
2 + ql

)
)

+
D

2
log π

+
1

1− q log

(
Ẽ(D, {µ})qM̃(D, q, {µ})Γ(1 + qµD−1)

Γ(1 + µD−1)q

)

∼ − log

(
Γ

(
D

2

))
+
D

2
log π +

1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})

)

∼ −D
2

log

(
D

2

)
+
D

2
log(eπ) +

1

2
log

(
D

2

)
+

1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})

)

∼ −1

2
D logD +

1

2
D log(2eπ) +

1

2
logD +

1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})

)
(34)

where

M̃(D, q, {µ}) ≡ 4q(l−µD−1)π1−D2
D−2∏

j=1

Γ
(
q(µj − µj+1) + 1

2

)

Γ
(
µj − µj+1 + 1

)q (35)

and

Ẽ(D, {µ}) ≡
D−2∏

j=1

(αj + µj+1)2(µj−µj+1)

(2αj + 2µj+1)µj−µj+1

1

(αj + µj+1)µj−µj+1

=

D−2∏

j=1

(αj + µj+1)2(µj−µj+1) Γ(2αj + 2µj+1)

Γ(2αj + µj+1 + µj)

Γ(αj + µj+1)

Γ(αj + µj)
(36)

for the angular Rényi entropy of the generic harmonic state with hyperquantum numbers (l, {µ}), which holds for

every non-negative q 6= 1. Note that Ẽ = M̃ = 1 for any configuration with µ1 = µ2 = · · · = µD−1. See Appendix B
for further details.
For completeness, we will determine this asymptotic behavior in a more complete manner for some physically-relevant
and experimentally accessible states like the (ns) and circular ones, which are described by the hyperquantum numbers
(n, l = n − 1, {µ} = {n − 1}) and (n, l = 0, {µ} = {0}), respectively. Then, from Eqs. (34), (35) and (36), we have
that the asymptotics of the angular part of the Rényi entropy is given by

Rq[Y0,{0}] ∼ log

(
2π

D
2

Γ
(
D
2

)
)

(37)

∼ −D
2

log

(
D

2

)
+
D

2
log(eπ) +

1

2
log

(
D

2

)
(38)

∼ −1

2
D logD +

1

2
D log(2eπ) +

1

2
logD (39)
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and

Rq[Yn−1,{n−1}] ∼
1

1− q log



(

1

2π
D
2

)q−1

(
(n)D

2 −1

)q

(1 + q(n− 1))D
2 −1




' 1

1− q log

([
Γ
(
D
2 + n− 1

)]q

Γ
(
D
2 + q(n− 1)

)
)

+
D

2
log π +

1

1− q log

(
Γ(1 + q(n− 1))

[Γ(n)]q

)

∼ − log

(
Γ

(
D

2

))
+
D

2
log π +

1

1− q log

(
Γ(1 + q(n− 1))

[Γ(n)]q

)

∼ D

2
log

D

2
+
D

2
log(eπ) +

1

2
log

D

2
+

1

1− q log

(
Γ((n− 1)q + 1)

Γ(n)q

)
(40)

∼ −1

2
D logD +

1

2
D log(2eπ) +

1

2
logD +

1

1− q log

(
Γ((n− 1)q + 1)

Γ(n)q

)
(41)

for the (ns) and circular states, respectively. Note that (x)a = Γ(x+a)
Γ(x) is the well-known Pochhammer symbol [77]

. Note that for very large D the dominant term of the angular Rényi entropy of these two classes of physical states
is the same; namely, − log

(
Γ
(
D
2

))
+ D

2 log π. Moreover and most interesting: this behavior holds for any harmonic

state by taking into account in the general expression (34) that M̃ is dominated by factor π−
D
2 and the growth of

Ẽ is controlled by the factor
Γ(2αj+2µj+1)

Γ(2αj+µj+1+µj)
Γ(αj+µj+1)
Γ(αj+µj)

< 1. Moreover, we can see in Appendix B that M̃ and Ẽ are

finite for fixed, finite l as it is assumed throughout the whole paper. This observation allows us to conjecture that in
the limit q → 1 one has the following (D →∞)-asymptotics

S[Yl,{µ}] ∼ − log

(
Γ

(
D

2

))
+
D

2
log π

∼ −D
2

log
D

2
+
D

2
log(eπ) +

1

2
log

D

2

∼ −1

2
D logD +

1

2
D log(2eπ) +

1

2
logD. (42)

for the angular Shannon entropy of the large-dimensional harmonic states.

3. Total position Rényi entropy

To obtain the total Rényi entropy Rq[ρn,l,{µ}] in position space for a general (n, l, {µ})-state, according to (23), we
have to sum up the radial and angular contributions given by (32) and (34), respectively. Then, we obtain that

Rq[ρn,l,{µ}] ∼
D

2
log

(
q

1
q−1π

λ

)
+

qn

1− q log

(
D

2

)
+

1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Ĉ(n, l, q)

)

=
1

2
log

(
q

1
q−1π

λ

)
D +

qn

1− q logD +
1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Ĉ(n, l, q)2−qn

)

(43)

which holds for every non-negative q 6= 1 and where Ĉ(n, l, q) = C̃(n,l,q)

(2π)
1−q
2

. Now, for completeness and illustration we

calculate this quantity in an explicit manner for the (ns) and circular states, which both of them include the ground
state. For these states we have obtained the following asymptotical expressions

Rq[ρn,0,{0}] ∼
D

2
log

(
q

1
q−1π

λ

)
+

qn

1− q log

(
D

2

)
+

1

1− q log
(
Ĉ(n, 0, q)

)

=
1

2
log

(
q

1
q−1π

λ

)
D +

qn

1− q logD +
1

1− q log
(
Ĉ(n, 0, q) 2−qn

)
(44)
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(with Ĉ(n, 0, q) = 2q−1

(n!)q

(
|q−1|
q

)2nq

) and

Rq[ρn,n−1,{n−1}] ∼
D

2
log

(
q

1
q−1π

λ

)
+

qn

1− q log

(
D

2

)
+

1

1− q log
(
Ĉ(n, n− 1, q)

)

=
1

2
log

(
q

1
q−1π

λ

)
D +

qn

1− q logD +
1

1− q log
(
Ĉ(n, n− 1, q) 2−qn

)
(45)

(with Ĉ(n, n−1, q) = 2q−1

(n!)q q
q(1−3n)|q−1|2qn), respectively. We realize from Eqs. (43), (44) and (45) that the dominant

term of the D-dimensional asymptotics of the total Rényi entropy in the position space for all states Rq[ρn,l,{µ}] is
given by

Rq[ρn,l,{µ}] =
D

2
log

(
q

1
q−1π

λ

)
+O(log D), q 6= 1 (46)

for all fixed hyperquantum numbers. Taking into account that the ground-state Rényi entropy of the 1-dimensional

harmonic oscillator is 1
2 log

(
q

1
q−1 π
λ

)
, this expression tells us that the dominant term corresponds to the ground-state

Rényi entropy of the D-dimensional harmonic oscillator. So, the entropy variation coming from the excitation itself
(which depends on the hyperquantum numbers) grows as O(log D). To better understand this result let us keep in
mind that in Cartesian coordinates the D-dimensional harmonic oscillator can be interpreted as D monodimensional
oscillators; thus, for fixed n and D →∞ we have at most a finite number of 1-dimensional modes in an excited state
while an infinite number of them in the ground state.

Finally, from (46) one can conjecture that in the limit q → 1 one has

S[ρn,l,{µ}] ∼
D

2
log
(eπ
λ

)
(47)

for the dominant term of the position Shannon entropy S[ρn,l,{µ}] of a general state of the large-dimensional harmonic
system with fixed hyperquantum numbers (n, l, {µ}). Since the ground-state Shannon entropy of the 1-dimensional
oscillator is exactly equal to 1

2 log( eπλ ) [40, 50], notice that the value (47) corresponds exactly to the ground-state
Shannon entropy of the D-dimensional harmonic oscillator, what it is not surprising in the light of the previous
Cartesian discussion. Regrettably we cannot go further; this remains as an open problem.

B. Rényi entropy in momentum space

The determination of the momentum Rényi entropy of a large dimensional harmonic system follows in a straight-
forward way from the position one because of the close relationship between the position and momentum probability
densities shown in (9). Indeed one has that the momentum wave function of the system has the form

Ψ̃n,l,{µ}(~p) =Mn,l(r) Yl,{µ}(ΩD−1), (48)

and the momentum density γn,l,{µ}(~r) = |Ψ̃n,l,{µ}(~p)|2 can be expressed as

γn,l,{µ}(~r) = γn,l(r) |Yl,{µ}(ΩD−1)|2, (49)

with γn,l(r) = [Mn,l(r)]
2. Then, according to (9), the radial position and momentum Rényi entropies are connected

as

Rq[γn,l] = Rq[ρn,l] +D log λ, (50)

which allows us to obtain the following asymptotic behavior for the radial Rényi entropy in momentum space

Rq[γn,l] ∼
D

2
log

(
D

2

)
+
D

2
log

(
q

1
q−1λ

e

)
+

(
qn

1− q −
1

2

)
log

(
D

2

)
+

1

1− q log C̃(n, l, q)

∼ 1

2
D logD +

1

2
log

(
q

1
q−1λ

2e

)
D +

(
qn

1− q −
1

2

)
logD. (51)
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On the other hand the angular Rényi entropy Rp[Yl,{µ}] has been previously given in Eq. (34), so that the total
momentum Rényi entropy Rp[γn,l,{µ}] = Rq[γn,l] +Rq[Yl,{µ}] turns out to have the expression

Rq[γn,l,{µ}] ∼
D

2
log
(
q

1
q−1πλ

)
+

qn

1− q log

(
D

2

)
+

1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Ĉ(n, l, q)

)

∼ 1

2
log
(
q

1
q−1πλ

)
D +

qn

1− q logD +
1

1− q log
(
Ẽ(D, {µ})qM̃(D, q, {µ})Ĉ(n, l, q) 2−qn

)
.

(52)

For completeness and illustration, let us give in a more complete manner the asymptotics of this quantity for some
particular quantum states such as the (ns) and circular states. For the (ns)-states we found

Rq[γn,0,{0}] ∼
D

2
log
(
q

1
q−1πλ

)
+

qn

1− q log

(
D

2

)
+

1

1− q log
(
Ĉ(n, 0, q)

)

=
1

2
log
(
q

1
q−1πλ

)
D +

qn

1− q logD +
1

1− q log
(
Ĉ(n, 0, q) 2−qn

)
(53)

and for the circular states we obtained the following asymptotics

Rq[γn,n−1,{n−1}] ∼
D

2
log
(
q

1
q−1πλ

)
+

qn

1− q log

(
D

2

)
+

1

1− q log
(
Ĉ(n, n− 1, q)

)

=
1

2
log
(
q

1
q−1πλ

)
D +

qn

1− q logD +
1

1− q log
(
Ĉ(n, n− 1, q) 2−qn

)
. (54)

Note that for the ground state (n = 0) one obtains that the total momentum Rényi entropy of the large-dimensional
harmonic system is given by

Rq[γ0,0,{0}] ∼
D

2
log
(
q

1
q−1πλ

)
+

1

1− q log
(
Ĉ(0, 0, q)

)
(55)

Moreover we realize that the dominant term of the total momentum Rényi entropy Rp[γn,l,{µ}] of the large-dimensional
harmonic system has the expression

Rq[γn,l,{µ}] ∼
D

2
log
(
q

1
q−1πλ

)
+

qn

1− q logD (56)

Finally, from Eq. (52) one can conjecture that in the limit q → 1 one has that the Shannon entropy S[γn,l,{µ}] in
momentum space for a general (n, l, {µ})-state of the harmonic system is given by

S[γn,l,{µ}] ∼
D

2
log (eπλ) . (57)

Nevertheless it remains as an open problem a more rigorous proof of this expression because of the unknown (q → 1)-
behavior of the angular part.

C. Position-momentum entropic uncertainty sums

From Eqs. (43) and (52) we can obtain the dominant term for the joint position-momentum Rényi uncertainty sum
of a large-dimensional harmonic system. We found that for a general (n, l, {µ})-state, with 1

q + 1
p = 2 (indeed, this

relation between the parameters p and q implies that q
q−1 + p

p−1 = 0, which cancels the linear term in D as well as

the angular factor Ẽ(D, {µ})) gives

Rq[ρn,l,{µ}] +Rp[γn,l,{µ}] ∼
D

2
log
(
q

1
q−1 p

1
p−1π2

)

+ log
(
M̃(D, q, {µ}) 1

1−q M̃(D, p, {µ}) 1
1−p Ĉ(n, l, q)Ĉ(n, l, p)

)
. (58)

For the (ns)-states the above uncertainty sum reduces to

Rq[ρn,0,{0}] +Rp[γn,0,{0}] ∼
D

2
log
(
q

1
q−1 p

1
p−1π2

)
+ log

(
Ĉ(n, 0, q)Ĉ(n, 0, p)

)
, (59)
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and for the ground state as

Rq[ρ0,0,{0}] +Rp[γ0,0,{0}] ∼
D

2
log
(
q

1
q−1 p

1
p−1π2

)
+ log

(
Ĉ(0, 0, q)Ĉ(0, 0, p)

)
. (60)

Clearly these expressions not only fulfill the general position-momentum Rényi uncertainty relation [83–85]

Rq[ρ] +Rp[γ] ≥ D log
(
p

1
2(p−1) q

1
2(q−1)π

)
, (61)

but also saturate it. For the Shannon entropy, from Eqs. (47) and (57) one obtains that the leading term of the
position-momentum Shannon uncertainty sum is given by

S[ρn,l,{µ}] + S[γn,l,{µ}] ∼ D(1 + log π) (62)

which fulfills and saturates the known position-momentum Shannon uncertainty relation [86, 87]

S[ρ] + S[γ] ≥ D(1 + log π).

Finally, it is most interesting to realize that in the pseudoclassical (D → ∞) border the joint position-momentum
Rényi-like uncertainty sum for the D-dimensional harmonic oscillator (as given by (58) has the same value as the
corresponding sum for the D-dimensional hydrogenic atom which has been recently obtained [61]. This is somehow
counterintuitive because of the different physico-mathematical character of the Coulomb and quadratic potential of
the hydrogenic and harmonic oscillator systems, respectively.

V. CONCLUSIONS

In this work we have determined the asymptotics (D → ∞) of the position and momentum Rényi and Tsallis
entropies of the D-dimensional harmonic states in terms of the state’s hyperquantum numbers and the harmonic
parameter λ. We have used a recent constructive methodology which allows for the calculation of the underlying

Rényi-like integral functionals of Laguerre L(α)
n (x) and Gegenbauer C(α)

n (x) polynomials with a fixed degree n and
large values of the parameter α. This is because the harmonic states are controlled by the Laguerre and Gegenbauer
polynomials in both position and momentum spaces, keeping in mind that the hyperspherical harmonics (which
determine the angular part of the wave functions in the two conjugated spaces) can be expressed in terms of the
latter polynomials. Then, simple expressions for these quantities of some specific classes of harmonic states (ns and
circular states), which include the ground state, are given.

Then, we have found the Heisenberg-like and Rényi-entropy-based equality-type uncertainty relations for all the
D-dimensional harmonic oscillator states in the pseudoclassical (D → ∞) limit, showing that they saturate the
corresponding general inequality-like uncertainty relations which are already known [80, 83–85, 91, 92]. Moreover,
we have realized that these two classes of equality-type uncertainty relations which hold for the harmonic oscillator
states in the pseudoclassical limit are the same as the corresponding ones for the hydrogenic atom, despite the so
different mathematical character of the quantum-mechanical potential of these systems. This observation opens the
way to investigate whether this property at the quantum-pseudoclassical border holds for the quantum systems with
a potential other than the Coulomb and quadratic ones. In particular, does it hold for all spherically-symmetric
potentials or, at least, for the potentials of the form rk with negative or positive k?

We should highlight that to find the Shannon entropies of the large-dimensional harmonic systems has not yet been
possible with the present methodology, although the dominant term has been conjectured. A rigorous proof remains
open.

Finally, let us mention that it would be very relevant for numerous quantum-mechanical systems other than the
harmonic oscillator the determination of the asymptotics of integral functionals of Rényi and Shannon types for
hypergeometric polynomials at large values of the polynomials’ parameters and fixed degrees. Indeed, the knowledge
of the asymptotics of these integral functionals would allow for the determination of the entropy and complexity
measures of all quasiclassical states of the quantum systems such as e.g. the hydrogenic systems. This is yet another
open problem for the future.
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Appendix A: Rényi-like functionals of Laguerre polynomials with large parameters

In this appendix the asymptotics (α→∞) of some Rényi-like functionals of Laguerre polynomials L(α)
n (x) is given

by means of the following theorem which has been recently found [88] (see also [89, 90]).

Theorem 1. The Rényi-like functional of the Laguerre polynomials L(α)
m (x) given by

J1(σ, λ, κ,m;α) =

∞∫

0

xα+σ−1e−λx
∣∣∣L(α)
m (x)

∣∣∣
κ

dx, (A1)

(with σ real, 0 < λ 6= 1, κ > 0) has the following (α→∞)-asymptotic behavior

J1(σ, λ, κ,m;α) ∼ αα+σe−αλ−α−σ−κm |λ− 1|κm
√

2π

α

ακm

(m!)κ

∞∑

j=0

Dj

αj
, (A2)

with the first coefficients D0 = 1 and

D1 =
1

12(λ− 1)2

(
1− 12κmσλ+ 6σ2λ2 − 12σ2λ− 6σλ2 + 12σλ +

6κ2m2 + 12κmσ − 12κm2λ− 12κmλ+ 6κmλ2+

6κm2λ2 + λ2 + 6σ2 − 2λ− 6σ + 6κm2
)
.

(A3)

Corollary 1. For the particular case λ = 1 and κ = 2, i.e.,

J1(σ, 1, 2,m;α) =

∞∫

0

xα+σ−1e−x
∣∣∣L(α)
m (x)

∣∣∣
2

dx, (A4)

the (α→∞)-asymptotic behavior of the integral is given by

I5(m,α) ∼ αα+σ+me−α

m!

√
2π

α
. (A5)

For the proof of Theorem 1, the knowledge of the remaining coefficients in it and other details about the theorem
and the corollary, see [88].

Appendix B: On the angular functions Ẽ and M̃

The quantum harmonic states are characterized by the hyperquantum numbers which satisfy the following restric-
tions:

µ1 = · · · = µk1 > µk1+1 = · · · = µk2 > µk2+1 · · ·µki > µki+1 = · · · = µki+1
> · · ·µkN−1

> µkN−1+1 = · · · = µkN

where µ1 ≡ l and µkN ≡ µD−1. Let us denote k0 = 0 and Mi the number of elements of the ”i-th family” µki−1+1 =

· · · = µki so that
∑N
i=1Mi = D − 1. Then we can write that

D−2∏

j=1

Γ
(
q(µj − µj+1) + 1

2

)

Γ
(
µj − µj+1 + 1

)q =

N∏

i=1




ki−1∏

j=ki−1+1

Γ
(
q(µj − µj+1) + 1

2

)

Γ
(
µj − µj+1 + 1

)q



N−1∏

i=1

(
Γ
(
q(µki − µki+1) + 1

2

)

Γ
(
µki − µki+1 + 1

)q
)

=

N∏

i=1




ki−1∏

j=ki−1+1

Γ

(
1

2

)

N−1∏

i=1

(
Γ
(
q(µki − µki+1

) + 1
2

)

Γ
(
µki − µki+1 + 1

)q
)

= π
D−1−N

2

N−1∏

i=1

(
Γ
(
q(µki − µki+1

) + 1
2

)

Γ
(
µki − µki+1 + 1

)q
)
.

So, the function M̃ defined by (35) can be expressed:

M̃(D, q, {µ}) ≡ 4q(l−µD−1)π1−D2
D−2∏

j=1

Γ
(
q(µj − µj+1) + 1

2

)

Γ
(
µj − µj+1 + 1

)q

= 4q(l−µD−1)π
1−N

2

N−1∏

i=1

(
Γ
(
q(µki − µki+1

) + 1
2

)

Γ
(
µki − µki+1 + 1

)q
)
.
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In a similar way, we can express the function Ẽ defined by (36) as:

Ẽ(D, {µ}) =

N−1∏

i=1

(αki + µki+1)2(µki−µki+1
) Γ(2αki + 2µki+1)

Γ(2αki + µki + µki+1)

Γ(αki + µki+1)

Γ(αki + µki)
∼
(

1

2

)(l−µD−1)

.
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[73] Dehesa J. S., López-Rosa S. and Manzano D. In Entropy and complexity analysis of d-dimension at quantum systems In

K. D. Sen(ed.) Statistical Complexities: Application to Electronic Structure, Berlin: Springer, 2012.
[74] Bialynicki-Birula I. and Rudnicki L. In Entropic uncertainty relations in quantum physics In K. D. Sen(ed.) Statistical

Complexities: Application to Electronic Structure, Berlin: Springer, 2012.
[75] Hall M. J. W. Universal geometric approach to uncertainty, entropy, and information. Phys. Rev. A 1999, 59(4), 2602.
[76] Louck J. D. and Shaffer W. H. Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical

oscillator: Part I. The twofold degenerate oscillator. J. Mol. Spectrosc. 1960, 4, 285.
[77] Koornwinder T. H., Wong R., Koekoek R. and Swarttouw R. F. In Orthogonal Polynomials Chap. 18 NIST Handbook of

Mathematical Functions, New York: Cambridge University Press, 2010.
[78] Avery J. In Hyperspherical Harmonics and Generalized Sturmmians, New York: Kluwer Academic Publishers, 2002.
[79] Sen K. D. and Katriel J. Information entropies for eigendensities of homogeneous potentials. J. Chem. Phys. 2006, 125(7),

07411.
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3.3 General stationary states

In this section we extend the research done in the two previous sections about the Rényi

entropies for the Rydberg and pseudo-classical states of the multidimensional harmonic

system in the following sense: here we obtain the Rényi entropies with a natural pa-

rameter for all ground and excited stationary states of the multidimensional harmonic

system. Then, we also determine their associated uncertainty relations in terms of the

basic parameters which characterize the system. These aims have been obatined by

means of the linearization methods of hypergeometric orthogonal polynomials described

in Section 1.3 together with the algebraic properties of the Laguerre and Gegenbauer po-

lynomials and other special functions of Applied Mathematics and Mathematical Physics

[59] .

Summarizing, the following tasks have been achieved:

• Calculation of the Rényi entropies with a natural parameter q for all discrete

stationary states of the multidimensioanal harmonic system in terms of the Rényi

index q, the spatial dimensionality and the oscillator strength, as well as the hyper-

quantum numbers, {ni}Di=1, associated to the Cartesian coordinates of the system,

which characterize the corresponding state’s wavefunction. The final expressions

with positive integer index q in both position and momentum spaces are given by

means of the generalized Lauricella hypergeometric functions of type A.

• Determination of the associated entropic uncertainty sums, showing the saturation

of the general entropic uncertainty relations of Bialynicki-Birula [91] and Zozor-

Vignat [92, 93].

It remains as an open problem, the extension of this result to Rényi entropies for any

real value of the parameter q. The latter requires, however, an approach other than that

based on the use of Cartesian coordinates and the linearization methodology used here.

Such an approach is still unknown to the best of our knowledge.

These results have been published in the article [66] with coordinates: Puertas-Centeno

D., Toranzo, I.V. and Dehesa J.S. Exact Rényi entropies of D-dimensional harmonic

systems. European Physical Journal-Special Topics, 2018 (accepted), which is attached

below.
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Departamento de F́ısica Atómica, Molecular y Nuclear,

Universidad de Granada, Granada 18071, Spain and

Instituto Carlos I de F́ısica Teórica y Computacional,
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The determination of the uncertainty measures of multidimensional quantum systems is a

relevant issue per se and because these measures, which are functionals of the single-particle

probability density of the systems, describe numerous fundamental and experimentally ac-

cessible physical quantities. However, it is a formidable task (not yet solved, except possibly

for the ground and a few lowest-lying energetic states) even for the small bunch of elementary

quantum potentials which are used to approximate the mean-field potential of the physical

systems. Recently, the dominant term of the Heisenberg and Rényi measures of the multi-

dimensional harmonic system (i.e., a particle moving under the action of a D-dimensional

quadratic potential, D > 1) has been analytically calculated in the high-energy (i.e., Ryd-

berg) and the high-dimensional (i.e., pseudoclassical) limits. In this work we determine the

exact values of the Rényi uncertainty measures of the D-dimensional harmonic system for

all ground and excited quantum states directly in terms of D, the potential strength and the

hyperquantum numbers.

I. INTRODUCTION

The Rényi entropy of the probability density ρ(~r), ~r = (x1, . . . , xD), which characterizes the

quantum state of a D-dimensional physical system is defined [1, 2] as

Rq[ρ] =
1

1− q logWq[ρ], 0 < q <∞, q 6= 1, (1)

where the symbol Wq[ρ] denotes the frequency or entropic moment of order q of the density given

by

Wq[ρ] =

∫

RD
[ρ(~r)]q d~r. (2)

These quantities completely characterize the density ρ(~r) [3, 4] under certain conditions. They

quantify numerous facets of the spreading of the quantum probability density ρ(~r), which include

∗dehesa@ugr.es
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the intrinsic randomness (uncertainty) and the geometrical profile of the quantum system. The

Rényi entropies are closely related to the Tsallis entropies [8] Tp[ρ] = 1
p−1(1 − Wp[ρ]), 0 < p <

∞, p 6= 1 by Tp[ρ] = 1
1−p [e(1−p)Rp[ρ] − 1]. Moreover for the special cases q = 0, 1, 2, and ∞, the

Rényi entropic power, Nq[ρ] = eRq [ρ], is equal to the length of the support, e−〈ln ρ〉, 〈ρ〉−1, ρ−1
max,

respectively. Therefore, these q-entropies include the Shannon entropy [7], S[ρ] = limp→1Rp[ρ] =

limp→1 Tp[ρ], and the disequilibrium, 〈ρ〉 = exp(−R2[ρ]), as two important particular cases; in

addition, they The use of Rényi, Shannon and Tsallis entropies as measures of uncertainty allow

a wider quantitative range of applicability than the Heisenberg-like measures which are based on

the moments around the origin (so, including the standard or root-square-mean deviation). This

permits, for example, a quantitative discussion of quantum uncertainty relations further beyond

the conventional Heisenberg-like uncertainty relations [9–15]. The properties of the Rényi entropies

and their applications have been widely analyzed; see e.g. [16–18] and the reviews [9, 19, 20].

In general, the Rényi entropies of quantum systems cannot be determined in an exact way,

basically because the associated wave equation is generally not solvable in an analytical way.

Even when the time-independent Schrödinger equation is solvable, what happens for a small set

of elementary potentials (zero-range, harmonic, Coulomb) [21, 22], the exact determination of the

Rényi entropies is a formidable task mainly because they are integral functionals of some special

functions of applied mathematics [23] (e.g., orthogonal polynomials, hypergeometric functions,

Bessel functions,...) which control the wavefunctions of the stationary states of the quantum

system. These integral functionals have not yet been solved for harmonic (i.e., oscillator-like)

systems except for a few lowest-lying states (where the calculation is trivial) and, most recently, for

the extreme Rydberg (i.e., highest-lying) [24–26] and pseudoclassical (i.e., the highest dimensional)

[15, 27, 28] states of harmonic and Coulomb systems by means of sophisticated asymptotical tech-

niques of orthogonal polynomials. This lack is amazing because harmonicity is the most frequent

and useful approximation to study the quantum many-body systems, and the other two basic

classes of uncertainty measures, the Heisenberg-like measures [29–36] and the Fisher information

[37], have been already calculated for all stationary states of the multidimensional harmonic system.

In this work we determine the exact values of the Rényi uncertainty measures of the D-

dimensional harmonic system (i.e., a particle moving under the action of a quadratic potential)

for all ground and excited quantum states directly in terms of D, the potential strength and the

hyperquantum numbers which characterize the states. This is a far more difficult problem than

the Heisenberg-like and Fisher information cases, both analytically and numerically. The latter
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is basically because a naive numerical evaluation using quadratures is not convenient due to the

increasing number of integrable singularities when the principal hyperquantum number is increas-

ing, which spoils any attempt to achieve reasonable accuracy even for rather small hyperquantum

numbers [38].

The structure of the manuscript is the following. In section II the wavefunctions and the

probability densities of the stationary states of the D-dimensional harmonic (oscillator-like) system

are briefly described in both position and momentum spaces. In section III the Rényi entropies for

all the ground and excited states of this system are determined in an analytical way by use of a

recently developed methodology [39]. Finally some conclusions and open problems are given.

II. THE D-DIMENSIONAL HARMONIC PROBLEM

In this section we summarize the quantum-mechanical D-dimensional problem corresponding

to the harmonic oscillator potential

V (r) =
1

2
k(x2

1 + . . .+ x2
D) =

1

2
kr2, (3)

and we give the probability densities of the stationary quantum states of the system in both position

and momentum spaces. The stationary bound states of the system, which are the physical solutions

of the Schrödinger equation

(
−1

2
~∇2
D + V (r)

)
Ψ (~r) = EΨ (~r) , (4)

(we use atomic units throughout the paper) where ~∇D denotes the D-dimensional gradient opera-

tor, are well known [40–42] to be characterized by the energies

EN =

(
N +

D

2

)
ω (5)

where

ω =
√
k, N =

D∑

i=1

ni with ni = 0, 1, 2, . . .

The corresponding eigenfunctions can be expressed as

ψN (~r) = N e− 1
2
α(x21+...+x2D)Hn1(

√
αx1) · · ·HnD(

√
αxD), α = k

1
4 (6)

where ~r ∈ RD and N stands for the normalization constant

N =
1√

2Nn1!n2! · · ·nD!

(α
π

)D/4
,
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and Hn(x) denotes the Hermite polynomials of degree n orthogonal with respect the weight function

ω(x) = e−x
2

in (−∞,∞).

Then, the associated quantum probability density in position space is given by

ρN (~r) = |ψN (~r)|2 = N 2e−α(x21+...+x2D)H2
n1

(
√
αx1) · · ·H2

nD
(
√
αxD), (7)

and the density function in momentum space is obtained by squaring the Fourier transform of the

position wavefunction, obtaining

γN (~p) = Ñ 2e−
1
α

(p21+...+p2D)H2
n1

(
p1√
α

)
· · ·H2

nD

(
pD√
α

)
= α−DρN

(
~p

α

)
(8)

where ~p ∈ RD and the normalization constant is

Ñ =
1√

2Nn1! · · ·nD!

(
1

πα

)D/4
.

III. RÉNYI ENTROPIES OF THE HARMONIC SYSTEM

Let us now determine the Rényi entropy of the D-dimensional harmonic system according to

Eqs. (1)-(2) by

Rq[ρN ] =
1

1− q log

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxD [ρN (~r)]q

=
1

1− q log

(
N 2q

∫ ∞

−∞
e−αqx

2
1 |Hn1(

√
αx1)|2q dx1 · · ·

∫ ∞

−∞
e−αqx

2
D |HnD(

√
αxD)|2q dxD

)

(9)

where we have used Eq. (7). To calculate these D integral functionals of Hermite polynomials we

will follow the 2013-dated technique (only valid for q ∈ N other than unity) [5, 6, 39] to evaluate

similar integral functionals of hypergeometric orthogonal polynomials by means of multivariate

special functions. To do so, first we express the Hermite polynomials in terms of the Laguerre

polynomials (see e.g., [43]) as

H2n(x) = (−1)n22nn!L
− 1

2
n (x2),

H2n+1(x) = (−1)n22n+1n!xL
1
2
n (x2), (10)

which allows to write

Hn(
√
αx)2q = An,q(ν)αqνx2qνL

(ν− 1
2

)
n−ν
2

(αx2)2q, (11)
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with the constant

An,q(ν) = 22qn

[
Γ

(
n− ν

2
+ 1

)]2q

and the paramater ν = 0(1) for even(odd) n; that is, ν = 1
2 (1− (−1)n) .

