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1 Introduction

Generally put, this thesis is on fuzzy rough set based methods for machine learning. We
develop classification algorithms based on fuzzy rough set theory for several types of data
relevant to real-world applications. Before going into detail on our models, a short introduc-
tion to these main components is required. In Section 1.1, we first present several challenging
data types, which can be grouped under the umbrella term of weakly labelled data, for which
we develop fuzzy rough set based classification methods throughout this work. Section 1.2
provides a brief initiation into fuzzy rough set theory. This mathematical framework for mod-
elling data uncertainty is discussed sufficiently detailed, but without going into too much of
the mathematical particulars. The latter aspect is reserved for later chapters. We include a
general discussion on machine learning with a particular focus on how fuzzy rough set theory
has already been used in this domain in Section 1.3. Finally, to conclude this introductory
chapter, we provide an overview of the thesis in Section 1.4.

1.1 Weakly labelled data

Machine learning is a field of study concerned with computer algorithms that enhance their
knowledge of or performance in some task through experience [154, 319, 324]. The need for
explicit programming is reduced. In this thesis, the concept of experience refers to available
information provided in the form of a dataset containing (supposedly) correctly labelled ob-
servations. We focus on the task of classification (Chapter 2), which requires a method to
construct a prediction model or mechanism based on a collected set of labelled elements (the
training set).

In standard supervised learning, the learner is presented with a fully labelled training set, that
is, every instance is associated with a known outcome. This outcome can be categorical, in
which case the prediction task corresponds to classification, or continuous, when we consider
regression. An instance or observation x can be represented by a feature vector and the ith
position in this vector contains the value of x for the ith descriptive feature. A standard
supervised training dataset can consequently be represented in a flat table of n rows and
d+ 1 columns (with n the number of instances and d the number of features). The additional
column (commonly the last one) contains the outcome. Table 1.1 contains an example classi-
fication dataset, namely a portion of the widely popular iris dataset created by Robert Fisher
[152]. The observations are described by four features measuring plant properties. The class

1



Chapter 1. Introduction

Table 1.1: A portion of the iris dataset.

Sepal length Sepal width Petal length Petal width Class
5.1 3.5 1.4 0.2 Iris Setosa
4.9 3.0 1.4 0.2 Iris Setosa
4.6 3.1 1.5 0.2 Iris Setosa
7.0 3.2 4.7 1.4 Iris Versicolor
6.4 3.2 4.5 1.5 Iris Versicolor
6.9 3.1 4.9 1.5 Iris Versicolor
6.3 3.3 6.0 2.5 Iris Virginica
5.8 2.7 5.1 1.9 Iris Virginica
7.1 3.0 5.9 2.1 Iris Virginica

label represents the type of iris (setosa, versicolor or virginica). The learning task associated
with a supervised training dataset is to derive a prediction model to predict the outcome of
newly presented instances of which only the feature values are known.

The standard dataset format presented in Table 1.1 can be generalized in several ways. First,
we can consider semi-supervised data ([72, 504], Section 1.1.1), which can be placed on the
midpoint between supervised (Table 1.1) and unsupervised data (Table 1.1 without the final
column). The training set contains both labelled and unlabelled instances and the aim is to
combine the information in both to predict the outcome of the unlabelled elements in the
training set as well as any newly presented instances. Secondly, we report multi-instance
learning ([216], Section 1.1.2). In a multi-instance dataset, each observation is represented by
several feature vectors. Together, they form one bag. Only the bag as a whole has an associ-
ated outcome, while its constituent instances do not. A third generalization is represented by
multi-label learning ([215], Section 1.1.3), where each observation can be associated with more
than one class label. Every instance may have a different number of outcomes and relation-
ships between the possible labels can exist. The term multi-label learning is usually reserved
for classification tasks, while multi-target learning is used for regression datasets. The three
associated dataset formats can be grouped on the common denominator of weakly labelled
data. A taxonomy for weakly labelled data has recently been proposed in [214] based on
three axes: (i) the instance-label relationship, (ii) the supervision model in the learning phase
and (iii) the supervision model in the prediction stage. The multi-instance and multi-label
paradigms relate to the first axis, while the semi-supervised setting relates to the supervision
model in both the learning and prediction stage.

1.1.1 Semi-supervised data

Table 1.2 presents an example semi-supervised dataset. This is the same portion of the iris
dataset as in Table 1.1, but not all class labels are known. For some training instances, the
outcome is hidden. This type of datasets is commonly encountered in applications where the
label assignment is costly or difficult to obtain [504]. As a result, only a (very) small portion of
the training instances is labelled, complemented with a (large) number of unlabelled elements.
Application areas in which training sets are often only partially labelled include natural
language processing, bioinformatics and image recognition. The common characteristic of

2



Chapter 1. Introduction

Table 1.2: A portion of the iris dataset in semi-supervised classification.

Sepa length Sepal width Petal length Petal width Class
5.1 3.5 1.4 0.2 Iris Setosa
4.9 3.0 1.4 0.2 ?
4.6 3.1 1.5 0.2 ?
7.0 3.2 4.7 1.4 Iris Versicolor
6.4 3.2 4.5 1.5 Iris Versicolor
6.9 3.1 4.9 1.5 ?
6.3 3.3 6.0 2.5 ?
5.8 2.7 5.1 1.9 Iris Virginica
7.1 3.0 5.9 2.1 ?

these domains is that data is often abundantly available or relatively easy to obtain, but
challenging or expensive to annotate.

In semi-supervised classification, the goal is to use the information in both the labelled and
unlabelled parts to construct a classification model. In semi-supervised clustering on the other
hand, the labelling information is transformed to a set of constraints to which the clustering
method should adhere. Semi-supervised learning is further explored in Chapter 5.

1.1.2 Multi-instance data

Multi-instance learning was first proposed in [126] to deal with representation ambiguity of
training samples. In particular, this study focused on the classification task where several
alternative feature vectors represent the same entity. The collection of instances (feature
vectors) that make up one observation is called a bag. Each bag in a multi-instance dataset
can contain a different number of instances, but all instances are described by the same set of
features. Two observations contained in the traditional Musk1 dataset, used in the original
multi-instance proposal and the bulk of later experimental studies, can be found in Table 1.3.
Each observation corresponds to a chemical molecule. One and the same molecule can have
different conformations or shapes, each corresponding to an instance. This dataset was used
in drug activity prediction, where the task is to predict whether a molecule can bind to a
given target, making it a so-called good drug molecule. The classification outcome can be
‘positive’ or ‘negative’. A positive class label means that at least one (but not necessarily
all) of the conformations of the molecule lead to a target binding. However, as this label
is only assigned to the bag as a whole, there is no direct indication which instance has the
binding property. The hidden relation between instances and classes renders multi-instance
classification a more general and challenging prediction task than traditional single-instance
classification.

A recent and thorough review of the multi-instance learning domain can be found in [216].
Application domains can be divided into three general groups. The first group, which includes
the drug prediction task described above, consists of fields with different alternative views,
representations or descriptions for the same object. A second branch of multi-instance data
sources study compound objects. Each instance corresponds to a particular part of the object.
A classic example is the image recognition task, where the image object is divided into several
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Table 1.3: Two observations from the multi-instance Musk1 dataset.

BagID f1 f2 . . . f166 f167 Class

MUSK-jf59

52 -110 . . . -60 -29

Positive
49 -98 . . . -13 -12
23 -113 . . . -9 90
47 -110 . . . -5 -8
9 -114 . . . -28 112

NON-MUSK-334 7 -197 . . . 34 55 Negative25 -198 . . . 20 -8

smaller segments. Finally, evolving objects, sampled at different time points, can be modelled
as multi-instance data as well. Multi-instance learning forms the focus of Chapter 6.

1.1.3 Multi-label data

The multi-label learning domain has been reviewed in e.g. [194, 215, 478]. As opposed to the
traditional classification task associated with the data format in Table 1.1, the goal in multi-
label classification is to predict the presence of multiple labels at the same time. Every element
can belong to more than one category at once and the number of classes can be different for
each instance. Example multi-label classification applications are image processing and text
categorization. An image or text can naturally belong to multiple classes at the same time,
when it depicts several concepts (e.g. a park with playing children) or discusses several topics
(e.g. a review of a political play).

As an example, Table 1.4 groups some elements of the Birds dataset [61]. Each instance
corresponds to an audio track, labelled with the birds whose song is present in the track.
There are 19 possible bird species and several birds can be heard together in some tracks. For
example, the third sample contains sounds from three different birds. Chapter 7 discusses the
domain of multi-label learning in more detail.

Table 1.4: Three observations from the multi-label Birds dataset.

f1 f2 . . . f260 Labels
0.054606 0.161667 . . . 8 Swainson Thrush
0.027401 0.015898 . . . 13 Varied Thrush, Hermit Warbler
0.060964 0.187454 . . . 15 Pacific-slope Flycatcher, Varied Thrush,

Golden Crowned Kinglet

1.2 Fuzzy rough set theory

In this thesis, we use fuzzy rough set theory in classification algorithms to deal with the
challenging data types discussed above. Fuzzy rough sets were proposed in the seminal
contribution of [131] as a fusion of two existing mathematical paradigms: fuzzy set theory [467]
and rough set theory [337]. In particular, rough sets were generalized to fuzzy rough sets by
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allowing (or rather, introducing) fuzziness in several strategic places. As such, more flexibility
was obtained and several real-world problems could be handled in a more appropriate manner.

Both fuzzy and rough sets, discussed in Sections 1.2.1 and 1.2.2 respectively, aim to capture
uncertainty in data. The former does so by modelling vagueness, while the latter focuses on
incompleteness or indiscernibility. The combination of the two into fuzzy rough sets implies
the ability to model both (complementary) types of data uncertainty. The traditional fuzzy
rough set model is recalled in Section 1.2.3.

1.2.1 Fuzzy sets

Fuzzy sets were introduced in [467] to model intrinsically vague or subjective notions. In
realistic problems, it is not always possible to provide a crisp definition of a concept or a
black-and-white division of data into groups. A simple example is the question how to define
expensive property in the housing market. Contemplating this problem should immediately
demonstrate that it is difficult to find one threshold above which any property should be
considered expensive. This threshold may be context-dependent, since one could for example
expect different cut-offs to apply for expensive apartments or expensive mansions. The prob-
lem is also naturally subjective, because a wealthy person may employ a higher threshold
than a less-privileged one. Another issue is the artificial division this threshold-based ap-
proach implies. Suppose the threshold of e400000 has been selected. A property of e401000
would be considered expensive, while one of e399000 would not be so. The difference in
these prices would be negligible for most buyers and yet they lead to a different assignation of
‘expensive’ and ‘not expensive’. Finally, one can also oppose the lack of gradation present in
the crisp definition of expensive property. Two houses costing half a million and five million
euros respectively would both be considered expensive without making a further distinction
between them.

These issues can be resolved by allowing a graded membership of elements to a set. In
traditional set theory, an element either belongs to a set or it does not. Fuzzy sets allow
elements to belong to them to a certain degree. The membership function A(·) associated
with a fuzzy set takes on values in the unit interval [0, 1]. At the lower end of the spectrum,
A(x) = 0 indicates that element x does not belong to A at all. The other extreme A(x) =
1 means that x fully belongs to A. Any value between 0 and 1 corresponds to a partial
membership of the element to the set. Figure 1.1 presents an example membership function
for the fuzzy set of expensive property. As common-sense dictates, this is an increasing
function. The left dashed line shows that a house costing e250000 has a membership degree
of about 0.3 to this set, meaning that it is not considered all that expensive. On the other
hand, a house price of e550000 (represented by the right dashed line) is considered sufficiently
steep and has a membership degree of about 0.9. Fuzzy set theory clearly provides us with
a flexible tool to address the issues listed above. Aside from set membership, the same ideas
can be incorporated in fuzzy relations and fuzzy logic, discussed in the following paragraphs.

In traditional set theory, a relation between elements can be represented as a set of pairs. If
the pair (x1, x2) belongs to this set, the two elements are related. This results in a similar
crisp delineation between instances that are related to each other and instances that are not.
It does not allow one to express the degree to which two instances are related. This issue is
dealt with by introducing a fuzzy relation, defined as a mapping from the set of all possible
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Figure 1.1: Example membership curve for the fuzzy set of expensive property.

pairs of elements to the unit interval. For a fuzzy relation R, value R(x1, x2) expresses the
degree of relatedness of x1 and x2. The closer this value is to one, the stronger the relation
between the two instances.

Fuzzy logic extends traditional Boolean logic to the fuzzy setting [261]. Fuzzy logic operators
have been defined to generalize the principles of conjunction, disjunction, implication etc. A
triangular norm (t-norm) T : [0, 1]2 → [0, 1] is a commutative and associative operator that is
increasing in both arguments and upholds the boundary condition (∀a ∈ [0, 1])(T (a, 1) = a).
It is related to the Boolean conjunction, as is evident when the domain is restricted to {0,1}.
A fuzzification of the Boolean disjunction is represented by a triangular conorm (t-conorm)
S : [0, 1]2 → [0, 1], which is also commutative, associative and increasing in its two arguments,
but has 0 as neutral element, that is, (∀a ∈ [0, 1])(S(a, 0) = a). A third group of operators
consist of so-called implicators I : [0, 1]2 → [0, 1], that are decreasing in their first argument,
increasing in the second and satisfy the boundary conditions I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0. They form the fuzzy extension of traditional implication, as is evident from
the boundary conditions. Finally, the Boolean negation is extended to a negator N : [0, 1]→
[0, 1], which is a decreasing operator that satisfies N (1) = 0 and N (0) = 1. A wide variety of
choices for operators T , S, I and N exist in the literature, examples of which can be found
in Table 1.5.
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Table 1.5: Example fuzzy logic operators: t-norms, t-conorms, implicators and a negator.

T-norm T-conorm
Name Definition Name Definition
Minimum T (a, b) = min(a, b) Maximum S(a, b) = max(a, b)
Product T (a, b) = a · b Probabilistic sum S(a, b) = a+ b− a · b
 Lukasiewicz T (a, b) = max(a+ b− 1, 0) Bounded sum S(a, b) = min(1, a+ b)

Implicator Negator
Name Definition Name Definition
Kleene-Dienes I(a, b) = max(1− a, b) Standard N (a) = 1− a
 Lukasiewicz I(a, b) = min(1− a+ b, 1)
Reichenbach I(a, b) = 1− a+ a · b

1.2.2 Rough sets

Rough set theory was proposed in [337]. A rough set consists of two sets which together ap-
proximate a given incomplete concept. Incompleteness should be understood as the inability
of the measured features to discern the concept. Consider the example of course evaluation
data provided by university students. At the end of a teaching term, it is common practice
to ask students to fill in a questionnaire on courses they have taken. Assume that there are
three statements that the student needs to reply to, namely ‘The course met my expecta-
tions.’, ‘The pace of teaching was appropriate.’ and ‘The exercises were a fitting addition to
the theory classes.’. For each of these, the students can select one of the options ‘Agree’,
‘Somewhat agree’, ‘Neutral’, ‘Somewhat disagree’ and ‘Disagree’ as their response. They are
also required to give an overall evaluation of ‘Good’, ‘Intermediate’ or ‘Bad’. A small example
dataset based on such an inquiry is depicted in Table 1.6.

The task could be to derive a definition of a good course based on the replies of the students
to the three statements. However, based on the data collected in Table 1.6, an unambiguous
delineation is not possible. The second and fifth student have each replied ‘Somewhat agree’
to each of the statements, based on which they assign the course a ‘Good’ and ‘Intermediate’
overall evaluation respectively. This shows that the evaluated feature set is incomplete: two
elements of different classes coincide in all feature values.

Rough set theory approximates the class of good courses in two ways. The lower approxi-
mation is the set of elements (i) which belong to this class and (ii) for which all elements
with exactly the same feature values also belong to the class. Based on Table 1.6, the lower
approximation of ‘Good’ consists of students s1 and s3. It can be interpreted as the set of
elements that certainly belong to this concept, as there is no evidence against their member-
ship. It is a conservative approximation. The upper approximation on the other hand derives
a liberal approximation of the ‘Good’ class. This set contains all instances for which there is
at least one data point with exactly the same feature values and the ‘Good’ evaluation. In
this case, the upper approximation contains students s1, s2, s3 and s5.

It should be clear from this simple example that the definitions of the lower and upper
approximation entirely rely on the observed feature values. The full feature or attribute set
A defines an equivalence relation on the observations, resulting in a partition of the elements
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Table 1.6: Example data collected from student evaluations on a particular university course.
Each row corresponds to the answers of one student.

Statement 1 Statement 2 Statement 3 Evaluation
s1 Agree Agree Neutral Good
s2 Somewhat agree Somewhat agree Somewhat agree Good
s3 Somewhat agree Neutral Agree Good
s4 Somewhat agree Somewhat agree Neutral Intermediate
s5 Somewhat agree Somewhat agree Somewhat agree Intermediate
s6 Agree Neutral Somewhat disagree Intermediate
s7 Agree Neutral Disagree Intermediate
s8 Somewhat disagree Neutral Somewhat disagree Bad
s9 Disagree Agree Somewhat disagree Bad
s10 Disagree Agree Disagree Bad

into equivalence classes. The equivalence class [x] of element x is defined as

[x] = {y | (∀a ∈ A)(a(x) = a(y))}. (1.1)

In this expression, a(x) and a(y) correspond to the values of feature a for elements x and y
respectively. It should be clear that the equivalence class of x consists of all instances y that
have exactly the same feature values as x. Based on this equivalence relation, the lower and
upper approximation of a concept C in dataset T can be defined as

C = {x |x ∈ T, [x] ⊆ C}

and
C = {x |x ∈ T, [x] ∩ C 6= ∅}

respectively. The former consists of elements for which the equivalence class is entirely con-
tained in C, while the latter groups elements for which the equivalence class has a non-empty
intersection with C. An alternative (but equivalent) formulation of these sets is

x ∈ C ⇔ (∀y ∈ T )(y ∈ [x]→ y ∈ C)⇔ (∀y ∈ T )((x, y) ∈ R→ y ∈ C) (1.2)

and
x ∈ C ⇔ (∃y ∈ T )(y ∈ [x] ∧ y ∈ C)⇔ (∃y ∈ T )((x, y) ∈ R ∧ y ∈ C), (1.3)

where R is the crisp equivalence relation defining the equivalence classes. As briefly noted in
Section 1.2.1, any traditional relation can be represented as a set of pairs of related elements.

Rough set theory forms an ideal tool to approximate indiscernible concepts in datasets of
the format represented in Table 1.6. However, an important limitation lies with its use of
the equivalence classes (1.1). The case of categorical data, where each feature can take on a
finite (and limited) amount of possible values, is handled appropriately by using (1.1). In the
presence of continuous numerical data, the interpretability of this definition is reduced. It is
unlikely for instances to exactly coincide in a numerical feature, even though their values may
be close together. The equivalence classes will consequently often be singletons, such that
the core intuition behind the lower and upper approximations is lost. A solution would be to
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divide the range of numerical features into several intervals by means of discretization [188].
These intervals can be interpreted as categories, but any discretization process will result in
information loss, which may therefore not be the ideal fix. A second limitation is that, similar
to the vagueness issue discussed in Section 1.2.1, the definitions of C and C assume that C
is a traditional crisp set.

1.2.3 Fuzzy rough sets

To deal with the restraints associated with rough sets in general datasets, fuzzy rough set
theory has been proposed in [131]. The authors introduced fuzziness into the rough set
operators. In particular, both the approximated concept and similarity between elements are
allowed to be fuzzy, the former modelled by a fuzzy set and the latter by a fuzzy relation.

One of its crucial components is the fuzzy relation R measuring similarity between elements.
For two instances x and y, R(x, y) ∈ [0, 1] represents how strongly they are related or, more
precisely, how similar we consider them to be. This fuzzy relation replaces its crisp relative
appearing in (1.2-1.3). We can fuzzify each component within these expressions to derive the
definitions of the fuzzy rough lower and upper approximations. These are fuzzy sets, to which
every instance in T has a membership degree between zero and one. The fuzzy rough lower
approximation of a (possibly fuzzy) concept C is defined as

C(x) = min
y∈T

[I(R(x, y), C(y))]. (1.4)

Aside from the use of the fuzzy relationR, the universal quantifier in (1.2) has been replaced by
a minimum operator, the implication has been generalized to an implicator (see Section 1.2.1)
and the membership of y to the fuzzy set C is represented by its membership degree. By
using the minimum instead of infimum operator, we have assumed that T is finite. This will
be the case in both this thesis and real-world applications. In a similar way, the fuzzy rough
upper approximation of C is derived as

C(x) = max
y∈T

[T (R(x, y), C(y))], (1.5)

where the maximum operator has replaced the existential quantifier and a t-norm is used
instead of the crisp conjunction. Expressions (1.4-1.5) correspond to the general implicator/t-
norm fuzzy rough set formulation proposed in [352].

As stated above, fuzzy relation R : T 2 → [0, 1] expresses the degree of similarity between two
elements in T . Usually, one assumes that this relation is at least reflexive ((∀x ∈ T )(R(x, x) =
1)) and symmetric ((∀x, y ∈ T )(R(x, y) = R(y, x))). When R has both these properties, it
is called a fuzzy tolerance relation. If a fuzzy tolerance relation is also T -transitive with
respect to some t-norm T ((∀x, y, z ∈ T )(T (R(x, y), R(y, z)) ≤ R(x, z))), it is called a fuzzy
T -similarity relation.

A consequence of the use of the minimum and maximum operators in (1.4-1.5) is that the
C(x) and C(x) membership degrees are highly sensitive to noise and outliers present in dataset
T . Indeed, the addition of one element y to T can have a large effect on these definitions,
since it can lead to a new minimum value in (1.4) or a new maximum value in (1.5). This
poor noise robustness of traditional fuzzy rough sets has been pointed out in several places
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in the literature and a variety of noise-tolerant fuzzy rough set models have afterwards been
proposed to address this issue [117, 228]. These include β-precision fuzzy rough sets [149],
variable precision fuzzy rough sets [320, 321], vaguely quantified fuzzy rough sets [106], fuzzy
variable precision rough sets [487], soft fuzzy rough sets [223, 224], ordered weighted average
based fuzzy rough sets [108], variable precision fuzzy rough sets based on fuzzy granules [455]
and a data distribution aware fuzzy rough set model [15]. Among them, ordered weighted
average based fuzzy rough sets can be considered a preferred alternative, both theoretically
and empirically [117]. This model is studied in detail in Chapter 3.

1.3 Fuzzy rough algorithms in machine learning

As stated above, we focus on the classification task, in which a prediction model is derived
from a set of labelled observations. Nevertheless, the field of machine learning far exceeds the
classification domain. In this section, we provide a brief overview of popular settings and, at
the same time, indicate how fuzzy rough set theory has been used in these domains in the
literature [415].

Two fundamental stages of the knowledge discovery process are data preprocessing and data
mining [102]. The recent review [188] divides the former into data preparation and data
reduction methods. A data preparation step converts raw data to an appropriate format by,
for example, cleaning or transforming the data. Data reduction methods include such popular
techniques as feature selection (reduction of the number of descriptive features, [295]), instance
selection (reduction of the number of observations, [294]), feature extraction (creation of
new features, [293]), instance generation (creation of new instances, [398]) and discretization
(transformation of the continuous features to categorical features, [189]). We discuss the use
of fuzzy rough set theory for feature and instance selection in Section 1.3.1.

Once the data has been shaped into the correct format and possibly improved by a data
reduction technique, the aim is to extract the hidden information it contains. Concretely,
this can be the construction of a prediction model based on the available information or the
discovery of patterns or structures in the observed data. Section 1.3.2 provides more detail
on this step and the different subdomains where fuzzy rough set theory has been used.

General (but thorough) introductions to machine learning can be found in e.g. handbooks
[154, 324]. For more details on the use of fuzzy rough set theory in this area and more
complete references, we refer the interested reader to our review paper [415].

1.3.1 Fuzzy rough feature and instance selection

Feature selection has been and remains a favoured application domain of fuzzy rough set
theory. Advances continue to be made. The shared aim of fuzzy rough feature selection
methods is to reduce the full feature set to a strong subset with the same (or possibly better)
discerning capacity. In a classification context, it is not necessary to be able to discern between
each pair of instances, only if they belong to different classes. Indeed, the fundamental goal of
classification is to extract an effective separation between classes and not between individual
instances. The unifying study of [107] uses a general monotone fuzzy rough set based measure
M, for which different concrete alternatives are discussed, to assess the ability of a feature
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subset B to discern between elements of different classes relative to the same ability of the full
feature set A (with M(A) = 1). Different approaches can be taken to optimize M in order
to construct a feature subset that approaches the classification capacity of A to a satisfactory
degree.

A first group of fuzzy rough feature selection methods are those based on a discernibility
matrix. In rough set theory, the discernibility matrix is defined as an n× n matrix, n being
the number of observations in the dataset, where each entry corresponds to a pair of instances
and contains a list of features by which the two elements can be discerned (set to ∅ for same-
class instances). As explained in Section 1.2.2, a discerning feature is one for which the
two instances take on a different value. In order to discern between the same amount of
instances as the full feature set does, it suffices that the reduced set contains one feature of
each entry in the matrix. This idea forms the foundation of rough feature selection methods
based on a discernibility matrix. In fuzzy rough set theory, this concept is generalized to
a fuzzy discernibility matrix. As Section 1.2.3 described, the discernibility of instances is
no longer a black-and-white matter, as they can be (dis)similar to a certain degree. After
the construction of the discernibility matrix, the discernibility function can be derived from
it. When this function is transformed to the correct form, it represents all feature subsets
satisfying the discerning capacity requirement (as well as an additional minimality condition).
Example fuzzy rough set methods include [85, 87, 88, 89, 90, 213, 403, 488]. Unfortunately,
the transformation step, which often boils down to the conversion of a function in conjunctive
normal form to disjunctive normal form, can be very time consuming. Additionally, it may
be sufficient to derive a single good feature subset instead of multiple ones.

To address this shortcoming, faster algorithms using search heuristics have been proposed
as well. Several proposals construct the requested feature subset by optimizing the quality
measure in an iterative approach. Typically, a forward search is applied that starts from an
empty feature subset and adds features until a sufficiently high value of the chosen measure
M is reached. In each iteration, the feature with the highest quality (according to some
specific criteria) is added to the current set. Another option is to iteratively remove certain
features from A until a decrease inM is observed. In fact, almost any search heuristic could
be applied. Examples of methods incorporating this idea can be found in e.g. [43, 125, 212,
225, 226, 243, 244, 246, 344, 347, 419, 481].

Fuzzy rough instance selection methods have been proposed in [240, 354, 408, 409, 411]. They
rely on the fuzzy rough approximation operators to decide which instances should be kept in
the dataset and which should be removed, e.g. because they are noisy. The combination of
feature and instance selection has been considered as well [121, 124, 310].

1.3.2 Fuzzy rough prediction methods

A general distinction can be made between supervised and unsupervised learning. The former
deals with datasets in which all observations are associated with an outcome. The aim is to use
these elements to predict the unknown outcome of new observations. Supervised approaches
include neural networks [47], support vector machines [371], Bayesian learning [25], instance-
based learning [8], rule induction [169] and decision tree learning [360]. In unsupervised
learning on the other hand, the observations are not associated with an outcome and the
goal is simply to discover structures or relations in the data. We can list clustering [7] and
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association rule induction [2] as general unsupervised learning techniques. A third setting
is semi-supervised learning, where outcome information is only available for a portion of the
observations. Either supervised (prediction) or unsupervised (pattern discovery) aims can
be aspired. Fuzzy rough set theory has been used in supervised, unsupervised as well as
semi-supervised learning. We provide a short overview in the following paragraphs.

Supervised learning Arguably the most natural application of fuzzy rough set theory in
classification lies with instance-based learning or nearest neighbour approaches. A nearest
neighbour classifier is a lazy learner, meaning that it does not construct an explicit prediction
model, but rather stores the full dataset to use in the classification of a new instance [110].
It does so by locating its k nearest neighbours among the stored prototypes and aggregating
their outcomes to a prediction, commonly by means of a majority vote. As the k nearest
neighbours of an instance correspond to its k most similar elements, it is clear that a nearest
neighbour method at its core relies on a similarity or distance relation, as does fuzzy rough
set theory (Section 1.2.3). Fuzzy rough nearest neighbour classifiers have been proposed
in e.g. [46, 241, 348, 355, 364, 410]. These methods introduce the use of the fuzzy rough
approximation operators within the nearest neighbour classification idea.

Fuzzy rough set theory has been applied in decision tree learning as well, mainly in the
splitting phases of the tree generation process. A decision tree is constructed by starting
from a root node and iteratively splitting nodes into several child nodes with the aim of
increasing the purity of leaf nodes. Each split is based on the values of the observations for
a particular feature. In traditional decision trees, the selection of a splitting feature relies on
measures like the information gain or impurity reduction [154], but this is where fuzzy rough
alternatives have been integrated as well [14, 44, 136, 245, 473].

Fuzzy rough rule induction methods constructing fuzzy decision rules have been proposed in
e.g. [199, 220, 242, 299] and we encounter uses in support vector machines (e.g. [84, 86]) and
neural networks (e.g. [179, 180, 183, 365, 366]) as well. Aside from classification, fuzzy rough
regression algorithms, where the outcome is a real number rather than a class label, have
been proposed as well (e.g. [16, 241]).

Unsupervised learning In the study of [278], a fuzzy rough evaluation measure for the
similarity between clusters was introduced in the fuzzy c-means clustering method [42]. This
clustering technique constructs c soft clusters from the original data, to which every instance
has a certain membership degree. A more advanced clustering method is the self-organizing
map procedure [208], to which a fuzzy rough approach was taken in [181, 182].

Semi-supervised learning Comparatively little work has been done in the area of fuzzy
rough sets for semi-supervised learning. A fuzzy rough set based self-labelling approach,
which extends the labelled part of the data by assigning classes to some unlabelled elements,
has been proposed in [309]. We can also refer to Chapter 5 for the application and study of
fuzzy rough set theory in semi-supervised classification.
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1.4 Overview of the dissertation

In this thesis, we focus on several challenging classification tasks and develop new machine
learning techniques based on fuzzy rough set theory to solve them. We structure our work as
follows:

• Chapter 2: we first review the classification domain. We discuss more theoretical aspects
like the bias-variance trade-off as well as prominent examples of classification algorithms.
This chapter also describes the methodology to set up experimental studies comparing
groups of classifiers.

• Chapter 3: this chapter considers the ordered weighted average based fuzzy rough sets
proposed in [108]. This is a noise-tolerant extension of the traditional fuzzy rough set
model. As this is the model used in our proposed methods in later chapters, it warrants a
deeper study. In particular, the choice of weighting scheme is an important question, as
it is the key component in determining the fuzzy rough lower and upper approximations
of this model. We study the suitability of different weight settings within the class
approximations on a variety of datasets. Based on simple dataset characteristics, we
are able to propose a weighting scheme selection strategy to facilitate the use of ordered
weighted average based fuzzy rough sets.

• Chapter 4: the first machine learning task we focus on is that of class imbalance, that
is, an uneven distribution of observations among the classes. Some classes appear in
abundance, while others are rarely encountered. This poses a challenge to traditional
learners and can severely hinder the construction of a strong prediction model. We
propose a fuzzy rough set based classifier to handle multi-class imbalanced data and
show that our proposal outperforms the current state-of-the-art in this domain.

• Chapter 5: in this chapter, we turn our attention to semi-supervised classification (see
Section 1.1.1) and evaluate the strength of classifiers based on the ordered weighted
average fuzzy rough set model in this setting. When using the weighting scheme selection
strategy proposed in Chapter 3, we are able to show that these methods can extract
sufficient information from the labelled part of the data without requiring any explicit
labelling step of the unlabelled observations. They significantly outperform prominent
existing semi-supervised classifiers that do rely on the unlabelled data.

• Chapter 6: this chapter discusses multi-instance classification, briefly introduced in
Section 1.1.2 above. We present two groups of methods: fuzzy multi-instance classifiers
and fuzzy rough multi-instance classifiers. The latter have been developed specifically
for class imbalanced multi-instance data. Both groups are set up as multi-instance
classifier frameworks, in which several internal parameters can be modified. We conduct
an extensive experimental study to advise the user on suitable settings. In particular
for imbalanced multi-instance classification, we are able to show that our proposals
significantly outperform existing work in this domain.

• Chapter 7: the last classification challenge addressed with our fuzzy rough methods is
the multi-label prediction task (see Section 1.1.3), in which several labels are predicted at
once. We develop a nearest neighbour based method that relies on fuzzy rough set theory
to derive a consensus prediction from the class labelsets of the neighbours of a target
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instance. We show that our method summarizes the neighbourhood information in an
adequate way and outperforms existing nearest neighbour based multi-label classifiers.

• Chapter 8: to conclude this dissertation, the final chapter summarizes our proposals
and findings and outlines future research directions.
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2 Classification

In this chapter, we review the traditional classification domain, the supervised learning task
on which this thesis focuses. Before addressing several challenging classification problems in
the next chapters, we first review the core aspects of this popular research area, as would be
done in any machine learning course or handbook. Section 2.1 provides a brief and general
introduction, explaining often referenced aspects as the bias-variance trade-off and the curse
of dimensionality. In Section 2.2, we review several groups of classification algorithms, repre-
sentatives of which are included in the experimental studies conducted throughout this work.
The specifics on how to properly set up classification experiments are laid out in Section 2.3.

2.1 Introduction

In traditional classification tasks with input space X, an element x ∈ X can be represented
as a feature vector of length |A|, with A the set of descriptive features. The ith position in
this vector corresponds to the value of instance x for the ith attribute. This allows for an
easy organization of classification data into the flat table format represented in Table 1.1.
Each row corresponds to one observation x ∈ X. The last column is commonly reserved for
the class label, while the first |A| columns contain the input feature values.

The classification task is to construct a prediction model based on the information contained
in a training or learning set of labelled samples. More concretely, if X is the input space
and C the set of possible classes, the aim is to learn a mapping f : X → C based on training
set T = {(x,Cx) |x ∈ X,Cx ∈ C}. Several approaches to the derivation of f have been
explored in the literature and will be discussed in Section 2.2. Each of them makes internal
assumptions on how the information in the training set should be modelled, with the shared
aim to find an appropriate approximation of the decision boundary between classes. Apart
from extracting sufficient information from the training set, the model should also be able to
generalize well to unseen test data and make accurate predictions. A highly complex model
can fit the training data perfectly, but, by modelling all peculiarities in this set, can lead
to classification errors on new data. This phenomenon is known as overfitting, where the
model almost literally learns the training data by heart. On the other hand of the spectrum,
underfitting the data leads to a simple (and probably highly interpretable) model, that will,
unfortunately, also fail on new data because insufficient information has been learned from the
provided labelled samples. An example of these two situations is depicted in Figure 2.1, which
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(a) Underfitting (b) Overfitting (c) A better boundary

Figure 2.1: Illustration of a two-class datasets (circles and plus signs) with three possible
derived decision boundaries.

represents a two-class two-dimensional dataset. The horizontal and vertical axis correspond
to the first feature a1 and second feature a2 respectively. In Figure 2.1a, a simple decision
boundary is derived, only based on the first feature a1. All elements with an a1 value lower
than the selected threshold (left of the vertical line) would be classified as a plus sign, while
those with an a1 value exceeding the threshold will be assigned to the circle class. This is a
very simple and easy-to-understand decision rule, but can easily lead to misclassifications on
both classes. Figure 2.1b represents a situation where the data has been overfitted. A highly
complex boundary has been constructed to perfectly separate the elements of the training
set. The third option represented by Figure 2.1c likely forms the best compromise between
model interpretability, generalization capacity and training information extraction. A linear
decision boundary based on both features (sloped line) has been derived. It does not form a
perfect partition of the classes in the training set, but probably results in better predictions
on new data.

The issue discussed above is related to the bias-variance trade-off [163]. A highly complex
model with a large number of parameters to learn will depend more on its training data and
can, consequently, be very different when constructed from a slightly modified training set.
This model has a high variance and can exhibit a highly different classification behaviour
after small changes in its training set. A very simple model will not suffer from this variance
issue, but introduces a bias to a certain (simple) structure instead. It can be shown that the
expected prediction error of the learned model can be decomposed in an expression containing
error terms representing the bias and variance. Ideally, both components should therefore be
minimized. Unfortunately, lowering the bias of a model usually increases its variance and
vice versa. A learning algorithm should balance these two aspects in order to have a strong
prediction performance.

Another issue associated with learning from data is the so-called curse of dimensionality. The
term was introduced in [36] and refers to the fact that the volume of the Euclidean space
increases exponentially when more dimensions are added [257]. High-dimensional spaces
are inherently sparse (also called empty space phenomenon). This (negatively) affects the
suitability of certain classification approaches in high-dimensional data as well as the intuition
behind and interpretability of the derived prediction models. For example, any notion of
locality is lost, rendering nearest neighbour based methods inappropriate [41].
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2.2 Classification models

A wide spectrum of classification algorithms have been developed in the literature. In this
section, we discuss some popular and widely-used approaches and categorize them according
to their prediction rationale. Representatives of these groups will be used in the exper-
imental studies conducted in later chapters. We consider nearest neighbour classification
(Section 2.2.1), decision trees (Section 2.2.2), linear models (Section 2.2.3), neural networks
(Section 2.2.4), rule based models (Section 2.2.5), probabilistic models (Section 2.2.6) and
ensemble classifiers (Section 2.2.7).

2.2.1 Nearest neighbour classification

Arguably one of the most intuitive classification algorithms is the k nearest neighbour method
(kNN, [110]), with k ≥ 1 an integer number. It is a lazy learner, which means that it does not
build an explicit classification model or mapping from the input space to the set of possible
classes. Instead, all training elements are stored in memory. These elements are also referred
to as prototypes. To classify a new element x, the k elements nearest to it among the stored
prototypes are determined. The class that appears most often among these neighbouring
elements is predicted for x. When several classes tie for the most appearances, one among
them is usually selected at random.

The notion of nearest is enforced by an appropriate distance or similarity measure. The
nearest neighbours of x are the k elements with the smallest distance to or largest similarity
with x. The traditional Euclidean distance remains a popular distance measure, although
alternatives like the HVDM distance [438] are used as well. Another option is to learn an
appropriate distance measure (often in the form of a Mahalanobis distance [312]) from the
data by means of a metric learning procedure [34, 435]. As the kNN classifier entirely relies
on distance calculations, it can greatly benefit from the optimization of this measure to fit
the data at hand.

In the procedure described above, each selected neighbour has an equal vote in the class
decision of x. An often used alternative is to weigh the contribution of each neighbour based
on its distance to the target [132]. To this end, neighbour weights inversely proportional to
the distance are imposed. As a result, more distant neighbours influence the class prediction
of x less than near ones.

2.2.2 Decision or classification trees

Another popular classification approach is to construct a decision tree based on the training
data [360]. A tree is a connected, acyclic graph. Every internal node corresponds to a test
based on one of the input features. The leaf nodes, which form end points on paths starting
from the root, represent class assignments. To classify a new element, it is passed through
the tree, starting at the root node and following the correct path towards a leaf. The class
linked to the leaf is assigned to the test element. An example decision tree is depicted in
Figure 2.2. The first test is made based on the categorical attribute A1. Depending on the
feature value, the left, middle or right path is chosen. The left path leads to a second split
based on the numeric feature A2. Any value lower than zero leads to an assignment to class
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A1

A2

P

A2 < 0

N

A2 ≥ 0

“Left”

P

“Center”

A3

P

A3 = 1

N

A3 ∈ {2, 3, 4}

“Right”

Figure 2.2: Example of a classification tree prediction whether an instance belongs to the
positive (P ) or negative (N) class.

P , while elements with positive A2 values are classified as N . On the right hand side, the
second split is based on feature A3.

The construction of a decision tree follows a top down procedure. At the outset, the tree
consists of the root only and all training instances are grouped together in this node. Based
on an impurity measure (assessing the current class distribution) the best feature and corre-
sponding split are selected. This split is performed and nodes are created for each possible
outcome of the test. The training set is split into subsets corresponding to the division of
elements obtained after the test. When a node contains elements of only one class (a pure
node), it is retained as a leaf node and labelled with this class. If elements of more than one
class are still present, the procedure is repeated and further splits are created starting from
this node.

In order to create small trees, the impurity measure guides the split selection process towards
feature splits that reduce the class heterogeneity of elements associated with a node. These
measures are based on the class distribution in these nodes. When the classes are uniformly
distributed within a node, the impurity is maximal. In the presence of only one class, a
minimal impurity is found. The CART decision tree algorithm of [60] uses the Gini index as
impurity measure, while the ID3 [349] and C4.5 [351] algorithms rely on Shannon’s entropy
[373].

If a tree is constructed up to the point when all leaves are pure, there is an increased risk
of overfitting the training data and obtaining an overly complex model. A solution to this
problem is to apply a pruning procedure [350]. We can discern between pre-pruning and post-
pruning. Pre-pruning prematurely halts the tree growing process when a node is considered
pure enough or represents too few training instances. Post-pruning allows the full construction
of the tree until pure leaf nodes are obtained. Afterwards, branches are removed from the
tree to minimize the classification error on a validation set.

2.2.3 Linear models

Linear models construct a hyperplane to represent a linear separation between classes. These
methods have initially been designed for two-class classification problems. In a d-dimensional
space, a hyperplane is a subspace of dimension d− 1. In the two-dimensional plane, a hyper-
plane is a straight line. In the three-dimensional space, a hyperplane is a regular plane.
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Figure 2.3: Three separating hyperplanes between two classes.

When two-class data is linearly separable, there exist multiple hyperplanes such that all
elements of one class are located on one side and all elements of the second class can be found
on the other. However, not all separating hyperplanes are equally suitable, as represented in
Figure 2.3. The three straight lines each form a perfect separation between the two classes,
but the middle one should be favoured. The proximity of the other two to the training
elements is more likely to induce classification errors on test data. The support vector machine
(SVM) classifier [54, 109, 112] implements this idea by maximizing the margin defined by the
separating hyperplane. The margin can be interpreted as the (symmetric) empty space around
the hyperplane before a training element is encountered. In Figure 2.3, it is clear that the
middle hyperplane induces the widest margin between the two classes and is therefore the best
option. The search for this hyperplane is formulated as a constrained quadratic optimization
problem that can be solved using Lagrange multipliers [40]. To deal with data that is not
linearly separable, the soft-margin SVM [109] introduces slack variables that allow elements
to be located on the incorrect side of the hyperplane. These slack variables are added to the
optimization objective weighted with a penalty term C (the complexity parameter). Another
(or additional) way to address the non-linearity of data is to apply an implicit mapping to a
different (higher-dimensional) feature space. It can be shown that the SVM formulation and
optimization contains only vector dot products, a situation in which the kernel trick can be
applied to perform calculations in the induced feature space [9, 54]. Example kernel functions
are listed in [67]. SVM algorithms are popular and widely used in the machine learning
community.

2.2.4 Neural network classification

Another linear classification model (but handled in a separate section because of the family of
neural network classifiers [47] it inspired) is the perceptron algorithm [332, 361]. The normal
vector w of the separating hyperplane is randomly initialized. Afterwards, each training
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element is processed and the values in w are updated to ensure the correct classification of
the element. This process is repeated until convergence, that is, until no more changes are
made to w. Despite the initial enthusiasm of the research community towards this proposal,
[323] pointed out some important limitations of the simple perceptron. These issues were
addressed by the later development of the multi-layer perceptron and the back-propagation
algorithm [362]. A perceptron can be modelled as a neural network with an input and output
layer, while a multi-layer perceptron contains one or more hidden layers. It is a feedforward
neural network, where the inclusion of the hidden layers and use of non-linear activation
functions allows the modelling of non-linearity in data. An example network is presented
in Figure 2.4. Each connection between nodes is associated with a weight, determined at
training time by means of the back-propagation procedure. With respect to classification, a
neural network classifier for instances in a d-dimensional space often contains d input nodes
(one for each feature) and m output nodes, where m is the number of possible classes. The
trained network computes one value per output node. The presented instance is assigned to
the class corresponding to the node with the highest value. Research in neural networks has
been inspired by the biological neural processes and simulates how neurons work together in
the human brain.

𝑖1 
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𝑖3 

𝑖4 

𝑖5 

ℎ1 

ℎ2 

ℎ3 

ℎ𝐻 

𝑜1 

𝑜2 

𝑜3 ⁞ 

𝑤𝑖𝑝ℎ𝑠 
𝑤ℎ𝑠𝑜𝑡 

Figure 2.4: Example multi-layer perceptron with one hidden layer. The input layer contains
five nodes (i1, . . . , i5), the hidden layer H nodes (h1, . . . , hH) and the output
layer three nodes (o1, o2, o3). The connection weights wip,hs (p = 1, . . . , 5 and
s = 1, . . . ,H) are associated with the edges between input and hidden nodes,
while weights whs,ht (s = 1, . . . ,H and t = 1, . . . , 3) correspond to connection
between the hidden layer and the output nodes.
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The universal approximation theorem implies that a multi-layer perceptron with one hidden
layer, final number of nodes and non-linear activation functions can closely approximate
any commonly used function [168, 221]. However, the number of hidden nodes required
for this task may be large, resulting in an enormous amount of weight parameters to be
trained. In recent years, deep learning and deep neural networks have emerged as popular and
widely discussed research topics [38, 275, 370]. Deep neural networks contain several hidden
layers. As the number of nodes required per layer can be kept modest, this can result in an
exponential reduction in the number of connection weights that need to be trained [38, 284].
As a consequence, complex functions can be modelled more efficiently, addressing the issue
related with multi-layer-perceptrons mentioned above. Deep neural networks automatically
extract features from the data in the form of feature hierarchies. This automation relieves
the scientist of the laborious task of determining adequate features, but does imply a lack of
interpretability of the final classification model.

2.2.5 Rule models

A rule based classifier derives a set of rules from the dataset and uses these as its prediction
model [169]. A rule can be written in the form ‘IF P1 and P2 AND . . . AND Pt THEN C’.
In this expression, Pi (i = 1, . . . , t) are rule premises based on the input features and C is
the consequent, a class prediction. As an example, the decision tree in Figure 2.2 can be
transformed to the following set of rules:

IFA1 == Left AND A2 < 0 THEN class P

IFA1 == Left AND A2 ≥ 0 THEN class N

IFA1 == Center THEN class P

IFA1 == Right AND A3 == 1 THEN class P

IFA1 == Right AND A3 ∈ {2, 3, 4} THEN class N

A rule list learner constructs its rule set in a top down way, much like the construction of a
decision tree (Section 2.2.2). Premises are added to a rule until all training elements satisfying
the combined rule belong to a single class. The selection of an appropriate additional premise
can be guided by an impurity measure. Once all instances covered by the combination of
premises belong to the same class, this class prediction is used as the consequent of the rule.
After a rule r has been learned, the set of training samples covered by it can be removed,
such that the remaining rules are learned from samples not covered so far. Traditional rule
list learning algorithms are CN2 [104] and Ripper [105]. Alternatively, a class based approach
can be followed, where a rule set is learned for one class at a time. In the construction of
a rule r for class C, the consequent is already fixed and only class C is considered in the
impurity measure for the premise selection process [103].

2.2.6 Probabilistic models

Probabilistic models for classification rely on probability distribution estimations to predict
the class variable. We can make a distinction between discriminative and generative classifiers
[48, 330]. If variables X and Y represent the input features and outcome respectively, the
former algorithms aim to model the posterior probability P (Y |X). A class probability score
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is derived based on the input feature values and the class with the highest score can be used
as prediction. Two example methods are described in the following paragraphs. Generative
classifiers on the other hand learn the joint distribution P (X,Y ). By sampling from this joint
distribution, new labelled data elements can be created.

The naive Bayes classifier is based on Bayes’ rule in probability theory to compute the con-
ditional probability P (Y |X) [276]. An instance x is classified to the class C (that is, value
C for outcome variable Y ) for which P (Y = C |X = x) is largest. Bayes’ theorem states
P (A |B) = P (B |A)P (A)

P (B) , such that P (Y = C|X = x) = P (X=x |Y=C)P (Y=C)
P (X=x) . Since the de-

nominator in this expression is independent of the class value, the classification reduces to
maximizing P (X = x |Y = C)P (Y = C). The naive Bayes method assumes complete con-
ditional independence among the dimensions of X (that is, among the descriptive features),
such that we can decompose the objective function as P (Y = C)

∏d
i=1 P (Xi = xi |Y = C).

As a result, the multi-dimensional probability estimates are reduced to easier-to-handle one-
dimensional ones. Despite its strong independence assumption, a naive Bayes classifier can
often perform quite well [128].

Another popular probabilistic model is called logistic regression [111]. In spite of what its
name may suggest, this is a classification model used to predict the categorical outcome of
instances. Originally devised for binary problems with classes C1 and C2, the posterior class
probabilities are computed as P (Y = C1 |X = x) = exp(β0+β1·x)

1+exp(β0+β1·x) and P (Y = C2 |X = x) =
1

1+exp(β0+β1·x) , in which the products β1 · x should be understood as vector dot products.
The regression coefficients (β0 and vector β1) can be estimated in a maximum likelihood
procedure. The decision boundary can be rewritten as an expression where the log-odds of
the posterior probabilities equals zero, namely

log
(
P (Y = C1 |X = x)
P (Y = C2 |X = x)

)
= β0 + β1 · x = 0.

This implies a linear decision boundary with respect to the log-odds. Multinomial logistic
regression generalizes this procedure to datasets with more than two classes [222].

2.2.7 Ensemble classification

Ensemble learning methods [63, 269, 494] construct several classification models from the same
training set. This can be achieved by using different learning algorithms, making multiple
modified versions of the training set or both. To classify a new instance x, each member of the
ensemble computes a prediction for x and the final class assignment is derived by means of
an aggregation procedure (e.g. a majority vote). It is beneficial to aim for a level of diversity
between the ensemble members in order to capture different classification behaviour [271].

A simple ensemble construction process is called bagging [58], short for bootstrap aggregating.
Let M be the number of ensemble members. Each classifier is constructed using the same
learning algorithm (e.g. a decision tree), but by training it on a different dataset. If T is the
original dataset, the M training sets are constructed by sampling T with replacement until
|T | elements are obtained. A popular example incorporating the basic bagging technique is
the random forest classifier [59]. It builds a decision tree on each of the induced training sets
and uses an additional subspace sampling procedure to reduce the feature set to a different
subset in each tree. Figure 2.5 provides a graphical presentation of a random forest model.
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Figure 2.5: Random forest classification model. The training process is depicted left from
the vertical line. A total number of M decision trees are trained from bootstrap
samples from the training set. On the right hand side, which represents the clas-
sification of an instance, each tree provides a prediction and a final classification
is obtained by means of aggregation.

A second popular ensemble technique is boosting [367, 368]. It is a sequential approach that
iteratively trains a classification algorithm on reweighed versions of the training set. At the
end of an iteration, the weight of misclassified training elements is increased, such that they
receive relatively more attention in the next step. The process is repeated for M iterations.
Each constructed model is assigned a confidence score based on its training error, that weighs
its contribution to the final aggregated prediction. The traditional boosting algorithm is
called AdaBoost [161, 369].

Having constructed an ensemble of classifiers, not all members may be equally suited to
classify every test instance. They may work particularly well in certain parts of the feature
space, but produce poor or irrelevant results in others. Several procedures have been proposed
to dynamically decide which classifiers should be used based on the test instance at hand. We
can discern between dynamic classifier selection [113, 193] and dynamic ensemble selection
[262]. Per test instance, the former selects one classifier, while the latter selects several
ensemble members.

2.3 Conducting classification experiments

Many research papers in the machine learning domain focus on the development of a new
method for a particular problem or application. Aside from a rigorous explanation and
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motivation, such studies also need to prove the advantages of their newly proposed approach
over existing alternatives. To this end, the proposal is usually compared to an appropriate
selection of state-of-the-art methods in an experimental evaluation on a sufficient number
of datasets. Several online archives of datasets exist, including the popular UCI [285] and
KEEL [11] dataset repositories. Using publicly available datasets enables other researchers
to reproduce or extend the reported study.

A key aspect of any experimental study is the selection of one or more appropriate evalua-
tion metrics (Section 2.3.1) that measure complementary features of the method performance.
Secondly, a validation procedure (Section 2.3.2) is required in order to ensure reliable and rep-
resentative results. Thirdly, once experimental results are obtained for all included methods
on all datasets, they need to be adequately compared to each other. A crucial step towards
a confident conclusion is a statistical analysis of the results (Section 2.3.3). We discuss these
components in separate sections below.

2.3.1 Evaluation measures

In this thesis, we focus on classification applications, where observations are labelled with
a categorical outcome (their class). A classifier assigns a class label to a newly presented
instance based on a previously learned prediction model. Its performance can be evaluated in
several ways. In Section 2.3.1.1 we describe a number of traditional measures. Section 2.3.1.2
explains that some measures are unsuitable when the class distribution is skewed and presents
some imbalance-resistant alternatives. Throughout this thesis, we take special care to select
suitable evaluation measures for the studied problems.

2.3.1.1 General evaluation measures

The intuitively most relevant facet to evaluate is the correctness of the predictions made. Let
Ts be a test set of elements for which class labels were predicted and corr(·) a function that
counts the number of correct predictions for its set argument. Probably the most commonly
used evaluation measure is still the traditional global classification accuracy. It is defined as

acc(Ts) = corr(Ts)
|Ts|

and measures the ratio of correctly classified instances in the test set. The complement of the
accuracy is referred to as the error rate and is given by

err(Ts) = 1− acc(Ts) = |Ts| − corr(Ts)
|Ts|

.

In binary classification problems, only two classes are present and can often be interpreted as
‘positive’ and ‘negative’. A basic two-class confusion matrix can be constructed that summa-
rizes the prediction behaviour as presented in Table 2.1. The rows and columns correspond
to the actual and predicted classes respectively. The entries correspond to the number of true
positive (TP), true negative (TN), false positive (FP) and false negative (FN) predictions.
The former two can be normalized to the true positive rate (TPR) and true negative rate
(TNR) as

TPR = TP

TP + FN
and TNR = TN

TN + FP
.
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Table 2.1: Confusion matrix obtained after classification of a two-class dataset.

Actual
Predicted Positive Negative

Positive TP FN
Negative FP TN

In some applications, the false positive rate (FPR) and false negative rate (FNR), defined as

FPR = FP

TP + FN
and FNR = FN

TN + FP
,

may be of interest as well.

The TPR is also called recall or sensitivity. A complementary measure from the information
retrieval domain is the precision (also called confidence or positive predictive value), defined
as

p = TP

TP + FP
.

While the recall r measures the rate of correctly classified positive instances, the precision
p represents the fraction of positive predictions that are correct. To evaluate the trade-off
between these two aspects, the Fβ-measure, defined as

Fβ = (1 + β2) · p · r
β2 · p+ r

,

can be applied. Parameter β can take on any positive real value, but is usually set to β = 1.
In the latter case, the measure is simply referred to as the F-measure and is given by

F = 2 · p · r
p+ r

,

the harmonic mean of precision and recall. A confusion matrix similar to the one in Table 2.1
can be constructed for datasets with more than two classes as well. For a dataset with m
classes, the entry on the ith row and jth column of the m ×m matrix lists the number of
class i elements that were assigned to class j in the prediction step.

Another component commonly assessed when comparing machine learning methods is their
complexity. Several aspects can be captured under this general term. A first one is the
theoretical complexity related to the construction of the prediction model as well as to the
prediction of the outcome of new instances. Their theoretical complexity has a direct influence
on the runtime of these two processes, an essential practical consideration. Secondly, the
actual complexity of the learned prediction model is often of interest as well. Even though
the computer algorithm is somehow applied as a black box in the prediction process, the
interpretability of the intermediate model is still important. Easy-to-understand classification
rules can for instance lead to new insights on the application at hand.

2.3.1.2 Evaluation measures in the presence of class imbalance

The specific properties of a problem may require custom evaluation measures. For instance,
it has been established in the machine learning community that the regular classification ac-
curacy is inappropriate to use in the presence of class imbalance (e.g. [385], Chapter 4). Class
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imbalanced datasets present an uneven distribution of the observations across the classes.
As an example, consider a two-class dataset in which 100 instances belong to the first class
and 900 to the second and a classifier that predicts the second label for all elements. The
accuracy value of this evaluation would be 90%, since 900 out of 1000 instances are classified
correctly. This measure does not take the imbalance between classes into account. It can pro-
vide deceptive results and lead to unreliable conclusions. In particular, a strong performance
on a majority class can easily overshadow a poor result on the minority class in the accuracy
calculation. In this toy example, the 90% accuracy rate does not adequately reflect the poor
performance on the first class, which has been misclassified entirely.

Example alternatives like the geometric mean (gmean) or balanced accuracy (also called aver-
age accuracy) aggregate the class-wise accuracies to counteract the dominance of the majority
class. The former does so by taking the geometric mean of the class-wise accuracies

gmean(Ts) = m

√√√√ m∏
i=1

corr(Tsi)
|Tsi|

,

with Tsi the subset of instances belonging to class i, while the latter uses their arithmetic
mean

balacc(Ts) = avgacc(Ts) = 1
m

(
m∑
i=1

corr(Tsi)
|Tsi|

)
.

Another popular evaluation measure to use in the presence of class imbalance is the Area
under the ROC-Curve (AUC). For a binary classification problem, a Receiver Operator Char-
acteristics (ROC)-curve is defined in the unit square and models the trade-off of a classifier
between its TPR and FPR [140]. The area between the curve and the horizontal axis is used
to capture the represented graphical information in one value. An algorithmic way to com-
pute the AUC is by means of the trapezoid rule [140, 317]. Instead of deriving an exact class
assignment, the classifier calculates, for each instance x, the probability p+(x) that x belongs
to the positive class. Afterwards, these values are sorted and each one is used as a threshold
θ, such that only instances with p+(x) ≥ θ are finally classified as positive. This procedure
leads to specific TPR and FPR values for each threshold, that can be plotted as points in a
Euclidean coordinate system as represented in Figure 2.6. For example, at threshold θ = 0.7,
eight of the ten positive instances and five of the ten negative instances are classified as pos-
itive, respectively leading to a TPR of 0.8 and FPR of 0.5 and together to the point with
coordinates (0.5;0.8) in the plot. The area underneath the curve connecting these points can
be computed as the sum of the areas of a triangle and a sequence of trapezoids.

Several extensions of the AUC measure to datasets with more than two classes have been
proposed in the literature. An often used example is the mean AUC (MAUC, [204]) that
computes the overall AUC as the average of each of the binary AUC values between pairs of
classes. In [150], the ROC-curve was extended to a surface and the AUC measure was replaced
by the volume underneath it. The authors of [206] introduced the AUCarea measure. The
binary AUC values between class pairs are plotted in a polar diagram and the area within
the figure is used as metric. A normalized version of the AUCarea measure was proposed in
[202].
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Figure 2.6: Example of how the calculation of p+(x) values can lead to a ROC curve.

2.3.2 Validation techniques

In the classification setting, a prediction model is derived from a set of available instances
(the training set) to use in the label prediction of newly presented instances. The class labels
of the training elements are known, so when the prediction model is applied to this set,
its performance can be evaluated by comparing the predicted labels to the known classes.
However, this is insufficient. The classifier may have overfitted the training set, learned its
eccentricities by heart as it were, and only perform well on these particular elements. An
independent test set, not used during training, allows to assess the generalization capacity
of a classifier to unseen data. To check the quality of classifiers, it is necessary to know the
true class of these new instances as well, such that the predicted outcome can be compared
to the ground truth. Such a reliable assessment of the classification strength is assisted by a
validation scheme. We list several commonly used techniques below and refer the reader to
e.g. [259, 263] and any machine learning handbook (e.g. [154]).

The most basic validation scheme is holdout that divides the dataset into two parts, one for
training and one for testing. A typical division is to assign two thirds of the observations to
the training set and the remaining third to the test set. A prediction model is derived from
the training instances and used to predict the outcomes of the test elements. The repeated
holdout scheme repeats this procedure a number of times, each time selecting a different
subset of the original data as training set.

Another alternative is the bootstrapping validation scheme, which uses several bootstrap sam-
ples of the dataset. Such a sample is created by sampling the original dataset with replacement
until a new dataset of equal size is obtained. The replacement sampling implies that duplicate
samples can occur. Each bootstrap sample is used as a training set and the outcome is pre-
dicted for the original full dataset. This implies an overlap between the training and test sets,
which should be taken into account with the estimation of the true prediction performance,
for instance by using the .632+ bootstrap estimator [135].

The most commonly used validation procedure is K-fold cross validation, with K a positive
integer number. An example with K = 5 is represented in Figure 2.7. The dataset is first
split into K roughly equal non-overlapping parts (folds). Next, K experiments are conducted,
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where K − 1 folds are combined to form the training set and the remaining fold is used as
test set. The prediction performance is evaluated on each test set and aggregated to a
single final assessment value. Values of five and ten are common choices for K, although
a general recommendation for setting this value remains difficult [482]. Another important
question is how the dataset is divided into folds. The simplest approach is to use a random
partition, although it may be prudent to respect properties of the original dataset as much
as possible, such as its class distribution (standard stratified cross K-fold validation). More
advanced partitioning strategies include distribution balanced stratified cross validation [472]
and distribution optimally balanced stratified cross validation (DOB-SCV, [325]). The use
of the latter has been recommended for imbalanced datasets in [305], since it avoids the
critical data-shift problem, an issue referring to the possible difference in data distribution
between training and test folds. The fold construction procedure in DOB-SCV distributes
near same-class elements across the folds in order to adequately represent each region in all
partitions. Finally, in repeated cross validation, as one does in repeated holdout, the full
process is repeated for the same dataset several times with a different fold partitioning each
time.

Figure 2.7: Visualization of the five-fold cross validation procedure.

2.3.3 Statistical analysis

After the experiments have been completed, a confident conclusion on the advantages of one
method over the other(s) needs to be formulated. To do so for a particular evaluation measure
E, the obtained results are usually grouped in the format presented in Table 2.2. The rows
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Table 2.2: Collection of experimental data for evaluation measure E.

M1 M2 . . . Mq

D1 E(D1,M1) E(D1,M2) . . . E(D1,Mq)
D2 E(D2,M1) E(D2,M2) . . . E(D2,Mq)
...

...
... . . . ...

Dn E(Dn,M1) E(Dn,M2) . . . E(Dn,Mq)

correspond to the n different datasets (D1, D2, . . . , Dn) and the columns to the q included
methods (M1, M2, . . . , Mq). Entry E(Di,Mj) represents the performance of method Mj on
dataset Di as measured by E.

Column-wise averages can be computed to easily aggregate the performance of each method
to a single value. When E is a measure to be maximized (minimized), intuition may dic-
tate that the method corresponding to the highest (lowest) average value exhibited the best
performance in the study. However, this is not a prudent procedure. A high (low) average
may be the result of an outlying performance on a single dataset. Instead of averages, all
individual E(Di,Mj) values need to be analysed. This can be achieved by means of a statis-
tical analysis. The major dividing difference between statistical tests is their parametric or
non-parametric nature. Tests belonging to the latter group are also called distribution-free,
as they do not make any assumptions on the underlying distribution of the observations,
while parametric tests commonly assume normality of the data. Although parametric tests
usually have higher statistical power than their non-parametric alternatives when their as-
sumptions are met, the use of non-parametric statistical analysis in machine learning has
been explicitly recommended in e.g. [119, 123, 186]. The latter generally rely on the more
robust median (as opposed to the mean) as centrality measure. The study of [119] specifically
recommended the use of the Wilcoxon test for pairwise comparisons and the Friedman test
combined with a post-hoc analysis for comparisons between multiple methods. We discuss
these in the following paragraphs and use them throughout the thesis.

Pairwise comparisons The Wilcoxon signed ranks test [437] can be used to compare the
performance of two methods M1 and M2 to each other. It is based on the differences in per-
formance of the two methods on all datasets (that is, the values di = E(Di,M1)−E(Di,M2)).
Its null hypothesis is that the two methods exhibit no difference in performance or, concretely,
that the differences are distributed symmetrically around their median, such that one of the
methods does not consistently outperform the other.

To assess whether the null hypothesis can be rejected based on the observations at hand, a
ranking method is applied. The absolute values of the differences di are ranked from 1 to
n, where the smallest difference is assigned the smallest rank. When several values tie, all
are assigned the same rank. For example, if two values tie for ranks 9 and 10, they are both
assigned rank 9.5. Two rank sums are computed: R+ corresponding to the positive differences
(‘M1 beats M2’) and R− corresponding to the negative differences (‘M2 beats M1’). Ranks
of zero differences (di = 0) are evenly divided among R+ and R−, such that

R+ =
∑
di>0

rank(di) + 1
2
∑
di=0

rank(di) and R+ =
∑
di<0

rank(di) + 1
2
∑
di=0

rank(di).
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The test statistic is set to t = min(R+, R−). When the associated p-value, which is defined
as the probability that a more extreme observation than t is observed when the null hypoth-
esis holds, is smaller than the given significance level α, the null hypothesis of equivalent
performance is rejected.

Multiple comparison In many practical settings, one wishes to compare a group of meth-
ods among each other (Table 2.2 with q > 2). This can be achieved in a two-step procedure.

First, the Friedman test [164] is applied to decide whether any statistically significant dif-
ferences are present among the methods. This test assesses whether there are at least two
methods in the evaluated group with significantly different median values. It does so by rank-
ing the performance of the methods for each dataset. For dataset Di, the method with the
best value E(Di,Mj) is assigned rank 1, the second best is assigned rank 2 and so on, until
the worst performing method is assigned rank q. In case of ties, average ranks are assigned
to all tied methods, as was done in the difference ranking by the Wilcoxon test described
above. Next, the mean rank of each method across all datasets is computed. We denote this
value as its Friedman rank. Since the null hypothesis assumes equivalent performance of the q
methods, their mean ranks should be approximately equal. The Friedman statistic is derived
from these ranks. When its associated p-value is smaller than the significance level α, the
null hypothesis is rejected and we conclude that significant performance differences do exist
among the q methods. However, the Friedman test does not show where these differences
occur. To extract this information, a post-hoc test is required.

The Holm post-hoc procedure [218] uses the method with the lowest Friedman rank as control
method and compares it to each of the q−1 other algorithms. The Friedman ranks of method
Mi and the control method are used to derive an unadjusted p-value pi. These p-values can
be reordered such that

p1 ≤ p2 ≤ . . . pq−1 (2.1)

by renumbering the methods. Next, a step-down approach rejects every null hypothesis up
until Hi (that is, ‘the performances of method Mi and the control method are equivalent’),
where i is the first index in sequence (2.1) for which pi >

α
q−i . The adjusted p-values are

defined as
pi,Holm = min(1, max

1≤j≤i
[(q − j) · pj ])

and represent the smallest global significance level at which the corresponding null hypothesis
Hi would still be rejected. Based on this definition, we can derive that the control method
significantly outperforms all methods with adjusted p-values smaller than α.
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3 Understanding OWA based fuzzy
rough sets

As noted in Chapter 1, the traditional fuzzy rough set model is intrinsically sensitive to
noise and outliers in the data. One generalization to deal with this issue in an intuitive
way is the ordered weighted average (OWA) based fuzzy rough set model, that replaces the
strict minimum and maximum operators by more elaborate OWA aggregations. This model
is recalled in Section 3.1. The definitions of the OWA based fuzzy rough lower and upper
approximations rely on a weighting scheme determining the weights used in the aggregation
step. We recall several data-independent settings in Section 3.2 and introduce a novel data-
dependent weighting scheme as well. We show that the suitability of each scheme depends on
the characteristics of the data at hand. In Sections 3.3 and 3.4, we therefore develop weighting
scheme selection strategies for the OWA based fuzzy rough lower and upper approximation
operators based on simple dataset characteristics. We prove the validity of our proposed
guidelines in Section 3.5. Finally, Section 3.6 concludes the chapter.

3.1 Ordered weighted average based fuzzy rough sets

Due to its use of the strict minimum and maximum operators in the approximation defini-
tions, the traditional fuzzy rough set model is sensitive to noise and outliers in the data.
Several noise-tolerant alternatives have been proposed in the literature to address this issue.
From among them, we select the OWA based fuzzy rough sets [108]. In this section, we spec-
ify the definition of this model. Section 3.1.1 complements Section 1.2.3 and explains how
the traditional fuzzy rough approximations of decision classes in classification data can be
computed. The ordered weighted average aggregation procedure is recalled in Section 3.1.2.
The OWA based model itself is presented in Section 3.1.3.

3.1.1 Fuzzy rough approximations of decision classes

As explained in Section 1.2.3, the fuzzy rough lower and upper approximations of a concept
C in the general implicator/t-norm model from [352] are defined as

C(x) = min
y∈T

[I(R(x, y), C(y))] (3.1)

and
C(x) = max

y∈T
[T (R(x, y), C(y))]. (3.2)
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Recall that relation R(·, ·) expresses the similarity between two instances. In a classification
context, C would correspond to a decision class and therefore be crisp. This means that the
membership degrees C(y) in expressions (3.1-3.2) only take on values in {0, 1}. In particular,
C(y) = 0 when y /∈ C and C(y) = 1 when y ∈ C.

Taking this into account, expression (3.1) reduces to

C(x) = min
y∈T

[I(R(x, y), C(y))]

= min(min
y∈C

[I(R(x, y), C(y))],min
y/∈C

[I(R(x, y), C(y))])

= min(min
y∈C

[I(R(x, y), 1)],min
y/∈C

[I(R(x, y), 0)])

= min(1,min
y/∈C

[I(R(x, y), 0)])

= min
y/∈C

[I(R(x, y), 0)]

= min
y/∈C

[NI(R(x, y))]. (3.3)

We have used the property (∀a ∈ [0, 1])(I(a, 1) = 1), which is due to I(1, 1) = 1 and the fact
that I is decreasing in its first argument. Operator NI is the induced negator of implicator
I and is defined as (∀a ∈ [0, 1])(NI(a) = I(a, 0)). The Kleene-Dienes,  Lukasiewicz and
Reichenbach implicators listed in Table 1.5 all have the same induced negator, namely the
standard negator NI(a) = 1− a.

