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Abstract

In this work, an evolutionary parameter extraction procedure is combined with a compact model for the current-voltage character-
istics of organic thin-film transistors as a part of a circuit design tool to extract the device parameters. This procedure can be used
to overcome shortcomings of previous parameter extraction procedures. The proposed evolutionary procedure can be used in those
situations whereby the parameter set extracted by other procedures does not comply its physical meaning, or if a poor agreement
between the experimental data and the analytical results exists. In the last case, the evolutionary procedure can be used as a problem
optimization method. After the evolutionary parameter extraction procedure is applied to the transistor output characteristics, the
obtained results show an excellent agreement with the experimental data.
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1. Introduction

Organic thin-film transistors (OTFTs) have attracted consid-
erable research interest because of the advantages associated
to the materials used, such as flexibility, low fabrication costs
and weight, and their potential applications in large-area, flexi-
ble electronics, such as displays and sensors [1]. Nevertheless,
they also have important limitations, for example a low car-
rier mobility compared to inorganic TFTs ([1–3]), high process
variability [4, 5], or degraded performance characteristics due
to contact effects. Contact effects, specifically, have been exten-
sively studied in order to introduce them in transistor compact
models [6–14].

Compact models are analytical models that are able to re-
produce the electrical behavior of a given device in all regions
of operation. They are usually based on physical principles,
with some free parameters that are used to stitch the transi-
tion between regions, or to improve the needed mathematical
simplification of the underlying device physics. Thus, these
models must be associated with methods to extract their respec-
tive parameters from the electrical characteristics of a transis-
tor [6, 7, 9, 11, 15]. Parameter extraction procedures must as-
sign a correct physical value to each parameter in order to keep
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their meaning. An invalid value would cause the parameter ex-
traction procedure to fail or the achievement of an unphysical
parameter set. Finally, the extracted parameter set has to pro-
vide a good agreement between the model and the experimental
data. Typically, this parameter extraction is usually a two-step
procedure, because the parameters are usually correlated. In a
first step, a direct extraction method under some simplifying as-
sumptions is used to obtain a first set of parameters. In a second
step, this set may be used in a global optimization procedure.

In this work, we consider a compact model [11], which has
been successfully tested in the past with different OTFTs oper-
ating in different regions [16–18] and even in transistors show-
ing current-voltage curves with hysteresis [19]. The applica-
tion of this model can also be found in two-dimensional field
effect transistors, in which the contact effects clearly affect the
device performance [20, 21]. A procedure that accelerates the
extraction of the parameters of this model, or solves some of
the problems noted in the past [22], would be very helpful. For
this reason, in this paper an evolutionary parameter extraction
procedure is proposed, solving the extraction shortcomings or
weaknesses of the procedure proposed in [11]. Our procedure
is based on a special kind of heuristic and optimization search
technique called Evolutionary Algorithms (EAs). EAs are em-
ployed in a broad range of engineering disciplines [23] such
as architecture [24, 25], electrical [26, 27], chemical [28, 29]
and mechanical engineering [30, 31]. EAs are also employed
in other important fields as computer science [32], control [33]
and signal processing [34]. Moreover, EAs have been previ-
ously used to extract the parameters of semiconductor devices,
such as MOSFETs [27, 35–38], photovoltaic (PV) modules
[39, 40], or solar cells [31, 39, 41]. They have even been used
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to extract parameters for simple OTFTs models [42–44]. The
widespread use of EAs in different fields along with its capac-
ity to be employed as a parameter extraction procedure, makes
EAs an interesting option to be used for the procedure presented
in [11] to gain in accuracy and speed.

For these reasons, we propose to use EAs in combination
with the procedure introduced in [11]. This paper is organized
as follows. In Section 2, the features and possible limitations
of the direct parameter extraction procedure proposed in [11],
when applied to experimental data, is shown. Since an evolu-
tionary procedure is going to be presented in future sections,
a brief review of EAs is given in Section 3. In Section 4, an
introduction of Multi-objective Problems (MOPs) is presented.
Then, in Section 5, the combination of concepts presented in
Sections 3 and 4 is reviewed. In Section 6, the evolutionary pro-
cedure is developed for the compact model [11]. In Section 7,
the evolutionary procedure is tested with experimental data. Fi-
nally, the conclusions are presented in Section 8.

2. Parameter Extraction Procedure

In [45, 46], a compact model was developed for OTFTs
which includes the voltage drop at the source contact (VS ≡ VC)
and electric field dependent mobility µ = µ0(VG − VT )γ:

ID = −k′
W
L

[(VG − VT − VS )γ+2 − (VG − VT − VD)γ+2]
γ + 2

k′ = µ0Cox

(1)

where VG is the gate voltage, VD is the drain voltage, VT is
the threshold voltage, γ is the mobility enhancement factor, µ0
is the mobility-related parameter and its dimension is expressed
as cm2/(V1+γs), Cox is the capacitance per unit area of the oxide
and W and L are the channel width and length, respectively.

Later on, model (1) was redefined with the inclusion of a
model for the contact region [11]:

VS =

(
ID

MC

) 1
mk

(2)

where the parameter MC is usually gate voltage dependent and
mk indicates the grade of the observed trend (from linear to
quadratic, 1 ≤ mk ≤ 2) in the triode region of the OTFT. In the
case of a linear trend (mk = 1), MC would be equivalent to the
inverse of a contact resistance RC . When this occurs, the ID−VS

relation can be approximated by the usual linear relation

VS = IDRC (3)

The more general expression (2) for the ID − VS relation was
proposed in order to include linear and non-linear relations as
observed experimentally in OTFTs [47] and after theoretical
studies on metal-organic contacts in which the transition from
linear to quadratic trends was analyzed [9, 48].