Following the same steps as in [39], after the change of variable ti = αqx2
i in (9), one obtains the

following linearization relation for the (2q)-th power of the Hermite polynomials

Hn

(√
αx
)2q

= An,q(ν)q−qν
∞∑

j=0

1

(−1)22jj!
cj

(
qν, 2q,

1

q
,
n− ν

2
, ν − 1

2
,−1

2

)
H2j(

√
αqx), (12)

with

cj

(
qν, 2q,

1

q
,
n− ν

2
, ν − 1

2
,−1

2

)
=

=

(
1

2

)

qν

(n+ν−1
2

n−ν
2

)2q

F
(2q+1)
A




qν + 1
2 ;

2q︷ ︸︸ ︷
ν − n

2
, . . . ,

ν − n
2

,−j
;
1

q
, . . . ,

1

q︸ ︷︷ ︸
2q

, 1

ν +
1

2
, . . . , ν +

1

2︸ ︷︷ ︸
2q

, 1
2




,

(13)

where (z)a = Γ(z+a)
Γ(z) is the known Pochhammer’s symbol and F

(2q+1)
A (1

q , . . . ,
1
q , 1) is the Lauricella

function of type A of 2q + 1 variables given by

F
(2q+1)
A



qν + 1

2 ; ν−n2 , . . . , ν−n2 ,−j
; 1
q , . . . ,

1
q , 1

ν + 1
2 , . . . , ν + 1

2 ,
1
2




=

=

∞∑

k1,...,k2q ,k2q+1=0

(
qν + 1

2

)
k1+...k2q+k2q+1

(ν−n2 )k1 · · · (ν−n2 )k2q(−j)k2q+1

(ν + 1
2)k1 · · · (ν + 1

2)k2q
(

1
2

)
k2q+1

(
1
q

)k1 · · ·
(

1
q

)k2q

k1! · · · k2q!k2q+1!
,

(14)

Now, the combination of Eqs. (9) and (12) together with the orthogonalization condition of the

Hermite polynomials Hn(x) (with which one realizes that all the summation terms vanish except
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the one with i = 0), allows one to write the exact Rényi entropy of the harmonic system as

Rq[ρN ] =
1

1− q log

[
N 2q

(π
α

)D
2
q−

D
2

D∏

i=1

q−qνiAni,q(νi) c0

(
qνi, 2q,

1

q
,
ni − νi

2
, νi −

1

2
,−1

2

)]

=
D

2
log
[π
α

]
+

1

q − 1
log
[
2qNq

D
2

]
+

1

1− q
D∑

i=1

log

[
Ani,q(νi)

qqνiΓ(ni + 1)q
c0

(
qνi, 2q,

1

q
,
ni − νi

2
, νi −

1

2
,−1

2

)]

(15)

with

c0

(
qν, 2q,

1

q
,
n− ν

2
, ν − 1

2
,−1

2

)
=

(
1

2

)

qν

(n+ν−1
2

n−ν
2

)2q

Fq(n),

(16)

where the symbol Fq(n) denotes the following Lauricella function of 2q variables

Fq(n) ≡ F (2q+1)
A



qν + 1

2 ; ν−n2 , . . . , ν−n2 , 0
; 1
q , . . . ,

1
q , 1

ν + 1
2 , . . . , ν + 1

2 ,
1
2




= F
(2q)
A



qν + 1

2 ; ν−n2 , . . . , ν−n2
; 1
q , . . . ,

1
q

ν + 1
2 , . . . , ν + 1

2




=
∞∑

j1,...,j2q=0

(
qν + 1

2

)
j1+...j2q

(ν−n2 )j1 · · · (ν−n2 )j2q

(ν + 1
2)j1 · · · (ν + 1

2)j2q

(
1
q

)j1 · · ·
(

1
q

)j2q

j1! · · · j2q!

=

n−ν
2∑

j1,...,j2q=0

(
qν + 1

2

)
j1+...j2q

(ν−n2 )j1 · · · (ν−n2 )j2q

(ν + 1
2)j1 · · · (ν + 1

2)j2q

(
1
q

)j1 · · ·
(

1
q

)j2q

j1! · · · j2q!
. (17)

Note that, as ν−n
2 is always a negative integer number, the Lauricella function simplifies to a finite

sum. In the following, for convenience, we use the notation NO =
∑D

i=1 νi, which is the amount of

odd numbers ni and, thus, NE = D−NO gives the number of the even ones. Then simple algebraic

manipulations allow us to rewrite Eq. (15) as

Rq[ρN ] = −D
2

log [α] +KqD +KqNO +
q

q − 1

D∑

i=1

(−1)ni log

[(
ni + 1

2

)

1
2

]
+

1

1− q
D∑

i=1

log [Fq(ni)] ,

(18)

where Kq = log[πq−
1
2 q

1
2 ]

q−1 and Kq = 1
1−q log

[
4q Γ( 1

2
+q)

π
1
2 qq

]
. This expression allows for the analytical

determination of the Rényi entropies (with positive integer values of q) for any arbitrary state of

the multidimensional harmonic systems.
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Finally, for the ground state (i.e., ni = 0, i = 1, · · · , D; so, N = 0) the general Eq. (18) boils

down to ,

Rq[ρN ] =
D

2
log

[
π q

1
q−1

α

]
. (19)

In fact, this ground state Rényi entropy holds for any q > 0 as one can directly derive from Eq.

(9). Taking into account that the momentum density is a re-scaled form of the position density,

we have the following expression for the associated momentum Rényi entropy,

Rq̃[γN ] =
D

2
log [α] +Kq̃D +Kq̃NO +

q̃

q̃ − 1

D∑

i=1

(−1)ni log

[(
ni + 1

2

)

1
2

]
+

1

1− q̃
D∑

i=1

log [Fq̃(ni)] ,

(20)

(q̃ ∈ N). Although Eqs. (18) and (20) rigorously hold for q 6= 1 and q ∈ N only, it seems reasonable

to conjecture its general validity for any q > 0, q 6= 1 provided the formal existence of a generalized

function Fq(n). If so, we obtain the general expression for the position-momentum uncertainty

Rényi entropic sum as

Rq[ρN ] +Rq̃[γN ] = (Kq +Kq̃)D + (Kq +Kq̃)NO +

(
q

q − 1
+

q̃

q̃ − 1

) D∑

i=1

(−1)ni log

[(
ni + 1

2

)

1
2

]

+
1

1− q
D∑

i=1

log [Fq(ni)] +
1

1− q̃
D∑

i=1

log [Fq̃(ni)] (21)

which verifies the Rényi-entropy-based uncertainty relation of Zozor-Portesi-Vignat [13] when 1
q +

1
q̃ ≥ 2 for arbitrary quantum systems. In the conjugated case q̃ = q∗ such that 1

q + 1
q∗ = 2, one

obtains

Rq[ρN ] +Rq∗ [γN ] = D log
(
πq

1
2q−2 q∗

1
2q∗−2

)
+ (Kq +Kq∗)NO

+
1

1− q
D∑

i=1

log [Fq(ni)] +
1

1− q∗
D∑

i=1

log [Fq∗(ni)] . (22)

Let us finally remark that the first term corresponds to the sharp bound for the general Rényi

entropy uncertainty relation with conjugated parameters

Rq[ρN ] +Rq∗ [γN ] ≥ D log
(
πq

1
2q−2 q∗

1
2q∗−2

)

of Bialynicki-Birula [11] and Zozor-Vignat [12].
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IV. CONCLUSIONS

In this work we have explicitly calculated the Rényi entropies, Rq[ρN ] (q ∈ N), for all the

quantum-mechanically allowed harmonic states in terms of the Rényi index q, the spatial dimension

D, the oscillator strength α, as well as the hyperquantum numbers, {ni}Di=1, which characterize

the corresponding state’s wavefunction. To do that we have used the harmonic wavefunctions in

Cartesian coordinates, which can be expressed in terms of a product of D Hermite polynomials and

exponentials. So, the Rényi entropies of the quantum states boil down to D entropy-like functionals

of Hermite polynomials. Then we have determined these integral functionals by taking into account

the close connection between the Hermite and Laguerre polynomials and the Srivastava-Niukkanen

linearization method for powers of Laguerre polynomials. The final analytical expression of the

Rényi entropies with positive integer index q in both position and momentum spaces is given in

a compact way by use of a Lauricella function of type A. It remains as an open problem, the

extension of this result to Rényi entropies for any real value of the parameter q. The latter requires

a completely different approach, still unknown to the best of our knowledge.
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Introduction

Complexity of a finite many-particle system is a primary notion of the same character

as e.g., energy and information. Perhaps this is because it has too many facets to

be captured by a single quantifier. Nowadays, a systematic treatment of the intuitive

idea of complexity is unknown despite the great efforts done in many areas of science

and technology from atomic, molecular and nuclear physics up to the adaptive complex

systems and ultimately the living beings [1, 2, 38, 40, 203–208].

The quantum many-particle systems are intrinsically complex in ways that are funda-

mentally different from any product of design. The quantification of complexity at-

tributed to many-particle systems, which is closely connected with evolution from order

to disorder, is among the most important scientific challenges in the theory of com-

plex systems [1, 39, 40]. Intuitively, the complexity of a finite many-particle system

is a measure of the internal order/disorder of the system in question, which must be

closely connected with the notion of information and its main quantifier, the informa-

tion entropy. Interpreting the second law of thermodynamics, which indicates an always

increasing entropy, one can vaguely explain the fact that information entropy is maximal

for a completely disordered system. Presently, however, there is no universal law which

governs the complexity of the physical systems. A completely ordered or completely

regular system (e.g., a perfect crystal) is obviously non-complex, but also the structure

of a completely disordered or absolutely random system (e.g, an ideal gas) enjoys a very

simple description. We say that these two extremal cases have no complexity, or rather

an extremely low, minimum complexity.

To formalize the intuitive notion of complexity of a physical system in a physico-

mathematical way, various theoretico-informational quantities have been proposed. They

can be classified in two broad groups: the intrinsic complexity measures (which only de-

pend on the single-particle probability distribution of the system) [1, 7, 204–206, 208]

and the Kolmogorov-like or extrinsic complexity measures [2, 38, 40, 203, 209]. The

latter ones, also called algorithmic complexity measures, are based on the idea that

complexity can be quantify through the complexity of its simplest mathematical model;

that is, the model which requires the minimal information of the past to be able to

predict the optimal behavior of the system for the future.
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Part II is centered around the intrinsic complexity measures, since we are interested

in the internal disorder of the quantum complex systems (i.e., the structure, organiza-

tion and correlation of their elementary constituents). Among the numerous statistical

quantifiers of this type which have been studied in the last two decades [38, 54, 113, 203–

205, 208, 210–231, 231–251], let us highlight the two-factor complexity measures which

are very relevant in numerous scientific and technological fields. They are given by the

product of two dispersion/entropic measures appropriately renormalized in order to have

a number of relevant properties such as the invariance under replication, translation and

scaling transformations and the monotonicity with respect to a class of operations [252].

The most familiar two-factor complexity measures are the Crámer-Rao, Fisher-Shannon

and LMC (López-ruiz-Mancini-Calvet) complexities and its generalizations, the Fisher-

Rényi and LMC-Rényi complexities.

The goal of Part II is to extend these basic two-factor complexity measures (i) by

generating novel families of bi- and tri-parametric complexity quantifiers and by study-

ing their fundamental properties. Moreover, these multiparametric complexity measures

are shown to be very useful by applying them to some multidimensional quantum sys-

tems and phenomena such as the generalized Planck distribution and the harmonic and

hydrogenic systems. This has been done by means of (i) the ideas and techniques of

Lutwak [119, 121] and Bercher [120], which extend the Crámer-Rao and Stam inequali-

ties to a q-Gaussian context by using a biparametric version of the Fisher information,

and (ii) the novel notion of differential-escort transformation [71], which has allowed us

to prove the monotonicity of the LMC-Rényi complexity measure as well as to extend

the biparametric Stam inequality to a tri-parametric one, and exactly compute the op-

timal bound and the explicit expression for the minimizing densities (which extend the

q-Gaussian densities).

The structure of Part II is composed by four chapters. Chapter 4 contains a brief review

of the basic two-factor complexity measures used in this work together with their main

inequality-type properties. In Chapter 5 we introduce the notions of the biparametric

complexity measures of Fisher-Rényi and Crámer-Rao types, we discuss their properties

and we apply them to the frequency spectrum of the blackbody radiation at a given

temperature in universes with standard and non-standard dimensionalities. In Chapter

6 the notion of differential-escort transformation is defined and discussed. We illustrate

its utility by proving the monotonicity property of the LMC-Rényi complexity measure

with respect to differential-escort transformations. Then, the entropic properties of

the differential-escort distributions for a general probability density are shown, and the

extreme low and high complexity limits are carefully studied. Moreover, the Tsallis q-

exponential densities are shown to correspond to the differential-escort transformations

of the exponential one. Finally, in Chapter 7 we generalize the Stam inequality until to

a triparametric one for univariate probability distributions, we compute analytically the

exact bound and moreover, we give the family of the associated minimizer probability
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densities. The resulting triparametric Stam inequality and the generated triparametric

Fisher-Rényi are then applied to the radial density of the hydrogenic and harmonic

systems.



Chapter 4

Complexity measures and

inequality-type properties

The physical and chemical properties of the multidimensional quantum many-particle

systems are controlled [6] by means of the spatial delocalization or spreading of the

single-particle density ρ(~r), ~r ∈ ∆ ⊆ Rd defined as

ρ(~r) :=
∑

σ1,σ2,...,σn

∫

∆
|Ψ(~r, ~r2, ..., ~rn;σ1, σ2, ..., σn)|2 d~r2...d~rn (4.1)

where Ψ(~r1, ~r2, ..., ~rn;σ1, σ2, ..., σn) represents the wave function of the d-dimensional n-

particle system, and ~r = (x1, x2, ..., xd), σi ∈ (−1
2 ,

1
2), and (ri, σi) denote the position-spin

coordinates of the ith-particle, which is assumed to be normalized and antisymmetrized

in the pairs (~ri, σi).

In this chapter we briefly review the basic complexity measures of Crámer-Rao, Fisher-

Shannon and LMC types of a multidimensional probability distribution ρ(~r), ~r ∈ ∆ ⊆
Rd, and their generalizations (Fisher-Rényi, LMC-Rényi) together with their inequality-

type properties. They have been used to investigate of a great deal of physical pheno-

mena of numerous finite quantum many-body systems [1, 229, 238–242, 253].

These three complexity measures (Crámer-Rao, Fisher-Shannon, LMC) are known to

be dimensionless, invariant under translation and scaling transformation [205, 207], and

universally bounded from below by unity [7, 109, 175, 244]. The question whether these

quantities are minimum for the two extreme (or least complex ) distributions correspon-

ding to perfect order and maximum disorder (associated to an extremely localized Dirac

delta distribution and a highly flat distribution in the one dimensional case, respectively)

is a long standing and controverted issue [135, 204, 252] which has been partially solved.

The Crámer-Rao and Fisher-Shannon measures have been recently shown to be mono-

tone in a well-defined sense [252], contrary the LMC measure. Here the monotonicity

problem of the LMC measure is examined.
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4.1 Measures of Crámer-Rao type

The Crámer-Rao measure of complexity, inspired by the Crámer-Rao inequality [254,

255], is defined [241, 243, 256] by the product of the variance V [ρ] and the Fisher

information F [ρ] as

C(CR)[ρ] := F [ρ]× V [ρ], (4.2)

which is composed by a local ingredient, the Fisher information, and a global one, the

variance. So, this quantity measures the gradient content of the density jointly with the

concentration of the probability cloud around the centroid. Assuming that |〈~r〉|2 = 0,

what rigorously holds for systems with a spherically-symmetric quantum-mechanical

potential, one has that the Crámer-Rao complexity measure fulfills

CCR[ρ] = F [ρ]×
〈
r2
〉
≥ d2, (4.3)

which holds for all the stationary bound states of the D-dimensional quantum systems

[30, 108, 109]. It is known that the lower bound D2 is reached by the (Gaussian) density

associated with the ground state of the harmonic oscillator in an unbounded domain ∆;

see [29, 108, 257] for further details. Moreover, the Crámer-Rao complexity is related

to the Heisenberg uncertainty product 〈r2〉〈p2〉 as

CCR[ρ] ≥ 4

(
1− 2|m|

2L+ 1

)
〈r2〉〈p2〉, (4.4)

where L = l + d−3
2 and l = 0, 1, 2, .... Then, taking into account the D-dimensional

Heisenberg relation
〈
r2
〉 〈
p2
〉
≥
(
l + d

2

)2
=
(
L+ 3

2

)2
for central potentials, we have [29]

that

CCR[ρ] ≥ 4

(
1− 2|m|

2L+ 1

)(
L+

3

2

)2

. (4.5)

Note that this lower bound equals to d2 for S states. Moreover, these inequalities

behave as uncertainty relations although in the same space, indicating that the wigglier

is the quantum-mechancal wavefunction of the system, the less concentrated around the

centroid the associated probability density is, and vice versa.

Recently, a generalized version of the Crámer-Rao inequality involving a biparametric

Fisher-information and Rényi entropy was proven by Lutwak et al. [119] for univariate

distributions and by Bercher [120] and Lutwak et al [121] for multidimensional densities.

Furthermore, these Crámer-Rao inequalities have been generalized [119–121] as follows:

Lemma 4.1. [Crámer-Rao inequality for radially symmetric densities] [120]. Let f(x) =

fr(|x|) be a radially symmetric probability density on the d-dimensional ball of radius R,

possibly infinite, centered on the origin. Assume that the density is absolutely continuous

and such that limr→R rdfr(r)q = 0. Let also p ≥ 1 and p∗ be its Hölder conjugate. Then,

for q > d/(d + p∗) and provided that the involved information measures are finite, we
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have

Fp,λ[f ]
1
pΛ × σp∗ [f ] ≥ K ≡ Fp,λ[gp,λ]

1
pΛ σp∗ [gp,λ], (4.6)

where Λ is given by Λ = 1 + (λ − 1)d, and gp,λ denotes the (p, λ)-stretched deformed

Gaussian distribution is defined by

gp,λ(~r) ∝





(
1 + (1− λ)|~r|p∗

) 1
λ−1

+
, for λ 6= 1,

exp
(
−|~r|p∗

)
, for λ = 1,

(4.7)

where (·)+ = max(·, 0) (the case λ = 1 is indeed obtained in the limit). The symbol σp[f ]

is the p-th typical deviation σp[f ] = 〈|~r|p〉
1
p =

∫
Rd |~r|

pf(~r) d~r (supposed a central density

f, 〈~r〉 = 0).

Later, in Sec 5.2 of this work we propose a novel biparametric version of the Crámer-Rao

complexity measure for one-dimensional probability densities as

C
(CR)
p,λ [ρ] = K(CR)

p,λ φp,λ[ρ]× σp[ρ],

(where φp,λ[ρ] = Fp∗,λ[ρ]
1
p∗λ as already defined) whose usefulness is illustrated by apply-

ing it to the blackbody radiation spectrum.

4.2 Measures of Fisher-Shannon type

The Fisher-Shannon measure of complexity, inspired by the Stam inequality [110], is

defined [162, 241, 258] as

CFS [ρ] := F [ρ]× 1

2πe
e

2
d
S[ρ]. (4.8)

where F [ρ], and eS[ρ] denote the Fisher information and the the Shannon entropy power,

respectively. Thus, it quantifies the combined balance of the gradient content of the

density (i.e., the concentration of the quantum-mechanical probability cloud around the

maxima of ρ(~r)) and the total spreading of the density all over its domain of definition.

This quantity fulfills [7, 244] the inequality

CFS [ρ] ≥ d, (4.9)

which saturates for the Gaussian density.

The Fisher-Shannon measure of complexity and the associated inequality have been

generalized by using some generalizations of the standard Fisher information F [ρ] and/or

the Shannon entropy S[ρ] (see e.g. [119–121, 225, 245, 251] such as the biparametric

Fisher information Fp,λ[ρ] given by (1.19) and the Rényi entropy Rλ[ρ] given by (1.10),

respectively.
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Later in Sec. 5.1 of this work, a novel biparametric Fisher-Rényi complexity measure is

introduced as

C
(FR)
p,λ [ρ] = K(FR)

p,λ φp,λ[ρ]×Nλ[ρ],

with λ > (p+1)−1 and where the symbols KFR(p, λ), φp,λ[ρ] and Nλ[ρ] denote a norma-

lization factor, the biparametric Fisher information [119] and the Rényi entropy power,

Nλ[ρ] = exp (Rλ[ρ]), respectively. This quantity includes the monoparametric one of

Toranzo et al. [251] and the standard Fisher-Shannon complexity measure given by

(4.8). Moreover, in Chapter 7, a family of tri-parametric complexity measures based on

biparametric Fisher information and Rényi entropy are defined as

C
(FR)
p,β,λ [ρ] =

(
Fp,β[ρ]

1
pβNλ[ρ]

)2β
,

which includes not only the above mentioned biparametric family but also some monopara-

metric Fisher-Rényi measures previously introduced in the literature [225, 237, 245, 259].

The exact sharp bound and the family of minimizing densities of these complexity mea-

sures are analytically obtained in Chapter 7.

4.3 Measures of LMC type

The LMC (Lopezruiz-Mancini-Calbet) complexity measure is defined [206, 213] as the

product of the Shannon entropy power and the disequilibrium (D[ρ] = e−R2[ρ]), i.e.

CLMC [ρ] := eS[ρ]D[ρ] = eS[ρ]−R2[ρ]. (4.10)

Thus, it measures the combined balance of the average height of ρ(~r) and the total

extent of the spread of the density over the whole hyperspace. This quantity satisfies

the inequality [260]

CLMC [ρ] ≥ 1, (4.11)

and posseses very interesting properties [61, 113, 205, 207, 218, 222, 236, 237, 239]

such as e.g. the invariance under replication, translation and scaling transformations.

Note that, contrary to the Crámer-Rao and Fisher-Shannon complexities which have

a local-global character but in a different sense, the LMC complexity CLMC [ρ] has a

global-global character because it measures simultaneously two global spreading aspects

of ρ(x): the disequilibrium and the total extent of the density as given by the Shannon

entropy power.

The LMC complexity has been applied to study the electronic structure of quantum sys-

tems [61, 113, 229, 240–242, 247, 261–263], confined systems [226, 264], chaotic regimes

[228, 265], solids [266], the logistic map [214, 220], non-equilibrium systems [219, 224],

hyperspherical harmonics [233, 234] and thermodynamics [235].
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A natural biparametric extension of the LMC complexity, the so-called LMC-Rényi

complexity measure, was introduced by Lopez-Ruiz et al. [208, 227] as

Cλ,β[ρ] = eRλ[ρ]−Rβ [ρ], λ < β, (4.12)

from which the plain LMC complexity measure (4.10) is recovered for λ = 1 and β =

2. This quantity has been applied to the study of the electronic structure [60, 259],

Fermi systems [246], ionization processes [243] and quantum phase transitions [250]. An

extended, relative version of this quantity [231, 263] has been applied to the Dicke model

and to some quantum-information objects (qubits, entangled states) [249].

Recently a modified version of this LMC-Rényi complexity measure defined by

Cα,β[ρ] := e
1
D

(Rα[ρ]−Rβ [ρ]), 0 < α < β <∞, α, β 6= 1. (4.13)

has been shown to be most convenient in various contexts [34, 222, 225, 227, 267]. It

keeps the same fundamental properties of the previous one, boils down to the plain LMC

complexity measure C1,2[ρ] = D[ρ]×eS[ρ] when (α→ 1, β = 2) and fulfills the inequality

Cα,β[ρ] ≥ 1 if α < β (4.14)

for D-dimensional probability densities. An approach to derive this universal lower

bound is based on the well-known Jensen inequality [268] fulfilled by convex functions:

Theorem 4.2. Let f(x), p(x) be two functions defined for a ≤ x ≤ b such that α ≤
f(x) ≤ β and p(x) ≥ 0, with p(x) 6≡ 0. Let φ(u) be a convex function defined on the

interval α ≤ u ≤ β; then

φ

(∫ b
a f(x)p(x) dx
∫ b
a p(x) dx

)
≤
∫ b
a φ(f(x))p(x) dx
∫ b
a p(x) dx

. (4.15)

Note that by choosing p(x) = ρ(x), a probability density, and (i) for β > λ > 1, (f(x) =

[ρ(x)]λ−1;φ(u) = u
β−1
λ−1 ), and (ii) for 1 > β > λ, (f(x) = [ρ(x)]β−1;φ(u) = u

λ−1
β−1 ) , one

directly obtains the sharp bound for the LMC-Rényi complexity measure Cλ,β[ρ] ≥ 1,

for any λ < β. Moreover, the family of minimizing densities turn out to be the uniform

ones.

Later in Chapter 6 of this work, the LMC-Rényi complexity measure will be shown to

have a monotonicity property through the use of the differential-escort transformation

together with Jensen’s inequality; special care will be taken for the extreme cases of

minimal and maximal complexity.

Furthermore, for completeness, let us mention here that the three basic complexity

measures (Crámer-Rao, Fisher-Shannon, LMC) can be bounded from above [175] so
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that e.g. for real (d = 3) quantum systems they satisfy the double inequalities

9 ≤ CCR[ρ] ≤ 4〈r2〉〈p2〉, (4.16)

3 ≤ CFS [ρ] ≤ 4

3
〈r2〉〈p2〉, (4.17)

and

1 ≤ CLMC [ρ] ≤ 27/2

33
√
π
e3/2

(
〈r2〉〈p2〉

)3/2
. (4.18)

for the Cramér-Rao, Fisher-Shannon and LMC complexity measures, respectively. In

fact, these upper bounds can be improved and generalized to d-dimensional quantum

systems. Moreover, the lower bounds have been found to improve for real systems

subject to a central quantum-mechanical potential [175].

Finally, let us point out that these inequalities get clearly improved either by taking

into account some known data (as e.g. some power moments) or by referring to specific

quantum systems (as e.g. the d-dimensional particle in a box [113], the d-dimensional

rigid rotator [234] and the d-dimensional hydrogenic and oscillator-like systems [244]).



Chapter 5

Biparametric complexity

measures: notion and application

to the Planck distribution

5.1 Fisher-Rényi Complexity

In this section we define a novel class of generalized complexity measures for a general

probability density ρ(x), the biparametric Fisher-Rényi complexities C
(p,λ)
FR [ρ]. Basically

these quantites are the product of two generalized entropic factors: the Rényi entropy

power (that generalizes the Shannon entropy power) and the biparametric Fisher infor-

mation. Thus, they jointly quantify the λ-dependent spreading aspects and the (p, λ)-

dependent oscillatory facets of ρ(x), so being much richer than the basic Fisher-Shannon

complexity measure and its extensions of Fisher-Rényi type. Moreover we discuss the

main properties of these complexity quantifiers (universal lower bound, scaling and trans-

lation invariance, monotonicity,...). Finally, we apply them to the d-dimensional black-

body radiation in standard (d = 3) and non-standard (d 6= 3) universes.

Specifically the following tasks have been done:

• We construct the family of biparametric Fisher-Rényi complexity measures C
(p,λ)
FR [ρ]

for a general probability density ρ.

• We discuss the basic properties of these complexity quantifiers, including their

behavior under replication transformation.

• We study both analytically and numerically the biparametric Fisher-Rényi com-

plexity measure C
(p,λ)
FR [ρ

(d)
T ] for the d-dimensional blackbody frequency distribution

ρ
(d)
T (ν) at temperature T . In particular we analyze their dependence on the in-

volved parameters, including p, λ, d and T . It is found e.g. that the biparametric
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Fisher-Rényi quantifier (i) does not depend on the temperature T , (ii) it has di-

fferent behaviors according to the range of values of the pair (p, λ).

These results have been published in the article [67] with coordinates:

Puertas-Centeno, D., Toranzo, I. V., & Dehesa, J. S. . The biparametric Fisher-

Rényi complexity measure and its application to the multidimensional blackbody radia-

tion. Journal of Statistical Mechanics: Theory and Experiment, 2017:043408, 2017.



The biparametric Fisher-Rényi complexity measure and its application to the
multidimensional blackbody radiation

D. Puertas-Centeno1, I. V. Toranzo1 and J. S. Dehesa1

1Instituto Carlos I de F́ısica Teórica y Computacional and Departamento de F́ısica Atómica Molecular y Nuclear,
Universidad de Granada, Granada 18071, Spain. ∗

(Dated: December 1, 2016)

In this work we first introduce a biparametric Fisher-Rényi complexity measure for general prob-
ability distributions and we discuss its properties. This notion, which is composed by two entropy-
like components (the Rényi entropy and the biparametric Fisher information), generalizes the basic
Fisher-Shannon measure and the previous complexity quantifiers of Fisher-Rényi type. Second,
we illustrate the usefulness of this notion by carrying out a information-theoretical analysis of the
spectral energy density of a d-dimensional blackbody at temperature T . It is shown that the bi-
parametric Fisher-Rényi measure of this quantum system has a universal character in the sense that
it does not depend on temperature nor on any physical constant (e.g., Planck constant, speed of
light, Boltzmann constant), but only on the space dimensionality d. Moreover, it decreases when
d is increasing, but exhibits a non trivial behavior for a fixed d and a varying parameter, which
somehow brings up a non standard structure of the blackbody d-dimensional density distribution.

Keywords: Information theory, biparametric Fisher-Rényi complexity, Rényi entropy, biparametric
Fisher information, black-body radiation, cosmic microwave background, generalized Planck
distribution.

PACS:

I. INTRODUCTION

General quantification of complexity attributed to many-body systems, the task which is closely connected with
evolution from order to disorder, is among the most important scientific challenges in the theory of complex systems.
The fundamental issue is to find one quantifier which is able to capture the intuitive idea that complexity lies between
perfect order and perfect disorder. Most probably this idea cannot be formalized by a single complexity quantifier
because of the so many facets of the term complexity. Based on Information Theory and Density Functional Theory,
various computable and operationally meaningful density-dependent measures have been proposed: the entropy
and complexity measures of the one-body probability density of the system. The former ones (mainly the Fisher
information and the Shannon entropy, and their generalizations like Rényi and Tsallis entropies) capture a single
macroscopic facet of the internal disorder of the system. The latter ones capture two or more macroscopic facets
of the quantum probability density which characterize the system, being the most relevant ones up until now the
complexity measures of Crámer-Rao, Fisher-Shannon and LMC (Lopez-ruiz-Mancini-Calvet), which are composed by
two entropic factors. These three basic measures, which are dimensionless, have been shown to satisfy a number of
interesting properties: bounded from below by unity [21,22], invariant under translation and scaling transformation
[23,24]), and monotone in a certain sense [13]. Recently, they have been generalized in various directions such as the
measures of Fisher-Rényi [25,26,27,15,28] and LMC-Rényi [29,30,31,32] types.

The aim of this article is two-fold. First, we introduce a novel class of biparametric measures of complexities
(namely, the generalized Fisher-Rényi measures) for continuous probability densities, which generalizes the basic
Fisher-Shannon and some extensions of them of Fisher-Rényi [41–45]. Second, we apply these novel complexity
quantifiers to the generalized Planck radiation law (1). Beyond the temperature, we will focuss on the dependence of
these quantifiers on the space dimensionality d and the complexity parameters.

The cosmic microwave, neutrino and gravitational backgrounds (cmb, cnb and cgb, respectively) give information
about the universe at different times after the big bang. The cnb and cgb have been claimed to give information at
one minute after the big bang and during the big bang, respectively, and to have been seen in recent experiments

∗Electronic address: dehesa@ugr.es



Journal of Statistical Mechanics: Theory and Experiment, 2017:043408, 2017

with controversial results, still under a careful examination [1–3] (see [4] for a brief summary). The cmb, originated
at around 380 000 years after the big bang at a temperature of around 3000 Kelvin, is the only cosmic radiation
background which is well established. It was first detected in 1964 by the antennae manipulation works of Penzias
and Wilson [5], and later confirmed by satellite observations in a very detailed way [6–8]. It is known that the
frequency distribution of the cmb which presently baths our (three-dimensional) universe follows the Planck’s black

body radiation law given by the (unnormalized) spectral density ρ
(3)
T (ν) = 8πh

c3 ν
3(e

hν
kBT − 1)−1 at the temperature

T0 = 2.7255(6) Kelvin, where h and kB denote the Planck and Boltzmann constants, respectively.

In the last few years there is an increasingly strong interest in the analysis of the quantum effects of the space
dimensionality in the blackbody radiation [11–18] and, in general, for natural systems and phenomena of different
types in various fields from high energy physics and condensed matter to quantum information and computation (see
e.g. [19–28] and the monographs [29–32]). This is not surprising because of the fundamental role that the spatial
dimensionality plays in the solutions of the associated wave equations [30, 31]. In the present work we adopt an
information-theoretical approach to investigate the complexity effects of the spatial dimensionality in the spectral
energy density per unit of frequency of a blackbody at temperature T which has been found [11–13] to be given in a
d-dimensional space by the generalized Planck radiation law

ρ
(d)
T (ν) =

1

Γ(d+ 1) ζ(d+ 1)

(
h

kBT

)d+1
νd

e
hν
kBT − 1

, (1)

(normalized to unity), where Γ(x) and ζ(x) are the Euler gamma function and the Riemann zeta functions [9],
respectively. This investigation will be done by means of a novel class of biparametric measures of complexity of
Fisher-Rényi type which allows us to go further beyond the 2014-dated work [40] on the entropy-like measures of

ρ
(d)
T (ν) and the three basic two-component complexity measures of Crámer-Rao [33, 42], Fisher-Shannon [35, 36] and

LMC (Lopez-ruiz-Mancini-Calvet)[37–39] types.