In a similar way, the fuzzy rough upper approximation (3.2) of a crisp decision class C reduces
to

C(x) = max
y∈T

[T (R(x, y), C(y))]

= max(max
y∈C

[T (R(x, y), C(y))],max
y/∈C

[T (R(x, y), C(y))])

= max(max
y∈C

[T (R(x, y), 1)],max
y/∈C

[T (R(x, y), 0)])

= max(max
y∈C

[T (R(x, y), 1)], 0)

= max
y∈C

[T (R(x, y), 1)]

= max
y∈C

[R(x, y)]. (3.4)

This derivation relies on t-norm properties (∀a ∈ [0, 1])(T (a, 0) = 0), due to T (1, 0) = 0 and
the fact that T is increasing in its first argument, and (∀a ∈ [0, 1])(T (a, 1) = a).

In summary, in a classification dataset the fuzzy rough lower and upper approximations of a
crisp decision class C are given by

C(x) = min
y/∈C

[1−R(x, y)] and C(x) = max
y∈C

[R(x, y)],

where we have used one of the three popular implicators listed above. The membership degree
of instance x to the lower approximation of C is fully determined by the instance y /∈ C
with the highest value for R(x, y), that is, the instance y /∈ C closest to x. Similarly, the
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membership degree to the upper approximation of C is determined by the closest instance y ∈
C. The use of the minimum and maximum operators (and the consequent strong dependence
of C(x) and C(x) on single instances y) renders these fuzzy rough approximation operators
highly sensitive to noise and outliers in the data [117, 228]. To address this issue, several
noise-tolerant fuzzy rough set models have been proposed in the literature. We focus on the
ordered weighted average based model from [108].

3.1.2 Ordered weighted average aggregation

Before going into detail on the OWA based fuzzy rough set model, we devote a separate
section to its core component, the ordered weighted average aggregation [450, 452]. An OWA
aggregation of a set of values V uses a weight vector W of length |V |. The aggregated value is
obtained in two steps. First, the elements in V are sorted in decreasing order. Secondly, their
weighted sum is computed by assigning the weights in W to the elements at the corresponding
positions in the sorted sequence. In particular, we use the following definition.

Definition 3.1.1 (OWA aggregation). The OWA aggregation of a set of values V using
weight vector W = 〈w1, w2, . . . , w|V |〉, with (∀i)(wi ∈ [0, 1]) and

∑|V |
i=1wi = 1, is given by

OWAW (V ) =
|V |∑
i=1

(wiv(i)),

where v(i) is the ith largest element in V .

As an illustration of this aggregation procedure, consider the following small example. Let
V = {0.1, 0.5, 0.3, 0.7, 0.7, 0.4} and W = 〈 1

21 ,
2
21 ,

3
21 ,

4
21 ,

5
21 ,

6
21〉. The OWA aggregation of V is

obtained as

OWAW (V ) = 1
21 · 0.7 + 2

21 · 0.7 + 3
21 · 0.5 + 4

21 · 0.4 + 5
21 · 0.3 + 6

21 · 0.1 ≈ 0.3619.

When we use weight vector W = 〈 1
63 ,

2
63 ,

4
63 ,

8
63 ,

16
63 ,

32
63〉 instead, we derive

OWAW (V ) = 1
63 · 0.7 + 2

63 · 0.7 + 4
63 · 0.5 + 8

63 · 0.4 + 16
63 · 0.3 + 32

63 · 0.1 ≈ 0.2429.

Note that the OWA aggregation of a singleton set always equals this single value itself, that
is, OWAW ({v}) = v.

As the definition and example demonstrate, the result of an OWA aggregation largely depends
on the choice of weight vector W . Characterizing properties of a weight vector are its orness
and andness values. The former reflects how strongly the aggregation represents a regular
maximum, while the latter indicates the relation with the minimum operator. For a weight
vector W , orness(W ) and andness(W ) both belong to the unit interval and are defined such
that andness(W ) = 1− orness(W ). In particular,

orness(W ) = 1
p− 1

p∑
i=1

[(p− i) · wi],

where p > 1 is the length of the vector. If orness(W ) > 1
2 , the aggregation with W cor-

responds to a softened maximum. Otherwise, if andness(W ) > 1
2 , a softened minimum is
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modelled. For weight vector W = 〈1p ,
1
p , . . . ,

1
p〉, with which the aggregation corresponds to

a regular average, orness(W ) = andness(W ) = 1
2 holds. The traditional maximum and

minimum operators can be modelled as OWA aggregations as well by means of the weight
vectors Wmax = 〈1, 0, . . . , 0, 0〉 and Wmin = 〈0, 0, . . . , 0, 1〉 respectively. For these vectors,
orness(Wmax) = andness(Wmin) = 1 and orness(Wmin) = andness(Wmax) = 0 holds.

3.1.3 OWA based fuzzy rough sets

The ordered weighted average based fuzzy rough set model was proposed in [108]. To deal
with the noise sensitivity of the traditional fuzzy rough set model in expressions (3.1-3.4), the
minimum and maximum operators are replaced by appropriate OWAW aggregations, that is,
andness(W ) > 1

2 (softened minimum) for the former and orness(W ) > 1
2 (softened maxi-

mum) for the latter. For a general concept C, the OWA based fuzzy rough approximations
are obtained from (3.1-3.2) as

C(x) = OWAWL
({I(R(x, y), C(y)) | y ∈ T}) (3.5)

and
C(x) = OWAWU

({T (R(x, y), C(y)) | y ∈ T}), (3.6)

with andness(WL) > 1
2 and orness(WU ) > 1

2 . In the case of classification data where C
corresponds to a crisp decision class, we can start from (3.3-3.4) and obtain

C(x) = OWAWL
({NI(R(x, y)) | y /∈ C}) (3.7)

and
C(x) = OWAWU

({R(x, y) | y ∈ C}). (3.8)

Possible choices for WL and WU are discussed in Section 3.2. We can already note that when
WL = 〈0, 0, . . . , 0, 1〉 and WU = 〈1, 0, . . . , 0, 0〉, the above expressions reduce to the traditional
fuzzy rough set model (3.1-3.4) due to Definition 3.1.1.

In [117], theoretical properties of a collection of noise-tolerant fuzzy rough set models were
compared. The authors note that the OWA based fuzzy rough set model satisfies the set
monotonicity and relation monotonicity properties, the most relevant characteristics from
a practical application standpoint. Aside from the OWA based model, the proposals from
[149, 455, 487] also satisfy these properties and can therefore, based on this criterion, be
favoured in practice over other noise-tolerant models as well. In an experimental robustness
analysis, the authors showed that the OWA based model is often the most robust one with
respect to both attribute and class noise. The same conclusion was evident from our own
related experimental stability evaluation in [416]. One challenge associated with the OWA
based fuzzy rough set model lies with the definition of the weight vectors WL and WU . In
the remainder of this chapter, we explain how sensible (and powerful) choices can be made
based on the data at hand.

3.2 OWA weighting schemes

Having defined OWA based fuzzy rough sets in Section 3.1, we continue with a descrip-
tion and a preliminary comparison of several OWA weighting schemes used within this fuzzy
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rough set model. In Section 3.2.1, we recall the definition of four data-independent weight-
ing schemes, one of which coincides with the traditional (non-OWA) fuzzy rough set model.
To complement these settings, we introduce a new data-dependent weighting scheme in Sec-
tion 3.2.2. Section 3.2.3 presents an initial comparison of the five schemes and motivates the
more in-depth comparison conducted in Sections 3.3-3.4, where we propose guidelines for the
weighting scheme selection process.

3.2.1 Data-independent weighting schemes

Section 3.1.3 already recalled one possible weighting scheme, namely the one for which the
OWA based fuzzy rough set model reduces to the traditional one. We refer to this setting as
Strict and it is defined as W strict

L = 〈0, 0, . . . , 0, 1〉 and W strict
U = 〈1, 0, . . . , 0, 0〉. These weight

vectors are evidently data-independent. They contain only one non-zero position that does
not depend on the actual values that are being aggregated. Aside from Strict, we consider
three other data-dependent weighting schemes, where we assume that the size of the set to
aggregate is p. For each of them, for a fixed length p, vectors WL and WU are reversals of each
other. In the proofs below, we assume p > 1. In the other case, the aggregation is trivial.

Additive weights (Add) This weighting scheme models linearly decreasing or increasing
weights and sets

W add
L =

〈 2
p(p+ 1) ,

4
p(p+ 1) , . . . ,

2(p− 1)
p(p+ 1) ,

2
p+ 1

〉
and

W add
U =

〈 2
p+ 1 ,

2(p− 1)
p(p+ 1) , . . . ,

4
p(p+ 1) ,

2
p(p+ 1)

〉
.

These weight vectors are normalized versions of the 〈1, 2, . . . , p− 1, p〉 and 〈p, p− 1, . . . , 2, 1〉
vectors respectively and correspond to the Borda count or law of Borda-Kendall in decision
making [272]. Within vector WL, each weight wi+1 is obtained by adding the constant value

2
p(p+1) to the preceding weight wi. As a consequence, every position has a constant increase in
its relevance to determine the aggregated value compared to the previous one. The opposite
relation holds for WU , where earlier positions are assigned more weight.

Theorem 3.2.1. Weight vectors W add
L and W add

U correspond to a softened minimum and a
softened maximum respectively.

Proof. We need to prove that orness(W add
L ) < 1

2 and orness(W add
U ) > 1

2 . We use the defini-
tion of the orness measure as given above. Since W add

L and W add
U are reversals of each other,

it suffices to prove the former inequality.
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For the additive weight vector W add
L , wi = 2i

p(p+1) holds. We find

orness(W add
L ) = 1

p− 1

p∑
i=1

[(p− i) · wi]

= 1
p− 1

p∑
i=1

[(p− i) · 2i
p(p+ 1)]

= 2
(p− 1)p(p+ 1)

(
p

p∑
i=1

i−
p∑
i=1

i2
)

= 2
(p− 1)p(p+ 1)

(
p
p(p+ 1)

2 − p(p+ 1)(2p+ 1)
6

)
= p

p− 1 −
2p+ 1

3(p− 1)

= p− 1
3(p− 1)

= 1
3 <

1
2 .

Exponential weights (Exp) In this scheme, the weights are drawn from an exponential
function with base 2. In particular, weight wi+1 in WL is determined by multiplying wi by the
constant factor 2. The constant ratio wi+1

wi
= 2 in WL implies that every position is twice as

relevant for the aggregation as the previous one. In WU , wi
wi+1

= 2 holds. The weight vectors
are given by

W exp
L =

〈
1

2p − 1 ,
2

2p − 1 , . . . ,
2p−2

2p − 1 ,
2p−1

2p − 1

〉
and

W exp
U =

〈
2p−1

2p − 1 ,
2p−2

2p − 1 , . . . ,
2

2p − 1 ,
1

2p − 1

〉
.

Theorem 3.2.2. Weight vectors W exp
L and W exp

U correspond to a softened minimum and a
softened maximum respectively.

Proof. We need to prove that orness(W exp
L ) < 1

2 and orness(W exp
U ) > 1

2 . Since W exp
L and

W exp
U are reversals of each other, it suffices to prove the former inequality.
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For the exponential weight vector W exp
L , wi = 2i−1

2p−1 holds. We find

orness(W exp
L ) = 1

p− 1

p∑
i=1

[(p− i) · wi]

= 1
p− 1

p∑
i=1

[
(p− i) · 2i−1

2p − 1

]

= 1
(p− 1)(2p − 1)

p∑
i=1

[(p− i) · 2i−1]

= 1
(p− 1)(2p − 1)

(
(p− 1)

p∑
i=1

2i−1 −
p∑
i=1

[(i− 1) · 2i−1]
)

= 1
(p− 1)(2p − 1)

(p− 1)
p−1∑
j=0

2j −
p−1∑
j=0

j2j


= 1
(p− 1)(2p − 1)

(
(p− 1)1− 2p

1− 2 −
2− p2p + (p− 1)2p+1

(2− 1)2

)

= 1
(p− 1)(2p − 1)

(
(p− 1)(2p − 1)− 2 + p2p − p2p+1 + 2p+1

)
= p2p − p− 2p + 1− 2 + p2p − p2p+1 + 2p+1

(p− 1)(2p − 1)

= −p− 2p − 1 + 2p+1

(p− 1)(2p − 1)

= 2p − p− 1
(p− 1)(2p − 1) , (3.9)

where we have used formulas
n∑
k=0

kxk = x− (n+ 1)xn+1 + nxn+2

(x− 1)2 and
n−1∑
k=0

rk = 1− rn

1− r . Based

on expression (3.9), we easily derive

orness(W exp
L ) < 1

2 ⇔ (p− 3)2p + p+ 3 > 0.

This condition is satisfied for any value p ≥ 2.

Inverse additive weights (Invadd) The third scheme is also based on the ratio between
consecutive weights in the weight vectors. Instead of keeping this value constant as done by
Exp, a variable weight ratio is used. For WL, the ratio increase wi+1

wi
is put to p−i+1

p−i . This
value is larger than one and increases with i, such that relatively more weight increase is
obtained at the tail of the vector. In particular, WL is defined as

W invadd
L =

〈
1
pDp

,
1

(p− 1)Dp
, . . . ,

1
2Dp

,
1
Dp

〉
,

with Dp =
∑p
i=1

1
i , the pth harmonic number. It should be clear that this vector is the

normalized version of 〈1p ,
1
p−1 , . . . ,

1
2 , 1〉. By reversing this weight vector, we obtain

W invadd
U =

〈
1
Dp

,
1

2Dp
, . . . ,

1
(p− 1)Dp

,
1
pDp

〉
.
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Here, the ratio wi+1
wi

= i
i+1 increases with i as well. Since i

i+1 < 1, this implies that the weight
decrease slows down towards the tail of the vector.

Theorem 3.2.3. Weight vectors W invadd
L and W invadd

U correspond to a softened minimum
and a softened maximum respectively.

Proof. We need to prove that orness(W invadd
L ) < 1

2 and orness(W invadd
U ) > 1

2 . Since W invadd
L

and W invadd
U are reversals of each other, it suffices to prove the former inequality.

For the inverse additive weight vector W invadd
L , wi = 1

(p−i+1)Dp
holds. We find

orness(W invadd
L ) = 1

p− 1

p∑
i=1

[(p− i) · wi]

= 1
p− 1

p∑
i=1

[
(p− i) · 1

(p− i+ 1)Dp

]

= 1
(p− 1)Dp

p∑
i=1

[
p− i

p− i+ 1

]

= 1
(p− 1)Dp

( p∑
i=1

1−
p∑
i=1

[ 1
p− i+ 1

])

= 1
(p− 1)Dp

p− p∑
j=1

1
j


= p−Dp

(p− 1)Dp
. (3.10)

Based on this expression, we derive the condition

orness(W invadd
L ) < 1

2 ⇔ p(Dp − 2) +Dp > 0.

It is easy to verify that the Dp values increase with p and that D4 = 25
12 > 2. This implies that

the above condition is satisfied for all values p ≥ 4. When p = 2 or p = 3, expression (3.10)
yields an orness value of 1

3 and 7
22 respectively. Both values are smaller than 1

2 as well.

The following relationship holds between the three schemes listed above, implying that the
exponential weighting scheme is most closely related to the strict minimum and maximum,
followed by the inverse additive and additive weights.

Theorem 3.2.4. The orness and andness values associated with the additive, exponential
and inverse additive weighting schemes can be sorted as

orness(W exp
L ) ≤ orness(W invadd

L ) ≤ orness(W add
L ),

orness(W exp
U ) ≥ orness(W invadd

U ) ≥ orness(W add
U ),

andness(W exp
L ) ≥ andness(W invadd

L ) ≥ andness(W add
L ),

andness(W exp
U ) ≤ andness(W invadd

U ) ≤ andness(W add
U ),

when the aggregation length p is larger than one.
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Proof. Due to the symmetry in the definitions of the andness, orness and the three weighting
schemes, it is sufficient to prove that the first inequality holds.

We first prove the component on the left-hand side, namely orness(W exp
L ) ≤ orness(W invadd

L ).
From the proofs of Theorems 3.2.2-3.2.3, we obtain

orness(W exp
L ) = 2p − p− 1

(p− 1)(2p − 1) and orness(W invadd
L ) = p−Dp

(p− 1)Dp
.

Since p > 1, we can remove factor p− 1 from both denominators and find

orness(W exp
L ) ≤ orness(W invadd

L )
⇔ 2p−p−1

(p−1)(2p−1) ≤ p−Dp

(p−1)Dp

⇔ 2p−p−1
2p−1 ≤ p−Dp

Dp

⇔ 1− p
2p−1 ≤ p

Dp
− 1

⇔ 0 ≤ p
Dp

+ p
2p−1 − 2

⇔ 0 ≤ p2p−p+pDp−2Dp2p+2Dp

Dp(2p−1)
⇔ 0 ≤ p2p − p+ pDp − 2Dp2p + 2Dp,

where the last step is valid since the denominator Dp(2p − 1) is positive for all values p > 1.
We can further rewrite this expression as

0 ≤ p2p − p+ pDp − 2Dp2p + 2Dp,
⇔ 0 ≤ p(2p − 1) + pDp − 2Dp(2p − 1),
⇔ 0 ≤ (2p − 1)(p− 2Dp) + pDp.

The above condition is satisfied for p ≥ 5, as all factors and terms in the expression are positive
in this case. This property is clear for 2p−1 and pDp and we can prove (∀p ≥ 5)(p−2Dp ≥ 0)
by means of induction. To this end, we first prove the base case for p = 5, for which D5 = 137

60 ,
such that

p− 2Dp = 5− 2 · 137
60 = 300− 274

60 = 26
60 ≥ 0.

We now assume that p− 2Dp ≥ 0 holds and prove that p+ 1− 2Dp+1 ≥ 0 holds as well. We
find

p+ 1− 2Dp+1 = p+ 1− 2(Dp + 1
p+ 1)

= p+ 1− 2Dp + 2
p+ 1

= p− 2Dp + 1− 2
p+ 1 ≥ 0,

since (i) p− 2Dp ≥ 0 according to the induction hypothesis and (ii) 1 ≥ 2
p+1 as p ≥ 5. From

the above, we can conclude (∀p ≥ 5)(p− 2Dp ≥ 0) and, consequently, (∀p ≥ 5)((2p − 1)(p−
2Dp) + pDp ≥ 0). It remains to be shown that (2p − 1)(p − 2Dp) + pDp ≥ 0 is satisfied for
p ∈ {2, 3, 4}. Based on the values D2 = 3

2 , D3 = 11
6 and D4 = 25

12 , it can easily be verified that
this statement holds.

39



Chapter 3. Understanding OWA based fuzzy rough sets

To complete the proof, we show that orness(W invadd
L ) ≤ orness(W add

L ). It has been shown
that orness(W add

L ) = 1
3 (see proof of Theorem 3.2.1) and we can derive

orness(W invadd
L ) ≤ orness(W add

L )
⇔ p−Dp

(p−1)Dp
≤ 1

3
⇔ 3p− 3Dp ≤ pDp −Dp

⇔ 0 ≤ pDp + 2Dp − 3p.

We can prove the latter inequality by means of induction on p. We first consider the base
cases p = 2 and p = 3, for which D2 = 3

2 and D3 = 11
6 . We find

2 · 3
2 + 2 · 3

2 − 3 · 2 = 6− 6 = 0

for p = 2 and
3 · 11

6 + 2 · 11
6 − 3 · 3 = 55

6 − 9 = 1
6 ≥ 0.

for p = 3. We now assume that pDp + 2Dp − 3p ≥ 0 holds and prove (p+ 1)Dp+1 + 2Dp+1 −
3(p+ 1) ≥ 0. We easily derive

(p+ 1)Dp+1 + 2Dp+1 − 3(p+ 1) = (p+ 1)
(
Dp + 1

p+ 1

)
+ 2

(
Dp + 1

p+ 1

)
− 3p− 3

= pDp + p

p+ 1 +Dp + 1
p+ 1 + 2Dp + 2

p+ 1 − 3p− 3

= pDp + p+ 1
p+ 1 +Dp + 2Dp + 2

p+ 1 − 3p− 3

= pDp + 1 +Dp + 2Dp + 2
p+ 1 − 3p− 3

= pDp + 2Dp − 3p+Dp − 2 + 2
p+ 1 ≥ 0.

The inequality holds because of (i) the induction hypothesis pDp + 2Dp − 3p ≥ 0 and (ii)
Dp − 2 + 2

p+1 ≥ 0 when p ≥ 2.

3.2.2 A data-dependent weighting scheme

When computing an OWA aggregation of a set V , the four schemes described in Section 3.2.1
do not take the values in V into account and only depend on its size p. Having selected a
scheme among Strict, Add, Exp or Invadd, any set of size p will be aggregated in the same way,
that is, by using the same weight vector. However, it can be useful to capture characteristics
of V into the weight vectors. To study this setting, we introduce a new weighting scheme
called Mult.

First, we note that the literature presents several methods to learn OWA weights from data
[448], although not in the context of OWA based fuzzy rough sets, which is our focus here.
In [333], an OWA weight generation procedure is proposed that maximizes the dispersion of
the weights for a given orness value, which needs to be specified by the user. An analytic
solution to this optimization problem is offered in [167]. Alternatively, the weights can be
calculated when a number of samples, in the form of p values and their associated aggregation
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outcome, are provided. Examples of this approach can be found in [31, 32, 151, 396, 451].
Although interesting, these methods are of no use in the present context, because we cannot
train the weights with a given orness value or known aggregation outcomes, simply because
it is not clear how these parameters should be set. Another dependent OWA weight vector
was proposed in [449], which models a weighted mean of the aggregation values. The weight
for each value is related to its distance to the overall mean. In [52], a cluster-based OWA
aggregation was proposed. To aggregate a set of values, the reliability of each value to the
entire set is evaluated based on a clustering of all values. A shortcoming of this procedure
is its high computational cost as a result of the clustering step. This was pointed out by
[53], which proposed a more efficient procedure to determine the reliability of a value. Like
our Mult scheme discussed below, these methods compute their weights based on the values
to be aggregated. Nevertheless, we cannot use them within the OWA based fuzzy rough
approximations, because they do not act as a softened minimum or maximum, but model
averages instead. We now proceed with the definition of our data-dependent OWA weighting
scheme Mult for use within OWA based fuzzy rough approximations.

We first discuss the definition of Wmult
L . Similar to Invadd, consecutive weights differ by

a factor that depends on i. However, instead of modelling a vector with a relatively flat
beginning and steep increase towards the end, we wish Wmult

L to follow the distribution of the
sorted sequence of values to aggregate. Let V = 〈v1, . . . , vp〉 be this set sorted in decreasing
order. The sorting step ensures that vp is the smallest value. For all other values v1 to vp−1,
the similarity with the minimum can be computed as sL(vi) = 1 − |vi − vp|. These values
belong to the unit interval. We define the function mL(·), for i ∈ {1, 2, . . . , p− 1}, as

mL(vi) =
{

1 if vi = vi+1,

sL(vi) if vi 6= vi+1.

The value mL(vi) represents the factor by which wi+1 is multiplied to obtain wi. As a
consequence, the ratio wi+1

wi
is equal to 1

mL(vi) , which is at least one for all i ∈ {1, 2, . . . , p−1}.
Weight vector Wmult

L is constructed from right to left, that is, starting from wp. In a first
step, wp is set to one and every value wi is obtained by multiplying wi+1 by the factor mL(vi).
This yields an intermediate vector

Wmult∗
L =

〈p−1∏
i=1

mL(vi),
p−1∏
i=2

mL(vi), . . . ,mL(vp−2) ·mL(vp−1),mL(vp−1), 1
〉
.

Consider the sorted sets V1 = 〈0.9, 0.8, 0.5, 0.2, 0.1〉 and V2 = 〈0.8, 0.8, 0.4, 0.4, 0.2, 0.2〉 to
aggregate for example. Following the above definition, it is easy to derive that the inter-
mediate weight vectors Wmult∗

L for these aggregations are 〈0.0324, 0.0162, 0.54, 0.9, 1〉 and
〈0.32, 0.32, 0.8, 0.8, 1, 1〉 respectively. Clearly, the distributions within a value set and the cor-
responding weight vector are similar. For example, a distinct staircase structure is present in
both the value set and weight vector of V2, because our use of the factors mL(vi) ensures that
when the values vi and vi+1 are the same, they are also assigned the same weight. If vi 6= vi+1,
wi+1 is multiplied by the factor sL(vi). Due to its definition as the similarity of vi with vp,
this factor decreases when i decreases, because values earlier in the ordered sequence V are
less similar to the minimum value vp. The decreasing factor implies that we can expect the
weights to drop more rapidly towards the beginning of the vector. As such, the first values
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in V are far less relevant to the aggregation than the later ones, which coincides with our
intuition of a softened minimum. The conditions in Definitions 3.1.1 require the weights to
sum to one. The vector Wmult

L is therefore obtained as a normalized version of Wmult∗
L , by

dividing all weights by their total sum.

A mirrored procedure is followed to obtain Wmult
U . Value v1 is the maximum value in the

sorted sequence V . The similarity of other values with this maximum is defined as sU (vi) =
1− |v1 − vi|, for i ∈ {2, 3, . . . , p} and we define function mU (·) as

mU (vi) =
{

1 if vi = vi−1,

sU (vi) if vi 6= vi−1.

These values are used as factors to obtain wi from wi−1. The intermediate weight vector
Wmult∗
U is constructed from left to right by setting weight w1 to one and obtaining each wi

(with i ∈ {2, 3, . . . , p}) by multiplying wi−1 with mU (vi). We find

Wmult∗
U =

〈
1,mU (v2),mU (v3) ·mU (v2), . . . ,

p−1∏
i=2

mU (vi),
p∏
i=2

mU (vi)
〉

and obtain Wmult
U as a normalized version of this vector. Note that, contrary to the schemes

discussed in Section 3.2.1, Wmult
L and Wmult

U are no reversals of each other.

We can prove that the above definitions of Wmult
L and Wmult

U yield softened minimum and
softened maximum aggregations respectively.

Theorem 3.2.5. Weight vector Wmult
L corresponds to a softened minimum, that is,

andness(Wmult
L ) > 1

2 .

When all values in V are the same, andness(Wmult
L ) = 1

2 holds.

Proof. Weight vector Wmult
L is obtained by dividing all positions in Wmult∗

L by the total sum
D of the weights, such that weight wi is given by

wi = 1
D
w∗i = 1

D

p−1∏
j=i

mL(vj),

for i ∈ {1, . . . , p−1} and with w∗i the ith value in Wmult∗
L . Weight wp equals 1

D , since w∗p = 1.
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Based on the andness and orness definitions and D =
∑p
i=1w

∗
i , we can derive

andness(Wmult
L ) ≥ 1

2
⇔ orness(Wmult

L ) ≤ 1
2

⇔ 1
p− 1

p∑
i=1

[(p− i) · wi] ≤
1
2

⇔ 1
p− 1

p∑
i=1

[
(p− i) · 1

D
w∗i

]
≤ 1

2

⇔ 1
(p− 1)D

p∑
i=1

[(p− i) · w∗i ] ≤
1
2

⇔ 2 ·
p∑
i=1

[(p− i) · w∗i ] ≤ (p− 1)D

⇔ 2 ·
p∑
i=1

[(p− i) · w∗i ] ≤ (p− 1)
p∑
i=1

w∗i

⇔
p∑
i=1

[(2p− 2i) · w∗i ] ≤
p∑
i=1

[(p− 1) · w∗i ]

⇔
p∑
i=1

[(2i− 1− p) · w∗i ] ≥ 0.

If p is even, we find, by grouping weights with opposite coefficients in the summation,
p∑
i=1

[(2i− 1− p) · w∗i ] ≥ 0

⇔

p
2∑
i=1

[(2i− 1− p) · w∗i ] +
p∑

i= p
2 +1

[(2i− 1− p) · w∗i ] ≥ 0

⇔

p
2∑
i=1

[(2i− 1− p) · (w∗i − w∗p−i+1)] ≥ 0

⇔

p
2∑
i=1

[(p+ 1− 2i) · (w∗p−i+1 − w∗i )] ≥ 0. (3.11)

The final expression holds because, when i ∈ {1, . . . , p2}, (i) all coefficients p + 1 − 2i are
strictly positive and (ii) w∗p−i+1 ≥ w∗i due to the definition of the weights and function mL(·).
Note that the equality in (3.11) only holds when all weights w∗i are equal, which occurs when
(∀i ∈ {1, . . . , p− 1})(mL(vi) = 1), that is, when all values in V are the same.
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Similarly, when p is odd, we derive
p∑
i=1

[(2i− 1− p) · w∗i ] ≥ 0

⇔

p−1
2∑
i=1

[(2i− 1− p) · w∗i ] +
[(

2p+ 1
2 − 1− p

)
· w∗p+1

2

]
+

p∑
i= p+3

2

[(2i− 1− p) · w∗i ] ≥ 0

⇔

p−1
2∑
i=1

[(2i− 1− p) · w∗i ] +
p∑

i= p+3
2

[(2i− 1− p) · w∗i ] ≥ 0

⇔

p−1
2∑
i=1

[(2i− 1− p) · (w∗i − w∗p−i+1)] ≥ 0

⇔

p−1
2∑
i=1

[(p+ 1− 2i) · (w∗p−i+1 − w∗i )] ≥ 0.

This expression holds for the same reasons as given above. It reduces to an equality only
when all weights in the vector are the same, which only occurs when all values in V are equal.
This completes the proof.

Theorem 3.2.6. Weight vector Wmult
U corresponds to a softened maximum, that is,

orness(Wmult
U ) > 1

2 .

When all values in V are the same, orness(Wmult
U ) = 1

2 holds.

Proof. Analogous to the proof of Theorem 3.2.5.

3.2.3 Preliminary comparison

In the remainder of this chapter, the five OWA weighting schemes listed above (Strict, Add,
Exp, Invadd and Mult) are compared to each other within OWA based fuzzy rough sets. The
aim of this study is to provide guidelines for the weight selection process for the OWA based
fuzzy rough lower and upper approximations in order to gain more insight into this model and
make it more accessible to other users. This section provides an initial comparison between
the five settings.

Figure 3.1 presents a graphical comparison of the weight vectors WL generated by the different
schemes. On the horizontal axis, we plot the position of a value in the ordered sequence. The
possible indices are the natural numbers between 1 and p, where the latter is the size of the
set to be aggregated. The vertical axis represents the value of the weight at a given position
as a real number between zero and one. The plots do not contain a representation of Strict,
because this degenerate scheme coincides with a strict minimum and assigns weight one to the
final position and a zero weight to all others. The weight distribution across vector W strict

L

is therefore not interesting to depict. Theorems 3.2.1-3.2.5 showed that the W add
L , W exp

L ,
W invadd
L and Wmult

L vectors all coincide with softened minima. This characteristic is evident

44



Chapter 3. Understanding OWA based fuzzy rough sets

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Position

W
ei
gh

t

Add Exp Invadd

(a) p = 5

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Position

W
ei
gh

t

Add Exp Invadd

(b) p = 10

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Position

W
ei
gh

t

Mult Exp Invadd
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(d) V2 = 〈1.0, 0.9, 0.8, 0.7, 0.6〉

Figure 3.1: Illustration of the different weighting schemes.

from the figures as well, since more weight is assigned to the higher positions, such that more
emphasis is given to the smaller values in the ordered sequence (Definition 3.1.1).

Figures 3.1a and 3.1b compare the three data-independent settings Add, Exp and Invadd
for sets of sizes five and ten. As is clear from their description in Section 3.2.1, the additive
weights in W add

L take on the form of a straight line with slope 2
p(p+1) . The exponential weights

W exp
L are drawn from an exponential function with base two. The relative weight increase

for Exp is the same in each step, that is, wi+1 is obtained by multiplying wi with a constant
factor two. For the inverse additive weights, the wi+1

wi
= p−i+1

p−i ratio becomes larger when
the position i increases. It is clear from Figures 3.1a and 3.1b that this results in higher
weights for the lower positions for Invadd compared to Exp. The exponential weights cancel
out the contribution of the values at the lowest positions (in particular when p is high), while
Invadd always assigns them a non-negligible weight. This is an important difference between
these two settings. The figures indicate that Add divides the weights more evenly across the
positions than any other setting. Although fair, this may not always be beneficial. Especially
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when p is large, the weight associated with the true minimum may be relatively too low. For
large values of p, Add becomes closely related to a regular average. This is already evident
from Figure 3.1b for p = 10. The flattening behaviour of W add

L becomes considerably more
pronounced as p increases further.

Figures 3.1c and 3.1d compare Mult to Exp and Invadd. These alternatives are related
to each other in the sense that a weight can be obtained from the previous or next one by
multiplication. The factor in this multiplication is fixed for Exp, while it varies for Invadd and
Mult. We consider two different (sorted) value sets: V1 = 〈0.9, 0.8, 0.5, 0.2, 0.1〉 in Figure 3.1c
and V2 = 〈1.0, 0.9, 0.8, 0.7, 0.6〉 in Figure 3.1d. Since V1 and V2 have the same size, the
exponential and inverse additive weight vectors W exp

L and W invadd
L do not differ for these two

aggregations. The Mult setting on the other hand uses the values in V1 and V2 to determine the
weights and the plots show that these are very different for V1 and V2. The weights in Wmult

L

closely follow the distribution of their values and its orness values are 0.7648 (Figure 3.1c)
and 0.6307 (Figure 3.1d).

Our goal is to provide selection guidelines for the OWA weighting scheme used in the fuzzy
rough approximations (3.7) and (3.8). As noted in Section 3.1.1, the induced negator of
several popular implicators coincides with the standard negator, such that, for these implicator
choices, the OWA based fuzzy rough approximations of a decision class C are given by

C(x) = OWAWL
({1−R(x, y) | y /∈ C}) and C(x) = OWAWU

({R(x, y) | y ∈ C}). (3.12)

The former is based on the distance (complement of similarity) to elements not in C, while the
latter is based on the similarity with elements in C. This strong dependence on similarity val-
ues makes any fuzzy rough approach inherently related to nearest neighbour based techniques
(Section 2.2.1). This relation is particularly pronounced when the Strict or Exp schemes are
used. For Strict, we find C(x) = miny/∈C [1 − R(x, y)] and C(x) = maxy∈C [R(x, y)]. This
lower approximation locates the nearest neighbour of x that does not belong to C, while the
upper approximation is based on the nearest neighbour in C. In Exp, the nearest neighbour
connection is more subtle, but is further pronounced as the aggregation length p increases.
When p increases, Exp effectively sets several of the lowest weight positions to zero due to its
exponential nature. For example, when p = 50, only 14 weights in the exponential vectors
W exp
L and W exp

U are non-zero. This implies that C(x) and C(x) are based on only 14 near
elements. The nearest neighbour characteristic of Strict and Exp is one of the important
aspects which helps to explain the results in the remainder of this chapter.

Finally, we note that the computational complexity to aggregate the values in a set V with
an OWA procedure is O(|V | log(|V |)) due to the cost of the sorting step (Definition 3.1.1).
Sorting the values is not required in Strict, such that the cost reduces toO(|V |) for this setting.
From the standpoint of computational efficiency, Strict could therefore be favoured over the
other alternatives. However, as we will show in Sections 3.3-3.4 and as has been sufficiently
demonstrated in the literature, traditional fuzzy rough sets have certain shortcomings that
the OWA based model addresses.
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3.3 Lower approximation weighting scheme selection

In this section, we focus on the OWA based fuzzy rough lower approximation operator as
given in (3.12). We derive weighting scheme selection guidelines for this operator based on an
experimental evaluation on 50 datasets. Our experimental set-up is described in Section 3.3.1.
Next, Section 3.3.2 motivates our study by showing that none of the weighting scheme alter-
natives discussed in Section 3.2 dominates all others. Our weighting scheme selection strategy
is presented in Section 3.3.3 and discussed and explained in further detail in Section 3.3.4.

3.3.1 Experimental set-up

We compare the five selected weighting schemes described in Sections 3.2.1-3.2.2 (Strict, Add,
Exp, Invadd, Mult) within the OWA based fuzzy rough lower approximation operator in a
classification setting. We follow the study of [228] and use the lower approximation operator
as a classifier. In particular, to classify an instance x, its membership degree to the lower
approximation of all decision classes is computed, assigning x to the class for which this
membership degree is highest. Weight vector WL in (3.12) is set to the five alternatives listed
above. This procedure shows how well the different weighting schemes can separate natural
groups (here, classes) of observations.

We evaluate the performance on the 50 datasets listed in Table 3.1 by means of ten-fold
cross validation. The datasets and their partitions can be obtained from the KEEL dataset
repository at www.KEEL.es. For each dataset, the table lists the number of instances, number
of features and number of classes and specifies whether all features are nominal (categorical)
or not. Along with the number of classes, we indicate the level of imbalance between them
by means of the imbalance ratio (IR). We compute this measure as the ratio of the sizes
of the largest and smallest classes in the dataset. For two-class datasets, this coincides
with the measure traditionally used in studies on class imbalance (e.g. [385], Chapter 4).
The classification performance of the fuzzy rough lower approximation is evaluated by the
balanced accuracy (see Section 2.3.1.2). We use this imbalance-tolerant evaluation measure,
since Table 3.1 indicates that several datasets included in this study are severely imbalanced.

The fuzzy relation R(·, ·) that measures the similarity between instances is defined as

R(x, y) = 1
|A|

∑
a∈A

Ra(x, y), (3.13)

where x and y are two instances and A is the feature set. The feature-wise relation Ra(·, ·)
measures the similarity between x and y based on feature a. When a is a numeric feature,
this relation is defined as

Ra(x, y) = 1− |a(x)− a(y)|
range(a) , (3.14)

where a(x) and a(y) are the values of x and y for feature a and the denominator range(a)
corresponds to its range. When a is a nominal feature, we set

Ra(x, y) =
{

1 a(x) = a(y)
0 a(x) 6= a(y).

(3.15)

Relation (3.13) has shown a good behaviour within fuzzy rough set based methods in related
studies (e.g. [117, 355, 407]) and we use it throughout this thesis.
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Table 3.1: Description of the 50 datasets used in our experiments. We list the number of
features (nFeat), the number of instances (nInst), the number of classes (nCl) and
the IR. Together with the number of features, we specify whether they are all
nominal (Y) or not (N).

Name nFeat nInst nCl IR Name nFeat nInst nCl IR
abalone 8(N) 4174 28 689.00 page-blocks 10(N) 5472 5 175.46
australian 14(N) 690 2 1.25 phoneme 5(N) 5404 2 2.41
automobile 25(N) 159 6 16.00 pima 8(N) 768 2 1.87
balance 2(N) 625 3 5.88 ring 20(N) 7400 2 1.02
banana 2(N) 5300 2 1.23 saheart 9(N) 462 2 1.89
bands 19(N) 365 2 1.70 satimage 36(N) 6435 6 2.45
breast 9(Y) 277 2 2.42 segment 19(N) 2310 7 1.00
bupa 6(N) 345 2 1.38 sonar 60(N) 208 2 1.14
car 6(Y) 1728 4 18.62 spambase 57(N) 4597 2 1.54
cleveland 13(N) 297 5 12.62 spectfheart 44(N) 267 2 38.56
contra 9(N) 1473 3 1.89 splice 60(Y) 3190 3 2.16
crx 15(N) 653 2 1.21 texture 40(N) 5500 11 1.00
derma 34(N) 358 6 5.55 thyroid 21(N) 7200 3 40.16
ecoli 7(N) 336 8 28.60 tic-tac-toe 9(Y) 958 2 1.89
flare 11(Y) 1066 6 7.70 titanic 3(N) 2201 2 2.10
german 20(N) 1000 2 2.34 twonorm 20(N) 7400 2 1.00
glass 9(N) 214 6 8.44 vehicle 18(N) 846 4 1.10
haberman 3(N) 306 2 2.78 vowel 13(N) 990 11 1.00
heart 13(N) 270 2 1.25 wdbc 30(N) 569 2 1.68
ionosphere 33(N) 351 2 1.79 wine 13(N) 178 3 1.48
mammo 5(N) 830 2 1.06 winequal-r 11(N) 1599 6 68.10
marketing 13(N) 6876 9 2.49 winequal-w 11(N) 4898 7 439.60
monk-2 6(N) 432 2 1.12 wisconsin 9(N) 683 2 1.86
mov lib 90(N) 360 15 1.00 yeast 8(N) 1484 10 92.60
nursery 8(Y) 12690 5 2160.00 zoo 16(Y) 101 7 10.25

3.3.2 Motivation

We compute the balanced accuracy of the OWA based fuzzy rough lower approximation
classifier by means of ten-fold cross validation on the 50 datasets listed in Table 3.1. The
results per dataset for each of the five weighting schemes can be found in Tables 3.2-3.3. For
each dataset, the highest value obtained by any of the weighting schemes is printed in bold.
These tables divide the datasets into several groups, which are described and motivated in
Sections 3.3.3-3.3.4.

The mean balanced accuracy of the OWA based fuzzy rough lower approximation predictor
across the 50 datasets is 0.6693 (Strict), 0.6282 (Add), 0.6891 (Exp), 0.6867 (Invadd) and
0.6871 (Mult). The strict model attains the highest value in eleven datasets, Add in eight,
Exp and Mult in nine and Invadd in fourteen. The total number of wins amounts to 51,
because Invadd and Mult tie for the best value on the wine dataset (Table 3.3). In deriving
our weighting scheme selection strategy, we do not wish to overfit these results by only focusing
on the best setting for each dataset. Instead, we interpret any result that is within 0.05 of
the best value as acceptable and any other as poor. For each dataset, the poor results are
underlined in Tables 3.2-3.3. We can observe that Strict performs poorly on 18 datasets, Add
on 15, Exp on 12 and Invadd and Mult on 10.
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Based on their mean performance, we would conclude that (i) Exp, Invadd and Mult are
competitive weight settings and outperform Strict and (ii) Add does not work well. However,
we observe that Exp, Invadd and Mult perform poorly on at least one fifth of the datasets,
meaning that it is not a good idea to select one of these alternatives as a default option. It
is also not prudent to exclude Add from consideration, as it gives the best result on eight
datasets. Clearly, the optimal weighting scheme differs between datasets and this increases the
difficulty of choosing between them. In the following sections, we study this phenomenon and
discuss why certain weighting schemes are preferred in specific situations. We present a clear
weighting scheme selection strategy for the OWA based fuzzy rough lower approximation.

3.3.3 Proposed weight selection strategy

The full balanced accuracy results for the OWA based fuzzy rough lower approximation
classifier are presented in Tables 3.2-3.3. Each column corresponds to one of the five evaluated
weight settings. The datasets are divided into eight groups based on simple and easy-to-
compute data characteristics. We explain and validate this division in the remainder of this
section. Recall that values that are not printed in boldface nor underlined can be considered
as acceptable alternatives to the best setting for a dataset.

For each of the eight dataset groups, one weighting scheme emerges as the best performing
one and is framed in Tables 3.2-3.3. The selected setting does not necessarily correspond
to the one attaining the highest mean value for a group, but should yield acceptable results
for each member in its group. We wish to develop a sufficiently general weighting scheme
selection strategy and should not overfit these results by proposing weight guidelines that
are too specific. In particular, we propose the following groups of datasets, along with their
recommended OWA weighting schemes for the fuzzy rough lower approximation.

1. Datasets with only nominal features: our feature-wise similarity relation (3.15) for
a nominal feature a is either zero or one, that is, Ra(x, y) = 0 when x and y have different
values for a and Ra(x, y) = 1 when their feature values for a coincide. As a result of
this lack of variety in instance similarity values, we can expect many elements to be
found at the exact same distance of a given target and, consequently, many coinciding
values in the sets to aggregate in the lower approximation calculation. This renders a
nearest neighbour approach unsuitable, a property which is reflected in the poor results
of Strict and Exp. Our proposed Mult weighting scheme is able to model the distinct
staircase structure in the values to be aggregated (see the example in Section 3.2.2).
It guarantees that equal values are assigned equal weights in the OWA aggregation.
Its data-dependent nature renders Mult an appropriate choice for datasets with only
nominal features, as evidenced by the results in Table 3.2. We recommend its use for
this group of datasets. The results for Add and Invadd are close together and acceptable
on average, but they both perform poorly on at least one dataset in this group. For the
Add setting, which yields inferior results on the flare and zoo datasets, this is explained
by the fact that these datasets have a high number of classes (see Section 3.3.4.1). When
a small dataset with only nominal features contains only a few classes, Add could be
used instead of Mult.

2. Perfectly balanced numerical datasets with low data complexity: this group
contains four datasets, for which all classes have the same sizes and all features are
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Table 3.2: Balanced accuracy results of the lower approximation classifier for the datasets in
the first five groups.

Dataset Strict Add Exp Invadd Mult
Only nominal features
breast 0.4946 0.5908 0.5537 0.5826 0.5783
car 0.2459 0.3732 0.2638 0.3474 0.3892
flare 0.1971 0.4179 0.3107 0.4731 0.4274
nursery 0.2267 0.2276 0.2004 0.2268 0.2240
splice 0.5491 0.5972 0.5416 0.5737 0.5770
tic-tac-toe 0.5049 0.5902 0.5211 0.5658 0.5659
zoo 0.9229 0.8526 0.8883 0.8883 0.9621
Mean 0.4487 0.5214 0.4685 0.5225 0.5320

Perfectly balanced, numerical, low complexity
mov lib 0.8722 0.5889 0.8678 0.8500 0.8589
segment 0.9766 0.8433 0.9745 0.9494 0.9649
texture 0.9869 0.7596 0.9884 0.9664 0.9775
vowel 0.9939 0.6000 0.9859 0.9788 0.9869
Mean 0.9574 0.6980 0.9541 0.9361 0.9470

Numerical, at least 30 features, at most 1000 instances
derma 0.9554 0.8844 0.9765 0.9689 0.9722
ionosphere 0.8777 0.7321 0.8684 0.8059 0.8311
sonar 0.8515 0.7962 0.8592 0.8928 0.8569
spectfheart 0.6165 0.6387 0.6295 0.7310 0.7100
wdbc 0.9507 0.9313 0.9655 0.9412 0.9473
Mean 0.8503 0.7965 0.8598 0.8679 0.8635

More than five classes, IR ≤ 10
glass 0.7106 0.4659 0.7130 0.6039 0.6236
marketing 0.2101 0.2307 0.2575 0.2701 0.2653
satimage 0.8946 0.6360 0.9026 0.8309 0.8707
Mean 0.6051 0.4442 0.6244 0.5683 0.5865

More than five classes, IR > 10
abalone 0.1116 0.0903 0.1150 0.1047 0.1364
automobile 0.7471 0.5243 0.6734 0.6550 0.6600
ecoli 0.7170 0.5598 0.7413 0.7381 0.7476
winequal-r 0.3616 0.2811 0.3590 0.3355 0.3561
winequal-w 0.4498 0.2567 0.4419 0.3863 0.4067
yeast 0.5181 0.3960 0.5359 0.5554 0.5564
Mean 0.4842 0.3514 0.4777 0.4625 0.4772

numerical. They also have a low dataset complexity as measured by the multi-class
Fisher discriminant score [217], a metric defined for datasets with only numeric features.
Data complexity can be interpreted as the intrinsic difficulty associated with a dataset
due to, for instance, geometrical properties such as high class overlap. The Fisher
score evaluates the maximum relative separation of feature values between elements of
different classes and a higher value corresponds to a lower complexity. The four datasets
in this group have Fisher scores of 2.5413 (mov lib), 15.6143 (segment), 10.2872 (texture)
and 2.0389 (vowel). These are high values compared to the mean score of 1.8451 across
the 50 datasets in Table 3.1. We recommend the use of the traditional fuzzy rough set
model, corresponding to setting Strict, for the datasets in this group. On these easy
datasets, the OWA based fuzzy rough set model does not have a clear advantage over
the original proposal. By selecting Strict, the sorting step in the OWA aggregation
can be avoided. We note that the additive weighting scheme performs very poorly on
this group, but this is due to the high number of classes in each of these datasets (see
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Table 3.3: Balanced accuracy results of the lower approximation classifier for the datasets in
the last three groups.

Dataset Strict Add Exp Invadd Mult
At most five classes, at most 4000 instances, IR ≤ 2
australian 0.7250 0.8730 0.7946 0.8675 0.8513
bands 0.7308 0.6509 0.7164 0.7173 0.6439
bupa 0.6160 0.6422 0.6498 0.6782 0.6696
contra 0.4030 0.4690 0.4374 0.4836 0.4604
crx 0.7715 0.8695 0.8326 0.8706 0.8650
heart 0.7808 0.8225 0.8058 0.8242 0.8117
mammo 0.7456 0.8205 0.8082 0.8214 0.8114
monk-2 0.7409 0.9052 0.9059 0.9171 0.8144
pima 0.6516 0.7014 0.6754 0.7040 0.6778
saheart 0.5853 0.6620 0.6104 0.6769 0.6315
vehicle 0.6942 0.5670 0.7082 0.6615 0.7006
wine 0.9631 0.9631 0.9673 0.9679 0.9679
wisconsin 0.9617 0.9301 0.9654 0.9497 0.9737
Mean 0.7207 0.7597 0.7598 0.7800 0.7599

At most five classes, at most 4000 instances, IR > 2
balance 0.5417 0.7576 0.6378 0.6528 0.7874
cleveland 0.3001 0.2919 0.2855 0.2820 0.2710
german 0.5619 0.6576 0.5750 0.5740 0.5629
haberman 0.5360 0.6363 0.5475 0.5651 0.5267
titanic 0.5211 0.6997 0.6812 0.7109 0.7083
Mean 0.4922 0.6086 0.5454 0.5570 0.5712

At most five classes, more than 4000 instances
banana 0.8728 0.7246 0.8929 0.8848 0.8975
page-blocks 0.7610 0.3198 0.7915 0.5506 0.5978
phoneme 0.8738 0.7730 0.8743 0.8165 0.8455
ring 0.7181 0.5000 0.6924 0.5139 0.5742
spambase 0.8987 0.8027 0.9091 0.8730 0.8447
thyroid 0.6219 0.5280 0.5928 0.5720 0.4340
twonorm 0.9462 0.9757 0.9619 0.9754 0.9723
Mean 0.8132 0.6605 0.8164 0.7409 0.7380

Section 3.3.4.1). Finally, we should also remark that the complexity condition is crucial.
For example, dataset mammo is almost perfectly balanced, but Strict performs poorly
for it. The Fisher score of mammo is 0.4926.

3. Numerical datasets with at least 30 features and at most 1000 instances: five
datasets are included in this group. The mov lib dataset from group 2 could be included
as well, because it contains 360 elements and 90 features. Note that the included datasets
contain solely numeric features. Datasets with a high dimensionality tend to be sparse
(empty space phenomenon) and distance- or similarity-based approaches in general lose
some of their power as the pairwise distance or similarity between elements becomes less
informative. None of the training instances used in the lower approximation calculation
(3.12) can truly be considered as ‘close’ to the target x. Since all training elements
will show a small similarity with x, the values aggregated in the OWA step of the
lower approximation calculation for x can be expected to be more similar to each other
than they would be in lower dimensional datasets. The Add scheme clearly fails in this
situation, since it is most closely related to an average (Section 3.2.3). For each class,
the values in the aggregation will be highly similar. When we aggregate them with an
average-like procedure, the final values for all classes will be more or less the same. As
a result, the prediction by Add is close to a random guess. The mean results of Strict,
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Exp, Invadd and Mult are close together. We recommend the use of the latter, as it does
not perform poorly on any of the datasets in this group. The three remaining options
sometimes provide a bad result. Although our Mult setting never obtains the highest
balanced accuracy, it is the safest choice. We have developed this data-dependent
alternative in such a way that its weights follow the distribution of the values to be
aggregated. We see the benefit of this idea on these complex datasets, where the weights
capture important differences between elements and can discern better between classes.

4. Datasets with more than five classes and IR ≤ 10: we recommend the use of Exp
for this group (see Sections 3.3.4.1 and 3.3.4.3).

5. Datasets with more than five classes and IR > 10: the traditional fuzzy rough set
model performs best and we therefore recommend the use of Strict (see Sections 3.3.4.1
and 3.3.4.3).

6. Datasets with at most five classes, at most 4000 instances and IR ≤ 2: for
these small and relatively balanced datasets, the inverse additive weighting scheme
stands out as the best performing one. We observe that there is only one truly poor
weighting scheme for this group, namely Strict. These datasets are relatively easy to
handle, in the sense that they are not too large, do not have too many classes and
are not too imbalanced. This proves to be a setting in which any OWA aggregation
performs better than the strict model, as there are no prior factors that can severely
hinder the OWA procedure. The four true OWA aggregations all provide relatively good
results and their mean balanced accuracy values are close together. Nevertheless, Add,
Exp and Mult fail on some of these datasets, while Invadd never does. Consequently,
we advise the use of the latter for this group. We note that Invadd has also been shown
to be the best performing weighting scheme in general (i.e., on average) in previous
studies (e.g. [407]). Its strength is most evident for this group of datasets. In fact, from
the fourteen datasets on which Invadd attained the highest balanced accuracy among
the evaluated alternatives, nine are contained in this group. When there are no prior
challenging factors (e.g. large size, many classes, class imbalance), Invadd seems to be
a solid default weighting scheme.

7. Datasets with at most five classes, at most 4000 instances and IR > 2: the
Add setting exhibits the best performance on this group of datasets. Its strength in
the presence of class imbalance on datasets with a low number of classes is explained in
Section 3.3.4.3.

8. Datasets with at most five classes and more than 4000 instances: when a
dataset contains many instances, Table 3.3 indicates that Exp is a favoured setting. We
explain this behaviour in Section 3.3.4.2.

The selected thresholds are based on the results in Tables 3.2-3.3. They are justified in
Section 3.3.4 and validated in Section 3.5. When appearing too artificial, the user can relax
these guidelines, for instance by replacing ‘more than five classes’ by ‘many classes’, ‘at most
4000 instances’ by ‘a small dataset’ and so on. This does not detract from our contribution,
since our goal is to capture and understand the general behaviour of the various weight
settings. In practice, users would first determine whether their dataset belongs to the first
group. If not, they evaluate the characteristics of the second group and the third one after
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that. When the dataset does not belong to any of the first three groups, the user should
decide to which of the final five it belongs, which are mutually exclusive.

3.3.4 Detailed discussion

We now consider the results discussed in the previous section in more detail. We answer a
set of questions related to the observations made above and provide further insight in the
performance of the different OWA weighting schemes. We consider three different challenges:
a high number of classes (Section 3.3.4.1), a high number of instances (Section 3.3.4.2) and
class imbalance (Section 3.3.4.3).

3.3.4.1 High number of classes

A high number of classes is interpreted here as ‘more than five’. This concerns all datasets
in groups 4 and 5 by definition. Apart from these, the four datasets in group 2, flare and
zoo in group 1 and derma in group 3 all contain more than five classes as well. In all, 16 of
the 50 datasets in Table 3.1 have more than five classes. The mean balanced accuracy of the
weighting schemes over these datasets are 0.6641 (Strict), 0.5242 (Add), 0.6707 (Exp), 0.6597
(Invadd) and 0.6733 (Mult). The Strict setting obtains the best result on six datasets, Mult
and Exp each obtain the best result on four, while Invadd takes first place on the remaining
two. Aside from its low mean value, Add also provides a notably poor result on 14 out of
these 16 datasets. The other alternatives each perform poorly on two datasets. We address
the following questions:

1. Why does Add not perform well when the number of classes is high?

2. In datasets with many classes, why are Strict and Exp the preferred settings?

Question 1 Based on its mean balanced accuracy and the number of datasets on which
it performs poorly, Add is clearly inferior to the other weighting schemes (including Strict)
when the number of classes is high. The reason is that there exists too little difference in
the sets of values to aggregate in (3.12), that is, these sets have a high degree of overlap.
Consider a dataset with six classes (C1 to C6). The membership degree of an element x to Ci
is computed by aggregating values 1−R(x, y) for instances y in any of the five other classes.
This implies an overlap of four classes between the aggregation sets of Ci(x) and Cj(x). For
example, C1(x) and C2(x) both use all values 1 − R(x, y) for y ∈ C3 ∪ C4 ∪ C5 ∪ C6. The
only difference between the value vectors used in C1(x) and C2(x) is that the former also uses
class C2 and the latter also class C1.

The increased expected overlap between the value vectors in the lower approximation aggrega-
tions holds for the OWA model in general and is not specific for the Add scheme. Nevertheless,
since Add assigns a large relative importance to all values (Section 3.2.3), the high overlap im-
plies that the aggregated values for the different classes will be close together. Consequently,
the ability to discern between classes decreases and prediction errors are made. Other weight
settings are hindered less by the overlap issue, since their weight distribution places a clearer
emphasis towards the minimum (Section 3.2.3).

Secondly, on top of the overlap problem, a high number of classes can also imply an increase
in the size of the sets to aggregate. When the additive weight vector becomes longer, its

53



Chapter 3. Understanding OWA based fuzzy rough sets

behaviour approaches that of a regular average, which further accentuates the issues that the
Ci(x) values are not sufficiently distinct.

Question 2 In our proposed weight selection strategy presented in the previous section, we
recommend Strict or Exp for datasets with more than five classes (groups 4 and 5). Table 3.2
shows that these are indeed the preferred configurations for such datasets in this study.
Although they have been computed over a larger set of datasets, the mean results listed at
the beginning of this section confirm this observation.

Aside from the poor performance of Add, Table 3.2 also indicates that Invadd and Mult
perform relatively less strongly on the datasets in groups 4 and 5. As explained in our answer
to the previous question, when there are many classes in a dataset, there is a high degree of
overlap between the value vectors in the lower approximation computations. Although not
to such an extent as Add, the Invadd and Mult settings also assign non-negligible weights
to all values to be aggregated. As a result, they are also at risk for aggregated class lower
approximation values that are too close to each other to adequately distinguish between them.
Mult outperforms Invadd, because its weights are set up to decrease more rapidly going from
right to left in the lower approximation weight vector.

Strict and Exp are nearest neighbour approaches and only consider a small portion of the
values in their aggregation step, because they effectively put some weights to zero. As a
result, they avoid the overlap problem, which explains why they are the preferred weight
setting in this situation. We make a further distinction between groups 4 and 5 based on
the class imbalance present in the dataset. The reason why Strict is preferred over Exp on
datasets with a large IR is discussed in Section 3.3.4.3.

3.3.4.2 High number of instances

In Section 3.3.3, we have put the threshold on a high number of instances to 4000. Evidently,
this is a small number in the big data era, but it is sufficiently large considering the dataset
characteristics described in Table 3.1. There are 13 datasets in our study with a size larger
than 4000. These include the seven datasets from group 8, marketing and satimage from
group 4, abalone and winequal-w from group 5, nursery from group 1 and texture from group
2. The mean balanced accuracy of the weighting schemes on these datasets is 0.6594 (Strict),
0.5250 (Add), 0.6631 (Exp), 0.6132 (Invadd) and 0.6190 (Mult). Settings Strict and Exp are
clearly preferable in this situation and the latter is the overall best choice.

The difference between Strict and Exp on the one hand and Add, Invadd and Mult on the
other is that the nearest neighbour nature of the former two can cancel out the contribution
of some instances (Section 3.2.3). For Strict, this is always the case, as this scheme assigns
zero weights to all but one position. For Exp, zero weights occur when the length of the
weight vector increases. Due to the rapid (exponential) descent in weights from right to left
in vector W exp

L , only a small portion of values are effectively assigned non-zero weights.

A larger dataset size implies a larger length of the weight vectors. The experimental results
show that a nearest neighbour approach is more suitable for this situation than other OWA
aggregations that take all values into account. Add, Invadd and Mult lose some of their
characteristics in this situation, because their definitions insist on assigning some weight to
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all values. As the aggregation length increases, important values (i.e., those close to the
minimum) are assigned progressively smaller weights to accommodate for this property, since
OWA weights always sum to one (Definition 3.1.1). This is most prominently noticeable in
the Add scheme, where the weight vector almost flattens out to a regular average for large
set aggregations.

The reason why Exp is preferred over Strict is the same as why kNN classification (with
k > 1) is preferred over 1NN classification. By relying on multiple near elements, a better
robustness against noise is obtained with more confident predictions as a result. Furthermore,
weighted kNN is often favoured over uniform kNN, because the former assigns relatively more
importance to nearer neighbours in its predictions [132].

3.3.4.3 Class imbalance

We have used the IR of a dataset on two occasions in our proposed weighting scheme selection
guidelines presented in Section 3.3.3, namely to make a distinction between groups 4 and 5 on
the one hand and between groups 6 and 7 on the other. We now explain why the appropriate
weighting scheme can depend on the class imbalance in a dataset. To do so, we answer two
questions:

1. In datasets with a low number of classes and instances, why is Add the only good choice
when the dataset is at least mildly imbalanced?

2. In datasets with many classes, why is Strict preferred in case of large imbalance and
Exp in case of small to mild imbalance?

Question 1 This question pertains to datasets with at most five classes, at most 4000
instances and an IR of at least two. The latter implies that the largest class is at least twice
as large as the smallest class. The five datasets in group 7, the breast, car and splice datasets
from group 1 and the spectfheart dataset from group 3 meet these requirements. The mean
balanced accuracy of the weighting schemes on these nine datasets is 0.4852 (Strict), 0.5826
(Add), 0.5240 (Exp), 0.5577 (Invadd) and 0.5679 (Mult). The additive scheme attains the best
average result and the highest number of wins, namely on four out of nine datasets. Although
Add appeared to be an inferior weight alternative in Section 3.3.2, it is clearly dominant on
small, imbalanced datasets. We expect that the poor performance of Strict and Exp is due
to their relation to the nearest neighbour classifier and the sensitivity of the latter to class
imbalance.

Considering the results in more detail, we noticed that the other OWA alternatives often
fall into the trap of class imbalance, that is, they assign instances to a majority class too
easily. This implies a high accuracy on the majority class, but severely lower accuracies on
minority classes. Our use of the balanced accuracy as evaluation measure guarantees that a
bad performance on small classes is not overshadowed by a strong result on large classes. Add
usually has similar accuracy rates for all classes in these datasets, reflected in its superior
balanced accuracy values.

As evident from (3.12), the membership degree to the OWA based fuzzy rough lower approx-
imation of a class C is calculated by aggregating values based on elements that do not belong
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to C. Assume that a dataset contains two classes (C1 and C2) and that the former is the
majority class. Due to the above condition on the IR, this means that C1 is at least twice
as large as C2. To predict a class label for an instance x, our classifier computes two values:
C1(x) = OWAWL

({1−R(x, y) | y ∈ C2}) and C2(x) = OWAWL
({1−R(x, y) | y ∈ C1}). Due to

the difference in class sizes, the first aggregation is taken over far less values than the second.
The largest influence of this fact is felt by the Add scheme. As discussed above, the longer the
additive weight vector, the more closely it resembles a regular average. Since the aggregation
lengths can be very different, the characteristics of Add on either class can severely vary as
well. The longer aggregation (C2(x)) will be far closer to an average of its values than the
shorter one (C1(x)). This difference in the treatment of the classes is far less pronounced for
the other weighting schemes (and even non-existent in Strict). Here lies the key to why Add
is preferred in the presence of class imbalance: its high sensitivity to the length of the vector
makes it process minority and majority classes very differently. It does not allow for majority
elements to dominate minority elements. The contributions of majority instances are almost
averaged in the calculations, while those of minority instances are aggregated with a truer
OWA procedure. A similar conclusion holds when there are more than two classes.

In summary, like many other classifiers, the lower approximation predictor is sensitive to
class imbalance. The additive weighting scheme inherently treats majority and minority
classes differently, which is why it is the preferred choice here. We note that the study of
[355] provides a more detailed study on appropriate OWA weight vectors when dealing with
two-class imbalanced datasets (see Chapter 4).

Question 2 This question relates to datasets with more than five classes. We recommend to
use Exp when the IR is at most ten (group 4) and Strict otherwise (group 5). Section 3.3.4.1
explains why Strict and Exp are the favoured weight options for datasets with more than five
classes. For datasets with a moderate IR, Exp is preferred over Strict for the same reason as
given in Section 3.3.4.2, namely the higher prediction confidence and robustness when more
than one near neighbour is used in the classification process. For a highly imbalanced dataset,
the strict model is a better option. This is due to the class imbalance problem (Chapter 4),
which has a larger influence on kNN (k > 1) than on 1NN. As a consequence, Exp loses some
of its strength when the imbalance becomes large.

3.4 Upper approximation weighting scheme selection

We now turn our attention to the OWA based fuzzy rough upper approximation. We follow
the same experimental set-up as in Section 3.3, although we now use the fuzzy rough upper
approximation operator as predictor. Section 3.4.1 shows that a similar phenomenon occurs
for the upper approximation as for the lower approximation, namely that no single weighting
scheme can be put forward as a confident strong default choice. To remedy this situation,
we present our proposed weighting scheme selection strategy for the upper approximation in
Section 3.4.2.

3.4.1 Motivation

The full balanced accuracy results of the OWA based fuzzy rough upper approximation clas-
sifier are presented in Tables 3.4-3.7. We include the 50 datasets listed in Table 3.1. The
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datasets have been divided into several groups, for which the use of specific weighting schemes
is advised in Section 3.4.2. We again evaluate five OWA weighting schemes: Strict, Add, Exp,
Invadd and Mult. As before, for each dataset, the highest balanced accuracy attained by one
of these alternatives is printed in boldface. Values that are more than 0.05 smaller than this
optimum are underlined.

The mean balanced accuracies across the 50 datasets are 0.6706 (Strict), 0.6621 (Add), 0.6896
(Exp), 0.6917 (Invadd) and 0.6774 (Mult). The Invadd setting yields the highest balanced
accuracy on average and attains the most wins as well. In particular, this alternative attains
the best value on seventeen datasets, while the other schemes do so on eleven (Strict and Add),
eight (Exp) and four (Mult) datasets respectively. The average results are close together.
While all included weighting schemes win on several datasets, they perform poorly on many
as well. Strict and Add both yield inferior results on as many as twenty datasets. This number
goes down to fourteen for Mult and twelve for Exp and Invadd, but remains high nonetheless.
As argued in Section 3.3.2, this behaviour warrants a deeper study.

3.4.2 Proposed weighting scheme selection strategy

Table 3.4 lists the results of the datasets categorized in the same first three groups as presented
in Section 3.3.3. The advised weighting schemes are framed in the table. We propose the
following:

1. Datasets with only nominal features: it is evident from the experimental results
that both Strict and Exp are poor choices on these datasets, as they were for the lower
approximation operator as well. As explained in Section 3.3.3, the lack of variety in
the feature similarity values renders a nearest neighbour approach, to which both Strict
and Exp are strongly related, unsuitable. The remaining three alternatives (Add, Invadd
and Mult) provide similar results. Invadd can be preferred, since it does not yield a
poor result on any of these datasets.

2. Perfectly balanced numerical datasets with low data complexity: the same
conclusion as for the lower approximation holds, namely that Strict is the most suitable
alternative on these datasets. We refer the reader back to Section 3.3.3 for an explana-
tion. By opting for Strict, the need for the sorting step in the true OWA aggregations is
avoided. As we observed for the lower approximation, the Add alternative does not per-
form well on these datasets. They all contain many classes, but the associated overlap
issue discussed in Section 3.3.4.2 can not be a direct cause of the performance degrada-
tion of Add here, as the upper approximation aggregation (3.12) occurs over elements
within a class and not within the complement of a class. Quite possibly, the stronger
averaging effect of Add takes the class prediction procedure too far away from the most
appropriate 1-nearest neighbour classifier and results in a confusion between classes.
Indeed, the mean results of the five alternatives on these datasets decrease according to
the orness values of the weighting schemes.

3. Numerical datasets with at least 30 features and at most 1000 instances:
Table 3.4 shows that Mult is the best option here, as it was for the lower approximation
classifier in Section 3.3.3. It does not win on any of the datasets, but does not provide
a poor result either, while the other alternatives each do on at least one of them.
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Table 3.4: Balanced accuracy results of the upper approximation classifier for the datasets in
the first three groups.

Dataset Strict Add Exp Invadd Mult
Only nominal features
breast 0.4946 0.5908 0.5537 0.5826 0.5783
car 0.2538 0.3802 0.2665 0.3606 0.4031
flare 0.2603 0.4456 0.3368 0.5090 0.4411
nursery 0.1280 0.2842 0.2291 0.2972 0.2656
splice 0.5610 0.5928 0.5426 0.5737 0.5904
tic-tac-toe 0.5049 0.5902 0.5211 0.5658 0.5659
zoo 0.9300 0.9113 0.8967 0.9205 0.9163
Mean 0.4475 0.5422 0.4780 0.5442 0.5372

Perfectly balanced, numerical, low complexity
mov lib 0.8722 0.6311 0.8533 0.7667 0.7878
segment 0.9766 0.8688 0.9732 0.9372 0.9558
texture 0.9869 0.8216 0.9876 0.9335 0.9698
vowel 0.9939 0.6141 0.9879 0.9394 0.9697
Mean 0.9574 0.7339 0.9505 0.8942 0.9208

Numerical, at least 30 features, at most 1000 instances
derma 0.9554 0.9488 0.9765 0.9709 0.9643
ionosphere 0.8777 0.7321 0.8684 0.8059 0.8311
sonar 0.8515 0.7962 0.8592 0.8928 0.8569
spectfheart 0.6165 0.6387 0.6295 0.7310 0.7100
wdbc 0.9507 0.9313 0.9655 0.9412 0.9473
Mean 0.8503 0.8094 0.8598 0.8683 0.8619

Having covered the datasets listed in Table 3.4, 34 remain. In Section 3.3.3, these made up
groups 4-8, which were mutually exclusive. Due to the different nature of the fuzzy rough
lower and upper approximations, we do not follow the same division here. In particular, as
stated above, the upper approximation does not suffer from the overlap issue in its value
vectors, as the aggregation is computed over elements in a class and not in the complement
of a class (see (3.12)).