Along with (1) and (2), the authors proposed a method to ex-
tract the parameters of (1) and the voltage drop at the contact
ID − VS from experimental ID − VD curves [11]. The method

makes use of the so-called HVG function [45, 46], with the ob-
jective of getting an initial estimation of the values of γ and VT .
It is defined as the ratio of the integral of the drain current (ID)
over the gate bias divided by the drain current

HVG(VG) =

VG∫
<VT

ID(VG) dVG

ID(VG)
(4)

The HVG function can be evaluated from experimental data
measured in the linear and saturation regimes. Combining (1)
and (4), a linear function with VG is obtained for the saturation
regime [46]

HVG(VG) = (VG − VT − VS )/(γ + 3) (5)

The linear expression (5) can be used to get an initial estimation
of the values of γ and VT incorporating the experimental values
of HVG and assuming VS as a constant value, usually VS = 0.
However, VS is a function of ID and VG (VS = VS (ID,VG)).
Thus, the values of γ and VT incorporate any inaccuracy com-
ing from the assumed value of VS . After this initial estimation
of γ and VT , if k′ is also known, the voltage in the contacts
VS (ID,VG) can be extracted by introducing the values of the
experimental data and the values of γ, VT and k′ in (1):

VS = VG − VT

−
[
ID(γ + 2)L/(Wk′) + (VG − VT − VD)γ+2

]1/(γ+2) (6)

Since the k′ value is unknown, various values are tested and
introduced in (6) to find the relation ID − VS . The initial range
of values for k′ can vary by two orders of magnitude over and
below the value obtained with the ideal MOS model applied
to the experimental ID − VG data in the saturation regime. The
obtained relation ID−VS must have physical meaning according
to (2). Only the values of k′ that make the relation ID − VS

follow (2) are considered. An averaged value of the contact
voltage obtained from this relation ID − VS must be consistent
with the initially assumed value of VS in the above paragraph.
Otherwise, this new averaged value of VS must be inserted in
(5) and the process must be repeated until these conditions are
fulfilled.

Although the compact model along with the parame-
ter extraction procedure have been successfully used in the
past [11, 16–19], it has been noticed that the HVG function may
not always perform under certain circumstances:

• The values of γ and VT extracted from (5) are inaccurate
if VC , 0.

• As initially defined in [49], the integral (4) must necessar-
ily be evaluated from a gate voltage under the threshold
voltage. Otherwise, the extracted values of γ and VT will
differ from the actual ones.

• The integral (4) performed with very few points (very few
output characteristic curves) also leads to inaccurate val-
ues of γ and VT .
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Figure 1: Output characteristics generated using the compact model (1) and
the relation (2) at gate voltages VG from 0 to −50 V with a −12.5 V step
(from top to bottom). VD is swept from 0 to −60 V with a −2.4 V step.
k′ = 1.381 × 10−14 A/V2+γ, W = 2 × 10−1 cm, L = 5.0 × 10−4 cm, VT = 10 V,
γ = 1, MC(VG) = α|VG − VT |

(γ+1) Vmk with α = 5 × 10−10, and mk = 1.2. The
contact voltage VS in the saturation region at VD = −60 V for each curve is
-0.06, -0.12, -0.17, -0.23, -0.28 V (from top to bottom).
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Figure 2: HVG function evaluated from the ID − VG relation extracted at VD =

−60 V from the output characteristics of Fig. 1 (symbols). The solid line is the
fitting with (5) using VT = 16.35 V and γ = 1.25.

In these cases, the errors in the values of VT and γ can propagate
through the next steps of the extraction procedure, providing a
non-optimized parameter set (k′, γ,VT ,mk,MC).

An example of misuse of the HVG function can be seen in
the analysis of the output characteristics ID − VD of Fig. 1.
These curves have been generated using the compact model (1),
the relation (2) and the bisection method [50]. Once the ex-
perimental data is available, HVG is applied to the saturation
region (VD = −60 V). The result is represented with crosses
in Fig. 2. After fitting the experimental HVG function with
(5), VT = 16.35 V and γ = 1.25 are obtained. These values do
not correspond with the VT and γ values initially employed in
Fig. 1, even for this case in which the contact voltage is much
smaller than the drain voltage (values of the contact voltage are
provided in Fig. 1). At this point, the parameter extraction pro-
cedure should be aborted since the following steps depend on
the values extracted from the HVG function.

It is clear that solutions to solve this problem at the exper-
imental laboratory exist: it is easy to measure transfer curves
or more output characteristics, and that some of these curves

vary Pt

evaluate Pt

select Pt+1 t = t+1

generate initial 

Population P0

init

evaluate P0

t = 0

stop condition 

satisfied?

end

no yes

Figure 3: Basic flow chart of an EA.

may correspond to gate voltages below the threshold voltage.
However, there may be situations in which these solutions are
no longer possible or difficult to accomplish. In these cases,
we propose to adapt the procedure in [11]. As alternative,
an evolutionary parameter extraction procedure is proposed in
Section 6. Before the evolutionary procedure is introduced, a
general idea about the operation of EAs and their main mecha-
nisms are presented in the next section.

3. Evolutionary Algorithms

As stated in the introduction, once a set of parameters has
been determined by a direct method ([45, 46, 49, 51–53]), the
parameter extraction can be improved by a global optimization
process that takes into account possible interactions between
the parameters. Different techniques can be used for this global
optimization, which are usually hampered by the high dimen-
sionality of the problem (the set of parameters to be extracted
or optimized are usually composed of tens of elements). Ini-
tially, this was dealt with using deterministic methods, based
on derivatives and local optimization [54, 55]. Soon after, more
efficient techniques based on evolutionary algorithms were pro-
posed ([27, 35–38, 56]). Alternative methods, although less
used than evolutionary computing, have also been proposed,
such as a procedure that introduces expert knowledge into the
parameter extraction for an OTFT compact model [15], or the
particle-swarm-optimization method employed to extract the
model parameters of the PSP compact MOSFET model [57].