The structure of the work is the following. In section II the biparametric complexities and their entropy-like
components (Rényi entropy, biparametric Fisher information) of a general continuous one-dimensional probability
distribution are defined, and their meaning and properties relevant to this effort are briefly given and discussed.
Then, in section III we determine and discuss the values of the previous entropy-like and complexity measures for the

density ρ
(d)
T (ν) which characterize the multidimensional blackbody distribution. Let us advance that the resulting

blackbody biparametric complexities are mathematical constants (i.e. they are dimensionless), independent of the
temperature T and of the physical constants (Planck’s constant, speed of light and Boltzmann’s constant), so that
they only depend on the spatial dimensionality. Finally, some concluding remarks are given.

II. THE BIPARAMETRIC FISHER-RÉNYI COMPLEXITY MEASURE OF A GENERAL DENSITY

In this Section we define and discuss the meaning of a class of biparametric complexity measures of Fisher-Rényi
type for a one-dimensional continuous probability distribution ρ(x), x ∈ Λ ⊆ R. Obviously it is assumed that the
density is normalized to unity, so that

∫
Λ
ρ(x)dx = 1.

First, we define the biparametric Fisher-Rényi complexity measure of the density ρ(x) as

C
(p,λ)
FR [ρ] = KFR(p, λ) φp,λ[ρ]×Nλ[ρ], p−1 + q−1 = 1, λ > (p+ 1)−1, (2)

where the symbols KFR(p, λ), φp,λ[ρ] and Nλ[ρ] denote a normalization factor, the biparametric Fisher information
and the Rényi entropy power or Rényi entropic length, Nλ[ρ] = exp (Rλ[ρ]), respectively. Moreover, the symbol Rλ[ρ]
denotes the Rényi entropy of order λ is defined [48] as

Rλ[ρ] =
1

1− λ ln

(∫

∆

[ρ(x)]λdx

)
; λ > 0, λ 6= 1, (3)

This quantity is known to quantify various λ-depending aspects of the probability spreading of the density ρ(x) all
over its support Λ. In particular, when λ→ 1 the Rényi entropy tends to the celebrated Shannon entropy S[ρ], which
measures the total spreading of ρ(x). On the other hand, the biparametric Fisher information Fp,λ[ρ] given Lutwak
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et al [47] by

φp,λ[ρ] =

(∫

∆

∣∣[ρ(x)]λ−2ρ′(x)
∣∣q ρ(x) dx

) 1
qλ

,
1

p
+

1

q
= 1 (4)

where p ∈ [1,∞) and λ ∈ R. Note that for the particular values (p, λ) = (2, 1) the square of this generalized measure

reduces to the standard Fisher information, i.e., φ2,1[ρ]2 = F [ρ] =
∫

∆
|ρ′(x)|2
ρ(x) dx. So, while F [ρ] quantifies the gradient

content of ρ(x), the generalized Fisher information φp,λ[ρ] with p 6= 2 and λ 6= 1 measures the (p, λ)-depending
aspects of the density fluctuations other than the gradient content.

And the normalization factor KFR(p, λ) in Eq. (2) is given by

KFR(p, λ) = (φp,λ[G]Nλ[G])−1 =

[
λ

1
q

p
1
p

ap,λ eλ

(−1

pλ

)λ−1
p +1

] 1
λ

= a
1
λ

p,λ

(
(pλ+ λ− 1)

qλ−λ+1
q

pλλ

) 1
λ−λ2

. (5)

where G denotes the generalized Gaussian distribution G(x) [47] given by

G(x) = ap,λ eλ(|x|p)−1 (6)

where eλ(x) denotes the modified q-exponential function [49]:

eλ(x) = (1 + (1− λ)x)
1

1−λ
+ , (7)

which for λ→ 1 reduces to the standard exponential one, e1(x) ≡ ex. for p ∈ (0,∞), λ > 1− p and with the notation
t+ = max{t, 0} for any real t; the constant ap,λ is given by

ap,λ =





p(1−λ)1/p

2B( 1
p ,

1
1−λ− 1

p )
if λ < 1,

p
2Γ(1/p) if λ = 1,

p(λ−1)1/p

2B( 1
p ,

λ
λ−1 )

if λ > 1.

(8)

Moreover, the symbol Nλ[G] denotes the Rényi entropic power of the generalized Gaussian distribution G(x) given
by

Nλ[G] =

[
ap,λ eλ

(−1

pλ

)]−1

(9)

in which Nλ[G] and φp,λ[G] represent the Rényi entropic power given in Eq. (9) and the biparametric Fisher infor-
mation of the generalized Gaussian distribution [47] which, for 1 ≤ p ≤ ∞ and λ > 1

1+p , the last quantity given

by

φp,λ[G] =





p
1
pλ

λ
1
qλ

[
ap,λ eλ

(
−1
pλ

) 1
q

]λ−1
λ

, p <∞

2(1−λ)/λλ
−1
λ , p =∞,

(10)

where ap,λ is given in (8).

Note that, from (2), (3) and (4) we can state that the biparametric complexity measure C
(p,λ)
FR [ρ] quantifies the

combined balance of the λ-dependent spreading facet of the probability distribution ρ(x) and the (p, λ)-dependent
oscillatory facet of ρ(x). It is then clear that this quantity is much richer than e.g. the Fisher-Shannon measure
which quantifies a single spreading aspect of the distribution (namely, its total spreading given by the Shannon
entropy power) together with a single oscillatory facet (which corresponds to the gradient content as given by the
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standard Fisher information). Indeed the generalized complexity measure C
(p,λ)
FR [ρ] includes the basic Fisher-Shannon

complexity measure [35, 36], CFS [ρ] = 1
2πeF [ρ] exp (2S [ρ]), and the various one-dimensional complexity measures

of Fisher-Rényi types recently published in the literature [41–45]. Most important is to point out that the novel

complexity quantifier C
(p,λ)
FR [ρ] includes the one-parameter Fisher-Rényi complexity measure C

(λ)
FR [43], since

C
(λ)
FR = (C

(2,λ)
FR )2λ.

These two measures of complexity present a number of similarities and differences, which are worth to mention. First,
following the lines of [43] it is straightforward to show that the biparametric measure, like the monoparametric one,

has the following important properties: a universal unity lower bound (C
(p,λ)
FR ≥ 1), invariance under scaling and

translation transformations and monotonicity. Moreover, the biparametric measure has the following behavior under
replication transformation

C
(p,λ)
FR [ρ̃] = n

1
λC

(p,λ)
FR [ρ]

where the density ρ̃ representing n replications of ρ is given by

ρ̃(x) =

n∑

m=1

ρm(x); ρm(x) = n−
1
2 ρ
(
n

1
2 (x− bm)

)
,

where the points bm are chosen such that the supports Λm of each density ρm are disjoints. This property shows
that this biparametric complexity quantifier, opposite to the monoparametric one, becomes replication invariant in
the limit λ → ∞; this limiting property is an effect of the power 1

λ which has the biparametric measure but not the
monoparametric one. In this limit, the minimizer distribution of this complexity measure has the form of a Dirac-like
delta. Moreover, this power effect provokes that the biparametric measure is well defined in the limit λ → ∞, what
does not happen in the monoparametric case. Another important difference between the bi- and uni-parametric
complexity quantifiers is that the biparametric one has two degrees of freedom; this means that it does not only
depend on λ but also on the parameter p. So, in particular when λ = 1, we can readily show that this quantifier
is minimized for Freud-like probability distributions of the form e−|x|

p

, which has a great physical relevance in the
theory of sub- and super-diffusive systems.

There exist many instances of the biparametric complexity measure C
(p,λ)
FR [ρ] which are relevant for different reasons.

Let us just mention three of them. First, when λ > 1
1+p , ∀p > 0, we have that the resulting measure

C
[p]
FR[ρ] ≡ C(p,1+ 1

p )

FR [ρ]

is composed by two particularly relevant entropic factors: the generalized Fisher information

φp,1+ 1
p
[ρ] =

(∫

∆

|ρ′(x)|q dx
) 1

2q−1

,

which is a pure functional of the derivative of the density ρ, and the Rényi entropic power

N1+ 1
p
[ρ] =

(∫

∆

[ρ(x)]
1+ 1

p dx

)− 1
p

=
〈

[ρ(x)]
1
p

〉−p

Moreover, this complexity measure is minimized by the distribution

ep,1+ 1
p
(x) = ap,1+ 1

p

(
1− |x|

p

p

)p

+

Note furthermore that the support of this distribution is [−p 1
p , p

1
p ], which boils down to [−1, 1] for both values p = 1

and p =∞, and it becomes longest for p = e.

Second, when λ = 2 the corresponding complexity measure C
(p,2)
FR [ρ] is proportional to the ratio

〈|ρ′(x)|q〉 1
2q

D[ρ] , since

the Fisher-information-factor is

φp,2[ρ] =

(∫

∆

ρ(x) |ρ′(x)|q dx
) 1

2q

= 〈|ρ′(x)|q〉
1
2q
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and the Rényi-entropic-power-factor is the inverse of the disequilibrium D(ρ) as

N2[ρ] =

(∫

∆

[ρ(x)]
2
dx

)−1

= D[ρ]−1

Moreover, the resulting measure C
(p,2)
FR [ρ] is minimized by the distribution

ep,2(x) = ap,2 (1− |x|p)+ .

Third, most remarkable, is that the measure in the limit p→∞ is also well defined, corresponding to a step function
∀λ > 0. In the latter case the complexity measure is given by

C
(∞,λ)
FR =

(
λ

2

) 1
λ

φ∞,λ[ρ]Nλ[ρ].

where the generalized Fisher-like information φ∞,λ[ρ] is given by

φ∞,λ[ρ] =

(∫

∆

[ρ(x)]λ−1 |ρ(x)′| dx
) 1
λ

(so that (φ∞,λ[ρ])λ corresponds to the total variation of ρλ

λ [47]) and Nλ[ρ] is the previously defined Rényi entropy

power. The measure C
(∞,λ)
FR has all the properties previously pointed out for the general biparametric Fisher-Rényi

complexity. Moreover, it is minimized by the the uniform distribution (as the basic LMC complexity). As well, within

the set of all possible step-permutations of a generic distribution ρ composed of N step functions, the measure C
(∞,λ)
FR

gets minimized by all the monotonically increasing or decreasing distributions.

III. THE BIPARAMETRIC FISHER-RÉNYI COMPLEXITY OF THE d-DIMENSIONAL BLACKBODY

In this section, the biparametric Fisher-Rényi complexity measure C
(p,λ)
FR is investigated for the d-dimensional

blackbody frequency distribution at temperature T , ρ(ν) ≡ ρ(d)
T (ν), given by Eq. (1). It is given by

C
(p,λ)
FR [ρ

(d)
T ] = KFR(p, λ) φp,λ[ρ

(d)
T ]×Nλ[ρ

(d)
T ], λp >

d

d− 1
(11)

where KFR(p, λ) is the normalization constant given by Eq. (5), and φp,λ[ρ
(d)
T ] and Nλ[ρ

(d)
T ] are the generalized Fisher

information and power Rényi entropy of the d-dimensional blackbody density, respectively, defined in the previous
section whose values will be first expressed in the following.

The Rényi entropy power Nλ[ρ
(d)
T ] = exp

(
Rλ[ρ

(d)
T ]
)

, where the Rényi entropy for the d-dimensional blackbody

density defined in (3), has been shown [50] to be given by

Rλ[ρ
(d)
T ] =

1

1− λ lnAR(λ, d) + ln

(
kBT

h

)
, λ > 0, λ 6= 1 (12)

where the constant AR(λ, d) has the value

AR(λ, d) =
Γ(λd+ 1)ζλ(λd+ 1, λ)

Γλ(d+ 1)ζλ(d+ 1)
. (13)

with λ ∈ N \ {1}, and the symbol ζλ(s, a) denotes the modified Riemann zeta function (also known as Barnes zeta
function) [51].

The biparametric Fisher information φp,λ[ρ], defined in (4), for the d-dimensional blackbody density at temperature
T has been recently obtained [50] as

φp,λ[ρ
(d)
T ] = [AF (p, λ, d)]

1
qλ

h

kBT
, q ∈ (1,∞), λ > 0,

1

q
+

1

p
= 1 (14)
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where AF (p, λ, d) denotes the proportionality constant,

AF (p, λ, d) =
I(q, λ, d)

(Γ(d+ 1)ζ(d+ 1))qλ−q+1
with I(q, λ, d) =

∫

R+

xq(dλ−d−1)+d

(ex − 1)qλ+1
|d(ex − 1)− xex|q dx. (15)

For d > λp
λp−1 (so that φp,λ[ρ

(d)
T ] is well-defined), q even and qλ ∈ N the integral I(p, λ, d) in (15) is analytically

solvable giving rise to the following value for the proportionality constant

AF (p, λ, d) =

∑q
i=0(−1)q−i

(
q
i

)
di(αd− i)! ζα+q−i(1 + αd− i, α)

(Γ(d+ 1) ζ(d+ 1))α
, (16)

with α ≡ qλ− q + 1. For the standard case (p = 2, λ = 1) one obtains that

AF (2, 1, d) =
1

2ζ(d+ 1)

(
ζ(d)− d− 3

d− 1
ζ(d− 1)

)
, d > 2 (17)

The insertion of (12) and (14) into (11) allows us to obtain the following expression

C
(p,λ)
FR [ρ

(d)
T ] = KFR(p, λ)AF (p, λ, d)

1
qλ AR(λ, d)

1
1−λ (18)

for the biparametric Fisher-Rényi complexity measure of the d-dimensional black body at temperature T , where
the constants AR(p, λ, d) and AF (λ, d) are given by Eqs. (13) and (15), respectively. Note that this two-parameter
complexity quantifier does not depend on any physical constants (e.g., Boltzmann and Planck constants) but it does
depend on the universe dimensionality only, thus having a universal character.

For a better understanding of how the biparametric Fisher-Rényi complexity measure C
(p,λ)
FR [ρ

(d)
T ] is able to charac-

terize the multidimensional blackbody distribution, we study its dependence on the spatial dimensionality d and the
parameters p and λ in Figures 1 and 2. In Fig. 1 we represent the (p, λ)-chart of the Fisher-Rényi complexity for the

three-dimensional blackbody distribution, C
(p,λ)
FR [ρ

(3)
T ], in terms of p and λ. This quantity has no physical units and

it does not depend on the blackbody temperature, what highlights the universal character of the chart. Note that it
captures a non-trivial entropic structure in the Planck distribution, which is quite smooth. Indeed, we observe that
the Fisher-Rényi complexity (i) presents a relative minimal at around (p =?, λ =?), (ii) increases for fixed λ when p is
augmenting, and (iii) decreases to unity for fixed p when λ is increasing. This is possibly a consequence of a delicate
balance between the distinct behavior of the distribution at the two extremes of the support, which contributes very
differently to the two entropic factors of the Fisher-Rényi complexity. These phenomena can be also observed in the

functions C
(2,λ)
FR [ρ

(3)
T ] and C

(p,1)
FR [ρ

(3)
T ] of Fig. 2, which correspond to the cuts at p = 2 y λ = 1 of the (p, λ)-chart,

respectively.
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FIG. 1: Representation of the Fisher-Rényi complexity for the three-dimensional blackbody distribution, C
(p,λ)
FR [ρ

(3)
T ],

in terms of p and λ.
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FIG. 2: Left: Dependence of the d-dimensional Fisher-Rényi complexity C
(2,λ)
FR [ρ

(d)
T ] on λ when d =

3(+), 4(×), 5(∗), 6(�). Right: Dependence of the d-dimensional Fisher-Rényi complexity C
(p,1)
FR [ρ

(d)
T ] on p when

d = 3(+), 4(×), 5(∗), 6(�).

Besides we study in Fig. 2 the dimensionality dependence of the Fisher-Rényi complexity measures C
(2,λ)
FR [ρ

(d)
T ] and

C
(p,1)
FR [ρ

(d)
T ] when d = 3(+), 4(×), 5(∗), 6(�) in terms of the corresponding parameters λ and p, respectively. Note that

the dimensionality behavior is qualitatively similar in each case. The complexity C
(2,λ)
FR [ρ

(d)
T ] as a function of λ has for

all dimensionalities a minimum and a maximum within the interval (0, 4) and then it monotonically decreases to unity.

On the opposite, the complexity C
(p,1)
FR [ρ

(d)
T ] as a function of p has only a minimum at p < 4 for all dimensionalities

and then it monotonically grows when p is increasing. In both cases the minimum location decreases when the
dimensionality is augmenting. Quantitatively, we observe that for λ ≥ 5 in the left graph and for p ≥ 4 in the right
graph the corresponding complexities do not practically depend on the dimensionality.

IV. CONCLUSIONS AND OPEN PROBLEMS

First we have shown in this paper that the Rényi entropy power, Nλ[ρ], (that generalizes the Shannon entropy
power) and the biparametric Fisher information, φp,λ[ρ], (which generalizes the standard Fisher information) allow us
to construct a novel class of generalized complexity measures for a general probability density ρ(x), the biparametric

Fisher-Rényi complexities denoted by C
(p,λ)
FR [ρ]. They quantify the combined balance of the λ-dependent spreading

aspects and the (p, λ)-dependent oscillatory facets of ρ(x), so being much richer than the basic Fisher-Shannon
measure and all its extensions of Fisher-Rényi type. Second, we have pointed out a number of properties of this
quantifier, such as universal lower bound, scaling and translation invariance and monotonicity, among others. Third,
we have applied these generalized measures of complexity to the d-dimensional blackbody radiation distribution at
temperature T .

We have found that they do not depend on the temperature nor on the physical constants (Planck constant, speed
of light and Boltzmann constant) but only on the spatial dimension, what gives them an universal character. We are
aware that the full power of the novel complexity quantifier here proposed will be shown in multimodal probability
distributions so abundant in natural phenomena such as e.g., the ones which are being observed in the modern
observational missions of the cosmic microscopic background of the universe as well as the emergent frequency
distributions of the cosmic neutrino and cosmic gravitational backgrounds (see e.g., [4]), the reason being that in
such cases this quantifier may be used to detect and quantify the inherent anisotropies. Moreover, the use of this
class of complexity quantifiers in fractal phenomena is being explored.
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[42] J. Antoĺın, J. C. Angulo, Complexity analysis of ionization processes and isoelectronic series, Int. J. Quant. Chem. 109
(2009) 586.

[43] L. Rudnicki, I. V. Toranzo, P. Sánchez-Moreno, J.S. Dehesa, One-parameter Fisher-Rényi complexity: Notion and hydro-
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[48] A. Rényi, Probability Theory (North Holland, Amsterdam, 1970).
[49] E. P. Borges, Physica A 340, 95 (2004).
[50] D. Puertas-Centeno, I. V. Toranzo and J. S. Dehesa, Biparametric Crámer-Rao and Heisenberg-Rényi complexities: Notion
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5.2 Crámer-Rao and Heisenberg-Rényi complexities

In this section we introduce two novel families of biparametric complexity measures of

Crámer-Rao and Heisenberg-Rényi types for a general probability density, which extend

the basic Crámer-Rao complexity measure and define a new family of complexity mea-

sures, respectively. Each family is basically composed by the product of a generalized

dispersion measure of Heisenberg type (the so-called typical deviation of order p) and a

generalized entropic measure of Fisher (Crámer-Rao case) or Rényi (Heisenberg-Rényi

case) type. Then, we discuss their main properties (invariance under scaling and trans-

lation transformations, lower-bounded by unity,....). Finally we apply these two novel

complexity measures to the d-dimensional blackbody at temperature T . We have found

that both types of quantifiers are universal constants in the sense that they are dimen-

sionless and they do not depend on the temperature nor on any physical constant (such

as e.g., Planck constant, speed of light or Boltzmann constant), so that they only depend

on the spatial dimensionality of the universe. The results show the existence of a non

trivial underlying mathematical structure, according to which these quantities become

minimal for some values of their characteristic parameters.

Specifically the following tasks have been done:

• We construct the two families of biparametric complexity measures of Crámer-Rao

and Heisenberg-Rényi types for a general probability density ρ.

• We discuss the basic properties of these complexity quantifiers, including their

unity minimization by the generalized Gaussian densities.

• We determine these two complexity quantifiers to the generalized Planck frequency

distribution of the blackbody radiation at temperature T in a d-dimensional uni-

verse. It is found that these two dimensionless quantities do not depend on T nor

on any physical constants. So, they have an universal character in the sense that

they only depend on the spatial dimensionality.

• To determine these blackbody complexity quantifiers we have calculated their

dispersion (typical deviations) and entropy (Rényi entropies and the generalized

Fisher information) constituents. They are found to have a temperature-dependent

behavior similar to the celebrated Wien’s displacement law of the dominant fre-

quency νmax at which the spectrum reaches its maximum.

These results have been published in the article [68] with coordinates:

Puertas-Centeno, D., Toranzo, I. V., & Dehesa, J. S. Biparametric complexities and

generalized Planck radiation law. Journal of Physics A: Mathematical and Theoretical,

50:505001, 2017.
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Complexity theory embodies some of the hardest, most fundamental and most challenging open
problems in modern science. The very term complexity is very elusive, so that the main goal of
this theory is to find meaningful quantifiers for it. In fact we need various measures to take into
account the multiple facets of this term. Here some biparametric Crámer-Rao and Heisenberg-Rényi
measures of complexity of continuous probability distributions are defined and discussed. Then, they
are applied to the blackbody radiation at temperature T in a d-dimensional universe. It is found
that these dimensionless quantities do not depend on T nor on any physical constants. So, they
have an universal character in the sense that they only depend on the spatial dimensionality. To
determine these complexity quantifiers we have calculated their dispersion (typical deviations) and
entropy (Rényi entropies and the generalized Fisher information) constituents. They are found to
have a temperature-dependent behavior similar to the celebrated Wien’s displacement law of the
dominant frequency νmax at which the spectrum reaches its maximum. Moreover, they allow us to
gain insights into new aspects of the d-dimensional blackbody spectrum and about the quantification
of quantum effects associated with space dimensionality.

Keywords: Biparametric measures of complexity of probability distributions, Information theory
of the blackbody radiation in a multidimensional universe, cosmic microwave background, Planck
distribution, Wien’s law, disequilibrium, Shannon entropy, Fisher information, Crámer-Rao com-
plexity, Fisher-Shannon complexity, LMC complexity, Heisenberg frequency, Shannon frequency,
Fisher frequency.

I. INTRODUCTION

The quantum many-body systems are not merely complicated in the way that machines are complicated but
they are intrinsically complex in ways that are fundamentally different from any product of design. This intrinsic
complexity makes them difficult to be fully described or comprehended. Moreover, in order to substantiate our
intuition that complexity lies between perfect order and perfect disorder (i.e., maximal randomness), the ultimate goal
of complexity theory is to find an operationally meaningful, yet nevertheless computable, quantifier of complexity.
Many efforts have been done to understand it by using concepts extracted from information theory and density
functional methods (see e.g., [1–4]). First, they used information entropies (Fisher information [5] and Shannon,
Rényi and Tsallis entropies [6–8]) of the one-body densities which characterize the quantum states of the system.
These quantities describe a single aspect of oscillatory (Fisher information) and spreading (Shannon, Rényi and
Tsallis entropies) types of the quantum wavefunction. However, this is not enough to describe and quantify the
multiple aspects of the complexity of natural systems from particle physics to cosmology [4, 9–12]. In fact there is no
general axiomatic formalization for the term complexity (see a recent related effort [13]), but various quantifiers which
take simultaneously into account two or more aspects of it. Most relevant up until now are the two-factor complexity
measures of Crámer-Rao [14, 15], Fisher-Shannon [16, 17] and LMC (Lopez-ruiz-Mancini-Calvet)[18–20] types. They
quantify the combined balance of two macroscopic aspects of the quantum probability density of the systems, and
satisfy a number of interesting properties: dimensionless, bounded from below by unity [21, 22], invariant under
translation and scaling transformation [23, 24]), and monotone in a certain sense [13]. Later on, some generalizations
of these three basic quantities have been suggested which depend on one or two parameters, such as the measures of
Fisher-Rényi [15, 25–28] and LMC-Rényi [29–32] types.

This article has two goals. First, we introduce two biparametric measures of complexities for continuous
probability densities, which are qualitatively different from all the previously known ones, generalizing some of
them (Crámer-Rao, LMC); namely, the generalized Crámer-Rao (or Fisher-Heisenberg) and the Heisenberg-Rényi
measures. Then, we discuss their main properties. Second, we apply these two complexity measures to the generalized
Planck radiation law, which gives the spectral frequency density of a blackbody at temperature T in a d-dimensional
universe. This quantum object has played a fundamental role since the pionnering works of Planck at the birth
of quantum mechanics up until now from both theoretical [33–43] and experimental [44–48] standpoints. Keep in
mind e.g. that the cosmic microwave background radiation which baths our universe today is known to be the most
perfect blackbody radiation ever observed in nature, with a temperature of about 2.7255(6) Kelvin [47–50]. Beyond
the temperature, we will focussed on the dependence of the complexity quantities on the space dimensionality
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d; mainly, because this variable is crucial in the analysis of the structure and dynamics of natural systems and
phenomena from condensed matter to high energy physics, cosmology and quantum infomation (see e.g. [51–58] and
the monographs [59–62]). The d-dependence of the entropy-like and complexity-like quantities of the d-dimensional
hydrogenic and harmonic systems has been recently reviewed [51] up until 2012, and more recently the three basic
complexity measures (Crámer-Rao, Fisher-Shannon and LMC) of the d-dimensional blackbody have been shown to
have an universal character in the sense that they depend neither on temperature nor on the Planck and Boltzmann
constants, but only on the space dimensionality d. In this work, we will prove that a similar statement can be argued
for the two biparametric measures of complexity mentioned above.

The structure of the article is the following. In section II some spreading quantities (typical deviations, Rényi
entropy, biparametric Fisher information) of a general continuous one-dimensional probability distribution are con-
sidered, and their meanings and properties relevant to this work are briefly given and discussed. In addition, two
biparametric complexity measures of Crámer-Rao and Heisenberg-Rényi character are defined in terms of the previ-
ous spreading quantities. In Section III the central moments, Rényi entropy and generalized Fisher information are
studied analytically and numerically for the d-dimensional blackbody spectrum in terms of its temperature and the
space dimensionality. This research allows to conclude that these measures could be used as quantifiers of the spatial
anisotropy whose details are being investigated at present in a more precise way with the most modern astronomical
tools. In particular, the generalized Fisher information (due to its strong sensitivity to the spectrum fluctuations)
could contribute to the elucidation of the origin of the cosmic microwave background anisotropies.

Then, in section IV the generalized measures of complexity of the blackbody spectrum are investigated, finding that
the biparametric complexities (Crámer-Rao and Heisenberg-Rényi) of the d-dimensional blackbody are dimensionless
and, moreover, they do not depend on the temperature T of the system nor on any physical constant (e.g., Planck’s
constant, speed of light, Boltzmann’s constant). Thus, they are universal quantities since they only depend on the
spatial dimensionality.

Finally, in section V some concluding remarks are given, and various open problems are pointed out relative to the
new complexity measures as well as the frequency distribution of a tri- and d-dimensional blackbody in order to shed
some more light on the knowledge of the radiation that baths our universe.

II. BASIC AND EXTENDED MEASURES OF COMPLEXITY

In this Section first we briefly give the three basic complexity measures of a probability distribution; namely, the
Crámer-Rao, Fisher-Shannon and LMC complexities. Then, we define two novel families of complexity measures (the
biparametric Crámer-Rao and Heisenberg-Rényi complexities) which generalize the previous ones.

A. Basic complexities

Let us consider a general one-dimensional random variable X characterized by the continuous probability distribu-
tion ρ(x), x ∈ Λ ⊆ R. Obviously it is asumed that the density is normalized to unity, so that

∫
Λ
ρ(x)dx = 1. The

basic measures of complexity of Crámer-Rao, Fisher-Shannon and LMC types are defined by means of the expressions

CCR [ρ] = F [ρ] V [ρ] , (1)

CFS [ρ] =
1

2πe
F [ρ] exp (2S [ρ]) , (2)

CLMC [ρ] = D [ρ] exp (S [ρ]) , (3)

respectively. The symbols F [ρ], V [ρ], S[ρ], and D[ρ] denote the standard Fisher information [3, 5]

F [ρ] =

∫

∆

|ρ′(x)|2
ρ(x)

dx, (4)

the variance (see e.g.[63])

V [ρ] = 〈x2〉 − 〈x〉2; 〈f (x)〉 =

∫

∆

f (x) ρ(x) dx, (5)

the Shannon entropy [6]

S[ρ] = −
∫

∆

ρ(x) ln[ρ(x)]dx, (6)
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and the disequilibrium [64]

D[ρ] =

∫

∆

[ρ(x)]2dx, (7)

of the probability density ρ(x), respectively. The Fisher information quantifies the gradient content or pointwise
concentration of the probability over its support interval Λ. The variance, the Shannon entropy and the disequilibrium
measure the following spreading properties of ρ(x): the concentration of the density around the centroid 〈x〉, the total
extent to which the density is in fact concentrated, and the separation of the density with respect to equiprobability,
respectively. Note that the Fisher information has a property of locality because it is very sensitive to the fluctuations
of the density, contrary to the three spreading quantities which have a global character because they are power
functionals of the density. The property of locality is very important in the quantum-mechanical description of
physical systems, because their associated wavefunctions are inherently oscillatory for all quantum states except at
the ground case.

Therefore, the Crámer-Rao, Fisher-Shannon and LMC complexities of ρ(x) are statistical measures of complexity
which quantify the combined balance of two aspects of the density described by their two associated spreading
components of dispersion and entropic character. Both the Crámer-Rao and Fisher-Shannon complexities have a
local-global character but in a different sense: The Crámer-Rao complexity CCR [ρ] quantifies the gradient content of
ρ(x) and the probability concentration around its centroid, and the Fisher-Shannon complexity CFS [ρ] measures the
gradient density jointly with the total extent of the density in the support interval as given by the squared Shannon
entropy power. The LMC complexity CLMC [ρ] has a global-global character because it measures simultaneously two
global spreading aspects of ρ(x): the disequilibrium and the total extent of the density as given by the Shannon
entropy power. These three dimensionless complexity measures are known to be bounded from below by unity
[21, 22], and invariant under translation and scaling transformation [23, 24]. The question whether these quantities are
minimum for the two extreme (or least complex ) distributions corresponding to perfect order and maximum disorder
(associated to an extremely localized Dirac delta distribution and a highly flat distribution in the one dimensional
case, respectively) is a long standing and controverted issue [32, 65] which has been partially solved. Indeed, these
three statistical measures have been recently shown to be monotone in a well-defined sense [13].

B. Extended complexities

Now, inspired by Lutwak et al’ efforts [66], we introduce two generalized statistical measures of complexity of local-
global character (the biparametric Crámer-Rao or Fisher-Heisenberg and Heisenberg-Rényi complexities) which extend
the basic complexity measures mentioned above. For this purpose we take into account the pth-typical deviation (or
pth absolute deviation with respect to the middle value) σp[ρ] of the probability density ρ(x) defined as

σp[ρ] =





e
∫
∆
ρ(x) ln |x−〈x〉|dx, if p = 0

(∫
∆
|x− 〈x〉|p ρ(x) dx

) 1
p , if 0 < p <∞

ess sup{|x− 〈x〉| : ρ(x) > 0}, if p =∞

(8)

and the Rényi entropic power defined as

Nλ[ρ] = eRλ[ρ], (9)

where Rλ[ρ] denotes the standard or monoparametric Rényi entropy of order λ [7] given by

Rλ[ρ] =
1

1− λ ln

(∫

∆

[ρ(x)]λdx

)
; λ > 0, λ 6= 1. (10)

Note that the the p-typical deviations quantify different facets (governed by the parameter p) of the concentration of
the probability density around the centroid, and the λ-Rényi entropic powers measure various aspects (governed by
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λ) of the global spreading of the probability density along its support interval. In particular we have that

Nλ[ρ] =





Length of the support, if λ = 0

e−〈ln ρ〉, if λ = 1

〈ρ〉−1 if λ = 2

ρ−1
max, if λ→∞.

It is also worth to realize the well-known fact that, when λ tends to unity, the Rényi entropy Rλ[ρ] tends to the
Shannon entropy S[ρ].

Besides, to define the novel complexity quantifiers we need to consider the (scarcely known) biparametric (p, λ)-
Fisher information [66] defined as

φp,λ[ρ] =





ess sup{|ρ(x)λ−2ρ′(x)| 1λ : x ∈ ∆}, if p = 1

(∫
∆

∣∣[ρ(x)]λ−2ρ′(x)
∣∣q ρ(x) dx

) 1
qλ , 1 < p <∞, = 1

(
Total variation of ρ(x)λ

λ

) 1
λ

, p→∞

(11)

with 1
p + 1

q = 1, p ∈ (1,∞), and λ ∈ R. Note that for the particular values (p, λ) = (2, 1), this generalized measure

reduces to the standard Fisher information F [ρ] in the sense that φ2,1[ρ]2 = F [ρ]. It is then clear that the (p, λ)-Fisher
informations quantify various fluctuation-like facets (governed by the parameters p and λ) of the probability density
ρ(x), including the gradient content (when p = 2 and λ = 1) .