Nevertheless, the length of the aggregation does remain a crucial aspect. Group 8 in Sec-
tion 3.3.3 contained datasets with at most five classes and more than 4000 instances. We
advised the use of Exp on them, a setting which is not hindered as much by the aggregation
length as other alternatives are. We can make a similar observation for the upper approxi-
mation albeit not based on the overall size of the dataset. As |C| values are aggregated in
the calculation of the upper approximation of class C, the size of the smallest class is an im-
portant indicator here. Table 3.5 lists the results of the nine datasets for which the smallest
class contains at least 400 elements. Evidently, Exp is the best choice on these datasets and
we advise its use for this group. The poor performance of Add should not come as a surprise,
since, as discussed above, this setting is most sensitive to the aggregation length.

Next, Table 3.6 lists the remaining datasets with an IR of at most two. With the exception of
the vehicle dataset, Invadd clearly performs very well and is the preferred alternative for these
datasets. The best option for vehicle is Exp, with Strict and Mult as acceptable alternatives.
This dataset stands out among the ones included in Table 3.6 as having the highest number
of classes. The vehicle dataset consists of four classes, wine and contra of three and the other
datasets of only two.
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Table 3.5: Balanced accuracy results of the upper approximation classifier on the datasets for
which the smallest class contains at least 400 elements.

Dataset nMinClass Strict Add Exp Invadd Mult
mammo 403 0.7456 0.8205 0.8082 0.8214 0.8103
marketing 505 0.2397 0.2532 0.2673 0.2780 0.2709
satimage 626 0.8946 0.7878 0.9008 0.8453 0.8624
titanic 711 0.5211 0.6997 0.6812 0.7109 0.7083
phoneme 1586 0.8738 0.7730 0.8743 0.8165 0.8455
spambase 1812 0.8987 0.8027 0.9091 0.8730 0.8447
banana 2376 0.8728 0.7246 0.8929 0.8848 0.8975
ring 3664 0.7181 0.5000 0.6924 0.5139 0.5742
twonorm 3697 0.9462 0.9757 0.9619 0.9754 0.9723
Mean 0.7456 0.7041 0.7765 0.7466 0.7540

Table 3.6: Balanced accuracy results of the upper approximation classifier on the datasets for
which the smallest class contains fewer than 400 elements and with an IR of at
most two.

Dataset IR Strict Add Exp Invadd Mult
vehicle 1.10 0.6942 0.5857 0.7104 0.6457 0.6890
monk-2 1.12 0.7409 0.9052 0.9059 0.9171 0.8455
crx 1.21 0.7715 0.8695 0.8326 0.8706 0.8650
australian 1.25 0.7250 0.8730 0.7946 0.8675 0.8513
heart 1.25 0.7808 0.8225 0.8058 0.8242 0.8117
bupa 1.38 0.6160 0.6422 0.6498 0.6782 0.6696
wine 1.48 0.9631 0.9536 0.9673 0.9679 0.9679
bands 1.70 0.7308 0.6509 0.7164 0.7173 0.6439
wisconsin 1.86 0.9556 0.9301 0.9654 0.9497 0.9706
pima 1.87 0.6516 0.7014 0.6754 0.7040 0.6778
saheart 1.89 0.5853 0.6620 0.6104 0.6769 0.6315
contra 1.89 0.4038 0.4880 0.4449 0.4914 0.4497
Mean 0.7182 0.7570 0.7566 0.7759 0.7561

Finally, the results on the remaining datasets are collected in Table 3.7. The smallest class of
these datasets contains fewer than 400 instances and the overall IR exceeds two. The datasets
are sorted according to the number of classes (nCl) and the preference for Add is clear when
this value is low. For a higher number of classes (e.g. at least four), the nearest neighbour
approaches Strict and Exp perform best.

3.5 Guideline validation

We now proceed with an experimental validation of our proposed weighting scheme selection
guidelines for the OWA based fuzzy rough approximations. For ease of reference, we first
summarize our suggestions in a schematic manner in Section 3.5.1. Section 3.5.2 compares
the balanced accuracy results of our proposed strategies to those of the five fixed weighting
schemes. The performance on a selection of independent datasets, that have not been used
in the derivations above, is evaluated in Section 3.5.3. As a final part of this validation,
Section 3.5.4 evaluates the use of our guidelines within two other algorithms relying on the
fuzzy rough approximation operators: an instance selection method and a weighted nearest
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Table 3.7: Balanced accuracy results of the upper approximation classifier on the datasets for
which the smallest class contains fewer than 400 elements and with an IR higher
than two.

Dataset nCl Strict Add Exp Invadd Mult
german 2 0.5619 0.6576 0.5750 0.5740 0.5629
haberman 2 0.5360 0.6363 0.5475 0.5651 0.5244
balance 3 0.5906 0.6941 0.6484 0.6528 0.6056
thyroid 3 0.6219 0.6389 0.5851 0.6029 0.3890
cleveland 5 0.3001 0.3411 0.2998 0.3050 0.2556
page-blocks 5 0.7610 0.6580 0.7775 0.6755 0.5868
automobile 6 0.7471 0.5788 0.6520 0.5863 0.6053
glass 6 0.7106 0.6504 0.6804 0.6876 0.6792
winequal-r 6 0.3616 0.3557 0.3458 0.3505 0.3272
winequal-w 7 0.4498 0.2930 0.4313 0.3572 0.3120
ecoli 8 0.7170 0.6992 0.7554 0.7737 0.7392
yeast 10 0.5181 0.5779 0.5414 0.5583 0.5352
abalone 28 0.1116 0.1236 0.1245 0.1402 0.1321

neighbour classifier. At each step of our validation process, we are able to conclude the
benefits of our proposal.

3.5.1 Guidelines summary

As a summary of Sections 3.3 and 3.4, we first present a schematic overview of our two
proposed sets of guidelines. For the OWA based fuzzy rough lower approximation, we advise
the following:

1. If the dataset contains only nominal features, use Mult.

2. If the dataset is perfectly balanced, has only numerical features and a low dataset
complexity, use Strict.

3. If the dataset contains at least 30 features (all numeric) and at most 1000 instances,
use Mult.

4. In all remaining cases:

(a) If the dataset contains more than five classes and has an IR of at most ten, use
Exp.

(b) If the dataset contains more than five classes and has an IR exceeding ten, use
Strict.

(c) If the dataset contains at most five classes, at most 4000 instances and has an IR
of at most two, use Invadd.

(d) If the dataset contains at most five classes, at most 4000 instances and has an IR
exceeding two, use Add.

(e) If the dataset contains at most five classes and more than 4000 instances, use Exp.

For the OWA based fuzzy rough upper approximation, our suggestions are:

1. If the dataset contains only nominal features, use Invadd.
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2. If the dataset is perfectly balanced, has only numerical features and a low dataset
complexity, use Strict.

3. If the dataset contains at least 30 features (all numeric) and at most 1000 instances,
use Mult.

4. In all remaining cases:

(a) If the size of the smallest class is at least 400, use Exp.
(b) If not and the overall IR is at most two, use Invadd.
(c) If not and the number of classes is low (two or three), use Add.
(d) If not, use Strict.

We wish to stress that since our selection strategies are based on simple data characteristics,
the computation time to assess which weighting scheme should be selected based on our
instructions is negligible. In a similar fashion, the effects of data characteristics on feature
selection methods have been recently explored in [334].

3.5.2 Data from Table 3.1

When we follow our proposed strategy to select a weight setting for the 50 datasets in Ta-
ble 3.1, the mean balanced accuracy of the lower approximation classifier increases to 0.7109.
This is a noticeable increase compared to the highest value of 0.6891 listed in Section 3.3.2.
On 25 out of the 50 datasets, our weight selection strategy chooses the weight setting with
the best performance. On the 25 remaining ones, an alternative for which the balanced ac-
curacy is at most 0.05 lower is chosen. To verify whether the increase in balanced accuracy
is statistically significant, we compare the performance of the lower approximation classifier
using our weight guidelines to that of the same classifier with one of the five fixed weight
settings. The Wilcoxon test shows that the proposed strategy outperforms every weight
setting with statistical significance. In particular, we find p-values of 0.000071 for Strict
(R+ = 1048.5, R− = 226.5), 0.00000041 for Add (R+ = 1127.0, R− = 98.0), 0.000466 for Exp
(R+ = 999.5, R− = 275.5), 0.002114 for Invadd (R+ = 921.0, R− = 304.0) and 0.002074 for
Mult (R+ = 956.0, R− = 319.0). This good behaviour is not unexpected, as our strategy was
derived based on the performance of the weight settings on these datasets.

We repeat the same analysis for the upper approximation classifier used in Section 3.4. The
highest mean balanced accuracy of one of the fixed weighting schemes is 0.6917 and cor-
responds to Invadd (see Section 3.4.1). When using our upper approximation weight se-
lection guidelines, the mean balanced accuracy of the classifier increases to 0.7110. Our
weight selection strategy chooses the weight setting with the best performance on 24 out
of the 50 datasets. As for the lower approximation classifier, the use of our weighting
scheme selection strategy leads to a statistically significant performance improvement com-
pared to each of the weighting schemes. In particular, we find p-values of 0.000042 for Strict
(R+ = 1024.0, R− = 201.0), 0.000102 for Add (R+ = 1039.0, R− = 236.0), 0.000719 for Exp
(R+ = 952.0, R− = 273.0), 0.031272 for Invadd (R+ = 828.5, R− = 396.5) and 0.00029 for
Mult (R+ = 1012.0, R− = 263.0).
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Table 3.8: Description of the 20 independent datasets used in Section 3.5.3. We list the
number of features (nFeat), the number of instances (nInst), the number of classes
(nCl) and the IR. Together with the number of features, we specify whether they
are all nominal (Y) or not (N).

Name nFeat nInst nCl(IR) Name nFeat nInst nCl(IR)
appendicitis 7(N) 106 2(4.05) iris 4(N) 150 3(1)
banknote 4(N) 1372 2(1.25) letter 16(N) 20000 26(1.11)
biodeg 40(N) 1055 2(1.96) magic 10(N) 19020 2(1.84)
credit 15(N) 653 2(1.21) messidor 19(N) 1151 2(1.13)
ctg 21(N) 2126 10(10.92) mushroom 22(Y) 5644 2(1.62)
eye detection 14(N) 14980 2(1.23) optdigits 64(N) 5620 10(1.03)
faults 33(N) 1941 2(1.88) penbased 16(N) 10992 10(1.08)
grub 8(N) 155 4(2.58) seismic 18(N) 2584 2(14.2)
hepatitis 19(N) 80 2(5.15) sensor 24(N) 5456 4(6.72)
housevotes 16(Y) 232 2(1.15) transfusion 4(N) 748 2(3.2)

3.5.3 Independent data

In this section, we evaluate the performance of our proposed weight selection strategies on
independent datasets, that is, datasets that have not been used in this chapter thus far. This
evaluation will further reinforce the demonstrated efficacy and validity of our proposal. The
20 datasets used in this section were obtained from the KEEL, UCI and Weka platforms and
are listed in Table 3.8. They present the different characteristics used in our division of the
datasets in Sections 3.3-3.4. These datasets and their partitions can be downloaded from
http://www.cwi.ugent.be/sarah.php.

Lower approximation We present the balanced accuracy values of the lower approxima-
tion classifier in Table 3.9. Apart from the results obtained using our weight selection strategy
proposed in Section 3.3, the table also shows the performance of the five individual weight
settings. As before, the best value for each dataset is printed in boldface, while any value that
is more than 0.05 lower than this optimum is underlined. The advantages of our proposal
are clear. We obtain the highest balanced accuracy on average, the most wins and the fewest
poor results. The table also shows that our selection strategy is not infallible either, as it
does not perform well on the mushroom dataset. The Mult setting is selected, because this
dataset contains only nominal features. However, if we were to ignore this particular guide-
line, mushroom would be assigned to group 8, because it has 2 classes and 5644 instances. In
this case, it would be processed with Exp, which is the preferred setting for this dataset.

We compare the performance of our lower approximation weight guidelines to the five weight
settings using a Wilcoxon test. We can conclude that it performs significantly better than
Strict (R+ = 167.5, R− = 42.5, p = 0.01821), Add (R+ = 178.0, R− = 12.0, p = 0.00027)
and Mult (R+ = 165.5, R− = 44.5, p = 0.02272). We cannot conclude that our approach
provides a significantly better result than Invadd (R+ = 144.5, R− = 65.5, p = 0.14827) or
Exp (R+ = 122.5, R− = 87.5, p = 0.47034), although the higher values for R+ do indicate
a preference in our favour. Table 3.9 also demonstrates that a higher balanced accuracy is
obtained on average in this case, as well as a higher number of wins and lower number of poor
results.
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Table 3.9: Balanced accuracy results of the classification by the OWA based fuzzy rough
lower approximation operator on independent datasets. With the results of our
weighting scheme selection strategy, we list the selected weight setting between
brackets.

Dataset Strict Add Exp Invadd Mult Proposal
appendicitis 0.7514 0.7938 0.7479 0.7868 0.7542 0.7938 (A)
banknote 0.9987 0.9247 0.9987 0.9961 0.9987 0.9961 (I)
biodeg 0.8153 0.7139 0.8381 0.8216 0.8513 0.8216 (I)
credit 0.8194 0.8695 0.8582 0.8704 0.8571 0.8704 (I)
ctg 0.7379 0.3999 0.7301 0.6283 0.6793 0.7379 (S)
eye detection 0.8456 0.5903 0.8615 0.8147 0.7226 0.8615 (E)
faults 0.9897 0.6748 0.9919 0.9611 0.9904 0.9611 (I)
grub 0.2638 0.3963 0.3075 0.3638 0.3500 0.3963 (A)
hepatitis 0.8184 0.8232 0.8199 0.8633 0.7715 0.8232 (A)
housevotes 0.9137 0.9017 0.9209 0.9125 0.9125 0.9125 (M)
iris 0.9333 0.9533 0.9400 0.9533 0.9533 0.9333 (S)
letter 0.9428 0.6124 0.9632 0.9556 0.9537 0.9632 (E)
magic 0.8129 0.7606 0.8384 0.8126 0.7907 0.8384 (E)
messidor 0.6282 0.6056 0.6534 0.6546 0.6638 0.6546 (I)
mushroom 0.9593 0.8026 0.9749 0.9713 0.9034 0.9034 (M)
optdigits 0.9843 0.9094 0.9857 0.9798 0.9834 0.9857 (E)
penbased 0.9936 0.7624 0.9939 0.9671 0.9902 0.9939 (E)
seismic 0.5514 0.7015 0.5299 0.5872 0.4998 0.7015 (A)
sensor 0.9224 0.7393 0.9255 0.9024 0.9080 0.9255 (E)
transfusion 0.5708 0.6528 0.6048 0.6745 0.6047 0.6528 (A)
Mean 0.8126 0.7294 0.8242 0.8238 0.8069 0.8363
# best/poor 2/4 4/12 10/3 4/2 4/6 11/1

Upper approximation The analogous results for the upper approximation classifier are
presented in Table 3.10 and confirm the validity of our analysis conducted in Section 3.4.
When the classifier incorporates our weight selection guidelines, its mean balanced accuracy
is noticeably higher than when fixing the weighting scheme to one of the other five alternatives.
A poor result is obtained on only one dataset, namely grub. The Strict weighting scheme is
selected, while Add, Invadd or Mult yield better balanced accuracy results. This dataset does
not belong to any of the first three groups nor does its smallest class contain at least 400
instances or is it overall IR at most two. This makes it fit into the group of datasets listed
in Table 3.7. Due to lack of evidence in our training data, we only advised the use of Add
on these datasets when the number of classes is two or three. The grub dataset contains four
classes, such that our guidelines recommend the use of Strict for it.

We compare the performance of our upper approximation weight guidelines to the five weight
settings by means of Wilcoxon tests. The performance differences between our weight selection
strategy and the fixed weighting schemes are found to be statistically significant for Strict
(R+ = 192.5, R− = 17.5, p = 4.387E − 4), Add (R+ = 184.0, R− = 26.0, p = 0.0019856)
and Mult (R+ = 164.5, R− = 45.5, p = 0.0253). As for the lower approximation classifier, we
cannot conclude that our approach significantly outperforms Exp (R+ = 119.0, R− = 91.0,
p = 0.2720952) or Invadd (R+ = 139.0, R− = 71.0, p = 0.1788100), although the higher R+

values are again a point in our favour.

Combination As an additional validation, we have checked the performance of the classifier
that uses the combination of the OWA based fuzzy rough lower and upper approximation
membership degrees as predictor. To classify an instance x, its score for each class C is
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Table 3.10: Balanced accuracy results of the classification by the OWA based fuzzy rough
upper approximation operator on independent datasets. With the results of our
weighting scheme selection strategy, we list the selected weight setting between
brackets.

Dataset Strict Add Exp Invadd Mult Proposal
appendicitis 0.7514 0.7938 0.7479 0.7868 0.7542 0.7938 (A)
banknote 0.9987 0.9247 0.9987 0.9961 0.9987 0.9987 (E)
biodeg 0.8153 0.7139 0.8381 0.8216 0.8513 0.8216 (I)
credit 0.8194 0.8695 0.8582 0.8704 0.8571 0.8704 (I)
ctg 0.7384 0.6812 0.7269 0.7599 0.6293 0.7384 (S)
eye detection 0.8456 0.5903 0.8615 0.8147 0.7226 0.8615 (E)
faults 0.9897 0.6748 0.9919 0.9615 0.9908 0.9919 (E)
grub 0.2875 0.3963 0.3225 0.3938 0.3825 0.2875 (S)
hepatitis 0.6915 0.8058 0.7215 0.8215 0.7715 0.8058 (A)
housevotes 0.9137 0.9017 0.9209 0.9125 0.9125 0.9125 (I)
iris 0.9333 0.9533 0.9400 0.9533 0.9533 0.9333 (S)
letter 0.9537 0.6558 0.9649 0.8952 0.9170 0.9649 (E)
magic 0.7821 0.7019 0.8020 0.7561 0.7907 0.8020 (E)
messidor 0.6282 0.6056 0.6534 0.6546 0.6638 0.6534 (E)
mushroom 0.9593 0.8026 0.9749 0.9713 0.9034 0.9713 (I)
optdigits 0.9843 0.9280 0.9861 0.9733 0.9818 0.9861 (E)
penbased 0.9936 0.8151 0.9936 0.9274 0.9904 0.9936 (E)
seismic 0.5514 0.7015 0.5299 0.5872 0.4998 0.7015 (A)
sensor 0.9224 0.6510 0.9252 0.8845 0.9033 0.9224 (S)
transfusion 0.5708 0.6528 0.6048 0.6745 0.6047 0.6528 (A)
Mean 0.8065 0.7410 0.8181 0.8208 0.8039 0.8332
# best/poor 2/5 4/12 9/4 5/3 4/5 9/1

computed as C(x)+C(x)
2 and the instance is assigned to the class for which this value is largest.

When we fix the OWA weighting schemes to one of the five alternatives included in this
study, we obtain mean balanced accuracies of 0.6707 (Strict), 0.6606 (Add), 0.6901 (Exp),
0.6912 (Invadd) and 0.6818 (Mult) on the 50 datasets in Table 3.1 and 0.8065 (Strict), 0.7416
(Add), 0.8182 (Exp), 0.8221 (Invadd) and 0.8046 (Mult) on the 20 independent datasets in
Table 3.8. When using our proposed guidelines for the lower and upper approximations, we
obtain mean balanced accuracies of 0.7145 and 0.8336 respectively, which both show a clear
improvement over the values for the fixed weighting schemes. These observations are further
supported by the results of the Wilcoxon tests as presented in Table 3.11. We briefly note
that there are only small differences in performance when either the lower approximation,
upper approximation or combination classifier are used with our optimized weight selection
strategy.

3.5.4 Other applications

As a final validation step, we use our guidelines within the OWA-FRPS instance selection
method [409] and the POSNN classifier [407, 410]. Both use the fuzzy rough positive region
POS(·). In a classification dataset, POS(x) is computed as the membership degree of instance
x to the OWA based lower approximation of its own decision class [107]. In [407], the use of
Invadd was advised for both methods, regardless of the dataset on which they are applied.
As we observed in Section 3.3.2, this weighting scheme can appear as a good default choice
based on its average performance, but does not necessarily perform well on all datasets. We
now evaluate whether using our guidelines instead benefits the performance of OWA-FRPS
and POSNN. We use the independent datasets listed in Table 3.8.

64



Chapter 3. Understanding OWA based fuzzy rough sets

Table 3.11: Results of the Wilcoxon test comparing the results of the combination classifier
using our weight guidelines to the versions using one of the five fixed weight
settings. P-values implying significant differences at the 5% significance level are
printed in bold.

Data Table 3.1 Data Table 3.8
R+ R− p R+ R− p

Proposal vs Strict 1075.5 199.5 0.000023 171.5 18.5 0.0010682
Proposal vs Add 1051.0 224.0 0.000063 187.0 23.0 0.0012092
Proposal vs Exp 963.5 261.5 0.000456 137.5 72.5 0.1981229
Proposal vs Invadd 950.5 324.5 0.002476 129.5 60.5 0.17533
Proposal vs Mult 989.5 235.5 0.000173 170.5 39.5 0.012848

Table 3.12 lists the results associated with the OWA-FRPS method. This algorithm computes
the quality of all training instances as their membership degree to the positive region and
derives a threshold above which the quality is deemed sufficiently high. Only instances with
a quality exceeding this threshold are retained in the dataset. We combine it with the 1NN
classifier as done in [407, 409]. When we fix the weighting scheme to Invadd, the average
reduction in the number of instances is 27.63% and the mean balanced accuracy of 1NN
after OWA-FRPS is 0.8097. Using our guidelines results in an average reduction of 30.42%
and a mean balanced accuracy of 0.8133. This provides three advantages: (i) we relieve
the user from setting the OWA weighting scheme, when they are not fully comfortable with
using a default option, (ii) on average, the datasets are reduced slightly more and (iii) the
classification performance of the posterior classifier is maintained, even somewhat improved
(albeit not statistically significantly).

The POSNN classifier is a weighted extension of the fuzzy nearest neighbour classifier of [256].
The contribution of each neighbour is weighted by its membership degree to the OWA based
positive region. Note that the lower approximation operator is not used as a predictor, as
done in the construction of our guidelines in Section 3.3, but rather as a weighting mechanism.
We have set the number of neighbours to ten and report the balanced accuracy results in
Table 3.13. The use of Invadd, as recommended in [407], leads to a mean balanced accuracy
of 0.8084 on the datasets in Table 3.8, while using our guidelines increases this value to 0.8101.
According to the results of the Wilcoxon test, this improvement is significant (R+ = 148.5,
R− = 41.5, p = 0.029774).

3.6 Conclusion

In this chapter, we have recalled the OWA based fuzzy rough set model from [108], a noise-
tolerant alternative to traditional fuzzy rough sets. It replaces the minimum and maximum
operators in the original fuzzy rough lower and upper approximations by OWA aggregations.
The OWA based fuzzy rough approximation operators are highly interpretable and easy to
implement and offer a robustness in the presence of noise that has been clearly demonstrated
in previous work. Nevertheless, OWA based fuzzy rough set approaches have not experienced
the same popularity as the traditional fuzzy rough set model. We believe that further advances
can be made in many areas by exploiting the strengths and interpretability of this versatile
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Table 3.12: Balanced accuracy results of the 1NN classifier after prototype selection by OWA-
FRPS or without preprocessing (None). The OWA-FRPS method uses either
fixed Invadd weights or those weights advised by our guidelines. We report the
reduction in the number of instances after the prototype selection step as well.

None Invadd Proposal
Dataset Balacc Balacc Red. Balacc Red.
appendicitis 0.7514 0.7500 0.5755 0.7382 0.3721
banknote 0.9987 0.9987 0.0449 0.9987 0.0449
biodeg 0.8153 0.8187 0.3188 0.8187 0.3188
credit 0.8194 0.8642 0.4013 0.8642 0.4013
ctg 0.7438 0.7289 0.0428 0.7205 0.1106
eye detection 0.8456 0.8436 0.0945 0.8465 0.2110
faults 0.9897 0.9897 0.0000 0.9897 0.0000
grub 0.3013 0.3688 0.6101 0.3238 0.7905
hepatitis 0.6915 0.7015 0.4699 0.7860 0.5404
housevotes 0.8984 0.9038 0.2213 0.9112 0.4797
iris 0.9333 0.9400 0.2141 0.9400 0.1096
letter 0.9544 0.9548 0.0013 0.9536 0.0123
magic 0.7821 0.7807 0.1612 0.7988 0.2793
messidor 0.6282 0.6316 0.4909 0.6316 0.4909
mushroom 0.8873 0.8996 0.0000 0.8826 0.0000
optdigits 0.9845 0.9849 0.0209 0.9843 0.0837
penbased 0.9937 0.9937 0.0011 0.9937 0.0066
seismic 0.5514 0.5000 0.9865 0.5000 0.9975
sensor 0.9224 0.9226 0.0013 0.9205 0.0130
transfusion 0.5837 0.6193 0.8702 0.6636 0.8219
Mean 0.8038 0.8097 0.2763 0.8133 0.3042

and flexible model. As an OWA aggregation of a set of values relies on the definition of a
weight vector, the defining component of the OWA based fuzzy rough approximations is their
choice of weighting scheme. If guidelines are available for the selection of an appropriate
weighting scheme, the OWA based model would, in our opinion, become more accessible to
the research community and benefit it as a whole. We have observed the strength of this
fuzzy rough set model in our own research (as described in the later chapters of this thesis)
and are confident that our conclusions presented here can contribute to a more widespread
adoption of OWA based approaches.

Through systematic and rigorous comparison of five different weighting schemes, we have
been able to provide weighting scheme selection strategies for both the OWA based lower
and upper approximation operators. We have explained the behaviour and suitability of the
alternative options in detail, such that the actions of the OWA based fuzzy rough operators
can be understood at a fundamental level. The efficacy of our weighting scheme selection
strategy is further supported and validated by an evaluation on independent datasets and in
different applications.

However, we should be forthcoming with respect to one limitation of the presented work. Our
guidelines have been proposed based on the evidence provided by the datasets in Table 3.1. As
a consequence, any data characteristics that are not sufficiently represented among this group
could not have been taken into account in our derivations. In particular, the largest dataset
included in this study consists of only 20000 observations, a small number in several present-
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Table 3.13: Balanced accuracy results for the POSNN classifier with k = 10, fixing the weight-
ing scheme to Invadd or using our proposed lower approximation weight guide-
lines.

Dataset Invadd Proposal Dataset Invadd Proposal
appendicitis 0.7542 0.7542 iris 0.9400 0.9400
banknote 0.9967 0.9967 letter 0.9518 0.9525
biodeg 0.8449 0.8449 magic 0.7925 0.7997
credit 0.8571 0.8571 messidor 0.6613 0.6613
ctg 0.6295 0.6354 mushroom 0.8925 0.8925
eye detection 0.8397 0.8408 optdigits 0.9825 0.9834
faults 0.9828 0.9828 penbased 0.9893 0.9893
grub 0.3400 0.3400 seismic 0.5068 0.5156
hepatitis 0.7554 0.7554 sensor 0.9007 0.8991
housevotes 0.9151 0.9185 transfusion 0.6362 0.6430

Mean 0.8084 0.8101

day applications. Although we do not believe our conclusions to become invalid when the
number of instances is considerably higher, we can not support this statement with provided
empirical evidence. In point of fact, we would argue against the direct use of OWA based
fuzzy rough sets on excessively large datasets, but postpone this discussion to the concluding
Chapter 8.

One could put two other aspects of our approach up for scrutiny, namely our selection of
the five weighting schemes and the similarity measure (3.13). These can, in our opinion, be
justified. Additional weighting schemes can be found in the literature, as described in Sec-
tion 3.2.2 for instance, or even be devised by the reader. In light of the different properties
of each scheme (Section 3.2), we nevertheless feel that we have made an appropriate selec-
tion. When the reader wishes to assess the adequacy of their custom weighting scheme within
OWA based fuzzy rough sets, they should be able to do so based on our discussions in Sec-
tions 3.3-3.4. We have based ourselves on the general defining characteristics of the schemes,
in particular in Section 3.3.4, and our conclusions should carry over to other weighting scheme
alternatives as well. With regard to the second point, we have chosen to fix the fuzzy relation
measuring similarity between instances to expression (3.13). This is a reasonable and intu-
itive similarity measure, which has been used in previous studies on fuzzy rough classifiers
as well. Alternatives exist, but we do not expect that our observations and conclusions in
Sections 3.3-3.4 will greatly change when a different (sensible) relation is used. When an
alternative similarity measure is more suitable for a particular dataset, the performance of
the classifier will improve, but we believe that the relative rankings of the weighting schemes
will remain the same. Since our focus has been on the latter aspect, optimizing the similarity
relation is of secondary importance and our default use of (3.13) is justified. Our conclusions
are not strongly based on the instance similarity values. Naturally, like the nearest neighbour
classifier, any fuzzy rough classifier may benefit from the application of metric learning (see
Section 2.2.1). A user that wishes to apply our simple classifier in a prediction task can opt
to use our guidelines in conjunction with a data-dependent similarity measure derived with a
metric learning technique.
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4 Learning from imbalanced data

In this chapter, we consider the classification of imbalanced data. When a dataset presents
an imbalance between its classes, that is, an uneven distribution of observations among them,
the classification task is inherently more challenging. Traditional classification algorithms
(see Section 2.2) tend to favour majority over minority class elements due to their incorrect
implicit assumption of an equal class representation during learning. As a consequence, the
recognition of minority instances is hampered. Since minority classes are usually the ones of
interest, custom techniques are required to deal with such data skewness. We study them in
this chapter. Section 4.1 discusses the traditional setting of binary class imbalance, where
the observations are divided between one majority and one minority class. We recall the
challenges and solutions associated with this classification problem. In Section 4.2, we trans-
fer our attention to the more general setting of multi-class imbalance, considering datasets
with three or more classes of (considerably) unequal sizes. The focus of the research com-
munity has shifted to this task in recent years. Section 4.3 is dedicated to our FROVOCO
method, proposed as a novel fuzzy rough set based method for multi-class imbalanced clas-
sification. A thorough experimental evaluation of our proposal is conducted in Section 4.4.
We validate the internal settings of FROVOCO and compare it to the state-of-the-art in this
domain, demonstrating its superior classification performance. Finally, Section 4.5 concludes
the chapter.

4.1 Binary class imbalance

Research on class imbalance has long been focused on two-class classification problems and
advances still continue to be made (e.g. [197, 288, 388]). In this setting, elements from the
majority class (greatly) outnumber minority class instances, although the latter is often the
class of interest. The relative lack of information on the minority concept leads to a poor
recognition of these elements by the classification model. Minority class misclassifications
are a logical (but undesired) consequence. The traditional binary class imbalance problem
is discussed in Section 4.1.1, while Section 4.1.2 lists the approaches to deal with this chal-
lenge. In Section 4.1.3, we recall the IFROWANN method, a fuzzy rough classifier for binary
imbalanced data.
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4.1.1 The class imbalance problem

The class imbalance problem, a term coined in [238], refers to the challenges posed on tradi-
tional classification by an uneven distribution of elements across the decision classes. Review
works on (binary) imbalanced data include [57, 210, 385]. The recent contribution [57] also
considers imbalanced regression, when certain values of the target value (e.g. extremely low
ones) are under-represented in the training set. Traditionally, in a two-class imbalanced
problem, the minority class is considered the positive class, while the majority elements are
labelled as negative. These monikers indicate that the minority class is usually the class of
interest [304]. The sheer abundance of negative information hinders the recognition capability
of positive instances. Furthermore, as already noted in Section 2.3.1.2, general classification
evaluation metrics can provide misleading results when the smallest class is indeed the one
of interest [57]. The evaluation measure should not allow for a strong performance on the
majority class to overshadow a poor result on the minority class and should instead provide
a balanced evaluation of the performance on both classes. The example measures listed in
Section 2.3.1.2 are valid options in this setting.

The most defining characteristic of an imbalanced dataset is its skewed class distribution
[304]. This uneven division of observations across the classes can easily be measured by the
imbalance ratio (IR). In general, this value is defined as the ratio of the sizes of the overall
majority and minority classes, namely

IR =
max
C∈C
|C|

min
C∈C
|C|

, (4.1)

where C is the set of all classes. In the binary case, this measure reduces to IR = |N |
|P | with

the negative majority class N and the positive minority class P . Its definition implies that
the IR is a number larger than or equal to one. When IR = 1, the dataset is perfectly
balanced. Larger values indicate a larger difference in the class sizes. Any dataset with
an imbalance ratio exceeding 1.5 is considered imbalanced, while IR = 9 is often used as
the threshold above which datasets are regarded as highly imbalanced (e.g. [303, 413]). It
has been shown that the IR is not the only property of imbalanced datasets that poses
challenges to learning algorithms. Several authors (e.g. [28, 146, 239, 304]) describe how
general data-related challenges like small sample size, areas of small disjuncts and under-
represented sub-concepts, high dimensionality, class overlap, class noise, lack of density and
the dataset shift problem can have a more pronounced effect in class imbalanced data. The
study of [307] showed that the IR in itself is insufficient to predict the performance of a
classification method on an imbalanced dataset. The actual complexity of the dataset and
intrinsic characteristics influence the classifier recognition capability as well.

Application areas wherein binary class imbalance is naturally encountered include medical
diagnosis and prediction (e.g. [22, 339, 376]), bioinformatics (e.g. [23, 138, 397]), corporation
and market prediction (e.g. [287, 501]) and anomaly detection (e.g. [153, 432]).

4.1.2 Dealing with binary class imbalance

Solutions to dealing with binary class imbalance are often categorized into three groups [304,
306]: data level approaches, algorithm level solutions and cost-sensitive methods.
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Data level approaches Data level solutions to class imbalance are preprocessing tech-
niques that are applied on the training set before constructing a classification model. Their
core aim is to attain a better balance between the classes, be it perfect balance at IR = 1 or
simply a reduction of the IR to an acceptable level. It has been shown that aspiring perfect
balance is not advantageous in every setting [258]. As preprocessing techniques, these data
level methods are generally independent of the subsequent classifier, which implies an inher-
ent level of versatility. In essence, they resample the dataset and we can distinguish between
the three settings visualized in Figure 4.1:

1. Undersampling: these methods remove instances from the dataset in order to reduce
the imbalance ratio. The simplest way to achieve this effect is to randomly discard
some elements from the majority class. This idea is incorporated in the random un-
dersampling method proposed in [28]. Alternative undersampling procedures based on
more involved heuristics have been proposed in e.g. [187, 266, 274, 327, 457, 459]. Most
undersampling methods leave the minority class untouched and only remove majority
class elements, but it has been shown that allowing a (small) reduction of the former
holds benefits of its own [414].

2. Oversampling: these techniques take the opposite approach. Instead of reducing the
majority class, the size of the minority class is increased. New minority elements are
added to the training set as (i) duplicates or perturbed variants of original instances
or (ii) results of interpolation. As the most straightforward approach, similar to the
random undersampling technique, random oversampling randomly selects minority class
elements for duplication [28]. Arguably the most popular oversampling method is the
SMOTE technique [81], which constructs new minority instances by means of linear
interpolation between existing minority elements and one of their nearest minority class
neighbours. It has repeatedly been pointed out that the application of SMOTE can
result in an overgeneralization of the minority class and several extensions have been
proposed to address this issue. Furthermore, its instance generation procedure is not
always justified [35]. As described in [57], these extensions can be divided into three
groups (i) methods that apply a pre- or post-processing technique in conjunction with
SMOTE (e.g. [28, 353, 354, 411]), (ii) methods that limit the generation of minority
elements to specific regions of the feature space (e.g. [26, 203, 209]) and (iii) methods
that modify the element generation process (e.g. [64, 65, 66, 311]).

3. Hybrid methods: hybrid data level solutions combine undersampling and oversam-
pling within their data balancing approach. They either combine over- and under-
sampling (performing both procedures at once) or perform undersampling after over-
sampling as a data cleaning step. In fact, the oversampling methods that combine
SMOTE with post-processing fit into the latter group. Other proposals can be found
in e.g. [329, 380].

Algorithm level approaches Instead of modifying the training data, algorithm level ap-
proaches adapt the learning phases of classifiers to take into account the skewness in the
class distribution. Several of the traditional classification paradigms listed in Section 2.2
have inspired imbalance-resistant classifiers (e.g. [29, 101, 145, 231, 374]). The IFROWANN
method, discussed below in Section 4.1.3, is another example. We also include ensemble ap-
proaches (Section 2.2.7) to imbalanced classification in this category, although some authors
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Figure 4.1: Illustration of the three resampling techniques dealing with binary class imbal-
ance. Undersampling and oversampling methods commonly strive for a perfect
balance between the two classes.

list these as a separate group. Traditional ensemble settings like boosting [367, 368] and
bagging [58] have been modified to deal with class imbalanced problems [173]. Imbalance-
resistant ensemble methods based on the traditional AdaBoost method have been proposed
in e.g. [139, 252, 384, 393]. Several authors integrate the data level solutions listed above
into the boosting or bagging schemes, producing methods like SMOTEBoost [83], MSMOTE-
Boost [229], RUSBoost [372], EUSBoost [176], OverBagging [427], UnderBagging [24], Un-
derOverBagging [427] and SMOTEBagging [427]. The EasyEnsemble and BalanceCascade
methods from [297] were proposed as ensembles of ensembles and combine boosting and bag-
ging. Other ensemble methods for imbalanced data classification aim to improve the balance
between classes and guarantee sufficient diversity between ensemble members at the same
time (e.g. [95, 127]).

Cost-sensitive methods A third solution group, although these techniques could again
be catalogued under the algorithm level approaches as well, are the cost-sensitive methods.
These algorithms incorporate misclassification costs in their internal workings, where the cost
of a prediction error on a minority element is larger than the cost of misclassifying a majority
instance [306]. By integrating these costs, the invalid assumption of equal class distributions
made by traditional classifiers can be dealt with. Several of the general classification models
discussed in Section 2.2 have been extended in this manner including cost-sensitive nearest
neighbour classification [205], cost-sensitive decision trees [264, 301, 394], cost-sensitive neural
networks [192, 497] and cost-sensitive support vector machines [412, 491].

4.1.3 The IFROWANN method

In [355], the authors proposed the IFROWANN method, short for Imbalanced Fuzzy Rough
Ordered Weighted Average Nearest Neighbour classification. It is an algorithm level solution
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to binary class imbalance. As its name implies, the method relies on OWA based fuzzy rough
set theory (Section 3.1.3).

IFROWANN was proposed as an extension of the fuzzy rough nearest neighbour classifier
(FRNN, [241]) to deal with two-class imbalanced data. The FRNN method classifies an
instance x by (i) computing its membership degree to the fuzzy rough lower and upper
approximations of all decision classes and (ii) assigning x to the class C for which C(x)+C(x)

2
is largest. FRNN uses the traditional fuzzy rough set model in its calculations. To deal
with the challenges posed by class imbalance, the authors of [355] introduce some changes in
the FRNN algorithm. First, by focusing on datasets with only two classes, they show that
the evaluation C(x)+C(x)

2 can be restricted to the lower approximation operator, as the upper
approximation does not carry any additional information on top of that provided by the lower
approximation in this setting. Using C(x) instead of C(x)+C(x)

2 as class score formula results
in exactly the same predictions. IFROWANN uses the OWA based fuzzy rough set model to
compute the membership degree of elements to the lower approximation of the two classes.
When one of the popular fuzzy implicators (Kleene-Dienes,  Lukasiewicz or Reichenbach, see
Table 1.5) is used, expression (3.7) further simplifies to

C(x) = OWAWL
({1−R(x, y) | y /∈ C}), (4.2)

where WL is the OWA weight vector. When P and N are the positive (minority) and negative
(majority) classes respectively, IFROWANN computes P (x) and N(x) and classifies x as
positive when P (x) ≥ N(x) and as negative otherwise.

To deal with the imbalanced nature of the dataset, the authors of [355] allow the use of
different OWA weighting schemes for the two classes and evaluate several combinations in
their study. In particular, the following six configurations were proposed, where the first and
second components refer to the weight vectors for P and N respectively:

W1 =
〈
W add
L ,W add

L

〉
,

W2 =
〈
W add
L ,W exp

L

〉
,

W3 =
〈
W exp
L ,W add

L

〉
,

W4 = 〈W exp
L ,W exp

L 〉 ,

W5 =
〈
W add,γ
L ,W add

L

〉
,

W6 =
〈
W add,γ
L ,W exp

L

〉
.

We refer to Section 3.2.1 for the definition of the additive and exponential weight vectors.
Weight vector W add,γ

L in the fifth and sixth settings is defined as

W add,γ
L =

〈
0, 0, . . . , 0, 2

r(r + 1) ,
4

r(r + 1) , . . . ,
2(r − 1)
r(r + 1) ,

2
r + 1

〉
, (4.3)

with γ ∈ [0, 1] a user-defined parameter. The value r, which corresponds to the number of
non-zero positions in this vector, is defined as r = d|P |+ γ(|N | − |P |)e, with |P | and |N | the
sizes of the positive and negative classes respectively. Note that the total length of vector
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W add,γ
L equals |N |, as this is the number of values to aggregate in the calculation of P (x) by

means of (4.2). When γ = 1, r equals |N | and vector W add
L is retrieved.

The comprehensive experimental evaluation of [355] concluded that weight combinations W4
and W6 provide the best classification results on binary imbalanced datasets. It should be
clear that W4 treats the two classes symmetrically and uses exponential weights to compute
both P (x) and N(x). Regardless of this observation, the actual weight vectors W exp

L used
in the aggregations of P (x) and N(x) will be different due to a possibly large difference in
aggregation length. From (4.2) and the fact that only two classes are present in the dataset,
it should be clear that P (x) is an aggregation over a set of size |N |, while N(x) is derived
based on only |P | values. In an imbalanced dataset, the former value can be far larger than
the latter. ConfigurationW6 uses distinct weight vector definitions for P (x) and N(x), which
directly implies different actions on the two classes. As does W4, it uses exponential OWA
weights to derive value N(x). The leading zeroes in W add,γ

L within the calculation of P (x)
imply that the contribution of certain instances y ∈ N is actively discarded in (4.2). Only
the r smallest values 1 − R(x, y) are used, which originate from the instances y ∈ N most
similar to x. In [355], it was concluded that 0.1 is an appropriate value for the γ parameter.
Looking back at its definition, this implies that many of the weights in W add,γ

L are zero and
relatively few (somewhat more than |P |) are non-negligible.

4.2 Multi-class imbalance

A skewed class distribution can naturally occur in datasets with more than two classes as well.
Application domains wherein such multi-class imbalance is encountered include bioinformatics
(e.g. [300, 465, 489]) and medical diagnosis (e.g. [92, 375, 470]). This classification task is even
more challenging than its binary cousin [147]. Firstly, the higher number of classes implies
a higher number of decision boundaries to learn. A second problem is that the additional
data-intrinsic characteristics listed in Section 4.1.1 can be more strongly expressed when more
classes are present. Instead of having a single minority and majority class, multi-minority
and multi-majority situations present themselves [428]. As a consequence, the imbalance ratio
(4.1) can be insufficient to represent the degree of imbalance present in a dataset with more
than two classes [335].

In general multi-class classification, a decomposition scheme can be applied to reduce the
multi-class problem to several sub-problems with a lower number of classes (often, two).
Two traditional examples are the one-versus-one (OVO) and one-versus-all (OVA) schemes.
The OVO procedure considers each pair of classes, while the OVA scheme creates binary
problems comparing one class to the union of all others. The former setting has been shown
to be preferable in the presence of a skewed class distribution (e.g. [147]). By contrasting
each class with the remainder of the dataset, an OVA decomposition inherently induces a
larger imbalance in its binary classification tasks. In Section 4.2.1, we recall the one-versus-
one decomposition scheme for general multi-class classification in more detail. Section 4.2.2
discusses the classifier competence issue related with the OVO procedure.

Similar to the approaches listed in Section 4.1.2, a variety of methods have been proposed to
deal with multi-class imbalance with or without using a decomposition scheme. Section 4.2.3
presents an overview.
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4.2.1 The one-versus-one decomposition scheme

The OVO decomposition scheme is a traditional procedure to transform a multi-class problem
to a number of two-class problems. When the dataset contains m classes, a total number of
m(m−1)

2 sub-tasks are created, one for each pair of classes. A classifier is trained on each
sub-problem using only the training elements belonging to the corresponding two classes as
input to learn from. When classifying a new instance x, each binary classifier is fired and
computes an output for this target. All classifier outputs are collected in a score-matrix R(x)
in the form of

R(x) =


− r12 · · · r1m
r21 − · · · r2m
...

...
rm1 rm2 · · · −

 , (4.4)

with rij ∈ [0, 1]. Matrix entries rij and rji are provided by the binary classifier that discerns
between classes Ci and Cj . The former represents the confidence that element x belongs to
class Ci and not Cj , while the latter is interpreted as the reverse. When the classifier does
not provide both values, the missing one is defined by relation rji = 1− rij .

To derive an exact prediction for x, the information in R(x) needs to be aggregated. Various
aggregation procedures have been proposed in the literature to derive the prediction l(x) from
score-matrix R(x) [172]:

• Voting, binary voting, Max-Wins rule (VOTE, [162]): each binary classifier
votes for (at most) one class, namely the one for which the computed confidence is
strictly highest. The class with the highest number of votes is selected as prediction.
In particular,

l(x) = arg max
i=1,...,m

 ∑
1≤j 6=i≤m

I(rij > rji)

 ,
with I(·) the standard indicator function which evaluates to one when its argument is
true and to zero otherwise.

• Weighted voting (WV, [234]): instead of casting a definitive vote for a single class,
each classifier provides weighted votes for both its classes using its derived confidence
degrees. The class for which the sum of the confidence degrees in its favour is largest is
predicted. In particular,

l(x) = arg max
i=1,...,m

 ∑
1≤j 6=i≤m

rij

 .
• Pairwise coupling (PC, [207]): based on the values in the score-matrix, this method

approximates the class posterior probabilities by means of an optimization procedure
and sets l(x) to the class corresponding to the highest probability value.

• Decision directed acyclic graph (DDAG, [342]): this method constructs a rooted
binary acyclic graph. Each node in the graph corresponds to a list of classes and a
binary classifier. At each split, the classifier is evaluated on two of the classes in the
list and only the predicted class is retained. Prediction l(x) is set to the final class
remaining in the list.
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• Learning valued preference for classifiers (LVPC, [232, 233]): three fuzzy rela-
tions (strict preference, conflict, ignorance) are derived from the score-matrix. The class
corresponding to the largest value of a linear combination of the degrees of preference,
conflicts and ignorance is predicted.

• Non-dominance criterion (ND, [143]): this method interprets the score-matrix as a
fuzzy preference relation and derives, for each class, the degree to which it is dominated
by none of the other classes (degree of non-dominance). The class attaining the highest
value for this measure is used for l(x).

• Binary tree of classifiers (BTC, [141]): similar to the DDAG method, a tree graph
is constructed, wherein each node corresponds to a list of classes and a binary classifier.
The DDAG method trains the classifier on two classes and removes the class that is not
predicted. BTC proceeds in a different way and allows the removal of multiple classes
in each level. The final class remaining in the list is used for l(x).

• Nesting OVO (NEST, [291, 292]): this procedure sets up an iterative, nested OVO
evaluation. Elements in an unclassifiable region (that is, elements for which no single
class is predicted strictly most) are processed with a second OVO decomposition focusing
on this region. The process is repeated until all elements have been classified.

• Probability estimates (PE, [439]): the method performs the same actions as the
PC procedure, but uses a different optimization objective to derive the posterior class
probabilities.

Review paper [172] showed that the simple and intuitive WV strategy yields a competitive
prediction performance compared to the more sophisticated aggregation alternatives and can
be favoured in terms of its robustness as well.

4.2.2 OVO decomposition and the classifier competence issue

As stated above, each classifier within the OVO decomposition is trained on the elements
of only two classes. As a consequence, the classifier trained on data from classes Ci and Cj
can perform sub-optimally when classifying a test instance of class Ck (k 6= i, j), since it
had no knowledge of or information on class Ck at training time. This problem is called the
classifier competence issue [171]. When classifying a test instance x within an OVO setting,
the scores or predictions of all binary classifiers are taken into account to derive the final class
assignation. Classifiers that were not trained on the true class of x may not hold any relevant
information for its classification and can consequently hinder the aggregation procedure.

This issue has been addressed by the development of dynamic aggregation procedures. Two
recent proposals are the Dynamic OVO [174] and DRCW-OVO [178] methods. Both ap-
proaches consider the local neighbourhood of a test instance and modify the score-matrix
in order to reduce the contribution of binary classifiers trained on irrelevant classes, that is,
classes that do not appear in the evaluated neighbourhood. They differ from each other in
the way the score-matrix is treated:

• Dynamic OVO: the 3m nearest neighbours of the target instance are computed, with
m the number of classes. Only classifiers for which both training classes appear in this
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neighbourhood are considered. To achieve this effect, the score-matrix is filtered and the
confidence values of irrelevant classifiers are put to zero to cancel out their contribution.
The WV procedure is used to derive a prediction from the modified score-matrix.

• DRCW-OVO: rather than setting some confidence values to zero, the score-matrix
is modified by multiplying every entry with a weight representing the relevance of the
binary classifiers in the neighbourhood of the target instance. The weights are defined
as the relative classifier competence and are based on the distance of the target to its
k nearest neighbours of the classes under consideration. This method has very recently
been modified to the DRCW-ASEG alternative in [485], incorporating a synthetic ele-
ment generation step before the weight calculations.

Another example is the similarity based aggregation technique proposed in [177]. It is compu-
tationally less attractive than Dynamic OVO or DRCW-OVO, because it requires the internal
optimization of m(m−1)

2 parameters by means of a genetic algorithm. We note that dynamic
OVO aggregation procedures are different from dynamic classifier selection (e.g. [318]), where
only one binary classifier is selected per test instance. They are related to the dynamic
ensemble selection framework (e.g. [484]) however, where a subset of classifiers is selected.

A related recent proposal is the NMC method from [175], which uses an aggregation transfor-
mation strategy that aims to benefit from the non-competent classifiers instead of reducing
their importance. In essence, this procedure applies a nearest neighbour classification on the
score-matrices rather than directly aggregating the score-matrix of a test instance to a final
prediction. The authors considered an internal static instance and classifier pruning step as
well, but showed that their method yields competitive results even without this optimiza-
tion. The selection step, based on a genetic algorithm, leads to a static rather than dynamic
pruning, that is, the final prediction is always based on the same subset of base classifiers.

4.2.3 Dealing with multi-class imbalance

OVO decomposition is a general approach to transform a multi-class classification task to a
set of binary problems. It can be applied in the context of multi-class imbalance to allow the
application of the methods discussed in Section 4.1.2. Substantial research has been conducted
in the area of binary imbalanced classification and the OVO decomposition permits one to
take advantage of these efforts in the context of multi-class imbalance as well.

A direct application of this technique was evaluated in [147], where the OVO decomposition
was combined with the data level approaches to binary class imbalance (resampling). The
OVO procedure is used to decompose the multi-class problem into several binary problems,
one for each pair of classes. This reduces the overall imbalance of the problems, as the IR in
a binary problem is at most equal to the total IR of the dataset (as defined in (4.1)) but often
noticeably smaller. For each sub-problem, a binary resampling technique is applied on the
two classes under consideration. The study of [147] put forward the popular SMOTE method
as a well-performing option. Binary classifiers are trained on the resampled sub-problems and
are used to construct the score-matrix R(x) when classifying an instance x.

Although the above setting can be considered a data level approach to multi-class imbalance,
it does not correspond to the development of new resampling methods to directly deal with
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imbalanced datasets of more than two classes. Examples of the latter are encountered in
the literature as well and can be considered as true multi-class data level approaches. The
GlobalCS method [498] achieves its cost-sensitive effect by randomly replicating instances in
each minority class until they are the same size as the majority class. The Static-SMOTE
algorithm [148] is a modification of the SMOTE method that oversamples each class with the
SMOTE technique to attain a better overall balance. Another SMOTE-inspired multi-class
oversampling method is the synthetic minority oversampling method SMOM from [503]. The
Mahalanobis distance oversampling procedure (MDO) proposed in [1] was inspired by the
Mahalanobis distance [312]. This method generates artificial instances with the guarantee
that their Mahalanobis distance to the class mean equals that of the seed element from which
they were constructed. In [453], an extension of the MDO technique was proposed. This
method is called AMDO and is based on a generalized singular value decomposition.

Multi-class algorithm level approaches to an imbalanced class distribution have been proposed
as well. The AdaBoost.NC ensemble classifier [428] remains a state-of-the-art standard in
the field of multi-class imbalanced classification. It is based on a binary AdaBoost ensemble
incorporating negative correction learning [425]. In addition to using them to better recognize
misclassified elements in later iterations, the instance weights are also used to enhance the
diversity within the boosting ensemble. The multi-class extension requires the application
of random oversampling to improve the recognition of minority class instances. Recently,
the EFIS-MOEA method was proposed in [144]. This ensemble method combines feature
and instance selection using multi-objective optimization. In the contributions of [202, 458],
ensemble classifiers for multi-class imbalanced data were evaluated in conjunction with feature
selection as well. The authors of [483] evaluated ensembles developed for binary imbalanced
data in the multi-class setting using the OVO scheme.

4.3 FROVOCO: novel algorithm for multi-class imbalanced
problems

We propose an extension of the IFROWANN method ([355], Section 4.1.3) to the multi-
class imbalance setting. Our method is called FROVOCO, short for Fuzzy Rough OVO
Combination. It uses the OVO decomposition procedure (see Section 4.2.1) to transform the
multi-class problem to a set of binary sub-problems to which IFROWANN can be applied.
To improve the competitiveness of our proposal with the methods discussed in Section 4.2.3,
we develop two new components:

• IFROWANN-WIR: as discussed in [355], the preferred combination of OWA weights
used within the IFROWANN classifier depends on the imbalance present in the binary
problem at hand. The binary datasets generated by the OVO scheme can have highly
different IR values. We propose an adaptive version of the IFROWANN classifier (called
IFROWANN-WIR) that selects the OWA weights based on the IR value. We introduce
this method in Section 4.3.1.

• WV-FROST aggregation: we modify the WV aggregation scheme to include two
global summary terms. These additional terms assess the global affinity of target in-
stances with the decision classes and complement the local information derived from
the OVO decomposition. The inclusion of the summary terms is a way to deal with the
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classifier competence issue (Section 4.2.2). Our new aggregation procedure is discussed
in Section 4.3.2.

To summarize the above, Section 4.3.3 presents an overview of our complete FROVOCO
method.

4.3.1 Binary classifier within OVO: IFROWANN-WIR

In our discussion on the IFROWANN classifier in Section 4.1.3, we listed the six OWA weight
combinations proposed and evaluated in [355]. The authors showed that versions W4 and
W6 yield the best overall classification results. In this work, we refer to these settings as
We and Wγ respectively, such that their name allows to more easily recollect their definition.
The experimental evaluation of [355] indicated that We performs best for mildly imbalanced
datasets (IR up to nine), while the Wγ setting is preferred when the imbalance exceeds this
level. As noted in Section 4.1.1, an IR value of nine is often used as a threshold above which
the dataset is considered highly imbalanced.

Our FROVOCO method uses the OVO decomposition procedure, which means that it gener-
ates a binary classification problem for each pair of classes in the multi-class dataset. Some
classes may have similar sizes (implying a low IR value), while the sizes of others may be
highly different (high IR). Consequently, keeping the conclusions of [355] in mind, it is not
prudent to fix the IFROWANN weight configuration beforehand. We therefore propose a
new adaptive weight setting WIR. When the IR of the binary problem under consideration
is at most nine, WIR coincides with We. When the IR exceeds this threshold, WIR coincides
with Wγ . The binary classifier using this setting is called IFROWANN-WIR. Apart from
its adaptive choice of OWA weights for the two classes, it coincides with the IFROWANN
method discussed in Section 4.1.3.

To explicitly motivate the choice of threshold on the IR, we recall the experimental results
of [355] in Figure 4.2. The authors used a collection of 102 binary datasets with IR values
ranging from 1.82 to 129.44. In Figure 4.2, we plot the difference in obtained AUC values of
IFROWANN classifiers using Wγ and We. Positive values indicate that the former outper-
forms the latter. Figure 4.2a contains the results of all 102 datasets. The datasets are ordered
according to increasing IR. The only definite conclusion that can be drawn from this plot is
that for a very highly imbalanced binary dataset (IR above 65), combinationWγ clearly leads
to the best classification results. In Figure 4.2b, we consider the datasets with an IR of at
most 20. The plot indicates that the benefits of We are only present for mildly imbalanced
datasets. Figures 4.2c and 4.2d are based on the 88 datasets with an IR at most 65. We
include these figures to decide on the threshold above which Wγ can be preferred. They
were constructed by averaging over consecutive points in order to obtain a smoother plot. In
Figure 4.2c, each point was obtained as an average across four observations. For example,
the leftmost point is computed as the mean value of the four least imbalanced datasets in
the study. In Figure 4.2d, the same procedure was followed by taking averages across eight
observations. In this way, an even smoother figure is obtained. We observe that our threshold
of nine certainly seems appropriate. When the IR of a dataset exceeds this value, the use
of Wγ results in a better classification performance of IFROWANN than We. In the other
case, the latter is preferred. Our choice of threshold follows from a tradition in imbalanced
learning and the empirical validation conducted in [355] and visually recalled in Figure 4.2.
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(a) 102 datasets (IR: 1.82–129.44) (b) 55 datasets (IR: 1.82-20)

(c) 88 datasets (IR: 1.82-65) (d) 88 datasets (IR: 1.82-65)

Figure 4.2: Motivation for the definition ofWIR. The horizontal axis represents the IR of the
dataset and the vertical axis the difference in the obtained AUC values between
Wγ and We, based on the results on the 102 binary datasets in [355]. Positive
values indicate that Wγ performs better than We. Lines between points where
drawn for the sake of visual clarity.

Our IFROWANN-WIR classifier is used within the OVO decomposition scheme. For each
pair of classes, it treats the smallest class as positive and the largest class as negative. As
described in Section 4.1.3, whether a class is considered positive or negative affects the choice
of weights used in its lower approximation calculations.

Finally, in order to adequately construct score-matrix (4.4), the classifier should output class
confidence values rather than a strict prediction. When classifying x based on classes Ci and
Cj , our IFROWANN-WIR within OVO computes the score in favour of Ci as Ci(x)

Ci(x)+Cj(x) and

that in favour of Cj as
Cj(x)

Ci(x)+Cj(x) .

4.3.2 New OVO aggregation scheme: WV-FROST

Based on the WV aggregation scheme (Section 4.2.1), we present a novel OVO aggrega-
tion scheme. Our proposal is called WV-FROST, which stands for Weighted Voting with
Fuzzy ROugh Summary Terms. As a traditional OVO aggregator, WV captures the local
information derived from the binary classification problems. WV-FROST complements this
information with a global evaluation in the form of two summary terms. The inclusion of the
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global summary addresses the classifier competence issue (Section 4.2.2) by counteracting the
information loss induced by the binary decomposition step.

Let x be the instance to classify and R(x) the score-matrix constructed with the OVO scheme.
As recalled in Section 4.2.1, the WV method assigns x to the class with the highest combined
weighted vote in its favour. Its decision process relies on a vector Vx with

Vx(Ci) = 1
m

∑
1≤j≤m

rij ,

where the sum of the confidence degrees in favour of class Ci is divided by m for scaling
purposes. WV assigns x to the class corresponding to the maximal value in Vx. Our proposed
WV-FROST method modifies the Vx vector prior to the class prediction step. Two additional
measures are added to each value Vx(Ci) (i = 1, . . . ,m):

• Positive affinity term mem(x,Ci): the membership degree of x to class Ci based
on the full training set. The membership degree is set to the average of the membership
degrees to the fuzzy rough lower and upper approximations of Ci.

• Negative affinity term msen(x,Ci): a signature vector of expected membership
degrees of instances of class Ci to all classes can be constructed based on the mem(y, ·)
for all training instances y ∈ Ci. A similar vector can be constructed for x, namely
consisting of its mem(x, ·) values for all classes. The distance of this vector to the
signature of Ci is penalized.

We discuss the two summary terms in detail in the following paragraphs.

Positive affinity For class Ci, the summary term mem(x,Ci) represents the globally eval-
uated affinity of instance x with class Ci. This measure is defined as the average membership
degree of x to the fuzzy rough lower and upper approximation of Ci, namely

mem(x,Ci) =
Ci(x) + Ci(x)

2 . (4.5)

The values are directly derived from the full dataset and not from the binary sub-problems,
such that mem(x,Ci) corresponds to a global evaluation of the affinity of x with Ci. It should
be clear that definition (4.5) relates to the decision procedure used by the FRNN classifier
([241], Section 4.1.3). We use the OWA based fuzzy rough set model to compute the Ci(x)
and Ci(x) values with weight vectors related to our adaptive weight settingWIR. The sizes of
the sets to aggregate in Ci(x) and Ci(x) are |co(Ci)| and |Ci| respectively, with co(·) the set
complement function. According to WIR, when the IR between Ci and its complement does
not exceed nine, exponential OWA weights are used in both the lower and upper approxi-
mation calculations (combination We). In the other case, when combination Wγ is followed,
the shortest weight vector uses the exponential definition and the longest weight vector is
constructed with (4.3), replacing |P | and |N | by min(|Ci|, |co(Ci)|) and max(|Ci|, |co(Ci)|) re-
spectively in its definition. Instead of simply adding the mem(x,Ci) values to the Vx vector,
we replace each position Vx(Ci) by Vx(Ci)+mem(x,Ci)

2 . In this way, local evaluation Vx(Ci) is
replaced by the average of the local and global measures.
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Negative affinity The second global summary term measures the instance-to-class affinity
at a higher level and evaluates how strongly the mem(x, ·) values resemble the expected
values for instances belonging to particular classes. In order to do so, a signature vector
SCi (i = 1, . . . ,m) consisting of these expected values is constructed for each class. The
class signature corresponds to a decision template [270]. Vector SCi has size m and position
SCi(Cj) corresponds to the average membership value mem(y, Cj) of instances y ∈ Ci. In
particular

SCi = 〈SCi(C1), SCi(C2), . . . , SCi(Cm)〉

=
〈

1
|Ci|

∑
y∈Ci

mem(y, C1), 1
|Ci|

∑
y∈Ci

mem(y, C2), . . . , 1
|Ci|

∑
y∈Ci

mem(y, Cm)
〉
.

The mem(x, ·) values can be grouped in a similar vector Sx and compared to the SCi vectors.
The distance between Sx and the class signatures is measured by the mean squared error as

mse(x,Ci) = 1
m

m∑
i=1

(mem(x,Cj)− SCi(Cj))2

and expresses to what extent x is dissimilar to the training instances of class Ci. The dis-
similarity property implies that a negative class affinity is evaluated by this measure. A high
mse(x,Ci) value indicates a large distance between Sx and the expected class membership
values for instances in class Ci. The inclusion of the second affinity term is motivated by the
following example. Consider a dataset with three classes, of which classes C1 and C2 have a
high overlap in feature space. Since the definitions of the fuzzy rough lower and upper ap-
proximations strongly rely on instance similarity values, the membership values mem(x,C1)
and mem(x,C2) can be expected to be close together. As a consequence, mem(x,C1) and
mem(x,C2) may not suffice to decide between classes. The signature vectors SC1 and SC2

contain the expected membership values of instances of classes C1 and C2 to all classes and
comparing mem(x,C3) to SC1(C3) and SC2(C3) can provide a vital clue in the class decision
process. Before including the mse(x, ·) values in the Vx vector, we scale them by dividing
them by their total sum, defining

msen(x,Ci) = mse(x,Ci)∑m
j=1mse(x,Cj)

.

The msen(x, ·) values are used as summary terms. Since they measure a negative class affinity,
we subtract them from the values in Vx with weight 1

m . This factor is inversely proportional
to the number of classes in the dataset. We can expect the information measured by the
msen(x, ·) values to be less reliable when the number of classes increases. For larger values
of m, the size of SC increases and the constituent membership degrees become more similar.
As a result, the class distinction power of the mean squared error is reduced.

Summary WV-FROST modifies the Vx vector constructed by WV by including two types
of summary terms. For each class Ci, value Vx(Ci) is replaced by the affinity based alternative

AVx(Ci) = Vx(C) +mem(x,Ci)
2 − 1

m
msen(x,Ci), (4.6)

representing the aggregated score for class Ci. Figure 4.3 visually presents the internal con-
struction of the AVx(·) values by WV-FROST. As part of our experimental study, we show
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Figure 4.3: Computation of the class scores AVx(·) by WV-FROST.

that the inclusion of both summary terms leads to superior classification results. The final
predicted class label for test instance x is obtained as the class corresponding to the maximum
AVx(·) value, that is,

l(x) = arg max
i=1,...,m

(AVx(Ci)).

The inclusion of the global summary terms mem(x, ·) and msen(x, ·) results in a dynamic
aggregation procedure combating the classifier competence problem. WV-FROST differs from
the Dynamic OVO and DRCW-OVO methods described in Section 4.2.2, because it leaves the
score-matrix unchanged. We do not modify the matrix, but instead change the aggregated
values by adding more information to them.

4.3.3 Overview of the FROVOCO proposal

Our complete proposal for multi-class imbalanced classification is called FROVOCO, which
stands for Fuzzy Rough OVO COmbination. It uses the IFROWANN-WIR classifier within
the OVO scheme combined with our WV-FROST aggregation. Fuzzy rough set theory is
used in both stages of the proposal, the binary classification and prediction aggregation. The
combined benefits are clearly shown in our experimental analysis conducted in the remainder
of this chapter. Figure 4.4 presents an overview of our complete proposal. To classify a test
instance x, the following steps are performed:

1. In the OVO decomposition phase, element x is sent to all IFROWANN-WIR classifiers,
each using a pair of classes as its training set.

2. The IFROWANN-WIR methods generate class confidence scores.
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3. The obtained scores are grouped in a score-matrix of the form (4.4).

4. WV-FROST is applied to aggregate the score-matrix to the AVx vector using expression
(4.6). This procedure is presented in Figure 4.3. Instance x is assigned to the class for
which the AVx(·) value is largest.

Figure 4.4: Overview of the actions of our full FROVOCO method in the classification of
instance x.

4.4 Experimental study

In this section, we experimentally validate our FROVOCO proposal. We first present our
experimental set-up in Section 4.4.1. In Section 4.4.2, we evaluate our proposed adaptive
weight combination WIR. To further motivate its definition, Section 4.4.3 compares the
WV-FROST component to WV and other partially constructed models. We compare WV-
FROST to other dynamic OVO aggregation procedures in Section 4.4.4. Finally, our full
FROVOCO method as proposed in Section 4.3 is compared to the state-of-the-art in multi-
class imbalanced classification in Section 4.4.4.

4.4.1 Experimental set-up

We use a collection of 18 datasets in the experimental evaluation conducted in this chapter.
The datasets and their properties are listed in Table 4.1. We list the number of features (nu-
meric and nominal) and classes. As an indication of the imbalance present in the dataset, we
list the class distribution as well as the minimum, average and maximum IR values between
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Table 4.1: The 18 multi-class imbalanced datasets used in the experimental study of Chap-
ter 4. The number of features is divided between numeric and nominal ones,
e.g. the automobile dataset has 15 numeric features and 10 nominal features.

Dataset # inst # feat m Min IR Av. IR Max IR Distribution
automobile 150 25 (15/10) 6 1.04 4.90 16.00 3/20/48/46/29/13
balance 625 4 (4/0) 3 1.00 4.25 5.88 288/49/288
cleveland 297 13 (13/0) 5 1.03 3.87 12.62 164/55/36/35/13
contraceptive 1473 9 (9/0) 3 1.23 1.55 1.89 629/333/511
dermatology 358 34 (34/0) 6 1.00 2.17 5.55 111/60/71/48/48/20
ecoli 336 7 (7/0) 8 1.00 15.27 71.50 143/77/2/2/

35/20/5/52
glass 214 9 (9/0) 6 1.09 3.60 8.44 70/76/17/13/9/29
led7digit 500 7 (7/0) 10 1.00 1.16 1.54 45/37/51/57/52/

52/47/57/53/49
lymphography 148 18 (3/15) 4 1.33 18.30 40.50 2/81/61/4
newthyroid 215 5 (5/0) 3 1.17 3.48 5.00 150/35/30
pageblocks 5472 10 (10/0) 5 1.32 31.65 175.46 4913/329/28/87/115
satimage 6435 36 (36/0) 6 1.01 1.73 2.45 1533/703/1358/

626/707/1508
shuttle 58000 9 (9/0) 7 1.30 561.92 558.60 45586/49/171/8903/

3267/10/13
thyroid 7200 21 (21/0) 3 2.22 20.16 40.16 166/368/6666
wine 178 13 (13/0) 3 1.20 1.30 1.48 59/71/48
winequality-red 1599 11 (11/0) 6 1.07 18.83 68.10 10/53/681/638/

199/18
winequality-white 4898 11 (11/0) 7 1.07 61.08 439.60 20/163/1457/2198/

880/175/5
yeast 1484 8 (8/0) 10 1.08 11.65 92.60 244/429/463/44/51/

163/35/30/20/5

pairs of classes. In all datasets, the minimum IR is low, which implies that there are at least
two classes with relatively similar sizes. The maximum IR expresses the largest imbalance
encountered between any class pair in the dataset. This value varies greatly across the in-
cluded datasets and is often very high. For most datasets, the average IR of the class pairs is
relatively moderate, although a few extreme values are present.

In our evaluation, we use the ten-fold DOB-SCV validation scheme, as recommended for im-
balanced data classification in [305] and recalled in Section 2.3.2. The prediction performance
of the included methods is evaluated by means of the balanced accuracy and MAUC mea-
sures (see Section 2.3.1.2). We include both measures to capture two different aspects of the
prediction behaviour of the classifiers. The balanced accuracy considers the actual output of
a method and measures how well it recognizes the different classes. The MAUC, on the other
hand, expresses the ability of an algorithm to separate pairs of classes (see e.g. [428]).

As part of our experimental validation, we compare our FROVOCO method to the state-of-
the-art in multi-class imbalanced classification. We include the following methods discussed
in Section 4.2.3:

• OVO combined with binary resampling [147]: we use the SMOTE method as
resampling method in combination with the C4.5 classifier with the same parameter
settings as in [147]. The use of decision tree learners like C4.5 in ensembles has been
highlighted in [359]. The score-matrix is aggregated using the WV scheme.
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• GlobalCS [498]: we combine this cost-sensitive approach with the C4.5 classifier.