EAs are heuristic search and optimization techniques based
on natural and genetic evolution [58, 59]. The concept of natu-
ral evolution will help the reader to get an initial idea about how
EAs work. In nature, there are entities or populations of individ-
uals with the ability of reproduction. These individuals usually
have different characteristics, such as height or strength. The
offspring individuals inherit some characteristics of their pro-
genitors. In addition, some of them may mutate acquiring new
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qualities. As time passes, only the individuals able to adapt
to the environment survive, usually the fittest ones. Taking as
reference the natural evolution, EAs process at each iteration a
population of potential solutions (individuals) for a determined
problem (environment). During the EA execution the potential
solutions are combined (reproduction) and some of them may
be altered (mutation), giving rise to an offspring population, in
which the fittest potential solutions have the highest probability
of remaining in it (adaptation to the environment).

The most important difference between classical optimiza-
tion techniques and EAs is that they process a population of
potential solutions at each iteration rather than a single solution
for the problem. Fig. 3 shows the basic flow chart of an EA,
where Pt is the population of the EA in the t-th iteration and
N is the population size. The individuals of the population are
potential solutions of a minimization (maximization) function
f (x). They are named x(i,t) = (x1

(i,t), . . . , xp
(i,t)), i = 1, 2, . . . ,N

and x(i,t) ∈ Xp ⊆ Rp, where Xp is the domain of the population.
Three main operators guide the evolution of the population:

• Recombination operator. It is mainly responsible for the
population to improve. This operator mixes characteristics
of progenitors in order to create new individuals, called
offsprings. The idea of recombination is to discover better
individuals than the original ones, or intermediate individ-
uals that in future would allow to discover better ones.

• Mutation operator. This operator contributes to the diver-
sity of the population. The recombination of progenitors
by itself may not improve the population or may not dis-
cover new individuals. In these cases, some of the off-
springs should be altered by other means. The mutation
operator is responsible for securing that every individual
from the search space is achievable. This operator is also
used by the EA to evade from local optimum solutions.

• Selection operator. Based on a measure of adequacy of the
individuals, this operator decides which individuals will be
part of the next generation population.

EAs are highly parameterized algorithms, being their most
important features introduced in the next subsections.

3.1. Individual Representation
The first step in defining an EA is to link the original problem

context and the problem solving space where evolution takes
place. Very importantly, it has to be clear what kind of solutions
the original problem has. Then, the most appropriate domain
for them is defined, and finally the most appropriate individual
representation for it is used.

3.2. Initial Population
At the beginning of an EA, the population is empty. In order

to fill it with individuals, a method to generate the initial pop-
ulation P0 has to be defined. There is no standard method to
initialize the population of an EA and usually P0 is randomly
generated. Also, an old population or a population from another
heuristic could be used as P0.

3.3. Variation Operators
The recombination and mutation operators are defined with

the recombination (Pc) and mutation (Pm) rates, respectively.
Through the use of the right values of Pc and Pm, the complete
search space should be explored. A low Pc will not allow to
explore the complete search space, while a high Pm will avoid
the convergence of the EA.

3.4. Fitness Function
The fitness function indicates the differences in quality

among the individuals of the population. It gives a punctua-
tion to each individual of the population. Given a minimization
(or maximization) function, an individual xq will get a lower (or
greater) punctuation than other x j if xq is a better individual.

3.5. Selection Operator
The selection operator selects the fittest or the best punctu-

ated individuals, which will be part of the population of the
next generation Pt+1. Moreover, Pt+1 must meet certain require-
ments, such as diversity and elitism.

3.5.1. Diversity
The diversity of the population is a very important fact in

complex optimization problems such as the one presented in
this work. If all individuals in the population were located in
the same space, for example if Pt+1 were composed only of the
fittest individuals, the procedure could converge prematurely to
local optima. On the other hand, if Pt+1 were composed of bad
individuals, it would not converge at all. The selection operator
controls the commitment between quality and diversity among
individuals in the population in order to ensure a proper conver-
gence. The fittest individuals are given a higher probability to
take part in Pt+1 than the worst individuals. Nevertheless, bad
individuals also have a chance of being in Pt+1.

3.5.2. Elitism
Since EAs are stochastic, the best individual found so far,

xbest, may be lost during the evolving procedure. EAs intro-
duce elitism to guarantee the presence of xbest in Pt+1. During
the evolving procedure and at the end of the execution, xbest is
always available.

3.6. Stop Condition
Another critical parameter in the EA definition is to decide

when to stop it. For that purpose, one the following criteria
should be fulfilled:

• Global optimum solution achieved. In this case, it makes
no sense to continue searching for a better solution.

• CPU cost. In order to minimize the computational time,
the EA execution can be restricted to a limited number of
generations and evaluations of the fitness function.

• Stagnation of the search. The EA execution can be stopped
after a limited number of generations if there is no im-
provement in the population. In this case, the population
should be restarted, but keeping xbest.
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4. Multi-objective Problems

In most practical situations, problems have various require-
ments to accomplish. Parameter extraction procedure is only
one of them. Problems of this kind are known as multi-objective
problems (MOPs) [60]. The greatest difference between single
objective problems and MOPs is the arrangement of the set of
potential solutions. In a problem with nob j competing objec-
tives, each one of them is measured by an objective function
fi(i = 1, . . . , nob j). We can define a global objective function
f that meets the following relations for two potential solutions
for the problem s1 and s2

f (s1) = f (s2)⇔ fi(s1) = fi(s2) ∀i ∈ 1, 2, ..., nob j

f (s1) ≤ f (s2)⇔ fi(s1) ≤ fi(s2) ∀i ∈ 1, 2, ..., nob j

f (s1) < f (s2)⇔ f (s1) ≤ f (s2) ∧ f (s1) , f (s2)
(7)