The biparametric (p, λ)-Crámer-Rao (also called by biparametric Fisher-Heisenberg) complexity is defined as

C
(p,λ)
CR [ρ] = KCR(p, λ) φp,λ[ρ] σp[ρ], (12)

where 1 ≤ p ≤ ∞ and λ > 1
1+p , and the symbols σp[ρ] and φp,λ[ρ] denote the typical deviation of order p and the

Fisher information of order (p, λ), respectively, previously defined. Moreover, the constant KCR(p, λ) is given by

KCR(p, λ) =
1

φp,λ[G] σp[G]
(13)

where the φp,λ[G] and σp[G] denote the values of the (p, λ)th-Fisher information and the pth-order typical deviation
of the generalized Gaussian density G(x) ≡ Gp,λ(x) defined as [66]

G(x) = ap,λ eλ(|x|p)−1 (14)

for p ∈ [0,∞] and λ > 1− p. The symbol eλ(x) denotes the modified λ-exponential function:

eλ(x) = (1 + (1− λ)x)
1

1−λ
+ , (15)

where the notation t+ = max{t, 0} for any real t has been used. Note that for λ → 1 it reduces to the standard
exponential one, e1(x) ≡ ex. Moreover, the normalization constant ap,λ has the value

ap,λ =





p(1−λ)1/p

2B( 1
p ,

1
1−λ− 1

p )
if λ < 1,

p
2Γ(1/p) if λ = 1,

p(λ−1)1/p

2B( 1
p ,

λ
λ−1 )

if λ > 1,
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where the symbol B(a, b) = Γ(a)Γ(b)
Γ(a+b) denotes the known Beta function [69] and an errata has been corrected for the

(λ > 1)-case: it is not B
(

1
p ,

1
1−λ

)
as in [66], but B

(
1
p ,

λ
λ−1

)
. Note that the properties of the generalized Gaussian

density are carefully detailed in Sect. II-E of [66]; other, more recent, expressions of this generalized density function
and their corresponding properties have been shown (see e.g., [67, 68]).

On the other hand, the constant values φp,λ[G] and σp[G] are given by

φp,λ[G] =





p
1
λ a

λ−1
λ

p,λ (pλ+ λ− 1)−
(1− 1

p
)

λ , p <∞

2(1−λ)/λλ
−1
λ , p→∞

(16)

and

σp[G] =





(pλ+ λ− 1)−1/p, p ∈ (0,∞), λ > 1
1+p

e
λ

1−λ , p = 0, λ > 1

1 p→∞ ,

(17)

respectively. Note that the case (p = 2, λ = 1) corresponds to the basic Crámer-Rao measure CCR[ρ] given by (1).
From its definition (12), we observe that the biparametric Crámer-Rao or Fisher-Heisenberg complexity quantifies
the combined balance of a fluctuation aspect of the density (as given by the generalized Fisher information which
depends on the parameters p and λ; this aspect is the gradient content in the particular case p = 2, λ = 1) and a
dispersion facet of the probability concentration with respect to the centroid (as given by the central moment of
order p; this aspect is the variance of the density in the particular case p = 2).

The biparametric (p, λ)-Heisenberg-Rényi complexity is defined as

C
(p,λ)
HR [ρ] = KHR(p, λ)

σp[ρ]

Nλ[ρ]
(18)

where λ 6= 1, 0 ≤ p ≤ ∞ and λ > 1
1+p , and the symbols σp[ρ] and Nλ[ρ] denote the pth-typical deviation (8) and the

Rényi entropic power, respectively, previously defined. Moreover, the constant KHR(p, λ) has the value

KHR(p, λ) =
Nλ[G]

σp[G]
, (19)

where the symbol Nλ[G] denotes the Rényi entropic power of the generalized Gaussian density [66] is given by

Nλ[G] =
(
ap,λ eλ

(−1

pλ

))−1

(20)

and the symbols ap,λ and σp[G] have been previously given.

We realize from (18) that the biparametric (p, λ)th-Heisenberg-Rényi complexity quantifies the combined balance
of a dispersion aspect of the probability concentration with respect to the centroid (as given by pth-typical deviation
σp[G], which is the standard deviation of the density in the particular case p = 2) and the global spreading of the
density (as given by the Rényi entropic power of order λ, which boils down to the Shannon entropic power in the
particular case λ→ 1).

These two biparametric statistical complexities turns out to be invariant under scaling and translation trans-
formations and lower-bounded by unity, as implicitly shown in [66]; moreover, the equality to unity occurs at the
generalized Gaussian densities given by (14).
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To get a further insight into the type of densities Gp,λ(x) which minimize the two previous families of extended
complexities, we have indicated in Fig. 1 the kind of relevant distributions which correspond to a large set of values
for the parameters (p, λ). Let us only mention the standard Gaussian distribution, the exponential, the q-exponential,
the linear, the Cauchy, the logarithmic and the ladder distributions which are particular cases of generalized Gaussian
distributions with (p, λ) = (2, 1), (1, 1), (1, q), (1, 2), (0, 2), (2, 0) and (∞, λ), respectively. More important is to note
that the behavior of the tail of the distribution is closely related to λ, so that the minimizer distribution of the
complexities correspond to a compact-support distribution, a light-tailed distribution (i.e., one with infinite support
and all its moments finite) and a heavy-tailed distribution for the cases λ > 1, λ = 1 and λ < 1, respectively.
Thus, since Gaussianity occurs for minimal complexities, the two novel measures of complexity provide a relevant
information about the relative behavior of different regions of the distribution. This is illustrated elsewhere for some
specific quantum systems of Coulombic and harmonic character. Here we show in the next section the usefulness of
these measures of complexity by evaluating them for the generalized Planck distribution which governs the distribution
of radiation frequencies of a blackbody at temperature T in a universe of arbitrary dimensionality.

FIG. 1: The Gaussian (p, λ) plane.

III. APPLICATION TO THE GENERALIZED PLANCK RADIATION LAW

In this section we extend the information-theoretic study of a d-dimensional (d > 1) blackbody at temperature
T , initiated last year [42], by calculating the measures of dispersion (typical deviations of order p) beyond the
standard one (i.e., that with p = 2), the spreading quantities given by the Rényi entropic powers (which include the
Shannon entropic power as a particular case), the generalized Fisher informations (which includes the standard Fisher
information as a particular case) and the two biparametric complexity measures introduced in the previous section

(which generalize the three basic measures of complexity mentioned above) of its spectral energy density ρ
(d)
T (ν) (i.e.,

the energy per frequency and volume units contained in the frequency interval (ν, ν + dν) inside a d-dimensional
enclosure maintained at temperature T ), which is given by the (normalized-to-unity) generalized Planck radiation law
[33, 34] (see also [42])

ρ
(d)
T (ν) =

1

Γ(d+ 1)ζ(d+ 1)

(
h

kBT

)d+1
νd

e
hν
kBT − 1

, (21)

where h and kB are the Planck and Boltzmann constants, respectively, and Γ(x) and ζ(x) denote the Euler’s gamma
function and the Riemann’s zeta function[69], respectively.

A. Typical deviations

Let us first determine the typical deviations σp[ρ
(d)
T ] of the d-dimensional blackbody density ρ

(d)
T (ν) defined as

σp[ρ
(d)
T ]p = A

∫ ∞

0

|ν − 〈ν〉|p νd

eaν − 1
dν, (22)

with the notation

A =
1

Γ(d+ 1) ζ(d+ 1)
ad+1, a =

h

kBT
.
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Since the centroid of the density has the value

〈ν〉 = (d+ 1)
ζ(d+ 2)

ζ(d+ 1)

1

a
≡ b

a
,

we obtain that the typical deviation of even order p of the blackbody depends on temperature T as

σp[ρ
(d)
T ] = (AH(p, d))

1
p
kBT

h
, (23)

where the proportionality constant is given by

AH(p, d) =

p∑

n=0

(−1)p−n
(
p

n

)(
(d+ 1)

ζ(d+ 2)

ζ(d+ 1)

)p−n
Γ(d+ n+ 1)

Γ(d+ 1)

ζ(d+ n+ 1)

ζ(d+ 1)

≡
p∑

n=0

γn(p, d) ζ(d+ n+ 1), (24)

which only depends on the space dimensionality d. We observe that all p-typical deviations follow a Wien-like law, in
the sense that they are directly proportional to the temperature of the system. In Fig. 2 we plot the p-dependence of

σp[ρ
(d)
T ] h

kBT
for various dimensionalities of the universe, finding a linearly increasing behavior when p is augmenting.

Moreover, we note that the increasing of the space dimensionality provokes a larger dispersion of the radiation
frequencies with respect to the middle value.

 0

 2

 4

 6

 8

 2  4  6  8  10

σp[ρ
(d)
T ]

p

FIG. 2: Dependence of the pth-typical deviation, σp[ρ
(d)
T ] in h

kBT
-units, on the parameter p for the universe dimen-

sionalities d = 3(+), 4(×), 5(∗), 6(�).

B. Rényi entropies

Let us now calculate the Rényi entropic power Nλ[ρ
(d)
T )] = eRλ[ρ

(d)
T ], given by (9), of the multidimensional blackbody

density (21) at temperature T , where the λ-Rényi entropy is given by

Rλ[ρ
(d)
T ] =

1

1− λ ln

(∫

∆

[ρ
(d)
T ]λdν

)
; λ > 0, λ 6= 1. (25)

Taking into account Eqs. (9) and (10) and the corollary of the Lemma proved in Appendix V, we obtain that

Nλ[ρ
(d)
T ] = AR(λ, d)

1
1−λ

kBT

h
, (26)

with λ > 0, λ 6= 1, and the proportionality constant

AR(λ, d) =
Γ(λd+ 1) ζλ(λd+ 1, λ)

[Γ(d+ 1) ζ(d+ 1)]
λ

, (27)
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where the symbol ζn(s, a) ≡ ζn(s, a|1, ..., 1) denotes the modified Riemann zeta function or Barnes zeta function
[70, 71], defined for n ∈ N, which for a 6= 0,−1,−2, ... is known to have the integral representation, when Re(s) > n:

ζn(s, a) =
1

Γ(s)

∫ ∞

0

xs−1e(n−a)x

(ex − 1)n
dx

=

n−1∑

j=0

qn,j(a) ζ(s− j, a),

with the coefficients [71]

qn,j(a) =
1

(n− 1)!

n−1∑

l=j

(−1)n+l−1

(
l

j

)
S

(l)
n−1(1− a)l−j , (28)

where S
(l)
n are the well-known Stirling’s numbers of the first kind. The symbol ζ(s, a) denotes the known Hurtwitz’s

zeta function [69] so that for a = 1 it boils down to the standard Riemann’s zeta function ζ(s). Furthermore, it is
shown in Appendix V that the Barnes’ zeta function can be expressed as

ζn(s, a) =

n−1∑

j=0

qn,j(a) ζ(s− j, a− 1) =

n−1∑

j=0

qn,j(a) ζ(s− j),

as far as a ∈ N. In general the Barnes function is also known as the multiple (or nth-order) Hurwitz zeta function
given by

ζn(s, a|ω1, ..., ωn) =

∞∑

k1,...,kn=0

1

(Ω + a)s
,

with Re(s) > n; n ∈ N and where Ω = k1ω1 + ... + knωn. This function was first introduced by Barnes in 1899 [70]
(who also gives the general conditions to be fulfilled by the paramaters a and ωi, i ∈ N; see also [71]) in his study of
the multiple (or nth-order) gamma functions, whose physico-mathematical relevance was discovered in 1980 on the
study about the determinants of the Laplacians on the n-dimensional unit sphere.

Note from (26) that the λth-Rényi entropic power, which has units of frequency, follows a Wien’s like displacement
law in the sense that it linearly depends on the blackbody temperature. In Fig. 3 we study the behavior of the λth-

Rényi entropic power, Nλ[ρ
(d)
T ] h

kBT
, as a function of the parameter λ for various universe dimensionalities d = 3− 6.

Briefly, we observe that (i) it monotonically decreases when λ is increasing for all dimensionalities, and (ii) it increases
when d is increasing for all values of λ.

 5

 10

 15

 20

 25

 0  2  4  6  8  10

Nλ[ρ
(d)
T ]

λ

FIG. 3: Dependence of λth-Rényi entropic power, σp[ρ
(d)
T ] in h

kBT
-units, on the parameter λ for the universe dimen-

sionalities d = 3(+), 4(×), 5(∗), 6(�).
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C. Biparametric Fisher information

Now we calculate the (p, λ)th-order Fisher information of the blackbody density ρ
(d)
T given by

φp,λ[ρ
(d)
T ] =

(∫

Λ

∣∣∣∣[ρ
(d)
T ]λ−2

(
ρ

(d)
T

)′∣∣∣∣
q

ρ
(d)
T dν

) 1
qλ

, (29)

where p ∈ [1,∞), 1
p + 1

q = 1 and λ > 0. Operating similarly as before, we obtain that the biparametric Fisher

information φp,λ[ρ
(d)
T ] of the d-dimensional blackbody density (21) at temperature T can be expressed as

φp,λ[ρ
(d)
T ] = [AF (p, λ, d)]

1
qλ

h

kBT
, ∀q ∈ (1,∞), ∀λ > 0 (30)

with the proportionality constant

AF (p, λ, d) =
I(d, q, λ)

(Γ(d+ 1)ζ(d+ 1))qλ−q+1
, (31)

where the symbol I(p, λ, d) denotes the integral

I(p, λ, d) =

∫

R+

xq(dλ−d−1)+d

(ex − 1)qλ+1
|d(ex − 1)− xex|q dx, (32)

so that for even q and qλ ∈ N, (30) one has the value

I(p, λ, d) =

q∑

i=0

(−1)q+i
(
q

i

)
di
∫ ∞

0

e(q−i)x xαd−i

(ex − 1)1+qλ−i dx

=

q∑

i=0

(−1)q−i
(
q

i

)
di(αd− i)!ζα+q−i(1 + αd− i, α)

with α ≡ qλ− q+ 1. Summarizing, we have obtained that the biparametric Fisher information, φp,λ[ρ
(d)
T ], follows the

law (30) with the proportionality constant

AF (p, λ, d) =

∑q
i=0(−1)q−i

(
q
i

)
di(αd− i)! ζα+q−i(1 + αd− i, α)

[Γ(d+ 1) ζ(d+ 1)]α
(33)

for even q and qλ ∈ N. Note that in the particular, standard case λ = 1, q = 2, one has that

AF (2, 1, d) =
1

2ζ(d+ 1)

(
ζ(d)− d− 3

d− 1
ζ(d− 1)

)
, (34)

for d > 2. Moreover, a convergence analysis of the definition (11) allows one to show that the generalized Fisher

information φp,λ[ρ
(d)
T ] given by (30) is well-defined if and only if λp > d∗ = d

d−1 (which includes the condition

λ > 1
1+p , necessary to have finite typical deviations).

In Fig. 4 we plot a colour tridimensional map of biparametric Fisher information against its parameters (q, λ),
and the conjugated representation with respect to the parameters (p, λ) when d = 6. Therein we observe that
biparametric Fisher information has a non-trivial behaviour with an absolute minimum valley. Similar maps can be
obtained for other dimensionalities. To gain more insight into it, we make two cuts in the left colour map at p = 2 and
λ = 2 obtaining the two graphs (b) at the below of the figure which show a different behavior for the corresponding
generalized Fisher information. In the left graph with λ > 1/3 a minimum shows up at λmin for all dimensionalities
d = 3−6. In the right graph with p > 1 we observe a monotonically decreasing behavior with respect to the parameter
p for all dimensionalities d = 3− 6.
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FIG. 4: Above: Colour maps of the generalized Fisher information φp,λ[ρ
(d)
T ] in kBT

h -units against the parameters

(p, λ) and (q, λ) respectively, when d = 6. Below left: the generalized Fisher information φ2,λ[ρ
(d)
T ] in terms of λ for

d = 3−6. Below right: the generalized Fisher information φp,2[ρ
(d)
T ] in terms of p for d = 3−6. In the last two graphs

the upper (lower) curve corresponds to the case d = 3 (d = 6).

D. Biparametric complexity measures

1. Biparametric Crámer-Rao complexity

Let us now calculate the generalized Crámer-Rao complexity C
(p,λ)
FR [ρ

(d)
T ] of the d-dimensional blackbody density at

temperature T which, according to (12), is given by

C
(p,λ)
CR [ρ

(d)
T ] = KCR(p, λ) φp,λ[ρ

(d)
T ] σp[ρ

(d)
T ],

where the constant KCR(p, λ) is given in Eq. (13). Taking into account the values of φp,λ[ρ
(d)
T ] and σp[ρ

(d)
T ] given by

Eqs. (30) and (23), respectively, we obtain that the complexity measure C
(p,λ)
FR [ρ

(d)
T ] can be expressed as
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C
(p,λ)
CR [ρ

(d)
T ] = KCR(p, λ)(Γ(d+ 1)ζ(d+ 1))−α

×
[ q∑

i=0

(−1)q−i
(
q

i

)
di(αd− i)!ζqλ+1−i(1 + αd− i, 1 + q(λ− 1))

] 1
qλ

(
p∑

n=0

γn(d, p) ζ(d+ n+ 1)

) 1
p

, (35)

for even q, qλ ∈ N and where the symbol γn(d, p) is defined by (24) and ζm(x, y) is the Barnes zeta function
mentioned above. Most important is to note that this complexity quantifier depends only on the parameters (p, λ)
and the dimensionality of the universe d.

In Fig. 5, we plot a colour tridimensional map of C
(p,λ)
CR [ρ

(d)
T ] ≡ C

(p,λ)
CR (d) against the parameters (p, λ), and the

conjugated representation with respect to the parameters (p, λ) when d = 6. We observe that this complexity
measure captures a non-trivial structure with an absolute minimum valley. Similar maps can be obtained for
other dimensionalities. For completeness let us point out that when d = 3, the absolute minimum is located at

(p ' 1.91, λ ' 1.55), for which the complexity C
(1.91,1.55)
CR ' 1.29. This illustrates to what extent the Crámer-Rao

complexity captures such an structure even for distributions so well behaved as the generalized Planck distribution
law. This suggests that this complexity quantifier must be a powerful tool for the information-theoretical analysis of
much more complex physical laws.

To get a further insight into this complexity map C
(p,λ)
CR (d) we make two cuts at p = 2 and λ = 2 for various

dimensionalities d = 3, 4, 5, 6 as it is shown in the two below graphs of the figure. In the below-left graph we plot the

complexity C
(3,λ)
CR (d) in terms of λ for λ > 1/3, finding the existence of a value λmin which minimizes this measure;

as well, we observe that it tends toward a constant value at large values of λ. In the below-right graph we plot

the complexity C
(p,2)
CR (d) in terms of p, we also find a minimum but, opposite to the previous case, the asymptotic

p-behavior is clearly divergent.
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FIG. 5: Above: Colour map of the Crámer-Rao complexity C
(p,λ)
CR (d) against the parameters (p, λ) and (q, λ) when

d = 6. Below left: Dependence of the Crámer-Rao complexity C
(2,λ)
CR (d) on λ when d = 6. Below right: Dependence of

the Crámer-Rao complexity C
(p,2)
CR (d) on p when d = 3−6. In the last two graphs the upper (lower) curve corresponds

to the case d = 3 (d = 6).

2. Biparametric Heisenberg-Rényi complexity

The biparametric Heisenberg-Rényi C
(p,λ)
HR [ρ

(d)
T ] of the d-dimensional blackbody density ρ

(d)
T can be written, accord-

ing to (18), as

C
(p,λ)
HR [ρ

(d)
T ] = KHR(p, λ)

σp[ρ
(d)
T ]

Nλ[ρ
(d)
T ]

with the constant KHR(p, λ) given by (19) Moreover, in the general case λ 6= 1 this constant is

KHR(p, λ) = (pλ+ λ− 1)
qλ−λ+1
qλ−q (pλ)

1
1−λ a−1

p,λ,

178



Journal of Physics A: Mathematical and Theoretical, 50:505001, 2017

so that the corresponding expression for the complexity measure C
(p,λ)
HR [ρ

(d)
T ] is

C
(p,λ)
HR [ρ

(d)
T ] = KHR(p, λ)

(
Γ(λd+ 1)ζλ(λd+ 1, λ)

Γλ(d+ 1)ζλ(d+ 1)

) 1
λ−1

(
p∑

n=0

γn(d, p)ζ(d+ n+ 1)

) 1
p

, (36)

with λ ∈ N, p even. Again here, we note that this complexity quantifier depends only on the parameters (p, λ) and
the dimensionality of the universe d.

In Fig. 6, a colour tridimensional map of C
(p,λ)
HR [ρ

(d)
T ] ≡ C

(p,λ)
HR (d) is given, which shows the dependence of the

Heisenberg-Rényi complexity in terms of the parameter λ for different values of the parameter p for the spatial dimen-
sionality d = 6. We observe that Heisenberg-Rényi complexity measure allows us to capture a non-trivial structure
with an absolute minimum. Similar complexity maps can be obtained for other dimensionalities. In particular when

d = 3 this minimum is located at (p ' 1.34, λ ' 1.24), for which this measure has the value C
(1.34,1.24)
CR ' 1.08. To

better understand this figure at the dimensionalities d = 3, 4, 5, 6, we make two cuts at p = 3 and at λ = 1 which

give rise to the two below graphs. In the below-left graph we plot the complexity C
(3,λ)
HR (d) in terms of λ for λ > 1/4,

finding the existence of a λmin which minimizes the measure as well as a constant asymptotic trend when λ → ∞.

In the below-right graph we plot the complexity quantifier C
(p,1)
HR (d) for p > 0, finding a minimum value pmin which

minimizes the complexity, as well as a divergent asymptotic behavior similar to the one previously found for the
Crámer-Rao complexity measure.
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FIG. 6: Above: Colour map of the Heisenberg-Rényi complexity C
(p,λ)
HR [ρ

(d)
T ] ≡ C(p,λ)

HR (d) against the parameters (p, λ)

when d = 6. Below left: Dependence of the Heisenberg-Rényi complexity C
(3,λ)
HR (d) on λ when d = 3− 6. Below right:

Dependence of the Heisenberg-Rényi complexity C
(p,1)
HR (d) on p when d = 3 − 6. In the last two graphs the upper

(lower) curve corresponds to the case d = 3 (d = 6).

Finally, for completeness, in Fig. 7 the generalized Gaussian distributions which minimize the two novel complexity
quantifiers of Crámer-Rao (red color) and Heisenberg-Rényi (blue) types introduced in this work are compared with
the corresponding Planck distribution law (black) for the dimensionality d = 3. We observe certain similarities in the
left fall of the Crámer-Rao and Planck cases, and in the right fall of the Heisenberg-Rényi and Planck cases.
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FIG. 7: Comparison of the generalized Gaussian minimizers of the extended Crámer-Rao (red) and Heisenberg-Rényi
(blue) with Plank distribution law (black) when d = 3.

IV. CONCLUSIONS AND OPEN PROBLEMS

It is known that we need various measures to take into account the multiple facets of the concept of complexity in a
complex many-body system. In this paper we have introduced and discussed two novel biparametric complexity tools
of Crámer-Rao and Heisenberg-Rényi types, which extend the three basic measures of complexity (i.e., Crámer-Rao,
Fisher-Shannon and LMC) and some modifications which have been published up until now. Then we have illustrated
the usefulness of these two complexity measures by applying and explicitly computing them for a relevant quantum
object, the d-dimensional blackbody at temperature T . We have found that they are universal constants in the sense
that they are dimensionless and they do not depend on the temperature nor on any physical constant (such as e.g.,
Planck constant, speed of light or Boltzmann constant), so that they only depend on the spatial dimensionality of
the universe. The results show the existence of a non trivial underlying mathematical structure, according to which
these quantities become minimal for some values of their characteristic parameters.

To determine these generalized measures of complexity for the d-dimensional blackbody radiation with standard
(d = 3) and non-standard dimensionalities we needed to calculate various dispersion and entropy-like quantities in
terms of dimensionality d and temperature T . Indeed, we have determined the typical deviations (that generalize
the standard deviation), the Rényi entropy (that generalizes the Shannon entropy and the disequilibrium) and the
biparametric Fisher information (which generalizes the standard Fisher information) of the d-dimensional Planck
density in an analytical way. We have found that these quantities, slightly modified, have a Wien-like temperature
behavior similar to the well-known Wien’s law followed by the frequency νmax at which the density is maximum.
The values of these characteristic quantities, particularly the ones associated to the biparametric Fisher information,
might be of potential interest to grasp the anisotropies of the cosmic microwave background radiation (which yields
information about our Universe at around 380 000 years after the Big Bang). Finally, we wonder whether this
information-theoretical approach may be used for the (broadly unknown) cosmic neutrino background and the cosmic
gravitational background, which would provide hints about our Universe one minute after the Big Bang and during
the Big Bang, respectively [72].
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V. APPENDIX A

Here we explicitly solve the integral functionals needed to determine the Rényi entropies of the d-dimensional
blackbody in section III.

Lemma. Let n,m, k ∈ N0, n, k > 0, n > k ≥ m y r, s, p ∈ R, con r > s, r > p. Then, the following multiparametric
integral has the value

∫ ∞

0

xne(mr+(k−m)s+p)x

(erx − esx)k+1
dx =

1

(r − s)n+1

n!

k!

k∑

i=0

k−i∑

j=0

(−1)k+i

(
i+ j

j

)
S

(i+j)
k

(
k −m+

s− p
r − s

)j
ζ

(
n+ 1− i, r − p

r − s

)

=
1

(r − s)n+1
n!

k∑

i=0

qk+1,i

(
k −m+

r − p
r − s

)
ζ

(
n+ 1− i, r − p

r − s

)
,

(37)

where the Stirling numbers S
(l)
n and the Choi coefficients are related by Eq. (28).

Proof. Let us begin with the multiparametric functional

t
kJ

n
m(r, s, p) =

∫ ∞

0

xne(m−k)rxe(m−t)sxepx

(erx − esx)m
dx (38)

with r > 0, r > s, r > p, y n,m, k, t ∈ N, n + 1 > m ≥ k, t. By deriving this functional with respect to s and r,
one readily finds some recurrence relations t

kJ
n
m(r, s, p) for it. For convenience, however, we first make the change of

variable y = (r− s)x, because then one realizes that the functional only depends on r−p
r−s when m+ 1 = k+ t, so that

it is better to write

t
kJ

n
k+t−1(r, s, p) =

1

(r − s)n+1
t
kf

n
k+t−1

(
r − p
r − s

)
, (39)

and then the abovementioned derivations yield the following recurrence relations:

1
k+1f

n+1
k+1 (x) =

1

k

[(
n+ 1 + x

d

dx

)
1
kf

n
k (x)− (k − 1)1

kf
n+1
k (x)

]
(40)

t+1
k fn+1

k+t (x) =
1

k + t− 1

[(
n+ 1 + (x− 1)

d

dx

)
t
kf

n
k+t−1(x) + (t− 1)tkf

n+1
k+t−1(x)

]
. (41)

On the other hand we can obtain that

1
1f
n
1 (r, s, p) = (−1)n+1ψ(n)

(
r − p
r − s

)
, (42)

by noticing that 1
1J

n
1 (r, s, p) is the n-th derivative of the integral (see Eq. 3.311-11 of Ref. [73])

∫ ∞

0

epx − eqx
erx − esx dx =

1

r − s

[
ψ

(
r − q
r − s

)
− ψ

(
r − p
r − s

)]
,

with respect to p. The symbol ψ(n)(x) denotes the nth derivative of the digamma function [69].

The recurrence relation (40) with the initial condition (42) gives rise by induction to

1
kf

n
k (x) =

(−1)k+n

(k − 1)!

k−1∑

j=0

k−j−1∑

i=0

(
n

j

)
(i+ j)!

i!
S

(i+j)
k−1 (x+ k − 2)iψ(n−j)(x). (43)

Then, the recurrence relation (43) in t with the initial (t = 0) condition allows us to obtain also by induction the
expression

t+1
k fnk+t(x) =

(−1)k+t+n

(k + t− 1)!

k+t−1∑

j=0

k+t−j−1∑

i=0

(
n

j

)
S

(i+j)
k+t−1

(i+ j)!

i!
(x+ k − 2)i ψ(n−j)(x). (44)

182



Journal of Physics A: Mathematical and Theoretical, 50:505001, 2017

Now the replacement of (44) into (39), taking into account that ψ(n)(x) = (−1)n+1n!ζ(n + 1, x) and redefining the
involved parameters in a convenient manner, we finally obtain the wanted expression (37):

∫ ∞

0

xnemrxe(k−m)sxepx

(erx − esx)k+1
dx =

1

(r − s)n+1

n!

k!

k∑

i=0

k−i∑

j=0

(−1)k+i

(
i+ j

j

)
S

(i+j)
k

(
k −m+

s− p
r − s

)j
ζ

(
n+ 1− i, r − p

r − s

)

where n,m, k ∈ N, n > k ≥ m y r, s, p ∈ R, con r > s, r > p. And from this expression and Eq. (28) follows the
second expression of the Lemma.

Corollary. Let k ∈ N, a ∈ R, n ∈ N. Then, the following finite sum of standard Hurwitz functions ζ(s, a)

Zk(n, a, t) =

k−1∑

i=0

qk,i(a)ζ(n− i, t), (45)

verifies

ζk(n, a) = Zk(n, a, {a}) = Zk(n, a, 1 + {a}) = . . . = Zk(n, a, a), (46)

∀a ∈ R/N (with {a} ≡ a− [a] being the non-integer part of a),and

ζk(n, a) = Zk(n, a, 1) = Zk(n, a, 2) = . . . = Zk(n, a, a), ∀a ∈ N. (47)

Proof. Using the previous Lemma with s = 0, r = 1 and p < 1 for k,m, n ∈ N0 and n > k ≥ m one has that

1

n!

∫ ∞

0

xne(m+p)x

(ex − 1)k+1
dx =

k∑

i=0

qk+1,i(k −m− p+ 1)ζ(n+ 1− i, 1− p). (48)

On the other hand, taking into account the integral representation [70] with m+ p = k + 1− a we can write

ζk+1(n+ 1, a) =
1

Γ(n+ 1)

∫ ∞

0

xne(m+p)x

(ex − 1)k+1
dx =

k∑

i=0

qk+1,i(a)ζ(n+ 1− i, 1− p) (49)

(where the last identity holds provided that 1 > p = k+1−m−a ≥ 1−a) and using the notation a− [a] ≡ {a}, where
[a] denotes the integer part of a ∈ R, it is straightforward to see that p+ {a} = k + 1−m− [a] ≡ n′ ∈ N. The latter
implies that, due to the conditions 0 ≤ m ≤ k and p < 1, the values of p are limited to p = 1−a, 2−a, ..., [a]+1−a <
1, ∀a ∈ R/N; for a ∈ N the inequality is fulfilled for p = 1− a, · · · , [a]− a = 0 < 1. Thus, we have proved that

ζk+1(n+ 1, a) =

k∑

i=0

qk+1,i(a)ζ(n+ 1− i, 1− p)

where p can take the values p = 1− a, 2− a, ..., 1−{a}, save when a ∈ N in which case p = 1− a, 2− a, ..., 0 so that
then one has

ζk(n, a) = Zk(n, a, {a}) = Zk(n, a, 1 + {a}) = Zk(n, a, 2 + {a}) = . . . = Zk(n, a, a) (50)

∀a ∈ R/N, and

ζk(n, a) = Zk(n, a, 1) = Zk(n, a, 2) = . . . = Zk(n, a, a) ∀a ∈ N. (51)

Corollary. For k ∈ N, n ∈ N,m ∈ N0, and n+ 1 > k > m ≥ 0 one has that

1

n!

∫ ∞

0

xnemx

(ex − 1)k
dx =

k−1∑

i=0

qk,i(k −m) ζ(n+ 1− i).
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This result directly follows from the previous Lemma with r = 1 and s = p = 0.
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[19] Catalan R G, Garay J, López-Ruiz R 2002 Features of the extension of a statistical measure of complexity to continuous

systems Phys. Rev. E 66 011102
[20] Anteneodo C and Plastino A R 1996 Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of
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Chapter 6

Differential-escort

transformations and the

LMC-Rényi complexity

In this chapter we introduce the notion of differential-escort transformation Eα of a

probability density ρ(x), we discuss its most important properties and then we illustrate

its usefulness (i) by applying it to the exponential and power-law decaying densities

and (ii) by proving the unknown monotonicity property of the LMC-Rényi complexity

measure. Basically, a differential-escort transformation is similar to a escort one, but

the normalization process is done through a non-linear variable change. Let us advance

that the proof of the monotonicity of the LMC-Rényi complexity basically rests in the

convexity behaviour of the Rényi entropy of a differential-escort density with respect to

the transformation parameter α, which in turn is proven by means of Jensen’s inequality.