• Static-SMOTE [148]: we combine this oversampling method with the C4.5 classifier.

• MDO oversampling [1]: we combine this method with the C4.5 classifier. We note
that there is a small error in the pseudo-code method description of MDO in [1], which
makes the implementation presented therein invalid. We have fixed this by slightly
modifying Algorithm 3 from [1]. Instead of choosing the value r from the interval
[−
√
AlphaV (j),

√
AlphaV (j)], we divide both boundaries by |A| − 1, where A is the

feature set. This fix is required to guarantee that a solution can be found in line 14.
Leaving the algorithm as it was presented in [1] results in failures.

• AdaBoost.NC [428]: the penalty strength λ is set to two, as done in e.g. [147, 428].
The number of classifiers in the ensemble was set to ten, which is a lower value than
the one used in the referenced studies. In a preliminary evaluation, we observed that
this value provides better average results on our selected datasets. It has been used in
ensemble classifiers for imbalanced data in earlier studies as well (e.g. [304]).

• EFIS-MOEA [144]: we use the implementation as provided by the authors in their
online repository as well as the parameter settings recommended there.

4.4.2 Evaluation of IFROWANN-WIR

In this section, we assess the performance of the IFROWANN method within an OVO
set-up using the nine traditional OVO aggregation schemes recalled in Section 4.2.1. The
IFROWANN classifier is evaluated with three different weight combinations: the two original
settings We and Wγ proposed in [355] and our adaptive version WIR.

We present the average accuracy and MAUC results of this evaluation in Table 4.2. These val-
ues were taken as averages and standard deviations across the 18 datasets listed in Table 4.1.
The benefit of the adaptive combination WIR over We and Wγ is clear. This is particularly
reflected in the balanced accuracy measure, where substantial differences can be observed.
For each aggregation scheme, the use ofWIR leads to the highest accuracy. We also note that
the results of We are better than those of Wγ . This can be explained based on the dataset
description in Table 4.1 and the conclusions drawn from Figure 4.2. The pairwise IR between
classes is often less than nine, a situation in which We yields better results than Wγ . Con-
sidering the MAUC evaluation, smaller performance differences between We, Wγ and WIR
are observed. For five out of nine aggregation methods, WIR has the best performance. In
the four cases where it does not, the differences with the best performing scheme are small.
Setting We mostly outperforms Wγ with respect to the MAUC as well.

In summary, when fixing the IFROWANN weight combination regardless of the IR,We yields
better results than Wγ does. Our adaptive setting WIR further improves the performance.
The largest improvement is observed for the balanced accuracy measure, which implies that
a high rate of correct classifications requires the use of WIR. The power to separate pairs
of classes (as evaluated by the MAUC measure) is more or less comparable for both We

and WIR. Having selected the WIR combination and taking both evaluation measures into
account, we can select the WV procedure as favoured aggregation scheme. It attains the
highest balanced accuracy result and among the highest MAUC values. Furthermore, its
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Table 4.2: Results of the integration of IFROWANN in the OVO setting with the traditional
aggregation methods. For each method and each evaluation measure, we print the
result of the best performing weight combination in boldface.

Balacc
Method We Wγ WIR
VOTE 69.4460 ± 19.6554 61.6819 ± 20.7889 70.4035 ± 20.5736
WV 69.4460 ± 19.6554 63.1538 ± 21.6848 71.4921 ± 19.5685
PC 69.4959 ± 19.6182 62.6440 ± 21.0826 71.3500 ± 19.1160
DDAG 69.9674 ± 19.6337 59.4896 ± 21.0593 71.1942 ± 19.9944
LVPC 58.8251 ± 20.3807 61.2524 ± 20.2090 63.2167 ± 19.5304
ND 69.5269 ± 19.5921 58.5540 ± 23.3192 70.2541 ± 21.2630
BTC 69.4497 ± 19.7924 59.0936 ± 21.4492 70.5591 ± 20.5641
NEST 69.5686 ± 19.6920 56.2790 ± 23.1138 70.0260 ± 21.2530
PE 69.4785 ± 19.7172 62.1607 ± 21.3814 71.1413 ± 19.6598

MAUC
Method We Wγ WIR
VOTE 0.8566 ± 0.1227 0.8208 ± 0.1379 0.8613 ± 0.1204
WV 0.8921 ± 0.1120 0.8910 ± 0.1025 0.8895 ± 0.1120
PC 0.8958 ± 0.1062 0.8935 ± 0.1058 0.8939 ± 0.1067
DDAG 0.8070 ± 0.1243 0.7366 ± 0.1384 0.8143 ± 0.1274
LVPC 0.8932 ± 0.1110 0.8919 ± 0.1043 0.8910 ± 0.1107
ND 0.8779 ± 0.1065 0.8457 ± 0.1229 0.8794 ± 0.1092
BTC 0.8035 ± 0.1259 0.7341 ± 0.1413 0.8105 ± 0.1304
NEST 0.8572 ± 0.1228 0.8208 ± 0.1380 0.8613 ± 0.1204
PE 0.8952 ± 0.1065 0.8875 ± 0.1089 0.8927 ± 0.1077

robustness has been demonstrated in [172, 234]. In the following section, we further improve
the performance of IFROWANN-WIR within OVO by replacing the WV aggregation by our
WV-FROST proposal.

4.4.3 Evaluation of IFROWANN-WV-FROST

In this section, we conduct an internal validation of our WV-FROST proposal and motivate
our inclusion of the two global summary terms. In order to do so, we compare our aggre-
gation scheme to partially constructed versions. We assess whether WV-FROST improves
the performance of WV and whether partially constructed models would already yield sim-
ilar (or better) results. Table 4.3 presents the results of partially constructed versions of
WV-FROST. The classifier within the OVO decomposition is fixed to our IFROWANN-WIR
method. Table 4.3 includes the results of the following models:

• IFROWANN-WIR-WV: the best performing combination from Section 4.4.2. It uses the
IFROWANN-WIR algorithm in the OVO decomposition with WV aggregation.

• mem: this method does not perform a decomposition into binary problems. For a test
instance x, the score of class C is set to value mem(x,C). The class with the highest
score is predicted.
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• mem-msen: this method does not perform a decomposition into binary problems. For
a test instance x, the score of class C is set to value mem(x,C) − 1

mmsen(x,C). The
class with the highest score is predicted.

• IFROWANN-WIR-WV-mem: the IFROWANN-WIR method is used in an OVO de-
composition. The WV-mem aggregation scheme is similar to WV-FROST, but in-
cludes only one global summary term. The affinity based class scores AVx(·) are set to
AVx(C) = Vx(C)+mem(x,C)

2 .

• IFROWANN-WIR-WV-msen: the IFROWANN-WIR method is used in an OVO de-
composition. The WV-msen aggregation scheme is similar to WV-FROST, but in-
cludes only one global summary term. The affinity based class scores AVx(·) are set to
AVx(C) = Vx(C)− 1

mmsen(x,C).

• IFROWANN-WIR-WV-FROST: our complete proposal, the FROVOCO method.

The second and third methods have been included to verify whether our global summary terms
are strong enough on their own or whether the binarization is truly required to obtain correct
predictions. Both models correspond to generalizations of the original binary IFROWANN
method (Section 4.1.3) to multi-class classification.

Table 4.3: Results of IFROWANN-WIR-WV-FROST and partially constructed versions. The
best results are printed in boldface.

Method Balacc MAUC
IFROWANN-WIR-WV 71.4921 ± 19.5685 0.8895 ± 0.1120
mem 67.6477 ± 18.8233 0.8810 ± 0.1069
mem-msen 69.2093 ± 18.3121 0.8958 ± 0.1022
IFROWANN-WIR-WV-mem 71.5351 ± 19.3465 0.8946 ± 0.1065
IFROWANN-WIR-WV-msen 71.8868 ± 19.2429 0.8984 ± 0.0987
IFROWANN-WIR-WV-FROST 72.6327 ± 19.3379 0.9018 ± 0.0982

Table 4.3 clearly shows the superiority of our full proposal over all partially constructed
models. Considering the results in more detail, we can observe the following:

• IFROWANN-WIR-WV-FROST outperforms IFROWANN-WIR-WV on 12 out of the 18
datasets in terms of the balanced accuracy and on 11 out of 18 based on the MAUC.
This proves the worth of the inclusion of the summary terms in the aggregation process.

• Placing the results of models mem and IFROWANN-WIR-WV-mem next to each other,
which differ in their use of the binarization or not, the benefit of the OVO decomposition
is clear, in particular in the evaluation by the balanced accuracy. The relatively high
MAUC result of thememmodel indicates that the fuzzy rough membership degrees form
an adequate tool to separate between pairs of classes. However, this does not necessarily
imply correct classification results, as only pairwise comparisons between classes are used
in the MAUC calculation. The classification behaviour of mem is clearly inferior, as
reflected in its lower balanced accuracy value. Thememmethod corresponds to the most
straightforward extension of IFROWANN to multi-class classification without applying
any binarization. By also incorporating the pairwise comparison between classes, the
IFROWANN-WIR-WV-mem can make more accurate predictions.

88



Chapter 4. Learning from imbalanced data

Table 4.4: Mean balanced accuracy and MAUC values for different IR thresholds and γ values
used within the WIR component of WV-FROST. When varying the threshold, we
set γ = 0.1. When different γ values are compared, the threshold is fixed to nine.
For each column, the highest value is printed in boldface.

IR Balacc MAUC γ Balacc MAUC
5 72.4545 ± 19.4768 0.9022 ± 0.0979 0.0 72.6250 ± 19.1890 0.9050 ± 0.0972
6 72.9003 ± 19.3202 0.9014 ± 0.0979 0.1 72.6327 ± 19.3379 0.9018 ± 0.0982
7 72.8630 ± 19.3377 0.9016 ± 0.0981 0.2 72.1390 ± 19.9091 0.9006 ± 0.0990
8 72.7518 ± 19.3471 0.9015 ± 0.0983 0.3 71.7953 ± 19.8429 0.8995 ± 0.0997
9 72.6327 ± 19.3379 0.9018 ± 0.0982 0.4 71.6738 ± 19.7787 0.8989 ± 0.1000
10 72.5917 ± 19.4183 0.9018 ± 0.0982 0.5 71.3594 ± 19.7781 0.8986 ± 0.1001
11 72.5870 ± 19.4929 0.9018 ± 0.0981 0.6 71.2676 ± 19.8256 0.8983 ± 0.1002
12 72.6394 ± 19.5677 0.9020 ± 0.0982 0.7 70.9449 ± 19.8065 0.8980 ± 0.1003
13 72.7787 ± 19.4216 0.9038 ± 0.0974 0.8 70.6060 ± 19.9011 0.8977 ± 0.1005
14 72.6289 ± 19.4657 0.9039 ± 0.0974 0.9 70.0413 ± 20.1123 0.8973 ± 0.1008
15 72.7019 ± 19.5113 0.9041 ± 0.0975 1.0 69.8500 ± 19.7312 0.8971 ± 0.1010

• Comparing mem to mem-msen on the one hand and IFROWANN-WIR-WV-mem to
IFROWANN-WIR-WV-FROST on the other, the improvement after the inclusion of the
msen term is clear.

• The performance difference between IFROWANN-WIR-WV-FROST and IFROWANN-
WIR-WV-msen shows that it is not sufficient to solely include the msen measure and
that both fuzzy rough summary terms carry complementary information needed to
improve the baseline performance of IFROWANN-WIR-WV.

• In a statistical comparison between IFROWANN-WIR-WV-FROST and IFROWANN-
WIR-WV by means of the Wilcoxon test, the p-values for the balanced accuracy and
MAUC evaluations were 0.16736 (R+ = 118.0, R− = 53.0) and 0.08866 (R+ = 113.0,
R− = 40.0) respectively.

The above results allow us to conclude the validity of our proposal. Aside from the compar-
isons to the partial models, we also study the effect of varying two internal parameters of the
WIR weight combination within FROVOCO. The WIR setting is used by the IFROWANN
classifiers as well as in the calculation of the fuzzy rough membership values (4.5) in the
two summary terms. The internal parameters are the IR threshold above which the weight
combination changes from We to Wγ and the γ value used internally in Wγ . We followed the
conclusions and guidelines of [355] and have set the IR threshold to 9 and γ to 0.1. However,
we need to verify whether a different choice would largely impact the classification results of
our proposal. We do so in Table 4.4. We vary the IR threshold between 5 and 15 and both the
balanced accuracy and MAUC results indicate the small sensitivity of our proposal to these
values. This holds for both the mean values as well as the results per dataset. A different
behaviour is observed when varying the γ parameter. Both evaluation metrics indicate the
preference for a low γ value. A similar evaluation was conducted in the experimental study
of [355], with the same conclusion. Based on these results, we decide to retain the parameter
settings as introduced in Section 4.3.
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4.4.4 WV-FROST versus other dynamic approaches

Our next step is to compare the WV-FROST step to existing dynamic OVO aggregation
approaches. We select the Dynamic OVO [174], DRCW-OVO [178] and NMC [175] meth-
ods discussed in Section 4.2.3. With regard to the latter, we select the version without
the static instance and classifier selection step, such that this method performs a nearest
neighbour comparison of the score-matrices. Each aggregation scheme is combined with the
IFROWANN-WIR classifier within an OVO set-up. These combinations are compared to our
full FROVOCO method, which uses our WV-FROST aggregation.

The mean results and standard deviations of this evaluation are presented in Table 4.5. Ta-
ble 4.6 contains the accompanying statistical comparison of FROVOCO to the other methods
by means of the Wilcoxon test. We observe that our method outperforms all others for both
the balanced accuracy and MAUC. Furthermore, the computed rank sums of the Wilcoxon
tests are always in favour of our proposal as well and it generally attains more wins than
its competitors. WV-FROST significantly outperforms Dynamic OVO at the 5% significance
level for the MAUC evaluation. This is due to the strict exclusion of some candidate classes
by Dynamic OVO. The corresponding class probabilities are set to zero, a drastic action which
results in lower MAUC values. The preference of WV-FROST over DRCW-OVO is clearest
for the balanced accuracy. With respect to NMC, WV-FROST significantly outperforms this
method for the balanced accuracy. From the results in Tables 4.5-4.6, we can conclude that
IFROWANN-WIR within the OVO decomposition scheme interacts better with WV-FROST
than with the existing dynamic aggregation methods proposed in [174, 175, 178]. Since our
binary classifier and aggregation scheme are both based on fuzzy rough set theory, their su-
perior synergy is not an unexpected outcome. In fact, it motivated the use of fuzzy rough
sets in our proposal of WV-FROST.

Table 4.5: Results of FROVOCO and the combination of IFROWANN-WIR with three other
dynamic aggregation methods.

Method Balacc MAUC
IFROWANN-WIR+Dynamic OVO 71.7930 ± 19.8270 0.7894 ± 0.1151
IFROWANN-WIR+DRCW-OVO 70.8782 ± 20.1452 0.8916 ± 0.1097
IFROWANN-WIR+NMC 68.2483 ± 21.4451 0.8907 ± 0.1087
FROVOCO 72.6327 ± 19.3379 0.9018 ± 0.0982

4.4.5 FROVOCO versus state-of-the-art classifiers

As a final step in the experimental validation of FROVOCO, we compare our method to
the state-of-the-art in multi-class imbalanced classification. This comparison includes the
methods as listed in Section 4.4.1: OVO combined with SMOTE resampling and the WV
aggregation scheme (OVO-SMT), GlobalCS combined with C4.5 (GlobalCS), Static-SMOTE
combined with C4.5 (St-SMT), MDO oversampling combined with C4.5 (MDO), the Ada-
Boost.NC method (Ada) and the EFIS-MOEA method (EFIS).

Table 4.7 lists the full results for the balanced accuracy and MAUC measures. For each
dataset, the highest attained result is printed in boldface. With respect to the balanced
accuracy, FROVOCO yields the best result on 10 out 18 datasets as well as the highest value
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Table 4.6: Pairwise statistical comparisons by means of the Wilcoxon test, accompanying the
results of Table 4.5. Lines preceded by ‘B’ correspond to the evaluation by the
balanced accuracy, while those starting with ‘M’ are related to the evaluation by
MAUC. The second column lists the number of wins (W) and losses (L) corre-
sponding to WV-FROST.

Comparison W/L R+ R− p
B: WV-FROST vs Dynamic OVO 9/9 100.0 71.0 0.52773
B: WV-FROST vs DRCW-OVO 12/6 129.0 42.0 0.05994
B: WV-FROST vs NMC 11/7 135.0 36.0 0.03036
M: WV-FROST vs Dynamic OVO 18/0 171.0 0.0 7.63E-6
M: WV-FROST vs DRCW-OVO 11/6 100.0 53.0 0.26595
M: WV-FROST vs NMC 11/6 111.0 42.0 0.10888

on average. For the MAUC, our method wins on 14 out of 18 datasets as well as based on
the mean performance. The AdaBoost.NC method can be considered the closest competitor
and attains the highest balanced accuracy result on four datasets and the highest MAUC
on three. The remaining wins are attained by EFIS-MOEA, which comes in at first place
on two datasets (contraceptive and led7digit) for both evaluation measures. These results
demonstrate that our FROVOCO proposal, which integrates the IFROWANN classifier in an
OVO scheme with the WIR weight combination and the WV-FROST aggregation step, has
a better performance than the state-of-the-art in this domain with respect to the balanced
accuracy and the MAUC.

The accompanying statistical analysis by means of the Friedman and Wilcoxon tests is pre-
sented in Tables 4.8-4.9. The Friedman test detects significant performance differences be-
tween the seven methods for both evaluation measures. In both cases, our method is assigned
the lowest rank (confirming its strong performance) and is used as control method in the Holm
post-hoc procedure. FROVOCO is shown to significantly outperform the Static-SMOTE-C4.5
and MDO-C4.5 combinations for both evaluation measures and the OVO-SMOTE-C4.5-WV
and GlobalCS-C4.5 methods for the MAUC. To study the differences in performance between
FROVOCO and the other methods, we accompany the Friedman test with a Wilcoxon test
comparing our proposal to each of the other algorithms. Table 4.9 lists the rank sums R+ and
R− and p-values associated with the Wilcoxon test as well as the number of wins and losses
for FROVOCO in each comparison. It is plain that our method dominates all others. In each
comparison, it attains the highest number of wins and the highest rank sum R+. The tests
evaluating the MAUC performance all conclude that FROVOCO significantly outperforms
its competitors. With respect to the balanced accuracy, statistically significant differences
are only detected in the comparison with the MDO-C4.5 combination. Nevertheless, from
its high mean balanced accuracy and high number of wins in each comparison, we can still
confidently conclude the superior performance of our proposal. The explanation why no more
significant differences are detected for the balanced accuracy lies with the thyroid dataset. On
this single dataset, our proposal performs very poorly compared to all others (as do all other
evaluated versions of IFROWANN within OVO). This performance difference is assigned the
highest rank in favour of the competing methods and contributes greatly to R−. As recalled
in Section 4.4.1, the balanced accuracy and MAUC measures capture different aspects of the
classification performance. The former solely focuses on the number of correctly and incor-
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Table 4.7: Full balanced accuracy and MAUC results for the state-of-the-art classifiers and
our FROVOCO proposal. For each dataset, for each measure, the highest value is
printed in bold.

Balanced accuracy
Data OVO-SMT GlobalCS St-SMT MDO Ada EFIS FROVOCO
automobile 80.6444 82.9444 81.6444 76.4778 79.9444 72.3111 77.1556
balance 55.2701 56.3966 55.4163 56.4819 65.8900 60.1749 78.8514
cleveland 26.1917 29.5250 31.5750 29.0417 26.8750 30.1417 33.7833
contraceptive 51.7246 52.2288 51.6691 48.7521 47.9522 54.2195 47.4449
dermatology 96.2096 95.1751 94.0951 95.3709 94.6845 95.6578 97.1553
ecoli 71.4609 68.5556 69.7810 71.1481 76.2654 67.8465 77.2723
glass 75.1885 66.3492 66.7837 63.0437 71.5516 32.6508 67.0694
led7digit 63.5466 63.8680 64.9089 64.1728 54.3621 65.2918 64.7918
lymphography 72.2222 72.1825 76.3442 73.2093 72.4355 65.5109 86.2401
newthyroid 91.3889 90.7222 89.8333 90.4444 94.7222 91.8333 91.1111
pageblocks 89.2398 91.5234 87.2636 83.7520 91.9105 91.8161 90.0399
satimage 85.2928 84.4995 84.0159 84.7142 87.5570 33.8754 89.4955
shuttle 96.8439 98.4794 97.8236 91.3154 98.4803 98.2324 91.8527
thyroid 99.2688 98.9774 98.2533 97.9360 99.4186 97.8544 66.4500
wine 95.2698 93.8214 94.3254 92.9881 94.7579 95.5992 98.2143
winequality-red 34.1986 35.9825 33.9332 31.8371 39.6884 16.6667 43.7544
winequality-white 39.3455 44.8675 36.5483 39.3391 47.6684 15.4762 47.8895
yeast 51.8083 51.8429 51.4764 53.3381 49.0789 55.8139 58.8178
Mean 70.8397 70.9967 70.3162 69.0757 71.8468 63.3874 72.6327

MAUC
Data OVO-SMT GlobalCS St-SMT MDO Ada EFIS FROVOCO
automobile 0.9299 0.9133 0.8870 0.8928 0.9370 0.9340 0.9633
balance 0.5901 0.6068 0.6656 0.6768 0.8609 0.8245 0.8854
cleveland 0.5772 0.5171 0.5723 0.5610 0.5834 0.6307 0.6981
contraceptive 0.6560 0.6567 0.6375 0.6529 0.6669 0.7387 0.6485
dermatology 0.9861 0.9722 0.9646 0.9727 0.9857 0.9944 0.9966
ecoli 0.8990 0.7850 0.8203 0.8556 0.9162 0.9191 0.9304
glass 0.9204 0.8430 0.7997 0.8534 0.9246 0.7814 0.9325
led7digit 0.9134 0.8385 0.8050 0.8780 0.7640 0.9207 0.9189
lymphography 0.7717 0.7845 0.8022 0.8231 0.7847 0.8106 0.9108
newthyroid 0.9563 0.9414 0.9238 0.9276 0.9972 0.9811 0.9981
pageblocks 0.9739 0.9434 0.9204 0.9446 0.9876 0.9859 0.9736
satimage 0.9619 0.9063 0.9041 0.9214 0.9817 0.7385 0.9817
shuttle 0.9979 0.9920 0.9873 0.9600 0.9911 0.9983 0.9987
thyroid 0.9965 0.9944 0.9869 0.9894 0.9998 0.9948 0.8494
wine 0.9788 0.9593 0.9574 0.9482 0.9818 0.9938 1.0000
winequality-red 0.7495 0.6323 0.6036 0.6432 0.7581 0.5000 0.8342
winequality-white 0.7772 0.7116 0.6249 0.6811 0.7856 0.5000 0.8309
yeast 0.8472 0.7209 0.7288 0.7693 0.8279 0.8544 0.8810
Mean 0.8602 0.8177 0.8106 0.8306 0.8741 0.8389 0.9018
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Table 4.8: Results of the Friedman test and Holm post-hoc procedure. P-values implying
statistically significant differences at the 5% significance level are printed in bold.

Balacc MAUC
Method Rank pHolm Rank pHolm

FROVOCO 2.7222 (1) - 1.8333 (1) -
Ada 3.3333 (2) 0.396066 2.8889 (2) 0.14268
OVO-SMT 3.9444 (3) 0.192233 3.7222 (4) 0.026136
GlobalCS 4.0556 (4) 0.192233 5.2778 (6) 0.000009
EFIS 4.2778 (5) 0.123014 3.2778 (3) 0.089725
St-SMT 4.6111 (6) 0.04356 6.0556 (7) ≤ 0.000001
MDO 5.0556 (7) 0.007162 4.9444 (5) 0.000062
pF riedman 0.028848 ≤ 0.000001

Table 4.9: Results of the Wilcoxon test comparing FROVOCO to the six state-of-the-art clas-
sifiers. Lines preceded by ‘B’ relate to the evaluation by the balanced accuracy,
while those starting with ‘M’ correspond to the MAUC performance. P-values
implying statistically significant differences at the 5% significance level are printed
in bold. The second column lists the number of wins (W) and losses (L) corre-
sponding to WV-FROST.

Comparison W/L R+ R− p
B: FROVOCO versus OVO-SMOTE-C4.5-WV 12/6 116.0 55.0 0.19638
B: FROVOCO versus GlobalCS-C4.5 13/5 117.0 54.0 0.18146
B: FROVOCO versus Static-SMOTE-C4.5 13/5 124.0 47.0 0.09874
B: FROVOCO versus MDO-C4.5 16/2 148.0 23.0 0.004746
B: FROVOCO versus AdaBoost.NC 11/7 108.0 63.0 0.32714
B: FROVOCO versus EFIS-MOEA 12/6 130.0 41.0 0.05386
M: FROVOCO versus OVO-SMOTE-C4.5-WV 15/3 149.0 22.0 0.004006
M: FROVOCO versus GlobalCS-C4.5 16/2 156.0 15.0 0.0010452
M: FROVOCO versus Static-SMOTE-C4.5 17/1 157.0 14.0 0.0008392
M: FROVOCO versus MDO-C4.5 16/2 155.0 16.0 0.0012894
M: FROVOCO versus AdaBoost.NC 15/3 139.0 32.0 0.018234
M: FROVOCO versus EFIS-MOEA 14/4 137.0 34.0 0.02368

rectly predicted elements, while the latter takes the prediction confidence of the classifier
into account. Based on the analysis presented in Table 4.9, we can stress that the prediction
confidences of FROVOCO are significantly more reliable than those of its competitors.

As a final aspect, we consider the influence of the actual imbalance on the prediction results.
To this end, we combine the results in Table 4.7 with the IR information in Table 4.1.
The datasets on which FROVOCO performs sub-optimally in comparison with the other
algorithms are mainly those with a high average IR. In particular, these are the pageblocks,
shuttle and thyroid datasets, for which the high average IR value is due to the presence of
one very large majority class. When we investigate these results in more detail, we observe
that the accuracy of our proposal on the single majority class is notably lower than the
accuracy on this class obtained by the other methods. This low value results in an inferior
balanced accuracy. The fact that there is only one majority class as well as its absolute
size explain why FROVOCO has a relatively poor performance in this situation. Firstly, the
method aims to boost the performance on the minority classes to such a degree that the
classification performance on the single majority class is negatively affected. The combined
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effect of all minority classes against the single majority class leads to a decrease in balanced
accuracy. Secondly (and perhaps most importantly), when the majority class is very large,
the OWA based fuzzy rough approximation operators are hindered in their recognition ability
(see Chapter 3). This is due to the effect of the aggregation length on weight vector (4.3),
which is used when the IR between a pair of classes is high. When the absolute size of one of
these classes is high, the length of the weight vector increases and the weights on the non-zero
positions flatten out towards an average. We have discussed this property of the additive
weights at length in Chapter 3. As a consequence, the desirable characteristics are lost. On
the winequality-white dataset, which has an average IR of 61.08, FROVOCO yields the best
balanced accuracy result. This does not contradict our analysis above. This dataset contains
two majority classes, of which the sizes do not differ strongly. Moreover, the size of the largest
class is also not that great compared to that of the pageblocks, shuttle and thyroid datasets.

In summary, as demonstrated by the balanced accuracy and MAUC results in Table 4.7 and
the statistical analysis in Tables 4.8-4.9, our FROVOCO method outperforms its competitors
in multi-class imbalanced classification. It combines local (OVO decomposition) and global
(WV-FROST aggregation) views of the data, thereby improving the recognition of minority
classes. Only in the particular case when a single massive majority class is present, the
user may prefer to apply the AdaBoost.NC method in the classification process instead. For
reasons discussed in this section, FROVOCO is less suited to handle this one specific type
of problem. This situation can easily be checked for by a user before the application of a
multi-class imbalanced classification method.

4.5 Conclusion

This chapter reviewed the domain of imbalanced data classification. An uneven distribution
of observations across the decision classes can increase the difficulty to adequately discern
between classes. To resolve this issue, a myriad of approaches have been proposed in the
literature. Data level techniques modify the training set during preprocessing to obtain a
better (sometimes perfect) balance between classes. Algorithm level methods are imbalance-
resistant classifiers, which take the possible presence of class imbalance into account in their
learning phase. At its inception, research on class imbalanced data focused on binary problems
with one minority and one majority class. Nevertheless, class imbalance presents itself in
applications with more than two classes as well.

We have introduced our FROVOCO proposal that extends the binary IFROWANN method
from [355] to the multi-class imbalanced setting relying on the OVO decomposition scheme.
The latter is a traditional way to reduce a multi-class problem to several two-class sub-
problems, on which binary methods can be applied. Within this decomposition setting, we
use an adaptive version of the IFROWANN method, which chooses its weight settings based
on the imbalance present in a particular sub-problem. The OVO step does not yield an im-
mediate prediction for a target instance. Instead, it collects classifier confidence degrees and
generates a score-matrix. An aggregation procedure is required to extract one class prediction
from this matrix. We have proposed a new such aggregator, called WV-FROST, that fur-
ther complements the local information grouped in the score-matrix with global information
extracted from the full multi-class dataset.
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We have extensively evaluated our proposal in the experiments conducted in this chapter. By
means of an empirical validation of both components of our FROVOCO method (our adaptive
IFROWANN-WIR method and our WV-FROST aggregator), we can confidently conclude
their strength. The latter is a dynamic aggregation procedure, for which alternatives have
already been proposed in the literature. We have shown that, within our FROVOCO method,
WV-FROST results in a superior performance compared to the existing approaches. As a
final step, we have compared FROVOCO to the state-of-the-art in multi-class imbalanced
classification and have again been able to show the dominance of our proposal based on both
the balanced accuracy and MAUC.

Another aspect that can be assessed in future research is the interaction of the WV-FROST
aggregation with other classifiers in the OVO decomposition. Within FROVOCO, the fuzzy
rough operators are used in both the binary classifiers and global affinity terms and nicely
complement each other in terms of local and global information respectively. When a different
classifier is used, this synergy may be lost or, equally likely, the WV-FROST affinity terms
can still provide a sufficient assessment of the global relation of instances with classes to
benefit the OVO score-matrix. This remains to be verified.
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5 Fuzzy rough set based classification of
semi-supervised data

In several classification applications, obtaining labelled training instances is costly or difficult.
While the feature values of observations can be relatively easy to collect, sufficient resources
and expert knowledge are required to (manually) assign these elements to their correct classes.
This phenomenon is addressed by the introduction of semi-supervised classification, in which
a prediction model is derived from a training set consisting of both labelled and unlabelled
data. Information in both the labelled and unlabelled parts of the training set can be used
in the classification process.

In this chapter, we evaluate the performance of fuzzy rough set based methods in semi-
supervised classification. In Section 5.1, we first introduce this domain with a specific focus
on the self-labelling approach. Self-labelling methods extend the labelled part of the training
set by predicting class labels for unlabelled training instances and accepting the most confi-
dent predictions among them. This intuitive approach to semi-supervised classification has
been adopted by many researchers. In Section 5.2, we evaluate our fuzzy rough classifiers from
Chapter 3 for this classification task. We combine them with a variety of self-labelling tech-
niques in order to study the interaction between the fuzzy rough classification mechanism and
self-labelling. Our experiments show that the self-labelling step is not necessary and that our
fuzzy rough methods significantly outperform existing semi-supervised classification methods
by only relying on the originally labelled training elements. Finally, our overall conclusions
are presented in Section 5.3.

5.1 Semi-supervised classification

Semi-supervised learning is located on the midpoint between supervised and unsupervised
learning and incorporates aspects of both settings [72, 504]. A semi-supervised training
set T consists of a labelled part L and unlabelled part U , where the size of the former is
usually considerably smaller than that of the latter. The information contained in the full
training set, both labelled and unlabelled instances, can be exploited. Two prominent sub-
categories are semi-supervised classification and semi-supervised clustering. The goal in a
semi-supervised classification task is to construct a strong classification model based on the
information present in both L and U . This setting leans more toward the supervised learning
paradigm with its general aim to predict the outcome of unseen elements. Semi-supervised
clustering (also, constrained clustering) adheres more closely to unsupervised learning. Sim-
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ilar to the traditional clustering task, the goal is to detect well-separated groups of similar
elements. The extension to semi-supervised clustering comes with the constraints represented
by the labelled data corresponding to must-links (elements that should be in the same cluster)
and cannot-links (elements that should be in different clusters) (e.g. [27, 442]). We focus on
the classification setting in this chapter, as we do elsewhere in the dissertation.

It should be noted that the classification behaviour of a semi-supervised classification algo-
rithm can be decomposed into two components. The transductive learning phase relates to
the prediction performance on the elements in U , of which the feature values are available
during training but the labels are not. The evaluation on a separate test set corresponds to
the inductive learning phase.

In this chapter, we focus on self-labelling methods to perform semi-supervised classification.
Section 5.1.1 recalls a recently proposed taxonomy for these techniques and lists several well-
performing methods. Semi-supervised classification approaches other than self-labelling are
discussed in Section 5.1.2. We conclude this section with a brief discussion on recent appli-
cation papers in the semi-supervised classification domain in Section 5.1.3.

5.1.1 Self-labelling techniques

One particularly intuitive semi-supervised classification approach is self-labelling. Generally
put, these methods have an iterative nature and try to predict the missing class labels in
the training set, such that the final classification phase can rely on a larger set of labelled
instances. In each iteration, class predictions for the elements in U are derived based on the
labelled elements in L. The most confident predictions are accepted, increasing the size of L
and the information contained in it.

A self-labelling technique extends the set L to one or more supersets L′. A taxonomy for
these methods was proposed in the recent review paper [400]. The authors note that the
traditional distinction between self-training [456], co-training [51] and its generalization to
multi-view learning [383] does not suffice to capture every defining difference between existing
algorithms. Their proposed taxonomy consists of the following four categories:

• Addition mechanism: in constructing L′ from L, several search directions can be
followed. An incremental algorithm adds elements to L step by step, increasing its size
in each iteration. A batch approach first marks all elements to be labelled and added to
L and only effectively adds them after this assessment process has been completed. The
third option is to implement an amending procedure, where instances can be added to
or removed from L′ in each iteration. This allows the method to undo previous labelling
decisions.

• Number of classifiers: a distinction is made between single-classifier and multi-
classifier systems. The former uses a single classifier to predict the labels of elements
in U , while the latter aggregates the predictions of multiple classifiers to derive these
class decisions.

• Number of learning algorithms: when multiple classifiers are used, they can ei-
ther use the same learning algorithm (single-learning) or multiple different learning
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algorithms (multi-learning). A single-classifier method uses single-learning by defini-
tion, while multi-classifier systems can opt to follow either the single-learning or multi-
learning approach.

• Type of view: several existing self-labelling methods perform one or more vertical
splits of the set L, that is, they construct several smaller datasets based on feature
subsets. The intuition behind this multi-view approach is to use redundant and con-
ditionally independent views of the same data to improve the classification ability of
the method. When no splits are applied and only the full set L is used in the learning
process, the method is denoted as single-view.

Aside from these main defining taxonomic characteristics, the following additional properties
are highlighted in [400]:

• Confidence measure: to decide which elements from U to add to L, a confidence
degree on the class prediction is computed. Different types of confidence measures have
been developed. Simple measures are directly derived from the prediction process from
the single classifier used in the labelling step. Agreement and combination measures
are used within multi-classifier methods. One option is to derive the confidence degree
from the agreement between the predictions of the classifiers, e.g. by a majority voting
scheme. An alternative is to aggregate the confidence degrees provided by the different
classifiers.

• Teaching approach: this property relates to multi-classifier algorithms. They can
perform mutual-teaching, where the classifiers exchange their predictions and increase
each other’s custom training sets. The final complete set L′ is constructed by com-
bining the sets processed and enlarged by the different classifiers. The self-teaching
approach works on a single labelled set and uses the combined information provided by
all classifiers to extend it in each iteration.

• Stopping criteria: at a certain point, the construction of L′ is halted. It is not
necessary for all elements in U to be labelled, several alternative stopping criteria have
been proposed in existing self-labelling methods.

Aside from the taxonomic division recalled above, the contribution of [400] also lies with a
thorough experimental comparison of 15 self-labelling methods in combination with different
base classifiers. The authors used a collection of 64 datasets and varied the percentage of
labelled elements in the training sets. Their evaluation allowed them to put forward the
following strong performing algorithms:

• Standard co-training [51] with SMO (support vector machines with sequential minimal
optimization, [341]) as base classifier. The co-training procedure is an incremental,
multi-classifier, single-learning, multi-view (concretely, two views) method that performs
mutual-teaching. The labelled set L is split into two parts based on two feature subsets.
A classifier is trained on each of these sets and, in later iterations, on their enlarged
versions. The most confident predictions of one classifier are added to the training set
of the other.
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• TriTraining [496] with C4.5 as base classifier. This is an incremental, multi-classifier,
single-learning, single-view algorithm, that determines the most confident predictions
based on three classifiers learned from bootstrapped versions of L.

• Democratic co-learning (DemCo, [493]). As an incremental, multi-classifier, multi-
learning, single-view method, DemCo relies on three classifiers (3NN, C4.5, Naive
Bayes). The mutual learning approach is followed, where confident predictions for unla-
belled elements are added to the labelled training set of those classifiers that predicted
a class different than the majority.

• Co-bagging [200, 201] with C4.5 as base classifier. This method sits in the same place
of the taxonomy as TriTraining and is an incremental, multi-classifier, single-learning,
single-view method. A classifier committee is constructed by training multiple classifiers
following the standard bagging procedure ([58], Section 2.2.7).

Finally, we note that the SEGSSC framework was recently proposed in [399]. Any self-
labelling technique (including the ones listed above) can be integrated within it. SEGSSC
addresses the small size and sparsity of L by generating synthetic elements. The acronym
stands for Synthetic Examples Generation for Self-labelled Semi-supervised Classification.
The generation process is based on oversampling (Section 4.1.2) and position adjustment
techniques. The experimental evaluation conducted in [399] showed the improvement in
prediction performance when using a self-labelling method within the SEGSSC framework.

5.1.2 Other semi-supervised classification techniques

Aside from the self-labelling approach discussed in the preceding section, three other groups
of semi-supervised classification techniques can be listed [504]. For the sake of completeness,
we briefly discuss them here.

• Generative models and cluster-then-label methods: as discussed in Section 2.2.6,
a generative model approximates the joint distribution of P (X,Y ) from the provided
training set. A semi-supervised generative model uses both labelled and unlabelled
elements to learn this distribution. Examples of this approach can be found in e.g. [3,
166, 198, 260, 302, 389]. Cluster-then-label methods are a related setting, where the
training set is first clustered and then labelled using the labelled elements within each
constructed cluster (e.g. [10, 116, 118, 155, 268]).

• Semi-supervised support vector classification: semi-supervised support vector
machines have been proposed as an extension of the traditional support vector machine
classifier (see Section 2.2.3) to handle partly labelled training data (e.g. [4, 39, 73,
250, 391]). The inclusion of unlabelled elements in the learning process results in a non-
convex optimization problem. The intuition behind clustering is incorporated: instances
that are close in the feature space should have similar outcomes. The learned SVM
decision boundary should (i) sufficiently separate classes and (ii) not cross dense regions
of unlabelled elements.

• Graph-based methods: these techniques formulate the semi-supervised classification
task as a graph min-cut problem [50]. A weighted graph representation of the dataset
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is generated, in which each training instance (labelled or unlabelled) corresponds to a
node. Weights of edges are determined based on the similarity between the instances
they connect. A minimum cut of the graph is determined in order to partition the
classes. Graph-based semi-supervised classification methods have been proposed in
e.g. [33, 70, 251, 381, 422, 441].

5.1.3 Applications

Several application domains can be listed in which partially labelled and partially unlabelled
datasets present themselves. In this section, we collect a number of recently published appli-
cation papers that use semi-supervised methods to solve specific prediction problems.

A first domain of note is that of natural language processing [253, 314]. Its core task revolves
around language recognition, which can be in the form of speech analysis, text analysis or text
generation. Semi-supervised classification algorithms have recently been developed for speech
analysis [298], sentiment analysis [114, 492], big social data analysis [236] and personality
prediction [286]. The book review [378] provides an overview of semi-supervised algorithms
for natural language processing and how this setting allows to deal with the inherent data
sparsity of such problems.

Research in bioinformatics often encounters semi-supervised data as well. Technological ad-
vances have led to a relatively easy data acquisition, while the labelling task remains costly
and commonly requires a human expert. Semi-supervised datasets are a necessary compro-
mise. Examples of recent work focus on phenotype classification [130], gene regulatory in-
ference [340], the taxonomic assignment of metagenomic reads [406] and protein sub-cellular
localization prediction [447].

A third domain in which researchers have made ample use of semi-supervised techniques is
image recognition and classification. Recent proposals can be found for general image classifi-
cation (e.g. [115, 196, 308]) with specific examples of glaucoma detection [30], remote sensing
image classification [235] and hyperspectral image classification [420]. The face recognition
task has been addressed with semi-supervised methods as well (e.g. [184, 185, 417]).

Some miscellaneous application examples include intrusion detection (e.g. [20, 237, 331]),
vegetation classification (e.g. [392]) and medical diagnosis (e.g. [471, 486, 502]).

5.2 Fuzzy rough set based classifiers and self-labelling

The aim of this chapter is to assess how our proposed fuzzy rough classifiers from Chapter 3
with our optimized weighting scheme selection strategies perform on semi-supervised data
and how they interact with self-labelling techniques. Section 5.2.1 studies the performance
of the OWA based fuzzy rough set model (in the form of the classifiers proposed in Chap-
ter 3) on semi-supervised data. We evaluate their prediction strength on datasets where a
substantial part of the training set is unlabelled. In Section 5.2.2, we combine the fuzzy
rough classification step with several self-labelling approaches to analyse whether the former
benefits from the latter. Section 5.2.3 presents a comparison of the performance of our fuzzy
rough approach and existing semi-supervised classification methods relying on self-labelling.
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Table 5.1: The 30 datasets used in the experimental study of Sections 5.2.1-5.2.3. The number
of features is divided between numeric and nominal ones, e.g. the abalone dataset
has 7 numeric features and 1 nominal feature.

Dataset # inst # feat # classes Dataset # inst # feat # classes
abalone 4174 8 (7/1) 28 lymphography 148 18 (3/15) 4
appendicitis 106 7 (7/0) 2 mammographic 830 5 (5/0) 2
australian 690 14 (8/6) 2 monk-2 432 6 (6/0) 2
automobile 159 25 (15/10) 6 movement libras 360 90 (90/0) 15
banana 5300 2 (2/0) 2 pima 768 8 (8/0) 2
bupa 345 6 (6/0) 2 saheart 462 9 (8/1) 2
cleveland 303 13 (13/0) 5 segment 2310 19 (19/0) 7
contraceptive 1473 9 (9/0) 3 sonar 208 60 (60/0) 2
crx 653 15 (6/9) 2 spambase 4597 57 (57/0) 2
dermatology 358 34 (34/0) 6 spectfheart 267 44 (44/0) 2
ecoli 336 7 (7/0) 8 titanic 2201 3 (3/0) 2
german 1000 20 (7/13) 2 vehicle 846 18 (18/0) 4
glass 214 9 (9/0) 6 vowel 990 13 (13/0) 11
haberman 306 3 (3/0) 2 wisconsin 683 9 (9/0) 2
heart 270 13 (13/0) 2 yeast 1484 8 (8/0) 10

Lastly, Section 5.2.4 discusses the results and outlines directions for future research in this
area.

5.2.1 OWA based fuzzy rough classifiers on semi-supervised data

As demonstrated in Chapter 3, selecting an appropriate weighting scheme for the OWA based
fuzzy rough operators based on the data at hand further increases the strength of the OWA
based fuzzy rough set model in the classification task. In this section, we use our proposed
weighting scheme selection strategy and study the prediction performance of this model on
semi-supervised data. At this stage, we only use the elements in L to derive class predictions.
We do not first extend L to a superset L′ with additional labelled elements, that is, we do not
perform any self-labelling at this point. As a result, although we report the performance on
both, there is no fundamental difference between the evaluation on the unlabelled instances
in U (transductive phase) and those in the test set (inductive phase). The calculations in the
prediction step are independent of both.

We use 30 datasets provided by [400] and apply the ten-fold cross validation scheme. The
percentages of labelled instances range from 10% to 40%. These datasets were constructed by
randomly removing the labels of a certain percentage of training elements, ensuring that at
least one labelled instance is present for each class. The remaining dataset characteristics are
presented in Table 5.1. We use the balanced accuracy to measure the prediction performance
of all classifiers. We compare their performance to the base classifiers used in [400], namely
the 1NN algorithm, the decision tree classifier C4.5 and the support vector machine method
SMO. The parameters of these methods are set to the values considered in [400], as we are
using the same datasets and partitions as this study as well.

We include three OWA based fuzzy rough classifiers. Version ‘Lower’ uses the lower approxi-
mation as predictor (see Section 3.3), while version ‘Upper’ relies on the upper approximation
to make class predictions (see Section 3.4). The third version ‘Both’ combines the lower and

102



Chapter 5. Fuzzy rough set based classification of semi-supervised data

Table 5.2: Mean transductive and inductive balanced accuracy results for the fuzzy rough
methods and the 1NN, C4.5 and SMO classifiers.

Transductive
Lower Upper Both 1NN C4.5 SMO

10% 0.6396 0.6397 0.6425 0.6122 0.5923 0.6239
20% 0.6807 0.6727 0.6774 0.6400 0.6338 0.6440
30% 0.6987 0.6923 0.7001 0.6561 0.6521 0.6688
40% 0.7142 0.7053 0.7139 0.6677 0.6694 0.6776

Inductive
Lower Upper Both 1NN C4.5 SMO

10% 0.6447 0.6443 0.6470 0.6102 0.6035 0.6261
20% 0.6847 0.6750 0.6805 0.6481 0.6402 0.6572
30% 0.7024 0.6921 0.6997 0.6664 0.6643 0.6744
40% 0.7208 0.7090 0.7166 0.6812 0.6815 0.6900
100% 0.7463 0.7423 0.7456 0.7047 0.7157 0.7147

upper approximations in the class score calculations (see Section 3.5.3). For each of these, the
OWA weighting schemes are selected according to our guidelines derived in Chapter 3. Ta-
ble 5.2 presents the mean transductive and inductive balanced accuracy across the 30 datasets
in Table 5.1. The leftmost column lists the percentage of labelled instances in the training set.
For the inductive balanced accuracy, we include the evaluation with a fully labelled training
set as well. The results allow us to conclude the following:

• On average, the fuzzy rough methods provide better balanced accuracy results than
the 1NN, C4.5 and SMO classifiers. This holds for both the transductive and inductive
results and for all evaluated percentages of labelled training instances.

• The performance differences between the three fuzzy rough methods are minor and we
can consequently opt to limit ourselves to the OWA based lower approximation method.

• In Table 5.3, this classifier is compared to 1NN, C4.5 and SMO by means of the Wilcoxon
test. For the former two methods, the difference in performance is always found to be
significant and this in favour of our fuzzy rough method. With respect to the comparison
with the SMO method, the OWA based fuzzy rough lower approximation significantly
outperforms this classifier for almost all settings as well.

The above study reaffirms the strength of our weighting scheme selection guidelines proposed
in Chapter 3. In particular, the evaluation with 100% labelled training data shows that
the basic lower approximation classifier outperforms the standard 1NN, C4.5 and SMO algo-
rithms. Our method upholds this strong performance even when the percentage of labelled
training instances is drastically decreased.

5.2.2 Interaction with self-labelling schemes

As a next step in our evaluation, we integrate the OWA based lower approximation classifier
with our weighting scheme selection guidelines from Section 3.3 in the well-performing self-
labelling schemes discussed in Section 5.1.1. This step is performed to evaluate whether
our classifier benefits from self-labelling at all or whether it suffices to only explicitly use
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Table 5.3: Results of the Wilcoxon tests comparing the OWA based fuzzy rough lower ap-
proximation classifier to 1NN, C4.5 and SMO methods on semi-supervised data.
P-values that imply statistically significant differences at the 5% significance level
are printed in boldface.

Transductive
Lower vs 1NN Lower vs C4.5 Lower vs SMO

R+ R− p R+ R− p R+ R− p
10% 371.0 94.0 0.00425 390.0 75.0 0.001155 284.0 181.0 0.28482
20% 397.0 68.0 0.000689 379.0 86.0 0.002498 322.0 113.0 0.023181
30% 407.0 58.0 0.000319 394.5 70.5 0.000805 336.0 129.0 0.032427
40% 403.0 62.0 0.000421 400.0 65.0 0.000549 335.0 130.0 0.034129

Inductive
Lower vs 1NN Lower vs C4.5 Lower vs SMO

R+ R− p R+ R− p R+ R− p
10% 370.0 95.0 0.004431 394.0 71.0 0.000862 290.0 175.0 0.231681
20% 403.0 62.0 0.000436 412.0 53.0 0.000214 330.0 135.0 0.043832
30% 395.0 70.0 0.000800 373.5 91.5 0.003524 340.0 125.0 0.026325
40% 404.0 61.0 0.000404 380.0 85.0 0.002334 311.0 154.0 0.104184
100% 429.0 36.0 0.000051 357.0 108.0 0.010139 346.5 118.5 0.018219

the information in L to derive confident predictions. We include the following classification
models:

• Lower: the method evaluated in the previous section. It uses the OWA based fuzzy
rough lower approximation to classify instances. Within this operator, the method uses
our weighting scheme selection strategy proposed in Section 3.3.

• SelfTr(FR), CoTr(FR), TriTr(FR), CoBag(FR): the standard self-training [456], co-
training [51], TriTraining [496] and CoBagging [200, 201] methods using the above
fuzzy rough classifier as base classifier during self-labelling as well as final classifier.

• CoTr(SMO)+FR, TriTr(C45)+FR, CoBag(C45)+FR: during the self-labelling phases,
these methods coincide with the ones listed in Section 5.1.1, namely the co-training
algorithm with SMO as base classifier, the TriTraining method with C4.5 as base clas-
sifier and the CoBagging method with C4.5 as base classifier respectively. The final
classification of U and the test set is performed by the fuzzy rough classifier.

• FR-SSL: the study of [309] proposed a naive fuzzy rough self-labelling method that
labels all instances in U by using the fuzzy rough approximation operators. We use our
classifiers from Chapter 3 in these labelling steps in order to verify how they interact
with this straightforward fuzzy rough set based self-labelling approach.

For the self-labelling methods apart from FR-SSL, we use the same parameter settings as in
[400]. The combinations CoTr(SMO), TriTr(C45) and CoBag(C45) were put forward as the
best-performing self-labelling alternatives in that study. In this evaluation, we modify these
settings in two ways. In a first version, we replace their base classifier by the ‘Lower’ method
(represented by CoTr(FR), TriTr(FR) and CoBag(FR)). The second version corresponds to
the CoTr(SMO), TriTr(C45) and CoBag(C45) methods themselves, in which we have only
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Table 5.4: Mean balanced accuracy results of the included self-labelling methods and clas-
sifiers. For algorithms containing random components, we report the standard
deviation of the mean balanced accuracy across ten runs. For each setting, the
highest mean value is printed in boldface.

Transductive
10% 20% 30% 40%

Lower 0.6396 0.6807 0.6987 0.7142
SelfTr(FR) 0.6197 0.6602 0.6831 0.6972
CoTr(FR) 0.6182±0.0106 0.6611±0.0094 0.6838±0.0079 0.6975±0.0082
CoTr(SMO)+FR 0.6170±0.0107 0.6530±0.0095 0.6730±0.0078 0.6860±0.0089
TriTr(FR) 0.6302±0.0072 0.6726±0.0054 0.6942±0.0045 0.7086±0.0049
TriTr(C45)+FR 0.6280±0.0100 0.6672±0.0083 0.6919±0.0059 0.7044±0.0060
CoBag(FR) 0.6156±0.0091 0.6546±0.0111 0.6820±0.0082 0.7008±0.0079
CoBag(C45)+FR 0.6227±0.0099 0.6587±0.0109 0.6860±0.0081 0.7038±0.0076
FR-SSL 0.5123 0.5466 0.5715 0.5930

Inductive
10% 20% 30% 40%

Lower 0.6447 0.6847 0.7024 0.7208
SelfTr(FR) 0.6234 0.6577 0.6841 0.7004
CoTr(FR) 0.6231±0.0136 0.6644±0.0103 0.6890±0.0094 0.7040±0.0092
CoTr(SMO)+FR 0.6233±0.0145 0.6609±0.0115 0.6854±0.0088 0.6969±0.0094
TriTr(FR) 0.6323±0.0093 0.6742±0.0076 0.6965±0.0070 0.7139±0.0052
TriTr(C45)+FR 0.6379±0.0124 0.6769±0.0107 0.6976±0.0077 0.7111±0.0072
CoBag(FR) 0.6211±0.0127 0.6607±0.0124 0.6854±0.0107 0.7062±0.0107
CoBag(C45)+FR 0.6282±0.0138 0.6647±0.0124 0.6887±0.0105 0.7087±0.0110
FR-SSL 0.5050 0.5521 0.5672 0.5915

replaced the final classifier by our fuzzy rough method. In the next section, we will compare
the results of the fuzzy rough methods with the original methods used in [400] as well.
Note that we do not include the SEGSSC framework from [399] at this point, since we first
wish to study the precise interplay of our fuzzy rough classifier with the pure self-labelling
techniques without the results being affected by the further interaction between SEGSSC
and self-labelling. We also do not test the third possible modification of the self-labelling
methods evaluated in [400], wherein we would use the fuzzy rough method as base classifier
and maintain SMO or C4.5 as final classifier, since this evaluation carries no information on
the effect of self-labelling on the fuzzy rough set based classifier.

The mean results are reported in Table 5.4 and the accompanying statistical analysis can
be found in Table 5.5. We use the Wilcoxon test to compare the performance of our OWA
based fuzzy rough lower approximation classifier with and without self-labelling, as we wish
to verify whether it benefits from a self-labelling step. The results in Table 5.4 indicate
that this may not be the case. For both the transductive and inductive performance, for all
evaluated percentages of labelled instances in the training set, the highest average result is
obtained by the classifier without self-labelling. It only uses the information in L to classify the
instances in U and the test set and outperforms other methods that have extended the set L
by labelling some additional training instances. The statistical analysis in Table 5.5 confirms
that no increase in classification performance of our fuzzy rough method is obtained after
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Table 5.5: Results of the Wilcoxon test comparing our fuzzy rough classifier ‘Lower’ to the
other algorithms in Table 5.4 in the format ‘R+/R−/p’. The R+ value always
corresponds to the fuzzy rough method. P-values implying statistically significant
differences at the 5% significance level are printed in boldface.

Transductive
10% 20% 30% 40%

SelfTr(FR) 346.5/118.5/0.018219 382.0/83.0/0.00198 376.5/88.5/0.002813 367.5/97.5/0.005088
CoTr(FR) 398.5/66.5/0.000616 406.5/58.5/0.000332 392.5/42.5/0.000136 431.0/34.0/0.000043
CoTr(SMO)+FR 426.0/39.0/0.000066 435.0/30.0/0.00003 435.0/30.0/0.00003 412.0/53.0/0.000214
TriTr(FR) 384.0/81.0/0.00177 416.0/49.0/0.000154 385.0/80.0/0.00165 414.0/51.0/0.000182
TriTr(C45)+FR 297.0/168.0/0.180119 319.5/145.5/0.071174 240.5/194.5/0.610386 275.0/16.0/0.202373
CoBag(FR) 446.0/19.0/0.000011 463.0/2.0/0.000002 455.0/10.0/0.000005 453.0/12.0/0.000005
CoBag(C45)+FR 353.0/112.0/0.012819 418.0/47.0/0.00013 417.0/48.0/0.000142 407.0/58.0/0.000319
FR-SSL 436.0/29.0/0.000027 438.0/27.0/0.000023 438.0/27.0/0.000023 408.0/57.0/0.000295

Inductive
10% 20% 30% 40%

SelfTr(FR) 375.0/90.0/0.003269 372.0/63.0/0.000803 337.0/98.0/0.009465 372.5/62.5/0.000748
CoTr(FR) 372.5/62.5/0.000748 354.0/81.0/0.002974 363.5/71.5/0.001447 386.5/48.5/0.000247
CoTr(SMO)+FR 390.0/75.0/0.001155 389.0/76.0/0.001241 388.0/77.0/0.001334 418.0/47.0/0.00013
TriTr(FR) 402.0/63.0/0.000471 333.0/132.0/0.037764 313.0/152.0/0.095706 414.0/51.0/0.000182
TriTr(C45)+FR 309.5/155.5/0.110008 293.0/172.0/0.206079 242.5/192.5/0.57828 308.5/156.5/0.114673
CoBag(FR) 449.0/16.0/0.000008 442.0/23.0/0.000016 451.0/14.0/0.000007 444.0/21.0/0.000013
CoBag(C45)+FR 377.0/88.0/0.00286 415.0/50.0/0.000167 422.0/43.0/0.000093 411.0/54.0/0.000232
FR-SSL 432.0/33.0/0.000039 426.0/39.0/0.000066 416.0/49.0/0.000154 403.0/62.0/0.000436

self-labelling. Instead, almost all pairwise comparisons show that a statistically significant
performance drop follows from trying to extend the set of labelled training instances. Only
for the TriTr(C45)+FR combination do we not observe significant differences, although the
high R+ values for the classifier without self-labelling again express that the TriTraining step
does more harm than good. We also note that the performance of the FR-SSL method is
particularly poor. It labels the full set U , which is clearly too extreme an option and results
in a considerable and significant decrease in prediction performance.

Starting from overall sparse training data, a self-labelling process creates denser regions of
same-class elements. The average similarity of labelled elements with other labelled instances
of the same class increases, while the average similarity with labelled elements in opposite
classes decreases. As our fuzzy rough classifier heavily relies on instance similarity values in
its class predictions, the creation of such class islands in feature space can result in misclassi-
fication errors in sparser regions. Our method performs better on the original datasets, where
the sparsity is distributed more evenly across the feature space.

5.2.3 Comparison with other classifiers

Based on the above analysis, we can claim that our classifier from Section 3.3 can be used to
adequately classify semi-supervised data as is, that is, without first self-labelling the training
set. It remains to be verified whether its classification strength can rival that of existing
semi-supervised classification algorithms that do rely on self-labelling, in particular methods
exhibiting a strong classification performance in earlier studies. We compare our classifier
to the four best performing algorithms from the extensive comparative study conducted in
[400]. As discussed in Section 5.1.1, these are the co-training algorithm with SMO as base
classifier (CoTr(SMO)), the TriTraining method with C4.5 as base classifier (TriTr(C45)),
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Table 5.6: Mean balanced accuracy results of our fuzzy rough classifier and existing self-
labelling techniques. For algorithms containing random components, we report
the standard deviation of the mean balanced accuracy across ten runs. For each
setting, the highest mean value is printed in boldface.

Transductive
10% 20% 30% 40%

Lower 0.6396 0.6807 0.6987 0.7142
CoTr(SMO) 0.5940±0.0113 0.6323±0.0099 0.6589±0.0084 0.6710±0.0083
TriTr(C45) 0.6023±0.0106 0.6372±0.0078 0.6583±0.0084 0.6748±0.0068
DemCo 0.5934±0.0002 0.6298±0.0002 0.6552±0.0002 0.6816±0.0002
CoBag(C45) 0.5935±0.0133 0.6310±0.0115 0.6523±0.0099 0.6680±0.0097
SEGSSC-TriTr(C45) 0.6263±0.0082 0.6616±0.0072 0.6788±0.0080 0.6918±0.0075
SEGSSC-DemCo 0.6284±0.0077 0.6602±0.0077 0.6728±0.0082 0.6859±0.0080
SEGSSC-CoBag(C45) 0.6273±0.0047 0.6603±0.0040 0.6702±0.0044 0.6840±0.0043

Inductive
10% 20% 30% 40%

Lower 0.6447 0.6847 0.7024 0.7208
CoTr(SMO) 0.5962±0.0168 0.6458±0.0121 0.6696±0.0102 0.6753±0.0096
TriTr(C45) 0.6116±0.0157 0.6497±0.0118 0.6701±0.0109 0.6862±0.0104
DemCo 0.6002±0.0003 0.6368±0.0003 0.6750±0.0003 0.6875±0.0001
CoBag(C45) 0.6039±0.0177 0.6441±0.0165 0.6647±0.0153 0.6780±0.0147
SEGSSC-TriTr(C45) 0.6328±0.0121 0.6727±0.0127 0.6847±0.0131 0.6980±0.0131
SEGSSC-DemCo 0.6322±0.0142 0.6676±0.0138 0.6818±0.0135 0.6943±0.0129
SEGSSC-CoBag(C45) 0.6314±0.0093 0.6700±0.0087 0.6831±0.0092 0.6967±0.0092

democratic co-learning (DemCo) and co-bagging with C4.5 as base classifier (CoBag(C45)).
For all included algorithms, we use the same parameter settings as considered in [400]. Aside
from these methods, we also evaluate the latter three within the SEGSSC framework from
[399] (SEGSSC-TriTr(C45), SEGSSC-DemCo, SEGSSC-CoBag(C45)).

The experimental results, averaged across the datasets in Table 5.1, are reported in Table 5.6.
Based on their mean performance, our fuzzy rough classifier stands strong against all other
included methods, outperforming all of them with respect to the classification of both the
unlabelled training instances in U (transductive performance) and the independent test set
(inductive performance). This holds for all percentages of labelled training elements. The
performance difference with the standard self-labelling algorithms used in [400] is substantial.
These methods do provide better results when used within the SEGSSC framework, but with-
out reaching the level of our OWA based lower approximation predictor with the weighting
scheme selection strategy from Section 3.3.

We report the results of the statistical analysis in Tables 5.7-5.8. The former compares the
performance of the included classifiers by means of the Friedman test. For each setting, the
p-value of this test is smaller than 0.05 and indicates that significant differences in perfor-
mance exist between the algorithms. Our fuzzy rough classifier always receives the lowest
Friedman rank and is therefore used as control method in every Holm post-hoc procedure.
The associated pHolm values show that our method often outperforms the competitor algo-
rithms with statistical significance. Only for the SEGSSC-TriTr(C45) combination can we
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Table 5.7: Results of the Friedman test comparing the algorithms from Table 5.6. P-values
implying statistically significant differences at the 5% significance level are printed
in boldface.

Transductive
10% 20%

Rank pHolm Rank pHolm
Lower 3.0333 (1) - 2.7833 (1) -
CoTr(SMO) 5.5000 (7) 0.000577 4.9667 (5) 0.002225
TriTr(C45) 4.8000 (5) 0.020866 5.2000 (7) 0.000797
DemCo 5.2333 (6) 0.002521 5.1500 (6) 0.000913
CoBag(C45) 6.1333 (8) 0.000007 5.8333 (8) 0.000010
SEGSSC-TriTr(C45) 3.6000 (2) 0.740528 3.5000 (2) 0.257151
SEGSSC-DemCo 3.6000 (2) 0.740528 4.0667 (3) 0.084980
SEGSSC-CoBag(C45) 4.1000 (4) 0.275071 4.5000 (4) 0.019925
pFriedman 0.000001 0.00001

30% 40%
Rank pHolm Rank pHolm

Lower 2.7000 (1) - 2.8667 (1) -
CoTr(SMO) 4.4333 (3) 0.012264 4.4000 (3) 0.030666
TriTr(C45) 5.1000 (7) 0.000887 5.0833 (6) 0.002284
DemCo 4.9333 (5) 0.001655 4.5833 (4) 0.019925
CoBag(C45) 5.6333 (8) 0.000025 5.2000 (8) 0.001574
SEGSSC-TriTr(C45) 3.5667 (2) 0.170587 3.9000 (2) 0.102292
SEGSSC-DemCo 4.6000 (4) 0.007989 4.8000 (5) 0.008946
SEGSSC-CoBag(C45) 5.0333 (6) 0.001124 5.1667 (7) 0.001657
pFriedman 0.000057 0.002493

Inductive
10% 20%

Rank pHolm Rank pHolm
Lower 3.0333 (1) - 2.9000 (1) -
CoTr(SMO) 5.5000 (8) 0.000673 4.6000 (5) 0.028758
TriTr(C45) 5.2333 (5) 0.002017 5.4333 (7) 0.000371
DemCo 5.4667 (7) 0.000716 5.2833 (6) 0.000822
CoBag(C45) 5.4000 (6) 0.000913 5.7333 (8) 0.000052
SEGSSC-TriTr(C45) 3.4667 (2) 0.858391 3.4667 (2) 0.370264
SEGSSC-DemCo 3.5333 (3) 0.858391 4.3167 (4) 0.075283
SEGSSC-CoBag(C45) 4.3667 (4) 0.105045 4.2667 (3) 0.075283
pFriedman 0.00004 0.00002

30% 40%
Rank pHolm Rank pHolm

Lower 3.3167 (1) - 2.8167 (1) -
CoTr(SMO) 4.1000 (3) 0.431018 4.6500 (4) 0.011239
TriTr(C45) 5.1500 (7) 0.022479 4.9333 (6) 0.004088
DemCo 4.3667 (4) 0.290625 4.7333 (5) 0.009765
CoBag(C45) 5.7333 (8) 0.000930 5.6000 (8) 0.000075
SEGSSC-TriTr(C45) 3.8000 (2) 0.444738 3.7667 (2) 0.133076
SEGSSC-DemCo 4.5333 (5) 0.290625 4.5333 (3) 0.013284
SEGSSC-CoBag(C45) 5.0000 (6) 0.038887 4.9667 (7) 0.013284
pFriedman 0.003332 0.000664
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never conclude that the performance of the fuzzy rough classifier is significantly superior. In
Table 5.8, we perform a pairwise comparison of our method to the seven other algorithms
included in Table 5.6 by means of the Wilcoxon test. This mostly confirms our findings from
the group analysis in Table 5.7 and even more statistically significant differences are detected
in favour of our proposal.

Note that we have not evaluated our fuzzy rough method within the SEGSSC framework.
When doing so, we could, based on the reported results in Table 5.6, possibly expect a
small increase in the classification performance relative to that of the combination methods
in Table 5.4. However, the SEGSSC framework requires the algorithm to first be integrated
within a self-labelling procedure (e.g. TriTraining or CoBagging) and our method clearly does
not interact well with these proposals (see Section 5.2.2). We therefore decided to retain our
classifier in its clean, basic form. Its classification procedure is easy to understand and plainly
performs well.

To conclude, the benefit of using our OWA based fuzzy rough lower approximation classifier
proposed in Section 3.3 on semi-supervised data is apparent. In fact, comparing the results
in Table 5.6 to the ones reported in Table 5.2, we observe that the CoTr(SMO), TriTr(C45)
and CoBag(C45) methods do not clearly outperform their C4.5 and SMO base classifiers.
Only when integrated within the SEGSSC framework is their performance sufficiently lifted.
However, the latter operation comes at a cost due to the synthetic element generation steps
that rely on differential evolution [345]. We have shown that our method is already sufficiently
strong when using only the originally labelled training data in its class predictions.

5.2.4 Discussion

The above experimental results have shown the strong performance of our OWA fuzzy rough
set based classifier from Chapter 3 relative to existing semi-supervised classification meth-
ods. However, it is important to note that we have only included semi-supervised classifiers
performing self-labelling in the comparison in Section 5.2.3. Alternative approaches (see Sec-
tion 5.1.2) are not represented. The reason for this is that our ‘Lower’ method is in fact
not a true semi-supervised classifier, in the sense that it does not use the elements in U to
derive its class predictions. We have shown in Section 5.2.2 that our fuzzy rough set based
method does not benefit from self-labelling in the classification of semi-supervised data. We
only wished to verify whether its performance consequently sits below that of algorithms that
do use self-labelling to their advantage. This is not the case.

We do not claim that there exists no possibility other than self-labelling to further enhance
the performance of our fuzzy rough classifier on semi-supervised data by exploiting the infor-
mation in U in its prediction mechanism. One possible area of future research lies with the
modification of the definitions of the fuzzy rough approximation operators (3.7-3.8) according
to the presence of unlabelled training instances. In their present form, the lower approxima-
tion of a class C relies on labelled training instances not in C and the upper approximation
of C relies on labelled training instances in C. In other words, the former relies on elements
in L ∩ co(C) and the latter on elements in L ∩ C. On a semi-supervised dataset, these sets
could be extended with certain elements in U , for instance by including unlabelled elements
near x when computing C(x) and C(x) and weighing their contribution according to how
strongly they relate to co(C) or C respectively. Inspiration for the latter could be found
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Table 5.8: Results of the Wilcoxon test comparing our fuzzy rough classifier ‘Lower’ to the
other algorithms in Table 5.6 in the format ‘R+/R−/p’. The R+ value always
corresponds to the fuzzy rough method. P-values implying statistically significant
differences at the 5% significance level are printed in boldface.