Taking into account the above relations, the Pareto-
dominance criterion can be used to establish an order between
the individuals of the population [61]:

s1 ≺ s2 ⇔ f (s1) < f (s2)
s1 � s2 ⇔ f (s1) ≤ f (s2)
s1 ∼ s2 ⇔ f (s1) 6≤ f (s2) ∧ f (s2) 6≤ f (s1)

(8)

where s1 ≺ s2 (s1 dominates s2) means that s1 is a better solu-
tion than s2, s1 � s2 (s1 weakly dominates s2) means that s1 is
a better or equal solution than s2, and s1 ∼ s2 (s1 is indifferent
to s2) means that both solutions are not comparable. A Pareto-
optimum solution sopt [61] is defined as a solution which cannot
be dominated by any other solution in the solution set S :

@si ∈ S : si ≺ sopt (9)

All Pareto-optimum solutions compose the Pareto front. The
solutions of the Pareto front are indifferent to each other and
equally valid. Thus, the criteria of the final users or experts will
decide which solutions from the Pareto front are the best.

5. Multi-objective Evolutionary Algorithms

The combined use of EAs and the Pareto-dominance cri-
terion gives rise to a special type of EAs, called Multi-
objective Evolutionary Algorithms (MOEAs), capable of man-
aging MOPs. MOEAs follow the same principles of EAs (de-
scribed in Fig. 3) but including the mechanisms needed to op-
erate with MOPs.

There are many ways of implementing a MOEA [62–
65]. The Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [62] has been used successfully in a wide variety of
problems and also employed in this work. The main objective
of NSGA-II is to find a generation Pt+1 of N individuals from
a previous population Pt of N individuals also. The evolution
between generations is developed with the selection, recombi-
nation and mutation operators and other criteria defined below.

• Non-Dominated sort. The population is sorted with the
non-domination criterion. The individuals of the popula-
tion are grouped in different fronts Fi(i = 0, 1, ...), where
i indicates the non-domination level, F0 is the front of in-
dividuals dominating the rest of solutions, F1 is the next
front, only dominated by F0, and so on.

• Crowding distance. It measures how close to its neighbors
an individual is. In order to reduce the agglomeration of
individuals, a large crowding distance is necessary. The
control of this distance is used to improve the diversity of
the population.

• Selection operator. NSGA-II uses the tournament selec-
tion operator [66]. This operator chooses randomly k in-
dividuals from Pt, and from these k individuals the one
situated in the best front is selected. In the case that the k
individuals are located in the same front, the one with the
highest crowding distance is selected. This process is re-
peated until a population Qt of N individuals is available.
The population Qt is transformed with the recombination
and mutation operators, which are defined in the next sec-
tion. Finally a population Rt is built by joining Pt and Qt,
Rt = Pt ∪ Qt.

• Elitism and population of the next iteration. The popula-
tion of the next generation Pt+1 is formed with the indi-
viduals of the best fronts of Rt (truncating the number of
individuals to N).

6. Evolutionary Parameter Extraction Procedure

As described in previous sections, the aim of this work is to
design an evolutionary procedure capable of extracting the pa-
rameters of an OTFT from experimental output characteristics
using the model (1)-(2). Now, the parameters needed to adapt
NSGA-II to this objective are detailed.

6.1. Individual Representation

Our procedure is based on a set of experimental
data ID = ID(VGi ,VD j ), where i ∈ Z : 1 ≤ i ≤ g and
j ∈ Z : 1 ≤ j ≤ d. The numerical estimation of ID and of
the voltage drop at the contact region with (1)-(2) are named
ÎD(VGi ,VD j , x) and V̂S (VGi ,VD j , x), respectively, where x refers
to the rest of parameters needed to compute (1)-(2) and is
defined as the individual of the population:

x = (k′, γ,VT , M̂C(VG1 ), ..., M̂C(VGg )) (10)

where g is the number of different VG values employed to gen-
erate ID, M̂C(VGi ) is the estimation of MC(VG) at these partic-
ular values of VG and the length or number of variables of the
individual (10) is p = g + 3.

The parameter mk controls the linearity of the ID −VS curves
and does not depend on the gate voltage [11, 19]. A simple
inspection of the output characteristics in the triode region can
provide a first estimation of mk. Intentionally, the parameter
mk does not form part of the individual (10), but will be a static
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predefined parameter of the evolutionary procedure. The reason
is that the joint use of mk and the M̂C(VG) in (10) could cause
the no-convergence to an acceptable solution.

6.2. Recombination Operator

The SBX operator is employed in the recombination opera-
tion for its successful performance at continuous search spaces
[67, 68]. All individuals of the population Qt, previously se-
lected from Pt, participate in the recombination process, but
only half (Pc = 0.5) of the variables of an individual will be
recombined. This operator takes randomly from the population
N/2 pairs of parent individuals x j and xq, which give place to
two offspring individuals c j and cq. Each variable i of both par-
ents is recombined if a random number u taken within [0,1] is
greater than Pc. In the opposite case, the variable i of each off-
spring individual will be a copy of the variable i of a respective
progenitor. In the first case, each offspring variable is symmet-
rically calculated as

c j
i = x̄i −

1
2
β(xq

i − x j
i ), (11)

cq
i = x̄i +

1
2
β(xq

i − x j
i ) (12)

where x̄i = (x j
i + xp

i )/2 and β is a polynomial distribution con-
trolled by a parameter ηc. The parameter ηc controls how far the
offspring individuals are generated away from its progenitors.