Moreover, the control over this property of monotonicity allows us to explore the entropic

behaviour in the low and high complexity limits. Finally, the q-exponential Tsallis’

densities are obtained as the differential-escort transformation of the exponential one,

what is an illustration of the capability of these transformations to dramatically change

the tail of the distribution.

Specifically, we have carried out the following tasks:

• We define the notion of differential-escort transformation Eα of the probability

density ρ. We will call by differential-escort density, ρα, to the differential-escort-

transformed of ρ; that is, ρα ≡ Eα[ρ].

• We prove and discuss the basic mathematical properties of these transformations.

Here let us just advance its composition law

Eα[Eα′ [ρ]] = Eα′ [Eα[ρ]] = Eαα′ [ρ]
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• We find the following linear law for the Shannon entropy of the differential-escort

density ρα, as well as, a pseudo-lineal law for the Rényi and Tsallis entropy through

a rescaling of the entropic parameter:

S[ρα]

S[ρ]
=
Rλ[ρα]

Rλα [ρ]
=
Tλ[ρα]

Tλα [ρ]
= α, λα = 1 + α(λ− 1).

• We prove the convexity of the Rényi entropy Rλ of the differential-escort density

ρα on the transformation parameter α, which depends on the sign of λ− 1 as

sgn

(
∂2Rλ[ρα]

∂α2

)
= sgn(1− λ).

• We prove the monotonicity behaviour of the LMC-Rényi complexity measure with

respect to the differential-escort transformation:

Cλ,β[ρα′ ] ≥ Cλ,β[ρα], α′ > α > 0.

In particular, the following result is obtained: Given the family of uniform dis-

tributions Ξ, and the class of transformations Eα, then the triplet (Cλ,β,Ξ,Eα)

satisfies the monotonicity property of the LMC-Rényi measure of complexity.

• We study the entropic and complexity behaviour of a differential-escort density ρα

when it is strongly deformed to the low complexity limit (α → 0) and to the high

complexity limit (α→∞).

• We apply the differential-escort transformation to the exponential and power-law

decaying densities. We find, in particular, that the full family of q-exponential den-

sities can be obtained as the differential-escort transformations of the exponential

density.

These results are contained in the preprint [71] with coordinates: Puertas-Centeno D.

Differential escort distributions and LMC-Rényi complexity monotones, preprint UGR

2018, which is attached below.



Differential-escort transformations and the
LMC-Rényi complexity measure

D. Puertas-Centeno

April 9, 2018

Escort distributions have been shown to be very useful in a great variety
of fields ranging from information theory, nonextensive statistical mechanics
till coding theory, chaos and multifractals. In this work we give the notion
and the properties of a novel type of escort density, the differential escort
densities , which have various advantages with respect to the standard ones.
We highlight the behaviour of the Shannon, Rényi and Tsallis entropies of
these distributions. Then, we illustrate their utility to prove the monotonicity
property of the LMC-Rényi complexity measure and to study the behaviour
of general distributions in the two extreme cases of minimal and very high
LMC-Rényi complexity. Finally, this transformation allows us to obtain the
Tsallis q-exponential densities as the differential escort transformation of the
exponential density.

1 Introduction

The study of chaotic and complex systems have needed the development of
mathematical tools able to capture the fundamental statistical properties of
the system. Escort distributions have been introduced in statistical physics
for the characterization of multifractals systems [1]. These distributions {p̃i}
conform a one-parameter class of transformations of an original probability

distribution {pi} according to p̃i =
pqi∑N
i=1 p

q
i

. with q ∈ R.

This idea previously appeared in relation to the Rényi-entropy-based cod-
ing theorem [2, 3] and Rényi-entropy-based fractal dimensions [4]. The math-
ematical properties of the discrete escort distributions have been widely stud-
ied [5, 6, 7, 8]. This concept can be easily extended to the continuous case.
Given a real variable x ∈ R and a probability distribution ρ(x), such that
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∫
R ρ(x) dx = 1, one has the escort distribution [9] defined as

Eq[ρ](x) ≡ ρ̃(x) =
[ρ(x)]q∫

R[ρ(t)]q dt
(1)

on the assumption that
∫
R ρ(x)q dx < ∞. Note that the parameter q plays

a focus role to highlight different regions of ρ(x). These distributions play a
relevant role in coding problems, non-equilibrium statistical mechanics [10,
11] and electronic structure [12, 13, 14]. A particular example is the q-
exponential distribution

eq(x) ∝ (1 + (q − 1)|x|) 1
1−q (2)

which maximizes the Rényi entropy

Rq[ρ] =
1

1− q log

(∫

R
[ρ(x)]q dx

)
(3)

and the Tsallis entropy

Tq[ρ] =
1

1− q

(
1−

∫

R
[ρ(x)]q dx

)
(4)

subject to averarage-constraints governed by its escort distribution. Of course,
in the limit q → 1 the original distribution is recovered in Eq. (1), the expo-
nential distribution is also recovered in Eq. (2) and the Shannon entropy

S[ρ] = lim
q→1

Rq[ρ] = lim
q→1

Tq[ρ] = −
∫

R
ρ(t) log[ρ(t)] dt (5)

is respectively recovered in Eqs (3) and (4).
The aim of this work is to introduce the notion of differential-escort trans-

formation, Eα, and to study its basic mathematical properties (probability
invariance, composition rule, scaling property,...). Then, we highlight the
strongly regular behaviour of the Shannon, Rényi and Tsallis entropies under
this transformation, observing that the entropic parameter naturally rescales
similarly to the rescaling behavior recently found by Korbel [15] for the non-
additivity parameter in Tsallis thermostatistics [16]. This behavior is related
to the rescaling of the relative fluctuations of a system with a finite number
of particles, and plays a relevant role in the deformed calculus developed by
Borges [17] as it is discussed by Korbel himself. Moreover we also note that
the q-exponential distribution is just the differential-escort transformation of
the standard exponential distribution; so, differently to what happens to the

189



Preprint UGR, 2018

the standard escort transformation of an exponential distribution which is
another exponential. In fact, we show that the differential-escort transfor-
mation changes the behaviour of the distribution tail in a deeper and more
interesting manner than the standard escort transformation. Finally, the no-
tion of differential escort density allows us to solve the monotonicity problem
of the LMC-Rényi complexity measure [18, 19] recently posed by Rudnicki et
al [20], as well as to propose a possible characterization of power-law-decaying
probability densities through Lemma 1.

The structure of this work is the following: In section 2 the differential-
escort transformation Eα is defined and its basic mathematical properties are
given. In section 3 the entropic properties of the differential escort densities
are discussed. In section 4 the LMC-Rényi complexity of the differential
escort densities is studied and the monotonicity property of this measure is
proven. In section 5 the entropic anc complexity behaviour of a general prob-
ability density when it is deformed until to the low and high complexity limits
is studied. Then, in section 6 this transformation is applied to distributions
of exponential, q-exponential and general power-law decaying distributions.
Finally, in section 7 some conclusions and open problems are given.

2 Differential-escort transformation

In this section we give the notion and properties of the differential escort
transformation. Let us advance that the basic difference with the standard
escort transformations is the normalization process. Indeed, while an es-
cort density is normalized according to (1), in the differential-escort case the
normalization is achieved through a variable change which imposes the con-
servation of the probability in any differential interval of the support, as we
will see later.

The notion

Let us consider a probability density ρ(x), x ∈ Λ ⊆ R, normalized, so that∫
Λ
ρ(x)dx = 1; and let us denote D(R) for the set of any distribution ρ on

any subset of R.

Definition 1. Let α ∈ R, and ρ ∈ D(R) a probability density with a con-
nected support1 Λ, we define the transformation Eα : D(R) −→ D(R) as:

1We assume that the support is connected for easier reading. The definition could be
easily extended to any distribution without disturbing its properties.
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Eα[ρ](y) ≡ [ρ(x(y))]α (6)

where y = y(x) is a biyection defined by:

dy

dx
= [ρ(x)]1−α, y(x0) = x0, x0 ∈ Λ (7)

The support Λα of the transformed density Eα[ρ] is given as Λα = y(Λ) =
{y ∈ R | y = y(x), x ∈ Λ}. To make a easier reading we will denote ρα(y) ≡
Eα[ρ](y), and generally we will take x0 = 0, and y(x) =

∫ x
0

[ρ(t)]1−α dt.

We remark that this definition is valid for any α ∈ R, contrary with the
standard escort distribution for which the parameter q is restricted by the
condition

∫
Λ
[ρ(x)]α dx <∞ as already indicated in Eq. (1). This extension is

possible since the support of a differential-escort density Λα does not remain
invariant contrary to the standard escort case. As we will see later, for any
probability density ρ, the operation (1) defines a transformed density ρα for
any α ∈ R.

Let us also point out that the election of x0 only implies a translation.
In addition, when α = 1, one has that the operation Eα corresponds to the
identity, i.e., E1[ρ] = ρ; and when α = 0, the operation Eα transform ρ to an
uniform distribution with an unitary support, concretely

E0[ρ](x) =

{
1, x ∈ [x0 − p−, x0 + p+]
0, otherwise

,

where p− = Prob[x < x0] and p+ = Prob[x > x0].

The basic properties

In the following we will give some basic properties of the differential-escort
transformation.

Property 1 is the most characteristic property of this transformation
which consists in a strong probability invariance far beyond the mere conser-
vation of the norm of the standard escort case.

Property 1. Probability invariance
Let α ∈ R and ρ a probability density with a connected support Λ. Then, for
any pair of points x1, x2 ∈ Λ and respectively y1 = y(x1) and y2 = y(x2) the
identity ∫ x2

x1

ρ(x)dx =

∫ y2

y1

ρα(y)dy, (8)
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or equivalently
Prob[x ∈ [x1, x2]] = Prob[y ∈ [y1, y2]], (9)

is fulfilled.

Proof. This property follows straightforwardly from (1) since
∫ y2

y1

ρα(y) dy =

∫ x2

x1

[ρ(x)]α
dy

dx
dx =

∫ x2

x1

[ρ(x)]α [ρ(x)]1−α dx =

∫ x2

x1

ρ(x) dx

This property makes a deep difference with escort distributions. While
for the latter ones the conservation of the norm is imposed dividing by a real
number as indicated in (1), for the differential-escort distributions it naturally
holds as a consequence of property 1 since

∫
Λα
ρα(y) dy =

∫
Λ
ρ(x) dx = 1.

Moreover, a similar property is fulfilled by a relevant transformation between
auxiliary and physical probability densities in the context of quantum gravity
[21].

Property 2. Composition law
Let the real numbers α, α′, then

Eα[Eα′ [ρ]] = Eα′ [Eα[ρ]] = Eαα′ [ρ] (10)

holds.

Proof. By definition, Eα[ρ(x)](y) ≡ ρα(y) = [ρ(x)]α, where dy = [ρ(x)]1−αdx.
Moreover, one has Eγ[Eα[ρ(x)]](z) = Eγ[ρα(y)](z) = [ρα(y)]γ = [ρ(x)]α·γ

where dz = [ρα(y)]1−γdy, so that one has dz = [ρ(x)]α(1−γ)[ρ(x)]1−αdx =
[ρ(x)]1−α·γdx.

This property is similar to the one of the standard escort transformations,
but the latter one holds in a more restrictive sense by taking into account
that the standard escort transformations are not typically well defined for
any α ∈ R . On the other hand this property allows us to find the inverse
element of the differential-escort transformation

[Eα]−1 = Eα−1 , α 6= 0, (11)

what allows us to say that Eα 6=0[D(R)] = D(R).
Let us finally give the composition rule between the differential-escort

and the scaling transformations. For example, in the standard escort case,
ρ̃, defined in Eq. (1) the composition rule with the scaling transformation
is given by Eα[ρ(a)] = Eα[ρ](a), where ρ(a) denotes the scaling transformed
distribution ρ(a)(x) = aρ(ax), a > 0. As stated in the following property
the composition law for the differential-escort case the power operation is
inherited by the scaling parameter a.
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Property 3. Scaling Property
Let a ∈ R+, α ∈ R, ρ a probability distribution, and the scaling transformed
distribution ρ(a)(x) = aρ(ax). Then, it holds

Eα[ρ(a)] = Eα[ρ](a
α) (12)

Proof. From the hypotheses of this statement one has the associated differential-
escort distribution ρα(y) = ρ(x)α, where y(x) =

∫ x
0

[ρ(t)]1−αdt, or equiva-

lently y =
∫ x(y)

0
[ρ(t)]1−αdt. Later, we consider the differential-escort distri-

bution of the scaling transformed: we obtain (ρ(a))α(z) = [ρ(a)(x)]α, with
z(x) =

∫ x
0

[ρ(a)(t)]1−αdt, so we have :

(ρ(a))α(z) = aα[ρ(ax(z))]α, z(x) = a−α
∫ ax

0

[ρ(t)]1−αdt

Then, we can write aαz =
∫ ax(z)

0
[ρ(t)]1−αdt. On the other hand, taking into

account that y =
∫ x(y)

0
[ρ(t)]1−αdt, we have that ax(z) = x(aαz) and finally

(ρ(a))α(z) = aα[ρ(x(aαz))]α = aαρα(aαz) = ρ(aα)
α (z).

3 The entropic properties

The functional ingredients of Rényi and Tsallis entropies (3), (4) are the
entropic moments of the probability distribution ρ

Wq[ρ] =

∫

R
[ρ(x)]q dx (13)

In this section we will study the behaviour of these entropy-like functionals for
the differential-escort distributions, finding that it is much simpler than the
corresponding one for the standard escort case. Interestingly, the rescaling

qα = 1 + α(q − 1), (14)

for the parameter q, so much relevant in deformed algebra [17] and Tsallis
thermostatistics [15], naturally appears in the entropic moment Wq of the
differential-escort distributions as shown in the next property.

Property 4. Reescaling of the entropic moments
Let ρ be a probability distribution, a ∈ R and α ∈ R. Then the entropic
moments Wq[ρ] transform as

Wq[ρα] = Wqα [ρ], (15)

where qα is given in (14).
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Proof. If Wq[ρα] <∞, then

Wq[ρα] =

∫

R
[ρα(y)]q dy =

∫

R
[ρ(x)]αq [ρ(x)]1−α dx = W1+(q−1)α[ρ]

In case that Wq[ρα] = ∞, we consider the following equality between finite
integrals ∫ y2

y1

[ρα(y)]q dy =

∫ x2

x1

[ρ(x)]qα dx

for any x1, x2 ∈ Λ and y1,2 = y(x1,2). So, one has

Wq[ρα]

Wqα [ρ]
= lim

(x1,x2)→(xm,xM )

∫ y2
y1

[ρα(y)]q dy
∫ x2
x1

[ρ(x)]qα dx
= lim

(x1,x2)→(xm,xM )
1 = 1

For completeness, note that when q = 1, then qα = 1 and both W1[ρα] =
W1[ρ] = 1 as one expects.

The reescaling behavior in this property is automatically inherited by the
Shannon, Rényi and Tsallis entropies, as pointed out in the next property.

Property 5. Entropies transformations
Let q, α ∈ R and ρ a probability distribution. Then, the Shannon, Rényi and
Tsallis entropies of the differential-escort distributions as

S[ρα]

S[ρ]
=
Rq[ρα]

Rqα [ρ]
=
Tq[ρα]

Tqα [ρ]
= α (16)

Proof. Taking into account that 1−qα
1−q = α, the equality for the Rényi and

Tsallis entropies trivially follows from property 4.
The Shannon case could be simply understood as the limit case q → 1, how-
ever, for the sake of illustration, we give the pretty simple and nice natural
proof:

S[ρα] =

∫

Λα

ρα(y) log[ρα(y)] dy =

∫

Λ

ρ(x) log[ρ(x)α] dx = αS[ρ].

Finally, as a direct consequence of the Jensen inequality we can assert
that the Rényi entropy of the transformed density ρα is a concave function
of α when λ > 1 and convex when λ < 1. Just as property (5) claims,
Shannon entropy has a linear behaviour with the deformation parameter α.
This behaviour is given in the following property.
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Property 6. The Rényi entropy of the differential-escort distribution fulfills
the following identity:

sgn

(
∂2Rλ[ρα]

∂α2

)
= sgn(1− λ). (17)

So, Rλ[ρα] is concave with α for λ > 1 and convex for λ < 1.

Proof. One can easily compute

∂2Rλ[ρα]

∂α2
=

1− λ
(∫

Λ
ρλα
)2

[∫

Λ

ρλα log2 ρ

∫

Λ

ρλα −
(∫

Λ

ρλα log ρ

)2
]
.

On the other hand, due to Jensen’s inequality one has

(∫
Λ
ρλα log ρ∫
Λ
ρλα

)2

≤
∫

Λ
ρλα log2 ρ∫

Λ
ρλα

,

So, it is straightforward to have that sgn
(
∂2Rλ[ρα]
∂α2

)
= sgn(1− λ).

4 The LMC-Rényi Monotonicity

The concept of monotonicity of a complexity measure was recently presented
in [20] and proven for the Fisher-Shannon and Crámer-Rao complexity mea-
sures. In this section we analyse the behaviour of the LMC-Rényi complexity
measure under the differential-escort transformation, and then we show its
monotonicity property. Let us first recall that the LMC-Rényi complexity
measure is defined [19, 26, 27] as

Cλ,β[ρ] = eRλ[ρ]−Rβ [ρ], λ < β. (18)

Note that the case (λ→ 1, β = 2) corresponds to the plain LMC complexity
measure [28]

C1,2[ρ] = D[ρ]eS[ρ], (19)

which quantifies the combined balance of the average height of ρ(x) (also
called disequilibrium D[ρ] = eR2[ρ]), and its total spreading. This measure
has been related with the degree of multifractality of the distribution [29]
and widely applied in various contexts from electronic systems to seimic
events [26, 30, 31]. It satisfies interesting mathematical properties, such as
invariance under scaling and translation transformations, invariance under
replication and has a lower bound [26] which is achieved by the uniform
densities. Obviously, this complexity measure inherits the regularity of the
previous section which together with property 5 allows us to write
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Property 7. Let λ < β and α ∈ R. Then, the LMC-Rényi complexity of
the probability distribution ρ transforms as

Cλ,β[ρα] = (Cλα,βα [ρ])α (20)

Moreover a straightforward application of the Jensen inequality allows
one to find

Property 8. Let λ < β. Then, the LMC-Rényi complexity of the probability
distribution ρ is bounded as

Cλ,β[ρ] ≥ 1, (21)

and the equality trivially holds when ρ belongs to the class Ξ of uniform
distributions:

Ξ = {χ(a)(x− x0)| a > 0, x0 ∈ R}, χ(a)(x) =

{
a−1, x ∈ [0, a]
0, otherwise

. (22)

So, the LMC-Rényi complexity measure is universally bounded, and the
family of minimizing densities is given by the class of uniform densities Ξ.
Actually, this class remains invariant under differential-escort transforma-
tions. In fact, restricting us to Ξ, the transformation Eα just corresponds
with a scaling change.

Property 9. Uniformity transformations
Let α ∈ R. Then,

ρ ∈ Ξ⇐⇒ Eα[ρ] ∈ Ξ, α 6= 0, (23)

Particularly, one has that Eα[χ(a)] = χ(aα).

Proof. For any real α, one has

[χ(a)(x)]α = a−α, ∀x ∈ [0, a]

and dy = aα−1dx from Eqs. (6) and (7), respectively. Then, with y(0) = 0
one has that y(x) obeys the linear relation y(x) = aα−1x. And by taking into
account that y([0, a]) = [0, aα] one obtains

Eα[χ(a)](y) = [χ(a)(x(y))]α = a−α, ∀y ∈ [0, aα]

or equivalently Eα[χ(a)] = χ(aα).

Let us now show that the LMC-Rényi complexity measure is monotone
with respect to the class of differential-escort transformations {Eα}α∈[0,1] in
the Rudnicki et al sense; this means that C[Eα[ρ]] ≤ C[ρ] for any density ρ.
We will see that this inequality is a direct consequence of the concavity of
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the Rényi entropy 6 with respect to the parameter of the deformation α.

First we observe that

∂2Rλ[ρα]

∂λ∂α
=
−α

1− λ
∂2Rλ[ρα]

∂2α
, (24)

which together with property 6 gives

sgn

(
∂2Rλ[ρα]

∂λ∂α

)
= −sgn(α). (25)

Then, if we consider the derivative with respect to α we have that
∂Cλ,β [ρα]

∂α
=

Cλ,β[ρα]
(
∂Rλ[ρα]
∂α

− ∂Rβ [ρα]

∂α

)
, and so taking into account that λ < β one has

sgn

(
∂Cλ,β[ρα]

∂α

)
= −sgn

(
∂2Rλ[ρα]

∂λ∂α

)
= sgn(α) (26)

So, from Eq. (26) it trivially follows the searched property:

Property 10. Let λ < β . Then, the LMC-Rényi complexity of the proba-
bility distribution ρ fulfills that

Cλ,β[ρα′ ] ≥ Cλ,β[ρα]

for any α′ > α > 0 or α′ < α < 0. Moreover, if ρ /∈ Ξ the equality only holds
for α = 1 and the minimal value is only obtained when α = 0. In the case
that ρ ∈ Ξ, then Cλ,β[Eα[ρ]] = Cλ,β[ρ] = 1.

Even more, for α = 0 the minimal possible value of the complexity mea-
sure is reached, Cλ,β[E0[ρ]] = 1. That is due to, for any ρ one has that
E0[ρ] = χ(1) as it is claimed in property ??.

The last three properties can be summarized by means of the following
theorem:

Theorem 1. Given the family of uniform distributions Ξ, and the class of
transformations Eα, then the triplet (Cλ,β,Ξ,Eα) satisfies the monotonicity
property of the LMC-Rényi measure of complexity.

The comparison of this result with the monotonocity property of the
Crámer-Rao and Fisher-Shannon complexity measures obtained by Rudnicki
et al. [20] allows us to observe that the class of differential-escort operations
play for the LMC-Rényi measure of complexity the same role than the class
of convolution-with-the-Gaussian operations in the Crámer-Rao and Fisher-
Shannon cases.

197



Preprint UGR, 2018

5 Low and high complexity limits

In this section we conduct a study of the behaviour of the statistical proper-
ties of a general density, when deformed in extreme cases α ∼ 0 and α→ +∞.
To this end, we will first give three statements for the general case that will
be useful in the study of the limit cases.

Proposition 1. Let ρ(x) a bounded density, then the entropic moments
Wλ[ρ] satisfies

Wλ[ρ] <∞⇐⇒ λ > λc[ρ]

with λc[ρ] < 1.

For example, for an exponential-like decaying density one has λc[ρ] = 0,
but for a power-law decaying density as O

(
x−β
)

then λc[ρ] = 1/β ∈ (0, 1),
or for any N-piecewise density λc[ρ] = −∞. On the other hand, it is easy to
see that

λc[ρα] = 1− 1− λc[ρ]

α
. (27)

Deserves noting that if we take αc = 1− λc[ρ] then λc[ραc ] = 0, what means
that ραc has an infinite support W0[ραc ] = Wλc [ρ] = ∞, but all entropic
moments with positive parameter λ are finite.

On the other hand, is easy to see that the LMC-Rényi complexity measure
is not only bounded inferiorly but also superiorly.

Proposition 2. For any density ρ /∈ Ξ and any pair λ < β then

1 < Cλ,β[ρ] < Cλ,∞[ρ] =
ρmax

〈ρλ−1〉 1
λ−1

(28)

contrary if ρ ∈ Ξ then Cλ,β[ρ] = Cλ,∞[ρ] = 1.

Finally, the third proposition is achieved through the Taylor series of the
Rényi entropy Rλ[ρ] on its entropic parameter around λ = 1.

Proposition 3. Given any probability density ρ, then the associated LMC-
Rényi measure can be formally expressed as

Cλ,β[ρ] = e
K2[ρ]

2
(β−λ)

∞∏

n=2

e
Kn+1[ρ]

(n+1)!
[(β−1)n−(λ−1)n],
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where the quantities Kn[ρ] = dn log〈ρλ−1〉
dλn

∣∣∣
λ=1

have the same structure than the

cumulants kn = dn log〈epx〉
dpn

∣∣∣
p=0

, i.e.,

K0[ρ] = 0,

K1[ρ] = −S[ρ] = 〈log ρ〉
K2[ρ] = 〈log2 ρ〉 − 〈log ρ〉2,
K3[ρ] = 〈log3 ρ〉 − 3〈log2 ρ〉〈log ρ〉+ 2〈log ρ〉3
· · ·

and provided that the series is convergent. Particularly

C1,2[ρ] ≡ CLMC [ρ] = e
K2[ρ]

2 e
K3[ρ]
3! e

K4[ρ]
4! · · ·

It is specially interesting that, for λ, β ∼ 1 we can write

Cλ,β[ρ] ' e
K2[ρ]

2
(β−λ) (29)

and when ρ ∈ Ξ, then Cλ,β[ρ] = e
K2[ρ]

2
(β−λ) = 1, ∀λ < β.

On the other hand it is straighforward to see that

Property 11. Given any probability density ρ and any α ∈ R then

Kn[ρα] = αn Kn[ρ], (30)

and then it follows that Kn+1[ρα]
Kn[ρα]

= αKn+1[ρ]
Kn[ρ]

.

Low complexity

Given any probability density ρ, and choosing a real number α ' 0, then
following the Theorem 1 one can always consider that ρα is a low complexity
density (in the LMC-sense). First, we note that when α → 0, Eq. (27)
diverges, so

Proposition 4. Let ρ(x) a bounded and low complexity density, then the
critical entropic parameter λc[ρ] << 0.

On the other hand, the upper bound of the LMC-Rényi measure of a low
complexity density goes to the unity, in such way that Eq (28) is crushed.

1 < Cλ,β[ρα] < Cλα,∞[ρ]α, α ' 0 (31)
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Proposition 5. For a low complexity density one has that

1 < Cλ,β[ρ] < Cλ,∞[ρ], (32)

but, Cλ,∞[ρ] ' 1.

Finally, taking the Taylor series of Rλ[ρα] around α = 0 one obtains

Cλ,β[ρα] ∼ eα
2K2[ρ]

(β−λ)
2 , but just taking into account property 11, then

eα
2K2[ρ]

(β−λ)
2 = eK2[ρα]

(β−λ)
2 . That is to say, we can assure that

Proposition 6. If ρ is a ”low complexity density in the LMC-sense”, then
for any fixed λ < β <<∞

Cλ,β[ρ] ' e
K2[ρ]

2
(β−λ). (33)

In fact, note that taking into account property 11, the lowest entropic
cumulants Kn[ρ] domain for the low complexity densities. Moreover, in these
cases one typically has that Kn+1[ρ] < Kn[ρ].

High complexity

In order to explore the high complexity limit, one can take any probability
density ρ, and a very large α >> 1. So, following Theorem 1 one can claim
that ρα is a high complexity density. First of all, note that the critical entropic
parameter λc[ρ] of a high complexity density is closed to one (27).

Proposition 7. Let ρ(x) a bounded and high complexity density, then the
critical entropic parameter λc[ρ] . 1.

On the other hand, the inequality (28) losses the upper bound

Proposition 8. For a high complexity density ρ one has that

1 < Cλ,β[ρ] < Cλ,∞[ρ], (34)

but, Cλ,∞[ρ] >> 1, for any fixed λ <<∞.

Finally, it deserves to note that, although Eq. 29 must be valid for values
of the parameters λ and β enough close to one, for fixed λ and β is possible
to find a density enough complex, in such way that Eq. 29 is not satisfied.

In fact Cλ,β[ρα] = Cλα,βα [ρ]α ' e
K2[ρ]

2
(β−λ)α2

= e
K2[ρα]

2
(β−λ), whenever λα ' 1

and βα ' 1; that is to say α(λ− 1) ' 0 and α(β − 1) ' 0.
Moreover, taking into account Eq. (11), for a high complexity density the

higest order entropic cumulants Kn[ρ] will be dominants.

Proposition 9. If ρ is a high complexity density, then the domain of pa-
rameters λ, β for what Eq. (29) remain valid is extremely tiny. In fact, the
highest order entropic cumulants Kn[ρ] domain the behaviour of the LMC-
Rényi complexity measure, in fact, typically Kn+1[ρ] > Kn[ρ] .
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Example

In the following we give an example with numerical values. Note that, due
to LMC-Rényi is invariant under replication transformation the number N ,
of different regions does not play a relevant role in the behaviour of this
complexity measure. So, for our purpose it is enough a simple example with
N = 3.

We are going to represent a initial distribution with three steps whose
height are h1 = 3

2
, h2 = 1, h3 = 1

2
and their weights are w1 = w2 = w3 = 1

3
. In

Figure 1 we show the complexity reduction process through the here studied
transformation
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Figure 1: Transformed density ρα(x) for different values of the transformation
parameter α = 1, 1

2
, 1

4
, 1

10
.

It is interesting to give the values of the LMC complexity for this distribu-
tions, CLMC [ρα] ' 1.06923, 1.01818, 1.00468, 1.00076 for α = 1, 0.5, 0.25, 0.1
respectively. In Figure 2 we represent the complexity increasing of this prob-
ability density
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Figure 2: Transformed density ρα(x) for different values of the transformation
parameter α = 1, 2, 4, 10.

Note that, in the case α = 10, one has that (w1)α ' 0.008 and (h1)α ' 57,
(w2)α ' 0.03 and (h2)α = 1 and finally (w3)α ' 170 and (h3)α ' 0.001. So,
in this case the graphic representation is really difficult to be performance.
For the sake of illustration, we give the case α = 100, for which (w1)α ' 10−18

and (h1)α ' 4×1017, (w2)α ' 0.03 and (h2)α = 1 and finally (w3)α ' 2×1029

and (h3)α ' 7×10−31, what seems to be near to impossible to be graphically
resented with accuracy (even using a logarithmic scale in both axes) while
still being a 3-piecewise density. The values of the LMC complexity for
these densities are CLMC [ρα] ' 1.06923, 1.25988, 2.02809, 12.1843, 3 × 1013

for α = 1, 2, 4, 10, 100 respectively.

6 q-exponential and power-law decaying den-

sities

The exponential and q-exponential distributions are fundamental tools in
the extensive and non-extensive formalisms [22]. They can be obtained by
maximizing the Rényi and Tsallis entropies with a suitable constraint[16],
or by maximizing Shannon entropy with some tail constraints [23]. In this
section we will study the q-exponential distribution in the framework of the
differential-escort transformations which will able to naturally relate it to the
exponential one.
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The exponential function E(x) = e−x, with x ∈ [0,∞), is recovered taking
the limit q → 1 in the family of q-exponential functions defined by

eq(x) = (1 + (1− q)x)
1

1−q
+ (35)

where (t)+ = max{t, 0}. Tsallis introduced [16] the q-exponential probability
densities which are proportional to eq(−x). For convenience, we denote the
q-exponential densities as

Eq(y) ≡ eq

(
− y

2− q

)
. (36)

Note that when q ∈ (1, 2) the support is non compact and the tail of the
probability density decays as a heavy-tailed distribution; in contrast when
q < 1, the support is compact.

It is worth to realize that the standard escort transformation of a q-
exponential density is another q-exponential; indeed,

Eα[Eq] = Eq′ , q′ = 1 +
q − 1

α
(37)

Note that, if q = 1 then q′ = 1; that is to say, the escort transformation
of an exponential distribution is another exponential distribution. On the
other hand, if q > 1 the support of Eq is not compact and so necessarily α >
q−1 > 0 for the sake of satisfying the convergence condition given in (1); and
in consequence, when q ∈ (1, 2) necessarily q′ ∈ (1, 2). Finally, when q < 1
one has that q′ < 1 for any α > 0. In other words, the escort transformation
Eα keep unchanged the three regions of the parameter q (q < 1, q = 1, q > 1);
this behaviour is expected since the standard escort transformation keep the
support invariant.

This behaviour is totally different for the differential-escort transforma-
tion, which indeed changes the length of the support. In fact, it transforms
not only a q-exponential distribution in another one, but also: given any
initial value of the parameter q < 2, any other parameter q′ < 2 can be
obtained through the use of Eα with α 6= 1, as we shall see below.