Transductive
10% 20%

CoTr(SMO) 399.0/66.0/0.000593 386.5/78.5/0.001443
TriTr(C45) 369.0/96.0/0.004834 376.0/89.0/0.003058
DemCo 372.0/93.0/0.003982 360.0/75.0/0.001987
CoBag(C45) 386.0/79.0/0.001537 388.0/77.0/0.001334
SEGSSC-TriTr(C45) 316.0/149.0/0.084035 342.0/123.0/0.023665
SEGSSC-DemCo 287.0/178.0/0.257946 345.5/119.5/0.019257
SEGSSC-CoBag(C45) 285.0/180.0/0.275659 339.0/126.0/0.027749

30% 40%
CoTr(SMO) 373.0/92.0/0.00373 363.0/102.0/0.00705
TriTr(C45) 386.0/79.0/0.001537 363.0/72.0/0.001594
DemCo 372.0/93.0/0.003982 374.0/91.0/0.003492
CoBag(C45) 390.0/75.0/0.001155 387.0/78.0/0.001432
SEGSSC-TriTr(C45) 316.0/149.0/0.084035 338.0/127.0/0.029239
SEGSSC-DemCo 287.0/178.0/0.257946 355.5/79.5/0.002674
SEGSSC-CoBag(C45) 285.0/180.0/0.275659 368.0/97.0/0.005153

Inductive
10% 20%

CoTr(SMO) 394.0/71.0/0.000862 368.0/97.0/0.005153
TriTr(C45) 380.0/85.0/0.002274 387.0/78.0/0.001432
DemCo 377.0/88.0/0.002789 375.0/90.0/0.003269
CoBag(C45) 389.5/75.5/0.001163 397.0/68.0/0.000689
SEGSSC-TriTr(C45) 298.0/167.0/0.174619 329.0/136.0/0.046029
SEGSSC-DemCo 297.0/168.0/0.181242 340.5/124.5/0.025259
SEGSSC-CoBag(C45) 281.0/184.0/0.312281 325.0/140.0/0.055767

30% 40%
CoTr(SMO) 347.0/118.0/0.018013 340.0/95.0/0.007822
TriTr(C45) 347.5/87.5/0.004662 376.0/89.0/0.003058
DemCo 324.5/140.5/0.056459 362.5/102.5/0.007122
CoBag(C45) 388.0/77.0/0.001334 387.0/78.0/0.001432
SEGSSC-TriTr(C45) 320.0/145.0/0.070294 349.0/116.0/0.016106
SEGSSC-DemCo 359.0/106.0/0.008821 370.0/95.0/0.004534
SEGSSC-CoBag(C45) 352.0/113.0/0.013549 373.0/92.0/0.00373
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with the techniques listed in Section 5.1.2. This approach stays close to self-labelling, which
iteratively adds elements to L and thereby naturally extends the sets L ∩ co(C) and L ∩ C,
but differs from it by (i) only performing one ‘labelling’ iteration and (ii) using an adaptive
set of instances in U for the prediction of each element x (namely, only those sufficiently near
x).

Two other components are present in definitions (3.7-3.8), namely the instance similarity
relation R(x, ·) and the OWA weight vectors WL and WU . The former could be replaced
by an alternative directly incorporating the information in U for example in a similar way
as semi-supervised support vector machine classifiers use the unlabelled training elements.
As described in Section 5.1.2, these methods avoid to let the decision boundary cross dense
regions of unlabelled elements. An option for our fuzzy rough set based methods would be
to penalize the similarity between labelled instances separated by a dense unlabelled region.
Very informally put, this corresponds to considering two people standing on either bank of a
50 meter wide river as more distant to each other as when they were standing on either end
of a 50 meter long meadow. It is more difficult to cross the former than the latter. Another
option is the integration of the training set label sparsity in the definitions of WL and WU .
The weight definitions discussed in Chapter 3 could be updated to accommodate both labelled
and unlabelled elements, for instance by interweaving weight vectors of different schemes with
each other (e.g. W add

L for L and W exp
L for U).

5.3 Conclusion

In this chapter, we have studied the topic of semi-supervised classification. In a semi-
supervised training set, only part of the observations are associated with a class label, while
the remainder is unlabelled. The classification task can be split up in two aspects, the trans-
ductive and inductive performances. The former refers to the prediction of class labels for
unlabelled training elements, while the latter evaluates the predictions for unseen test ele-
ments.

We have evaluated our fuzzy rough classifiers proposed in Chapter 3 for this task using a set of
30 semi-supervised datasets with 10%, 20%, 30% and 40% of labelled training instances (that
is, 30 datasets for each of these percentages). These are fairly basic and easy-to-understand
algorithms: to classify an instance x, they compute its membership degree to the OWA based
fuzzy rough lower or upper approximation of all decision classes and assign x to the class
for which this value is largest. The weighting schemes used within the lower and upper
approximation calculations are chosen according to our strategy proposed in Chapter 3.

In a first step of our evaluation, we were able to show that our fuzzy rough classifiers retain
a strong performance even when only a small portion of the training set is labelled. Using
the relatively limited amount of information available in the labelled part of the training
set, our methods clearly outperform other base classifiers used in the experimental study of
[400]. Only small performance differences are observed between our methods using the lower
approximation, upper approximation or both and we decided to focus on the former. Secondly,
we combined this OWA based fuzzy rough lower approximation classifier with existing strong
self-labelling techniques and showed that its performance is not improved by extending the
labelled part of the training set. Instead, statistically significant decreases in performance were
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observed. We concluded that the most prudent course of action is to only allow our fuzzy
rough method to use the originally labelled training instances to derive its predictions. In the
final part of our experiments, we compared the classification performance of our classifier to
existing semi-supervised classifiers that do rely on self-labelling. We selected well-performing
methods from recent studies [399, 400]. Our method outperforms all included algorithms and
often so with statistical significance.

The reader will recognize that this has been an atypical chapter, in which we showed that
our existing algorithm from Chapter 3 already performed very well and is only hindered
by making modifications for this specific classification setting. As should be clear from our
discussion in Chapter 1, the difference between supervised and semi-supervised data is of
a different order than the difference between traditional data and multi-instance or multi-
label data (Chapters 6-7). Semi-supervised data does not imply a new structure of the
observations, only a smaller labelled training set. As we will discuss in our overall conclusion
in Chapter 8, fuzzy rough set based methods are particularly suited for small classification
problems, that is, problems with small to moderately-sized training sets. Aside from this
aspect, our optimized weighting scheme selection strategy from Chapter 3 has allowed our
OWA based lower approximation predictor to use the limited information in the training set
to its full advantage. As discussed in Section 5.2.2, extending the labelled part of the training
set by means of self-labelling can result in a relatively more challenging training set to learn
from (although containing more labelled data) and the adverse effect is clear on our fuzzy
rough classifier due to its strong dependence on instance similarity values.

Our main conclusion from this study is twofold, namely (i) our OWA based fuzzy rough lower
approximation classifier proposed in Chapter 3 performs strongly even on semi-supervised
data and (ii) the method does not benefit from any self-labelling. We acknowledge that the
second conclusion has been derived using only (variants of) established self-labelling methods
reviewed in [400]. However, while studying the challenge of semi-supervised classification, we
did test many other ideas, both based on fuzzy rough set theory and not, but no improvements
over the baseline performance of our method could be obtained. As shown in the experimental
study, the performance of the naive fuzzy rough self-labelling method proposed in [309] is far
below that of the other methods reported in this chapter as well. The inherent characteristic
of self-labelling remains that these methods can intuitively be expected to create several dense
areas of same-class instances (in which confident class predictions were made) separated by
sparser regions (where prediction confusion is present). The resulting self-labelled training
sets do not lend themselves as appropriate training data for our fuzzy rough classification
algorithm. In fact, the question whether or not knowledge of unlabelled training instances
truly improves the performance of a classifier trained on semi-supervised data is an important
and ongoing topic of discussion in the literature and several studies have shown that genuine
semi-supervised classifiers can be outperformed by supervised methods trained on the labelled
data only (e.g. [37, 82, 265, 281, 283, 377, 480]). Lessons learnt from the development of so-
called safe semi-supervised classifiers (e.g. [281, 283]) can further assist us in the study of a
true semi-supervised fuzzy rough set based classification method.

The research question has been whether our fuzzy rough classifier benefits from self-labelling.
We have shown that it does not, but wish to stress that this conclusion should not be regarded
as a negative result. Instead, we have once again confirmed the strength of our weighting
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scheme selection strategy proposed in Chapter 3. Its strong performance compared to the
existing semi-supervised classifiers as evaluated in Section 5.2.3 furthermore suggests an ef-
ficiency gain for the classification of this type of data. Our classifier does not require a
self-labelling step, which is usually an iterative procedure in which many classifiers are con-
structed, and only uses the small labelled training set in its predictions. As a consequence,
the classification procedure is both swift and relatively accurate.
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6 Multi-instance learning

The domain of multi-instance learning (MIL) deals with datasets consisting of compound data
samples. Instead of representing an observation as an instance described by a single feature
vector, each observation (called a bag) corresponds to a set of instances and, consequently, a
set of feature vectors. The instances within a bag can represent different parts or alternative
representations of the same object. Initially proposed in [126], the MIL domain has devel-
oped into a mature learning paradigm with many real-world applications. A comprehensive
overview can be found in the recent book [216].

In this chapter, we propose multi-instance classifiers based on fuzzy and fuzzy rough set theory.
Our methods classify unseen bags using either instance-level or bag-level information. We first
provide an introduction to MIL in general in Section 6.1 and to multi-instance classification in
Section 6.2. Our fuzzy multi-instance classifiers are described in Section 6.3, while Section 6.4
defines our fuzzy rough multi-instance methods developed for class imbalanced multi-instance
data. These two sections provide a complete overview of our proposals and all proposed
internal parameter settings.

We conduct a thorough experimental validation of our proposals. A high number of experi-
mental results are included and, for the sake of clarity, we divide the experimental study into
two parts. Section 6.5 compares the different internal settings of our methods and explains
why certain choices for the given parameters are more appropriate than others. In Section 6.6,
with lessons learnt from Section 6.5, we compare our methods to existing multi-instance clas-
sifiers on both balanced and imbalanced multi-instance datasets. Finally, Section 6.7 sums
up our conclusions.

We have aimed to retain a clear structure in the large amount of material included in this
chapter, which consists of three parts (followed by the conclusion in Section 6.7), summarized
as follows:

1. Sections 6.1-6.2 serve as introduction to the topic of multi-instance classification.

2. Sections 6.3-6.4 introduce our two frameworks of multi-instance classifiers based on
fuzzy and fuzzy rough set theory respectively. These chapters describe the classification
process of our methods in great detail, including illustrative examples and a discussion
on their computational complexity.
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3. Sections 6.5-6.6 present our experimental study. The former evaluates the internal
parameters of our two proposed frameworks. Its first part handles the fuzzy set based
framework from Section 6.3 and its second part evaluates the fuzzy rough set based
methods from Section 6.4. The second component of our experimental study is presented
in Section 6.6, where we compare our algorithms to existing multi-instance classifiers.

6.1 Introduction to multi-instance learning

We first provide a brief introduction to the domain of MIL. Its origins are presented in Sec-
tion 6.1.1, where we discuss the original proposal [126] by Dietterich et al. initiating research
in this field. Having provided the intuition behind multi-instance data, its formal description
is given in Section 6.1.2. Several prominent application areas are listed in Section 6.1.3. This
section (as well as Section 6.2) is based on the recent book [216] and we refer the interested
reader to that work for a more detailed survey of the field.

6.1.1 Origin

The seminal paper by Dietterich et al. [126] introduced and formalized the concept of multi-
instance data. The authors provided the toy problem of staff member key chains. Every
member has a number of keys, one of which opens the supply room of the department.
However, different supply room keys have been handed out. Some of them only open the
actual supply room, while others can be used for other rooms (e.g. the cafeteria) as well. The
task of a lock smith would be to deduce the shape of the key required to open the supply
room door based on the key chains of all staff members without them actually showing which
one of their keys opens this door. The lock smith therefore only knows that one of the keys
per chain opens the required door, but not which one.

Section 1.1.2 already recalled the second (more realistic) multi-instance data application pre-
sented in [126], namely the drug activity prediction task. This biochemistry application aims
to ascertain which drug (typically a small molecule) binds to a certain target, thereby produc-
ing the desired biological or medical effect. Since a molecule is made up of several atoms, it
can appear in different shapes (called conformations or molecular structures) due to internal
rotations. Its binding ability and strength can depend on the particular shape. These alterna-
tive representations result in a more complex data format, where each observation (molecule)
corresponds to several instances (conformations). When at least one of its conformations
binds to the target, the molecule is considered a good drug molecule. On the other hand,
when none of its conformations result in a binding, it belongs to the negative class and should
not be used in this particular drug synthesis process.

Multi-instance learning is a generalization of traditional (single-instance) learning. Whereas
each observation could traditionally be represented by a single feature vector, a multi-instance
observation corresponds to a bag of instance vectors. In the examples above, an observation
corresponds to a key chain containing several keys or a drug molecule with different confor-
mations. The increased complexity in the data format, which we formally specify in the next
section, requires custom learning algorithms to extract the information contained in it. By
formulating the above problems in this manner, the field of MIL was born.
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Table 6.1: General structure of a multi-instance dataset with M labelled bags with descriptive
features a1, a2, . . . , ad.

Bag a1 a2 . . . ad Outcome

B1

a1(x11) a2(x11) . . . ad(x11)

y1
a1(x12) a2(x12) . . . ad(x12)

. . . . . . . . . . . .
a1(x1nB1

) a2(x1nB1
) . . . ad(x1nB1

)

B1

a1(x21) a2(x21) . . . ad(x21)

y2
a1(x22) a2(x22) . . . ad(x22)

. . . . . . . . . . . .
a1(x2nB2

) a2(x2nB2
) . . . ad(x2nB2

)
. . . . . . . . . . . . . . . . . .

BM

a1(xM1) a2(xM1) . . . ad(xM1)

yM
a1(xM2) a2(xM2) . . . ad(xM2)

. . . . . . . . . . . .
a1(xMnBM

) a2(xMnBM
) . . . ad(xMnBM

)

6.1.2 Structure of multi-instance data

An example multi-instance dataset was presented in Table 1.3. In the present context, an
observation is referred to as a bag containing a number of instances. Each instance x can
be represented as a d-dimensional feature vector, in which the ith position corresponds to
the value of x for the ith descriptive feature. A bag B contains nB instances. As the index
indicates, the size of each bag in the dataset can be different. Furthermore, duplicate instances
within the same bag are allowed and different bags can contain copies of the same instance(s)
as well. In supervised multi-instance learning, the bag is associated with a class label. We
should stress that this label is only known for the bag as a whole and not for its constituent
instances. Note that, as is common in the MIL literature, we use lower-case letters to refer
to instances and upper-case letters to refer to bags.

The general structure of a labelled multi-instance dataset is presented in Table 6.1. The
dataset contains M bags B1 to BM . Each bag Bi in turn consists of nBi instances xi1 to
xinBi

. Each of these instances is described by its values for the d features. Value ak(xij)
corresponds to the kth feature value of instance xij (k = 1, . . . , d). The outcome yi associated
with a bag Bi can be discrete (a class label) or continuous (regression outcome).

6.1.3 Application areas

The multi-instance data format presented in Table 6.1 is naturally encountered in a variety
of applications. In general, we can list the following sources of multi-instance data with an
intrinsic ambiguity in observation representation.

• Alternative representations: as described in Section 6.1.1, the drug activity predic-
tion task considers molecular data, where each bag corresponds to a set of conformations
of the same molecule. This fits in this first group of multi-instance data sources, where
a number of different descriptions or views of the same object are included.
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Figure 6.1: A full English breakfast at the White Hart Inn in Winchcombe (UK).

• Compound objects: when an observation consists of several integral parts, each of
them can be represented by an instance in the bag corresponding to the observation. A
traditional example is the image classification task, where an image (bag) is divided into
several regions of interest (instances) by means of an image segmentation technique.
The example image in Figure 6.1 would be labelled as a ‘full English breakfast’. Its
constituent instances are the image segments corresponding to the breakfast ingredients
(poached egg, sausage, beans, cup of tea and so on).

• Evolving objects: the third source of multi-instance data corresponds to time-series
problems, where the same object is recorded at several time steps. The bag corresponds
to the monitored object and the instances to the recording at each time point. An
example dataset is one consisting of medical measurements of a patient on each day of
a hospital stay.

Application areas where the above sources of multi-instance data are encountered include
bioinformatics (e.g. [5, 56, 126, 165, 273, 280, 322, 446, 490]), image retrieval and classifica-
tion (e.g. [71, 94, 142, 219, 255, 316, 346]), web mining and text classification (e.g. [363, 468,
469, 495]), object detection and tracking (e.g. [21, 424, 474]), medical diagnosis and imaging
(e.g. [133, 343, 382, 426]) and acoustic event detection (e.g. [267]). The study of [12] stressed
the possibly considerable differences in the multi-instance characteristic of different applica-
tion areas, even when they all yield datasets in which observations are represented as bags of
instances.
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6.2 Multi-instance classification

In multi-instance classification (MIC), the goal is to predict the class label of a previously
unseen bag based on a classification model learned from a training set of labelled bags. The
difference with traditional single-instance classification (see Chapter 2) lies with the data
format used in the learning process. As described in Section 6.1.2, a bag is a collection of in-
stances. The learner needs to handle these compound objects and derive sufficient information
from them.

In Section 6.2.1, we first discuss a number of existing multi-instance hypotheses that decide
when a bag is considered positive in two-class multi-instance problems with one positive and
one negative class. Section 6.2.2 recalls a taxonomy of multi-instance classifiers that divides
these algorithms based on how they approach the multi-instance nature of their training data.
Several example methods are listed as well.

Aside from MIC, multi-instance regression and unsupervised MIL exist as learning paradigms
as well [216]. One multi-instance task that is not present in single-instance learning is instance
annotation. In this setting, aside from the prediction of the bag label, a class is derived for
each instance as well. The set of possible instance classes is not required to coincide with the
set of possible bag classes.

6.2.1 Multi-instance hypotheses

The most common and traditional setting within MIC is that of binary classification with one
positive and one negative class. Multi-instance hypotheses or assumptions indicate when a
bag is considered positive based on the instances it contains. They represent the link between
the bag label and the constituent instances. In particular, the multi-instance hypothesis maps
a set of instance labels to a bag label. This relation is often implicit in the development of a
multi-instance classifier.

The so-called standard multi-instance assumption relates back to the original introduction of
MIC in [126]. It states that a bag is positive if and only if it contains at least one positive
instance. This interpretation suits the drug activity prediction task, where a bag (molecule)
is positive when at least one of its instances (molecular conformations) binds to the target.
The presence of one positive instance directly determines the bag label. When a bag contains
only negative instances, it is labelled as negative. This instance-to-bag relation may not hold
in all binary classification application areas. Other, more general, multi-instance hypotheses
have therefore been introduced as well [158].

The presence-based, threshold-based and count-based multi-instance assumptions have been
proposed in [434]. They are based on the general setting where instance labels and bag
labels (positive, negative) do not need to coincide. Instances can belong to various concepts
(classes) other than ‘positive’ or ‘negative’. For a bag to be positive, instances from several
concepts need to be present. The presence-based assumption expects the presence of at least
one instance of every required concept, while the threshold-based assumption states that the
number of instances of each of these concepts should exceed a corresponding threshold. The
count-based assumption of [434] uses a lower and upper threshold on the number of instances
of each required concept.
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The collective multi-instance hypothesis [159, 444] assumes that each instance contributes
equally to the label of a bag. The bag class probability function is based on the instance
likelihoods of belonging to or being associated with the bag class labels. Later extensions
of this setting include the weighted collective assumption [156] and the product rule and
sum rule assumptions [282]. The study of [282] also considered the mixture distribution
assumption (including product rule, sum rule and γ-rule assumptions), which models the
mixture distribution of instances across a concept and a non-concept. Finally, the soft bag
assumption [279] generalizes the standard multi-instance assumption and allows for both
positive and negative bags to be soft, meaning that a negative bag can contain some positive
instances and a positive bag can contain some negative instances.

6.2.2 Taxonomy of multi-instance classifiers

A taxonomy of MIC methods has been proposed in [13]. Based on their internal approach to
the multi-instance data problem, the algorithms are divided into three groups.

1. Instance space paradigm: the multi-instance classifier relies on information at the
level of instances. The classification model is derived in such a way that it optimally
(according to some criterion) separates instances belonging to bags of different classes.
The class label of a bag is determined based on the derived labels of its instances, which
correlates with a multi-instance hypothesis mapping. Example MIC methods within
this paradigm are the miSVM method [17], the axis-parallel rectangle method [126], the
MIWrapper method [159] and the diverse density method [315].

2. Bag space paradigm: a bag space classifier considers the bags as whole entities, the
true union of their instances. These methods commonly rely on distance or similarity
comparisons between bags. The class discriminant function is determined at the level of
the bags. Multi-instance classifiers embodying this idea include the CitationKNN [423]
and MI-Graph [499] methods.

3. Embedded space paradigm: these algorithms transform the multi-instance data
format to a single-instance representation. A mapping is defined to transform each bag
to a single feature vector. In this induced space, any existing single-instance classifier
can be applied. Methods adhering to this paradigm include MILES [93], DD-SVM [94],
the SimpleMI [129], YARDS [156] and BARTMIP [477] methods.

Review work [216] further divides each group of methods based on the traditional single-
instance classification ideas they incorporate or extend, such as support vector machines or
neural networks. We can also refer to the study of [99] for a more general taxonomy depending
on whether bags of instances are present in the learning phase, testing phase, both or not at
all.

In the remainder of this chapter, we introduce multi-instance classifiers adhering to the first
and second paradigms. Figure 6.2 illustrates the difference between these two approaches. To
predict the label y of a new bag X, instance-based classifiers (Figure 6.2a) first derive class
predictions l(x) for all instances x ∈ X and then aggregate these values to a class label for
the whole bag. Bag-based classifiers (Figure 6.2b) process bag X as a whole and predict its
label based on its similarity with the training bags.
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(a) Instance space paradigm (b) Bag space paradigm

Figure 6.2: Illustration of the instance space and bag space paradigms in MIC.

6.3 Fuzzy multi-instance classifiers

We develop two families of fuzzy set based multi-instance classifiers. They adhere to the
instance space paradigm (instance-based fuzzy multi-instance classifiers, IFMIC) and the bag
space paradigm (bag-based fuzzy multi-instance classifiers, BFMIC) in the taxonomy of [13].
Each class is regarded as a fuzzy set to which every bag has a certain membership degree.
When classifying an unseen bag, our methods calculate its membership degree to each class
and assign it to the class for which this value is largest. Section 6.3.1 introduces our proposed
classifiers. In particular, we discuss the IFMIC family in Section 6.3.1.1 and the BFMIC
family in Section 6.3.1.2. We present an overview of the framework in Section 6.3.2, followed
by some worked examples in Section 6.3.3 for illustration purposes. We conclude this section
with a derivation of the theoretical complexity of our proposals in Section 6.3.4.

6.3.1 Proposed classifiers

We define a fuzzy multi-instance classifier as a mapping

f : NX → C : X 7→ arg max
C∈C

[C(X)], (6.1)

with X the instance space, NX the bag space (defined as multi-sets of instances) and C the
set of possible classes. The bag X is assigned to the class C for which its membership degree
C(X) is largest. In case of a tie for the maximum value, one of the tied classes is randomly
selected. We consider two approaches to derive the C(X) values:

• Instance-based fuzzy multi-instance classifiers (IFMIC family, Section 6.3.1.1): value
C(X) is derived from the class membership degree C(x) of instances x in bag X.

• Bag-based fuzzy multi-instance classifiers (BFMIC family, Section 6.3.1.2): value C(X)
is derived directly from bag information. In particular, it relies strongly on the similarity
between X and the training bags.

Both classifier families require the definition of class membership degrees, either for instances
or bags. These values are determined based on the training data and we introduce ways to
do so in the sections below.

121



Chapter 6. Multi-instance learning

6.3.1.1 The IFMIC family

Our instance-based methods derive the membership degree C(X) in (6.1) from the mem-
bership degree of instances to class C. We therefore need to specify how to calculate the
membership degree C(x) of an instance x to a class C. Prior to this, we introduce different
ways to determine the membership degree (or, perhaps more appropriately, the degree of
affinity) B(x) of instance x to training bag B. The calculation of C(x) relies on the B(x)
values for training bags B belonging to class C. Interpreting bags B as fuzzy sets allows us
to express how typical x is for this bag, that is, how strongly it relates to it. This differs
from merely determining whether an instance belongs to a bag or not. We now discuss the
different components of our IFMIC classifiers in their calculation of the C(X) values. These
are summarized in Table 6.2.

Membership B(x) of instances to bags The definitions of the bag affinity values rely
on an instance similarity relation RI(·, ·). This fuzzy relation measures the degree of similar-
ity between pairs of instances. Due to the high-dimensional nature of many multi-instance
datasets, we decide to work with two different relations. When the number of features is at
most 20, RI(·, ·) coincides with our standard instance similarity relation (3.13). When the
number of features exceeds this threshold, we use the cosine similarity relation

RI(x1, x2) = x1 · x2
||x1|| · ||x2||

(6.2)

and rescale this value to the unit interval. The cosine similarity has been shown to be
the most appropriate similarity measure to use in high-dimensional multi-instance datasets
related to text processing and image retrieval (e.g. [363]), examples of which are included in
our experiments. The cut-off value of 20 features is based on the experimental study of [6].

Given relation RI(·, ·), we can define B(x) in several ways. Table 6.2 lists the five possibilities
evaluated in this chapter. They represent several intuitive choices that one can make. A first
option is to set B(x) to the maximum instance similarity of x to one of the instances b ∈ B
(Max). Alternatively, we can compute B(x) as the average of the RI(x, b) values (Avg). We
also include three OWA aggregations whose actions place them between taking the maximum
and average. We aggregate the RI(x, b) values (for b ∈ B) with W exp

U (MaxExp), W invadd
U

(MaxInvadd) or W add
U (MaxAdd). As shown in Section 3.2, these weight vectors correspond

to softened maxima.

Membership C(x) of instances to classes Having determined the values B(x) for all
training bags B, we consider the same five ways to aggregate these values to C(x) member-
ship degrees. We define the set TC as the set consisting of all training bags belonging to
class C. For each bag B ∈ TC , the value B(x) can be computed. Based on these results,
C(x) is determined as their maximum (Max), average (Avg) or OWA aggregation (MaxExp,
MaxInvadd or MaxAdd).

Membership C(X) of bags to classes To finally determine the membership degree C(X)
of bag X to class C in (6.1), the IFMIC methods aggregate the instance membership degrees
C(x) for x ∈ X to one value using the same five alternatives as listed for the B(x) and
C(x) calculations. In our experiments, we evaluate the use of the maximum (Max), softened
maxima (MaxExp, MaxInvadd or MaxAdd) or the average (Avg).
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Table 6.2: Settings for the IFMIC methods evaluated within our proposed framework. The
set TC contains all training bags belonging to class C.

Code B(x) Code C(x)
Max max

b∈B
RI(x, b) Max max

B∈TC

B(x)

MaxExp OWAW
exp
U

({RI(x, b) | b ∈ B}) MaxExp OWAW
exp
U

({B(x) |B ∈ TC})
MaxInvadd OWAW invadd

U
({RI(x, b) | b ∈ B}) MaxInvadd OWAW invadd

U
({B(x) |B ∈ TC})

MaxAdd OWAW add
U

({RI(x, b) | b ∈ B}) MaxAdd OWAW add
U

({B(x) |B ∈ TC})

Avg 1
|B|

∑
b∈B

RI(x, b) Avg 1
|TC |

∑
B∈TC

B(x)

Code C(X)
Max max

x∈X
C(x)

MaxExp OWAW
exp
U

({C(x) |x ∈ X})
MaxInvadd OWAW invadd

U
({C(x) |x ∈ X})

MaxAdd OWAW add
U

({C(x) |x ∈ X})

Avg 1
|X|

∑
x∈X

C(x)

6.3.1.2 The BFMIC family

The bag-based definition of our fuzzy multi-instance classifiers relies on a bag similarity
measure R(·, ·). The class membership degrees C(X) are based on the similarity between
X and training bags B of class C. All settings for the bag similarity relation and the class
membership degree aggregation evaluated in this chapter are summarized in Table 6.3.

Bag-wise similarity R(X,B) The similarity between bags X and B is based on the dis-
tance δ(·, ·) between pairs of their instances, which we define based on the instance similarity
relation. In particular,

(∀x ∈ X)(∀b ∈ B)(δ(x, b) = 1−RI(x, b)).

We consider eight bag similarity functions, which can be divided into two groups of four. The
first group (consisting of H, HExp, HInvadd and HAdd) is based on the Hausdorff distance
[134] between two bags. The first option is to set the similarity between two bags to the
complement to one of this distance measure (H). The three other versions replace the maxi-
mum and minimum operators in this definition by OWA operators using exponential (HExp),
inverse additive (HInvadd) or additive (HAdd) weights. The second group is based on the
average Hausdorff distance [477]. The bag similarity based on this measure is given by AvgH.
As above, we replace the maximum and minimum operators by OWA aggregations in the
three modified versions AvgHExp, AvgHInvadd and AvgHAdd.

Membership C(X) of bags to classes The aggregation of the R(X, ·) values to a C(X)
membership degree is handled by one of the same five alternatives as used in our IFMIC
methods. We consider the use of the average similarity (Avg) as well as the maximum simi-
larity (Max) of X with a bag B in class C. We also include the softened maxima alternatives
MaxExp, MaxInvadd and MaxAdd.
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Table 6.3: Settings for the BFMIC methods evaluated within our proposed framework. The
set TC contains all training bags belonging to class C.

Code R(X,B)
H 1−max(max

x∈X
min
b∈B

δ(x, b),max
b∈B

min
x∈X

δ(x, b))
HExp 1−max[OWAW

exp
U

({OWAW
exp
L

({δ(x, b) | b ∈ B}) |x ∈ X}),
OWAW

exp
U

({OWAW
exp
L

({δ(x, b) |x ∈ X}) | b ∈ B})]
HInvadd 1−max[OWAW invadd

U
({OWAW invadd

L
({δ(x, b) | b ∈ B}) |x ∈ X}),

OWAW invadd
U

({OWAW invadd
L

({δ(x, b) |x ∈ X}) | b ∈ B})]
HAdd 1−max[OWAW add

U
({OWAW add

L
({δ(x, b) | b ∈ B}) |x ∈ X}),

OWAW add
U

({OWAW add
L

({δ(x, b) |x ∈ X}) | b ∈ B})]

AvgH 1− 1
|X|+|B|

(∑
x∈X

min
b∈B

δ(x, b) +
∑
b∈B

min
x∈X

δ(x, b)

)

AvgHExp 1− 1
|X|+|B|

(∑
x∈X

OWAW
exp
L

({δ(x, b) | b ∈ B}) +
∑
b∈B

OWAW
exp
L

({δ(x, b) |x ∈ X})

)

AvgHInvadd 1− 1
|X|+|B|

(∑
x∈X

OWAW invadd
L

({δ(x, b) | b ∈ B}) +
∑
b∈B

OWAW invadd
L

({δ(x, b) |x ∈ X})

)

AvgHAdd 1− 1
|X|+|B|

(∑
x∈X

OWAW add
L

({δ(x, b) | b ∈ B}) +
∑
b∈B

OWAW add
L

({δ(x, b) |x ∈ X})

)

Code C(X)
Max max

B∈TC

R(X,B)

MaxExp OWAW
exp
U

({R(X,B) |B ∈ TC})
MaxInvadd OWAW invadd

U
({R(X,B) |B ∈ TC})

MaxAdd OWAW add
U

({R(X,B) |B ∈ TC})

Avg 1
|TC |

∑
B∈TC

R(X,B)

We note that our proposed bag-based classifiers exhibit a link with a nearest neighbour
approach to MIC. In case of version Max for the C(X) calculations, the method computes
the membership degrees of a test bag to the decision classes based on its most similar (nearest)
training bag of each class. Since the final class prediction is made using (6.1), the class label
of the overall nearest bag is automatically predicted. Consequently, we can conclude that the
use of Max reduces our BFMIC proposal to a one-nearest neighbour multi-instance classifier,
where the distance measure is taken as the complement of the bag similarity R(·, ·). When
one of the OWA based alternatives for C(X) is selected instead, BFMIC takes a step away
from the true nearest neighbour paradigm. For each class C, all training bags belonging to
C contribute to the membership degree estimation of X to C. Their contribution not only
depends on their similarity with the bag to classify, but also on the number of bags in C, since
the class size determines the length of the OWA weight vector. As part of our experimental
study, we show that our proposed methods outperform the most prominent nearest neighbour
multi-instance classifier CitationKNN [423].

6.3.1.3 Discussion

From the descriptions given in the two preceding chapters and Tables 6.2-6.3, it should be
clear that in various cases an aggregation step can be set to the maximum or average of a
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group of values. Both correspond to intuitive aggregation approaches. The strict maximum
assigns weight one to a single value and weight zero to all others, while the average involves
all values in its calculation, effectively assigning equal weight to all. We consider intermediate
options by using the OWA based alternatives that model the trade-off between the maximum
and average.

For the OWA weights, we use the weight vectors studied in Section 3.2.1. As discussed in
Chapter 3, the selection of an OWA weight vector is not always straightforward. Several
automatic procedures have been proposed for this purpose (see Section 3.2.2). Many of them
are optimization methods, optimizing a certain objective function (e.g. entropy) for a user-
specified orness value. Within the scope of this study, fixing the orness of the weight vector
beforehand feels arbitrary and we therefore opt not to use such an optimization algorithm.
We also avoid them in the interest of computational cost. For a given orness value, existing
optimization methods do not provide the user with a closed formula to determine the weights,
but rather with a particular weight set of the specified length. As should be clear from the
descriptions given in Tables 6.2-6.3, the vector lengths are not fixed in our methods. For
instance, in the MaxAdd variant of B(x) in Table 6.2 the length of the weight vector equals
the size of bag B. Since all bags in a multi-instance dataset can contain a different number
of instances, the length of all weight vectors can be different. The variable length implies
the requirement of multiple runs of the optimization procedure, imposing a considerable cost.
Furthermore, these methods become practically intractable when the lengths of the vectors
increase. The procedure proposed in [167], for instance, relies on the calculation of the roots
of a polynomial equation with degree equal to the length of the weight vector. As shown
in the experiments conducted later in this chapter, we can expect the vector lengths, and
therefore the degree of these polynomial equations, to be high (100 and above).

We have decided to use the fixed OWA weight vectors recalled in Section 3.2.1, namely the
exponential, inverse additive and additive weights. As discussed at length in Chapter 3,
these weighting schemes exhibit sufficiently different characteristics to model the transition
from the maximum to the average. Based on the proof of Theorem 3.2.1, we know that
orness(W add

U ) = 2
3 holds independent of the aggregation length. We find, based on the

proofs of Theorems 3.2.2-3.2.3, that the orness values of weight vectors W exp
U and W invadd

U

do depend on the aggregation length p. This constitutes an important difference between the
three OWA aggregations, which is illustrated in our experimental study. We do not include
our Mult alternative introduced in Section 3.2.2, because it only showed clear advantages on
datasets with very specific properties.

6.3.2 Overview of the framework

Our proposed fuzzy set based multi-instance classifiers are divided into two families, which
both require a number of settings to be specified. The BFMIC family computes C(X) as an
aggregation of R(X,B) values derived from training bags B in class C. The IFMIC classifiers
compute B(x) values based on an instance similarity relation, aggregate these values to derive
instance class membership degrees C(x) and finally use these in the computation of C(X). In
naming our methods, we use the following conventions based on the abbreviations introduced
in Tables 6.2-6.3:
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• Instance-based fuzzy multi-instance classifiers: we list these methods as IFMIC-
B(x)-C(x)-C(X). As an example, our IFMIC-Max-Avg-MaxAdd method uses Max to
calculate the B(x) values, Avg to determine C(x) and MaxAdd to finally derive C(X).

• Bag-based fuzzy multi-instance classifiers: these methods are listed as BFMIC-
R(X,B)-C(X). As an example, our bag-based classifier BFMIC-H-Avg uses the Haus-
dorff similarity to compute the similarity between bags and Avg to calculate C(X).

6.3.3 Worked examples

To illustrate the workflow of our IFMIC and BFMIC classifiers, we detail the actions of some
example algorithms on the toy problem presented in Table 6.4. The training set consists of
five bags B1, B2, B3, B4 and B5. The first three belong to class C1, the last two to class
C2. We consider the classification of a new bag X = {x1, x2, x3}. Table 6.4 lists the instance
similarity values RI(·, ·) between instances in the training bags and in bag X. We evaluate
two of our proposed algorithms, the instance-based IFMIC-MaxInvadd-Avg-Max method and
the bag-based BFMIC-AvgH-MaxAdd classifier. Below, we describe the calculations of these
methods in their classification process of X.

Table 6.4: Two-class multi-instance toy dataset represented by its instance similarity values
between the training instances and x1, x2, x3 ∈ X.

Bags of class C1 RI(·, x1) RI(·, x2) RI(·, x3)
B1 x11 0.1 0.2 0.2

x12 0.7 0.6 0.3
x13 0.5 0.0 0.1

B2 x21 0.4 0.4 0.5
x22 0.3 0.6 0.4

B3 x31 0.7 0.8 0.7
x32 0.5 0.3 0.9
x33 0.7 0.2 0.2

Bags of class C2 RI(·, x1) RI(·, x2) RI(·, x3)
B4 x41 1.0 0.8 0.9

x42 0.7 0.6 0.3
x43 0.5 0.5 0.9
x44 0.2 0.9 0.8

B5 x51 0.6 0.3 0.7
x52 0.9 0.8 0.8
x53 0.7 1.0 0.6

Classification by IFMIC-MaxInvadd-Avg-Max For each instance x in the bag X, this
method calculates its membership degree to the two classes. As an example, to compute
C1(x1) we select the bags belonging to class C1 and first determine the affinity of x1 with
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these bags based on MaxInvadd. We find

B1(x1) = OWAW invadd
U

({RI(x1, b) | b ∈ B1})

= 6
11 · 0.7 + 3

11 · 0.5 + 2
11 · 0.1

= 59
110 .

In the same way, we derive B2(x1) = 11
30 and B3(x1) = 83

110 . The class membership degree
C1(x1) is set to the average of these values (Avg), such that

C1(x1) = 1
3

( 59
110 + 11

30 + 83
110

)
= 547

990 .

Analogously, we find C1(x2) = 485
990 and C1(x3) = 469

990 . The membership degree of X to class
C1 is determined as the maximum value obtained by one of its instances (Max), namely

C1(X) = max[C1(x1), C1(x2), C1(x3)] = 547
990 .

For the second class, we can follow the same procedure and derive C2(X) = 879
1100 > C1(X),

such that the method assigns X to class C2.

Classification by BFMIC-AvgH-MaxAdd The prediction of this bag-based method is
based on the similarity of X with the training bags, computed by the complement of the
average Hausdorff distance. The similarity of X with bag B1 is calculated as

R(X,B1) = 1− 1
|X|+ |B1|

∑
x∈X

min
b∈B1

δ(x, b) +
∑
b∈B1

min
x∈X

δ(x, b)


= 1− 1

3 + 3 ((0.3 + 0.4 + 0.7) + (0.8 + 0.3 + 0.5))

= 1
2 ,

where we remind the reader that the δ(·, ·) values are computed as the complement of the
RI(·, ·) results in Table 6.4. Similarly, we find R(X,B2) = 26

50 and R(X,B3) = 4
5 . Based on

these values and the definition of MaxAdd in Table 6.3, we derive

C1(X) = OWAWadd
U

({R(X,B) |B ∈ TC1})

= 6
12 ·

4
5 + 4

12 ·
26
50 + 2

12 ·
1
2

= 197
300 .

For the second class, we find C2(X) = 161
180 . As for the above IFMIC method, we find C2(X) >

C1(X), such that the method assigns bag X to class C2.
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6.3.4 Theoretical complexity analysis

In this section, we analyse the theoretical complexity of our proposed IFMIC and BFMIC
methods. Below, nB and nX denote the sizes of bags B and X, M the number of training
bags, nmax the size of the largest training bag and bmax the size of the largest class. We set
c = |C| to the number of classes. When the instances in bags are described by d features, the
cost of a similarity or distance calculation between a pair of instances is O(d) (see (3.13) and
(6.2)).

IFMIC methods We consider the different steps performed by our instance-based meth-
ods:
• B(x): the affinity of an instance x with a bag B is measured by one of the alternatives

listed in Table 6.2. The Max and Avg versions are linear in the number of instances
in B and their complexity is therefore given as O(nB · d), taking into account the cost
of the RI(·, ·) calculations. The use of the OWA aggregation in MaxExp, MaxInvadd
and MaxAdd implies the additional cost of the sorting operation (Definition 3.1.1).
Consequently, their complexity with respect to the B(x) calculation is O(nB ·(log(nB)+
d)). Since the size of the training bags is limited to nmax (a very loose upper bound),
we find that Max and Avg have complexity O(nmax · d) and MaxExp, MaxInvadd and
MaxAdd complexity O(nmax · (log(nmax) + d)).

• C(x): secondly, when the B(x) values have been computed, an IFMIC method deter-
mines the instance class membership degrees, for which the Max, MaxExp, MaxInvadd,
MaxAdd and Avg options can again be used (see Table 6.2). The Avg and Max alterna-
tives are obviously linear in the number of training bags and have complexity O(bmax).
For the OWA based settings, we have to account for the sorting step and their com-
plexity is therefore O(bmax log(bmax)). These expressions ignore the cost of the previous
step, that is, the cost of computing the affinity of instances with bags.

• C(X): finally, we determine the cost of calculating the class membership degrees of
a test bag X, again momentarily ignoring the cost of the previous steps. As before,
when using Max or Avg, we can derive a linear complexity O(nX), while the MaxExp,
MaxInvadd and MaxAdd settings come at O(nX log(nX)) cost.

As an example of the overall complexity of an IFMIC method, we consider the IFMIC-
MaxAdd-MaxInvadd-MaxExp version. We select this classifier, as it has, for each step, an
option with the highest computational complexity as discussed above. As a result, its com-
plexity constitutes an upper bound on that of all included IFMIC methods. To classify a
previously unseen bag X, this method computes, for each class C,

C(X) = OWAW exp
U

({C(x) |x ∈ X})
= OWAW exp

U
({OWAW invadd

U
({B(x) |B ∈ TC}) |x ∈ X})

= OWAW exp
U

({OWAW invadd
U

({OWAWadd
U

({RI(x, b) | b ∈ B}) |B ∈ TC}) |x ∈ X}).

For each class, this calculation has complexity

O(nX · (bmax · (nmax · (log(nmax) + d)) + bmax log(bmax)) + nX log(nX))
= O(nX · (bmax · (nmax · (log(nmax) + d) + log(bmax)) + log(nX))).
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If we take into account that this computation needs to be repeated for each class, the total
classification complexity of this method (and therefore the upper bound on the complexity
for our included IFMIC methods) is given as

O(c · nX · (bmax · (nmax · (log(nmax) + d) + log(bmax)) + log(nX))). (6.3)

BFMIC methods We consider the different steps performed by our bag-based methods:

• R(X,B): in its first step, a BFMIC method computes the similarity between bags. The
Hausdorff and average Hausdorff similarity (H and AvgH) are based on distances be-
tween pairs of instances in the bags and consequently have complexity O(n2

max ·d). Their
OWA modified versions (HExp, HInvadd, HAdd, AvgHExp, AvgHInvadd, AvgHAdd) re-
quire the pairwise distances to be sorted and have complexity O(n2

max(log(n2
max)+d)) =

O(n2
max(log(nmax) + d)).

• C(X): secondly, the method estimates the membership degree of a bag to the classes.
As for the analogous instance membership degrees to the classes for the IFMIC family,
we find that the Avg and Max settings have complexity O(bmax) and that the MaxExp,
MaxInvadd and MaxAdd alternatives have complexity O(bmax log(bmax)).

As an example, we determine the overall complexity of our BFMIC-AvgHInvadd-MaxInvadd
method. As for the instance-based classifier above, this method is one that attains the highest
complexity within the BFMIC family. Its complexity therefore forms an upper bound on that
of the included bag-based methods. When classifying an unseen bag X, for each class C,
the method calculates the value C(X) = OWAW invadd

U
{R(X,B) |B ∈ TC}, with the R(X, ·)

calculated by means of the AvgHInvadd alternative listed in Table 6.3. For each class, we can
derive that this calculation has a cost of

O(bmax · nX · nmax · (log(nX · nmax) + d) + bmax log(bmax))
= O(bmax · (nX · nmax · (log(nX · nmax) + d) + log(bmax))).

Again considering that this computation is repeated for all classes, the total classification cost
of BFMIC-AvgHInvadd-MaxInvadd of a bag X is

O(c · bmax · (nX · nmax · (log(nX · nmax) + d) + log(bmax))). (6.4)

Summary Comparing the complexity bounds (6.3) and (6.4) for our instance-based and
bag-based methods respectively, we note that they both have a log-linear dependency on
bmax (the size of the majority class) and nmax (the size of the largest training bag). When
we remove the common terms in expressions (6.3) and (6.4), we can derive that the former
contains the additional O(c · nX · bmax · log(bmax) + c · nX · log(nX)) terms and the latter the
additional O(c ·bmax · log(bmax)+c ·bmax ·nX ·nmax · log(nX)) terms. The first term, log-linear
in bmax, is nX times larger for the IFMIC family than it is for the BFMIC family. The second
term, log-linear in nX , is nmax · bmax times larger for the BFMIC methods compared to the
IFMIC methods, a value linear in the size of the majority class and the size of the largest
training bag. Overall, we can expect the second term to imply a larger difference between
the costs of the two families. The IFMIC methods can therefore intuitively be expected to
be less costly than their BFMIC relatives.
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6.4 Fuzzy rough classifiers for class imbalanced multi-instance
data

Section 6.3 has focused on the development of general multi-instance classifiers based on
fuzzy set theory. We now turn our attention to the challenges associated with two-class
imbalanced multi-instance data. As discussed at length in Chapter 4, an imbalanced class
distribution renders the classification task more difficult. We propose a framework of multi-
instance classifiers based on fuzzy rough set theory. As for our fuzzy set based multi-instance
classifiers described in Section 6.3, we present two families of methods: instance-based fuzzy
rough multi-instance classifiers and bag-based fuzzy rough multi-instance classifiers. Both are
based on the imbalance-resistant single-instance IFROWANN method ([355], Section 4.1.3).
We present our proposals in Section 6.4.1. Section 6.4.2 summarizes the proposed framework
and Section 6.4.3 discusses the theoretical complexity of our methods.

6.4.1 Proposed classifiers

Based on the IFROWANN method for single-instance binary imbalanced classification, we
present a framework of fuzzy rough multi-instance classification algorithms. We define a
fuzzy rough multi-instance classifier as a mapping

f : NX → C : X 7→ arg max
C∈C

[C(X)], (6.5)

where C(X) represents the membership degree of bag X to the fuzzy rough lower approxi-
mation of class C. In case of a tie for the highest value in (6.5), X is assigned to the smallest
class, as done by the original IFROWANN method. We consider two approaches to compute
the C(X) values, corresponding to two classifier families:

• Instance-based fuzzy rough multi-instance classifiers (IFRMIC family, Section 6.4.1.2):
value C(X) is derived by aggregating the corresponding instance-wise values C(x) of
instances x in bag X.

• Bag-based fuzzy rough multi-instance classifiers (BFRMIC family, Section 6.4.1.3): the
definition of the fuzzy rough lower approximation is extended to the level of bags based
on a bag similarity relation and bag class membership degrees.

As discussed in Section 6.3 on our fuzzy multi-instance classifiers, the constituent parts of
our IFRMIC and BFRMIC methods can be obtained in several ways. Below, we describe the
two fuzzy rough classifier families in more detail, but first recall the weighting schemes for
the OWA based fuzzy rough lower approximation used in the IFROWANN method.

6.4.1.1 IFROWANN weighting schemes

As recalled in Section 4.1.3, the IFROWANN method [355] is a binary single-instance classifier
based on fuzzy rough set theory that assigns an instance to the class for which its membership
degree to the lower approximation is highest. The OWA based fuzzy rough set model is used
and a variety of weighting scheme combinations (class dependent or not) has been studied.
The definitions of the weight combinations provided in Section 4.1.3 do not literally coincide
with the ones listed in [355]. We relied on expression (4.2) for the lower approximation
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calculation, which bases its result for C(x) on instances y /∈ C. The authors of [355] achieved
the same effect by basing the lower approximation on all training instances y and adding a
number of leading zeroes in the weight vectors. The contributions of instances y ∈ C are
paired with zero weights, effectively reducing the result to (4.2) with the weight combinations
listed in Section 4.1.3.

The reduction to instances y /∈ C in (4.2) is a consequence of crisp class membership degrees in
single-instance datasets. Instances are directly related to a class label. In multi-instance data,
instances and classes are separated by the bag level, that is, only bags have an associated class
label while their instances do not. Keeping this in mind, we use the OWA weight combinations
as listed in the original [355] contribution, which are based on all training samples rather than
reducing them to the members of one of the two classes. We consider

W1 =
〈
W add∗
Min ,W

add∗
Maj

〉
W2 =

〈
W add∗
Min ,W

exp∗
Maj

〉
W3 =

〈
W exp∗
Min ,W

add∗
Maj

〉
W4 =

〈
W exp∗
Min ,W

exp∗
Maj

〉
W5 =

〈
W add∗,γ
Min ,W add∗

Maj

〉
W6 =

〈
W add∗,γ
Min ,W exp∗

Maj

〉
W7 =

〈
W strict∗
Min ,W strict∗

Maj

〉
W8 =

〈
W invadd∗
Min ,W invadd∗

Maj

〉
with

W add∗
Min =

〈
0, . . . , 0︸ ︷︷ ︸
|Min|

,
2

|Maj|(|Maj|+ 1) , . . . ,
2(|Maj| − 1)

|Maj|(|Maj|+ 1) ,
2

|Maj|+ 1

〉
,

W add∗
Maj =

〈
0, . . . , 0︸ ︷︷ ︸
|Maj|

,
2

|Min|(|Min|+ 1) , . . . ,
2(|Min| − 1)

|Min|(|Min|+ 1) ,
2

|Min|+ 1

〉
,

W exp∗
Min =

〈
0, . . . , 0︸ ︷︷ ︸
|Min|

,
1

2|Maj| − 1
, . . . ,

2|Maj|−2

2|Maj| − 1
,

2|Maj|−1

2|Maj| − 1

〉
,

W exp∗
Maj =

〈
0, . . . , 0︸ ︷︷ ︸
|Maj|

,
1

2|Min| − 1
, . . . ,

2|Min|−2

2|Min| − 1
,

2|Min|−1

2|Min| − 1

〉
,

W s
Min =

〈
0, . . . , 0︸ ︷︷ ︸

|Min|+|Maj|−1

, 1
〉
,

W s
Maj =

〈
0, . . . , 0︸ ︷︷ ︸

|Min|+|Maj|−1

, 1
〉
,

W invadd∗
Min =
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|Min|

,
1

|Maj|
∑|Maj|
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1
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,
1
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1
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1
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〉
,
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W invadd∗
Maj =

〈
0, . . . , 0︸ ︷︷ ︸
|Maj|

,
1

|Min|
∑|Min|
i=1

1
i

,
1

(|Min| − 1)
∑|Min|
i=1

1
i

, . . . ,
1∑|Min|

i=1
1
i

〉
,

W add∗,γ
Min =

〈
0, . . . , 0︸ ︷︷ ︸

|Min|+|Maj|−r

,
2

r(r + 1) ,
4

r(r + 1) , . . . ,
2(r − 1)
r(r + 1) ,

2
r + 1

〉
.

In these expressions, |Min| and |Maj| are the sizes of the minority and majority classes
respectively and r = d|Min| + γ(|Maj| − |Min|)e. The weight vectors are used within the
calculations of the lower approximations as listed in Sections 6.4.1.2-6.4.1.3 below, where the
WMin and WMaj vectors are used for the minority and majority class calculations respectively.
We have added the seventh and eighth combination to evaluate the effect of using strict or
inverse additive weights on both classes. These complement the inclusion ofW1 andW4, which
respectively use additive and exponential weights for the lower approximation calculations
regardless of the class being evaluated. As a result, comparing weighting schemes W1, W4,
W7 andW8 corresponds to the comparison between the actions of Add, Exp, Strict and Invadd
(Chapter 3), provided that a number of positions are set to zero in the weight vector (|Min|
for the minority class and |Maj| for the majority class). This renders them class dependent.
Naturally, the definition of Strict (W7) is not influenced by these additional zero positions.

The combinations listed above are the ones proposed and evaluated in [355], with the addition
of W7 and W8. We should note that the use of the leading zero weights makes perfect
sense in that context (that is, single-instance binary classification), since, as discussed at the
beginning of this section, a crisp class relation is used to measure the membership degree
of an instance (observation) to a class. In our IFRMIC and BFRMIC methods discussed
below, the class membership degrees are set to the fuzzy values C(x) and C(X) respectively,
which are calculated as listed in Tables 6.2-6.3. The choice of the (number of) zero positions
in the weight vectors is consequently somewhat artificial here. We will therefore also test
the performance of the weighting schemes when a crisp class membership relation is used.
Naturally, such a crisp class relation only makes sense for the BFRMIC methods, because the
observations (bags) are associated with a class label. In the IFRMIC methods, we compute
the class membership degree of instances ourselves and it is not appropriate to simply use the
crisp class label of the bag they belong to.

6.4.1.2 The IFRMIC family

Our instance-based fuzzy rough classifiers determine the C(X) values in (6.5) by aggregating
the corresponding C(x) values for all instances x in bag X. The instance-wise values are
determined as

C(x) = OWAWL
({I(RI(x, y), C(y)) | y ∈ B,B ∈ T}), (6.6)

with T the full training set and y the training instances. Weight vector WL is set to a WMin

vector when C is the minority class and to a WMaj vector when C is the majority class. The
WMin-WMaj combination corresponds to one of those listed in Section 6.4.1.1. The values
|Min| and |Maj| in their definitions are set to the total number of instances in minority and
majority class bags respectively. The instance similarity relation RI(·, ·) coincides with the
one listed in Section 6.3.1.1. The instance-to-class membership degrees C(y) can be computed
in the same way as listed in Table 6.2, namely by aggregating B(y) values for B ∈ TC by
means of Max, MaxExp, MaxInvadd, MaxAdd or Avg. The B(y) values can themselves be
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obtained with the same alternatives. As these values are only required for instances in training
bags, they can be precomputed prior to the classification phase of the IFRMIC methods.

The aggregation of the set {C(x) |x ∈ X} to C(X) is handled by the same alternatives as
included for our IFMIC methods in Table 6.2, namely:

Max: C(X) = max
x∈X

C(x)
MaxExp: C(X) = OWAW exp

U
({C(x) |x ∈ X})

MaxInvadd: C(X) = OWAW invadd
U

({C(x) |x ∈ X})
MaxAdd: C(X) = OWAWadd

U
({C(x) |x ∈ X})

Avg: C(X) = 1
|X|

∑
x∈X

C(x)

6.4.1.3 The BFRMIC family

The calculation of the C(X) values by our bag-based fuzzy rough classifiers is performed
entirely at the bag level and is a direct extension of (3.5). The general C(X) formulation of
our bag-based methods is therefore given by

C(X) = OWAWL
({I(R(X,B), C(B)) |B ∈ T}). (6.7)

The bag similarity values R(X,B) and the C(B) membership degree of training bags B to
class C can be computed by the alternatives listed in Table 6.3. In particular, R(X,B) can
be obtained with H, HExp, HInvadd, HAdd, AvgH, AvgHExp, AvgHInvadd or AvgHAdd
and C(B) can be calculated using Max, MaxExp, MaxInvadd, MaxAdd or Avg. As for the
IFRMIC methods, the C(B) values need only be computed for the training bags. To avoid
repeated calculations, they can be derived prior to the classification phase. The WL vector
in the calculation of C(X) is set to a WMin vector when C is the minority class and to a
WMaj vector when C is the majority class. As for the IFRMIC methods, the WMin-WMaj

combination corresponds to one of those listed in Section 6.4.1.1. The |Min| and |Maj| values
are now respectively set to the number of minority class and majority class training bags.

As noted in Section 6.4.1.1, we can use crisp membership degrees of bags to classes rather than
the C(B) values computed with Max, MaxExp, MaxInvadd, MaxAdd or Avg. In particular,
for a training bag B and classes C0 and C1, we set

C0(B) =
{

1 if B ∈ C0

0 if B ∈ C1
and C1(B) =

{
1 if B ∈ C1

0 if B ∈ C0
. (6.8)

When we use these definitions as opposed to the ones listed in Table 6.3, the definition of
the IFROWANN weighting schemes makes intuitively more sense, as they once again coincide
with the reduction to a class complement as described in Section 3.1.3. In our experiments,
we evaluate this setting within (6.7) in combination with the eight weighting settings listed
in Section 6.4.1.1.

6.4.2 Overview of the framework

A visual overview of the calculation flow of our IFRMIC and BFRMIC classifiers is presented
in Figure 6.3. The bag-based methods require the specification of how to calculate theR(X,B)
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Figure 6.3: Overview of the flow of our instance-based and bag-based fuzzy rough multi-
instance classifiers.

and C(B) values. We can use the alternatives listed in Table 6.3, with the addition of the crisp
class membership degrees defined in expression (6.8). The C(X) values are obtained by means
of (6.7) and one of the eight weight combinations listed in Section 6.4.1.1. Our instance-based
methods rely on the definitions of the B(y) and C(y) values as well as the way to aggregate
the set of C(x) values to C(X). We use the different settings provided in Table 6.2, which
lists five alternatives for each of them. The C(x) values are derived using (6.6) and, as for
the BFRMIC methods, the IFROWANN weight combinations given in Section 6.4.1.1.

In naming our methods, we use the following conventions based on the abbreviations intro-
duced in Tables 6.2-6.3 and the weight combinations of Section 6.4.1.1:

• Instance-based fuzzy rough multi-instance classifiers: these methods are listed
as IFRMIC-B(y)-C(y)-C(X)-W∗. As an example, our instance-based IFRMIC-Max-
Avg-MaxAdd-W1 classifier uses Max to calculate the B(y) values, Avg to determine
C(y), weight combination W1 in its C(x) calculations and finally MaxAdd to derive
C(X).

• Bag-based fuzzy rough multi-instance classifiers: these methods are listed as
BFRMIC-R(X,B)-C(B)-W∗. As an example, our bag-based BFRMIC-H-Avg-W1 clas-
sifier uses the Hausdorff similarity to compute the similarity between bags, Avg to
calculate C(B) and weight combination W1 to compute C(X). In case of crisp class
membership degrees for the training bags, we write ‘Crisp’ for the C(B) component.

6.4.3 Theoretical complexity analysis

We now discuss the cost complexity of our IFRMIC and BFRMIC proposals. As noted in
Sections 6.4.1.2-6.4.1.3, some components can be precomputed during a training phase. We
therefore split the computational cost into two parts: the cost of the learning stage and the
classification cost of an unseen bag X. As before, nB and nX denote the sizes of bags B and
X, M the number of training bags, nmax the size of the largest training bag, bmax the size
of the largest class and c the number of classes. We use n as the total number of training
instances. The cost of an instance similarity or distance calculation is O(d), where d is the
number of input features.
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IFRMIC methods We first consider the training phase of our instance-based methods, in
which they precompute the C(y) values for all training instances. In order to do so, the B(y)
affinity values need to be derived first:

• B(y): as discussed in Section 6.3.4, the Max and Avg settings have complexity O(nmax ·
d), while the other alternatives come at O(nmax ·(log(nmax)+d)) cost. This corresponds
to the cost of computing B(y) for one instance y. As this needs to be repeated for
each training instance and each training bag, the cost of computing all B(y) values is
O(M · n · nmax · d) for Max and Avg and O(M · n · nmax · (log(nmax) + d)) for MaxExp,
MaxInvadd and MaxAdd.

• C(y): once the B(·) values have been computed, they can be used to determine the
instance-to-class membership degrees. As derived in Section 6.3.4, the Avg and Max
alternatives have complexity O(bmax), while the MaxExp, MaxInvadd and MaxAdd
have complexity O(bmax log(bmax)). When the B(·) values have been derived in the
first step, the cost of computing all C(y) values (that is, for all instances, for all classes)
is O(c ·n · bmax) for Avg and Max and O(c ·n · bmax log(bmax)) for MaxExp, MaxInvadd
and MaxAdd.

Next, we assess the cost of classifying a new bag X, knowing that all C(y) values needed in
(6.6) have been computed.

• C(x): the similarity of x with all training instances y needs to be computed, which can
be achieved at O(n·d) cost. Next, the set of values to aggregate needs to be constructed.
Since all components have been (pre)computed, this can be done at linear cost, that is,
O(n). The OWA aggregation of this set has a computational complexity of O(n log(n)).
The total cost of computing C(x) is O(n · (log(n) + d)).

• C(X): the C(x) values are aggregated to C(X) by means of Avg, Max, MaxExp,
MaxInvadd or MaxAdd. The former two settings have linear complexity O(nX), while
the latter three come at O(nX log(nX)) cost.

To illustrate the above, we consider the actions of our IFRMIC-MaxAdd-MaxInvadd-MaxExp-
W1 algorithm. As we did in Section 6.3.4, each component of this method has the highest cost
listed above, such that we derive an upper bound on the complexity of the included IFRMIC
methods. In the training phase, the C(y) values are calculated for all training instances y as
follows:

C(y) = OWAW invadd
U

({B(y) |B ∈ TC})
= OWAW invadd

U
({OWAWadd

U
({RI(y, z) | z ∈ B}) |B ∈ TC}).

For each instance y, for each class C, this calculation has complexity

O(bmax · (nmax · (log(nmax) + d) + log(bmax))).

The total computational cost of the training phase is consequently

O(n · c · bmax · (nmax · (log(nmax) + d) + log(bmax))). (6.9)
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To classify bag X, the IFRMIC method computes, for each class,

C(X) = OWAW exp
U

({C(x) |x ∈ X})
= OWAW exp

U
({OWAWL

({I(RI(x, y), C(y)) | y ∈ B,B ∈ T}) |x ∈ X}),

in which the C(y) values have been precomputed. The cost to compute C(X) is

O(nX · (log(nX) + n · (log(n) + d))).

Taking into account that this needs to be repeated for each class, the total classification cost
of bag X for this IFRMIC method is

O(c · nX · (log(nX) + n · (log(n) + d))).

BFRMIC methods We first consider the training phase of our bag-based methods, in
which they precompute the C(B) values for all training bags. These calculations are based
on bag similarity values R(·, ·):

• R(A,B): the calculation of the similarity between two bags comes at O(n2
max · d)

cost for H and AvgH and at O(n2
max(log(nmax) + d)) cost for HExp, HInvadd, HAdd,

AvgHExp, AvgHInvadd and AvgHAdd. These computations are repeated for each pair
of bags, resulting in total complexities of O(M2 · n2

max · d) (H, AvgH) and O(M2 ·
n2
max(log(nmax) + d)) (HExp, HInvadd, HAdd, AvgHExp, AvgHInvadd, AvgHAdd).

• C(B): the C(B) calculation is based on all training bags belonging to class C. It
can be obtained at O(bmax) cost for Avg and Max and at O(bmax log(bmax)) cost for
MaxExp, MaxInvadd and Invadd. We need to derive these values for all training bags
B and all classes C, resulting in a total cost of O(c ·M · bmax) (Avg, Max) and O(c ·
M · bmax log(bmax)) (MaxExp, MaxInvadd, MaxAdd).

Note that in case of crisp class membership degrees for the training bags (Section 6.4.1.3),
this entire step can be avoided.

Next, we derive the cost of classifying a new bag X, knowing that all C(B) values needed in
(6.7) have been computed. In order to derive C(X), we need to compute the bag similarity
R(X,B) of X with all training bags B. Based on the complexity results discussed above, this
step has O(M ·n2

max ·d) cost for H and AvgH and O(M ·n2
max(log(nmax) +d)) cost for HExp,

HInvadd, HAdd, AvgHExp, AvgHInvadd and AvgHAdd. The construction of the set of values
to aggregate has linear cost O(M). The final OWA aggregation has O(M log(M)) complexity,
such that the total cost of computing C(X) is O(M · (log(M) + n2

max(log(nmax) + d))) .

As an example, we compute the computational complexity associated with our BFRMIC-
AvgHInvadd-MaxInvadd-W1 method, which constitutes an upper bound on the complexity of
the included BFRMIC methods. In its training phase, this method computes the C(B) values
for all training bags as C(B) = OWAW invadd

U
({R(A,B) |A ∈ TC}) with R(A,B) computed

by means of AvgHInvadd. Based on the derivations above, computing all C(B) values for all
training bags and all classes results in a total training complexity of

O(c ·M · bmax log(bmax) +M2 · n2
max(log(nmax) + d)). (6.10)
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To classify a bag X, the BFRMIC method computes, for each class,

C(X) = OWAWL
({I(R(X,B), C(B)) |B ∈ T}),

for which all C(B) values have been precomputed. Computing all R(X,B) values by means
of AvgHInvadd implies a cost of O(M · n2

max(log(nmax) + d)). Taking the cost of the OWA
aggregations into account, we derive a total classification cost of

O(M · (c · log(M) + n2
max(log(nmax) + d))).

Summary Comparing the complexity bounds (6.9) and (6.10) for the training time of our
instance-based and bag-based methods respectively, we note that they can be split up in three
terms:

• Term in O(c · bmax log(bmax)): this term is linear in the number of training instances n
for the IFRMIC methods and linear in the number of training bags M for the BFRMIC
methods. The latter value is smaller than the former by definition.

• Term in O(nmax log(nmax)): this term has coefficient n · c · bmax for IFRMIC and coef-
ficient M2 · nmax for BFRMIC.

• Term in O(nmax · d): this term has coefficient n · c · bmax for IFRMIC and coefficient
M2 · nmax for BFRMIC.

The complexity bounds on the classification costs of the IFRMIC and BFRMIC methods
contain no common or highly similar terms and it is not straightforward to compare the two.

6.5 Experimental study of our fuzzy and fuzzy rough multi-
instance classifiers

In Section 6.3, we have presented a framework of fuzzy set based multi-instance methods.
It consists of two families: instance-based fuzzy multi-instance classifiers (IFMIC methods)
and bag-based fuzzy multi-instance classifiers (BFMIC methods). Similarly, Section 6.4 intro-
duced our fuzzy rough set based multi-instance classifiers for class imbalanced multi-instance
data. These methods can be divided into two groups as well, the instance-based fuzzy rough
multi-instance classifiers (IFRMIC methods) and bag-based fuzzy rough multi-instance clas-
sifiers (BFRMIC methods).

Prior to comparing our proposed methods to existing multi-instance classification algorithms,
we conduct an internal evaluation of the IFMIC, BFMIC, IFRMIC and BFRMIC families. We
compare their different internal parameter settings and explain why certain alternatives are
more appropriate than others. The datasets used in this experimental study are described
in Section 6.5.1 and an overview of the experiments is provided in Section 6.5.2. They
can be divided into two parts: our fuzzy multi-instance based classifiers are evaluated in
Sections 6.5.3-6.5.4 and our fuzzy rough multi-instance classifiers in Sections 6.5.5-6.5.6.
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Table 6.5: Balanced multi-instance datasets used in our experimental evaluation.

Class sizes Bag sizes
Dataset nFeat nBags nInsts nCl0 nCl1 Min Mean Median Max
Musk1 166 92 476 45 47 2 5.17 4 40
Musk2 166 101 6598 62 39 2 65.33 14 1044
Atoms 10 188 1618 63 125 5 8.61 8 15
Bonds 16 188 3995 63 125 8 21.25 20 40
Chains 24 188 5349 63 125 8 28.45 27 52
Elephant 230 200 1391 100 100 2 6.96 7 13
Fox 230 200 1320 100 100 2 6.60 6 13
Tiger 230 200 1220 100 100 1 6.10 6 13
EastWest 24 20 213 10 10 4 10.65 9 16
WestEast 24 20 213 10 10 4 10.65 9 16
AntDrugs5 5 400 3728 202 198 5 9.32 9 14
AntDrugs10 10 400 3787 214 186 5 9.47 10 14
AntDrugs20 20 400 3736 212 188 5 9.34 9 14
TREC9Sel-1 320 400 3224 200 200 1 8.06 8 19
TREC9Sel-2 303 400 3344 200 200 1 8.36 8 19
TREC9Sel-3 324 400 3246 200 200 1 8.12 8 20
TREC9Sel-4 306 400 3391 200 200 1 8.48 8 20
TREC9Sel-7 300 400 3367 200 200 1 8.42 8 19
TREC9Sel-9 299 400 3300 200 200 1 8.25 8 19
TREC9Sel-10 303 400 3453 200 200 1 8.63 9 20
WIRSel-7 303 113 3423 58 55 4 30.29 24 200
WIRSel-8 303 113 3423 58 55 4 30.29 24 200
WIRSel-9 301 113 3423 58 55 4 30.29 24 200
Corel01vs02 9 200 838 100 100 2 4.19 4 11
Corel01vs03 9 200 794 100 100 2 3.97 3 11
Corel01vs04 9 200 1243 100 100 2 6.22 6 13
Corel01vs05 9 200 684 100 100 2 3.42 2 11
Corel02vs03 9 200 664 100 100 2 3.32 3 10
Corel02vs04 9 200 1113 100 100 2 5.57 5 13
Corel02vs05 9 200 554 100 100 2 2.77 2 10
Corel03vs04 9 200 1069 100 100 2 5.35 5 13
Corel03vs05 9 200 510 100 100 2 2.55 2 6
Corel04vs05 9 200 959 100 100 2 4.80 3 13

6.5.1 Datasets

We consider two groups of datasets: 33 more or less balanced ones and 33 imbalanced ones.
The former are listed in Table 6.5, including their number of features, number of bags and
total number of instances. All datasets consist of two classes, of which class 0 is the negative
class and class 1 the positive class. The class sizes are included in the table. As an additional
information component, we also list the minimum, mean, median and maximum size of a
bag in each dataset. The group of class imbalanced multi-instance datasets are presented in
Table 6.6. All results reported in the remainder of this chapter are obtained via five-fold cross
validation.

6.5.2 Overview of the experiments

In Sections 6.5.3-6.5.4, we evaluate our fuzzy multi-instance classifiers on the 33 datasets
listed in Table 6.5. Taking all possible combinations of the settings listed in Tables 6.2-6.3
into account, this implies the evaluation of 125 IFMIC methods and 40 BFMIC methods.
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Table 6.6: Imbalanced multi-instance datasets used in the experimental evaluation.