6.3. Mutation Operator

After the creation of offpring individuals, they are mutated
in order to improve convergence and also to allow escaping
from local optima. This mutation is performed with the Poly-
nomial Mutation operator, successfully used in many problems
and easily controlled by its mutation parameters [69, 70]. The
generation of a mutated individual x from an offspring individ-
ual c is also controlled by a polynomial probability distribution.
Each variable i of the mutated individual x is created as

xi =

{
ci + δL(ci − c(L)

i ), if u ≤ 0.5
ci + δR(c(U)

i − ci), if u > 0.5
(13)

where u is a random number generated within [0, 1], and δL

and δR are the polynomial distributions, both controlled by a
parameter ηm. Both distributions are modified, so that no value
outside the specified range [c(L)

i , c(U)
i ] is created by this operator.

This operator generates individuals close to the offspring
with a higher probability than individuals far away from it. This
is done by considering that each variable i of an offspring indi-
vidual c of length p has a probability 1/p of being mutated.

6.4. Fitness Function

The fitness function assigns a fitness value to each individ-
ual x for each one of the objectives defined in a MOP. In our
MOP, two objectives have been defined for the individual (10):
(i) to minimize the error between the experimental values of
ID(VGi ,VD j ) and their estimation from (1)-(2) ÎD(VGi ,VD j , x),

and (ii) to minimize the error between the voltage drops at the
contact region VS (VGi ,VD j , x) extracted from (2) and their esti-
mation V̂S (VGi ,VD j , x) extracted from (6) .

The Normalized Root Mean Squared Error (NRMSE) is used
to estimate these errors [71]:

NRMSE(y, ŷ) =

√√√√√√√√√√√ w∑
z=1

(yz − ŷz)2

w∑
z=1

(yz − ȳ)2

(14)

where y represents the data set that we want to accurately ap-
proximate, ŷ is the estimation of y, w is the number of data
samples in y, and ȳ is the mean value of the complete data set y.
Thus, the fitness function f is defined as f = ( f1, f2), where

f1(x) = NRMSE
(
ID(VGi ,VD j ), ÎD(VGi ,VD j , x)

)
,

f2(x) = NRMSE
(
VS (VGi ,VD j , x), V̂S (VGi ,VD j , x)

)
,

∀i ∈ Z : 1 ≤ i ≤ g,∀ j ∈ Z : 1 ≤ j ≤ d

(15)

and

6.4.1. ID(VGi ,VD j )
ID(VGi ,VD j ) is the experimental value of the drain current;

6.4.2. ÎD(VGi ,VD j , x)

ÎD(VGi ,VD j , x) is the estimation of ID(VGi ,VD j ) extracted
from the compact model (1)-(2) using the bisection method
[50]. This procedure starts with an initial interval [ai, bi] in
which the value of ÎD(VGi ,VD j , x) is expected. A different in-
terval may be defined for each value of VGi . This interval is
shortened to the half in successive iterations until an adequate
value for ÎD(VGi ,VD j , x) is obtained.

Starting at iteration 0, and assuming that ai j0 = ai and
bi j0 = bi, three values are considered in each iteration t for all
possible combinations of i and j:

ÎDa,t (VGi ,VD j , x) = ai jt ,

ÎDb,t (VGi ,VD j , x) = bi jt ,

ÎDc,t (VGi ,VD j , x) = ci jt = (ai jt + bi jt )/2

(16)

For each one of these values, VS is calculated using (2) and
the different values of M̂C(VGi ) coded in x:

VS k,t (VGi ,VD j , x) =

(
ÎDk,t (VGi ,VD j )

M̂C (VGi )

) 1
mk

,

∀i ∈ Z : 1 ≤ i ≤ g,∀ j ∈ Z : 1 ≤ j ≤ d, k ∈ {a, b, c}

(17)

Then, the differences between each one of the three possible
estimations k ∈ {a, b, c} of ID in the current iteration and the
value returned by the compact model (1) are calculated:
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rk,i jt = ÎDk,t (VGi ,VD j )+

+
k′W

(
VGi−VT−VS k,t (VGi ,VD j )

)γ+2

L(γ+2) −

−
k′W

(
VGi−VT−VD j

)γ+2

L(γ+2)

(18)

As the bisection procedure tries to find a root in (18), the
interval [ai jt , bi jt ] is shortened according to the values ra,i jt , rb,i jt
and rc,i jt following the rule:

[ai jt+1 , bi jt+1 ] =

{
[ci jt , bi jt ], if sign(ra,i jt ) = sign(rc,i jt )
[ai jt , ci jt ], otherwise (19)

This iterative process continues until the condition|rc,i jt | < ε
is reached or a maximum number of iterations are executed
(t = nbisec). In any case, the drain current is estimated as
ÎDc,t (VGi ,VD j , x) = ci jt .

6.4.3. VS (VGi ,VD j , x)
VS (VGi ,VD j , x) is the voltage drop at the contact introduc-

ing in (2) the experimental value ID(VGi ,VD j ) and the parameter
M̂C(VGi ) coded in x:

VS (VGi ,VD j , x) =

(
ID(VGi ,VD j )

M̂C (VGi )

) 1
mk
. (20)

6.4.4. V̂S (VGi ,VD j , x)

V̂S (VGi ,VD j , x) is the voltage drop at the contact introducing
in (6) the experimental value ID(VGi ,VD j ) and the parameters
k′, γ and VT coded in x:

V̂S (VGi ,VD j ) = VGi − VT−

−
[
ID(VGi ,VD j )

(γ+2)L
Wk′ + (VGi − VT − VD j )

γ+2
]1/(γ+2) (21)

7. Results

In this section, two pairs of experiments (A and B, and C
and D) are presented. These experiments have been carried
out using an open source evolutionary tool called ECJ (A Java-
based Evolutionary Computation Research System) [72]. Ex-
periments A and B have been executed in a CentOS cluster with
19 computation nodes, each one with two Intel Xeon E5520
processors at 2.7 GHz. Each execution set for a determined mk

was executed sequentially using only one node. Experiments C
and D have been executed in an Ubuntu laptop with an Intel
i5-3320M processor at 2.6 GHz.