From definition 1, given any α one has that

Eα[E ](y) = e−αx(y) (38)

with

y(x) =

∫ x

0

e(α−1)t dt =
1

α− 1

(
e(α−1)x − 1

)
, α 6= 1 (39)

and so one easily obtains
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x(y) =
1

α− 1
log (1 + (α− 1)y) (40)

So, inserting (40) in (38) we have that

Eα[E ](y) = (1 + (α− 1)y)
α

1−α , (41)

where, from Eq. (39), y ∈ [0,∞] for α > 1 and y ∈ [0, 1
1−α ] when α < 1. In

fact, we can rewrite Eq. (41) as

Eα[E ](y) = e 2α−1
α

(−αy). (42)

Or equivalently, choosing α = 1
2−q and using the notation introduced in Eq.

(36), one can write

E 1
2−q

[E ] = Eq. (43)

On the other hand, taking into account that E1[ρ] = ρ and considering
the composition property 2 and Eq. (43) one obtains the identities

E2−q[Eq] = E2−q[E 1
2−q

[E ]] = E 2−q
2−q

[E ] = E , ∀q < 2 (44)

From which, taking any couple q, q̃ < 2 one can write the following rela-
tion between q-exponential densities

E2−q[Eq] = E2−q̃[Eq̃] (45)

or equivalently, using again the composition property,

E 2−q
2−q̃

[Eq] = Eq̃ (46)

or as well Eα[Eq] = Eq with

q = 2 +
q − 2

α
(47)

Thus, as we have previously anticipated, starting with any q < 2 we can
obtain any other value q < 2. In particular, when q > 1 it occurs that
α > 2 − q, when q = 1 one has α = 2 − q, and when q < 1 it happens that
α < 2 − q. Note that the value α = 2 − q plays a critical role. Finally, it is
worth mentioning that, when α > 0 then q < 2, but taking α < 0 one obtains
q > 2 which normally is not considered, however note that these densities are
correctly defined and they satisfy the normalization condition

∫
Λα
ρα(y) = 1.

These results are a little bit extended in the next lemma:
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Lemma 1. Let ρ(x) > 0, ∀x ∈ [0,∞), be a probability density, such that
the tail of ρ(x) decreases as O(x−β), β > 1. Then, for α > αc = β−1

β
, the

tail of the transformed distribution ρα(y) decreases as O
(
y

−βα
1−β(1−α)

)
. On the

other hand, for α < αc, the distribution ρα has a compact support. Finally,
when α = αc the support is non-compact and there is an exponential decay.

Proof. Let α ∈ R.
Given x >> 1, the original density fulfilled ρ(x) ∼ x−β. On the other

hand the variable change is defined as y(x) =
∫ x

0
[ρ(t)]1−α dt. Then, the

length of the support of ρα is given by W0[ρα] = W1−α[ρ] =
∫∞

0
ρ(x)1−αdx ∼∫∞

a>0
x−β(1−α). So, it is clear that the support of ρα is compact iff α < β−1

β
,

and in the case α ≥ β−1
β

we have that limx→∞ y(x)→∞.
In the case α ≥ β−1

β
, one can suppose x >> 1, and so ρα(y) ∝ [x(y)]−βα,

and in the other hand dy
dx

= ρ(x)1−α ∝ x−β(1−α).

Note that when α = αc = β−1
β
, then −β (1−α) = −1, and so y(x) ∝ lnx,

or equivalently x(y) ∝ ey. In this case we have that ρα(y) ∝ [x(y)]−βα ∝
e−(β−1)y.

Finally, when α > β−1
β

, so y(x) ∝ x1−β(1−α); i.e, when x, y >> 1 we have

that x(y) ∝ y
1

1−β(1−α) . Thus, ρα(y) ∝ y
−βα

1−β(1−α) .

It is interesting to note that under the conditions of Lemma 1, and in the
high complexity limit, all the expected values become to be infinite, as well as
the respective entropic moments Wλ when λ < 1. This is in concordance with
the proposition 7, which states that, the entropic moments of the density are
not well defined in the high complexity limit.

It is known that any distribution is characterized by its standard mo-
ments, provided that they exist. However, power-law-decaying probability
densities does not fully satisfy this condition. In order to tackle this prob-
lem, Tsallis et al. [32] purposed to use escort mean values. This make sense,
taking into account that the escort density has more well defined moments
than the original ones by choosing adequately the escort parameter. How-
ever, note that all escort transformation of a heavy tailed density remains
being a heavy tailed, that is to say, a dense set of moments (with real param-
eter) remains always infinite. Contrary, as stated by Lemma 1, through the
differential-escort density, we can always find a probability density which all
its real moments correctly defined, at least for power-law-decaying probabil-
ity densities. For these reasons, the characterization via diffierential escort
densities seems to be more accurate than via escort ones.
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7 Conclusions

In this paper we have presented the concept of differential-escort transforma-
tion of a univariate probability density. Its basic mathematical properties as
composition and strong probability invariance have been studied. Then, we
have shown the regular behaviour of the Shannon, Rényi and Tsallis entropies
for the differential-escort distributions. Moreover, the convex behaviour of
the Rényi entropy with respect to the differential-escort operation has been
the keystone in the proof of the monotonicity property of the LMC-Rényi
complexity measure. Note that the differential-escort operation allows to
define equivalence classes of probability densities where exists a total order
with respect to their LMC-Rényi complexity. Later we have analysed the
statistical properties of a general probability density when it is deformed to
both extreme complexity cases, the low and high complexity limits. Finally,
we have studied the behaviour of the exponential and q-exponential densities,
showing not only the stability of the q-exponential family, but also the exis-
tence of a critical value of the deformation parameter for what the behaviour
of the tail, if any, dramatically changes to an exponential one.

Interestingly, the action of this operation over a probability density al-
lows for a clear interpretation of the probability conservation. Indeed, the
conservation of the probability in any region of the transformed-space is clear
by construction, what has a clear mass conservation interpretation.

On the other hand, the simplicity of the differential-escort transforma-
tions together with the general character of the presented results seem to
indicate that this way of thinking would deserve to be explored from a
more general point of view. Let us advance for example that the use of
a differential-escort-based methodology has allowed for a huge generalization
of the Stam inequality [33].
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Chapter 7

Generalized Stam inequality and

triparametric Fisher-Rényi

complexity

In this chapter we introduce a triparametric complexity measure of Fisher–Rényi type by

means of a generalization of the biparametric Stam inequality for univariate probability

densities [119]. To do this we use two complementary approaches. First, we obtain the

triparametric Stam inequality by means of the Gagliardo-Nirenberg inequality, finding

a differential equation for the minimizing family of functions but we cannot not give

any information about the minimal bound beyond its mere existence; the exact solution

can be derived following the variational approach Agueh [269, 270] only for some par-

ticular cases of the involved parameters. On the other hand, the regular behaviour of

the biparametric Fisher information with respect to differential-escort transformations

allows us not only to find the exact bound and the explicit expression for the family of

minimizing densities, but also allows to extend the validity domain of the inequality be-

yond that Gagliardo-Nirenberg approach can do. Finally, the triparametric Fisher-Rényi

complexity measure is given and applied to the harmonic and hydrogenic systems.

Summarizing, we have carried out the following tasks:

• We define the (p, β, λ)-Fisher–Rényi complexity Cp,β,λ[ρ] of the probability density

ρ.

• We show that the biparametric Fisher information (1.19) has the following regu-

lar behavior with respect to the differential-escort transformations Eα for a one-

dimensional probability density ρ.

Fp,β

[
Eα[ρ]

]
= |α|pFp,αβ[ρ], p > 1, β ∈ R∗+. (7.1)
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• We compute an explicit expression for the family of minimizing densities; namely

the generalized (p, β, λ)-Gaussian densities, gp,β,λ, which are given for p > 1 and

(β, λ) ∈ R∗ 2
+ as

gp,β,λ(x) ∝





[
1−B−1

(
1
p∗ , qp,β,λ; p∗|x|

|1−λ|
1
p∗

)] 1
|1−λ|

1[
0;B
(

1
p∗ ,qp,β,λ

)]
(

p∗|x|
|1−λ|

1
p∗

)
, if λ 6= 1,

exp


−

G−1

(
1
p∗ ;
(
β−1
β

) 1
p∗ p∗|x|

)

β−1


 1[

0;
Γ(1/p∗)
1(0;1)(β)

](p∗|x|
)
, if

λ = 1,

β 6= 1,

gp,λ(x), if β = λ,

with1

qp,β,λ =
β − 1

|1− λ| +
1R+(1− λ)

p
. (7.2)

The symbols B−1(x), G−1(x) and 1[a;b](x) denote the inverse beta function, the

inverse gamma function and the indicator function, respectively [59].

• We show that the (p, β, λ)-Fisher–Rényi complexity has the following non-trivial

lower bound

∀ p > 1, (β, λ) ∈ D̃p =
{

(β, λ) ∈ R∗ 2
+ : λ > 1− βp∗

}
, Cp,β,λ[ρ] ≥ Kp,β,λ

(7.3)

The minimizers are explicitly given by the the (p, β, λ)-Gaussian as

argminρCp,β,λ[ρ] = gp,β,λ (7.4)

and the lower bound is

Kp,β,λ =





(
2

p∗ζp,β,λ

(
p∗ζp,β,λ
|1−λ|

) 1
p∗
(

p∗ζp,β,λ
p∗ζp,β,λ−|1−λ|

) ζp,β,λ
|1−λ| + 1

p
B
(

1
p∗ ,

ζp,β,λ
|1−λ| + 1

p

))2

if λ 6= 1

(
2 e

1
p∗ Γ

(
1
p∗
)

βp
∗ 1
p

)2

if λ = 1

(7.5)

with

ζp,β,λ = β +
(λ− 1)+

p∗
(7.6)

• We numerically study the tri-parametric Fisher-Rényi complexity measure of the

radial density of the harmonic and hydrogenic systems for the lowest energy states.

1The choice of scaling allows to recover precisely def. 4.7 with the same scaling when β = λ.
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These results have been published in the article [69] with coordinates: Zozor, S., Puertas-

Centeno, D. and Dehesa, J. S. On Generalized Stam Inequalities and Fisher–Rényi

Complexity Measures. Entropy, 19:493, 2017, which is attached below.
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Information-theoretic inequalities play a fundamental role in numerous scien-
tific and technological areas (e.g., estimation and communication theories, signal
and information processing, quantum physics, . . . ) as they generally express the
impossibility to have a complete description of a system via a finite number of
information measures. In particular, they gave rise to the design of various quan-
tifiers (statistical complexity measures) of the internal complexity of a (quantum)
system. In this paper, we introduce a three-parametric Fisher–Rényi complexity,
named (p, β, λ)-Fisher–Rényi complexity, based on both a two-parametic extension
of the Fisher information and the Rényi entropies of a probability density function
ρ characteristic of the system. This complexity measure quantifies the combined
balance of the spreading and the gradient contents of ρ, and has the three main
properties of a statistical complexity: the invariance under translation and scaling
transformations, and a universal bounding from below. The latter is proved by
generalizing the Stam inequality, which lowerbounds the product of the Shannon
entropy power and the Fisher information of a probability density function. An
extension of this inequality was already proposed by Bercher and Lutwak, a par-
ticular case of the general one, where the three parameters are linked, allowing to
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determine the sharp lower bound and the associated probability density with min-
imal complexity. Using the notion of differential-escort deformation, we are able
to determine the sharp bound of the complexity measure even when the three pa-
rameters are decoupled (in a certain range). We determine as well the distribution
that saturates the inequality: the (p, β, λ)-Gaussian distribution, which involves an
inverse incomplete beta function. Finally, the complexity measure is calculated for
various quantum-mechanical states of the harmonic and hydrogenic systems, which
are the two main prototypes of physical systems subject to a central potential.

Keywords: (p, β, λ)-Fisher–Rényi complexity; extended sharp Stam inequal-
ity; (p, β, λ)-Gaussian distributions; application to d-dimensional central potential
quantum systems

1 Introduction

The definition of complexity measures to quantify the internal disorder of
physical systems is an important and challenging task in science, basically
because of the many facets of the notion of disorder [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12]. It seems clear that a unique measure is unable to capture
the essence of such a vague notion. In the scalar continuous-state context
we consider in this paper, many complexity measures based on the proba-
bility distribution describing a system have been proposed in the literature,
attempting to capture simultaneously the spreading (global) and the oscilla-
tory (local) behaviors of such a distribution [13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 10, 12, 27, 28, 29]. They mostly depend on entropy-like
quantities such as the Shannon entropy [30], the Fisher information [31] and
their generalizations. The measures of complexity of a probability density
ρ proposed up until now, say C[ρ], making use of two information-theoretic
properties, share several properties (see e.g., [32]), such as e.g., the invari-
ance by translation or by a scaling factor (i.e., for any x0 ∈ R and σ > 0,
for ρ̃(x) = 1

σρ
(
x−x0
σ

)
, they satisfy C[ρ̃] = C[ρ]). For instance, the disorder

may be invariant from a move of a (referential independent) center of mass.
Moreover, all the proposed measures are also lowerbounded, which means
that there exists in a certain sense a distribution of minimal complexity,
which is the probability density that reaches the lower bound.

In this paper, we generalize the complexity measures of global-local char-
acter published in the literature (see e.g., [23, 10, 24, 26, 12, 27, 29]) to
grasp both the spreading and the fluctuations of a probability density ρ by
the introduction of a three-parametric Fisher–Rényi complexity, which in-
volves the Rényi entropy [33] and generalized Fisher information [34, 36, 35].
The products of these two generalized information-theoretic tools, which are
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translation and scaling invariant as well as lowerbounded, can be used as
generalized complexity measures of ρ.

Historically, the first inequality involving the Shannon entropy and the
Fisher information was proved by Stam [37] under the form

F [ρ]N [ρ] ≥ 2πe, (1)

where F and N are, respectively, the (nonparametric) Fisher information of
ρ,

F [ρ] =

∫

R

(
d

dx
log[ρ(x)]

)2

ρ(x) dx (2)

and the Shannon entropy power of ρ, i.e., an exponential of the Shannon
entropy H,

N [ρ] = exp (2H[ρ]) where H[ρ] = −
∫

R
ρ(x) log[ρ(x)] dx. (3)

In fact, the Fisher information concerns a density parametrized by a pa-
rameter θ and the derivative is vs θ. When this parameter is a position
parameter, this leads to the nonparametric Fisher information. Concerning
the entropy power, more rigorously, a factor 1

2πe affects N and the bound in
the Stam inequality is then unity. This factor does not change anything for
our purpose, hence, for sake of simplicity, we omit it. The lower bound in
Inequality 1 is achieved for the Gaussian distribution ρ(x) ∝ exp

(
−1

2x
2
)

up to a translation and a scaling factor (where ∝ means “proportional to”).
In other words, the so-called Fisher–Shannon complexity C[ρ] = F [ρ]N [ρ],
which is translation and scale invariant, is always higher than 2πe (and
thus cannot be zero) and the distribution of lowest complexity is the Gaus-
sian, exhibiting (also) through this measure its fundamental aspect. The
proof of this inequality lies in the entropy power inequality and on the de
Bruijn identity, two information theoretic inequalities, both being reached
in the Gaussian context [37, 38]. Although introduced respectively in the
estimation context through the Cramér–Rao bound [39, 40, 31] and in com-
munication theory through the coding theorem of Shannon [30, 38], these
quantities found applications in physics as previously mentioned (and also
in the earlier papers [41, 42] and that of Stam). In particular, the analysis
of a signal with these measures was proposed by Vignat and Bercher [43]
and the Fisher–Shannon complexity C[ρ] = F [ρ]N [ρ] is widely applied in
atomic physics or quantum mechanics for instance [26, 25, 44, 45, 46, 47].

Recently, the Stam inequality was extended by substituting the Shan-
non entropy by the Rényi entropies (a family of entropies characterizing by
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a parameter playing a role of focus [33]), and the Fisher information by
a generalized two-parametric family of the Fisher information introduced
by [34, 35, 36]. As we will see later on, this extended inequality involves,
however, two free parameters because one of the two Fisher parameters is
linked to the Rényi one. This constraint is imposed so as to determine the
sharp bound of the inequality and the minimizers in the framework of the
(stretched) Tsallis distributions [48, 49]. Thus, this extended inequality al-
lows to define again a complexity measure, based on this generalized Fisher
information and the Rényi entropy power [27].

In this paper, we study the full three-parametric Fisher–Rényi complex-
ity, disconnecting the two parameters tuning the extended Fisher informa-
tion and the parameter tuning the Rényi entropy. Like Bercher, we use
an approach based on the Gagliardo–Nirenberg inequality. This inequality
allows for proving the existence of a lower bound of the complexity when
the parameters are decoupled, in a certain range. The minimizers are thus
implicitly known as a solution of a nonlinear equation (or through a compli-
cated series of integrations and inversion of nonlinear functions). Moreover,
the sharp bound of the associated extended Stam inequality is explicitly
known, once the minimizers have been determined. We propose here an
indirect approach allowing (i) to extend a step further the domain where
the Stam inequality holds (or where the complexity is non trivially lower-
bounded); (ii) to determine explicitly the minimizers; and (iii) to find the
sharp bound, regardless of the knowledge of the minimizers.

The structure of the paper is the following. In Section 2, we intro-
duce both the λ-dependent Rényi entropy power and the (p, β)-Fisher in-
formation, so generalizing the usual (i.e., translationally invariant) Fisher
information. Then, we propose a complexity measure based on these two
information quantities, the (p, β, λ)-Fisher–Rényi complexity, and we study
its fundamental properties regarding the invariance under translation and
scaling transformations and, above all, the universal bounding from be-
low. In particular, we come back briefly to the results of Lutwak [34] or
of Bercher [35] concerning the sharpness of the bound and the minimiz-
ers, derived only when the three parameters belong to a two-dimensional
manifold, finding that our results remain indeed valid in a domain slightly
wider than theirs. In Section 3, the core of the paper, we come back to
the lower bound (or to the extended Stam inequality) dealing with a wide
three-dimensional domain. In this extended domain, which includes that of
the previous section, we are able to derive explicitly the minimizers and the
sharp lower bound, regardless the knowledge of the minimizers. In order to
do this, we introduce a special nonlinear stretching of the state, leading to
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the so-called differential-escort distribution [50]. This geometrical deforma-
tion allows us to start from the Bercher–Lutwak inequality and to introduce
a supplementary degree of freedom so as to decouple the parameters (in a
certain range). This approach is the key point for the determination of the
extended domain where the complexity is bounded from below (the gener-
alized Stam inequality). Moreover, we provide an explicit expression for the
densities which minimize this complexity, expression involving the inverse
incomplete beta function. In Section 4, we apply the previous results to
some relevant multidimensional physical systems subject to a central poten-
tial, whose quantum-mechanically allowed stationary states are described
by wave functions that factorize into a potential-dependent radial part and
a common spherical part. Focusing on the radial part, we calculate the
three-parametric complexity of the two main prototypes of d-dimensional
physical systems, the harmonic (i.e., oscillator-like) and hydrogenic systems,
for various quantum-mechanical states and dimensionalities. Finally, three
appendices containing details of the proofs of various propositions of the
paper are reported.

2 (p, β, λ)-Fisher–Rényi Complexity and the Ex-
tended Stam Inequality

In this section, we firstly review the extension of the Stam inequality based
on the efforts of Lutwak et al. and Bercher [34, 36, 35], or more generally,
based on that of Agueh [51, 52]. To this aim, we introduce a three-parametric
Fisher–Rényi complexity, showing its scaling and translation invariance and
non-trivial bounding from below. We then come back to the results of Lut-
wak or Bercher concerning the determination of the sharp bound and the
minimizers of its associated complexity, where a constraint on the param-
eters was imposed. Indeed, the constraint they imposed can be slightly
relaxed, as we will see in this section.

2.1 Rényi Entropy, Extended Fisher Information and Rényi–
Fisher Complexity

Let us begin with the definitions of the following information-theoretic quan-
tities of the probability density ρ: the Rényi entropy power Nλ[ρ], the
(p, β)-Fisher information Fp,β[ρ], and the (p, β, λ)-Fisher–Rényi complexity
Cp,β,λ[ρ].
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Definition 1 (Rényi entropy power [33]) Let λ ∈ R∗+. Provided that
the integral exists, the Rényi entropy power of index λ of a probability density
function ρ is given by

Nλ[ρ] = exp (2Hλ[ρ]) where Hλ[ρ] =
1

1− λ log

∫

R
[ρ(x)]λ dx, (4)

where the limiting case λ → 1 gives the Shannon entropy power N [ρ] =
N1[ρ] ≡ lim

λ→1
Nλ[ρ].

The entropy Hλ was introduced by Rényi in [33] as a generalization of the
Shannon entropy. In this expression, through the exponent λ applied to the
distribution, more weight is given to the tail (λ < 1) or to the head (λ > 1)
of the distribution [34, 53, 54, 55]. This measure found many applications
in numerous fields such as e.g., signal processing [56, 57, 58, 59, 60, 61,
62], information theory to reformulate the entropy power inequality [63],
statistical inference [64], multifractal analysis [65, 66], chaotic systems [67],
or in physics as mentioned in the introduction (see ref. above). For instance,
the Rényi entropies were used to reformulate the Heisenberg uncertainty
principle (see [68, 69, 70, 71, 72] or [73, 74] where this formulation also
appears and is applied in quantum physics).

Whereas the power applied to the probability density ρ in the Rényi
entropy aims at making a focus on heads or tails of the distribution, one
may wish to act similarly dealing with the Fisher information. In this case,
since both the density and its derivative are involved, one may wish to stress
either some parts of the distribution, or some of its variations (small or large
fluctuations). Thus, two different power parameters for ρ and its derivative,
respectively, can be considered leading with our notations to the following
definition of the bi-parametric Fisher information.

Definition 2 ((p, β)-Fisher information [34, 36, 35]) For any p ∈ (1,∞)
and any β ∈ R∗+, the (p, β)-Fisher information of a continuously differen-
tiable density ρ is defined by

Fp,β[ρ] =

(∫

R

∣∣∣[ρ(x)]β−1 d

dx
log[ρ(x)]

∣∣∣
p
ρ(x) dx

) 2
pβ

, (5)

provided that this integral exists. When ρ is strictly positive on a bounded
support, the integration is to be understood over this support, but it must be
differentiable on the closure of this support.
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It is straightforward to see that F2,1 is the usual Fisher information. When

it exists, lim
p→+∞

[Fp,β]
β
2 is the essential supremum of

∣∣ρβ−1 d
dx log[ρ]

∣∣. Con-

versely, 1
β [F1,β]

β
2 is the total variation of ρβ. For p = 2, this extended

Fisher information is closely related to the α-Fisher information introduced
by Hammad in 1978 when dealing with a position parameter [75]. Note also
that a variety of generalized Fisher information was applied especially in
non-extensive physics [76, 77, 78, 79].

From the Rényi entropy power and the (p, β)-Fisher information, we
define a (p, β, λ)-Fisher–Rényi complexity by the product of these quantities,
up to a given power.

Definition 3 ((p, β, λ)-Fisher–Rényi complexity) We define the (p, β, λ)-
Fisher–Rényi complexity of a probability density ρ by

Cp,β,λ[ρ] =
(
Fp,β[ρ]Nλ[ρ]

)β
, (6)

provided that the involved quantities exist.

We choose to elevate the product of the entropy power and Fisher infor-
mation to the power β > 0 for simplification reasons. Indeed, it does not
change the spirit of this measure of complexity, whereas it allows to express
symmetry properties in a more elegant manner, as we will see later on.

This quantity has the minimal properties expected for a complexity mea-
sure (see e.g., [32]), as stated in the next subsection.

2.2 Shift and Scale Invariance, Bounding from below and
Minimizing Distributions

The first property of the proposed complexity Cp,β,λ[ρ] is the invariance
under the basic translation and scaling transformations.

Proposition 1 The (p, β, λ)-Fisher–Rényi complexity of the probability den-
sity ρ is invariant under any translation x0 ∈ R and scaling factor σ > 0
applied to ρ; i.e., for ρ̃(x) = 1

σ ρ
(
x−x0
σ

)
, Cp,β,λ[ρ̃] = Cp,β,λ[ρ].

proof 1 This is a direct consequence of a change of variables in the inte-
grals, showing that Nλ[ρ̃] = σ2Nλ[ρ] (justifying the term of entropy power)
for any λ, and that Fp,β[ρ̃] = σ−2Fp,β[ρ], whatever (p, β).

From now, due to these properties, all the definitions related to proba-
bility density functions will be given up to a translation and scaling factor.

219



Entropy, 19:493, 2017

In other words, when evoking a density ρ, except when specified, we will
deal with the family 1

σ ρ
(
x−x0
σ

)
for any x0 ∈ R and σ > 0.

More important, the complexity has a universal, non-trivial bounding
from below so that the distribution corresponding to this minimal complex-
ity can thus be viewed as the less complex one.

Proposition 2 (Extended Stam inequality) For any p > 1,

(β, λ) ∈ Dp =

{
(β, λ) ∈ R∗ 2

+ : β ∈
(

1

p∗
;

1

p∗
+ min(1, λ)

]}
, (7)

with p∗ = p
p−1 the Holder conjugate of p, their exists a universal optimal

positive constant Kp,β,λ, that bounds from below the (p, β, λ)-Fisher–Rényi
complexity of any density ρ, i.e.,

∀ ρ, Cp,β,λ[ρ] ≥ Kp,β,λ. (8)

The optimal bound is achieved when, up to a shift and a scaling factor,

ρp,β,λ = uϑ with ϑ =
p∗

βp∗ − 1
, (9)

and where u is a solution of the differential equation

− d

dx

(∣∣∣∣
d

dx
u

∣∣∣∣
p−2 d

dx
u

)
+
γ

ϑ

uλϑ−1 − uϑ−1

1− λ = 0, (10)

with γ determined a posteriori to impose that uϑ sums to unity. When
λ→ 1, the limit has to be taken, leading to γ

ϑ
uλϑ−1−uϑ−1

1−λ → γuϑ−1 log u.

proof 2 The proof is mainly based on the sharp Gagliardo–Nirenberg in-
equality [52], as explained with details in Appendix A.

Finally, the minimizers of the (p, β, λ)-Fisher–Rényi complexity and the
tight bound satisfy a remarkable property of symmetry, as stated hereafter.

Proposition 3 Let us consider the involutary transform

Tp : (β, λ) 7→
(
βp∗ + λ− 1

λp∗
,

1

λ

)
. (11)

The minimizers of the complexity satisfy the relation

ρp,Tp(β,λ) ∝
[
ρp,β,λ

]λ
, (12)

and the optimal bounds satisfy the relation

Kp,Tp(β,λ) = λ2Kp,β,λ. (13)
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proof 3 See Appendix B.

A difficulty to determine the sharp bound and the minimizer is to solve
the nonlinear differential equation 10. One can find in Corollary 3.2 in [52]
a series of explicit equations allowing to determine the solution and thus
the optimal bound of in Equation 56, but in general the expression of u
remains on an integral form. Agueh, however, exhibits several situations
where the solution is known explicitly (and thus the optimal bound as well),
as summarized in the next subsection.

2.3 Some Explicitly Known Minimizing Distributions

The particular cases are issued of special cases of saturation of the Gagliardo–
Nirenberg, some of them being studied by Bercher [35, 80, 81] or Lutwak [34].
All these cases are restated hereafter, with the notations of the paper. Let
us first recall the definition of the stretched deformed Gaussian, studied by
Lutwak [34] or Bercher [35, 80, 81], for instance, also known as stretched
q-Gaussian or stretched Tsallis distributions [48, 49] and intensively studied
in non-extensive physics.

Definition 4 (Streched deformed Gaussian distribution) Let p > 1
and λ > 1 − p∗. The (p, λ)-stretched deformed Gaussian distribution is
defined by

gp,λ(x) ∝





(
1 + (1− λ)|x|p∗

) 1
λ−1

+
, for λ 6= 1,

exp
(
−|x|p∗

)
, for λ = 1,

(14)

where (·)+ = max(·, 0) (the case λ = 1 is indeed obtained taking the limit).

This distribution plays a fundamental role in the extended Stam inequal-
ity, as we will see in the next subsections and in the next section.

2.3.1 The Case β = λ

For any p > 1, and for

(β, λ) ∈ Bp = {(β, λ) ∈ Dp : β = λ} , (15)

one obtains that the minimizing distribution of the (p, β, λ)-Fisher–Rényi
complexity is the (p, λ)-stretched deformed Gaussian distribution,

ρp,λ,λ = gp,λ (16)
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(see Corollary 3.4 in [52], (i) where λ = q/s; and (ii) where λ = s/q, respec-
tively; the case λ = 1 is obtained taking the limit λ → 1 (resp. lower and
upper limit) or by a direct computation). This situation is nothing more
than that studied by Bercher in [35] or Lutwak in [34]. Remarkably, by a
mass transport approach, Lutwak proved in [34] that this relation is valid
for λ > 1

1+p∗ , i.e., for

(β, λ) ∈ Lp =

{
(β, λ) ∈ R∗ 2

+ : β = λ >
1

1 + p∗

}
. (17)

Note that the exponent of the Lutwak expression is not the same as ours,
but β > 0 allowing to take the Lutwak relation to the adequate exponent so
as to obtain our formulation.

2.3.2 Stretched Deformed Gaussian: The Symmetric Case

Immediately, from the relation Equation 12 induced by the involution Tp,
one obtains, after a re-parametrization λ 7→ 1

λ and an adequate scaling, for
any p > 1 and

(β, λ) ∈ Bp =

{
(β, λ) ∈ Dp : β =

p∗ + 1− λ
p∗

}
(18)

that the minimizing distribution is again a stretched deformed Gaussian,

ρ
p, p
∗+1−λ
p∗ ,λ

= gp,2−λ. (19)

Again, starting from the Lutwak result, the validity of this result extends to

(β, λ) ∈ Lp =

{
(β, λ) ∈ R∗ 2

+ : 0 < β =
p∗ + 1− λ

p∗
< 1 +

1

p∗

}
, (20)

and the symmetry of the bound given by Proposition 3 remains valid.
Indeed, the minimizers in Lp satisfying the differential equation of the
Gagliardo–Nirenberg as given in Appendix A, the reasoning of this appendix
and of the Appendix B holds.

2.3.3 Dealing with the Usual Fisher Information

This situation corresponds to p = 2 and β = 1. Then, for

(β, λ) ∈ A2 = {(β, λ) ∈ D2 : β = 1} , (21)
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one obtains the minimizing distribution for λ 6= 1,

ρ2,1,λ(x) ∝
[
cos
(√

1− λ |x|
)] 2

1−λ
1[

0 ; π
2<e{√1−λ}

)(|x|), (22)

where 1A denotes the indicator function of set A,
√
−1 = ı (remember that

cos(ıx) = cosh(x)), <e is the real part and 1
0 is to be understood as +∞ (see

Corollary 3.3 in [51] with λ = s/q and Corollary 3.4 in [51] with λ = q/s,
respectively). The case λ = 1 is again obtained by taking the limit, leading
to the Gaussian distribution ρ2,1,1. (See previous cases, with p = 2, that
corresponds also to the usual Stam inequality.)

2.3.4 The Symmetrical of the Usual Fisher Information

From the relation Equation 12 induced by the involution Tp, after a re-
parametrization λ 7→ 1

λ and an adequate scaling, for p = 2 and

(β, λ) ∈ A2 =

{
(β, λ) ∈ D2 : β =

λ+ 1

2

}
, (23)

the minimizing distribution for λ 6= 1 takes the form

ρ2,λ+1
2
,λ(x) ∝

[
cos
(√

λ− 1 |x|
)] 2

λ−1
1[

0 ; π
2<e{√λ−1}

)(|x|) (24)

(with, again, the Gaussian as the limit when λ→ 1).
The graphs in Figure 1 describe the domain Dp (for a given p). Therein,

we also represent the particular domains Lp (Bercher–Lutwak situation), Lp
(transformation of Lp), A2 and A2, where the explicit expressions of the
minimizing distributions are known from the works of [51, 52, 34, 35].

3 Extended Optimal Stam Inequality: A Step Fur-
ther

In this section, we further extend the previous Stam inequality, namely by
largely widening the domain for the parameters and disentangling the two
connected parameters. For this, we use the differential-escort deformation
introduced in [50], which is the key tool allowing for introducing a new
degree of freedom. Afterwards, we will give the minimizing distribution
that results in a new deformation of the Gaussian family intimately linked
with the inverse incomplete beta functions.
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1
2

1 3
2

1

(b)

Figure 1: (a) the domain Dp for a given p is represented by the gray area
(here p > 2). The thick line belongs to Dp. The dashed line represents Lp,
corresponding to the Lutwak situation of Section 2.3.1, where the relation
holds and the minimizers are explicitly known (stretched deformed Gaussian
distributions), whereas Lp corresponds to Section 2.3.2 (Bp and Bp obtained
by the Gagliardo–Nirenberg inequality are their restrictions to Dp); (b) same
situation for p = 2, with the domains A2 and A2 (dashed lines) that corre-
spond to the situations of Sections 2.3.3 and 2.3.4, respectively, (L2 and L2

are not represented for the clarity of the figure).