Class sizes Bag sizes
Dataset nFeat nBags nInsts nCl0 nCl1 IR Min Mean Median Max
WIRSel-1 304 113 3423 92 21 4.38 4 30.29 24 200
WIRSel-2 298 113 3423 92 21 4.38 4 30.29 24 200
WIRSel-3 303 113 3423 92 21 4.38 4 30.29 24 200
WIRSel-4 303 113 3423 24 89 3.71 4 30.29 24 200
WIRSel-5 302 113 3423 24 89 3.71 4 30.29 24 200
WIRSel-6 304 113 3423 24 89 3.71 4 30.29 24 200
Corel20-1 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-2 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-3 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-4 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-5 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-6 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-7 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-8 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-9 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-10 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-11 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-12 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-13 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-14 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-15 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-16 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-17 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-18 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-19 9 2000 7947 1900 100 19.00 2 3.97 3 13
Corel20-20 9 2000 7947 1900 100 19.00 2 3.97 3 13
Elephant 230 125 912 25 100 4.00 2 7.30 7 13
Fox 230 121 781 21 100 4.76 2 6.45 6 13
Mut atoms 10 167 1438 42 125 2.98 5 8.61 8 15
Mut bonds 16 160 3558 35 125 3.57 8 22.24 22 40
Mut chains 24 152 4630 27 125 4.63 8 30.46 30 52
Tiger 230 126 708 26 100 3.85 1 5.62 5 12
Thioredoxin 8 193 26611 168 25 6.72 35 137.88 145 189

The former are studied in Section 6.5.3, the latter form the focus of Section 6.5.4. Aside from
the overall accuracy, we also report the accuracy on the two classes separately. The use of
the traditional classification accuracy is justified because there is little to no class imbalance
in the datasets in Table 6.5.

Sections 6.5.5-6.5.6 compare our fuzzy rough multi-instance classifiers on the imbalanced
datasets in Table 6.6. For both the IFRMIC and BFRMIC classifiers, we first fix the weight
combination to W4 and evaluate the other parameter settings. Afterwards, we compare the
different weight combinations listed in Section 6.4.1.1 and, for the BFRMIC methods, the
effect of using crisp class membership degrees for the training bags. As evaluation measures,
we use the class-wise accuracies, the AUC and the balanced accuracy. In both (6.6) and (6.7),
we use the  Lukasiewicz implicator (IL(a, b) = min(1− a+ b, 1)).
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6.5.3 The IFMIC family

As described in Section 6.3.1.1, our instance-based fuzzy classifiers depend on three parame-
ters, namely the ways to compute (i) the affinity B(x) of an instance x with a bag B, (ii)
the membership degree C(x) of instance x to class C and (iii) the membership degree C(X)
of bag X to class C. Each can be set to one of five alternatives (Max, MaxExp, MaxInvadd,
MaxAdd and Avg).

Table 6.7: Best performing IFMIC methods for each evaluation measure. The results are
taken as averages over the datasets in Table 6.5.

Classifier Acc cl0 Classifier Acc cl1 Classifier Accuracy
Max-MaxExp-MaxInvadd 0.8068 Max-Avg-MaxAdd 0.8918 Max-MaxExp-MaxAdd 0.8168
Max-MaxExp-MaxAdd 0.8068 Max-Avg-MaxExp 0.8893 Max-MaxExp-MaxInvadd 0.8155
Max-MaxExp-Avg 0.8039 Max-Avg-MaxInvadd 0.8886 Max-MaxExp-Avg 0.8153
Max-Max-Avg 0.8022 Max-MaxAdd-MaxAdd 0.8808 Max-MaxInvadd-Avg 0.8128
Max-Max-MaxAdd 0.7991 Max-MaxAdd-MaxInvadd 0.8802 Max-MaxInvadd-MaxAdd 0.8121

We use three evaluation measures: the overall accuracy, the accuracy on class 0 (negative
class) and the accuracy on class 1 (positive class). Table 6.7 lists the five highest scoring
IFMIC methods for each measure based on their average performance across the datasets in
Table 6.5. To complement these results, we note that the lowest obtained mean values for
these measures are 0.5024 (IFMIC-Avg-Avg-Max), 0.5971 (IFMIC-Avg-Max-Avg) and 0.6502
(IFMIC-Avg-Avg-Max) respectively. A striking point is that each classifier in the top five for
each evaluation measure uses the Max alternative for B(x). With respect to the C(x) step, the
preference for a procedure closer to a maximum (Max or MaxExp) or to an average (Avg or
MaxAdd) seems to depend on the particular class, as evident from the different high-ranking
versions for the class 0 and class 1 accuracy. Based on the overall accuracy, MaxExp seems to
be the preferred choice. A preference for one of the C(X) alternatives is less clear-cut based
on the results included in Table 6.7. We study and explain the differences in performance of
the possible settings in the following sections.

6.5.3.1 Instance-to-bag affinity B(x)

The mean results obtained by the five alternatives for B(x) are listed in Table 6.8. These
results were derived as averages over the datasets in Table 6.5 and all IFMIC methods using a
particular setting. For example, the results for Avg are taken as the mean value across the 25
included IFMIC-Avg-*-* methods. The reported standard deviations are taken across these
methods as well.

Table 6.8: Setting rankings of the B(x) alternatives of the IFMIC methods.

B(x) Acc cl0 B(x) Acc cl1 B(x) Accuracy
Max 0.7175±0.0789 Max 0.8324±0.0524 Max 0.7786±0.0304
MaxAdd 0.6904±0.0679 MaxExp 0.8034±0.0550 MaxExp 0.7537±0.0276
MaxInvadd 0.6839±0.0723 MaxInvadd 0.7795±0.0699 MaxInvadd 0.7459±0.0322
MaxExp 0.6803±0.0794 MaxAdd 0.7605±0.0667 MaxAdd 0.7381±0.0298
Avg 0.6729±0.0729 Avg 0.7248±0.0682 Avg 0.7121±0.0275
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As was already evident from the results listed in Table 6.7, the Max setting is clearly preferred.
It attains the highest mean accuracy, both overall as well as on the two classes separately.
The performance of Avg is lowest for all measures and that of the OWA alternatives is found
between Max and Avg. This indicates that there is no point in softening the strict maximum
(and thereby bringing it closer to an average) in the calculation of B(x).

The B(x) step determines the membership of an instance x to a bag B. The results show that
the most similar instance y ∈ B contains the most information. Involving all instances in B in
this calculation, either by assigning them all equal weights (Avg) or not (MaxAdd, MaxInvadd,
MaxExp), deteriorates the performance. This phenomenon is explained as follows. In a
multi-instance dataset, the variety between instances in a bag can be quite large. Indeed,
considering the standard two-class multi-instance hypothesis that states that a bag is positive
when at least one of its instances belongs to the positive class, a positive bag can both contain
instances affiliated with the positive concept and instances affiliated with the negative concept.
Assume that we draw two instances x1 and x2 from bag B that are affiliated with the positive
and negative class respectively and that, based on their feature values, their similarity is
(unsurprisingly) low. If we involve value RI(x1, x2) in the calculation of B(x1) and B(x2), it
would unjustifiably lower the results, even though x1 and x2 both belong to B and their affinity
with the bag should be high. We also observe that the OWA approaches, as intermediate
options between the average and maximum, do not provide an advantage over the strict
maximum and we conclude that they are not useful for the estimation of B(x).

6.5.3.2 Instance-to-class membership degree C(x)

Table 6.9 lists the results for the five alternatives for the C(x) calculations, obtained in the
same way as described in the previous section. MaxInvadd has the highest mean accuracy.
We observe that this is due to its more or less balanced performance on the two classes, that
is, it does not obtain extremely good or poor results on one of the two classes. The Max
and Avg alternatives sit at the bottom of the accuracy table, which is due to their inferior
performance on one of the two classes (low class 0 accuracy for Avg, low class 1 accuracy for
Max). MaxInvadd attains the best trade-off between the maximum and average aggregations.

Table 6.9: Setting rankings of the C(x) alternatives of the IFMIC methods.

C(x) Acc cl0 C(x) Acc cl1 C(x) Accuracy
Max 0.7579±0.0301 Avg 0.8434±0.0342 MaxInvadd 0.7696±0.0308
MaxExp 0.7539±0.0331 MaxAdd 0.8272±0.0415 MaxExp 0.7555±0.0375
MaxInvadd 0.7142±0.0304 MaxInvadd 0.8010±0.0442 MaxAdd 0.7423±0.0317
MaxAdd 0.6383±0.0322 MaxExp 0.7332±0.0513 Max 0.7376±0.0358
Avg 0.5807±0.0319 Max 0.6957±0.0549 Avg 0.7235±0.0285

We need to explain why Avg works better for class 1, while class 0 prefers Max. The largest
differences can be found on the TREC and WIR datasets from Table 6.5, which respectively
belong to the text classification and web mining domains. On this group of ten datasets,
the average class 0 accuracies are 0.3125 (Avg) and 0.7233 (Max), while the average class
1 accuracies are 0.9557 (Avg) and 0.7683 (Max). Based on these results, we only need to
consider the behaviour of Avg, since Max achieves a more or less balanced performance on
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the two classes. It warrants an explanation why Avg assigns the class 1 label more easily than
the class 0 label for these text datasets.

We momentarily fix B(x) to Max (the favoured setting of this parameter as discussed in
Section 6.5.3.1) and consider the distribution of the average B(x) values. These values (and
therefore the C(x) values as computed by Avg) of instances belonging to class 0 bags are close
together for bags B of class 0 and class 1 and are even a little higher for those of class 1. On
the other hand, for instances belonging to class 1 bags, the opposite occurs: their average
B(x) values are higher for class 1 than class 0. As a result, we can expect the membership
degree to class 1 to be higher for all instances, regardless of the bag label of their parent bag.
Clearly, there is an attracting force in class 1 for the ten text datasets. Recall that class 1
is the positive class and the characteristics of the text datasets may lead to an attraction of
this class when Avg is used to compute the membership degree of instances to classes. We
can also note that these datasets further stand out as having a relatively low similarity of
instances in different bags, that is, instances in a bag B are usually more similar to each other
than they are to instances in other bags. We observe the same characteristics for the image
datasets Elephant, Fox and Tiger, where the difference in class accuracy results is present
as well, albeit less pronounced. Finally, we should note that the observed behaviour can not
be solely due to our choice of instance similarity relation RI(·, ·). All these datasets have
far more than 20 features and are therefore processed with the cosine similarity, but other
datasets using the cosine similarity do not exhibit this behaviour. Instead, the positive class
of these datasets must have some sort of attracting property, which results in an overly easy
assignment of the class 1 label by Avg.

The overall preference of MaxInvadd can be deduced from its orness value, which places it
between Max and Avg, but closer to the former. The observant reader will have noted that
the first two columns in Table 6.9 rank the C(x) settings according to their orness value,
namely in decreasing order for the class 0 accuracy and in increasing order for the class 1
accuracy. The MaxInvadd setting achieves the best trade-off between a high class 1 accuracy
and an acceptable class 0 accuracy.

6.5.3.3 Bag-to-class membership degree C(X)

Table 6.10 lists the results for the five alternatives for the C(X) calculations, once again
obtained by averaging the results of all IFMIC methods using a particular setting. The
average-related options yield the best performance. In particular, the Max setting provides
clearly inferior results compared to the other alternatives. It is interesting to note that the
ranking obtained for the overall accuracy is exactly the opposite from the one observed for
the B(x) calculations in Table 6.8. The C(X) membership degrees are aggregations of the
C(x) values for all instances x ∈ X. It is reasonable to expect that all instances in X
should contribute (more or less) equally to this calculation for a proper class estimation. The
experimental results confirm this.

6.5.3.4 Conclusion

Overall, we can advise the use of the IFMIC-Max-MaxInvadd-Avg classifier. From the settings
evaluated in this chapter, Max for B(x), MaxInvadd for C(x) and Avg for C(X) stand out
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Table 6.10: Setting rankings of the C(X) alternatives of the IFMIC methods.

C(X) Acc cl0 C(X) Acc cl1 C(X) Accuracy
Avg 0.7244±0.0647 MaxAdd 0.8002±0.0677 Avg 0.7680±0.0290
MaxAdd 0.7008±0.0721 MaxInvadd 0.7926±0.0705 MaxAdd 0.7624±0.0285
MaxInvadd 0.6942±0.0737 Avg 0.7916±0.0731 MaxInvadd 0.7551±0.0293
MaxExp 0.6774±0.0736 MaxExp 0.7773±0.0709 MaxExp 0.7387±0.0294
Max 0.6483±0.0735 Max 0.7388±0.0643 Max 0.7042±0.0261

as the best choices on average, for reasons discussed above. We include it in the global com-
parison of our proposed methods to state-of-the-art multi-instance classifiers in Section 6.6.

6.5.4 The BFMIC family

As described in Section 6.3.1.2, our bag-based fuzzy classifiers depend on two parameters,
namely the ways to compute (i) the similarity between two bags R(X,B) and (ii) the mem-
bership degree C(X) of a bag to a class. The former can be set to one of eight alternatives
(H, HExp, HInvadd, HAdd, AvgH, AvgHExp, AvgHInvadd, AvgHAdd), while five choices are
available for the latter (Max, MaxExp, MaxInvadd, MaxAdd, Avg).

Table 6.11 lists the five highest scoring BFMIC methods for the overall and class-wise ac-
curacies based on their average performance across the datasets in Table 6.5. The lowest
obtained mean values for these measures are 0.5982 (BFMIC-HAdd-Avg) for the class 0 ac-
curacy, 0.7698 (BFMIC-AvgHAdd-Max) for the class 1 accuracy and 0.6986 (BFMIC-H-Avg)
for the overall accuracy. In particular for the class 0 accuracy, we observe a stand-out per-
formance of the BFMIC-AvgH-MaxExp method. For the other evaluation measures, the top
results are closer together. In the following sections, we evaluate the performance of the eight
R(X,B) and five C(X) alternatives.

Table 6.11: Best performing BFMIC methods for each evaluation measure. The results are
taken as averages over the datasets in Table 6.5.

Classifier Acc cl0 Classifier Acc cl1 Classifier Accuracy
AvgH-MaxExp 0.8045 AvgH-Avg 0.8867 AvgH-MaxInvadd 0.8204
AvgH-Max 0.7873 AvgHExp-Avg 0.8819 AvgH-MaxExp 0.8202
H-Max 0.7870 AvgHExp-MaxAdd 0.8807 AvgHExp-MaxInvadd 0.8114
HInvadd-MaxExp 0.7812 AvgH-MaxAdd 0.8788 AvgHExp-MaxExp 0.8112
AvgHExp-MaxExp 0.7785 AvgHInvadd-Avg 0.8690 HInvadd-MaxExp 0.8094

6.5.4.1 Bag similarity R(X,B)

Table 6.12 lists the mean results and standard deviations of the eight alternatives for R(X,B).
As we did for the IFMIC methods in the previous section, these results were obtained as
averages over the datasets in Table 6.5 and based on all BFMIC methods using a particular
setting. For example, the results for AvgH are derived from those of the five included BFMIC-
AvgH-* methods.

The experiments show that the average Hausdorff similarity is the best choice for the bag
similarity relation, attaining the best average result for both class-wise accuracies as well
as the overall accuracy. The preference of the average over the regular Hausdorff distance
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was already expressed in [477]. Our modified versions using OWA aggregations (AvgHExp,
AvgHInvadd, AvgHAdd) do not further improve its performance. This is in line with the
observations with regard to the B(x) step in our instance-based classifiers (Section 6.5.3.1).
For the B(x) parameter, the strict maximum proved superior to our OWA-softened versions
and we could attribute this to the variability existing within bags. The same occurs here. The
OWA modifications AvgHExp, AvgHInvadd and AvgHAdd of the average Hausdorff distance
lie at the level of the instance-wise comparisons. Once again, we find that the least distant
(most similar) instance carries the most information.

Table 6.12: Setting rankings of the R(X,B) alternatives of the BFMIC methods.

R(X,B) Acc cl0 R(X,B) Acc cl1 R(X,B) Accuracy
AvgH 0.7364±0.0639 AvgH 0.8514±0.0332 AvgH 0.7993±0.0190
AvgHExp 0.7140±0.0568 AvgHExp 0.8498±0.0340 AvgHExp 0.7920±0.0179
HInvadd 0.7129±0.0623 AvgHInvadd 0.8374±0.0316 AvgHInvadd 0.7802±0.0175
HExp 0.7091±0.0514 HInvadd 0.8304±0.0176 HInvadd 0.7784±0.0260
H 0.7054±0.0706 HAdd 0.8252±0.0239 HAdd 0.7715±0.0238
HAdd 0.7040±0.0622 HExp 0.8241±0.0125 HExp 0.7711±0.0260
AvgHInvadd 0.6976±0.0517 AvgHAdd 0.8233±0.0351 AvgHAdd 0.7697±0.0163
AvgHAdd 0.6904±0.0486 H 0.7975±0.0120 H 0.7544±0.0349

6.5.4.2 Bag-to-class membership degree C(X)

Table 6.10 lists the results for the five alternatives for C(X). The rankings of these settings
are in line with the ones obtained in Section 6.5.3.2 for the C(x) step in our IFMIC methods.
We observe a strong difference between Avg on the one hand and the Max* versions on the
other. On class 0, the performance of Avg is very low, while it ranks in second place for
the class 1 accuracy. This is mainly due to the results on the TREC and WIR datasets,
where its class 1 accuracy is very high and its class 0 accuracy relatively low. A similar
behaviour was observed within the IFMIC methods in Section 6.5.3.2. The MaxAdd method,
which is the one most related to Avg among the OWA alternatives, exhibits a comparable
pattern, although it performs notably better on class 0 than Avg does. The remaining OWA
approximations MaxExp and MaxInvadd yield a better balance between the classes. They also
perform better (on average) than the strict maximum. As for C(x) in IFMIC, these settings
achieve a preferable trade-off between the characteristics of the maximum and average.

Table 6.13: Setting ranking of the C(X) alternatives of the BFMIC methods.

C(X) Acc cl0 C(X) Acc cl1 C(X) Accuracy
MaxExp 0.7691±0.0199 MaxAdd 0.8522±0.0219 MaxExp 0.8007±0.0122
Max 0.7568±0.0218 Avg 0.8488±0.0316 MaxInvadd 0.7964±0.0166
MaxInvadd 0.7331±0.0154 MaxInvadd 0.8415±0.0172 Max 0.7787±0.0108
MaxAdd 0.6685±0.0108 MaxExp 0.8177±0.0132 MaxAdd 0.7682±0.0179
Avg 0.6160±0.0122 Max 0.7892±0.0098 Avg 0.7414±0.0213

6.5.4.3 Conclusion

Based on the results reported and explanations given in Sections 6.5.4.1-6.5.4.2, we can put
forward our BFMIC-AvgH-MaxExp or BFMIC-AvgH-MaxInvadd methods as best performing
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ones among the evaluated set of BFMIC methods. We include the BFMIC-AvgH-MaxExp
method in our global comparison conducted in Section 6.6.

6.5.5 The IFRMIC family

Our instance-based fuzzy rough classifiers depend on four parameters: (i) the instance-to-bag
affinity B(y), (ii) the instance-to-class membership degree C(y), (iii) the IFROWANN weight
combinations used to obtain C(x) and (iv) the way to aggregate these values to C(X). The
first, second and fourth components can be set to Max, MaxExp, MaxInvadd, MaxAdd and
Avg, while the weight combination options are listed in Section 6.4.1.1. We evaluate our
classifiers by means of their majority class accuracy (Acc maj), minority class accuracy (Acc
min), AUC and balanced accuracy values on the datasets in Table 6.6.

In a first step, we fix the IFROWANN weight combination to W4, a well-performing setting
in the original paper [355]. Table 6.14 lists the top five performing IFRMIC methods for each
evaluation measure. As we observed for our instance-based fuzzy classifiers in Section 6.5.3,
the Max setting for B(y) is clearly preferable based on its strong performance for the AUC
and balanced accuracy summary measures as well as its favourable results on the minority
class. Several methods obtain a near perfect classification of the majority class at the cost
of a very poor recognition of minority elements. For the sake of completeness, the lowest
obtained mean values are 0.5417 (IFRMIC-Max-Avg-Max-W4) for the majority class accuracy,
0.1011 (IFRMIC-MaxInvadd-MaxExp-MaxExp-W4) for the minority class accuracy, 0.6842
(IFRMIC-Avg-Avg-Max-W4) for the AUC and 0.5459 (IFRMIC-Avg-MaxExp-MaxExp-W4)
for the balanced accuracy. We discuss the relative performance of the different parameter
settings in Section 6.5.5.1. The effect of the various IFROWANN weight combinations on the
results is assessed in Section 6.5.5.2.

Table 6.14: Best performing IFRMIC methods for each evaluation measure. The results are
taken as averages over the datasets in Table 6.6. Weight combinationW4 is used.

Classifier Acc maj Classifier Acc min
MaxInvadd-Max-MaxInvadd 0.9942 Max-Avg-Avg 0.7609
MaxExp-MaxExp-MaxExp 0.9942 Max-MaxAdd-MaxInvadd 0.7543
MaxExp-MaxExp-MaxInvadd 0.9937 Max-MaxAdd-MaxAdd 0.7528
MaxAdd-MaxExp-MaxInvadd 0.9935 Max-Avg-MaxAdd 0.7520
MaxInvadd-Max-MaxExp 0.9932 Max-Avg-MaxInvadd 0.7519

Classifier AUC Classifier Balacc
Max-MaxAdd-MaxAdd 0.8192 Max-MaxAdd-Avg 0.7451
Max-MaxAdd-Avg 0.8146 Max-MaxAdd-MaxAdd 0.7365
Max-Avg-MaxAdd 0.8145 Max-MaxAdd-MaxInvadd 0.7306
Max-Avg-Avg 0.8122 MaxInvadd-MaxAdd-Avg 0.7247
Max-MaxAdd-MaxInvadd 0.8120 MaxExp-MaxAdd-Avg 0.7195

6.5.5.1 Setting rankings

As stated above, we fix the weight combination used in (6.6) toW4 in this section. Table 6.15
presents the mean results and standard deviations of the different settings for B(y), C(y) and
C(X), each of which can be set to Max, MaxExp, MaxInvadd, MaxAdd and Avg. The results
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were once again obtained as averages over the datasets in Table 6.6 and based on all IFRMIC
methods using a particular setting. For example, the results for the Avg setting of B(y) are
computed using the 25 IFRMIC-Avg-*-*-W4 methods.

Table 6.15: Setting rankings of the B(y), C(y) and C(X) alternatives of the IFRMIC meth-
ods. Weight combination W4 is used.

B(y) Acc maj C(y) Acc maj C(X) Acc maj
MaxInvadd 0.8520±0.1618 MaxExp 0.9893±0.0050 Avg 0.8668±0.1451
MaxExp 0.8483±0.1584 Max 0.9828±0.0179 MaxAdd 0.8582±0.1561
Avg 0.8483±0.1647 MaxInvadd 0.9577±0.0207 MaxInvadd 0.8556±0.1593
MaxAdd 0.8455±0.1644 MaxAdd 0.6944±0.0385 MaxExp 0.8454±0.1669
Max 0.8431±0.1630 Avg 0.6130±0.0282 Max 0.8112±0.1777

B(y) Acc min C(y) Acc min C(X) Acc min
Max 0.4440±0.2555 Avg 0.7149±0.0244 Avg 0.4086±0.2619
MaxExp 0.3989±0.2516 MaxAdd 0.6874±0.0364 MaxAdd 0.4036±0.2608
MaxAdd 0.3960±0.2624 MaxInvadd 0.3181±0.0348 Max 0.4024±0.2386
MaxInvadd 0.3921±0.2587 Max 0.1567±0.0295 MaxInvadd 0.3993±0.2601
Avg 0.3715±0.2453 MaxExp 0.1253±0.0165 MaxExp 0.3885±0.2569

B(y) AUC C(y) AUC C(X) AUC
Max 0.7895±0.0203 MaxAdd 0.7808±0.0314 MaxAdd 0.7870±0.0170
MaxExp 0.7679±0.0235 Avg 0.7738±0.0336 Avg 0.7852±0.0168
MaxInvadd 0.7654±0.0305 MaxInvadd 0.7680±0.0270 MaxInvadd 0.7805±0.0174
MaxAdd 0.7612±0.0324 Max 0.7572±0.0290 MaxExp 0.7600±0.0187
Avg 0.7492±0.0319 MaxExp 0.7534±0.0249 Max 0.7206±0.0221

B(y) Balacc C(y) Balacc C(X) Balacc
Max 0.6436±0.0591 MaxAdd 0.6909±0.0297 Avg 0.6377±0.0637
MaxExp 0.6236±0.0519 Avg 0.6639±0.0228 MaxAdd 0.6309±0.0591
MaxInvadd 0.6220±0.0565 MaxInvadd 0.6379±0.0192 MaxInvadd 0.6274±0.0571
MaxAdd 0.6207±0.0569 Max 0.5697±0.0110 MaxExp 0.6170±0.0524
Avg 0.6099±0.0487 MaxExp 0.5573±0.0074 Max 0.6068±0.0380

We observe that the AUC and balanced accuracy rankings of the B(y) and C(X) alternatives
are more or less the same as the corresponding settings within the IFMIC methods (see
Tables 6.8 and 6.10) and we can refer the reader to the above discussion for an explanation.
With respect to the C(y) calculation, in which the membership degree of training instances to
classes is determined, the rankings are different from the ones observed for the IFMIC methods
in Table 6.9. In particular, the averaging approaches Avg and MaxAdd perform notably better
within IFRMIC compared to their actions within IFMIC. The results in Table 6.15 show that
this is due to their performance on the minority class. Considering these results in more
detail, we can ascertain that this behaviour is independent of which class is the minority class
(that is, minority class 0 or minority class 1, see Table 6.6).

A C(y) value is computed as an aggregation of B(y) values, where bag B belongs to class C.
Let us assume that B(y) is computed by means of Max, the preferred setting. This means that
the affinity of instance y with bag B is set to its maximum similarity with an instance in that
bag. We can compute the distribution of the mean and maximum B(y) values (corresponding
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to C(y) with Avg and Max respectively), in which we can make a distinction based on the
class of B. We observe:

• Avg for C(y): on average across the 33 datasets in Table 6.6, for majority bags
B, the mean B(y) values are between 0.5909 (average minimum) and 0.8831 (average
maximum), with average mean and median values of 0.8385 and 0.8416 respectively.
For minority bags B, the mean B(y) values are between 0.5866 (average minimum) and
0.8982 (average maximum), with average mean and median values of 0.8351 and 0.8370
respectively. These values are clearly at the same level and the influence of the class
imbalance is diminished.

• Max for C(y): on the other hand, for the maximum B(y) values, we find 0.7257(min)-
0.9536(mean)-0.9515(median)-0.9990(max) on average for majority bags B compared
to 0.6410(min)-0.9148(mean)-0.9124(median)-0.9955(max) for minority bags B. These
values are noticeably different, such that we can expect relatively too high majority
class memberships degrees to be assigned to all instances. These will propagate to the
level of bags, leading to many misclassifications of the minority class.

When we compute the difference between the mean B(y) values for the majority and minority
classes, the average value on the 33 datasets is 0.0034 and we observe both positive and
negative differences. For the maximum B(y) values, this average difference is 0.0388 and
is positive for all datasets. This indicates that the observed problem of relatively too high
majority class membership degrees with Max for C(y) occurs consistently across the datasets.

6.5.5.2 Weight combinations

In this section, we fix B(y) to Max, C(y) to MaxAdd and C(X) to Avg and evaluate the
effect of different IFROWANN weight combinations in the calculation of the C(x) values in
(6.6). The results are presented in Table 6.16 as averages across the 33 datasets in Table 6.6.
Based on the class-wise accuracy and balanced accuracy values, we can conclude that two
settings yield a befitting balance between the two classes, namely combinations W4 and
W7. Setting W3, that combines exponential weights for the minority class calculations with
additive weights for the majority class calculations, has a very strong performance on the
majority class, while leading to many misclassifications on the minority class. On the other
hand, combinations W1, W2, W5, W6 and W8 favour the minority class and perform poorly
on the majority class. With respect to the AUC, W4 and W7 come out on top, but are
dominated by W8. The AUC value of W5 is acceptable, but the results of the four other
alternatives are relatively too low. In all, W4 andW7 clearly are most appropriate. The good
performance of W4 has been observed in earlier studies as well, which was why we selected
it as the fixed setting in the previous section. It uses exponential weights for both class
approximations. Combination W7 uses strict instead of exponential weights and is therefore
related to W4. The other six schemes take more values into account in the aggregation (for
one or both classes), which proves to be inappropriate here. The OWA aggregation in (6.6)
is taken over all training instances and can consequently be quite lengthy. The minimum
number of instances in the datasets from Table 6.6 is 708, but the maximum is 26611 and the
median value 7947. This indicates why Strict or Exp may be preferred (see Chapter 3).
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Table 6.16: Evaluation of the eight weight combinations within IFRMIC-Max-MaxAdd-Avg-
*. The value for γ in W5 and W6 is 0.1.

Weights Acc maj Weights Acc min Weights AUC Weights Balacc
W3 0.9966 W2 0.9983 W8 0.8386 W7 0.7478
W4 0.7467 W6 0.9941 W7 0.8173 W4 0.7451
W7 0.7396 W1 0.9912 W4 0.8146 W5 0.6607
W5 0.4428 W8 0.9167 W5 0.8087 W8 0.6444
W8 0.3721 W5 0.8787 W6 0.7209 W3 0.5491
W6 0.0708 W7 0.7560 W1 0.6747 W6 0.5325
W1 0.0438 W4 0.7436 W3 0.6733 W1 0.5175
W2 0.0036 W3 0.1015 W2 0.6428 W2 0.5010

Finally, we note that we have also varied the γ parameter in W5 and W6. The lowest values
of γ provided the best results with AUC values of 0.8394 (W5 with γ = 0) and 0.7705 (W6
with γ = 0) and balanced accuracy values of 0.7419 (W5 with γ = 0) and 0.5631 (W6 with
γ = 0).

6.5.6 The BFRMIC family

Our bag-based fuzzy rough classifiers rely on the definition of three parameters: (i) the bag
similarity relation R(X,B), (ii) the bag-to-class membership degree C(B) and (iii) the way
to compute the C(X) in (6.7). We evaluate our classifiers by means of their majority class
accuracy, minority class accuracy, AUC and balanced accuracy values on the datasets in
Table 6.6.

Table 6.17: Best performing BFRMIC methods for each evaluation measure. The results are
taken as averages over the datasets in Table 6.6. Weight combinationW4 is used.

Classifier Acc maj Classifier Acc min
HInvadd-MaxExp 0.9762 AvgH-MaxAdd 0.7613
AvgH-MaxExp 0.9757 AvgH-Avg 0.7557
HAdd-MaxExp 0.9750 AvgHExp-Avg 0.7434
H-MaxExp 0.9742 HAdd-Avg 0.7409
HExp-MaxExp 0.9739 HExp-Avg 0.7336

Classifier AUC Classifier Balacc
AvgH-Max 0.8807 AvgH-MaxAdd 0.7608
AvgH-MaxExp 0.8784 AvgHExp-MaxAdd 0.7451
AvgH-MaxInvadd 0.8776 AvgHInvadd-MaxAdd 0.7410
AvgHExp-MaxInvadd 0.8576 AvgH-MaxInvadd 0.7402
AvgHInvadd-MaxInvadd 0.8556 AvgHAdd-MaxAdd 0.7397

As we did in Section 6.5.5, we first fix the weight combination to W4 and compare the eight
alternatives for R(X,B) and five alternatives for C(B) listed in Table 6.3. Table 6.17 pro-
vides the five BFRMIC methods with the best results for each evaluation measure. For the
AUC and balanced accuracy measures, we encounter methods with similar settings as the
best performing ones in Section 6.5.4 on top. It is striking that four out of five methods in
the top five for the balanced accuracy use MaxAdd to compute the C(B) values. The lowest
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values obtained for the four evaluation measures by one of the included BFRMIC methods are
0.6516 (BFRMIC-HAdd-Avg-W4) for the majority class accuracy, 0.2776 (BFRMIC-HAdd-
MaxExp-W4) for the minority class accuracy, 0.7494 (BFRMIC-H-Avg-W4) for the AUC and
0.6255 (BFRMIC-AvgHAdd-Max-W4) for the balanced accuracy. We compare the different
parameter settings in Section 6.5.6.1 and study the effect of the IFROWANN weight combi-
nation in Section 6.5.6.2. The version of BFRMIC with crisp class membership degrees for
the training bags is evaluated separately in Section 6.5.6.3.

6.5.6.1 Setting rankings

Fixing the weight combination in (6.7) to W4, we evaluate the performance of the eight
settings for R(X,B) and five settings for C(B). Table 6.18 lists the average results and
standard deviations of all alternatives for these two parameters. We observe that the rankings
of the R(X,B) settings are similar to the ones listed for the BFMIC methods in Table 6.12
and that AvgH comes out on top for all included measures. However, notable differences are
observed for the rankings of the C(B) versions.

With respect to the C(B) calculations, we observe that Max, MaxExp and MaxInvadd per-
form very well on the majority class at the cost of many classification errors on the minority
class. The behaviour of MaxAdd and Avg is distinctly different. These settings obtain a
better balance between the minority and majority class accuracies. This is particularly true
for MaxAdd, which is reflected in its superior balanced accuracy value. We explain the poor
performance of Max (and MaxExp, MaxInvadd) in the following paragraphs.

As described in Section 6.4.1.3, the BFRMIC methods precompute their C(B) values for
the training bags in a learning phase. They do not use a leave-one-out procedure, that is,
the similarity of a bag with itself is included in the aggregation to CB(B), where CB is the
class label of bag B. As a result, a training bag should be pulled more to its own class.
In particular, Max sets CB(B) = 1. When using an average-related procedure, this effect
diminishes as the class size increases. Based on this observation, we can derive the following.
To classify a bag X to the majority class Cmaj or minority class Cmin, the aggregation lengths
in Cmaj(X) and Cmin(X) are the same. In particular,

Cmaj(X) = OWAW exp∗
Maj

({min(1−R(X,B) + Cmaj(B), 1) |B ∈ T}),

Cmin(X) = OWAW exp∗
Min

({min(1−R(X,B) + Cmin(B), 1) |B ∈ T}).

Due to the large impact of the similarity of a training bag with itself in the calculation of
C(B) by Max, the training bags taking part in the aggregation of Cmaj(X) will mostly belong
to the minority class, while those in the aggregation of Cmin(X) will mostly belong to the
majority class. Concretely, we will find

Cmaj(X) = OWAW exp∗
Maj

({1, 1, . . . , 1}︸ ︷︷ ︸
B ∈Cmaj

∪{min(1−R(X,B) + Cmaj(B), 1) |B ∈ Cmin}), (6.11)
Cmin(X) = OWAW exp∗

Min
({1, 1, . . . , 1}︸ ︷︷ ︸

B ∈Cmin

∪{min(1−R(X,B) + Cmin(B), 1) |B ∈ Cmaj}). (6.12)
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As a result of the sorting step in the OWA procedure, the values stemming from bagsB ∈ Cmaj
in (6.11) and from bags B ∈ Cmin in (6.12) are placed at the beginning of the ordered sequence
(Definition 3.1.1) and are likely assigned a zero weight by the exponential weights used inW4.
This supports our above claim that Cmaj(X) and Cmin(X) depend primarily on contributions
of minority class and majority class bags respectively.

Table 6.18: Setting rankings of the R(X,B) and C(B) alternatives. Weight combination W4
is used.

R(X,B) Acc maj C(B) Acc maj
AvgH 0.8713±0.1222 MaxExp 0.9706±0.0060
AvgHExp 0.8637±0.1198 Max 0.9579±0.0081
H 0.8609±0.1294 MaxInvadd 0.9540±0.0059
AvgHInvadd 0.8601±0.1201 MaxAdd 0.7432±0.0124
HInvadd 0.8545±0.1190 Avg 0.6691±0.0139
AvgHAdd 0.8545±0.1357
HExp 0.8543±0.1359
HAdd 0.8524±0.1349

Acc min R(X,B) C(B) Acc min
AvgH 0.5646±0.1643 Avg 0.7310±0.0179
AvgHExp 0.5399±0.1684 MaxAdd 0.7204±0.0231
AvgHInvadd 0.5181±0.1803 MaxInvadd 0.4588±0.0367
AvgHAdd 0.5062±0.1923 Max 0.3397±0.0332
HInvadd 0.5015±0.1827 MaxExp 0.3120±0.0355
HAdd 0.5000±0.1992
HExp 0.4971±0.1841
H 0.4717±0.1790

R(X,B) AUC C(B) AUC
AvgH 0.8605±0.0230 MaxInvadd 0.8277±0.0380
AvgHExp 0.8397±0.0155 MaxAdd 0.8076±0.0249
AvgHInvadd 0.8255±0.0162 Max 0.8034±0.0404
AvgHAdd 0.8171±0.0172 MaxExp 0.8027±0.0408
HAdd 0.7974±0.0199 Avg 0.7929±0.0240
HInvadd 0.7825±0.0158
HExp 0.7713±0.0083
H 0.7608±0.0059

R(X,B) Balacc C(B) Balacc
AvgH 0.7180±0.0309 MaxAdd 0.7318±0.0166
AvgHExp 0.7018±0.0339 MaxInvadd 0.7064±0.0199
AvgHInvadd 0.6891±0.0397 Avg 0.7000±0.0121
AvgHAdd 0.6803±0.0465 Max 0.6488±0.0181
HInvadd 0.6780±0.0306 MaxExp 0.6413±0.0179
HAdd 0.6762±0.0399
HExp 0.6757±0.0294
H 0.6663±0.0300

On average across the minority class 1 datasets, the maximum similarity values of minor-
ity class bags with majority class bags have a minimum value of 0.9160, a mean value of
0.9449, a median value of 0.9456 and a maximum value of 0.9697. For the minority class 0
datasets, these average values are 0.7556 (minimum), 0.8363 (mean), 0.8295 (median) and
0.9609 (maximum). In the same way, we can determine that the maximum similarity values
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of majority class bags with minority class bags have an average minimum value of 0.8545,
average mean value of 0.9164, average median value of 0.9143 and average maximum value
of 0.9697 for minority class 1 datasets. On the minority class 0 datasets, these values are
0.7234, 0.8144, 0.8121 and 0.9609 respectively. It is evident that the C(B) values computed
with Max can be expected to be noticeably higher for minority bags and C = Cmaj than for
majority bags and C = Cmin. As a result, we can expect Cmaj(X) computed with (6.11) to
be usually higher than Cmin(X) computed with (6.12), which results in an easy assignment
of the majority class label and a high accuracy on this class. This is particularly true for
Max, on which the above reported values are based, but similar conclusions can be drawn for
the strongly related MaxExp and MaxInvadd aggregations.

For completeness (and to show why Avg and MaxAdd are not expected to have this problem),
the distributions of the average similarity values of minority class bags with majority class
bags are 0.8482(min)-0.8800(mean)-0.8815(median)-0.8946(max) (minority class 1 datasets)
and 0.6739(min)-0.7130(mean)-0.7126(median)-0.7501(max) (minority class 0 datasets). The
distributions of the average similarity values of majority class bags with minority class bags
are 0.8135(min)-0.8800(mean)-0.8799(median)-0.9169(max) (minority class 1 datasets) and
0.6715(min)-0.7130(mean)-0.7142(median)-0.7434(max) (minority class 0 datasets). Clearly,
these values are far closer together, which can lead to more confusion between classes, but a
better recognition of the minority class.

6.5.6.2 Weight combinations

We fix R(X,B) to AvgH and C(B) to MaxAdd and assess the effect of the IFROWANN
weight combinations in the C(X) lower approximation calculations in (6.7). Table 6.19 lists
the results of this evaluation as average values across the datasets in Table 6.6. As for our
IFRMIC methods, weighting schemesW4 andW7 yield the best balance between the majority
and minority class accuracies, which is reflected in their high balanced accuracy results. The
other schemes favour one of the two classes. CombinationsW4 andW7 have the highest AUC
values as well, but the results of the other alternatives are not much lower for this measure.
Only W1 and W2 have a poor AUC value, which indicates that using weight vector W add∗

Min is
not a good idea.

Table 6.19: Evaluation of the eight weight combinations within BFRMIC-AvgH-MaxAdd-*.
The value for γ in W5 and W6 is 0.1.

Weights Acc maj Weights Acc min Comb. AUC Weights Balacc
W3 0.9526 W2 0.9873 W4 0.8403 W7 0.7637
W4 0.7604 W1 0.9716 W7 0.8371 W4 0.7608
W7 0.7566 W6 0.9574 W8 0.8034 W5 0.6954
W5 0.5779 W8 0.8996 W5 0.7967 W3 0.6749
W8 0.4357 W5 0.8129 W3 0.7965 W8 0.6677
W6 0.2326 W7 0.7709 W6 0.7433 W6 0.5950
W1 0.1138 W4 0.7613 W1 0.6915 W1 0.5427
W2 0.0440 W3 0.3972 W2 0.6548 W2 0.5156

We have studied the effect of varying the γ parameter on the performance of W5 and W6 as
well, which is set to 0.1 in Table 6.19. The same conclusion holds as for our IFRMIC methods
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(see Section 6.5.5.2), namely that lower γ values provide better results. In particular, a lower
γ leads to (i) a higher majority class accuracy, (ii) a somewhat lower minority class accuracy,
(iii) a higher AUC and (iv) a higher balanced accuracy. Setting γ = 0 yields AUC results of
0.8294 (W5) and 0.7826 (W6) and balanced accuracy values of 0.7363 (W5) and 0.6419 (W6).

6.5.6.3 Crisp class memberships

As argued in Section 6.4.1.3, it can make more intuitive sense to use crisp class membership
degrees for the training bags in (6.7) instead of computing C(B) with Max, MaxExp, Max-
Invadd, MaxAdd or Avg. As we did in Section 6.5.6.2, the bag similarity values R(X,B) are
still computed with AvgH, the preferred alternative according to Table 6.18.

Table 6.20: Performance of the BFRMIC-AvgH-Crisp-* methods with crisp class membership
relation (6.8) for the training bags.

Weights Acc maj Weights Acc min Weights AUC Weights Balacc
W3 1.0000 W2 0.9872 W6-0.0 0.9030 W6-0.0 0.8370
W5-0.0 0.9910 W6-0.1 0.9129 W8 0.9006 W8 0.8120
W5-0.1 0.9815 W6-0.0 0.8649 W6-0.1 0.8989 W6-0.1 0.7821
W4 0.9696 W1 0.8302 W4 0.8909 W7 0.7771
W7 0.9505 W8 0.7016 W7 0.8837 W4 0.7609
W8 0.9225 W7 0.6037 W1 0.8813 W1 0.7563
W6-0.0 0.8091 W4 0.5523 W5-0.1 0.8790 W5-0.1 0.6646
W1 0.6824 W5-0.1 0.3477 W5-0.0 0.8708 W5-0.0 0.5801
W6-0.1 0.6512 W5-0.0 0.1691 W2 0.8692 W2 0.5499
W2 0.1127 W3 0.0256 W3 0.8342 W3 0.5128

In Table 6.20, we repeat the analysis conducted in Section 6.5.6.2 and evaluate the perfor-
mance of the different IFROWANN weight combinations within this BFRMIC method. We
use two values of γ in combinations W5 and W6, namely γ = 0 and γ = 0.1. These results
should be compared to the ones listed in Table 6.19, where the C(B) values are computed
with MaxAdd instead of the crisp class membership degrees (6.8). We observe the following:

• On average, the majority class accuracy benefits from using a crisp class relation, while
the minority class accuracy decreases.

• On average, the AUC of the BFRMIC method increases when a crisp class relation is
used instead of the MaxAdd setting for C(B). This holds for all weight combinations.
The largest increase is observed forW2 with a rise in mean AUC of 0.2144. The smallest
increase is observed for W3, but a positive mean difference of 0.0377 is still reported.

• A decrease in balanced accuracy is observed for combinations W3 (-0.1621), W5-0.0
(-0.1562) and W5-0.1 (-0.0308). For the remaining evaluated weight combinations, an
increase in balanced accuracy is obtained, ranging from a modest mean improvement
of 0.0001 for W4 to a notable increase of 0.2136 for W1.

• When using weight combination W6 with γ = 0 within BFRMIC with the crisp class
membership degree (6.8), both the highest mean AUC and highest mean balanced ac-
curacy are obtained. In fact, this is the best mean performance of any method on
the imbalanced datasets in Table 6.6 encountered so far. Note that by setting γ to
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zero, the sixth weight combination reduces to 〈WMaj
add∗ ,W

Maj
exp∗ 〉. As a consequence, the

lower approximation values computed in (6.7) are a priori based on the same number
of observations, because WMaj

add∗ and WMaj
exp∗ have the same number of leading zero posi-

tions (namely, |Maj|). The lower approximation of the minority class is obtained with
additive weights and that of the majority class with exponential weights.

As a final step, we study this last observation in more detail. The weight vectors used in
(6.7) when using W6 with γ = 0 consist of |Maj| leading zeros, followed by W add

L for the
minority class and W exp

L for the majority class, both with p = |Min| (see Section 3.2.1 for
the weight vector definitions). In Table 6.21, we evaluate the performance of this BFRMIC
method when options other than W add

L and W exp
L are selected to fill up the weight vectors

in W6. We compare combinations of Strict, Add, Exp and Invadd. The original definition
of W6 with γ = 0 corresponds to Add-Exp in the table. This clearly is a good choice,
as it attains the second highest AUC and balanced accuracy values and the third highest
minority class accuracy. However, its majority class accuracy is relatively low, namely the
lowest but two. The Invadd-Exp alternative has a considerably higher majority class accuracy
(0.9059 compared to 0.8091) but lower minority class accuracy (0.7799 compared to 0.8649).
Nevertheless, its mean AUC and balanced accuracy are both highest among the evaluated
methods. These are also the highest mean values observed on the imbalanced datasets so far.

Table 6.21: Variants of W6-0.0 within BFRMIC-AvgH-Crisp. The first weight component
refers to the weights for the minority class, the second to weights for the majority
class.

Combination Acc maj Combination Acc min Combination AUC Combination Balacc
Exp-Add 1.0000 Add-Strict 0.9298 Invadd-Exp 0.9038 Invadd-Exp 0.8429
Strict-Add 1.0000 Invadd-Strict 0.8660 Add-Exp 0.9030 Add-Exp 0.8370
Strict-Invadd 0.9993 Add-Exp 0.8649 Invadd-Strict 0.8965 Invadd-Strict 0.8326
Exp-Invadd 0.9990 Invadd-Exp 0.7799 Add-Strict 0.8945 Exp-Strict 0.8091
Invadd-Add 0.9979 Exp-Strict 0.7026 Add-Invadd 0.8936 Add-Strict 0.8059
Add-Add 0.9910 Strict-Strict 0.6037 Exp-Strict 0.8918 Strict-Strict 0.7771
Invadd-Invadd 0.9870 Exp-Exp 0.5523 Exp-Exp 0.8909 Exp-Exp 0.7609
Strict-Exp 0.9847 Add-Invadd 0.4884 Invadd-Invadd 0.8856 Add-Invadd 0.7311
Add-Invadd 0.9738 Strict-Exp 0.4537 Strict-Strict 0.8837 Strict-Exp 0.7192
Exp-Exp 0.9696 Invadd-Invadd 0.3016 Strict-Exp 0.8757 Invadd-Invadd 0.6443
Strict-Strict 0.9505 Add-Add 0.1691 Add-Add 0.8708 Add-Add 0.5801
Exp-Strict 0.9156 Exp-Invadd 0.1327 Exp-Invadd 0.8627 Exp-Invadd 0.5658
Invadd-Exp 0.9059 Strict-Invadd 0.0891 Invadd-Add 0.8599 Strict-Invadd 0.5442
Add-Exp 0.8091 Invadd-Add 0.0822 Strict-Invadd 0.8444 Invadd-Add 0.5401
Invadd-Strict 0.7992 Exp-Add 0.0256 Exp-Add 0.8342 Exp-Add 0.5128
Add-Strict 0.6820 Strict-Add 0.0164 Strict-Add 0.8149 Strict-Add 0.5082

When we compare Invadd-Exp and Add-Exp in more detail, we observe that their differ-
ence in performance on the minority and majority classes presents itself everywhere, that
is, across all datasets of Table 6.6. Invadd-Exp has a higher majority class accuracy than
Add-Exp on all datasets. Add-Exp has a higher minority class accuracy than Invadd-Exp on
all datasets, except for ties on WIRSel-6, Corel20-8 and Mut bonds. We can refer the reader
to Section 3.3.4.3 for a discussion on why the additive weights can lead to a better minority
class recognition than inverse additive weights on imbalanced datasets. The AUC values of
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Invadd-Exp and Add-Exp are mostly close together, although the former attains 22 wins and
the latter only 11, reflected in the slightly higher mean AUC for Invadd-Exp. With respect to
the balanced accuracy, Invadd-Exp has the highest mean value and attains 22 wins compared
to 11 wins for Add-Exp.

Some other aspects of note:

• The minority class accuracy increases when Strict or Exp are used for the majority class
weights, regardless of the weights for the minority class. When Invadd or Add are used
for the majority class weights, the majority class accuracy increases at the cost of the
minority class accuracy.

• The minority class accuracy is mostly better when Invadd or Add are used for its
weights.

• The settings with symmetric weights (Exp-Exp, Strict-Strict, Add-Add, Invadd-Invadd)
are not the top performers, but not the worst either.

6.6 Global experimental comparison

In this section, we compare our best performing IFMIC, BFMIC, IFRMIC and BFRMIC
methods among themselves and to other multi-instance classifiers. We describe the existing
multi-instance classifiers used in this evaluation in Section 6.6.1. We evaluate the performance
of the multi-instance classification algorithms on both balanced and imbalanced datasets.
Section 6.6.2 focuses on the former, while the latter is studied in Section 6.6.3.

6.6.1 Included methods

We select representative methods among our IFMIC, BFMIC, IFRMIC and BFRMIC fam-
ilies that have shown a good performance in the previous section. These are the IFMIC-
Max-MaxInvadd-Avg (IFMIC) and BFMIC-AvgH-MaxExp (BFMIC) methods for our fuzzy
classifiers and the IFRMIC-Max-MaxAdd-Avg-W4 (IFRMIC) and BFRMIC-AvgH-MaxAdd-
W4 (BFRMIC) methods for our fuzzy rough classifiers. We also include the methods evaluated
in Section 6.5.6.3, as they have shown an excellent performance on the imbalanced datasets.
We denote them as BFRMIC-AvgH-Crisp-Add-Exp (BFRMIC-CrAE) and BFRMIC-AvgH-
Crisp-Invadd-Exp (BFRMIC-CrIE).

In the comparison of our methods to existing work on the approximately balanced multi-
instance datasets from Table 6.5, we include the following general multi-instance classifiers:

• CitationKNN [423]: this method uses the nearest neighbour approach on the level of
bags. The distance between bags is measured by the Hausdorff measure. CitationKNN
extends single-instance kNN by using both references and citers of a bag. The former
are the nearest neighbours of a bag, while the latter are samples for which the bag
under consideration is a nearest neighbour. When classifying a bag, the labels of both
its references and citers are considered and the bag is assigned to the most prominent
class among them. Following [129], we use two references and four citers.
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• SimpleMI [129]: this method converts every bag to a single instance. Afterwards, it
applies a traditional single-instance learner (here, C4.5) to classify these transformed
elements. The representative instance of a bag is constructed by taking the geometric
mean of each feature over all the instances in the bag.

• MIWrapper [159]: this is a wrapper approach to apply traditional, single-instance
learners (here, C4.5) to multi-instance data. To classify an unseen bag, all its instances
are classified by the base learner. The bag prediction is obtained by taking the arithmetic
mean of the instance predictions.

• MILES [93]: the dataset is converted to a single-instance format, such that a single-
instance classifier can be used to make bag class predictions. In the original proposal,
a support vector machine was used as base classifier. A more general version of this
method was developed in [157], where AdaBoost was put forward as a strong choice for
base learner. We use this method in our experimental study as well. The MILES method
is a powerful representative of the embedded space paradigm. In earlier studies (e.g. [93,
156]), it has been shown to outperform other embedded multi-instance classifiers like
DDSVM [94] and YARDS [156].

• MILR [445]: this algorithm is an extension of the traditional logistic regression classifier
to the multi-instance setting. The model requires the specification of the procedure to
aggregate instance-level class conditional probabilities to the level of bags. We use the
arithmetic mean for this purpose, as recommended by the authors.

• miSVM [17]: this method is a support vector machine for multi-instance problems,
using the maximum pattern margin formulation. We have set the complexity constant
C to one and use a linear kernel.

• BARTMIP [477]: this embedded algorithm consists of two stages. First, it applies
a multi-instance clustering algorithm to cluster the training bags in k clusters. Based
on this procedure, every bag is mapped to a new feature space. In this space, a bag
is represented by a single vector containing k features, each feature being the distance
of the bag to the centroid of a constructed cluster. Single-instance support vector
machines are used as the classification algorithm in the induced space. We have used
the parameter settings of the original proposal.

We also consider an evaluation on the class imbalanced multi-instance datasets from Table 6.6
and include several multi-instance proposals resistant to such imbalance in this experimental
study. All methods were proposed in [429, 430]:

• BagSMOTE: the authors of [429, 430] developed oversampling methods as exten-
sions of the single-instance SMOTE method ([81], Section 4.1.2). In their BagSMOTE
method, they increase the size of the minority class by artificially generating new mi-
nority bags. In InstanceSMOTE, they create new instances and add them to existing
minority bags. The imbalance ratio of the dataset remains the same in the latter algo-
rithm, but the aim is to obtain a better representation of the minority class. In their
experimental study, the authors showed that their BagSMOTE algorithm yields better
results than InstanceSMOTE. Both methods are preprocessing algorithms and need to
be combined with a multi-instance classifier to complete the classification process. We
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select BagSMOTE and combine it with the MITI classifier [49] in our experiments, as
recommended in [430].

• Ab1, Ab2, Ab3, Ab4: these methods are cost-sensitive classifiers based on the Ada-
Boost.M1 boosting scheme [160]. The traditional weight update formula of the latter
is

Dt+1 = Dt(i)Kt(Xi, yi)
Zt

,

with
Kt(Xi, yi) = exp(−αtyiht(Xi)).

In these expressions, t is the iteration number, Zt is a normalization factor chosen
such that Dt+1 is a probability distribution and αt ∈ R is the coefficient associated
with classifier ht, representing its weight in the final classification aggregation of the
ensemble. The authors of [429, 430] introduce class-dependent costs in the weight
update formula. The cost ratios are set in favour of the minority class, implying that
relatively more effort is taken to correctly classify minority bags. As the real cost
ratios are generally unavailable, the authors advise the heuristic use of the imbalance
ratio as cost ratio. They propose four cost-sensitive boosting methods, similar to their
single-instance alternatives from [384]:

– Ab1: Kt(Xi, yi) = exp(−Ciαtyiht(Xi))
– Ab2: Kt(Xi, yi) = Ci · exp(−αtyiht(Xi))
– Ab3: Kt(Xi, yi) = Ci · exp(−Ciαtyiht(Xi))
– Ab4: Kt(Xi, yi) = C2

i · exp(−C2
i αtyiht(Xi))

The values Ci are the cost items associated with the bags. Bags of the same class are
associated with the same cost.

For the sake of readability, we only list mean performance values, averaged across the datasets
in Tables 6.5-6.6. We complement these values with the number of wins and poor results
obtained by each method on the relevant group of datasets. As we did in Chapter 3, the
performance of a method on a particular dataset is considered poor when it is at least 0.05
lower than the highest observed value for that dataset. We also compare the performance of
the classifiers by means of a statistical analysis.

6.6.2 Balanced data

In this section, we focus on the balanced datasets listed in Table 6.5. We use the class-wise
accuracies as well as the overall accuracy as evaluation measures. In Section 6.6.2.1, we first
compare the selected IFMIC, BFMIC, IFRMIC and BFRMIC methods among each other.
We can conclude that the results of our fuzzy methods are superior to those of our fuzzy
rough methods. Next, Section 6.6.2.2 compares the IFMIC and BFMIC methods to existing
multi-instance classifiers. Note that we do not include the BFRMIC-CrAE and BFRMIC-
CrIE methods in this evaluation on the balanced datasets, as they do not treat the two
classes symmetrically (that is, they use different weights in the OWA aggregations of the
class approximations).
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6.6.2.1 Comparison of our methods

Table 6.22 presents the mean accuracy values for the selected IFMIC, BFMIC, IFRMIC and
BFRMIC methods on the balanced datasets from Table 6.5. With respect to the overall
accuracy, the BFMIC method attains the highest mean value as well as the most wins and
the fewest poor results. Second place goes to the IFMIC method, that performs at almost
the same level. A notable difference between these methods is observed in their class-wise
performance: the instance-based method yields better results on class 1, while the bag-based
method has the better performance on class 0. The same difference in behaviour can be
observed when comparing IFRMIC and BFRMIC. The fuzzy methods clearly outperform the
fuzzy rough methods with respect to the class 0 accuracy and the overall accuracy, while the
results for the class 1 accuracy are relatively close together.

Table 6.22: Comparison of selected methods on the balanced datasets from Table 6.5.

Acc cl0 Acc cl1 Accuracy
Method Mean nWins nPoor Mean nWins nPoor Mean nWins nPoor
IFMIC 0.7671 9 12 0.8513 13 11 0.8128 12 4
BFMIC 0.8045 24 5 0.8311 13 13 0.8202 17 3
IFRMIC 0.7073 8 19 0.8448 15 10 0.7777 3 15
BFRMIC 0.7164 7 18 0.8367 8 13 0.7820 5 12

6.6.2.2 Comparison to other methods

We now compare the selected IFMIC and BFMIC methods to the CitationKNN, SimpleMI,
MIWrapper, MILES, MILR, miSVM and BARTMIP methods. We do not include our IFR-
MIC and BFRMIC methods, as the results in Table 6.22 indicate that they are not competitive
with IFMIC and BFMIC on the balanced datasets.

Table 6.23: Comparison of our fuzzy multi-instance methods to existing multi-instance clas-
sifiers on the balanced datasets from Table 6.5.

Acc cl0 Acc cl1 Accuracy
Method Mean nWins nPoor Mean nWins nPoor Mean nWins nPoor
IFMIC 0.7671 7 21 0.8513 17 7 0.8128 3 10
BFMIC 0.8045 7 19 0.8311 7 18 0.8202 9 8
CitKNN 0.7925 5 17 0.6033 2 28 0.7046 0 22
SimpleMI 0.7964 7 19 0.7907 3 22 0.7949 6 14
MIWrapper 0.8124 7 17 0.7808 1 26 0.8014 5 14
MILES 0.8220 4 15 0.7888 2 21 0.8074 6 9
MILR 0.7674 1 23 0.7937 1 29 0.7895 3 18
miSVM 0.6465 3 26 0.7958 11 17 0.7369 0 27
BARTMIP 0.7346 6 22 0.8087 7 19 0.7762 6 13

The accuracy results are presented in Table 6.23. Our methods yield the highest overall
accuracy as well as the highest class 1 accuracy (the positive class). With respect to class
0, the MILES method attains the highest mean accuracy, with BFMIC in third place and
IFMIC in seventh. Aside from the highest mean overall accuracy, our BFMIC method also has
the most wins and fewest poor results for this measure. We complement these results with a
statistical analysis by means of the Friedman test reported in Table 6.24. Our BFMIC method
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Table 6.24: Statistical analysis of the accuracy results reported in Table 6.23. The p-value
of the Friedman test is smaller than 0.000001, which means that significant dif-
ferences are detected. P-values of the Holm post-hoc procedure that imply a
significant difference with the control method at the 5% significance level are
printed in boldface.

Method Friedman rank pHolm
IFMIC 4.0455 ≥ 0.999999
BFMIC 3.6515 -
CitKNN 6.7727 0.000026
SimpleMI 4.9848 0.239839
MIWrapper 4.3636 0.872567
MILES 4.1061 ≥ 0.999999
MILR 5.3333 0.075672
miSVM 7.1515 0.000002
BARTMIP 4.5909 0.654060

is assigned the lowest Friedman rank and shown to significantly outperform the CitationKNN
and miSVM methods. The results show that our BFMIC and IFMIC methods are dominant
overall. They may yield slightly sub-optimal results on some datasets however, since they
do not significantly outperform several competitors despite the noticeable difference in mean
accuracy.

6.6.3 Imbalanced data

We now turn our attention to the imbalanced datasets from Table 6.6. We developed our
IFRMIC and BFRMIC methods as multi-instance classifiers particularly suited for binary
imbalanced data. We have considerably improved these proposals by using a crisp class
membership degree within BFRMIC (see Section 6.5.6.3). Nevertheless, we should also verify
whether the use of fuzzy rough set theory (IFRMIC, BFRMIC) as opposed to fuzzy set
theory (IFMIC, BFMIC) is required at all to adequately handle the class imbalance in multi-
instance datasets. To this end, we compare the performance of our different proposals to each
other in Section 6.6.3.1. We show the dominance of our BFRMIC methods with the crisp
class membership relation (6.8). In Section 6.6.3.2, we further compare these algorithms to
existing multi-instance classifiers developed for class imbalanced data.

6.6.3.1 Comparison of our methods

We compare the performance of four of our fuzzy rough methods and two of our fuzzy methods.
The former have been developed as extensions of the IFROWANN method and should be
more resistant to the imbalance between classes. However, the latter have shown a good
behaviour on the balanced datasets in Section 6.6.2 and it should be verified where they rank
in comparison to our imbalance-resistant fuzzy rough methods.

Table 6.25 lists the mean class-wise accuracy, the AUC and balanced accuracy of these six
methods. As could be suspected from the analysis presented in Section 6.5, the best global
results (AUC and balanced accuracy) are obtained by our BFRMIC-CrAE and BFRMIC-CrIE
methods, the latter in particular. Only for the majority class accuracy are they dominated
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Table 6.25: Comparison of selected methods on the imbalanced datasets from Table 6.6.

Acc maj Acc min
Method Mean nWins nPoor Mean nWins nPoor
IFMIC 0.9517 11 6 0.5742 0 28
BFMIC 0.9696 25 0 0.5523 0 30
IFRMIC 0.7467 0 29 0.7436 12 20
BFRMIC 0.7604 0 31 0.7613 1 25
BFRMIC-CrAE 0.8091 0 30 0.8649 21 4
BFRMIC-CrIE 0.9059 0 19 0.7799 2 22

AUC Balacc
Method Mean nWins nPoor Mean nWins nPoor
IFMIC 0.8847 6 3 0.7629 2 19
BFMIC 0.8917 8 4 0.7609 2 24
IFRMIC 0.8146 1 19 0.7451 2 23
BFRMIC 0.8403 0 21 0.7608 0 25
BFRMIC-CrAE 0.9030 6 1 0.8370 10 8
BFRMIC-CrIE 0.9038 13 1 0.8429 18 4

by other methods, namely IFMIC and BFMIC. However, the latter yield a poor minority
class accuracy on almost all datasets. Our fuzzy multi-instance classifiers do not handle the
class imbalance well and lead to too many minority class misclassifications. Our fuzzy rough
methods find a better balance between the two classes. The mean class-wise accuracies of
the IFRMIC and BFRMIC methods are almost the same for the minority and majority class.
However, they are outperformed by BFRMIC-CrAE and BFRMIC-CrIE on both classes,
which explains the considerable difference in balanced accuracy of the latter two methods
compared to the remaining four.

We must note that the relatively poor behaviour of IFMIC and BFMIC on the imbalanced
datasets can not be entirely unexpected, as their internal parameters have been optimized
on the balanced datasets. However, we have also compared the best performing IFMIC and
BFMIC classifiers on the imbalanced datasets (having evaluated all 165 included fuzzy multi-
instance methods on these datasets as well) to BFRMIC-CrAE and BFRMIC-CrIE and still
observe the clear superiority of the latter two methods.

6.6.3.2 Comparison to other methods

Taking the conclusions of the previous section into account, we now compare our BFRMIC-
CrAE and BFRMIC-CrIE methods to existing multi-instance classifiers. The Ab1, Ab2, Ab3,
Ab4 and BagSMOTE methods have been developed specifically for imbalanced multi-instance
data. We also include the general MIWrapper and MILES classifiers, because they perform
relatively decently on our imbalanced datasets.

A summary of the results is provided in Table 6.26. It is clear that our methods (BFRMIC-
CrIE in particular) outperform all others in terms of the AUC and balanced accuracy mea-
sures. This conclusion holds for both the mean performance as well as the number of wins
and poor results across the 33 datasets. Moreover, based on the results of the statistical
analysis with the Friedman test presented in Table 6.27, we can conclude that BFRMIC-CrIE
outperforms all included existing methods with statistical significance at the 5% significance
level.
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Table 6.26: Comparison of our fuzzy rough multi-instance methods with a crisp class mem-
bership relation to existing multi-instance classifiers on the imbalanced datasets
from Table 6.6.

Acc maj Acc min
Method Mean nWins nPoor Mean nWins nPoor
BFRMIC-CrAE 0.8091 0 32 0.8649 4 22
BFRMIC-CrIE 0.9059 0 20 0.7799 1 28
Ab1 0.9220 7 7 0.3502 2 30
Ab2 0.8077 9 6 0.3741 6 27
Ab3 0.3746 0 32 0.9216 13 8
Ab4 0.0191 0 33 0.9840 31 2
BagSMOTE 0.8529 0 26 0.6484 2 29
MIWrapper 0.9766 18 4 0.2392 0 33
MILES 0.9622 3 5 0.3963 0 33

AUC Balacc
Method Mean nWins nPoor Mean nWins nPoor
BFRMIC-CrAE 0.9030 8 3 0.8370 11 5
BFRMIC-CrIE 0.9038 20 3 0.8429 20 3
Ab1 0.7713 0 27 0.6361 1 30
Ab2 0.7179 0 31 0.5909 0 33
Ab3 0.8273 0 25 0.6481 0 29
Ab4 0.7755 0 30 0.5015 0 32
BagSMOTE 0.7506 0 32 0.7506 1 27
MIWrapper 0.8140 4 18 0.6079 0 31
MILES 0.8626 2 15 0.6792 1 31

From the class-wise accuracies, we can observe that the other methods are hindered more by
the imbalance between the classes and favour one of the two. The two general classifiers, MI-
Wrapper and MILES, have a high majority class accuracy and a low minority class accuracy,
as can be expected for classifiers not developed with class skewness in mind. Surprisingly, the
same can be observed for the Ab1 and Ab2 methods. The other two cost-sensitive boosting
algorithms, Ab3 and Ab4, have an excellent performance on the minority class, but at the
cost of a poor recognition of majority class observations. This is taken to the extreme in Ab4.
BagSMOTE in combination with the MITI classifier performs better than the cost-sensitive
boosting methods, as evidenced by its higher balanced accuracy value. Nevertheless, it is still
clearly (and significantly) outperformed by our proposals. As a final note, when comparing
Tables 6.25 and 6.26 we observe that our IFMIC and BFMIC methods provide higher mean
AUC and balanced accuracy values than the existing classifiers as well.

6.6.4 Summary

To sum up, we can confidently conclude that we have proposed competitive methods for
balanced multi-instance classification. Furthermore, our BFRMIC-CrAE and BFRMIC-CrIE
extensions prove to be very strong proposals for class imbalanced multi-instance data. These
methods outperform all included methods with statistical significance for both the AUC and
balanced accuracy.
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Table 6.27: Statistical analysis of the AUC and balanced accuracy results reported in Ta-
ble 6.26. The p-values of both Friedman tests are smaller than 0.000001, which
means that significant differences are detected. P-values of the Holm post-hoc
procedure that imply a significant difference with the control method at the 5%
significance level are printed in boldface.

AUC Balacc
Method Friedman rank pHolm Friedman rank pHolm
BFRMIC-CrAE 2.1364 0.589639 1.9848 0.57423
BFRMIC-CrIE 1.7727 - 1.6061 -
Ab1 6.7879 ≤ 0.000001 6.1212 ≤ 0.000001
Ab2 7.6364 ≤ 0.000001 6.5455 ≤ 0.000001
Ab3 4.4545 0.000209 5.2576 ≤ 0.000001
Ab4 6.4545 ≤ 0.000001 8.6515 ≤ 0.000001
BagSMOTE 7.6061 ≤ 0.000001 3.5303 0.008631
MIWrapper 4.5455 0.000156 6.4545 ≤ 0.000001
MILES 3.6061 0.013085 4.8485 0.000005

6.7 Conclusion

This chapter has discussed multi-instance classification, a prediction setting in which observa-
tions correspond to bags of instances. Class labels are only assigned to bags as a whole, while
instance labels are implicit or hidden. The prediction task is to derive a class label for newly
presented bags. Multi-instance classification algorithms can be divided into three groups
based on which general prediction approach they follow. We discern between instance-based,
bag-based and embedded methods.

We have first developed a framework of multi-instance classifiers based on fuzzy set theory.
We proposed both instance-based and bag-based methods for general multi-instance classi-
fication, that is, for the classification of multi-instance datasets with a relatively balanced
class distribution. We have described these algorithms and proposed various ways to set their
internal parameters. In a similar fashion, we have presented two families of instance-based
and bag-based classifiers for class imbalanced multi-instance data. These methods are based
on fuzzy rough set theory and are extensions of the single-instance IFROWANN method. As
for our fuzzy set based methods, we propose a large variety of options for the internal settings
of these fuzzy rough algorithms. We have performed an extensive experimental evaluation of
our fuzzy and fuzzy rough multi-instance classifiers.

We developed four groups of methods, namely (i) fuzzy instance-based, (ii) fuzzy bag-based,
(iii) fuzzy rough instance-based and (iv) fuzzy rough bag-based multi-instance classifiers. The
first part of the experiments conducted in this chapter consisted of a thorough internal com-
parison of these four groups. We evaluated the fuzzy methods on balanced multi-instance
data and the fuzzy rough methods on imbalanced multi-instance data in this stage. From
among the evaluated alternatives, we were able to put forward a specific preferred parame-
ter setting for each computation step of our algorithms. All conclusions were meticulously
explained based on the nature of the multi-instance datasets.

The second part of our study consisted of a further comparison of our best-performing methods
amongst each other and against existing multi-instance classifiers. This included an evaluation
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on both balanced and imbalanced multi-instance datasets. On balanced data, we were able to
show that our fuzzy methods are highly competitive with existing proposals. With respect to
class imbalanced multi-instance classification, we showed that our best fuzzy rough algorithms
significantly outperform all competitors in this area. These particularly strong new methods
form an important contribution of this chapter and rely on crisp rather than fuzzy bag-to-class
membership degrees.