In the experiments A and B, the evolutionary parameter ex-
traction procedure is applied to solve the problem presented at
the end of Section II and Figs. 1 and 2, in which the HVG func-
tion was not provided with the appropriate input data. In ex-
periment A a parameter set is extracted from Fig. 1, while in
experiment B this extracted parameter set is optimized. Since
the parameter set employed to generate the curves from Fig. 1

Table 1: NSGA-II execution parameters used in the different experiments.

Experiment

Parameter A B C D

N 500 500 500 500

n job 10 10 10 10

niter 50000 50000 5000 50000

p 8 8 9 9

Pm 0.125 0.125 0.1111 0.1111

Pc 0.5 0.5 0.5 0.5

ηc 20 20 20 20

ηm 20 20 20 20

is known, it can be used along with the fulfillment of f (x) (15)
to verify the validity of the evolutionary procedure as a param-
eter extraction method in OTFTs. Experiments C and D, on
the other hand, deal with the optimization and extraction of pa-
rameters of two real OTFT devices [17, 73]. In Experiment C,
a solution for the parameter set is also known [17], which can
be compared against our results to test the effectiveness of our
procedure.

7.1. Experiment A: Parameter Extraction

Once the set of experimental data is available (curves in
Fig. 1), the parameters of the evolutionary procedure are de-
fined.

First. As seen in Fig. 1, VD is swept from 0 to −60 V with a
−2.4 V step and VG is swept from 0 to −50 V with a −12.5 V
step. That is, VG1 = 0 V, VG2 = −12.5 V, VG3 = −25 V,
VG4 = −37.5 V and VG2 = −50 V.

Second. The search space is defined in order to guide the
search to an optimum solution. For this problem, the parameter
ranges of each individual x of the population are:

k′ ∈ [1.0 × 10−16, 1.0 × 10−10] A/V(2+γ)

γ ∈ [0, 2]
VT ∈ [−30, 30] V

M̂C(VGi ) ∈ [1.0 × 10−10, 1.0 × 10−4] A/Vmk

(22)

As justified in Section 6.A, the parameter mk is considered
a static predefined parameter. Eleven cases are analyzed, in
which mk is swept from 1.0 to 2.0 with a 0.1 step.

Third. Since EAs are metaheuristic, each execution of our
evolutionary procedure to extract the device parameters may
return a different result, thereby the NSGA-II is executed n job

times for every mk value, delimiting each one of them to niter

iterations, being the initial N individuals randomly generated.
In order to define the value of N, n job and niter (Table 1) several
trial-and-error tests are carried out. A compromise between the
quality of the result and the computational cost needed to obtain
it must be achieved. We observed that increasing the value of
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Table 2: Bisection method parameters used in the different experiments.

Experiment

Param. A and B C D

ε 1.0 × 10−15 1.0 × 10−15 1.0 × 10−15

nbisec 1000 1000 1000

[ai, bi] [0,−1.0 × 10−6] [0,−1.0 × 10−8] [0,−1.0 × 10−6]

Table 3: Mean ± standard deviation of f1 and f2 objectives for each Pareto front
related to a different mk value.

mk f1 f2

1.0 1.18× 10−2 ± 8.0× 10−4 3.38× 10−1 ± 7.06× 10−2

1.1 2.98× 100 ± 2.2× 10+1 3.42× 10−1 ± 1.24× 10−1

1.2 7.00× 10−4 ± 1.0× 10−4 9.75× 10−1 ± 5.19× 10−1

1.3 1.19× 10−2 ± 4.0× 10−3 4.35× 10−1 ± 2.07× 10−1

1.4 1.26× 10−2 ± 4.1× 10−3 1.51× 100 ± 0.84× 10−1

1.5 1.20× 10−2 ± 4.2× 10−3 1.72× 100 ± 1.07× 100

1.6 6.20× 10−3 ± 3.9× 10−3 2.16× 100 ± 1.19× 100

1.7 1.01× 10−2 ± 6.3× 10−3 1.76× 100 ± 9.73× 10−1

1.8 1.19× 10−2 ± 6.3× 10−3 1.37× 100 ± 7.20× 10−1

1.9 5.30× 10−3 ± 3.7× 10−3 2.24× 100 ± 1.16× 100

2.0 1.08× 10−2 ± 8.9× 10−3 1.86× 100 ± 1.01× 100

the parameters N and niter accurate results are obtained. How-
ever, it increases considerably the computational cost and in ad-
dition, the increment of the values of N or niter does not always
ensure a quality increment of the final result, since for example
the evolutionary procedure might converge to a local optimum.
In those cases in which the evolutionary procedure always tends
to converge to a local optimum, the mutation operators will help
escaping from it, but with an increased execution time.

The values of ηc and ηm (Table 1) are standard values that
have been tested successfully, and also incorporated in the ECJ
evolutionary tool.

Fourth. The parameters needed to carry out the bisection
method for the computation of the fitness function are presented
in Table 2. For this experiment, we use the same initial interval
[ai, bi] for each VGi , in which the bisection method converges
successfully.

Fifth. The evolutionary parameter extraction procedure is fi-
nally executed. At the end of the evolutionary process execu-
tion, a set of n job Pareto fronts are obtained for every mk value.
In order to discard non-optimum solutions, the expert or final
user should choose the best Pareto front associated with each
mk value, discarding the remaining (n job − 1) Pareto fronts. At
this point, there should be as many Pareto fronts as different mk

values are available, being each one of them associated with its
own mk value. In order to have an idea about the distribution of
the different Pareto-optimum solutions, their mean and standard

0.6 0.8 1 1.2 1.4 1.6
f
1 #10-3

0

0.5

1

1.5

2

f 2

(i)

 (ii)

(iii)

(iv) (v)

Figure 4: Pareto front selected as best result of the evolutionary procedure ex-
ecution. It corresponds to mk = 1.2. The parameters of the Pareto-optimum
solutions enumerated from (i) to (v) and marked in black are found in Table 5.
The current-voltage curves corresponding to these five solutions are represented
in Fig. 5.