3.1 Differential-Escort Distribution: A Brief Overview

We have already realized the crucial role that the power operation of a
probability density function ρ plays. The subsequent escort distribution

duly normalized,
ρ(x)α∫

R ρ(x)αdx
, is a simple monoparametric deformation of ρ

(see e.g., [82]). Notice that the parameter α allows us to explore different
regions of ρ, so that, for α > 1, the more singular regions are amplified
and, for α < 1, the less singular regions are magnified. A careful look at
the minimizing distributions of the usual Stam inequality shows that the x-
axis is stretched via a power operation. This makes us guess that a certain
nonlinear stretching may also play a key role in the saturation (i.e., equality)
of the extended Stam inequality.

224



Entropy, 19:493, 2017

These ideas led us to the definition of the differential-escort distribution
of a probability distribution ρ (see also [50]), motivated by the following
principle. The power operation provokes a two-fold stretching in the density
itself and in the differential interval so as to conserve the probability in the
differential intervals: ρα(y)dy = ρ(x)dx with ρα(y) = ρ(x(y))α.

Definition 5 (Differential-escort distributions) Given a probability dis-
tribution ρ(x) and given an index α ∈ R, the differential-escort distribution
of ρ of order α is defined as

Eα[ρ](y) =
[
ρ(x(y))

]α
, (25)

where y(x) is a bijection satisfying dy
dx = [ρ(x)]1−α and y(0) = 0.

The differential-escort transformation Eα exhibits various properties stud-
ied in detail in [50]. We present here the key ones, allowing the extension of
the Stam inequality in a wider domain than that of the previous section.

Property 1 The differential-escort transformation satisfies the composition
relation

Eα ◦ Eα′ = Eα′ ◦ Eα = Eαα′ (26)

where ◦ is the composition operator. Moreover, since E1 is the identity, for
any α 6= 0, Eα is invertible and,

E−1
α = Eα−1 . (27)

In addition to the trivial case α = 1, keeping invariant the distribution, a
remarkable case is given by α = 0, leading to the uniform distribution. This
case is non surprising since then x(y) is nothing more than the inverse of the
cumulative density function, well known to uniformize a random vector [83].

In the sequel, we focus on the differential-escort distributions obtained
for α > 0. Under this condition, when ρ is continuously differentiable, its
differential-escort is also continuously differentiable. This is important to
be able to define its (p, λ)-Fisher information (see Definition 2). Under this
condition, the differential-escort transformation induces a scaling property
on the index of the Rényi entropy power (for this quantity it remains true
for any α ∈ R), the (p, β)-Fisher information, and thus on the subsequent
complexity as stated in the following proposition.
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Proposition 4 Let a probability distribution ρ and an index α > 0. Then,
the Rényi entropy powers of ρ and its differential-escort distribution Eα[ρ]
satisfy that

Nλ

[
Eα[ρ]

]
=
(
N1+α(λ−1)[ρ]

)α
(28)

for any λ ∈ R∗+. Moreover, if the density ρ is continuously differentiable,
then the extended Fisher information of ρ and its differential-escort distri-
bution Eα[ρ] satisfy that

Fp,β

[
Eα[ρ]

]
= α

2
β

(
Fp,αβ[ρ]

)α
(29)

for any p > 1, β ∈ R∗+.
Consequently, the (p, β, λ)-Fisher–Rényi complexity of ρ and of Eα[ρ]

satisfy the relation

Cp,β,λ

[
Eα[ρ]

]
= α2Cp,Aα(β,λ)[ρ]. (30)

proof 4 It is straightforward to note that

(
Nλ

[
Eα[ρ]

]) 1−λ
2

=

∫

R
[Eα[ρ](y)]λ dy

=

∫

R
[Eα[ρ](y(x))]λ

dy

dx
dx

=

∫

R
[ρ(x)]αλ+1−α dx

=
(
N1+α(λ−1)[ρ]

)α(1−λ)
2 ,

leading to Equation 28.
Similarly,

(
Fp,β

[
Eα[ρ]

]) pβ
2

=

∫

R

∣∣∣ [Eα[ρ](y)]β−2 d

dy
[Eα[ρ](y)]

∣∣∣
p
Eα[ρ](y) dy

=

∫

R

∣∣∣ [Eα[ρ](y(x))]β−2 d

dx
[Eα[ρ](y(x))]

dx

dy

∣∣∣
p
Eα[ρ](y(x))

dy

dx
dx

=

∫

R

∣∣∣ [ρ(x)]α(β−2) d

dx
[(ρ(x))α] [ρ(x)]α−1

∣∣∣
p
ρ(x) dx

=

∫

R

∣∣∣α [ρ(x)]αβ−2 d

dx
[ρ(x)]

∣∣∣
p
ρ(x) dx,
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leading to Equation 29.
Relation 30 is a consequence of Equations 28 and 29 together with Def-

inition 3 of the complexity.

One may mention [84] where the author studies the effect of a rescaling of
the Tsallis non-additive parameter, equivalent to the entropic parameter of
the Rényi entropy, and that is exactly that of Equation 28. In particular,
this rescaling has an effect on the maximum entropy distribution in such a
way that it is equivalent to elevate this particular distribution to a power.
Here, the spirit is slightly different since we start from a given distribution
and the nonlinear stretching is made on the state (x-axis) of any probability
density in such a way that it is elevated to an exponent. The stretching is
intimately linked to the distribution, being of maximum entropy or not, and
the scaling effect on the Rényi is a consequence of this nonlinear stretching.
The study of the links between the present result and that of [84] goes
beyond the scope of our work and remains as a perspective.

3.2 Enlarging the Validity Domain of the Extended Stam
Inequality

We have now all the ingredients to enlarge the domain of validity of the Stam
inequality. Moreover, we are able to determine an explicit expression of the
minimizer by the mean of a special function, i.e., more simple to determine
than as in Proposition 2, and of the tight bound as well.

To this aim, let us consider the following affine transform Aa and the set
of transformation for a ∈ R∗+,

Aa : (β, λ) 7→ (aβ, 1+a(λ−1)) and A(β, λ) =
{
Aa(β, λ) : a ∈ R∗+

}
∩R∗ 2

+ .
(31)

Then, for any strictly positive real a, one can apply Proposition 2 to Ea[ρ],
that is, for p > 1, (β, λ) ∈ Dp, Cp,β,λ[Ea[ρ]] ≥ Kp,β,λ. Thus, from Propo-
sition 4, one immediately has that Cp,Aa(β,λ)[ρ] ≥ a−2Kp,β,λ ≡ Kp,Aa(β,λ).
Moreover, this inequality is sharp since it is achieved for Ea[ρ] = ρp,β,λ, i.e.,
for ρp,Aa(β,λ) = Ea−1 [ρp,β,λ]

As a conclusion, the existence of a universal optimal positive constant
bounding the complexity (see Proposition 2) extends from Dp to A(Dp).
Note that A(β, λ) is the overlap of the line defined by the point (0, 1) and
(β, λ) itself (achieved for a = 1), and R∗ 2

+ , as depicted Figure 2. Then, it

is straightforward to see that D̃p ≡ A(Dp) =
{

(β, λ) ∈ R∗ 2
+ : λ > 1− βp∗

}

(see Figure 2a). The approach is thus the following:
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• Consider a point (β, λ) ∈ D̃p and find an index α ∈ R∗+ such that
Aα(β, λ) ∈ Dp, which is a point of the intersection between Dp and
the line joining (0, 1) and (β, λ).

• Apply Proposition 2 for the point (p,Aα(β, λ)), leading to the mini-
mizing distribution ρp,Aα(β,λ) and its corresponding bound.

• Then, remarking that Aα−1 ◦ Aα(β, λ) = (β, λ), the minimizer of

the extended complexity writes ρp,β,λ = Eα

[
ρp,Aα(β,λ)

]
and the cor-

responding bound can be computed from this minimizer or noting
that Kp,β,λ = α2Kp,Aα(β,λ).

The same procedure obviously applies dealing with Lp: A(Lp) =
{

(β, λ) ∈ R∗ 2
+ : 1− βp∗ < λ < β + 1

}

appears to be a subset of D̃p (see Figure 2b). Similarly, one can also deal

with Lp: A(Lp) =
{

(β, λ) ∈ R∗ 2
+ : λ > 1− p∗β

p∗+1

}
also appears to be a sub-

set of D̃p (see Figure 2c). Remarkably, A(Dp) = A(Lp) ∪ A(Lp). Moreover,
we have explicit expressions for the minimizers in both Lp and Lp, which

greatly eases determining the minimizers in D̃p (including Dp itself).
These remarks, together with both the knowledge of the minimizing

distributions and the bound on Lp ∪Lp, lead to the following definition and
proposition.

Definition 6 ((p, β, λ)-Gaussian distribution) For any p > 1 and (β, λ) ∈
R∗ 2

+ , we define the (p, β, λ)-Gaussian distribution as

gp,β,λ(x) ∝





[
1−B−1

(
1
p∗ , qp,β,λ; p∗|x|

|1−λ|
1
p∗

)] 1
|1−λ|

1[
0 ;B

(
1
p∗ ,qp,β,λ

)]
(

p∗|x|
|1−λ|

1
p∗

)
, if λ 6= 1,

exp


−

G−1

(
1
p∗ ;

(
β−1
β

) 1
p∗ p∗|x|

)

β−1


 1[

0 ;
Γ(1/p∗)
1(0 ; 1)(β)

](p∗|x|), if
λ = 1,
β 6= 1,

exp
(
−|x|p∗

)
, if β = λ = 1,

(32)
with

qp,β,λ =
β − 1

|1− λ| +
1R+(1− λ)

p
. (33)

Tp is the involutary transform defined Equation 11. B(a, b, x) =

∫ x

0
ta−1(1−

t)b−1dt is the incomplete beta function, defined when a > 0 and for x ∈ [0 ; 1)
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β

λ

D̃p Dp

.
1
p∗ 1 + 1

p∗

1

(a)

β

λ

D̃p A(Lp)
Lp

1
1+p∗

1
p∗ 1 + 1

p∗

1
1+p∗

1

(b)

β

λ

D̃p

A(Lp)Lp

1
p∗ 1 + 1

p∗

1

1 + p∗

(c)

Figure 2: Given a p, the domain in gray represents D̃p, where we know that
the (p, β, λ)-Fisher–Rényi complexity is optimally lower bounded and where
the minimizers can be deduced from proposition 2. (a) the domain in dark
gray represents Dp, which is obviously included in D̃p; the dot is a particular
point (β, λ) ∈ Dp and the dotted line represents its transform by A; (b) the

domain in dark gray represents A(Lp) ⊂ D̃p, which obviously contains Lp
represented by the dashed line; (c) same as (b) with Lp and A(Lp) ⊂ D̃p.
This illustrates that D̃p = A(Lp) ∪ A(Lp).

(see [85]), and B(a, b) = lim
x→1

B(a, b, x), that is the standard beta function if

b > 0 and infinite otherwise. B−1 is thus the inverse incomplete beta func-

tion. Finally, G(a, x) =

∫ x

0
ta−1 exp(−t) dt is the incomplete gamma func-

tion, defined when a > 0 and for x ∈ R [85], and Γ(a) = limx→+∞G(a, x) is

the gamma function. By definition, zα = |z|αeıαArg(t) where 0 ≤ Arg(t) <
2π. Finally, by convention 1/0 = +∞.

Note that, when b > 0, the inverse incomplete beta function is well known
and tabulated in the usual mathematical softwares since it is the inverse
cumulative function of the beta distributions [86]. Otherwise, as the in-
complete beta function writes through an hypergeometric function [87] (see
also [85, 86]), also well known and tabulated, B−1 can be at least numeri-
cally computed. The incomplete beta function contains many special cases
for particular parameters [87, 88]. For instance, when a + b is a negative
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integer, they express as elementary functions [87].
Similarly, when its argument is positive, the incomplete gamma function

and its inverse are well known and tabulated because they are linked to the
cumulative distribution of gamma laws [86]. Even for negative arguments,
the incomplete gamma function is very often tabulated in mathematical
software. Otherwise, one can write it using a confluent hypergeometric
function [85] (see also [87, 86]), generally tabulated. Thus, it can be inverted
at least numerically. The incomplete gamma function also contains special
cases for particular parameters. For instance, G

(
1
2 , x

2
)

= erf(x), where erf
is the error function [85]. Hence, for p = 2 and λ = 1, the (p, β, λ)-Gaussian
writes in terms of the inverse error function.

Now, from the procedure previously described, we obtain the Stam in-
equality with the widest possible domain, together with the minimizing dis-
tributions and the explicit tight lower bound.

Proposition 5 (Stam inequality in a wider domain) The (p, β, λ)-Fisher–
Rényi complexity is non trivially lower bounded as follows:

∀ p > 1, (β, λ) ∈ D̃p =
{

(β, λ) ∈ R∗ 2
+ : λ > 1− βp∗

}
, Cp,β,λ[ρ] ≥ Kp,β,λ.

(34)
The minimizers are explicitly given by

argminρCp,β,λ[ρ] = gp,β,λ, (35)

the (p, β, λ)-Gaussian of Definition 6. Proposition 3 remains valid in D̃p.
Moreover, the tight bound is

Kp,β,λ =





(
2

p∗ζp,β,λ

(
p∗ζp,β,λ
|1−λ|

) 1
p∗
(

p∗ζp,β,λ
p∗ζp,β,λ−|1−λ|

) ζp,β,λ
|1−λ| + 1

p
B
(

1
p∗ ,

ζp,β,λ
|1−λ| + 1

p

))2

, if λ 6= 1,

(
2 e

1
p∗ Γ

(
1
p∗
)

βp
∗ 1
p

)2

, if λ = 1,

(36)
with

ζp,β,λ = β +
(λ− 1)+

p∗
. (37)

proof 5 See Appendix C.
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4 Applications to Quantum Physics

Let us now apply the (p, β, λ)-Fisher–Rényi complexity for some specific
values of the parameters to the analysis of the two main prototypes of d-
dimensional quantum systems subject to a central (i.e., spherically sym-
metric) potential; namely, the hydrogenic and harmonic (i.e., oscillator-like)
systems. The wave functions of the bound stationary states of these sys-
tems have the same angular part, so that we concentrate here on the radial
distribution in both position and momentum spaces.

4.1 Brief Review on the Quantum Systems with Radial Po-
tential

The time-independent Schrödinger equation of a single-particle system in a
central potential V (r) can be written as

(
−1

2
~∇2
d + V (r)

)
Ψ (~r) = En Ψ (~r) , (38)

(atomic units are used from here onwards), where ~∇d denotes the d-dimensional
gradient operator and the position vector ~r = (x1, . . . , xd) in hyper-
spherical units is given by (r, θ1, θ2, . . . , θd−1) ≡ (r,Ωd−1), Ωd−1 ∈ Sd−1

the unit d-dimensional sphere, where r ≡ |~r| =
√∑d

i=1 x
2
i ∈ R+ and

xi = r

(
i−1∏

k=1

sin θk

)
cos θi for 1 ≤ i ≤ d and with θi ∈ [0 ; π) for i < d−1,

θd−1 ≡ φ ∈ [0 ; 2π) and θd = 0 by convention. The physical wave functions
are known to factorize (see e.g., [89, 90, 91]) as

Ψn,l,{µ}(~r) = Rn,l(r)Yl,{µ}(Ωd−1), (39)

where Rn,l(r) and Yl,{µ} (Ωd−1) denote the radial and the angular part,
respectively, being (l, {µ}) ≡ (l ≡ µ1, µ2, . . . , µd−1) the hyperquantum num-
bers associated to the angular variables Ωd−1 ≡ (θ1, θ2, . . . , θd−1), which may
take all values consistent with the inequalities l ≡ µ1 ≥ µ2 ≥ . . . ≥ |µd−1| ≡
|m| ≥ 0.

As already stated, the angular part Yl,{µ} is independent of the potential
V and its expression is detailed in [91, 14, 92, 17], for instance. Only the
radial part Rn,l is dependent on V (and also on the energy level n and
the angular quantum number l), being the solution of the radial differential
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equation

(
−1

2

d2

dr2
− d− 1

2 r

d

dr
+
l(l + d− 2)

2 r2
+ V (r)

)
Rn,l(r) = EnRn,l(r) (40)

(see e.g., [14, 92, 17] for further details). Then, the associated radial prob-
ability density ρ(r) is given by

ρn,l(r)dr =

∫

Sd−1

|Ψ(~r)|2 d~r = [Rn,l(r)]2 rd−1dr, (41)

where we have taken into account the volume element d~r = rd−1dr dΩd−1

and the normalization of the hyperspherical harmonics Yl,{µ} (Ωd−1) to unity.
Then, the wavefunction associated to the momentum of the system is

given by the Fourier transform Ψ̃ of Ψ. It is known that, again, Ψ̃ writes as
the product of a radial and angular part

Ψ̃n,l,{µ}(~k) =Mn,l(k)Yl,{µ}(Ωd−1), (42)

with the the radial part being the modified Hankel transform of Rn,l,

Mn,l(k) = (−ı)lk1− d
2

∫

R+

r
d
2Rn,l(r) Jl+ d

2
−1(kr) dr, (43)

with Jν the Bessel function of the first king and order ν (see e.g., [91, 14,
92, 17]). Again, it leads to the radial probability density function

γn,l(k) = [Mn,l(k)]2 kd−1. (44)

In the following, we will focus on the (p, β, λ)-Fisher–Rényi complexity of
the radial densities ρn,l(r) and γn,l(k) of the d-dimensional harmonic and
hydrogenic systems.

4.2 (p, β, λ)-Fisher–Rényi Complexity and the Hydrogenic Sys-
tem

The bound states of a d-dimensional hydrogenic system, where V (r) = −Z
r

(Z denotes the nuclear charge) are the physical solutions of Equation 40,
which correspond to the known energies

E(h)
n = − Z

2

2η2
where η = n+

d− 3

2
; n = 1, 2, . . . (45)
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(see [89, 90, 14]). The radial eigenfunctions are given by

R(h)
n,l (r) =

√
Rn,l

(
2Z
η

)d−1
2
r̃ le−

r̃
2 L(2L+1)

η−L−1(r̃). (46)

L is the grand orbital angular momentum quantum number, r̃ is a dimen-
sionless parameter, and the normalization coefficient Rn,l are given by

L = l+
d− 3

2
, l = 0, 1, . . . , n−1; r̃ =

2Z

η
r and Rn,l =

Z Γ(η − L)

η2 Γ(η + L+ L)
,

(47)

respectively, with L(α)
n (x) the Laguerre polynomials [85, 87]. Then, the

radial probability density (41) of a d-dimensional hydrogenic stationary state
(n, l, {µ}) is given in position space by

ρ
(h)
n,l (r) = Rn,l r̃

2L+2 e−r̃
[
L(2L+1)
η−L−1(r̃)

]2
. (48)

Furthermore, using 8.971 in [87], one can compute
dρ

(h)
n,l

dr = 2Z
η

dρ
(h)
n,l

dr̃ .
On the other hand, the modified Hankel transform of Rn,l Equation 43

gives the radial part of the wavefunction in the conjugated momentum space
as [89, 90, 14]

Mn,l(k) =
√
Mn,l

( η
Z

) d−1
2

k̃ l
(

1 + k̃ 2
)L+2

G(L+1)
η−L−1

(
1− k̃ 2

1 + k̃ 2

)
, (49)

where k̃ is a dimensionless parameter and the normalization coefficient Mn,l

are given by

k̃ =
η

Z
k and Mn,l =

42L+3 Γ(η − L) [Γ(L+ 1)]2 η2

2π Z Γ(η + L+ 1)
, (50)

and where G(α)
n (x) denotes the Gegenbauer polynomials [85, 87]. This gives

the radial probability density function in the momentum space as

γ
(h)
n,l (k) = Mn,l

k̃ 2L+2

(
1 + k̃ 2

)2L+4

[
G(L+1)
η−L+1

(
1− k̃ 2

1 + k̃ 2

)]2

. (51)

Furthermore, using 8.939 in [87], one can compute
dγ

(h)
n,l

dk = 2Z
η

dγ
(h)
n,l

dk̃
.
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These expressions can thus be injected into Equations 4–6 to evaluate the

(p, β, λ)-Fisher–Rényi complexity of both ρ
(h)
n,l and γ

(h)
n,l . Due to the special

form of the density, involving orthogonal polynomials, this can be done using
for instance a Gauss-quadrature method for the integrations [86].

For illustration purposes, we depict in Figure 3 the behavior of the Fisher
information Fp,β, of the Rényi entropy power Nλ, and of the (p, β, λ)-Fisher–
Rényi complexity Cp,β,λ (normalized by the lower bound) of the radial posi-

tion density ρ
(h)
n,l of the d-dimensional hydrogenic system, versus n and l, for

the parameters (p, β, λ) = (2, 1, 7) and in dimensions d = 3 and 12. Therein,
we firstly observe that, for a given quantum state of the system (so, when
n and l are fixed), the Fisher information decreases (see left graph) and the
Rényi entropy power increases (see center graph) when d goes from 3 to 12.
This indicates that the oscillatory degree and the spreading amount of the
radial electron distribution have a decreasing and increasing behavior, re-
spectively, when the dimension is increasing. The resulting combined effect,
as captured and quantified by the the Fisher–Rényi complexity (see right
graph), is such that the complexity has a clear dependence on the difference
n− l in such a delicate way that it decreases when n− l = 1, but it increases
when n− l is bigger than unity as d is increasing.

To better understand this phenomenon, we have to look carefully at the
opposite behavior of the Fisher information and the Rényi entropy power
versus the pair (n, l).

Indeed, for the two dimensionality cases considered in this work, the
Fisher information presents a decreasing behavior when l is increasing and
n is fixed, reflecting essentially that the number of oscillations of the radial
electron distribution is gradually smaller; keep in mind that η−L = n− l is
the degree of the Laguerre polynomials which controls the radial electron dis-
tribution. At the smaller dimension (d = 3), a similar behavior is observed
when l is fixed and n is increasing, while the opposite behavior occurs at
the higher dimension (d = 12). This indicates that the radial fluctuations
are bigger in number as n increases and their amplitudes depend on the
dimension d so that they are gradually smaller (bigger) at the high (small)
dimension. This is because the dimension, hidden in both the hyperquan-
tum numbers η and L, tunes the coefficients of the Laguerre polynomials
and thus the amplitude height of the oscillations.

In the case of the Rényi quantity, which is a global spreading measure,
the behavior for fixed l and n increasing is clearly increasing, whereas, for
fixed n, it is slowly decreasing versus l; this indicates that the radial electron
distribution gradually spreads more and more (less and less) all over the
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space when n(l) is increasing.
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Figure 3: Fisher information Fp,β (left graph), Rényi entropy power Nλ

(center graph), and (p, β, λ)-Fisher–Rényi complexity Cp,β,λ (right graph)
of the radial hydrogenic distribution in position space with dimensions d =
3(◦), 12(∗) versus the quantum numbers n and l. The complexity parameters
are p = 2, β = 1, λ = 7.

Then, in Figure 4, the parameter dependence of the (p, β, λ)-Fisher–
Rényi complexity Cp,β,λ (duly normalized to the lower bound) for the radial
distribution of various states (n, l) of the d-dimensional hydrogenic system
in position space with dimensions d = 3 and 12, is investigated for the
sets (p, β, λ) = (2, .8, 7), (2, 1, 1) (usual Fisher–Shannon complexity) and
(5, 2, 7). Roughly speaking, the average behavior of the complexity versus
(n, l) is similar for both dimensional cases to the one shown in the right graph
of the previous figure. Of course, for a given pair (n, l), the behavior of the
complexity in terms of the dimension is quantitatively different according to
the values of the parameters. Let us just point out, for instance, that the
comparison of the behavior of C5,2,7 versus d and the corresponding ones of
the other complexities shows that the complexity with higher value of p is
more sensitive to the radial electron fluctuations with higher amplitudes.
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Figure 4: (p, β, λ)-Fisher–Rényi complexity (normalized to its lower bound),
Cp,β,λ, with (p, λ, β) = (2, 0.8, 7), (2, 1, 1), (5, 2, 7) for the radial hydrogenic
distribution in the position space with dimensions d = 3(◦) and 12(∗).
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A similar study for the previous entropy- and complexity-like measures
in momentum space has been done in Figures 5 and 6. Briefly, we observe
that the behavior of these momentum quantities are in accordance with the
analysis of the corresponding ones in position space, which has just been
discussed. Note that here again the difference n − l determines the degree

of the Gegenbauer polynomials that control the momentum density γ
(h)
n,l , so

that the influence of n, l and d is formally similar to that for the position

density ρ
(h)
n,l . Here, the influence of d on the height of the radial oscilla-

tion of the electron distribution (through the coefficients of the Gegenbauer
polynomials) is the same for the two dimensionality cases considered in this
work.

Let us highlight that the (n, l, d)-behavior of the Rényi power entropy
in momentum space is just the opposite to the corresponding position one,
manifesting the conjugacy of the two spaces, which is the spread of the
position and momentum electron distributions are opposite.
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Figure 5: Fisher information Fp,β (left graph), Rényi entropy power Nλ

(center graph), and (p, β, λ)-Fisher–Rényi complexity Cp,β,λ (right graph)
of the radial hydrogenic distribution in momentum space with dimensions
d = 3(◦), 12(∗) versus the quantum numbers n and l. The complexity
parameters are p = 2, β = 1, λ = 7.

4.3 (p, β, λ)-Fisher–Rényi Complexity and the Harmonic Sys-
tem

The bound states of a d-dimensional harmonic (i.e., oscillator-like) system,
where V (r) = 1

2ω
2 r2 (without loss of generality, the mass is assumed to be

unity), are known to have the energies

E(o)
n = ω

(
2n+ L+

3

2

)
with n = 0, 1, . . . , l = 0, 1, . . . (52)
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Figure 6: (p, β, λ)-Fisher–Rényi complexity (normalized to its lower bound),
Cp,β,λ, with (p, λ, β) = (2, 0.8, 7), (2, 1, 1), (5, 2, 7) for the radial hydrogenic
distribution in the momentum space with dimensions d = 3(◦) and 12(∗).

(see e.g., [93, 94, 90]). The radial eigenfunctions writes in terms of the
Laguerre polynomials as

R(o)
n,l (r̃) =

√
Rn,l ω

d−1
4 r̃ l e−

1
2
r̃ 2 L(L+ 1

2
)

n

(
r̃ 2
)
, (53)

where r̃ is a dimensionless parameter, and the normalization coefficient Rn,l
are given by

r̃ =
√
ω r and Rn,l =

2
√
ω Γ(n+ 1)

Γ
(
n+ L+ 3

2

) , (54)

respectively. Then, the associated radial position density is thus given by

ρ
(o)
n,l (r) = Rn,l r̃

2L+2 e−r̃
2

[
L(L+ 1

2
)

n

(
r̃ 2
)]2

. (55)

As for the hydrogenic system, using 8.971 in [87], one can compute
dρ

(o)
n,l

dr =
√
ω
dρ

(o)
n,l

dr̃ , and thus the (p, β, λ)-Fisher–Rényi of ρ
(o)
n,l . Remarkably, Rn,l is

invariant by the modified Hankel transform, so that the momentum radial
density is formally the same as the position radial density.

For illustration purposes, we plot in Figure 7 the behavior of the Fisher
information F2,1, the Rényi entropy power N7 and the (2, 1, 7)-Fisher–Rényi
complexity C2,1,7 of the radial position distribution of the d-dimensional har-
monic system for various values of the quantum numbers n and l at the di-
mensions d = 3 and 12. Figure 8 depicts Cp,β,λ duly renormalized by its lower
bound, for the triplets of complexity parameters (p, β, λ) = (2, .8, 7), (2, 1, 1)
and (5, 2, 7), respectively. In these graphs, one can make a similar interpre-
tation as for the hydrogenic case. Note, however, that here the degree of
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the Laguerre polynomials involved in the distribution ρ
(o)
n,l only depends on

n; this fact makes more regular the behavior of the previous information-
theoretical measures in the oscillator case than in the hydrogenic one. Con-
comitantly, as n increases, the spreading of the distribution also increases.
Conversely, parameters l and d have a relatively small influence on both the
smoothness of the oscillation and on the spreading (compared to that of n).
Thus, unsurprisingly, both the Fisher information and the Rényi entropy
power are weakly influenced by l (especially at the higher dimension) and
by d. The Fisher–Rényi complexity, which quantifies the combined oscil-
latory and spreading effects, exhibits a very regular increasing behavior in
terms of n.

Most interesting is the parameter-dependence of the complexity. Indeed,
we can play with the complexity parameter to stress different aspects of the
oscillator density and thus to reveal differences between the quantum states
of the system. For instance, as one can see in Figure 8, the usual Fisher–
Rényi complexity is unable to quantify the difference between the states of
a given n versus the orbital number l and the dimension d (especially when
n ≥ 1, whereas the systems are quite different). This holds even playing
with λ or β, while increasing parameter p (right graph), these states are
distinguishable. This graph clearly shows the potentiality of the family of
complexities Cp,β,λ to analyze a system, especially thanks to the full degree
of freedom we have between the complexity parameters p, β and λ.
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Figure 7: Fisher information Fp,β (left graph), Rényi entropy power Nλ (cen-
ter graph), and (p, β, λ)-Fisher–Rényi complexity Cp,β,λ (right graph) versus
n and l for the radial harmonic system in position space with dimensions
d = 3(◦), 12(∗). The informational parameters are p = 2, β = 1, λ = 7.
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Figure 8: (p, β, λ)-Fisher–Rényi complexity (normalized to its lower bound)
Cp,β,λ with (p, λ, β) = (2, 0.8, 7), (2, 1, 1), (5, 2, 7) for the oscillator system
in the position space with dimensions d = 3(◦), 12(∗).

5 Conclusions

In this paper, we have defined a three-parametric complexity measure of
Fisher–Rényi type for a univariate probability density ρ that generalizes all
the previously published quantifiers of the combined balance of the spread-
ing and oscillatory facets of ρ. We have shown that this measure satisfies
the three fundamental properties of a statistical complexity, namely, the
invariance under translation and scaling transformations and the universal
bounding from below. Moreover, the minimizing distributions are found to
be closely related to the stretched Gaussian distributions. We have used an
approach based on the Gagliardo–Nirenberg inequality and the differential-
escort transformation of ρ. In fact, this inequality was previously used by
Bercher and Lutwak et al. to find a biparametric extension of the celebrated
Stam inequality which lowerbounds the product of the Rényi entropy power
and the Fisher information. We have extended this biparametric Stam in-
equality to a three-parametric one by using the idea of differential-escort
deformation of a probability density.

Then, we have numerically analyzed the previous entropy-like quantities
and the three-parametric complexity measure for various specific quantum
states of the two main prototypes of multidimensional electronic systems
subject to a central potential of Coulomb (the d-dimensional hydrogenic
atom) and harmonic (the d-dimensional isotropic harmonic oscillator) char-
acter. Briefly, we have found that the proposed complexity allows to capture
and quantify the delicate balance of the gradient and the spreading contents
of the radial electron distribution of ground and excited states of the system.
The variation of the three parameters of the proposed complexity allows one
to stress differently this balance in the various radial regions of the charge
distribution.
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The results found in this work can be generalized in various ways that
remain open. Indeed, the Gagliardo–Nirenberg relation is quite powerful
since it involves the p-norm of the function u, the q-norm of its j-th derivative
and the s-norm of its m-th derivative, where p, q, s and the integers j,m are
linked by inequalities (see [95]). This leaves open the possibility to define
still more extended (complete) complexity measures, with higher-order (in
terms of derivative) measures of information. Even more interesting, this
inequality-based relation holds for any dimension d ≥ 1; thus, it supports the
possibility to extend our univariate results to multidimensional distributions,
but with tighter restrictions on the parameters. The main difficulty in this
case is related with the multidimensional extension of the validity domain
by using the differential-escort technique or a similar one.
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A Proof of Proposition 2

A.1 The Case λ 6= 1

The result of the proposition is a direct consequence of the Gagliardo–
Nirenberg
inequality [95, 52, 35], stated in our context as follows: let p > 1, s > q ≥ 1

and θ = p(s−q)
s(p+pq−q) ; then, there exists an optimal strictly positive constant

K, depending only on p, q and s such that for any function u : R 7→ R+,

K

∥∥∥∥
d

dx
u

∥∥∥∥
θ

p

‖u‖1−θq ≥ ‖u‖s , (56)

provided that the involved quantities exist, the equality being achieved for
u solution of the differential equation

− d

dx

(∣∣∣∣
d

dx
u

∣∣∣∣
p−2 d

dx
u

)
+ uq−1 = γus−1, (57)
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where γ > 0 is such that ‖u‖s is fixed and can be chosen arbitrarily (it
corresponds to a Lagrange multiplier, see Equations (26) and (27) in [52]).
Finding u thus allows to determine the optimal constant K. Note that, if
the equality in 56 is reached for uγ , then it is also reached for uγ = δuγ(x)
for any δ > 0. One can see that uγ satisfies the differential equation

− d
dx

(∣∣ d
dxu
∣∣p−2 d

dxu
)

+ δp−q uq−1 − γδp−s us−1 = 0. Thus, function u reach-

ing the equality in Equation 56 can also be chosen as the solution of the

differential equation − d
dx

(∣∣ d
dxu
∣∣p−2 d

dxu
)

+ κuq−1 − ζus−1 = 0, where κ > 0

and ζ > 0 can be chosen arbitrarily. As we will see later on, a judicious
choice allowing to include the limit case s → q is to take κ = ζ = γ

s−q , i.e.,
to chose function u reaching the equality in Equation 56 as the solution of
the differential equation

− d

dx

(∣∣∣∣
d

dx
u

∣∣∣∣
p−2 d

dx
u

)
+ γ

uq−1 − us−1

s− q = 0, (58)

where γ > 0 can be arbitrarily chosen.