We note that we have limited the current study to two-class multi-instance data and this for
both the balanced and imbalanced datasets. This has been a mainly practical consideration,
as few publicly available multi-instance datasets contain more than two classes. Nevertheless,
our fuzzy multi-instance classifiers are by definition not restricted to binary datasets as they
make no internal assumptions on the number of classes. Naturally, our final conclusions with
regard to the preferred parameter settings may change when more than two classes are present,
although the observations made here should still be useful to explain the behaviour of our
fuzzy multi-instance methods in a multi-class setting as well. Our fuzzy rough algorithms for
imbalanced multi-instance classification were developed as extensions of the single-instance
binary IFROWANN method. As a consequence, they are also limited to binary data, since
they assume the presence of a single majority class and a single minority class. In the context
of multi-class imbalanced multi-instance data, the same approach as presented in Chapter 4
can be followed. Using the fuzzy rough methods developed here within the OVO decomposi-
tion scheme and with the addition of our FROVOCO summary terms in the aggregation step
is expected to result in a strong performance in that setting as well.
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7 Multi-label learning

The defining characteristic of multi-label as opposed to single-label data is that each instance
can belong to several classes at once. The multi-label classification task is to predict all
relevant labels of a target instance. This chapter presents and experimentally evaluates our
FRONEC method, the Fuzzy Rough NEighbourhood Consensus. Our proposal is a nearest
neighbour based multi-label classifier that relies on fuzzy rough set theory to derive a con-
sensus prediction between the labelsets of near neighbours of a target instance. The nearest
neighbour idea has been incorporated in a variety of existing multi-label classifiers and we
evaluate our method within this family. We are able to conclude its advantages on both
synthetic and real-world datasets. This chapter is structured as follows. Section 7.1 provides
a brief introduction to the multi-label learning domain, focusing on the components neces-
sary for a full understanding of the remainder of the chapter. An overview of the family of
nearest neighbour based multi-label classifiers is given in Section 7.2. Section 7.3 presents
our FRONEC proposal and describes how a confident labelset prediction can be derived from
neighbourhood information using fuzzy rough set operators. Our experimental study is con-
ducted in Section 7.4, where we compare different variants of our proposal amongst themselves
and to existing nearest neighbour based multi-label classifiers. Finally, Section 7.5 formulates
our conclusions.

7.1 Introduction to multi-label learning

In a multi-label dataset, an observation can belong to several classes at the same time, that is,
more than one class label can be associated with the same instance [194, 215, 478]. The total
number of possible classes is known, but the number of labels per instance can differ across the
dataset. Multi-label learning can be more challenging than single-label learning or learning
all possible classes independently, as there may exist correlations between certain class labels.
An example of such a situation is the existence of a label hierarchy, which needs to be taken
into account in the prediction process [402]. Application domains of multi-label classification
include image processing (e.g. [68, 249, 255, 433]), bioinformatics (e.g. [98, 289, 418, 431]) and
text categorization (e.g. [137, 248, 328]). This section serves as an introduction to the multi-
label learning domain. Section 7.1.1 describes the general structure of multi-label datasets
and Section 7.1.2 presents the field of multi-label classification.
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Table 7.1: General format of a multi-label dataset with n instances, d features and m possible
classes.

a1 a2 . . . ad l1 l2 . . . lm
a1(x1) a2(x1) . . . ad(x1) l1(x1) l2(x1) . . . lm(x1)
a1(x2) a2(x2) . . . ad(x2) l1(x2) l2(x2) . . . lm(x2)

. . . . . . . . . . . . . . . . . . . . . . . .
a1(xn) a2(xn) . . . ad(xn) l1(xn) l2(xn) . . . lm(xn)

7.1.1 Multi-label data

In a multi-label dataset, every instance x is described by a number of input features and is
associated with a set of labels (its labelset) instead of a single class label. When there are a
total number of m possible class labels, the labelset Lx of instance x can be represented as a
binary vector Lx = 〈l1(x), l2(x), . . . , lm(x)〉. A value li(x) = 1 is interpreted as the presence
of label li for observation x, while li(x) = 0 indicates its absence. The general format of a
multi-label dataset is depicted in Table 7.1. The dataset contains n elements described by d
features {a1, a2, . . . , ad}. Every instance can belong to up to m classes and the possible class
labels are l1, l2, . . . , lm.

Several measures have been introduced to characterize multi-label datasets. The label cardi-
nality of a multi-label dataset is defined as the average number of labels per instance [404].
In a traditional (single-label) dataset, the label cardinality is one. For a multi-label dataset,
it exceeds this threshold. The label density metric is a normalized version of the label car-
dinality. For each instance, the percentage of active labels is computed as the ratio of its
number of actual class labels to m. The density is obtained by averaging these percentages
across the instances in the dataset. A third alternative is the Pmin metric [405], defined as the
percentage of instances in the dataset with only one class label. Other measures, evaluating
specific characteristics of multi-label datasets, have been proposed as well and are summarized
in [215].

Multi-label datasets are sensitive to class imbalance, since many of them have a high number of
possible classes and a relatively low label cardinality [76]. As an alternative to the single-label
imbalance ratio (see Section 4.1.1), three metrics to measure the degree of class imbalance
in a multi-label dataset were proposed in [76]. They are based on the IRlbl measure. For a
class label li, this value is defined as the ratio of the number of instances belonging to the
largest class to the size of class li. The IRlbl value is one for the most appearing label and
(far) exceeds one for less frequent classes. The MaxIR and MeanIR measures respectively
compute the maximum and average IRlbl value obtained by the m possible class labels. The
third measure proposed in [76] is the dispersion measure CVIR, defined as the ratio of the
standard deviation of the IRlbl values to the MeanIR.

7.1.2 Multi-label classification

The task of a multi-label classifier is to predict the complete labelset of a target instance.
This is inherently different from single-label classification, where only one outcome label needs
to be predicted. Several approaches to multi-label classification have been proposed in the
literature. The recent overview book [215] discerns between three main families: the data

164



Chapter 7. Multi-label learning

transformation methods, method adaptation algorithms and ensemble classifiers. The former
group of methods applies a transformation to the multi-label dataset, such that it degenerates
to one or more easier-to-handle single-label problems on which a single-label classifier can
be applied. Two well-known representatives of this family are the binary relevance (BR,
[195, 475]) and label powerset (LP, [55]) transformations. BR creates m binary single-label
datasets, one for each class. Each dataset contains the same instances as the original multi-
label dataset, but their labelsets are transformed to a single label. For the dataset associated
with class li, an instance x receives the label ‘positive’ when li(x) = 1 and ‘negative’ otherwise.
The LP transformation on the other hand creates only one single-label dataset. Each possible
labelset receives an identifier, such that labelsets that entirely coincide are associated with the
same identifier. This identifier is used as the single new class label. The second family of multi-
label classifiers, the method adaptation algorithms, handle the multi-label dataset directly
and are often based on modifications or generalizations of existing single-label classification
schemes. An example is the MLKNN method proposed in [476], which is a nearest neighbour
classifier for multi-instance data. The third group consists of ensemble solutions to multi-
label classification (see Section 2.2.7). Further subgroups consist of ensembles of binary
classifiers (e.g. the ensemble of classifier chains method [357]) and ensembles based on multi-
class methods (e.g. the ensemble of pruned sets method [356]).

Aside from general multi-label classification, classifiers specifically suited for imbalanced
multi-label data have been developed in recent years as well (e.g. [79, 80, 418]). The ap-
proaches for dealing with class imbalance listed in Section 4.1.2 have been extended and
implemented for multi-label data. Among the data level techniques, we can list LP based
oversampling and undersampling [74], a multi-label edited nearest neighbour algorithm [75],
random resampling by label [76], a multi-label SMOTE algorithm [77], resampling by decou-
pling highly imbalanced labels [78, 80] and an undersampling method for text categorization
data [120]. Aside from resampling methods, algorithm level proposals [91, 211, 277, 390] and
ensemble solutions [386, 387] have been proposed as well.

7.2 Nearest neighbour based multi-label classifiers

In this chapter, we focus on nearest neighbour methods for multi-instance classification.
The general nearest neighbour paradigm has been recalled in Section 2.2.1 and the link be-
tween nearest neighbour and fuzzy rough classification approaches has been explained in
Section 1.3.2. Several multi-label classifiers based on or extending single-label kNN have
been proposed in the literature. We provide an overview in this section. In our experimental
study conducted in Section 7.4, we select a number of these classifiers to compare against our
proposed FRONEC method. This selection is made based on the popularity and performance
of these methods in other experimental studies. We also take into account how many para-
meters need to be set by the user. The more parameters that should be set manually, the less
attractive a method is for practical use. We structure our discussion as follows. Sections 7.2.1
and 7.2.2 describe basic unweighted and weighted nearest neighbour approaches to multi-label
classification. Section 7.2.3 recalls the MLKNN algorithm from [476] and later modifications
made to it. Finally, Section 7.2.4 groups miscellaneous multi-label methods incorporating the
nearest neighbour idea.
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7.2.1 Basic unweighted approaches

Two basic techniques were proposed in [379] by combining the LP and BR transformations
(see Section 7.1.2) with the single-label kNN classifier. Their LPKNN method classifies an
instance by first locating its k nearest neighbours and then predicting the most prevalent
labelset among these elements. The second algorithm, the BRKNN method, is equivalent to
using the single-label kNN method within the binary relevance scheme, although it computes
the nearest neighbours of an instance only once instead of m times. This optimization is
valid as the nearest neighbours of the target will be the same in each generated binary
dataset. The classifier assigns x to a class l when this label is present in at least half of its
nearest neighbours. Using this heuristic, it is possible that x is not assigned to any class at
all. To address this issue, the authors of [379] developed two extensions called BRKNN-a and
BRKNN-b. For each class l, these methods define the label confidence score as the percentage
of the nearest neighbours of x that belong to class l. When none of the classes is present in at
least half of its neighbours, BRKNN-a assigns x to the class with the highest label confidence
score, while BRKNN-b assigns x to the s highest-scoring classes, where s is the average size
of the labelsets of the neighbours of x. In the later work of [191], the authors proposed the
BRKNN-new algorithm as an improvement of BRKNN by considering label correlations.

The class-balanced k nearest neighbour (BKNN, [421]) and multi-label categorical kNN meth-
ods (ML-CKNN, [230]) compute class scores based on the nearest neighbours of an instance
within a class and predict the classes for which the score exceeds a given threshold. The
BRkSC and BRSC methods of [296] follow a similar idea, but are based on the shell-nearest
neighbour algorithm [479]. The so-called class certainty factors are determined based on the
approximate shell-nearest neighbours of the instance to classify. The method predicts each
class for which the certainty factor is positive.

We note that the review work [215] also listed the kNNc method [69] as a multi-label nearest
neighbour classifier. However, we believe that the authors of [69] used incorrect terminology
in their proposal, as their method is a multi-class single-label classifier.

7.2.2 Basic weighted approaches

It is common practice to incorporate weights in a nearest neighbour method in order to in-
crease the importance of certain neighbours (see Section 2.2.1). In [100], the authors propose a
ranking-based multi-label kNN approach that assigns weights to the neighbours of an element
to reflect how trustworthy their labels are. To classify an instance, its k nearest neighbours
are ranked according to this trust measure and a weighted voting strategy is used to derive
the labelset prediction. Similarly, the study of [443] proposed a distance-weighted multi-label
k-nearest neighbour algorithm called MLC-DWkNN, which assigns an instance to class l when
the sum of the weights of the neighbours that belong to l exceeds the sum of the weights of the
neighbours that do not. Four weighting functions were evaluated. Another weighted nearest
neighbour approach to multi-label classification is the Margin-Ratio kNN method (Mr.kNN,
[290]). Relevance values of training instances (computed based on a modified fuzzy c-means
clustering method) are used as weights in the voting procedure of a kNN classifier.
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7.2.3 MLKNN and related methods

The MLKNN method from [476] was introduced as one of the first lazy multi-label classifiers
and remains popular to date. It makes label predictions based on the maximum a posteriori
principle and the k nearest neighbours of a target instance. Simply put, it counts the occur-
rences of all classes among the neighbours and evaluates how likely the presence of a class
label is based on these counts and the information in the training data.

It has been pointed out in the literature that a limitation of the MLKNN method is that it
does not take label correlations into account. The DMLKNN method of [460, 464] deals with
this shortcoming by considering a global maximum a posteriori rule, thereby integrating label
dependencies. The FSKNN method [247] uses a fuzzy similarity measure to first group the
training elements into clusters. It reduces the computational cost of the neighbour search of
MLKNN, since it only uses a subset of the clusters to locate them.

7.2.4 Other nearest neighbour based multi-label classifiers

The authors of [96] proposed the IBLR method that combines nearest neighbour based learn-
ing and logistic regression (see Section 2.2.6). The class labels of the neighbours of an element
are used as supplementary features. One classifier (a logistic regression model) is trained for
each class, but dependencies between labels are taken into account. Aside from its neighbour-
hood information, the IBLR+ generalization takes additional features of the target instance
into account as well. In IBLR, the bias term of the logistic regression model is constant, while
it depends on the target instance in the IBLR+ version.

The MLRS method was proposed in [466] as a nearest neighbour multi-label classifier based
on neighbourhood rough sets [227, 454]. At training time, this method computes, for each
pair of labels, the conditional probability that a label li occurs when the presence of label lj is
already known. Next, to classify an instance x, its k nearest neighbours are located, based on
which the marginal probabilities for the presence of the class labels are determined. Finally,
for each class label, the probability that x belongs to this class is calculated. As additional
input, this method requires a threshold on the class probability values, above which a class
label is accepted.

Two fuzzy nearest neighbour approaches [122] to multi-label classification are the FkNN [45]
and Fuzzy Veristic kNN (FV-kNN, [463]) methods. The former is an adaptation of the fuzzy
nearest neighbour classifier [256]. To classify an instance x, its k nearest neighbours are
located and a membership degree to each class is computed based on the membership degrees
of the neighbours to the classes as well as their distance to x. The FV-kNN method uses a
fuzzy kNN rule based on the theory of veristic variables, which can take on several values at
once with different degrees.

Other proposals include a kernel-based kNN approach for multi-label label propagation [254],
the Mallows method [97] based on calibrated label ranking [170] and the Mallows model
[313], the multi-label ranking method kNN-MLR∗ [62], the RW.kNN method [440] based on
random walks in a neighbourhood graph and the evidential multi-label kNN method (EML-
kNN, [461, 462]) based on a multi-label extension of the Dempster-Shafer framework.
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Finally, we can refer the reader to the recent work of [358], where the authors reviewed several
nearest neighbour based multi-label classifiers and proposed a new method called MLDGC
based on the data gravitation based algorithm [338]. Their proposal is compared to various
representatives of the family of nearest neighbour based multi-label classifiers. The authors
of this study also establish guidelines for new proposals within this classifier family, which we
follow in this chapter.

7.3 Multi-label classification using a fuzzy rough neighbour-
hood consensus

We now present our proposed method that uses fuzzy rough set theory to derive a consensus
prediction from the labelset of the k nearest neighbours of a target instance. The fuzzy
rough step replaces the voting procedures commonly implemented in the methods discussed
in Section 7.2. Our proposal is called FRONEC, which refers to its use of a Fuzzy Rough
NEighbourhood Consensus. Section 7.3.1 describes the general labelset prediction procedure
performed by our method. It relies on instance quality measures, of which we propose three
variants in Section 7.3.2. In their turn, these quality calculations require the definition of
a labelset similarity relation. We discuss two alternatives in Section 7.3.3. To conclude, we
derive the computational complexity of FRONEC in Section 7.3.4.

7.3.1 General FRONEC procedure

Our method is related to the BRKNN and LPKNN methods (Section 7.2.1). When classifying
an instance x, these algorithms locate its k nearest neighbours and derive a labelset prediction
based on the labels of such near training elements. The former does so by retaining the labels
that appear in at least half of the neighbours, while the latter predicts the labelset that most
frequently occurs among them. We posit that fuzzy rough set theory can provide a more
suitable way to construct a consensus labelset based on the k nearest neighbours of x.

We base our consensus derivation on the notion of the fuzzy rough positive region. In the
traditional fuzzy rough set model, the membership degree of x to the positive region is defined
as

POS(x) = max
y∈T

[min
z∈T

[I(R(z, x), Rd(y, z)]], (7.1)

where T is the training set and relation Rd(·, ·) expresses the labelset similarity of two el-
ements. Expression (7.1) can be summarized as POS(x) = maxy∈T [qx(y)], where qx(y)
measures the quality of y relevant to x. Linking this back to the definitions provided in Sec-
tion 3.1.1, the positive region operator locates the element y for which the membership degree
of x to the lower approximation of the fuzzy concept Rd(y, ·) is largest. This membership
value is measured by qx(y). In single-instance learning, the label similarity relation is crisp,
that is, two elements x and y either have the same class label (Rd(x, y) = 1) or they do not
(Rd(x, y) = 0). In this case, the definition of the positive region reduces to the membership
degree of x to the lower approximation of its own decision class [107]. This value has been
used as an instance quality measure in e.g. [409, 410] (see Section 3.5.4).

Within FRONEC, when classifying x, we use a quality metric Qx(·) that is based on the
definition of the positive region (7.1). Our method proceeds as follows:
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1. Define the set N(x) of the k nearest neighbours of x in the training set.

2. Construct the set Y that consists of elements y for which Qx(y) is largest (Section 7.3.2).
Multiple elements y may tie for the highest value.

3. Any class that appears in at least half of the elements of Y is predicted for x.

Our experiments show that the third step is mostly superfluous, as the labelsets of all instances
in Y almost always coincide. Note that the elements in Y are not required to be located in
the vicinity of x (that is, Y 6⊆ N(x)). Only their labelsets, which represent an appropriate
consensus of those of the nearest neighbours of x, are of importance. Our experiments confirm
that consensus labelsets are indeed selected that did not appear among the neighbours of
target instances. The elements in Y have the largest encountered values of Qx(y), that is,
the quality of their labelset with respect to x is highest. The selection of the elements with
the largest Qx values relates back to the presence of the maximum operator in (7.1).

7.3.2 Instance quality measure

The instance quality measure Qx(·) used by FRONEC is based on the definition of the fuzzy
rough positive region (7.1), to which we make two modifications:

1. In the interest of computational cost, we reduce the set of elements over which the
minimum is taken to the k nearest neighbours of x. This is exactly the set for which
we wish to find a consensus labelset.

2. We replace the minimum operator by an OWA aggregation. In this way, our quality
measure can benefit from the superior robustness properties of the OWA based fuzzy
rough set model (Chapter 3).

We consider three different definitions for Qx(·) given the instance x to classify. The quality
measure in FRONEC-1 stays closest to (7.1) and is defined as

Q(1)
x (y) = OWAWL

({I(R(z, x), Rd(y, z)) | z ∈ N(x)}). (7.2)

This measure is related to the OWA based fuzzy rough lower approximation (3.5). In version
FRONEC-2, we consider the use of the fuzzy rough upper approximation and set

Q(2)
x (y) = OWAWU

({T (R(z, x), Rd(y, z)) | z ∈ N(x)}). (7.3)

Finally, the third version FRONEC-3 combines both and computes

Q(3)
x (y) = Q

(1)
x (y) +Q

(2)
x (y)

2 . (7.4)

7.3.3 Labelset similarity relation

A crucial component of the quality calculations in (7.2-7.4) is the labelset similarity relation
Rd(·, ·). In a single-label dataset, as described in Section 7.3.1, this relation can take on only
values zero and one, reflecting whether the instances belong to the same class or not. In a
multi-label dataset on the other hand, Rd(x, y) should express how similar the labelsets of
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instances x and y are. The comparison between two labelsets Lx and Ly can be summarized
in a 2x2 table:

Ly = 1 Ly = 0
Lx = 1 a b
Lx = 0 c d

.

The value of a relates to classes that are present in both labelsets, d to classes that are absent
in both Lx and Ly and b and c to classes that occur in only one of the two sets. They can be
aggregated to Rd(x, y) = a+d

a+b+c+d . We consider two ways to calculate the values a, b, c and
d and to measure labelset similarity:

• Hamming based similarity relation: relation R
(1)
d (·, ·) is the complement of the

normalized Hamming distance between the labelsets of two elements. It is defined as

R
(1)
d (x, y) = 1− |Lx ∆Ly|

m
, (7.5)

where the ∆ operator constructs the symmetric difference between its two arguments
and the | · | operation measures the cardinality of the resulting set. This relation can
take on only a limited set of values, namely those in

{
i
m | i = 0, 1, . . . ,m

}
. When using

relation R(1)
d , the values a, b, c and d in the above table are set to the number of times

their corresponding combination occurs (e.g. a is the number of classes present in both
Lx and Ly).

• Label distribution based similarity relation: in our second relation R(2)
d (·, ·), val-

ues a, b, c and d are based on label distribution information. Let P = 〈p1, p2, . . . , pm〉
be the prior class probability vector, where pi represents the ratio of training elements
that belong to the ith class. Relation R

(2)
d takes into account whether a label is com-

mon or rare. It is based on the following idea. If a rare class label is present in both
labelsets, this should be rewarded more than when they both contain the same com-
mon class label. Similarly, when both sets do not contain a common class label l, this
should be rewarded more than when a rare class is not present. This relation rewards
unexpected behaviour (presence of rare labels, absence of common labels) more than
expected behaviour. The calculation is presented in Algorithm 1. In line 5, an update
of a is performed when both labelsets contain label li. We add (1 − pi) to the current
value of a. This implies that a higher reward is given to less common labels (smaller
pi). In line 7, label li is absent in both labelsets. Since this is more unexpected for a
common label, a higher reward is given depending on how common li is. In lines 10
and 12, the values of b and c are updated when a label is present in only one of the two
labelsets. We add 1

2 to the current value, which is the average of pi and (1− pi).

It should be clear from their description that the characteristics of these two labelset similarity
relations are different. As an example, we evaluate the similarity between selected labelsets
of a dataset with prior class probability vector

P = 〈0.439, 0.234, 0.151, 0.650, 0.250, 0.202, 0.565, 0.209, 0.066, 0.049〉.

We assess the labelset similarity of an instance x with Lx = 〈1, 1, 0, 1, 1, 1, 1, 1, 1, 0〉 with ten
other elements of which the labelsets are listed in Table 7.2. As stated above, the Hamming
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Algorithm 1 R
(2)
d (·, ·) based on the label distribution

Require: Training set X, labelsets Lx and Ly, prior class probabilities P = 〈p1, p2, . . . , pm〉
Ensure: R(2)

d (Lx, Ly)
1: a← 0, b← 0, c← 0, d← 0
2: for l = 1, 2, . . . ,m do
3: if (Lx)i = (Ly)i then
4: if (Lx)i = (Ly)i = 1 then
5: a← a+ (1− pi)
6: else
7: d← d+ pi

8: else
9: if (Lx)i = 1 then

10: b← b+ 1
2

11: else
12: c← c+ 1

2
13: Rd(Lx, Ly)← a+d

a+b+c+d

based relation R
(1)
d can only take on a limited set of values, while relation R

(2)
d has no such

prior restriction. It is important to note that labelsets that have the same value for the first
relation do not necessarily coincide in the second relation. For example, consider Ly8 and
Ly9 , which both only contain one label and have a Hamming based similarity of 0.3 with
Lx. However, the value of the label distribution based relation of the former is almost twice
as large as that of the latter. The reason is that both Lx and Ly8 contain the rare class
label l9, while the shared label l4 of Lx and Ly9 is far more common in the dataset. We
also observe large differences between some values of the two relations. We can consequently
expect different classification results for our FRONEC method when either R(1)

d or R(2)
d is

used.

Table 7.2: Similarity of labelset Lx = 〈1, 1, 0, 1, 1, 1, 1, 1, 1, 0〉 with ten other labelsets accord-
ing to relations R(1)

d and R
(2)
d .

R
(1)
d R

(2)
d R

(1)
d R

(2)
d

Ly1 = 〈1, 1, 0, 1, 1, 1, 1, 1, 0, 0〉 0.9000 0.9029 Ly6 = 〈1, 0, 0, 0, 0, 1, 0, 0, 0, 0〉 0.4000 0.3419
Ly2 = 〈1, 1, 0, 1, 1, 0, 1, 0, 0, 0〉 0.7000 0.6712 Ly7 = 〈0, 1, 0, 1, 0, 0, 0, 0, 0, 0〉 0.4000 0.3049
Ly3 = 〈0, 0, 0, 1, 0, 1, 1, 1, 0, 0〉 0.6000 0.5627 Ly8 = 〈0, 0, 0, 0, 0, 0, 0, 0, 1, 0〉 0.3000 0.2447
Ly4 = 〈1, 1, 1, 1, 0, 0, 1, 0, 0, 0〉 0.5000 0.4637 Ly9 = 〈0, 0, 0, 1, 0, 0, 0, 0, 0, 0〉 0.3000 0.1357
Ly5 = 〈1, 0, 0, 1, 0, 0, 1, 0, 0, 0〉 0.5000 0.3821 Ly10 = 〈0, 0, 0, 0, 0, 0, 0, 0, 0, 1〉 0.1000 0.0324

7.3.4 Computational complexity

Having described all components of our proposal, we are now in a position to evaluate its
computational complexity. Despite its nearest neighbour aspect, which generally implies a
lazy learning nature and therefore a negligible training phase, FRONEC can precompute
and store all pairwise labelset similarity values between the training instances. As should
be clear from the quality measure definitions (7.2-7.4), labelset similarity comparisons are
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only computed between training elements. This allows these values to be precomputed, such
that repeated calculations are avoided at classification time. The cost of this calculation is
quadratic in the number of instances, but needs to be performed only once during training.
The cost of one pairwise labelset similarity calculation is linear in the number of possible
labels regardless of whether R(1)

d or R(2)
d is used.

To classify an instance x, the procedure described in Section 7.3.1 is applied:

1. The first step is to construct the set N(x) of the k nearest neighbours of x in the training
set. This process has a computational cost that is linear in the number of instances and
linear in the number of features. The latter is due to the cost of the feature similarity
(or distance) calculation (3.13). These feature similarity values are also used in the
second step. If they can be stored, repeated calculations are avoided.

2. Next, the quality valueQx(y) is calculated for every training element y. Since the quality
of y depends on the target instance x, it can not be precomputed during training. As
all R(·, x) and Rd(·, ·) similarity values have already been determined, the construction
of the sets to aggregate in (7.2) and (7.3) is linear in the number of neighbours k. The
OWA aggregation has a cost of O(k log(k)) due to the sorting step in Definition 3.1.1.
Quality calculation (7.4) is slightly more costly, since it includes both (7.2) and (7.3).
In particular, two sorting operations are required. In total, the second step of the
classification procedure is linear in the number of instances and linearithmic in k.

3. Finally, the predicted labelset for x needs to be constructed. This requires a pass
through set Y , for which the cost is linear in |Y |. This value is upper bounded by
the total number of training instances. The presence of each class label needs to be
evaluated. The third step in the classification of x is consequently linear in the number
of training instances and the number of possible class labels.

In summary, if n is the number of training instances, m the number of possible class labels, d
the number of features and k the number of neighbours, the computational cost of the training
phase of FRONEC is O(n2 ·m) and the cost to classify an instance is O(n ·(d+m+k log(k))).

7.4 Experimental study

We now proceed with an empirical evaluation of our FRONEC proposal. The experimental
set-up is described in Section 7.4.1, listing the datasets, evaluation measures, classifiers and
their parameters used in our experiments. Section 7.4.2 performs the internal comparison of
the FRONEC variants. It compares the three different quality measures (see Section 7.3.2)
and two labelset similarity relations (see Section 7.3.3). The comparison of FRONEC to
existing nearest neighbour based multi-label classifiers is carried out in Sections 7.4.3 and
7.4.4. The former bases its comparison on synthetic datasets, while the latter uses real-world
datasets.

7.4.1 Experimental set-up

For the sake of clarity, we specify the different components of our experimental study in
separate paragraphs below.
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Table 7.3: Real-world multi-label datasets. We list the number of instances (nInst), features
(nFeat) and number of possible labels (nLab).

Dataset nInst nFeat nLab
Birds 645 260 19
Emotions 593 72 6
Flags 194 19 7
Music 592 71 6
Scene 2407 294 6
Yeast 2417 103 14

Datasets The majority of the publicly available multi-label datasets have a high dimension-
ality, which may form an issue for nearest neighbour based classifiers [41]. To avoid this prob-
lem, we use the Mldatagen generator [395] to create synthetic multi-label datasets. We have
used the HyperSpheres strategy and have fixed the number of features to 20, the number of la-
bels to 10 and the number of instances to 5000. We have created a total number of 30 datasets
by varying the number of relevant, irrelevant and redundant features as well as the percentage
of class noise. The names of the datasets reflect the characteristics of the attributes and the
percentage of class noise. For example, dataset ‘d-5-10-5-p30’ has five relevant attributes, ten
irrelevant attributes, five redundant attributes and thirty percent class noise. We use five-
fold cross validation in all experiments. Aside from the synthetic datasets, we also include six
real-world multi-label dataset with a relatively moderate dimensionality. Their characteristics
are listed in Table 7.3. These datasets are used in a final comparison between our proposal
and state-of-the-art nearest neighbour multi-label classifiers in Section 7.4.4. All datasets and
used partitions are available for download at http://www.cwi.ugent.be/sarah.php.

Evaluation measures There exists a wide spectrum of metrics to evaluate the performance
of multi-label classifiers [215]. We have selected the Hamming loss, F-measure, recall, precision
and subset accuracy measures. They are example-based and expect a strict assignment of
instances to classes (that is, instead of a label ranking). This is appropriate in the context
of nearest neighbour classification. Let x be a test instance in the test set Ts, Lx its true
labelset and L̂x the predicted labelset. The above listed evaluation measures are defined as
follows:

• Hamming loss:
hloss = 1

|Ts|
1
m

∑
x∈Ts

|Lx ∆ L̂x|,

with the ∆ operator as defined in Section 7.3.3. The total number of prediction errors
is divided by both the number of test instances |Ts| and the number of possible labels
m.

• F-measure:
F = 2 · p · r

p+ r
,

where p and r are the precision and recall measures given by

p = 1
|Ts|

∑
x∈Ts

|Lx ∩ L̂x|
|L̂x|

and r = 1
|Ts|

∑
x∈Ts

|Lx ∩ L̂x|
|Lx|

.
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For each test instance x, the recall compares the number of correctly predicted labels
for x to all labels of x, while the precision compares the number of correctly predicted
labels to all predicted labels.

• Subset accuracy:
SubAcc = 1

|Ts|
∑
x∈Ts

I(Lx = L̂x),

where the indicator function I(·) evaluates to one if its argument is true and to zero
otherwise. This is the most stringent metric listed here, because it evaluates full equality
of Lx and L̂x.

Methods and parameter settings From the nearest neighbour based classifiers described
in Section 7.2, we select the BRKNN-b, LPKNN, MLKNN, IBLR+ and MLDGC algorithms
as representative methods. From a preliminary comparison, we observed that these methods
have a good classification performance on the datasets included in our study. Furthermore,
their operation is easy to understand and they require only the k parameter to be set by
the user. The MLKNN and IBLR methods are often included in experimental comparisons
of newly proposed multi-label classifiers. MLDGC is the recently proposed method from
[358]. Similar to our set-up, the authors compared this method within the family of nearest
neighbour multi-label classifiers. MLDGC was shown to outperform the other methods in
this study, but, as noted in the conclusion of [358], it remains important to compare newly
proposed nearest neighbour multi-label methods to both MLDGC and the other state-of-the-
art nearest neighbour classifiers. We follow their guideline here.

Since these methods are related to the nearest neighbour classification paradigm, they all
depend on the k parameter, the number of nearest neighbours used in the prediction process.
In other experimental studies, its value is often set to ten. However, in our experiments, we
do not fix this value beforehand, but allow the classifier to set its own k value during the
training phase. A method does so by evaluating its classification performance, measured by
the leave-one-out subset accuracy on the training set, for values of k between 1 and 20. It sets
the parameter to the value yielding the best performance. We have opted to use the subset
accuracy as evaluation measure during this process, because it is the most exact one, that is,
it counts predictions that are entirely correct.

FRONEC settings We compare six alternatives of our FRONEC method. As described
in Section 7.3.2, versions FRONEC-1, FRONEC-2 and FRONEC-3 differ from each other by
their use of the instance quality measure. Each of these methods has a choice between the
two labelset similarity relations described in Section 7.3.3. As part of our experimental study,
we compare these six alternatives amongst each other. In expressions (7.2-7.4), we use the
 Lukasiewicz connectives, that is, I(a, b) = min(1, 1 − a + b) and T (a, b) = max(a + b − 1, 0)
(see Table 1.5).

The fuzzy rough operators within FRONEC depend on the definition of the feature similarity
relation R(·, ·), for which we use relation (3.13). For the sake of a sensible and fair comparison,
we set the distance relation d(·, ·) used by all other methods to the complement of the similarity
relation, that is, d(x, y) = 1−R(x, y). This implies that the k nearest neighbours of an element
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Table 7.4: Comparison of the different FRONEC methods using the additive weighting
scheme for the OWA aggregations. The value of k was set to 20.

hloss F SubAcc

R
(1)
d R

(2)
d R

(1)
d R

(2)
d R

(1)
d R

(2)
d

FRONEC-1 0.2666 0.2776 0.4174 0.4396 0.0625 0.0603
FRONEC-2 0.2653 0.2787 0.4290 0.4489 0.0720 0.0679
FRONEC-3 0.2616 0.2722 0.4251 0.4476 0.0700 0.0685

x are those that are most similar to this instance according to our standard instance similarity
relation.

7.4.2 FRONEC variants

In this section, we use the 30 synthetic datasets described in Section 7.4.1 to compare six
versions of our proposal, namely the FRONEC-1, FRONEC-2 and FRONEC-3 methods with
the two labelset similarity relations R(1)

d and R
(2)
d . In this stage, we fix the value of k to 20

and select the additive OWA weighting scheme (see Section 3.2.1) within the instance quality
calculations (7.2-7.4). We observed that these settings provide good results on average. In
later sections, we use the optimization procedure described in Section 7.4.1 to allow FRONEC
to choose the OWA weighting scheme and k value itself during the training phase.

We present the average results of the six methods taken over the 30 synthetic datasets in
Table 7.4. We use the Hamming loss, F-measure and subset accuracy measures to evaluate
their classification performance. Aside from these average results, we also take statistical
comparisons by means of the Wilcoxon test into account.

Choice of labelset similarity relation We observe that the choice of labelset similarity
relation has the largest influence on the Hamming loss and F-measure metrics. This is reflected
in the mean values reported in the table, but also in the results per dataset. For the Hamming
loss, almost all datasets prefer the R(1)

d relation, while R(2)
d provides better F-measure values

on all datasets. When comparing the results of the two labelset similarity relations with the
Wilcoxon test, we observe that R(1)

d is always significantly better than R(2)
d for the Hamming

loss (R+ = 453, R− = 12, p = 0.000005 for FRONEC-1; R+ = 465, R− = 0, p = 0.000001
for FRONEC-2; R+ = 435, R− = 0, p = 0.000002 for FRONEC-3), while the reverse holds
for the F-measure (R+ = 465, R− = 0, p = 0.000001 for FRONEC-1; R+ = 464, R− = 1,
p = 0.000002 for FRONEC-2; R+ = 465, R− = 0, p = 0.000002 for FRONEC-3). With
respect to the subset accuracy, the results are less clear-cut. The majority of the datasets
do prefer R(1)

d , which is also expressed by the mean values reported in Table 7.4 and the
results of the Wilcoxon test comparing R(1)

d to R(2)
d (R+ = 379.5, R− = 85.5, p = 0.002353

for FRONEC-1; R+ = 433, R− = 32, p = 0.000031 for FRONEC-2; R+ = 306, R− = 129,
p = 0.051715 for FRONEC-3). Since there does not seem to be a general inclination towards
one of the two labelset similarity relations, we continue to use both. It would not be prudent
to discard R

(2)
d , as it significantly outperforms R(1)

d with respect to the F-measure.
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The difference in the relation preferences can be explained by the fact that more labels are
generally predicted when R

(2)
d is used, that is, the size of the predicted labelsets is larger on

average when using R(2)
d compared to using R(1)

d . This will be shown and discussed in further
detail in later sections. An explanation of this behaviour lies with the comparison conducted
in Section 7.3.3. Due to its definition and the fact that R(1)

d can take on only a limited set of
values, less extreme differences in the values of this relation between large and small labelsets
are observed. Small labelsets are not so easily dominated by larger ones, while, based on
the example comparison in Section 7.3.3, R(2)

d seems to be more sensitive to the size of a
labelset. Furthermore, when comparing the labelsets of two instances x and y, the situation
(Lx)i 6= (Ly)i is penalized more severely by R

(1)
d than by R

(2)
d . As a result, the latter is

naturally allowed to make more guesses in its predictions and will lead to more predicted
labels. Its superior values for the F-measure show that this characteristic is not taken to the
extreme (e.g. predicting every label) and a favourable balance between recall and precision is
obtained. We come back to this point further on.

Choice of quality measure The results of the Wilcoxon tests comparing FRONEC-1,
FRONEC-2 and FRONEC-3 can be found in Table 7.5. When comparing the three versions,
we observe that the latter two provide better results than the former, both on average as well
as based on the results per dataset and the statistical analysis. The difference between these
methods lies with their use of the instance quality measure. The inclusion of the operator
related to the fuzzy rough upper approximation is shown to be more beneficial than that of the
one related to the lower approximation. The lower approximation relies on a fuzzy implicator
I, which models an implication. The quality Q

(1)
x (y) in the prediction of x evaluates how

strongly the similarity between x and its neighbours z implies the similarity of the labelsets
Ly and Lz. The upper approximation on the other hand uses a t-norm T , which is related to
a conjunction. Since a t-norm is commutative, the similarity between x and its neighbours z
and the similarity between Ly and Lz have equal importance. The value of Q(2)

x (y) aggregates
the fuzzy conjunctions of these two types of similarity values. In the search of a consensus
labelset among those of the nearest neighbours of x, the second approach seems more intuitive.
We conclude that the FRONEC-2 alternative can be preferred overall, since it obtains good
classification results and is computationally more efficient than FRONEC-3 (Section 7.3.4),
while not being significantly inferior to the latter for all evaluation measures. Nevertheless,
Table 7.5 does show that FRONEC-3 significantly outperforms FRONEC-2 with respect to
the Hamming loss. If a user is particularly interested in this metric, we advise the use of
FRONEC-3 instead of FRONEC-2.

7.4.3 Comparison on synthetic datasets

In this section, we compare the performance of FRONEC to the selected nearest neighbour
based multi-label classifiers on the 30 synthetic datasets described in Section 7.4.1. The
comparison on the real-world datasets from Table 7.3 is postponed to Section 7.4.4. We use
version FRONEC-2, which we denote as FRONEC in the remainder of this discussion. Our
method depends on two internal parameters: the number of neighbours k and the weighting
scheme for the OWA aggregation in (7.3). We use the optimization procedure in Section 7.4.1
to let FRONEC select its own setting during the training phase depending on the data under
consideration. For k, it evaluates all natural numbers between 1 and 20. The candidate
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Table 7.5: Results of the Wilcoxon test comparison of the quality measures (7.2-7.4) within
FRONEC for both labelset similarity relations. P-values that imply significant
differences at the 5% significance level are printed in boldface.

R
(1)
d R

(2)
d

Comparison R+ R− p Comparison R+ R− p
hloss Q(2) vs Q(1) 316.0 149.0 0.080864 Q(1) vs Q(2) 243.0 192.0 0.565543

Q(3) vs Q(1) 465.0 0.0 0.000001 Q(3) vs Q(1) 425.5 9.5 0.000005
Q(3) vs Q(2) 432.5 2.5 0.000002 Q(3) vs Q(2) 465.0 0.0 0.000001

F Q(2) vs Q(1) 422.0 13.0 0.000009 Q(2) vs Q(1) 477.0 18.0 0.000009
Q(3) vs Q(1) 407.0 58.0 0.000297 Q(3) vs Q(1) 422.0 43.0 0.000093
Q(2) vs Q(3) 328.0 137.0 0.047743 Q(2) vs Q(3) 266.5 198.5 0.475675

SubAcc Q(2) vs Q(1) 373.0 62.0 0.000672 Q(2) vs Q(1) 370.5 94.5 0.004289
Q(3) vs Q(1) 453.5 11.5 0.000005 Q(3) vs Q(1) 455.0 10.0 0.000005
Q(2) vs Q(3) 291.5 143.5 0.103411 Q(3) vs Q(2) 288.0 177.0 0.246954

weighting schemes are the strict, additive, exponential and inverse additive weights listed in
Section 3.2.1. We do not use our weight guidelines proposed in Chapter 3, because they
are not fully relevant here. The upper approximation in (7.3) is computed over a set of k
nearest neighbours instead of over a full class of training instances. Secondly, our guidelines
were proposed for single-label instead of multi-label data and the conclusions formulated in
Chapter 3 are based on a crisp class similarity relation.

The median k values selected by the internal optimization procedures are 18.5 (BRKNN-
b), 19 (LPKNN), 17 (MLKNN), 15.5 (IBLR+), 15 (MLDGC), 19 (FRONEC-R(1)

d ) and 19
(FRONEC-R(2)

d ). The FRONEC methods most often select the additive OWA weight setting.
Note that although FRONEC sets two parameters instead of one, this does not lead to an
unfair comparison with the other methods. The reason is that BRKNN-b, LPKNN, MLKNN,
IBLR+ and MLDGC have only one user-defined value, which is k. Furthermore, since the
FRONEC methods usually select the additive OWA weighting scheme, fixing this choice would
not greatly change the reported performance either. This can also be taken into account
when the parameter optimization step of FRONEC is deemed too time-consuming and the
user would prefer to only optimize the k parameter.

A summary of the results for the different performance metrics is presented in Table 7.6. We
provide the mean value and standard deviation of the results across the 30 synthetic datasets.
For each evaluation measure, the best mean result is printed in bold. Note that for the F-
measure, recall, precision and subset accuracy the best result is the highest value, while for
the Hamming loss this is the lowest one. For each method, we also count the number of times
it yielded the best (nBest) or worst (nWorst) result on the 30 datasets.

We report the results of the statistical analysis of these values in Tables 7.7-7.8. The former
presents the analysis of the Friedman test and Holm post-hoc procedure, while the latter
conducts a pairwise comparison of our FRONEC methods to the other algorithms by means
of the Wilcoxon test. We include the pairwise comparison to better evaluate the individual
differences between our proposal and the state-of-the-art nearest neighbour based multi-label
methods.
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Table 7.6: Summary of the classification results on the 30 synthetic datasets. We present the
average (av) and standard deviation (stdev) across these datasets as well as the
number of times a method attained the best or worst result for a measure. The
best mean values are printed in bold.

BRKNN-b LPKNN MLKNN IBLR+
hloss av ± stdev 0.2785 ± 0.0847 0.3093 ± 0.0998 0.2461 ± 0.0859 0.2395 ± 0.0848

nBest/nWorst 0/4 0/23 2/0 28/0
SubAcc av ± stdev 0.0591 ± 0.0499 0.0571 ± 0.0600 0.0445 ± 0.0412 0.0514 ± 0.0433

nBest/nWorst 1/0 0/17 2/11 10/0
F av ± stdev 0.4438 ± 0.1202 0.4211 ± 0.1071 0.3398 ± 0.2016 0.3659 ± 0.2042

nBest/nWorst 8/0 4/10 0/17 6/2
p av ± stdev 0.4986 ± 0.1339 0.4343 ± 0.0918 0.6244 ± 0.0770 0.6463 ± 0.0715

nBest /nWorst 0/4 0/23 4/0 26/0
r av ± stdev 0.4101 ± 0.1255 0.4125 ± 0.1225 0.2634 ± 0.1826 0.2870 ± 0.1922

nBest/nWorst 7/0 8/0 0/27 0/3

MLDGC FRONEC-R(1)
d FRONEC-R(2)

d

hloss av ± stdev 0.2710 ± 0.0792 0.2685 ± 0.0875 0.2823 ± 0.0929
nBest/nWorst 0/3 0/0 0/0

SubAcc av ± stdev 0.0557 ± 0.0474 0.0715 ± 0.0621 0.0672 ± 0.0619
nBest/nWorst 1/2 15/0 2/2

F av ± stdev 0.4161 ± 0.1457 0.4293 ± 0.1337 0.4471 ± 0.1250
nBest/nWorst 0/1 0/0 13/0

p av ± stdev 0.4994 ± 0.1238 0.5096 ± 0.1114 0.4789 ± 0.0987
nBest/nWorst 0/3 0/0 0/0

r av ± stdev 0.3738 ± 0.1652 0.3806 ± 0.1487 0.4259 ± 0.1489
nBest/nWorst 0/0 0/0 15/0

7.4.3.1 Summary of results

Based on the results in Table 7.6 and the statistical analysis in Tables 7.7-7.8, we can observe
the following:

• Hamming loss: the dominance of the IBLR+ method is clear. It has the lowest
average result and yields the best value on 28 out of the 30 datasets. The statistical
analysis in Table 7.7 shows that IBLR+ significantly outperforms all other methods
except MLKNN for this evaluation measure. The results of the Wilcoxon tests confirm
that IBLR+ significantly outperforms our proposal with respect to the Hamming loss.
The same holds for MLKNN. MLDGC significantly outperforms FRONEC-R(2)

d as well.
However, FRONEC-R(1)

d is significantly better than FRONEC-R(2)
d as well as LPKNN

for this measure. This version also outperforms BRKNN-b and MLDGC, albeit not
significantly.

• Subset accuracy: the highest mean result is obtained by our FRONEC method using
relation R

(1)
d . It also attains the most wins, namely on 15 out of the 30 datasets. This

method is assigned the lowest Friedman rank in Table 7.7 and significantly outperforms
all others. This is remarkable, because, as described in Section 7.4.1, all methods opti-
mize this measure internally, so we could have expected their results to be competitive
with each other. This is not the case and our FRONEC-R(1)

d method is the best general
option when one is most interested in the subset accuracy measure. The dominance of
FRONEC-R(1)

d is confirmed by the Wilcoxon tests in Table 7.8.
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Table 7.7: Statistical analysis of the results summarized in Table 7.6. We use the Friedman
test and the Holm post-hoc procedure. P-values of the latter implying statistical
significance at the 5% significance level are printed in bold.

Hamming loss (pF riedman ≤ 0.000001) Subset accuracy (pF riedman = 0.000001)
Method Rank pHolm Method Rank pHolm

BRKNN-b 4.5667 ≤ 0.000001 BRKNN-b 3.6333 0.046302
LPKNN 6.7000 ≤ 0.000001 LPKNN 5.6000 ≤ 0.000001
MLKNN 1.9333 0.120233 MLKNN 4.7167 0.000126
IBLR+ 1.0667 - IBLR+ 3.5833 0.046302
MLDGC 4.3333 ≤ 0.000001 MLDGC 4.2167 0.003643
FRONEC-R(1)

d 3.9333 0.000001 FRONEC-R(1)
d 2.3667 -

FRONEC-R(2)
d 5.4667 ≤ 0.000001 FRONEC-R(2)

d 3.8833 0.019635

F-measure (pF riedman ≤ 0.000001) Precision (pF riedman ≤ 0.000001)
BRKNN-b 2.5833 0.135166 BRKNN-b 4.5667 ≤ 0.000001
LPKNN 4.7000 0.000001 LPKNN 6.7000 ≤ 0.000001
MLKNN 6.4333 ≤ 0.000001 MLKNN 1.8667 0.188593
IBLR+ 4.6167 0.000001 IBLR+ 1.1333 -
MLDGC 4.3167 0.000013 MLDGC 4.5000 ≤ 0.000001
FRONEC-R(1)

d 3.6000 0.001821 FRONEC-R(1)
d 3.8667 0.000002

FRONEC-R(2)
d 1.7500 - FRONEC-R(2)

d 5.3667 ≤ 0.000001

Recall (pF riedman ≤ 0.000001)
BRKNN-b 2.8667 0.019769
LPKNN 3.0667 0.014322
MLKNN 6.9000 ≤ 0.000001
IBLR+ 5.9667 ≤ 0.000001
MLDGC 3.8000 0.000193
FRONEC-R(1)

d 3.8333 0.000193
FRONEC-R(2)

d 1.5667 -

• F-measure, recall and precision: the highest average value for the F-measure is
obtained by our FRONEC method using labelset similarity relation R(2)

d . This method
also obtains the most wins, namely on 13 out of the 30 datasets. It is closely followed
by BRKNN-b. In the statistical analysis in Table 7.7, FRONEC-R(2)

d is assigned the
lowest Friedman rank and is shown to significantly outperform all other methods except
BRKNN-b. The same holds for the Wilcoxon test in Table 7.8.

Although the same phenomenon can be observed in the experimental results of [358], it
is remarkable that the IBLR+ and MLKNN methods perform so poorly in terms of the
F-measure, while they provide the best Hamming loss results. The explanation lies with
their recall and precision values, which are not at all balanced. These methods yield
very poor results for the former measure and very good for the latter. This means that
most of their predicted labels are correct (high precision), but they fail to predict many
relevant labels (low recall). The other methods (in particular FRONEC-R(2)

d ) obtain a
better recall-precision balance, which is reflected in a superior F-measure.

In summary, we can conclude that FRONEC performs best for the subset accuracy, F-measure
and recall, but that IBLR+ is preferred in the evaluation by the Hamming loss and precision.
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Table 7.8: Pairwise comparison between FRONEC (FR) and other methods by means of the
Wilcoxon test. P-values implying significant differences at the 5% significance level
are printed in boldface (in favour of a FRONEC method) or underlined (in favour
of some other method).

Hamming loss Subset accuracy
Comparison R+ R− p Comparison R+ R− p
FR-R(1)

d
vs BRKNN-b 303.0 162.0 0.143162 FR-R(1)

d
vs BRKNN-b 416.5 48.5 0.000136

FR-R(1)
d

vs LPKNN 465.0 0.0 0.000002 FR-R(1)
d

vs LPKNN 465.0 0.0 0.000002
MLKNN vs FR-R(1)

d
465.0 0.0 0.000002 FR-R(1)

d
vs MLKNN 400.0 65.0 0.000531

IBLR+ vs FR-R(1)
d

465.0 0.0 0.000002 FR-R(1)
d

vs IBLR+ 314.0 151.0 0.090014
FR-R(1)

d
vs MLDGC 270.0 195.0 0.432080 FR-R(1)

d
vs MLDGC 376.5 58.5 0.000544

BRKNN-b vs FR-R(2)
d

287.0 178.0 0.256721 FR-R(2)
d

vs BRKNN-b 288.0 177.0 0.249392
FR-R(2)

d
vs LPKNN 465.0 0.0 0.000002 FR-R(2)

d
vs LPKNN 454.5 10.5 0.000004

MLKNN vs FR-R(2)
d

465.0 0.0 0.000002 FR-R(2)
d

vs MLKNN 331.5 133.5 0.040187
IBLR+ vs FR-R(2)

d
465.0 0.0 0.000001 FR-R(2)

d
vs IBLR+ 269.0 196.0 0.445469

MLDGC vs FR-R(2)
d

380.0 85.0 0.002334 FR-R(2)
d

vs MLDGC 318.0 147.0 0.075401
FR-R(1)

d
vs FR-R(2)

d
465.0 0.0 0.000001 FR-R(1)

d
vs FR-R(2)

d
402.0 33.0 0.000063

F-measure Precision
Comparison R+ R− p Comparison R+ R− p
BRKNN-b vs FR-R(1)

d
407.5 57.5 0.000296 FR-R(1)

d
vs BRKNN-b 299.5 165.5 0.162853

FR-R(1)
d

vs LPKNN 314.0 151.0 0.091680 FR-R(1)
d

vs LPKNN 465.0 0.0 0.000002
FR-R(1)

d
vs MLKNN 464.0 1.0 0.000002 MLKNN vs FR-R(1)

d
465.0 0.0 0.000002

FR-R(1)
d

vs IBLR+ 404.0 61.0 0.000390 IBLR+ vs FR-R(1)
d

465.0 0.0 0.000002
FR-R(1)

d
vs MLDGC 368.0 97.0 0.005039 FR-R(1)

d
vs MLDGC 309.0 156.0 0.113248

FR-R(2)
d

vs BRKNN-b 294.0 171.0 0.202225 BRKNN-b vs FR-R(2)
d

328.0 137.0 0.048318
FR-R(2)

d
vs LPKNN 412.5 52.5 0.000198 FR-R(2)

d
vs LPKNN 465.0 0.0 0.000002

FR-R(2)
d

vs MLKNN 465.0 0.0 0.000002 MLKNN vs FR-R(2)
d

465.0 0.0 0.000002
FR-R(2)

d
vs IBLR+ 404.0 31.0 0.000053 IBLR+ vs FR-R(2)

d
465.0 0.0 0.000002

FR-R(2)
d

vs MLDGC 465.0 0.0 0.000002 MLDGC vs FR-R(2)
d

349.0 116.0 0.016106
FR-R(2)

d
vs FR-R(1)

d
462.0 3.0 0.000002 FR-R(1)

d
vs FR-R(2)

d
463.0 2.0 0.000002

Recall
Comparison R+ R− p
BRKNN-b vs FR-R(1)

d
394.0 71.0 0.000810

LPKNN vs FR-R(1)
d

371.0 94.0 0.004250
FR-R(1)

d
vs MLKNN 465.0 0.0 0.000002

FR-R(1)
d

vs IBLR+ 464.0 1.0 0.000002
FR-R(1)

d
vs MLDGC 290.5 174.5 0.227683

FR-R(2)
d

vs BRKNN-b 304.0 161.0 0.137613
FR-R(2)

d
vs LPKNN 325.0 140.0 0.055767

FR-R(2)
d

vs MLKNN 465.0 0.0 0.000002
FR-R(2)

d
vs IBLR+ 465.0 0.0 0.000002

FR-R(2)
d

vs MLDGC 465.0 0.0 0.000002
FR-R(2)

d
vs FR-R(1)

d
465.0 0.0 0.000002

As should be clear from the descriptions provided in Section 7.4.1, the subset accuracy and
recall are related measures, as are the Hamming loss and precision. Consequently, it is not
surprising that a method that performs well for one measure in a pair also attains good
results for the other. The F-measure evaluates the trade-off between recall and precision.
Since no method dominates all others for both measures, it is important to include the F-
measure as summary metric to evaluate this trade-off. The results in Tables 7.6-7.8 show
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that FRONEC provides the best F-measure results, which can be interpreted as the most
appropriate way to balance the different behaviour measured by the recall and precision.
From this observation, we can cautiously conclude that our method is the overall best one,
taking all included evaluation measures into account.

The results in Table 7.8 also stress the large effect that the choice of labelset similarity relation
has on the performance of FRONEC. For each evaluation measure, the difference between
FRONEC-R(1)

d and FRONEC-R(2)
d is found to be significant, sometimes in favour of the former

(Hamming loss, subset accuracy, precision) and sometimes in favour of the latter (F-measure,
recall). The characteristics of the two labelset similarity relations have been explained in
Section 7.4.2.

Interestingly, the MLDGC method, although recently proposed and shown in the original
paper to outperform the other included methods, does not perform notably well on these
datasets. The explanation lies with the characteristics of the datasets used in our study. First,
we have opted to limit ourselves to relatively low dimensional datasets, as the suitability of a
nearest neighbour approach decreases when the number of features increases and the locality
property is lost. Since we focus on nearest neighbour related methods, we feel it is appropriate
to limit the number of features. When a high dimensional dataset needs to be processed with
our proposal or one of the other included methods, we advise the application of a feature
selection technique prior to the classification step. Considering the results in [358], it can
be observed that MLDGC obtains the most wins and highest performance differences on
relatively high dimensional datasets. This indicates that this method may be more robust
against the high dimensionality than other nearest neighbour based classifiers, but it does not
take away from the fact that the intuition behind it is somehow lost in the process. A second
dataset property that causes the inferior performance of MLDGC is the label density of our
datasets (see Section 7.1.1). The authors of [358] acknowledged that their method performed
best on datasets with a low label density. The label density of the datasets in [358] ranges
from 0.009 to 0.485, while it ranges between 0.119 and 0.429 for our synthetic datasets, with
an average of 0.282. These values are relatively high compared to those in the MLDGC study,
which explains the lesser performance of this method.

We also wish to stress the comparison between FRONEC on the one hand and BRKNN-b
and LPKNN on the other. As noted in Section 7.3.1, these methods are highly related. To
classify an instance, they first determine its k nearest neighbours. Next, the labelsets of these
neighbours are aggregated into a prediction. BRKNN-b and LPKNN do so by considering the
labelsets of the neighbours themselves, while FRONEC searches the dataset for a labelset that
forms an appropriate consensus. The results in Table 7.6 show that more accurate predictions
are obtained by using the fuzzy rough approach incorporated in FRONEC.

7.4.3.2 Deeper discussion on FRONEC, IBLR+ and MLKNN

A pertinent question is why the precision (and Hamming loss) of FRONEC is relatively low
compared to that of IBLR+ and MLKNN, which are the best performers for this measure.
IBLR+ and MLKNN are popular methods used in comparative studies of multi-label classi-
fiers, so a careful comparison of our proposal with these algorithms is warranted. The results
above show that FRONEC outperforms IBLR+ and MLKNN with respect to the subset accu-
racy, F-measure and recall, but not for the precision and Hamming loss. As stated above, the
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superior F-measure results of FRONEC show that it compromises the two different prediction
aspects represented by precision and recall best. However, it remains crucial to understand
why the precision of FRONEC is relatively low.

The answer to our question lies with the cardinality of the predicted labelsets. Based on our
empirical evidence, the IBLR+ and MLKNN methods make consistently fewer predictions
than FRONEC, that is, the number of labels predicted for an instance x by IBLR+ or
MLKNN is lower than the number predicted by FRONEC. On our 30 synthetic datasets,
for which the highest possible cardinality of a labelset is m = 10, the mean difference in
cardinality between the true and predicted labelsets is 1.5519 (IBLR+), 1.6238 (MLKNN),
0.7558 (FRONEC-R(1)

d ) and 0.3417 (FRONEC-R(2)
d ). The higher these values, the smaller

the predicted labelsets are compared to the true ones. For completeness, the mean values for
BRKNN-b, LPKNN and MLDGC are 0.5132, 0.1306 and 0.7638 respectively. On each dataset,
MLKNN and IBLR+ yield the largest difference in true and predicted labelset cardinality and
consequently the smallest predicted labelsets.

In the definition of the precision (see Section 7.4.1) the size of the predicted labelset appears
in the denominator. When the denominator of a fraction decreases, its overall value increases.
As the predicted labelset sizes are smaller for IBLR+ and MLKNN than they are for FRONEC
and these values are used in the denominator of the precision definition, a higher result for the
former two methods is a logical consequence. We also note the difference between the values
for FRONEC-R(1)

d and FRONEC-R(2)
d , which relates back to a point made in Section 7.4.2.

The only difference between these two methods is their labelset similarity relation. Using
relation R

(2)
d tends to result in more predictions, which is reflected in its smaller difference

between the true and predicted labelset cardinalities, larger labelset sizes and, finally, its
lower precision value.

One could argue that the predicted labelset cardinality is not the only component influencing
the precision measure. Indeed, even when only a few labels are predicted, the precision
will still be low when these predictions are incorrect. In order to verify whether the size of
the predicted labelset is truly the most important factor influencing the precision difference
between IBLR+, MLKNN and FRONEC in our study, we have examined whether the correct
predictions made by the former two methods are also discovered by FRONEC. This is the
case. On average over the 30 datasets, FRONEC-R(1)

d finds 93.36% of the correct predictions
made by IBLR+ and 96.90% of the correct predictions made by MLKNN. For FRONEC-R(2)

d ,
these values are 93.54% and 96.19% respectively. This implies that our method very rarely
misses a correct prediction of IBLR+ or MLKNN and corroborates our statement that, when
taking the five evaluation measures into account, FRONEC can be preferred over IBLR+ and
MLKNN.

The choice between FRONEC on the one hand and IBLR+ and MLKNN on the other depends
on the relative importance or cost of false positive and false negative predictions. Only in
applications where false positives are severely penalized should IBLR+ and MLKNN be used
instead of FRONEC. This comes at the risk of possibly missing many correct classes (low
recall).
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7.4.3.3 Complexity comparison

When we compare the execution time of these methods, we observe average training times
of 10.3279 s (LPKNN), 15.9900 s (MLDGC), 16.9344 s (BRKNN-b), 18.4833 s (MLKNN) and
69.3622 s (IBLR+) compared to 184.7964 s and 185.1450 s for FRONEC-R(1)

d and FRONEC-
R

(2)
d respectively. These values are taken as averages over ten runs of the algorithms. The

higher training time of FRONEC is mainly due to its optimization of an additional parameter
during the procedure described in Section 7.4.1. While its competing methods only need to
decide on a value for k, FRONEC also makes a choice between four candidate OWA weighting
schemes. In terms of the testing time, all methods can be considered fast with average times
of 2.1851 s (BRKNN-b), 1.8784 s (LPKNN), 1.8891 s (MLKNN), 2.0514 s (IBLR+), 1.8982 s
(MLDGC), 6.6611 s (FRONEC-R(1)

d ) and 6.9777 s (FRONEC-R(2)
d ) to classify a full test set.

The test sets of the synthetic datasets all consist of 1000 instances. A more detailed discussion
on execution times can be found in Section 7.4.4.2, but we discuss the theoretical complexity
of the methods here. Recall that the theoretical complexity of our proposal has been derived
in detail in Section 7.3.4. We disregard the parameter optimization step in this analysis.

Training The simplest methods are BRKNN-b and LPKNN, since they have no real train-
ing phases and simply store all training instances for later use. MLKNN, MLDGC, IBLR+
and FRONEC do perform some calculations at training time.

For each training instance, MLKNN locates its nearest neighbours and counts the occurrences
of the classes among these elements. The combined cost of these two procedures is O(n2 ·
d + n · k · m). It is also beneficial to compute and store the class counts of the training
instances only once, which has a cost of O(n ·m). Based on the precomputed values, MLKNN
derives prior and posterior probabilities of all classes. The calculation of the former depends
on the overall class counts and can be computed at O(m) total cost. The latter requires the
construction of two frequency arrays, which takes up O(n + k) for each class. In total, the
probability calculations can be obtained at O(m · (n + k)) cost and the complete training
phase complexity of MLKNN is O(n2 · d+ n · k ·m).

In [358], the reported training cost of MLDGC is O(n2 · d). This corresponds to locating the
nearest neighbours for each training instance. However, the additional cost of the remaining
internal calculations is ignored. The labelset similarity values between all pairs of training
instances are derived in O(n2 ·m), while the neighbourhood weight values can be determined
at a total cost of O(n·k). The total training cost of MLDGC is therefore O(n2 ·(d+m)+n·k).

The IBLR+ method constructs a binary logistic regression classifier for each class at training
time. It first transforms the data such that the logistic regression method uses neighbour-
hood information (represented by class confidence values) as well as original data features
as predictors. For each class l, the class confidence feature is computed as the percentage
of neighbours of the training instance that belong to class l. The construction of the new
dataset requires the neighbourhood calculation for all training instances (O(n2 · d)) and the
label confidence calculation for all training instances (O(n · k · m)) and has a total cost of
O(n2 · d + n · k · m). The training time of a logistic classifier is dominated by the cost of
the internal optimization procedure needed to determine the logistic regression coefficients.
We denote this cost as O(Opt). Among other things, this incorporates the cost of computing
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the objective function and gradient (both O(n · d)) in each iteration. Since a classifier is
constructed for each class, the total cost is O(m · Opt). The total training cost of IBLR+ is
O(n2 · d+ n · k ·m+m ·Opt).

Recall that FRONEC has a training cost of O(n2 · m). This cost is quadratic in n, as is
the cost of MLKNN and MLDGC. The training cost of IBLR+ is at least quadratic in n.
BRKNN-b and LPKNN have negligible training phases. These derivations are reflected in
the runtime values listed above and in Section 7.4.4.2.

Classification To classify an instance, BRKNN-b, LPKNN, MLKNN and MLDGC first
locate its nearest neighbours in the training set, which can be achieved at O(n · d) cost. In
each of these methods, the class prediction procedure following the neighbourhood calculation
costs O(k ·m). Their total classification cost is therefore O(n · d + k ·m). To classify a test
instance, the IBLR+ method determines its nearest neighbours (O(n · d)) and derives the
class confidence scores (O(m · k)). For each class, the corresponding logistic classifier is
called to classify the instance (O(d)). The total classification cost of IBLR+ is therefore
O(n · d + m · (k + d)). FRONEC has a classification cost of O(n · (d + m + k log(k))). The
runtime comparisons show that FRONEC has the highest classification time, although it is
close to that of the other methods.

7.4.4 Comparison on real-world datasets

Up until now, we have used 30 synthetic datasets in our experimental comparison of the
BRKNN-b, LPKNN, MLKNN, IBLR+ and MLDGC methods to our FRONEC-R(1)

d and
FRONEC-R(2)

d proposals. In this section, we complement this study with a comparison of
these algorithms on the six real-world multi-label datasets described in Table 7.3. As before,
we use them in a five-fold cross validation set-up. In Section 7.4.4.1, we list and discuss the
complete prediction results. Section 7.4.4.2 compares the classifiers in terms of their execution
times, referring back to Section 7.4.3.3 for a comparison of their theoretical complexity.

7.4.4.1 Prediction performance

Tables 7.9-7.10 present the full classification results for the five evaluation measures. For
each dataset, the best result is printed in boldface and the worst value is underlined. The
most remarkable observation is the poor performance of the IBLR+ method on these datasets,
which is in contrast with its good results on the synthetic datasets in Section 7.4.3. Moreover,
as we noted and explained in Section 7.4.3.1, the MLDGC method does not perform as well in
our study as it did in its original proposal. It is outperformed by FRONEC for all evaluation
measures.

As we observed in the analysis of the synthetic datasets, our FRONEC method makes the most
accurate predictions based on the most stringent evaluation measure, the subset accuracy.
FRONEC also retains the best balance between the recall and precision measures, as reflected
in its value for the F-measure. On the real-world datasets, LPKNN achieves a good trade-off
between precision and recall as well, such that a competitive F-measure value is obtained.
Looking back at Table 7.6, the precision and recall values of LPKNN on the synthetic datasets
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Table 7.9: Experimental results of the seven multi-label classifiers on the datasets in Table 7.3
for the Hamming loss and subset accuracy measures.

Hamming loss
Dataset BRKNN-b LPKNN MLKNN IBLR+ MLDGC FRONEC-R(1)

d FRONEC-R(2)
d

Birds 0.3820 0.0450 0.0410 0.1030 0.0420 0.0422 0.0446
Emotions 0.1902 0.2094 0.1932 0.2136 0.1946 0.1964 0.1978
Flags 0.2860 0.2674 0.2670 0.2696 0.2876 0.2664 0.2664
Music 0.1840 0.2024 0.1840 0.2154 0.1954 0.1946 0.1962
Scene 0.0872 0.0876 0.0814 0.1264 0.0956 0.0824 0.0816
Yeast 0.2248 0.2100 0.1928 0.2024 0.2314 0.2030 0.2062
Mean 0.2257 0.1703 0.1599 0.1884 0.1744 0.1642 0.1655

Subset accuracy
Dataset BRKNN-b LPKNN MLKNN IBLR+ MLDGC FRONEC-R(1)

d FRONEC-R(2)
d

Birds 0.1410 0.5036 0.5454 0.3700 0.5224 0.5284 0.5240
Emotions 0.3204 0.3372 0.3018 0.2560 0.3186 0.3454 0.3574
Flags 0.1652 0.2120 0.1494 0.1914 0.1712 0.1992 0.2158
Music 0.3428 0.3444 0.3128 0.2530 0.3158 0.3360 0.3480
Scene 0.6998 0.7072 0.6598 0.4870 0.6604 0.7256 0.7272
Yeast 0.2154 0.2592 0.1966 0.1826 0.2254 0.2704 0.2656
Mean 0.3141 0.3939 0.3610 0.2900 0.3690 0.4008 0.4063

were close together as well, although they were both lower than the corresponding results of
FRONEC-R(2)

d .

FRONEC-R(2)
d yields the best average result for the subset accuracy and F-measure. The

highest average recall is obtained by BRKNN-b, which is mainly due to its outlying strong per-
formance on the Birds dataset for this measure. However, for each other measure, BRKNN-b
yields the worst result on this dataset, such that we can safely ignore it as a strong competitor.
Its high recall is due to the high number of label predictions it makes for the observations in
this dataset. The average difference between the true and predicted labelset cardinality on
Birds is -6.5126, meaning that BRKNN-b predicts more than six labels too many on aver-
age, which is about a third of the number of possible labels. The MLKNN method wins for
the remaining two evaluation measures, the Hamming loss and precision, but has the lowest
average result for the recall.

Linking this discussion back to the details provided in Section 7.4.3.2, the mean differences
between the cardinality of the true and predicted labelsets are -1.0465 (BRKNN-b), 0.0706
(LPKNN), 0.3045 (MLKNN), -0.0621 (IBLR+), 0.1364 (MLDGC), 0.1267 (FRONEC-R(1)

d )
and 0.0941 (FRONEC-R(2)

d ). As before, the high value of MLKNN explains its superior preci-
sion value. Among the labels correctly predicted by MLKNN, FRONEC-R(1)

d and FRONEC-
R

(2)
d also derive 93.35% and 93.17% respectively, which show that the correct predictions of

MLKNN are almost always made by our method as well.

7.4.4.2 Timing comparison

To complement the prediction performance analysis, we provide an indication of the execu-
tion times of these methods both in the training and testing phases. The former includes
two components: (i) the time spent to select an appropriate parameter setting and (ii) the
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Table 7.10: Experimental results of the seven multi-label classifiers on the datasets in Ta-
ble 7.3 for the F-measure, precision and recall measures.