Table 4: Mean ± standard deviation of the estimated parameters which compose
the Pareto front represented in Fig. 4. (k′ is in A/V2+γ, VT in V and M̂C(VG) in
A/Vmk )

x Value

k′ 1.59× 10−14 ± 8.84× 10−29

γ 9.65× 10−1 ± 1.50× 10−3

VT 9.55× 100 ± 2.07× 10−2

M̂C(0V) 9.86× 10−5 ± 2.63× 10−6

M̂C(−12.5V) 1.24× 10−6 ± 8.88× 10−7

M̂C(−25V) 9.90× 10−7 ± 4.28× 10−7

M̂C(−37.5V) 2.21× 10−6 ± 1.17× 10−6

M̂C(−50V) 8.65× 10−6 ± 8.54× 10−6

deviation are calculated and shown in Table 3. Table 3 shows
that in most of the cases the procedure finds accurate solutions
for f1 while the results for f2 cannot be considered as accurate
as expected. Analyzing the mean and standard deviation val-
ues calculated for the f2 objective, the mk cases from 1.4 to 2.0
(both included) are discarded as possible search starting points
because of their high f2 mean and standard deviation values.
The mk = 1.1 case is also discarded because the f1 mean and
standard values are not as accurate as expected. All the rest
mk cases have similar f2 mean values. Among these three last
cases, mk = 1.2 is the best option as the search starting point,
since it has the most accurate f1 mean value. In order to con-
firm whether this decision is correct or not, we use graphical
representations and distributed statistics to study the obtained
parameter sets. The Pareto front associated with the chosen mk

value is represented in Fig. 4 while the statistics associated with
its estimated parameter sets are represented in Table 4.

Since the Pareto front from Fig. 4 is composed by too many
Pareto-optimum solutions, only five of them are selected (enu-
merated black points in Fig. 4) (note that all the Pareto-
optimum solutions that compose a determined Pareto front are

8



Table 5: Estimated parameters of the Pareto-optimum solutions marked with black points in Fig. 4 and represented in Fig. 5 (k′ is in A/V2+γ, VT in V and M̂C(VG)
in A/Vmk ).

Pareto-optimum Solutions

x (i) (ii) (iii) (iv) (v)

k′ 1.59× 10−14 1.59× 10−14 1.59× 10−14 1.59× 10−14 1.59× 10−14

γ 9.63× 10−1 9.64× 10−1 9.68× 10−1 9.68× 10−1 9.67× 10−1

VT 9.54× 100 9.54× 100 9.52× 100 9.59× 100 9.65× 100

M̂C(0V) 9.96× 10−5 9.93× 10−5 9.99× 10−5 9.90× 10−5 9.99× 10−5

M̂C(−12.5V) 3.43× 10−6 1.09× 10−6 3.50× 10−7 1.78× 10−7 1.34× 10−7

M̂C(−25V) 1.75× 10−6 9.94× 10−7 4.44× 10−7 3.18× 10−7 2.88× 10−7

M̂C(−37.5V) 4.48× 10−6 2.06× 10−6 7.75× 10−7 5.96× 10−7 5.78× 10−7

M̂C(−50V) 3.19× 10−5 5.26× 10−6 1.36× 10−6 1.05× 10−6 1.08× 10−6

indifferent to each other and equally valid). The ID − VD and
ID−VC curves associated to these five solutions are represented
in Fig. 5 . As we can see in Fig. 4, each Pareto-optimum solu-
tion returns a different couple of values for the fitness function
f = ( f1, f2). If we explore the different Pareto-optimum solu-
tions from left to right along their Pareto front, the f1 values
worsen while the f2 values improve. Solution (i) has the best
f1 value (minimization), however it has the worst f2 value of
the Pareto front. In the opposite case, solution (v) has the best
f2 value but the worst f1 value of the complete Pareto-optimum
solution set.

In order to confirm the differences between the different
Pareto-optimum solutions of the Pareto front, the estimated pa-
rameters of the Pareto-optimum solutions from Fig. 5 are rep-
resented in Table 5. This table shows that the different values
of the parameters k′, γ and VT are very close to each other. This
fact along with the good agreement shown with the ID − VD

curves help us to confirm that in these cases the evolutionary
procedure converges. However, the solutions (i), (ii) and (iii)
provide a poor agreement with the ID − VC curves, which is
directly related with M̂C(VG). Note that both positive and neg-
ative values for the contact voltage are obtained at low currents
for the (i), (ii) and (iii) cases of Fig. 5, while only negative
values are allowed.