A.1.1 The Sub-Case λ < 1

Following the very same steps than in [35], let us consider first

λ =
q

s
< 1.

With us integrable, one can normalize it, that is, writing it under the form

u = ρ
1
s = ρ

λ
q with ρ a probability density function. Thus, ‖u‖s = 1 and

from the Gagliardo–Nirenberg inequality,

∥∥∥∥ρ
λ
q
−1 d

dx
ρ

∥∥∥∥
θ

p

∥∥∥ρ
λ
q

∥∥∥
1−θ

q
≥ sθK−1.

Simple algebra allows to write the terms of the left-hand side in terms of the
generalized Fisher information and of the Rényi entropy power, respectively,
to conclude that

(
Fp,λ

q
− 1
p

+1[ρ]
) θ
p

p(λq − 1
p+1)

2
(
Nλ[ρ]

) 1−θ
q

1−λ
2 ≥ sθK−1. (59)

Using 1− 1
p = 1

p∗ , let us then denote

β =
λ

q
+

1

p∗
=

1

s
+

1

p∗
,
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and note that the conditions imposed on p, q and s together with λ > 0
impose

β ∈
(

1

p∗
;

1

p∗
+ λ

]
,

once p and λ are given. Simple algebra allows thus to show that θ
p

p
(
λ
q

+ 1
p∗
)

2 =
1−θ
q

1−λ
2 = θβ

2 > 0: the exponent of the Fisher information and of the entropy
power in Equation 59 are thus equal. Moreover, θ being strictly positive,
both sides of Equation 59 can be elevated to exponent 2

θ leading to the result
of the proposition, where the bound is given by

Kp,β,λ = s2K−
2
θ , (60)

where s and θ can be expressed by their parametrization in p, β, λ. Finally,
the differential equation 10 satisfied by the minimizer u comes from Equa-
tion 58 noting that s = p∗

βp∗−1 and q = λp∗
βp∗−1 , remembering that ρ = us and

thus that γ is to be chosen such that us sums to unity.

A.1.2 The Sub-Case λ > 1

Consider now
λ =

s

q
> 1

and u = ρ
1
q = ρ

λ
s , leading to

(
Fp,λ

s
− 1
p

+1[ρ]
) θ
p

p(λs− 1
p+1)

2
(
Nλ[ρ]

)− 1
s

1−λ
2 ≥ qθK−1. (61)

Denoting now

β =
λ

s
+

1

p∗
=

1

q
+

1

p∗
,

imposing

β ∈
(

1

p∗
;

1

p∗
+ 1

]

once p and λ are given. Simple algebras allows thus to show that θ
p

p
(
λ
s
− 1
p

+1
)

2 =

−1
s

1−λ
2 = θβ

2 > 0: again, the exponent of the Fisher information and of the
entropy power in Equation 61 are equal. Here again, θ > 0 allowing to
elevate both side of Equation 61 to exponent 2

θ . The bound is now given by

Kp,β,λ = q2K−
2
θ (62)
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where q and θ can be expressed by their parametrization in p, β, λ. Finally, as
for the previous case, the differential equation 10 satisfied by the minimizer
u comes from Equation 58 noting that now q = p∗

βp∗−1 and s = λp∗
βp∗−1 ,

remembering that now ρ = uq and thus that γ is to be chosen such that uq

sums to unity.

A.2 The Case λ = 1

The minimizer for λ = 1 can be viewed as the limiting case λ → 1, i.e.,
s→ q.

One can also process as done by Agueh in [52] to determine the sharp
bound of the Gagliardo–Nirenberg inequality. To this end, let us consider
the minimization problem

inf

{
1

p

∫

R

∣∣∣ d
dx
u(x)

∣∣∣
p
dx− 1

q

∫

R
[u(x)]q log u(x) dx : u ≥ 0,

∫

R
[u(x)]q dx = 1

}

(63)
for p > 1 and q ≥ 1 (see Chapters 5 and 6 in [96, ] justifying the existence of
a minimum). Hence, there exists an optimal constant K such that for any
function u such that uq sums to unity,

1

p

∫

R

∣∣∣∣
d

dx
u(x)

∣∣∣∣
p

dx− 1

q

∫

R
[u(x)]q log u(x) dx ≥ K. (64)

Now, fix a function u and consider v(x) = γ
1
q u(γx) for some γ > 0. vq also

sums to unity and thus can be put in the previous inequality, leading to

fu(γ) ≡ γ
p
q

+p−1

p

∫

R

∣∣∣∣
d

dx
u(x)

∣∣∣∣
p

dx− 1

q

∫

R
[u(x)]q log u(x) dx− 1

q2
log γ ≥ K

(65)
for any γ > 0. Thus, this inequality is necessarily satisfied for the γ that
minimizes fu(γ). A rapid study of fu allows to conclude that it is minimum
for

γ =




p

q(p+ q(p− 1))

∫

R

∣∣∣ d
dx
u(x)

∣∣∣
p
dx




q
p+q(p−1)

. (66)

Now, injecting Equation 66 in Equation 65 gives

1

p+ q(p− 1)
log

∫

R

∣∣∣ d
dx
u(x)

∣∣∣
p
dx−

∫

R
[u(x)]q log u(x) dx ≥ K̃, (67)
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with K̃ = qK + 1
p+q(p−1)

(
log
(

p
q(p+q(p−1))

)
− 1
)

. Consider now umin the

minimizer of problem 63. Obviously, fumin(γ) is minimum for γ = 1, that

gives, from Equation 66,
∫
R

∣∣∣ ddxumin(x)
∣∣∣
p
dx = p

q(p+q(p−1)) and from Equa-

tion 64, being an equality,
∫
R[umin(x)|q log umin(x) dx = 1

p+q(p−1) − qK.
Injecting these expressions in Equation 67 allows concluding that this in-
equality is sharp, and moreover that its minimizer coincides with that of the
minimization problem 63.

Inequality 8 is obtained by injecting u = ρ
1
q in Equation 67 and after

some trivial algebra and denoting β = 1
q + 1

p∗ ∈
(

1
p∗ ; 1 + 1

p∗

]
, confirming

that it can be viewed as a limit case λ→ 1.
Let us now solve the minimization problem 63, that is, from the La-

grangian technique [97], to minimize
∫
R F (x, u, u′)dx, where F (x, u, u′) =

1
p

∣∣∣ ddxu(x)
∣∣∣
p
− 1

q [u(x)]q log u(x) − γ[u(x)]q and where u′ = d
dxu and γ is the

Lagrange multiplier. The solution of this variational problem is given by
the Euler–Lagrange equation [97], ∂F

∂u − d
dx

(
∂F
∂u′
)

= 0, that writes here after
a re-parametrization δ = 1

q + qγ

− d

dx

(∣∣∣∣
d

dx
u

∣∣∣∣
p−2 d

dx
u

)
− uq−1 (log u+ δ) = 0. (68)

δ is to be determined a posteriori so as to satisfy the constraint
∫
R[u(x)]qdx =

1. Again, one can easily see that if the bound in Equation 67 is achieved
for umin, then it is also achieved for uδ(x) = σumin(σqx) whatever σ > 0.
Reporting umin(x) = σ−1uσ(σ−qx) in the differential equation allows to

see that uσ is a solution of the differential equation − d
dx

(∣∣ d
dxu
∣∣p−2 d

dxu
)
−

σp+q(p−1)uq−1 (log u− log σ + δ) = 0. Choosing σ = exp(δ) and rewriting
σp+q(p−1) = γ, one can thus choose the minimizer u as the solution of the
differential equation

− d

dx

(∣∣∣∣
d

dx
u

∣∣∣∣
p−2 d

dx
u

)
− γ uq−1 log u = 0, (69)

where γ is to be determined a posteriori so as to satisfy the constraint∫
R[u(x)]qdx = 1. This result is precisely the limit case of the differential

equation 58 when s→ q.
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B Proof of Proposition 3

For λ = 1, Relations 12 and 13 induced by Transform 11 of the indexes are
obvious since Tp(β, 1) = (β, 1).

Then, for λ 6= 1, Relation 12 comes from the fact that the function u
solution of Equation 58 depends only on p, q and s. Let us write (β, λ)
and ϑ the parameters for the first situation of the above proof, i.e., λ = q

s

and β = 1
s + 1

p∗ = λ
q + 1

p∗ , and (β, λ) and ϑ the parameters for the second

situation, i.e., λ = s
q and β = 1

q + 1
p∗ = λ

s + 1
p∗ . It is straightforward to see

that λ = 1
λ and β = β

λ − 1
λp∗ + 1

p∗ = βp∗+λ−1
λp∗ , i.e., (p, β, λ) = (p,Tp(β, λ)),

and, conversely, that (p, β, λ) = (p,Tp(β, λ)). Since the optimal u is fixed
once p, q and s are given, one has up,Tp(β,λ) = up,β,λ. Finally, simple algebra

allows to show that ϑ = λϑ and ϑ = λϑ, which finishes the proof.
Now, Relation 13 immediately comes from Equations 60 and 62 together

with λ = q
s .

C Proof of Proposition 5

C.1 The (p, β, λ)-Fisher–Rényi Complexity is Lowerbounded

over D̃p
As detailed in the text, consider a point (β, λ) ∈ D̃p. Thus, there exists an
index α > 0 such that Aα(β, λ) ∈ Lp ∪ Lp. Applying Propositions 2 and 4,
we have

Cp,β,λ[ρ] = α2Cp,Aα(β,λ)

[
Eα[Eα−1 [ρ]]

]

≥ α2Kp,Aα(β,λ) ≡ Kp,β,λ.

Finally, denoting (β̃, λ̃) = Aα(β, λ), the minimizers satisfy Eα−1 [ρp,β,λ] =
g
p,λ̃

(see Section 2.3.1), or Eα−1 [ρp,β,λ] = g
p,2−λ̃ (see Section 2.3.2), that is,

ρp,β,λ =





Eα[g
p,λ̃

], if Aα(β, λ) ∈ Lp,

Eα[g
p,2−λ̃], if Aα(β, λ) ∈ Lp.
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C.2 Explicit Expression for the Minimizers.

In the sequel, we determine the differential-escort transformation Eα[gp,λ]

with λ < 1. Let us denote by Zp,λ =

∫

R

(
1 + (1− λ)|x|p∗

) 1
λ−1

dx =
2B

(
1
p∗ ,

1
1−λ − 1

p∗

)

p∗(1− λ)
1
p∗

the normalization coefficient of the distribution gp,λ [35, 87]). Hence, as de-

fined in Definition (5), Eα[gp,λ](y) =
[
gp,λ(x(y))

]α
with

dy

dx
=

[
gp,λ(x)

]1−α

= Zα−1
p,λ

(
1 + (1− λ) |x|p∗

) 1−α
λ−1

.

Thus, y(x) writes

y(x) = Zα−1
p,λ sign(x)

∫ |x|

0

(
1 + (1− λ) tp

∗
) 1−α
λ−1

dt

= κp,λ,α sign(x)

∫ (1−λ)|x|p
∗

1+(1−λ)|x|p∗

0
τ

1
p∗−1

(1− τ)
α−1
λ−1
− 1
p∗−1

dτ

when making the change of variables τ = (1−λ)tp
∗

1+(1−λ)tp∗ and denoting κp,λ,α =

Zα−1
p,λ

p∗(1−λ)
1
p∗

. One can recognize in the integral the incomplete beta func-

tion B(a, b, x) =

∫ x

0
ta−1(1 − t)b−1dt defined when <e{a} > 0 and for

x ∈ [0 ; 1) [85]. Here, a = 1
p∗ > 0, b = α−1

λ−1− 1
p∗ and noting that (1−λ)|x|p∗

1+(1−λ)|x|p∗ ∈
[0 ; 1). Hence,

y(x) = κp,λ,α sign(x)B

(
1

p∗
,
α− 1

λ− 1
− 1

p∗
;

(1− λ)|x|p∗

1 + (1− λ)|x|p∗
)
. (70)

Note that
y

κp,λ,α
: R 7→

(
−B

(
1
p∗ ,

α−1
λ−1 − 1

p∗

)
; B

(
1
p∗ ,

α−1
λ−1 − 1

p∗

))
, where

B(a, b) = limx→1 B(a, b, 1) is the beta function [85, 87, 86]; B(a, b) is thus
infinite when b ≤ 0.

Denoting B−1 the inverse of incomplete beta function, we obtain

1 + (1− λ)|x(y)|p∗ =
1

1−B−1
(

1
p∗ ,

α−1
λ−1 − 1

p∗ ; |y|
κp,λ,α

) (71)
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and, thus,

Eα [gp,λ] (y) ∝
[
1−B−1

(
1

p∗
,
α− 1

λ− 1
− 1

p∗
;
|y|

κp,λ,α

)] α
1−λ

1[
0 ;B

(
1
p∗ ,

α−1
λ−1
− 1
p∗
))
( |y|
κp,λ,α

)

(72)

Note that from B(a,−a, x) = a−1
(

x
1−x

)a
[87, 86]), we naturally recover

that E1 [gp,λ] = gp,λ.
Finally, let us remark that

D̃p = {(β, λ) ∈ R∗ 2
+ : 1−p∗β < λ < 1}∪{(β, λ) ∈ R∗ 2

+ : λ > 1}∪{(β, 1), β ∈ R∗+},
(73)

the first ensemble being a subset of A[Lp] and the second one a subset of
A[Lp]. We treat now these three cases separately.

C.2.1 The Case 1− p∗β < λ < 1

Following Appendix C.1, let us first determine α such that Aα(β, λ) ∈ Lp,
which is α such that αβ = 1 + α(λ− 1). Hence,

α =
1

β + 1− λ and Aα(β, λ) =

(
β

β + 1− λ,
β

β + 1− λ

)
. (74)

The fact that β > 0 and λ < 1 insures that β + 1− λ 6= 0.
From Sections 2.3.1 and C.1, the minimizer of the complexity is thus

given by

ρp,β,λ = E 1
β+1−λ

[
g
p, β
β+1−λ

]
. (75)

One can easily see that β
β+1−λ ∈

(
1

1+p∗ ; 1
)

, and thus we immediately get

from Equation 72,

ρp,β,λ(x) ∝
[
1−B−1

(
1

p∗
,
β − λ
1− λ −

1

p∗
;
|y|

κp,αβ,α

)] 1
1−λ

1[
0 ;B

(
1
p∗ ,

β−λ
1−λ−

1
p∗
))
( |y|
κp,αβ,α

)
.

(76)
Noting that β−λ

1−λ = β−1
1−λ + 1

p , it appears that this density is nothing more
than the (p, β, λ)-Gaussian of Definition 6 (remember that the families of
density are defined up to a shift and a scaling).
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C.2.2 The Case λ > 1

Following again Appendix C.1, let us first determine α such that Aα(β, λ) ∈
Lp, i.e., such that αβ = p∗+1−[1+α(λ−1)]

p∗ . We thus obtain

α =
p∗

p∗β + λ− 1
and Aα(β, λ) =

(
p∗β

p∗β + λ− 1
, 1 +

p∗(λ− 1)

p∗β + λ− 1

)
.

(77)
The fact that β > 0 and λ > 1 insures that p∗β + λ− 1 6= 0.

From Section 2.3.1 and Appendix C.1, the minimizers for the complexity
expresses

ρp,β,λ = E p∗
p∗β+λ−1

[
g
p,1− p∗(λ−1)

p∗β+λ−1

]
. (78)

One can easily has that 1− p∗(λ−1)
p∗β+λ−1 ∈ (1− p∗ ; 1) and thus we immediately

get from Equation 72

ρp,β,λ(y) ∝
[
1−B−1

(
1

p∗
,
β − 1

λ− 1
;

|y|
κp,1−α(λ−1),α

)] 1
λ−1

1[
0 ;B

(
1
p∗ ,

β−1
λ−1

))
( |y|
κp,1−α(λ−1),α

)
.

(79)
The density is again nothing more than the (p, β, λ)-Gaussian of Definition 6.

C.2.3 The Case λ = 1

We exclude here the trivial point β = 1. Now, taking α = 1
β gives Aα(β, 1) = (1, 1).

We know that the minimizer for β = 1 is given by gp,1(x) = Z−1
p,1 exp

(
−|x|p∗

)

with

Zp,1 =

∫

R
exp(−|x|p∗)dx =

2 Γ
(

1
p∗

)

p∗
[35, 87].

Following again Appendix C.1, we have to determine

E 1
β

[
gp,1

]
(y) = [gp,1(x(y))]

1
β = Z

− 1
β

p,1 exp

(
−|x(y)|p∗

β

)
(80)

with

dy

dx
=

[
gp,1

]1− 1
β

= Z
1−β
β

p,1 exp

(
−β − 1

β
|x|p∗

)
,
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and thus

y(x) = Z
1−β
β

p,1 sign(x)

∫ |x|

0
exp

(
−β − 1

β
tp
∗
)
dt.

Viewing this integral in the complex plane (here in the real line), one can

make the change of variables τ = β−1
β tp

∗
, i.e., t =

(
β−1
β

)− 1
p∗
τ

1
p∗ to obtain

y(x) =
Z

1−β
β

p,1

p∗
(
β−1
β

) 1
p∗

sign(x)

∫ β−1
β
|x|p∗

0
τ

1
p∗−1

exp(−τ) dτ, (81)

where
(
β−1
β

) 1
p∗

is complex in general, real only if β−1
β ≥ 0, i.e., if β 6∈ (0 ; 1).

One can recognize in the integral the incomplete gamma function G(a, x) =∫ x

0
ta−1 exp(−t)dt, defined for <e{a} > 0 and for any complex x [85]. We

then obtain,

y(x) = κp,β sign(x)

[(
β − 1

β

)− 1
p∗

G

(
1

p∗
;
β − 1

β
|x|p∗

)]
, (82)

where κp,β =
Z

1−β
β

p,1

p∗ . Note that the term in square brackets is real and
positive, and takes its values over R+ if β > 1 (remember that we excluded

the trivial situation β = 1), and over
[
0 ; Γ

(
1
p∗

))
if β < 1.

Denoting G−1 the inverse of the incomplete gamma function, this gives

1

β
|x(y)|p =

1

β − 1
G−1

(
1

p∗
;

(
β − 1

β

) 1
p∗ |y|

κp,1

)
(83)

defined for |y|
κp,1

< Γ(1/p∗)
1(0 ; 1)(β) with the convention 1/0 = +∞. We thus achieve

ρp,β,1(y) ∝ exp

(
1

1− βG
−1

(
1

p∗
;

(
β − 1

β

) 1
p∗ |y|

κp,1

))
1[

0 ;
Γ(1/p∗)
1(0;1)(β)

)
( |y|
κp,1

)
.

(84)
We again recover the (p, β, λ)-Gaussian.
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C.3 Symmetry through the Involution Tp.

For λ = 1, the result is trivial since Tp(β, 1) = (β, 1) (see Equation 11).

Now, for λ 6= 1, let us denote (β, λ) = Tp(β, λ) =
(
p∗β+λ−1

p∗λ , 1
λ

)
the

involutary transform of (β, λ). Some simple algebra allows to show that if
1 − βp∗ < λ < 1, then λ > 1, and reciprocally. Thus, it is straightforward
to see that qp,T(β,λ) = qp,β,λ and that 1

|1−λ| = λ
|1−λ| , leading to

gp,Tp(β,λ) ∝
[
gp,β,λ

]λ
. (85)

Now, if λ < 1, the optimal bound is given by Kp,β,λ = α2Kp,αβ,αβ

(see Equations 74 and 30). Then, λ > 1 and thusKp,Tp(β,λ) = α2Kp,αβ,1+α(λ−1)

(see Equations 77 and 30, where α is here denoted by α and (β, λ) is ob-
viously replaced by (β, λ)). Simple algebraic manipulations allow us to see
that α = λ

β and that Tp(αβ, αβ) = (αβ, 1 + α(λ − 1)), hence Kp,Tp(β,λ) =
(
λ
β

)2
Kp,Tp(αβ,αβ) = (λα)2Kp,αβ,αβ from Proposition 3. We then obtain

again Kp,Tp(β,λ) = λ2Kp,β,λ. The case λ > 1 is treated in a similar way,
leading to the same conclusion.

C.4 Explicit Expression of the Lower Bound.

Let us first consider the case λ < 1. Thus, ζp,β,λ = β (see Equation 37).
From Equations 74and 75 and Equation 30, we have

Kp,β,λ = α2Kp,αβ,αβ

=
(αβ)2Kp,αβ,αβ

β2

that is, noting that αβ =
ζp,β,λ

ζp,β,λ+|1−λ| ,

Kp,β,λ =

(
ζp,β,λ

ζp,β,λ+|1−λ|

)2
K
p,

ζp,β,λ
ζp,β,λ+|1−λ| ,

ζp,β,λ
ζp,β,λ+|1−λ|

ζ2
p,β,λ

, (86)

when λ > 1. Thus, ζp,β,λ = β + λ−1
p∗ (see Equation 37). Denoting (β, λ) =

Tp(β, λ) (see Equation 11) and noting that λ = 1
λ < 1 and applying suc-

cessively Equation 13 (see previous subsection), Equations 74, 75 and 30
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(where α is denoted here α and (β, λ) is obviously replaced by (β, λ)), we
have

Kp,β,λ =
1

λ2
Kp,β,λ

=
(αβ)2Kp,αβ,αβ

λ2β
2 .

It is straightforward to see that λ2β
2

= β + λ−1
p∗ = ζp,β,λ and that αβ =

p∗β+λ−1
p∗β+λ−1+p∗(λ−1) =

ζp,β,λ
ζp,β,λ+|λ−1| so that Equation 86 still holds.

The case λ = 1 can be viewed as the limit case, or using Equations 80 and
30 to conclude that Equation 86 still holds. It remains to evaluate l2Kp,l,l =
l2Cp,l,l(gp,l) with l ≤ 1. The evaluation of

√
Nl(gp,l) and

√
Fp,l(gp,l) was

conducted for instance in [34], which gives with our notations, for l < 1

l2Kp,l,l =

[
2

p∗

(
p∗l

1− l

) 1
p∗
(

p∗l
(p∗ + 1)l − 1

) l
1−l+

1
p

B

(
1

p∗
,

1

1− l −
1

p∗

)]2

(87)
and

Kp,1,1 =




2 e
1
p∗ Γ

(
1
p∗

)

p
∗ 1
p




2

. (88)

Noting that 1
1−l − 1

p∗ = l
1−l + 1

p and taking l =
ζp,β,λ

ζp,β,λ+|1−λ| , we achieve the

wanted result from Equation 86.
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of multifractal systems. Ann. Phys. 2004, 312, 17–59.
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Let us now give some conclusions and open problems associated with the contributions of

this Thesis to the complexity and entropic uncertainty of the multidimensional Coulomb

and harmonic systems of hydrogenic and oscillator types, and the generalized Planck

distribution which governs the blackbody radiation in standard and non-standard uni-

verses.

First, we have obtained the Rényi and Shannon uncertainty measures for the ground

and excited multidimensional hydrogenic states in terms of the dimensionality of the

associated configuration space, the nuclear charge of the system and the hyperquan-

tum numbers which characterize the states’ wavefunctions. They have been expressed

in a closed form by means of some multivariate hypergeometric functions of Lauricella

and Srivastava-Daoust types. Special care has been taken for the high-energy (Ryd-

berg) states and the high-dimensional (quasiclassical) states. The leading term of Rényi

and Shannon entropies have been given for these two large groups of extreme states in

a simple and compact way by using some recent ideas and techniques extracted from

the modern approximation theory, which allow to determine the asymptotics of some

power and logarithmic functionals (i.e., modified weighted Lq-norms) of Laguerre and

Gegenbauer polynomials when the polynomial degree or the parameter of their associa-

ted weight function becomes very large, respectively. It is worth mentioning that the

optimal bound for the position-momentum Rényi-entropy-based uncertainty relations

of Bilaynicki-Birula-Zozor-Vignat [91–93] is reached in the high-dimesional limit. For

further details see Chapter 2 and the author’s publications [31, 63, 70].

Second, we have analytically determined the Rényi and Shannon entropies for the mul-

tidimensional harmonic states in terms of the dimensionality of the associated configu-

ration space, the oscillator strength and the hyperquantum numbers which characterize

the states. The exact expressions for the Rényi and Tsallis entropies with integer param-

eter greater than unity have been found through the decomposition of the wave function

in their Cartesian coordinates and by means of the Lauricella functions. On the other

hand we have focused on the high-energy (Rydberg) states and the high-dimensional

(pseudoclassical) states by use of the mathematical tools already described in the hy-

drogenic case. Remarkably, saturation of the position-momentum Rényi-entropy-based

uncertainty relations of Bilaynicki-Birula-Zozor-Vignat [91–93] is reached in the high-

dimesional limit, similarly to the hydrogenic case. For further details see Chapter 3 and

the author’s publications [64–66].

Third, the Crámer-Rao and Fisher-Shannon complexity measures have been respec-

tively extended until a q-Gaussian context by using the generalized Crámer-Rao and

Stam biparametric inequalities of Lutwak et al. [119]. The basic properties of these

complexity quantifiers, including their behavior under replication transformation, have

been discussed. The utility of these quantities have been shown for the d-dimensional

blackbody frequency distribution at temperature T . We have found that they are uni-

versal constants in the sense that they are dimensionless and they do not depend on the
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temperature nor on any physical constant (such as e.g., Planck constant, speed of light

or Boltzmann constant), so that they only depend on the spatial dimensionality of the

universe. For further details see Chapter 5 and the author’s publications [67, 68].

Fourth, we have defined the notion of differential-escort transformation of a univariate

probability density, and discussed its main properties. A linear law for the Shannon

entropy of the differential-escort density, as well as a pseudo-linear law for the Rényi and

Tsallis entropies through a rescaling of the entropic parameter have been found. We have

determined the convexity behaviour of the Rényi entropy of a differential-escort density

on the associated parameter, what in turn has allowed us to prove the monotonicity of the

LMC-Rényi complexity measure with respect to the differential-escort transformations.

Moreover, this control over the LMC-Rényi monotonicity has allowed us to study the

entropic and complexity behaviour of a differential-escort density when it is strongly

deformed to the low and high-complexity limits. Finally, we have applied the differential-

escort transformation to the exponential and Tsallis q-exponential densities. We have

found that the full family of q-exponential densities can be obtained as the differential

escort transformations of the exponential density. Moreover, the application of this

transformation to power-law decaying densities has allowed us (i) to show the capability

of the differential-escort transformations to dramatically change the behaviour of the tail

of the deformed distribution, and (ii) to propose a characterization for such densities.

For further details see Chapter 6 and the author’s publication [71].

Fifth, we have defined the triparametric Fisher-Rényi complexity measure for univari-

ate probability densities and proven its basic properties. We have shown the regular

behaviour of the one-dimensional biparametric Fisher information with respect to the

differential-escort transformations. We have generalized the Stam inequality to a tripara-

metric case for univariate probability densities by using two complementary methodolo-

gies: Gagliardo-Nirenberg inequalities and differential-escort densities. The latter one

allows us to find an explicit expression for the optimal bound, as well as for the family of

minimizing densities, namely the generalized (p, β, λ)-Gaussian densities. Moreover, the

differential-escort methodology allows us to enlarge the validity domain beyond the one

that Gagliardo-Nirenberg methodology can provide. We have numerically studied the

triparametric Fisher-Rényi complexity measure for the radial density of the harmonic

and hydrogenic systems at the lowest energy states. For further details see Chapter 7

and the author’s publication [69].

Finally, let us enumerate a few open problems which we have identifed during the real-

ization of this dissertation:

• To find the exact expression of the Shannon entropy of the hydrogenic and har-

monic systems for general stationary states. The techniques of Part I seem not to

be powerful enough to determine it.
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• To determine the momentum Rényi entropy for the hydrogenic systems in the high-

energy limit. We think that the use of the strong asymptotics of Aptekarev-Dehesa-

Martinez-Finkelshtein [47] for the Lp-norm of Gegenbauer polynomials might be

useful to solve this open problem. In such a case, the Rényi-entropy-based uncer-

tainty relation could be determined in the pseudo-classical limit.

• To calculate rigorously the asymptotic behaviour of the Shannon entropy for both

hydrogenic and harmonic systems in the pseudo-classical limit. Note that, al-

though Rényi entropy is calculated for real values of the entropic parameter λ, the

approximation method just fails when it is closed to unity, what prevents us from

taking the limit λ→ 1 .

• To explore for both hydrogenic and harmonic systems the behaviour of the Rényi

and Shannon entropies in the exceptional case when both dimensionality and prin-

cipal hyperquantum number are simultaneously large.

• To determine the Rényi entropy for the multidimensional harmonic systems in the

hyperspherical formalism.

• To extend the entropic study of the multidimensional harmonic system to oscillator-

like systems with minimal length, which seem to play a relevant role for the con-

sideration of quantum-gravity effects in uncertainty relations [271, 272].

• To generalize the Fisher-information-based uncertainty relation by using the bi-

parametric Fisher information here considered.

• To solve the biparametric Fisher information for both hydrogenic and harmonic

systems. This would allows us to obtain the exact expression of the generalized

Crámer-Rao and Fisher-Rényi complexity measure, at least for a range of the

entropic parameters.

• To study the monotonicity property of the generalized complexity measures of

Crámer-Rao and Fisher-Rényi types.

• To extend the notion of differential-escort transformation for general multivariate

distributions, but this seems to be a formidable task.

• To generalize the triparametric Stam inequality to a general multivariate case.

Neither the Gagliardo-Nirenberg inequality (since it does not give the optimal

bound) nor the differential-escort methodology (see the previous open problem)

are the appropriate ones for this extension.

• To extend the biparametric Crámer-Rao inequality to a triparametric case by

means of a Stam-like procedure.
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[29] J. S. Dehesa, R. González-Férez, and P. Sánchez-Moreno. The Fisher-information-

based uncertainty relation, Cramer-Rao inequality and kinetic energy for the D-

dimensional central problem. Journal of Physics A: Mathematical and Theoretical,

40:1845–1856, 2007.
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[108] E. Romera and J. S. Dehesa. Weizsäcker energy of many-electron systems. Physical

Review A, 50:256–266, 1994.

[109] A. Dembo, T. M. Cover, and J. A. Thomas. Information theoretic inequalities.

IEEE Transactions on Information Theory, 37:1501–1518, 1991.

[110] A.J. Stam. Some inequalities Satisfied by the Quantities of Information of Fisher

and Shannon. Information and Control, 2:101–112, 1959.

[111] E. Romera. Stam’s principle D-dimensional uncertainty-like relationships and some

atomic properties. Molecular Physics, 100:3325–3329, 2002.

[112] I. V. Toranzo, S. Zozor, and J.-M. Brossier. Generalization of the de Bruijn’s

identity to general φ-entropies and φ-Fisher informations. IEEE Transactions on

Information Theory, 2017.
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[124] G. Szegö. American Mathematical Society Colloquium Publications In Orthogonal

Polynomials. American Mathematical Society Providence, RI, 1975.

[125] R.A. Askey. Orthogonal polynomials and special functions. Sociaty for Industrial

and Applied Mathematics, Philadelphia, 1975.
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of Hermite polynomials. Journal of Computational and Applied Mathematics,

233:2136–2148, 2010.

[136] L. Comtet. Advanced Combinatorics; the Art of Finite and Infinite Expansions.

Springer Science & Business Media, New York, 2012.

[137] L. Larsson-Cohn. Lp-norms of Hermite polynomials and an extremal problem on

Wiener chaos. Arkiv för Matematik, 40:133–144, 2002.

[138] A. Guerrero, P. Sánchez-Moreno, and J. S. Dehesa. Information-theoretic lengths

of Jacobi polynomials. Journal of Physics A: Mathematical and Theoretical,

43:305203, 2010.

[139] A.W. Niukkanen. Clebsch-Gordan-type linearisation relations for the products of

Laguerre polynomials and hydrogen- like functions. Journal of Physics A: Mathe-

matical and General, 18:1399, 1985.
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