F-measure
Dataset BRKNN-b LPKNN MLKNN IBLR+ MLDGC FRONEC-R(1)

d FRONEC-R(2)
d

Birds 0.1512 0.5506 0.5024 0.3212 0.5322 0.4822 0.4960
Emotions 0.6918 0.6674 0.6698 0.6496 0.6782 0.6864 0.6882
Flags 0.7022 0.7170 0.7212 0.7240 0.6952 0.7224 0.7200
Music 0.7028 0.6826 0.6876 0.6466 0.6748 0.6916 0.6922
Scene 0.7536 0.7472 0.7566 0.6580 0.7196 0.7628 0.7646
Yeast 0.6240 0.6446 0.6510 0.6462 0.6194 0.6562 0.6520
Mean 0.6043 0.6682 0.6648 0.6076 0.6532 0.6669 0.6688

Precision
Dataset BRKNN-b LPKNN MLKNN IBLR+ MLDGC FRONEC-R(1)

d FRONEC-R(2)
d

Birds 0.0858 0.5886 0.7234 0.2472 0.6646 0.6976 0.6222
Emotions 0.6972 0.6596 0.7162 0.6642 0.6986 0.6840 0.6764
Flags 0.7090 0.7368 0.7280 0.7168 0.7154 0.7312 0.7340
Music 0.7080 0.6680 0.7300 0.6618 0.7020 0.6836 0.6774
Scene 0.7622 0.7720 0.8152 0.6386 0.7576 0.7884 0.7902
Yeast 0.6344 0.6604 0.7192 0.6866 0.6176 0.6736 0.6666
Mean 0.5994 0.6809 0.7387 0.6025 0.6926 0.7097 0.6945

Recall
Dataset BRKNN-b LPKNN MLKNN IBLR+ MLDGC FRONEC-R(1)

d FRONEC-R(2)
d

Birds 0.6330 0.5204 0.3858 0.4590 0.4516 0.3716 0.4144
Emotions 0.6874 0.6754 0.6288 0.6358 0.6594 0.6896 0.7002
Flags 0.6992 0.6994 0.7162 0.7316 0.6766 0.7142 0.7068
Music 0.6986 0.6986 0.6510 0.6324 0.6496 0.7002 0.7076
Scene 0.7452 0.7244 0.7062 0.6794 0.6854 0.7392 0.7406
Yeast 0.6150 0.6296 0.5948 0.6102 0.6214 0.6398 0.6380
Mean 0.6797 0.6580 0.6138 0.6247 0.6240 0.6424 0.6513

remaining work required during training. Our FRONEC method needs to set both a value
for k and an OWA weighting scheme, while the other methods only need to decide their
k value. This is reflected in the relatively high parameter selection time of FRONEC-R(1)

d

(13.1974 s) and FRONEC-R(2)
d (13.1185 s) compared to the values of BRKNN-b (0.8369 s),

LPKNN (1.0060 s), MLKNN (0.8025 s) and MLDGC (0.8503 s). However, the time spent by
IBLR+ to select an appropriate k value is notably higher at 68.4973 s on average. The high
computational expense of IBLR+ has been commented on in [358] as well.

Once the parameters have been set, a method may perform some additional operations during
its training phase. As discussed in Section 7.3.4, FRONEC precomputes the labelset similarity
between each pair of training instances. This is achieved in 0.0210 s and 0.0338 s by FRONEC-
R

(1)
d and FRONEC-R(2)

d respectively. The MLKNN and MLDGC methods also perform some
additional calculations at an average cost of 0.7598 s and 0.7933 s. IBLR+ needs to construct
a binary classifier for each class, which comes at the relatively high cost of 9.3378 s. The
BRKNN-b and LPKNN methods do little else during training apart from selecting their k
value, such that their additional training time is negligible at 0.0023 s and 0.0010 s respectively.

The average total testing times of the BRKNN-b, LPKNN, MLKNN and MLDGC methods
on these six datasets are close together, namely 0.3450 s, 0.3462 s, 0.3359 s and 0.3343 s re-
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spectively. This is the average time spent to predict the outcomes of the full test sets. The
values of IBLR+ and our FRONEC-R(1)

d and FRONEC-R(2)
d methods are slightly higher at

0.4735 s, 1.0482 s and 1.0487 s respectively. Nevertheless, these values are still low and, in all,
we can conclude that each of the seven included methods has a fast classification time.

In summary, we find that FRONEC is also competitive with the state-of-the-art in terms of
its execution time. It takes a slightly longer time to set its internal parameters compared to
BRKNN-b, LPKNN, MLKNN and MLDGC, but this is due to the fact that an additional
parameter (the OWA weighting scheme) needs to be set. If necessary, the total training time
of FRONEC can be reduced by fixing the OWA weighting scheme or limiting the number
of possibilities. Notwithstanding, compared to IBLR+, the training time of FRONEC re-
mains very moderate. With respect to the testing time, all methods are able to derive their
predictions acceptably fast.

7.5 Conclusion

The topic of this chapter has been multi-label classification with a specific focus on nearest
neighbour based algorithms. When classifying multi-label data, the task is to predict full
labelsets rather than single labels. Nearest neighbour based approaches do so by aggregating
the labelset information found in the vicinity of a target instance. We have reviewed existing
nearest neighbour based multi-label classifiers and have shown that this aggregation step can
take on various forms.

We have presented our FRONEC method. This algorithm belongs to the family of nearest
neighbour based multi-label classifiers and bases its labelset prediction on the labelsets of
the k nearest neighbours of the instance to classify. Rather than using a voting procedure in
this process, a consensus prediction is derived using a fuzzy rough quality measure based on
the fuzzy rough positive region. Internally, the quality measure requires the definition of a
labelset similarity relation, that is, a fuzzy relation that measures how similar instances are
in the outcome space. In traditional single-instance classification, instances either belong to
the same class or they do not. In the multi-label setting, the outcome similarity is naturally
more graded, as instances belong to several classes at once. We have proposed two ways to
measure the labelset similarity of instances, one based on the Hamming distance between the
binary labelset vector and one based on the distribution of the possible labels in the training
set.

We have proposed six versions of our FRONEC method by using combinations of three in-
stance quality measures and the two labelset similarity relations. As a first part of our
experimental study, we have compared these variants among each other. The preference for
one particular quality measure (namely, the one based on the fuzzy rough upper approxima-
tion) was clear. With respect to the labelset similarity relation, the results were less clear-cut.
Depending on the evaluation measure used, either one of the two dominated the other. We
decided to retain both labelset similarity relations in the global evaluation, comparing two
versions of FRONEC to state-of-the-art nearest neighbour based multi-label classifiers.

Following the recommendations of [358], we have restricted the comparison of our FRONEC
method to previous work within the family of nearest neighbour based multi-label classifica-
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tion methods. We have compared FRONEC to five existing algorithms on thirty synthetic
and six real-world multi-label datasets by means of their results for five evaluation measures.
We were able to conclude the strong performance of our method, attaining superior results for
several metrics. Its closest competitors are the IBLR+ and MLKNN methods. These algo-
rithms provide more favourable precision and Hamming loss results, while FRONEC performs
better in terms of recall and subset accuracy. Based on the results for the F-measure, which
evaluates the compromise of the two performance aspects represented by these two groups of
metrics, we were able to conclude that our proposal attains the best balance between them.
We also showed that FRONEC detects almost all correct label predictions made by IBLR+
and MLKNN. Its sub-optimal precision and Hamming loss values are due to it generally pre-
dicting more labels for a target instance, that is, it is more liberal in its predictions compared
to IBLR+ and MLKNN.

With respect to future work in this area, we would recommend a deeper study of the effects of
the labelset similarity relation on the prediction performance of FRONEC. We have currently
evaluated two alternative definitions and have shown their strong influence on the classification
results. For each evaluation measure, the results of the two versions of FRONEC were found
to be significantly different and not consistently so in favour of one of the two. Therefore, a
more in-depth study of these and alternative labelset similarity relations is warranted. This
may lead to additional insights into the characteristics of our FRONEC method and can result
in further performance enhancements.

188



8 Conclusions and future work

In this dissertation, we have proposed fuzzy rough set based classification methods for var-
ious challenging types of data. We have studied class imbalanced data, semi-supervised
data, multi-instance data and multi-label data. Fuzzy rough set theory allows to model the
uncertainty present in data both in terms of vagueness (fuzziness) and indiscernibility or im-
precision (roughness). We have focussed on the OWA based fuzzy rough set model [108],
a noise-tolerant generalization of traditional fuzzy rough sets [131, 352]. In this concluding
chapter, we first review the work and conclusions presented in Chapters 1-7 in Section 8.1.
Section 8.2 maps out several directions of future research.

8.1 Overview and conclusions of the presented work

Chapter 1 introduced the main topics of this dissertation. We discussed the notion of weakly
labelled data. In traditional datasets, an observation is represented by a feature vector and
an associated outcome. In this thesis, we have focussed on classification data, where the
outcome (here, a class label) is drawn from a finite set of possible categories. When dealing
with weakly labelled data, the relation between a single feature vector and a class label is
not as explicit. Learning from particular types of such data has formed the focus of the later
chapters. The second part of Chapter 1 was devoted to the intuitive introduction of fuzzy set
theory [467] and rough set theory [337]. Both model uncertainty in data, the former from the
perspective of vagueness or subjectivity and the latter from the viewpoint of indiscernibility.
One possible hybridization of the frameworks is fuzzy rough set theory, first introduced in
[131]. We use this mathematical tool to tackle the challenges posed by different types of
classification datasets.

The second part of the introduction was presented in Chapter 2, in which we reviewed the
classification domain and a variety of possible approaches to the prediction of class labels.
Based on a training set of labelled observations (of which both the feature values and out-
come are known) a classification model is derived to use in the subsequent prediction of the
outcome of unlabelled elements based on their feature values. Aside from an overview of the
general ways in which such predictions can be obtained, we also recalled the proper method-
ology to conduct classification experiments. We discussed measures evaluating the prediction
capacity of classifiers, validation techniques to test their performance on independent data
and statistical tests to compare the results of several algorithms.
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In Chapter 3, we studied the OWA based fuzzy rough set model from [108] in great detail.
OWA based fuzzy rough sets were proposed as a generalization of traditional fuzzy rough sets
with a higher robustness against noise and outliers in the data. Fuzzy rough set theory approx-
imates a concept in two ways by means of a fuzzy rough lower approximation (conservative)
and a fuzzy rough upper approximation (liberal). In the traditional model, their definition
depends on the minimum and maximum operators respectively, which are sensitive to noise
in the data. The superior noise robustness of OWA based fuzzy rough sets is obtained by
replacing the minimum and maximum by appropriate OWA aggregations. These constructs
rely on a weighting scheme to define the weights used in their aggregation procedure. In
Chapter 3, focusing on the classification context, we have shown that the effectiveness of an
OWA weighting scheme depends on the characteristics of the dataset at hand. Based on a
thorough experimental study, we have outlined a clear weighting scheme selection strategy
for both the OWA based fuzzy rough lower and upper approximation. We have validated our
proposals on independent datasets and in various algorithms and have clearly demonstrated
their efficacy. Aside from the improved ease of use of OWA based fuzzy rough sets resulting
from our study, we have also provided further insights in the internal workings of this model.

Chapter 4 marked the beginning of our development of fuzzy rough set based classifiers for
particular classification problems. This chapter studied the challenge of multi-class imbal-
anced data, datasets with more than two classes with a (markedly) uneven distribution of
observations across them. Better represented classes are often easier to recognize than classes
of which only a few observations are known at training time. The class imbalance prob-
lem indicates that the former often dominate the latter, that is, minority class instances are
frequently misclassified to a majority class. Traditional classifiers yield poor minority class
accuracies contrasting very strong accuracy values on the majority classes. Such discrepancy
between the performance on different classes needs to be dealt with and the research commu-
nity has developed specialized algorithms to address this issue. Methods dealing with class
imbalance can be divided into two general categories: data level approaches and algorithm
level approaches. The former modify the data to reduce the class imbalance, while the latter
modify the learner to take the imbalance in its training set into account. We proposed the
FROVOCO method, an algorithm for multi-class imbalanced data classification belonging
to the second category. We applied the IFROWANN method, an OWA based fuzzy rough
set based classifier developed for two-class imbalanced data, within the OVO decomposition
scheme. The latter is a popular methodology to reduce a multi-class classification problem to
a set of two-class problems on which binary methods can be applied. The OVO method con-
siders each pair of classes separately, applying the IFROWANN classifier to discern between
them. We proposed an adaptive version of IFROWANN that selects its OWA weights based
on the imbalance of each binary problem at hand. To classify an instance, the information
from all induced binary classifiers is aggregated into a prediction. Our novel WV-FROST
aggregation combines the traditional weighted voting aggregation step with two fuzzy rough
global affinity terms of the target instances with the decision classes. In a comprehensive
experimental study, we provided empirical evidence of the benefits of the two components
of FROVOCO (that is, the adaptive version of IFROWANN and the WV-FROST aggrega-
tion) and have furthermore shown its superior classification performance in comparison to
the state-of-the-art in multi-class imbalanced classification.
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Chapter 5 focused on semi-supervised classification, the situation where a (sizeable) part of the
training set is unlabelled. A semi-supervised classification algorithm consequently has both
labelled and unlabelled instances at its disposal during training and can use both to construct
its classification model and derive class predictions. We studied the application of our OWA
based fuzzy rough classifiers proposed in Chapter 3 on such semi-supervised datasets. Our
first observation was that our proposals uphold their strong prediction performance even
when using only the small labelled part of the training set. Nevertheless, a classic approach
to semi-supervised classification is to extend the set of labelled instances by means of self-
labelling, a procedure that derives class labels for some of the originally unlabelled elements,
and we wished to study the interaction of our fuzzy rough set based methods with such
techniques. Our experimental study showed that our methods are in fact not benefited by
prior self-labelling. Instead, the information in the originally labelled part of the training set
suffices for them to derive strong class predictions. In addition, our straightforward approach
clearly outperforms previously proposed semi-supervised classification algorithms that do rely
on self-labelling.

Up to this point, the observations in the datasets under study have consisted of single fea-
ture vectors associated with a class label. With respect to the latter, we have considered
the situation of unequal representation of different classes (Chapter 4) and missing class la-
bels for a substantial part of the training data (Chapter 5). In the final two chapters, we
examine more considerable modifications to the traditional data format. Chapter 6 focuses
on multi-instance data. In this setting, each observation corresponds to a bag of instances
(feature vectors) and is labelled as a whole, while no class labels are known for its individual
instances. The classification task is to predict the outcome of newly presented bags based
on the instances they contain. We have proposed two frameworks of multi-instance classi-
fiers. The first group of methods are based on fuzzy set theory and interpret both bags and
classes as fuzzy sets. The methods in the second group use fuzzy rough set theory and were
specifically developed for class imbalanced multi-instance data, extending the single-instance
IFROWANN method. The frameworks fix the general flow of the algorithms, but the internal
parameters defining the precise calculations can be varied. We proposed a range of possible
settings and evaluated 165 fuzzy set based multi-instance classifiers and more than 200 fuzzy
rough set based multi-instance classifiers in our experiments. In doing so, we have been able
to put forward particular parameter settings leading to a strong classification performance
of our methods and have explained this behaviour. We can stress that we put forward fuzzy
rough set based multi-instance classifiers for imbalanced multi-instance data with an excellent
performance in comparison to existing work on this topic.

In Chapter 7, we turn our attention to multi-label classification. The observations are repre-
sented as single feature vectors, but can be associated with multiple class labels. As correla-
tions between different labels can be present, the prediction task is inherently more difficult
than predicting all classes separately. We focused on nearest neighbour based approaches to
multi-label classification. The labelset of a target instance is predicted based on the labels
of training instances located in its vicinity. We proposed a fuzzy rough set based approach
to derive a consensus prediction from the classes present in the neighbourhood of the target.
Based on the labelsets of the nearest neighbours, our FRONEC method searches the training
set for a labelset that constitutes an appropriate agreement between them, for which it uses
a quality measure based on the fuzzy rough positive region. We experimentally evaluated the
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prediction strength of our proposal among the family of nearest neighbour based multi-label
classifiers and were able to conclude its strong performance.

In summary, this thesis has focused on the development of fuzzy rough set based classification
algorithms for challenging class prediction settings. We have used the noise-robust OWA based
fuzzy rough sets to model data uncertainty. Apart from providing us with strong prediction
algorithms, our focus on this single fuzzy rough set model has allowed us to study, interpret,
understand and explain its internal workings in great detail. In this way, we have bridged the
gap between the theoretical definition and practical application of OWA based fuzzy rough
sets. We have considered imbalanced data, semi-supervised data, multi-instance data and
multi-label data and have developed strong performing classifiers for each of these settings.
Aside from their demonstrated classification strength, an evident additional advantage of all
proposed algorithms is their intuitive and easy-to-understand nature.

8.2 Future research directions

Aside from the future endeavours directly related to the presented work and discussed in the
conclusions of the relevant chapters, we can propose a number of more general topics open for
exploration in prospective research on fuzzy rough set based methods in machine learning.
In Section 8.2.1, we discuss the challenges massive training sets can pose to the presented
methods and formulate our advise on how these could be handled. Section 8.2.2 discusses
combinations of the different types of classification data considered in this dissertation and
explains how the proposed methods can be combined or extended to deal with multiple
settings at once. Finally, Section 8.2.3 lists some remaining considerations.

8.2.1 Dealing with large to massive training sets

One aspect that we have hinted at in several places (but still kept mostly under wraps) is the
computational challenges associated with fuzzy rough set based methods. These algorithms
revolve around lower and/or upper approximation calculations, which themselves rely on
pairwise similarity values of a target instance with training elements. When the training set is
large, a sequential approach to these calculations becomes too time consuming. A distributed
procedure to compute the membership degree of instances to the traditional fuzzy rough set
approximations was proposed in [19]. However, in the traditional model, these membership
degrees are defined by means of the minimum and maximum operators, which can easily be
determined in a divide-and-conquer manner. A distributed approach to OWA based fuzzy
rough set calculations is more challenging due to the sorting step in the OWA aggregations.
Different options could be considered, depending on whether the exact or only an approximate
OWA aggregation of all relevant values is aspired.

In light of future research efforts in this topic, when the training set is (very) large, we
would advise against the aim to use all training elements in the OWA based approximation
calculations like we have done throughout this work for moderately-sized datasets. The sizes
of the sets to aggregate would increase drastically, which affects the definitions of the weight
vectors in the OWA aggregations. As discussed in Chapter 3, only the strict or exponential
weighting schemes tolerate large vector lengths acceptably well, but do reduce to (weighted)
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nearest neighbour calculations in that situation. The interpretation of true OWA based fuzzy
rough set calculations are somewhat lost as a consequence.

As we suspect that the sizes of the sets to aggregate in the fuzzy rough lower and upper
approximations should be kept moderate, we would advise the exploration of two possible
research lines:

1. Combination with scalable instance selection: as briefly discussed in Chapter 1, instance
selection methods reduce the training set by removing redundant and/or noisy elements
in a preprocessing step. The application of instance selection on large datasets requires
scalable or distributed techniques (e.g. [18, 190, 401]). When the training set has been
reduced to a smaller size, the methods proposed in this work can be applied. The
research question would be to find an adequate instance selection method that yields
small datasets with sufficient information for our fuzzy rough set based methods to be
applied on.

2. Modified OWA weight vectors: dynamic (that is, target-dependent) instance selection
can be carried out by actively setting certain positions in the OWA weight vectors
to zero. For example, a lower approximation weight vector WL of length p = 106

can be constructed by putting the 9, 99 · 105 leading positions to zero and filling the
remaining 1000 positions with the W invadd

L definition (with p = 1000). The effect of the
large vector length on the weight distribution would be diminished and the amount of
non-zero positions and its impact on the calculations is an important property to study.
However, a shortcoming of this naive approach is that only the largest or smallest values
would be considered in the aggregation steps, which are possibly not varied enough to
easily discern between classes. In this sense, it is related to the scalable fuzzy rough set
based feature selection algorithm from [244], wherein only neighbouring elements are
used in the class approximation calculations. Secondly, the computational burden to
sort the large sets of values to aggregate in the OWA aggregations would not be directly
removed.

In conclusion, our advise to future researchers wishing to tackle the classification with large
training sets by means of OWA based fuzzy rough set theory is twofold. First, we discourage
the aim to exactly replicate the algorithms presented in this thesis on large datasets, as the
intuition and interpretation behind them will be lost in the process. Secondly, in our opinion,
the most promising area of research would be the development of a scalable instance selection
technique to (i) considerably reduce a large training set to a size similar to the datasets
used in the experimental evaluations in this thesis and (ii) yield a training set from which
our algorithms can still extract sufficient information. The interaction between the instance
selection and prediction steps referenced in the second point forms an interesting topic of
study.

8.2.2 Data type combinations

As recalled in Section 8.1, we have studied class imbalanced data, semi-supervised data, multi-
instance data and multi-label data. Chapter 6 also considered imbalanced multi-instance data
and, as noted in Chapter 7, multi-label data is often class imbalanced as well. Several other
combinations of these challenging data types can be studied as well:
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• Multi-instance multi-label data: in the area of multi-instance multi-label classification
[500], bags of instances are associated with several labels. As we have developed algo-
rithms for both multi-instance and multi-label classification, their assimilation to deal
with datasets presenting both properties is a logical next step. If more than one class
label can be assigned to the same bag, the consensus approach used in FRONEC can
for example be combined with our conclusions from Chapter 6 to accommodate for this
possibility. We have studied a variety of ways to measure the similarity between bags
as well as the membership degree of a bag to a class, which can be used in the extension
of FRONEC to multi-instance data.

• Semi-supervised multi-instance and semi-supervised multi-label data: in Chapter 5, we
concluded the strong performance of the fuzzy rough classifiers proposed in Chapter 3
on datasets where only a small part of the training set is labelled. Our basic classifiers
were able to extract sufficient information from this labelled data to make confident
predictions. As multi-instance and multi-label training sets can be partially unlabelled
as well, we could verify whether the same conclusion holds for our classifiers proposed
in Chapters 6 and 7.

8.2.3 Other considerations

In several places (e.g. Chapter 5), we have stressed the strong dependence of our proposed
methods on similarity calculations between observations. We have mostly fixed the fuzzy
relation measuring similarity between feature vectors to expression (3.13). In Chapter 6, we
have considered several ways to measure the similarity between bags, although this was again
restricted to general definitions instead of a data-dependent approach. The similarity learn-
ing and metric learning domains are concerned with extracting an appropriate similarity or
distance function from a dataset in order to adequately measure this relation between the ob-
servations (e.g. [34, 326, 435]). The interaction between our fuzzy rough set based algorithms
and such data-dependent similarity relations remains to be examined. Many similarity learn-
ing techniques are optimization algorithms and an important question is whether an existing
or custom optimization objective is required to guarantee a strong prediction performance of
our classifiers.

A related point is the challenge of high dimensionality of data. The datasets included in the
experimental studies conducted in this thesis all contain a relatively low number of features.
This selection has been intentional. As noted in Section 2.1, the notion of locality is lost
in high-dimensional datasets. As any fuzzy rough set based method intrinsically relies on
similarity calculations (which renders these algorithms closely related to nearest neighbour
based approaches), their suitability is reduced when the dimensionality is high. The direct
application of the methods proposed in this thesis on high-dimensional datasets requires, for
instance, the prior use of a dimensionality reduction technique to bring the number of features
down to an appropriate level. The synergy between our methods and such techniques forms
another topic of future research.

Finally, we note that an assumption that we have made throughout this work is that the
feature space, data distribution and learning task is the same in the source domain (∼ training
data) and target domain (∼ test data). We do not build explicit classification models based
on the training data, but our observation-based approaches do implicitly assume that the
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similarity of a target observation with training elements is highly relevant to predict its
outcome. The domain of transfer learning (e.g. [336, 436]) studies the settings in which
this is not the case, that is, where the available target training data is limited and cross-
domain information transfer from different (but related) source data is called for. It would
be interesting to evaluate how strongly the fuzzy rough set based classifiers proposed in this
dissertation are hindered by differences in source and target domains and assess how existing
(or novel) transfer learning techniques could be used to remedy any disturbances.
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Samenvatting

Het alomvattend onderwerp van deze thesis is classificatie. Hierbij is het doel om te voor-
spellen tot welke klasse of categorie een element behoort op basis van een verzameling van
gekende observaties. Een aantal kenmerken wordt gemeten voor alle observaties, zodat deze
kunnen voorgesteld worden als een kenmerkenvector (bestaande uit de gemeten waarden voor
alle kenmerken) en een bijhorende klasse, indien deze laatste ook gekend is. Beschouw als
voorbeeld de klassieke iris dataset, waarin elke observatie een irisplant voorstelt en beschreven
wordt met de waarden voor vier biologische kenmerken. De klasse waartoe een observatie be-
hoort stemt overeen met een specifieke soort iris en het doel is om een bloem toe te wijzen aan
de correcte categorie aan de hand van haar waarden voor de vier kenmerken. Een classificatie-
algoritme doet dit op basis van een trainingsverzameling van observaties waarvan de klasse
gekend is, in dit geval een verzameling van irisbloemen waarvoor zowel de waarden voor de
biologische kenmerken als het soort iris gekend zijn. Eén van de meest intüıtieve methoden is
het dichtste-buur algoritme. Om een nieuw element te classificeren wordt het meest gelijkende
trainingselement (de dichtste buur) bepaald. Het element wordt toegewezen aan de klasse
waartoe dit naburig object behoort. Andere methoden bouwen een expliciet classificatiemodel
op op basis van de trainingsverzameling, bijvoorbeeld in de vorm van een beslissingsboom.

Men kan niet verwachten dat reële datasets perfect zijn, i.e., het is erg zelden mogelijk om
volledig accurate voorspellingen te maken op basis van de trainingsverzameling. Een ty-
pisch probleem is de aanwezigheid van onzekerheid in de data. Wiskundige theorieën kunnen
gebruikt worden om zulke imperfecties in data te modelleren en dit vanuit verschillende in-
valshoeken. De vaagverzamelingenleer breidt de traditionele verzamelingenleer uit door een
reëelwaardige lidmaatschapsgraad tussen nul en één van een element tot een verzameling
toe te laten. Op deze manier kunnen vage en subjectieve concepten alsook graduele relaties
tussen observaties beschreven worden. Onvolledigheid of ononderscheidbaarheid is een an-
der veelvoorkomend probleem en verwijst naar de situatie waarin de gemeten kenmerken
niet volstaan om een precieze definitie of scherpe beschrijving van een concept te leveren.
Ruwverzamelingenleer lost dit probleem op door een concept te benaderen met een onderbe-
nadering (conservatief) en bovenbenadering (optimistisch). In vaagruwverzamelingenleer zijn
vaagverzamelingenleer en ruwverzamelingenleer gëıntegreerd. Men gebruikt hierbij een gradu-
ele similariteit tussen observaties en de onder- en bovenbenadering zijn vaagverzamelingen.
Vaagruwverzamelingen zijn reeds gebruikt in verschillende technieken binnen het domein van
machinaal leren. In de context van classificatie worden de onder- en bovenbenadering bepaald
voor de verschillende klassen. In deze thesis ontwikkelen we classificatie-algoritmen gebaseerd
op vaagruwverzamelingenleer voor uitdagende soorten datasets, namelijk ongebalanceerde en
zwak-gelabelde data.
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Hoofdstukken 1-2 vormen samen de introductie tot dit proefschrift. Het eerste beschrijft
de soorten datasets die we bestuderen en verstrekt de definities van vaagverzamelingen-
leer, ruwverzamelingenleer en vaagruwverzamelingenleer tezamen met enkele intüıtieve voor-
beelden hiervan. Het tweede hoofdstuk introduceert het classificatiedomein. We bespreken
classificatie in het algemeen en behandelen onder meer de afweging tussen bias en vari-
antie (bias-variance trade-off ) en de contra-intüıtieve fenomenen die zich voordoen bij hoog-
dimensionele data (curse of dimensionality). Een aanzienlijk deel van Hoofdstuk 2 beschrijft
veelgebruikte classificatietechnieken zoals dichtste-buur classificatie, beslissingsbomen en sup-
port vector machines. We bespreken ook hoe men op een correcte manier een experimentele
evaluatie van classificatie-algoritmen kan uitvoeren.

In Hoofdstuk 3 bespreken we OWA gebaseerde vaagruwverzamelingen, een robuuste veralge-
mening van traditionele vaagruwverzamelingenleer. Deze ruis-tolerante uitbreiding gebruikt
de OWA aggregatiemethode om de lidmaatschapsgraad van de observaties tot de onder-
en bovenbenadering van verschillende klassen te berekenen. Een OWA aggregatie van een
verzameling waarden is gebaseerd op een gewichtsvector waarmee de bijdragen van de ver-
schillende waarden tot het geaggregeerde resultaat gewogen worden. Een zogenaamd gewichts-
schema definieert deze gewichtsvectoren. Om het intüıtieve karakter van de vaagruwe onder-
en bovenbenadering te behouden worden er gewichtsvectoren met respectievelijk stijgende
en dalende gewichten gebruikt in hun definities. Verder vindt men tot nu toe geen instruc-
ties terug over welk gewichtsschema dient gebruikt te worden binnen algoritmen die gebruik
maken van OWA gebaseerde vaagruwverzamelingen. Aangezien onze experimenten aantonen
dat de voorkeur voor een bepaald gewichtsschema varieert van dataset tot dataset, verhelpen
we dit euvel in Hoofdstuk 3. We ontwikkelen een strategie om het OWA gewichtsschema te
selecteren voor zowel de onder- als bovenbenadering gebaseerd op eenvoudige eigenschappen
van de datasets die makkelijk te bepalen zijn, zoals het aantal elementen of klassen dat deze
bevatten. Het opstellen van deze richtlijnen zorgt ervoor dat de gebruiker zelf niet meer dient
te beslissen welk van de beschikbare gewichtsschema’s te gebruiken. Naast het oplossen van
dit probleem verklaart onze gedetailleerde studie ook het gedrag en andere eigenschappen van
het OWA gebaseerde model voor vaagruwverzamelingenleer. Het materiaal aangeleverd in dit
hoofdstuk vergemakkelijkt het gebruik en het begrip van dit model en maakt de toepassing
ervan meer toegankelijk bij de ontwikkeling van nieuwe technieken.

Hoofdstuk 4 beschouwt een eerste uitdaging in classificatiedata, namelijk een onevenwicht in
de klassenverdeling (class imbalance). Het meeste onderzoek rond ongebalanceerde data is
uitgevoerd voor datasets met slechts twee klassen, een meerderheidsklasse en een minderheids-
klasse. Wanneer de eerste beduidend groter is dan de tweede kunnen classificatie-algoritmen
hierdoor gehinderd worden. In het bijzonder hebben zij de neiging om elementen te vaak aan
de meerderheidsklasse toe te wijzen, wat resulteert in overmatig veel verkeerde voorspellingen
voor de minderheidsklasse. Om dit probleem op te lossen worden gespecialiseerde methoden
ontwikkeld om om te gaan met het onevenwicht tussen de klassen. In Hoofdstuk 4 volgen
we een meer recente tendens en ontwikkelen we een algoritme voor de classificatie van on-
gebalanceerde datasets met meer dan twee klassen. Onze methode heet FROVOCO en is
gebaseerd op het één-versus-één decompositieschema, waarbij het probleem opgedeeld wordt
in meerdere binaire onderdelen, één voor elk paar van klassen. Op elk onderdeel wordt een
binaire classificatiemethode getraind. Om een element te classificeren wordt elke zulke binaire
methode aangeroepen om betrouwbaarheidswaarden van het element voor de twee relevante
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klassen te bepalen. Alle waarden worden samengebracht in een score-matrix, waaruit achteraf
één klasse als voorspelling wordt afgeleid. Binnen onze FROVOCO methode gebruiken we een
adaptieve versie van de IFROWANN methode, een algoritme op basis van vaagruwverzame-
lingenleer voor de classificatie van ongebalanceerde datasets met twee klassen. Het adaptieve
karakter vindt men terug bij de dynamische keuze van de OWA gewichten op basis van het
specifieke onevenwicht tussen de klassen van het binaire probleem onder beschouwing. De
tweede nieuwigheid binnen FROVOCO is het voorstel van onze WV-FROST aggregatiepro-
cedure waarmee de finale voorspelling geëxtraheerd wordt uit de score-matrix. We vullen de
lokale informatie uit de score-matrix aan met een globale evaluatie van de affiniteit met de
klassen aan de hand van twee termen gebaseerd op vaagruwverzamelingen. We evalueren onze
FROVOCO methode grondig op ongebalanceerde datasets met meer dan twee klassen, waar-
bij we zowel onze twee nieuwe componenten valideren als het superieure classificatieresultaat
van ons algoritme aantonen in vergelijking met bestaande methoden.

In Hoofdstuk 5 behandelen we semi-begeleide (semi-supervised) data. Hierbij beschikken we
slechts voor een deel van de trainingselementen over hun klasse-informatie. De trainingsverza-
meling bestaat uit zowel elementen waarvan we de klasse kennen als elementen waarvan we
de klasse niet kennen. Een classificatie-algoritme dat getraind wordt op een semi-begeleide
dataset kan in principe gebruik maken van zowel de gelabelde als van de niet-gelabelde trai-
ningselementen. In dit hoofdstuk bestuderen we de toepassing van onze vaagruwe classi-
ficatiemethoden uit Hoofdstuk 3 op semi-begeleide data. In het bijzonder gaan we na of
onze algoritmen baat hebben bij een voorbereidende stap waarin enkele extra trainingsele-
menten gelabeld worden (self-labelling). Onze experimentele studie toont aan dat (i) onze
methoden sterke classificatieresultaten leveren ondanks het semi-begeleide karakter van hun
trainingsverzameling, (ii) zij geen voordeel halen uit een voorafgaande labelstap, maar vol-
doende informatie kunnen extraheren uit het beperkt aantal gelabelde trainingselementen
en (iii) zij een krachtig en computationeel meer efficiënt alternatief vormen voor bestaande
semi-begeleide classificatie-algoritmen die wel gebruik maken van self-labelling.

Hoofdstuk 6 behandelt de classificatie van multi-instantie datasets, waarbij elke observatie
overeenkomt met een groep van kenmerkvectoren. Voor de individuele instanties is geen
klasse gekend, deze is enkel beschikbaar voor de groep als geheel. Een voorbeeld van een
toepassing die gemodelleerd kan worden met multi-instantie data is de classificatie van af-
beeldingen. Een observatie komt overeen met een volledige afbeelding, die op haar beurt
verder opgedeeld kan worden in verschillende segmenten (instanties). Het doel is om te voor-
spellen wat de afbeelding als geheel voorstelt op basis van de informatie in de verschillende
delen. Men kan verscheidene algemene technieken tot de classificatie van multi-instantie data
volgen, naargelang de informatie die toelaat klassen van elkaar te onderscheiden gezocht wordt
op het niveau van de instanties, op het niveau van de volledige observaties of in een nieuwe
kenmerkenruimte waar deze laatste omgezet worden naar enkelvoudige kenmerkvectoren. We
ontwikkelen twee raamwerken van multi-instantie classificatie-algoritmen gebaseerd op respec-
tievelijk vaagverzamelingenleer en vaagruwverzamelingenleer. De tweede groep algoritmen
zijn specifiek ontwikkeld voor multi-instantie datasets met een ongebalanceerde klassenverde-
ling. Beide groepen kunnen verder opgedeeld worden in twee families van instantie-gebaseerde
of observatie-gebaseerde methoden. We stellen bijgevolg vier categorieën van algoritmen voor.
De categorie bepaalt de algemene definitie en werking van een methode, maar we bepalen ver-
schillende manieren om de interne berekeningen uit te voeren. Op basis hiervan voeren we
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een uitgebreide experimentele evaluatie uit en verklaren waarom bepaalde keuzes betere resul-
taten opleveren dan sommige anderen. Daarnaast vergelijken we onze voorgestelde methoden
met bestaande multi-instantie classificatie-algoritmen op zowel gebalanceerde als ongebalan-
ceerde datasets en tonen hun kracht aan. Voor de ongebalanceerde multi-instantie datasets in
het bijzonder kunnen we het uitgesproken overwicht van onze vaagruwe methoden besluiten.

Als laatste uitbreiding van het traditionele dataformaat beschouwen we multi-label data in
Hoofdstuk 7. In multi-label datasets kunnen observaties gelabeld zijn met meerdere klassen
tegelijkertijd en het doel is om de volledige klassenverzameling van een object te voorspellen.
Een mogelijke aanpak hiertoe is op basis van het dichtste-buur idee, waarbij de klassenverza-
meling voorspeld wordt op basis van informatie in de omgeving van het te classificeren object.
Hierbij worden de klassenverzamelingen van de dichtste buren van dit object op een bepaalde
manier geaggregeerd. We stellen een nieuwe methode voor om deze laatste stap uit te voeren.
Ons FRONEC algoritme gebruikt OWA gebaseerde vaagruwverzamelingen om een gepaste
consensus af te leiden uit de klassenverzamelingen van naburige elementen. In een experi-
mentele evaluatie op zowel synthetische als reële datasets tonen we aan dat ons FRONEC
algoritme een zeer competitief (en vaak superieur) classificatieresultaat levert in vergelijking
met bestaande dichtste-buur methoden voor multi-label classificatie.

Ten slotte sluit Hoofdstuk 8 de thesis af met een samenvatting van onze voorgestelde me-
thoden, resultaten en conclusies. We stellen hierbij ook nog verschillende interessante en
gerelateerde onderwerpen voor voor verder onderzoek.
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This thesis focuses on classification. The goal is to predict the class label of elements (that
is, assign them to a category) based on a previously provided dataset of known observations.
Traditionally, a number of features are measured for all observations, such that they can be
described by a feature vector (collecting the values for all features) and an associated outcome,
if the latter is known. In the classic iris dataset, for example, each observation corresponds to
an iris plant and is described by its values for four features representing biological properties
of the flower. The associated class label is the specific family of irises the sample belongs
to and the prediction task is to categorize a plant to the correct family based on its feature
values. A classification algorithm does so based on its training set of labelled instances, that
is, a provided set of iris flowers for which both the features values and class labels are known.
One of the most intuitive classifiers is the nearest neighbour algorithm. To classify a new
element, this method locates the most similar training instance (the nearest neighbour) and
assigns the target to the class to which this neighbour belongs. Other methods build an
explicit classification model from the training set, for example in the format of a decision
tree.

Few real-world datasets are perfect, that is, it is usually not possible to make entirely accurate
class predictions based on the training set. One natural issue is the uncertainty present in any
dataset. Mathematics provides us with frameworks to model such data imperfections and this
from different viewpoints. Fuzzy set theory extends traditional set theory by allowing a partial
membership of elements to a set in the form of a real-valued membership degree between zero
and one. In this way, vague and subjective concepts as well as graded relationships between
observations can be represented. Data incompleteness or indiscernibility is another common
obstacle and refers to the situation where the measured features are insufficient to provide a
precise definition for or sharply delineate a concept. Rough set theory resolves this by approx-
imating the concept with a lower (conservative) and upper (liberal) approximation. Fuzzy
and rough set theory have been combined into fuzzy rough set theory. A graded similarity
between observations is incorporated and the fuzzy rough lower and upper approximations of
a fuzzy concept are themselves fuzzy sets. Fuzzy rough sets have been used in several machine
learning algorithms, both in the preprocessing and learning phases. In the classification con-
text, the fuzzy rough approximations are determined for the different classes. In this thesis,
we develop fuzzy rough set based classification algorithms for imbalanced and weakly labelled
data, challenging types of datasets extending the traditional format presented above.

Chapters 1-2 together form the introduction to this dissertation. The former describes the
types of datasets under study and provides the definitions of fuzzy set theory, rough set theory
and fuzzy rough set theory together with intuitive examples. The latter introduces the clas-
sification domain. It discusses the classification task in general, including common challenges
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such as the bias-variance trade-off and the curse of dimensionality. A substantial part of
Chapter 2 is dedicated to the description of such prevalent classification approaches as near-
est neighbour classification, decision tree algorithms and support vector machines. Finally,
we specify how an experimental evaluation of classification algorithms can be conducted in a
correct manner.

In Chapter 3, we study the OWA based fuzzy rough set model, a robust generalization of tra-
ditional fuzzy rough sets. This noise-tolerant extension uses OWA aggregations to compute
the membership degrees of observations to the fuzzy rough lower and upper approximations.
An OWA aggregation of a set of values is based on a vector of weights used to weigh the con-
tribution of each individual value. A so-called weighting scheme defines these weight vectors.
To preserve the intuition behind the fuzzy rough lower and upper approximations, vectors of
increasing and decreasing weights are respectively used in their definitions. To date, there are
no clear further instructions on which weighting scheme should be used in machine learning
algorithms relying on OWA based fuzzy rough approximation operators. As our experiments
show that the preference for a particular weighting scheme varies between datasets, we remedy
this shortcoming in Chapter 3. We develop an OWA weighting scheme selection strategy for
both the lower and upper approximation based on easy-to-understand and simple-to-compute
dataset characteristics like the overall size or the number of classes. By providing these guide-
lines, we remove the need for the user to choose between one of the available weight definitions
themselves. Apart from solving this issue, our detailed study also explains the behaviour and
internal characteristics of the OWA based fuzzy rough approximations. The building blocks
provided in this chapter greatly improve the ease-of-use and understanding of this fuzzy rough
set model and render it a more accessible tool for use in future machine learning techniques.

Chapter 4 tackles a first challenge in classification data, namely the presence of class imbal-
ance. Most research on imbalanced data has been performed for two-class or binary data
with one majority and one minority class. When the elements of the former considerably
outnumber those of the latter, classification algorithms can be hindered in their prediction
performance. In particular, they tend to predict the majority class label too often and result
in many minority class misclassifications. To amend this issue, specialized algorithms have
been developed to deal with the class imbalance in the training set in either the preprocessing
or learning phase. In Chapter 4, we follow the more recent trend in the research community
and propose an algorithm for multi-class imbalanced datasets, in which the number of classes
exceeds two and the distribution of training instances among them is (severely) skewed. Our
classifier is called FROVOCO and is based on the one-versus-one decomposition scheme that
divides the multi-class problem into several binary sub-tasks, one for each pair of classes.
To classify a test instance, each binary classifier trained on a sub-task is fired and computes
class confidence degrees for the element to both classes under its consideration. All values are
grouped in a score-matrix and afterwards aggregated to one class prediction for the target.
Within FROVOCO, we use an adaptive version of the IFROWANN classifier, a fuzzy rough
set based classifier for binary imbalanced data. The proposed adaptive aspect lies with the
dynamic choice of OWA weights depending on the class imbalance of the binary problem at
hand. The second novel component of FROVOCO is our newly proposed WV-FROST aggre-
gation procedure used to extract a class prediction from the score-matrix. We complement
the local information grouped in the score-matrix with a global class assessment by means of
two fuzzy rough set based affinity terms. We extensively evaluate our FROVOCO method on
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multi-class imbalanced datasets, validating our two proposed novel components and showing
the dominance of our complete method over existing proposals.

In Chapter 5, we consider semi-supervised data, a context in which class information is avail-
able for only part of the training instances. Consequently, the training set consists of both
labelled and unlabelled elements. A classification algorithm trained on a semi-supervised
dataset can (in principle) use the information available in both the labelled and unlabelled
elements. This chapter studies the application of our fuzzy rough set based classifiers from
Chapter 3 on semi-supervised classification data. In particular, we assess whether our al-
gorithms benefit from a self-labelling step, in which the labelled part of the training set is
extended by deriving class predictions for a portion of the unlabelled instances. Our experi-
mental study indicates that (i) our methods perform strongly in spite of the semi-supervised
characteristic of their training set, (ii) they do not benefit from a prior self-labelling step and
are instead able to extract sufficient information from the limited amount of labelled training
elements and (iii) they constitute a powerful and computationally more efficient alternative
to semi-supervised classification algorithms that do rely on self-labelling.

Chapter 6 considers the classification of multi-instance data, where each observation is rep-
resented by a group (a bag) of feature vectors. No class label is available for the individual
instances, only their class assignment as a full bag is known. Image classification is an exam-
ple setting that can be modelled with multi-instance data. An observation (bag) corresponds
to a whole image, which can be divided into several image regions or segments (instances).
The prediction task is to decide which complete scene the image represents. Several general
approaches to multi-instance classification can be followed depending on whether the infor-
mation discerning between classes is extracted at the level of instances, the level of bags or
in an induced feature space mapping whole bags to single feature vectors. We propose two
frameworks of multi-instance classification algorithms based on fuzzy set theory and fuzzy
rough set theory respectively. The former consists of general multi-instance classifiers, while
the latter group of algorithms is specifically developed for class imbalanced multi-instance
data. Both groups can be further divided into two families of instance-based and bag-based
methods. We consequently develop four categories of algorithms: (i) fuzzy instance-based
methods, (ii) fuzzy bag-based methods, (iii) fuzzy rough instance-based methods and (iv)
fuzzy rough bag-based methods. Their category defines the general flow of their calculations
and prediction procedure, but we propose several possible settings of the internal parameters
of our methods, that is, several ways to concretely perform all computations. We present a
comprehensive experimental evaluation of these parameter choices and explain why certain
options can be favoured over others. Based on our conclusions, we compare our proposed
methods with their most suitable settings to existing multi-instance classifiers on both bal-
anced and imbalanced datasets and show their strong prediction performance overall. For
class imbalanced multi-instance datasets in particular we are able to conclude the distinct
dominance of our fuzzy rough set based methods over existing proposals.

We consider another extension of the traditional dataset format in Chapter 7, namely that of
multi-label data. In multi-label datasets, observations are labelled with several classes at once
and the classification task is to predict the entire labelset for a target rather than a single class
label. One possible way to do so is to adopt a nearest neighbour based approach, wherein the
labelset prediction is derived from class information in the vicinity of the target instance, that
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is, by aggregating the labelsets of neighbouring training elements in a specific way. We propose
a new method for the latter step. Our FRONEC algorithm uses OWA based fuzzy rough set
theory to derive an appropriate consensus prediction from the labelsets encountered in the
neighbourhood of the instance to classify. In an experimental evaluation on both synthetic
and real-world datasets, we show that our FRONEC proposal is highly competitive with (and
often outperforms) existing nearest neighbour based multi-label classifiers.

Finally, Chapter 8 concludes the thesis by summarizing our proposals, results and conclusions
and outlining several possible directions of future research.
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Esta tesis se enfoca en el problema de la clasificación. El objetivo consiste en predecir las
etiquetas de clase de determinados datos (es decir, asignarlos a una categoŕıa), basándonos
en un conjunto de datos, proporcionado previamente, que contiene observaciones conocidas.
Tradicionalmente, se miden algunas caracteŕısticas para todas las observaciones, de forma
que estas últimas se pueden describir por un vector de caracteŕısticas (recopilando los valores
para todas las caracteŕısticas) y por un resultado asociado, a condición de que esté disponible.
Por ejemplo, en el conjunto de datos clásico iris, cada observación corresponde a una planta
de iris y está descrita por los valores de sus cuatro caracteŕısticas representando propiedades
biológicas de la flor. La etiqueta de clase asociada es la familia espećıfica de iris a la cual
pertenece la muestra y la tarea de predicción consiste en asignar la planta a la familia cor-
recta basándonos en los valores de sus caracteŕısticas. Un algoritmo de clasificación efectúa
esta tarea basándose en un conjunto de entrenamiento de instancias etiquetadas, es decir, un
conjunto de flores de iris para las cuales se conocen tanto los valores de las caracteŕısticas
como las etiquetas de clase. Uno de los clasificadores más intuitivos es el algoritmo de vecinos
más cercanos. Para clasificar un dato nuevo, este método localiza la instancia de entre-
namiento más similar (el vecino más cercano) y lo asigna a la clase a la cual pertenece este
vecino. Otros métodos construyen un modelo de clasificación expĺıcito a partir del conjunto
de entrenamiento, por ejemplo en forma de un árbol de decisión.

Pocos conjuntos de datos reales son perfectos, es decir, normalmente no es posible hacer
predicciones totalmente correctas basándose sólo en el conjunto de entrenamiento. Un prob-
lema t́ıpico es la incertidumbre presente en el conjunto de datos. Las matemáticas nos propor-
cionan marcos para modelar estas imperfecciones desde diferentes puntos de vista. La teoŕıa
de los conjuntos difusos extiende la teoŕıa clásica de conjuntos al permitir una pertenencia
parcial de elementos a un conjunto en forma de un grado de pertenencia entre cero y uno.
De este modo, tanto los conceptos vagos como las relaciones graduales se pueden representar.
Por otro lado, la incompletitud o indiscernibilidad es otro obstáculo común y se refiere a
la situación donde las caracteŕısticas medidas no son suficientes para llegar a una definición
precisa o una delineación exacta de un concepto. La teoŕıa de los conjuntos rugosos resuelve
este problema aproximando el concepto con una aproximación inferior (conservativa) y otra
superior (liberal). Ambos teoŕıas se han combinado en la teoŕıa de los conjuntos rugosos difu-
sos. Se introduce una similitud gradual entre las observaciones y las aproximaciones inferior
y superior de un concepto difuso se convierten en conjuntos difusos. Los conjuntos rugosos
difusos se han empleado en varios algoritmos de aprendizaje automático, tanto en la fase de
preprocesamiento como en la de aprendizaje. En el contexto de la clasificación, las aproxima-
ciones difusas rugosas se construyen para las diferentes clases. En esta tesis, desarrollamos
algoritmos de clasificación basados en conjuntos difusos rugosos para datos no balanceados
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y débilmente etiquetados, es decir, tipos de conjuntos de datos desafiantes que extienden el
formato tradicional presentado previamente.

Los Caṕıtulos 1-2 forman la introducción a esta tesis. El primer caṕıtulo describe los tipos de
conjuntos de datos estudiados y proporciona las definiciones de las teoŕıas de los conjuntos
difusos, los conjuntos rugosos y los conjuntos difusos rugosos, junto con ejemplos intuitivos. El
segundo caṕıtulo introduce el área de la clasificación y trata la tarea de clasificación en general,
repasando problemas concretos como el equilibrio entre sesgo y varianza (bias-variance trade-
off ) y la maldición de la dimensión (curse of dimensionality). Una parte considerable del
Caṕıtulo 2 se dedica a la descripción de varios enfoques populares de clasificación, como
son los de vecinos más cercanos, los de árboles de decisión y los de máquinas de soporte
vectorial. Finalmente, explicamos cómo se realiza una evaluación experimental de algoritmos
de clasificación de forma correcta.

En el Caṕıtulo 3, estudiamos el modelo basado en conjuntos difusos rugosos OWA, una gen-
eralización robusta de los conjuntos difusos rugosos tradicionales. Esta extensión tolerante
al ruido utiliza las agregaciones OWA para calcular los grados de pertenencia de observa-
ciones a las aproximaciones difusas rugosas inferior y superior. Una agregación OWA de un
conjunto de valores se hace con un vector de pesos que ponderan la contribución de cada
valor individual. El apodado ‘esquema de ponderación’ define estos vectores de pesos. Con
el fin de preservar la intuición de las aproximaciones difusas rugosas inferior y superior, se
utilizan en su definición vectores de pesos crecientes y decrecientes, respectivamente. Hasta
la fecha, no existen pautas claras sobre qué esquema de ponderación se tendŕıa que usar en
los algoritmos de aprendizaje automático basados en operadores de aproximación difusa ru-
gosa. Como nuestros experimentos demuestran que la preferencia entre uno u otro esquema
de ponderación vaŕıa con el conjunto de datos, remediamos esta deficiencia en el Caṕıtulo 3.
Desarrollamos una estrategia de selección de esquema de ponderación OWA para las aproxi-
maciones inferior y superior, basada en caracteŕısticas del conjunto de datos fáciles de entender
y sencillas de calcular, como son el tamaño global del conjunto o el número de clases. Al pro-
porcionar estas pautas, eliminamos la necesidad de seleccionar manualmente un esquema de
ponderación. Aparte de resolver este problema, nuestro estudio detallado también explica el
comportamiento y las caracteŕısticas internas de las aproximaciones difusas rugosas basadas
en OWA. Las contribuciones de este caṕıtulo mejoran la facilidad de uso y el entendimiento
de este modelo difuso rugoso y lo convierten en una herramienta más accesible para su uso
futuro en técnicas de aprendizaje automático.

El Caṕıtulo 4 aborda un primer reto en la clasificación de datos, a saber, la presencia de
desbalance entre clases. La mayor parte de la investigación sobre datos no balanceados se
ha realizado para conjuntos de datos con dos clases, donde una clase se llama la mayori-
taria y la otra la minoritaria. Cuando el número de instancias en la primera supera el de la
otra de forma considerable, los algoritmos de clasificación se pueden ver entorpecidos en su
capacidad de hacer predicciones. En particular, tienden a predecir la clase mayoritaria con
demasiada frecuencia y resultan muchas clasificaciones erróneas de instancias minoritarias.
Para remediar este problema, se han desarrollado algoritmos especializados para abordar el
desbalance de clases en el conjunto de entrenamiento tanto en la fase de preprocesamiento
como en la fase de aprendizaje. En el Caṕıtulo 4, seguimos la ĺınea más reciente tomada por
la comunidad investigadora y proponemos un algoritmo para conjuntos de datos no balancea-
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dos con múltiples clases, donde el número de clases es mayor que dos y la distribución de
instancias de entrenamiento entre ellas está (severamente) sesgada. Nuestro clasificador se
llama FROVOCO y está basado en el esquema de decomposición uno-contra-uno que divide
el problema con múltiples clases en varias subtareas binarias, una para cada par de clases.
Para clasificar una instancia de prueba, cada clasificador binario entrenado en una subtarea
se ejecuta y calcula los grados de confianza con los que la instancia pertenece a ambas clases
que el clasificador considera. Todos los valores están agrupados en una matriz de puntaje y
después son agregados en una sola predicción de clase para la instancia considerada. Dentro
de FROVOCO, utilizamos una versión adaptiva de IFROWANN, un clasificador basado en
conjuntos difusos rugosos para datos binarios no balanceados. El aspecto adaptativo de la
propuesta se sitúa en la elección dinámica de los pesos OWA dependiendo del desbalance de
clases en el problema binario considerado. El segundo componente novedoso de FROVOCO
es nuestro nuevo procedimiento de agregación llamado WV-FROST, que se utiliza para ex-
traer una predicción de clases de la matriz de puntaje. Complementamos la información local
contenida en la matriz de puntaje con una evaluación de clase global a través de un resumen
de dos términos de afinidad basados en conjuntos difusos rugosos. Evaluamos nuestro método
FROVOCO de forma extensiva en conjuntos de datos no balanceados con múltiples clases,
validando nuestros dos componentes novedosos propuestos y demostrando la dominación de
nuestro método completo sobre propuestas existentes.

En el Caṕıtulo 5, consideramos los datos semi-supervisados, un contexto donde la información
de clase solo está disponible para una parte de las instancias de entrenamiento. Por consigu-
iente, el conjunto de entrenamiento contiene tanto instancias etiquetadas como no etiquetadas.
Un algoritmo de clasificación entrenado en un conjunto de datos semi-supervisados puede (en
principio) utilizar la información disponible tanto en las instancias etiquetadas como en las
no etiquetadas. Este caṕıtulo estudia la aplicación de nuestros clasificadores basados en con-
juntos difusos rugosos del Caṕıtulo 3 a datos de clasificación semi-supervisada. En particular,
evaluamos si nuestros algoritmos se benefician de un paso de auto-etiquetado (self-labelling),
donde la parte etiquetada del conjunto de entrenamiento se extiende generando predicciones
de clases para una parte de las instancias no etiquetadas. Nuestro estudio experimental
indica que (i) nuestros métodos tienen un buen desempeño a pesar de la caracteŕıstica semi-
supervisada de su conjunto de entrenamiento, (ii) que no se benefician de un paso previso
de auto-etiquetado y por contra son capaces de extraer suficiente información de la cantidad
limitada de instancias de entrenamiento etiquetadas y (iii) que constituyen una alternativa
fuerte y computacionalmente más eficaz a los algoritmos de clasificación semi-supervisada que
śı dependen de auto-etiquetado.

El Caṕıtulo 6 considera la clasificación de datos multinstancia, donde cada observación se rep-
resenta por un grupo (una bolsa) de vectores de caracteŕısticas. Las instancias individuales
no tienen etiqueta de clase, sólo se conocen las etiquetas de las bolsas enteras. Un ejemplo
de un área donde se utilizan los datos multinstancia es la clasificación de imágenes. Una
observación (bolsa) corresponde a una imagen entera, que se puede dividir en varias zonas o
segmentos (instancias). La tarea de predicción consiste en decidir qué escena completa repre-
senta la imagen. Se pueden tomar varios enfoques generales a la clasificación multinstancia,
dependiendo si la información que discierne entre las clases se extrae al nivel de las instancias,
al nivel de las bolsas o dentro de un espacio inducido de caracteŕısticas que transforma bol-
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sas enteras en vectores individuales de caracteŕısticas. Proponemos dos marcos algoŕıtmicos
para la clasificación multinstancia basados en la teoŕıa de los conjuntos difusos y en la teoŕıa
de los conjuntos difusos rugosos respectivamente. El primer marco consiste en clasificadores
multinstancia generales, mientras que el segundo grupo de algoritmos se ha desarrollado es-
pećıficamente para datos multinstancia con desbalance entre las clases. Ambos grupos se
pueden dividir adicionalmente en dos familias de métodos: basados en instancias por un lado
y en bolsas por otro lado. Por consecuencia, desarrollamos cuatro tipos de algoritmos: (i)
métodos difusos basados en instancias, (ii) métodos difusos basados en bolsas, (iii) métodos
difusos rugosos basados en instancias y (iv) métodos difusos rugosos basados en bolsas. El
tipo define el flujo general de los cálculos y del procedimiento de predicción, pero proponemos
distintas configuraciones posibles de los parámetros internos de nuestros métodos, es decir,
distintas formas de hacer todos los cálculos. Presentamos una evaluación extensiva de las
opciones para estos parámetros y explicamos por qué ciertas opciones son preferibles a otras.
Basándonos en nuestras conclusiones, comparamos nuestros métodos propuestos con sus con-
figuraciones óptimas a clasificadores multinstancia existentes tanto en datos balanceados y no
balanceados y demostramos su excelente desempeño en general. Para los conjuntos de datos
multinstancia con clases no balanceadas pudimos establecer la superioridad clara de nuestros
métodos basados en conjuntos difusos rugosos sobre propuestas existentes.

Consideramos otra extensión del formato tradicional de conjuntos de datos en el Caṕıtulo 7,
a saber, los datos con múltiples etiquetas. En conjuntos de datos con múltiples etiquetas,
las observaciones pueden pertenecer a varias clases a la vez y la tarea de clasificación con-
siste en predecir el conjunto de etiquetas entero para una instancia de prueba en lugar de
una sola etiqueta de clase. Una posibilidad de hacerlo adopta un enfoque de vecinos más
cercanos, donde la predicción del conjunto de etiquetas se obtiene en base a la información
de clase en la vecindad de la instancia de prueba, es decir, agregando los conjuntos de eti-
quetas de los elementos de entrenamiento cercanos de una manera espećıfica. Proponemos
un método nuevo para este último paso. Nuestro algoritmo FRONEC utiliza los conjuntos
difusos rugosos basados en OWA para establecer una predicción de consenso apropiada de
los conjuntos de etiquetas encontrados en la vecindad de la instancia a clasificar. En una
evaluación experimental en conjuntos de datos sintéticos y reales, demostramos que nuestra
propuesta FRONEC es altamente competitiva con respecto a los clasificadores existentes para
datos con múltiples etiquetas basados en vecinos más cercanos y a menudo los supera.

Finalmente, el Caṕıtulo 8 concluye la tesis resumiendo nuestras propuestas, resultados y
conclusiones, e indicando varias direcciones posibles de investigación futura.
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• R. Jensen, S. Vluymans, N. Mac Partaláin, C. Cornelis, Y. Saeys (2015). Semi-
supervised fuzzy-rough feature selection. In Proceedings of the 15th International Con-
ference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, LNAI 9437,
pp. 185–195.

• S. Vluymans, H. Asfoor, Y. Saeys, C. Cornelis, M. Tolentino, A. Teredesai, M. De
Cock (2015). Distributed fuzzy rough prototype selection for big data regression. In
Proceedings of the 2015 Annual Conference of the North American Fuzzy Information
Processing Society, pp. 153–158.

• S. Vluymans, Y. Saeys, C. Cornelis, A. Teredesai, M. De Cock (2015). Fuzzy rough
set prototype selection for regression. In Proceedings of the 2015 IEEE International
Conference on Fuzzy Systems

• I. Triguero, M. Galar, S. Vluymans, C. Cornelis, H. Bustince, F. Herrera, Y. Saeys
(2015). Evolutionary undersampling for imbalanced big data classification. In Proceed-
ings of the 2015 IEEE Congress on Evolutionary Computation, pp. 715–722

210



Bibliography

[1] L. Abdi & S. Hashemi (2016). To combat multi-class imbalanced problems by means
of over-sampling techniques. IEEE Transactions on Knowledge and Data Engineering,
28(1):238–251.

[2] J. Adamo (2012). Data mining for association rules and sequential patterns: sequential
and parallel algorithms. Springer Science & Business Media.

[3] R. Adams & Z. Ghahramani (2009). Archipelago: nonparametric Bayesian semi-
supervised learning. In Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 1–8. ACM.

[4] M. Adankon & M. Cheriet (2010). Genetic algorithm–based training for semi-supervised
SVM. Neural Computing and Applications, 19(8):1197–1206.

[5] F. Afsar Minhas, E. Ross & A. Ben-Hur (2017). Amino acid composition predicts prion
activity. PLoS Computational Biology, 13(4):e1005465.

[6] C. Aggarwal, A. Hinneburg & D. Keim (2001). On the surprising behavior of distance
metrics in high dimensional spaces. In Proceedings of the 8th International Conference
on Database Theory, pp. 420–434. Springer.

[7] C. Aggarwal & C. Reddy (2013). Data clustering: algorithms and applications. CRC
press.

[8] D. Aha, D. Kibler & M. Albert (1991). Instance-based learning algorithms. Machine
Learning, 6(1):37–66.

[9] M. Aizerman, E. Braverman & L. Rozoner (1964). Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25:821–837.

[10] A. Albalate, A. Suchindranath & W. Minker (2010). A semi-supervised cluster-and-label
algorithm for utterance classification. In Proceedings of the Intelligent Environments
Workshops, pp. 61–70.
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[169] J. Fürnkranz, D. Gamberger & N. Lavrač (2012). Foundations of rule learning. Springer
Science & Business Media.
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versus-one distance-based relative competence weighting with adaptive synthetic exam-
ple generation for multi-class imbalanced datasets. Neurocomputing, in press.

[486] M. Zhao, R. Chan, T. Chow & P. Tang (2014). Compact graph based semi-supervised
learning for medical diagnosis in Alzheimer’s disease. IEEE Signal Processing Letters,
21(10):1192–1196.

[487] S. Zhao, E. Tsang & D. Chen (2009). The model of fuzzy variable precision rough sets.
IEEE Transactions on Fuzzy Systems, 17(2):451–467.

[488] S. Zhao, E. Tsang, D. Chen & X. Wang (2010). Building a rule-based classifier - a
fuzzy-rough set approach. IEEE Transactions on Knowledge and Data Engineering,
22(5):624–638.

[489] X. Zhao, X. Li, L. Chen & K. Aihara (2008). Protein classification with imbalanced
data. Proteins: Structure, function, and bioinformatics, 70(4):1125–1132.

[490] Z. Zhao, G. Fu, S. Liu, K. Elokely, R. Doerksen, Y. Chen & D. Wilkins (2013). Drug
activity prediction using multiple-instance learning via joint instance and feature selec-
tion. BMC Bioinformatics, 14(14):S16.

[491] E. Zheng, P. Li & Z. Song (2006). Cost sensitive support vector machines. Control and
Decision, 21(4):473.

243



Bibliography

[492] S. Zhou, Q. Chen & X. Wang (2013). Active deep learning method for semi-supervised
sentiment classification. Neurocomputing, 120:536–546.

[493] Y. Zhou & S. Goldman (2004). Democratic co-learning. In Proceedings of the 16th IEEE
International Conference on Tools with Artificial Intelligence, pp. 594–602. IEEE.

[494] Z. Zhou (2012). Ensemble methods: foundations and algorithms. CRC press.

[495] Z. Zhou, K. Jiang & M. Li (2005). Multi-instance learning based web mining. Applied
Intelligence, 22(2):135–147.

[496] Z. Zhou & M. Li (2005). Tri-training: Exploiting unlabeled data using three classifiers.
IEEE Transactions on Knowledge and Data Engineering, 17(11):1529–1541.

[497] Z. Zhou & X. Liu (2006). Training cost-sensitive neural networks with methods ad-
dressing the class imbalance problem. IEEE Transactions on Knowledge and Data
Engineering, 18(1):63–77.

[498] Z. Zhou & X. Liu (2010). On multi-class cost-sensitive learning. Computational Intel-
ligence, 26(3):232–257.

[499] Z. Zhou, Y. Sun & Y. Li (2009). Multi-instance learning by treating instances as non-iid
samples. In Proceedings of the 26th International Conference on Machine Learning, pp.
1249–1256. ACM.

[500] Z. Zhou, M. Zhang, S. Huang & Y. Li (2012). Multi-instance multi-label learning.
Artificial Intelligence, 176(1):2291–2320.

[501] B. Zhu, B. Baesens & S. vanden Broucke (2017). An empirical comparison of techniques
for the class imbalance problem in churn prediction. Information Sciences, 408:84–99.

[502] J. Zhu, J. Shi, X. Liu & X. Chen (2014). Co-training based semi-supervised classification
of alzheimer’s disease. In Proceedings of the 19th International Conference on Digital
Signal Processing, pp. 729–732. IEEE.

[503] T. Zhu, Y. Lin & Y. Liu (2017). Synthetic minority oversampling technique for multi-
class imbalance problems. Pattern Recognition, 72:327–340.

[504] X. Zhu, A. Goldberg, R. Brachman & T. Dietterich (2009). Introduction to Semi-
Supervised Learning. Morgan and Claypool Publishers.

244


	Contents
	Introduction
	Weakly labelled data
	Semi-supervised data
	Multi-instance data
	Multi-label data

	Fuzzy rough set theory
	Fuzzy sets
	Rough sets
	Fuzzy rough sets

	Fuzzy rough algorithms in machine learning
	Fuzzy rough feature and instance selection
	Fuzzy rough prediction methods

	Overview of the dissertation

	Classification
	Introduction
	Classification models
	Nearest neighbour classification
	Decision or classification trees
	Linear models
	Neural network classification
	Rule models
	Probabilistic models
	Ensemble classification

	Conducting classification experiments
	Evaluation measures
	Validation techniques
	Statistical analysis


	Understanding OWA based fuzzy rough sets
	Ordered weighted average based fuzzy rough sets
	Fuzzy rough approximations of decision classes
	Ordered weighted average aggregation
	OWA based fuzzy rough sets

	OWA weighting schemes
	Data-independent weighting schemes
	A data-dependent weighting scheme
	Preliminary comparison

	Lower approximation weighting scheme selection
	Experimental set-up
	Motivation
	Proposed weight selection strategy
	Detailed discussion

	Upper approximation weighting scheme selection
	Motivation
	Proposed weighting scheme selection strategy

	Guideline validation
	Guidelines summary
	Data from Table 3.1
	Independent data
	Other applications

	Conclusion

	Learning from imbalanced data
	Binary class imbalance
	The class imbalance problem
	Dealing with binary class imbalance
	The IFROWANN method

	Multi-class imbalance
	The one-versus-one decomposition scheme
	OVO decomposition and the classifier competence issue
	Dealing with multi-class imbalance

	FROVOCO: novel algorithm for multi-class imbalanced problems
	Binary classifier within OVO: IFROWANN-W_IR
	New OVO aggregation scheme: WV-FROST
	Overview of the FROVOCO proposal

	Experimental study
	Experimental set-up
	Evaluation of IFROWANN-W_IR
	Evaluation of IFROWANN-WV-FROST
	WV-FROST versus other dynamic approaches
	FROVOCO versus state-of-the-art classifiers

	Conclusion

	Fuzzy rough set based classification of semi-supervised data
	Semi-supervised classification
	Self-labelling techniques
	Other semi-supervised classification techniques
	Applications

	Fuzzy rough set based classifiers and self-labelling
	OWA based fuzzy rough classifiers on semi-supervised data
	Interaction with self-labelling schemes
	Comparison with other classifiers
	Discussion

	Conclusion

	Multi-instance learning
	Introduction to multi-instance learning
	Origin
	Structure of multi-instance data
	Application areas

	Multi-instance classification
	Multi-instance hypotheses
	Taxonomy of multi-instance classifiers

	Fuzzy multi-instance classifiers
	Proposed classifiers
	Overview of the framework
	Worked examples
	Theoretical complexity analysis

	Fuzzy rough classifiers for class imbalanced multi-instance data
	Proposed classifiers
	Overview of the framework
	Theoretical complexity analysis

	Experimental study of our fuzzy and fuzzy rough multi-instance classifiers
	Datasets
	Overview of the experiments
	The IFMIC family
	The BFMIC family
	The IFRMIC family
	The BFRMIC family

	Global experimental comparison
	Included methods
	Balanced data
	Imbalanced data
	Summary

	Conclusion

	Multi-label learning
	Introduction to multi-label learning
	Multi-label data
	Multi-label classification

	Nearest neighbour based multi-label classifiers
	Basic unweighted approaches
	Basic weighted approaches
	MLKNN and related methods
	Other nearest neighbour based multi-label classifiers

	Multi-label classification using a fuzzy rough neighbourhood consensus
	General FRONEC procedure
	Instance quality measure
	Labelset similarity relation
	Computational complexity

	Experimental study
	Experimental set-up
	FRONEC variants
	Comparison on synthetic datasets
	Comparison on real-world datasets

	Conclusion

	Conclusions and future work
	Overview and conclusions of the presented work
	Future research directions
	Dealing with large to massive training sets
	Data type combinations
	Other considerations


	Samenvatting
	Summary
	Resumen
	List of publications
	Bibliography