Since all the solutions are considered equivalent in the
Pareto-optimum solution set, an expert opinion is compulsory.
Based on our expert judgment, together with the facts exposed
previously, solution (v) with f = (1.48 × 10−3, 7.83 × 10−2) has
been selected as final solution. This solution is represented in
Fig. 5 and its estimated parameter set is shown in Table 6 along
with its relative error (RE). Comparing the values of the esti-
mated parameter set shown in Table 6 and the original values,
we conclude that the procedure is able to find accurate values
for VT and γ, solving the problem that appears when the HVG

function is provided with an improper set of experimental data.
Also, the extracted value of k′ is considered as valid. However
the M̂C(VG) set differs considerably from the MC(VG) set de-
spite a good agreement with the ID − VS curves is apparently

Table 6: Final solution of the evolutionary procedure, original parameter set
employed and the RE of the chosen final solution, (v) in Fig. 5 (k′ is in A/V2+γ,
VT in V and M̂C(VG) in A/Vmk ).

x Original Value Estimated Value RE (%)

k′ 1.38× 10−14 1.59× 10−14 1.57× 10+1

γ 1.00× 100 9.67× 10−1 3.22× 100

VT 1.00× 10+1 9.65× 100 3.40× 100

M̂C(0V) 5.00× 10−8 9.99× 10−5 1.99× 10+5

M̂C(−12.5V) 2.53× 10−7 1.34× 10−7 4.70× 10+1

M̂C(−25V) 6.12× 10−7 2.88× 10−7 5.28× 10+1

M̂C(−37.5V) 1.12× 10−6 5.78× 10−7 4.87× 10+1

M̂C(−50V) 1.80× 10−6 1.08× 10−6 3.97× 10+1

obtained.
A further study of Fig. 4 shows that the obtained solutions

are not spread evenly along the Pareto front, observing empty
areas. This fact together with the low quality of some solu-
tions (reasons exposed previously for solutions (i), (ii) and (iii)),
make us think that a new search around a better known starting
point could help us to get to a more accurate parameter set. In
the next section, the evolutionary procedure is again executed,
but this time using solution (v) as initial starting point, and ap-
plying the evolutionary procedure as optimization method.

7.2. Experiment B: Parameter Optimization

The use of the evolutionary procedure as an optimization
method implies to work with an initial set of values for the
fitting parameters. The search space domain must be defined
around these initial values. The previous analysis showed that
the f2 function is more sensitive to variations of the fitting pa-
rameters, i.e. the ID − VS curves are more sensitive than the
ID −VD curves to variations in the transistor parameters, in par-
ticular the MC set. Then, the search space domains for the k′,
γ and VT parameters are reduced, but not for the M̂C(VG) set.
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(iv) f = (1.14 × 10−3, 1.41 × 10−1)
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(v) f = (1.48 × 10−3, 7.83 × 10−2)

Figure 5: Output characteristics and contact I − V curves for the five Pareto-
optimum solutions marked in Fig. 4. ID and VC are represented with symbols
and ÎD and V̂C in solid lines. VG is swept from 0 to −50 V with a −12.5 V step
(from top to bottom in each figure).

This will prevent the search from falling into a local optimum
solution. The value of mk is also fixed to 1.2 (as above). Thus,
the parameter ranges are

k′ ∈ [10−14, 10−13] A/V(2+γ)

γ ∈ [0.8, 1.1]
VT ∈ [8.5, 1.1] V

M̂C(VGi ) ∈ [10−10, 10−4] A/Vmk

(23)

1 1.1 1.2 1.3
f
1 #10-4

0.024

0.026

0.028

f 2

(i')

(ii')

(iii')

Figure 6: Pareto front selected as best result of the optimization execution. The
parameters of the Pareto-optimum solutions enumerated from (i’) to (iii’) and
marked in black are found in Table 8. The current-voltage curves corresponding
to these three solutions are represented in Fig. 7.

Table 7: Mean ± standard deviation of the estimated parameters which compose
the Pareto-optimum solutions in Fig. 6 (k′ is in A/V2+γ, VT in V and M̂C(VG)
in A/Vmk ).

x Value

k′ 1.41× 10−14 ± 1.40× 10−21

γ 9.93× 10−1 ± 3.55× 10−10

VT 9.91× 100 ± 2.97× 10−3

M̂C(0V) 1.32× 10−7 ± 1.65× 10−8

M̂C(−12.5V) 2.88× 10−7 ± 8.96× 10−9

M̂C(−25V) 6.41× 10−7 ± 1.25× 10−8

M̂C(−37.5V) 1.19× 10−6 ± 1.77× 10−8

M̂C(−50V) 1.98× 10−6 ± 2.41× 10−8

Once the evolutionary procedure is executed with these new
parameter ranges, a new set of n job Pareto fronts is obtained,
and the best one is selected (Fig. 6). The mean and standard
deviation of the estimated parameters of the Pareto-optimum
solutions of Fig. 6 are shown in Table 7. The optimization ex-
ecution improves clearly the previous solution, confirming that
the evolutionary procedure helps to optimize previous OTFT
parameter sets by exploring the search space around them. In
particular, there is a noticeable improvement in the standard de-
viation of the M̂C(VG) set (compare Tables 4 and 7). This im-
provement is also seen in the current-voltage curves generated
with the new solution.

As it happened before, the Pareto Front of Fig. 6 is com-
posed by many Pareto-optimum solutions. Once again, the
graphical representation of some of the solutions helps to se-
lect the best one. The current-voltage curves of three solu-
tions extracted from Fig. 6 (black points and enumerated from
(i’) to (iii’)) are represented in Fig. 7. Their estimated pa-
rameters are found in Table 8. Following the expert criteria
and examining the information provided by Table 8 and Fig. 7,
solution (i’) is selected as the final solution of the evolution-
ary procedure, with f = (1.01 × 10−4, 2.86 × 10−2) (along with
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(ii’) f = (1.13 × 10−4, 2.51 × 10−2)
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(iii’) f = (1.32 × 10−04, 2.34 × 10−2)

Figure 7: Output characteristics and contact I − V curves for the three Pareto-
optimum solutions marked in Fig. 6. ID and VC are represented with symbols
and ÎD and V̂C in solid lines. VG is swept from 0 to −50 V with a −12.5 V step
(from top to bottom in each figure).

mk = 1.2). The estimated parameter set of this solution is rep-
resented in Table 9 along with the original parameter set and its
RE. If Tables 6 and 9 are compared, the solution in Table 9 is
closer to the original parameter set than the one in Table 6. The
improvement shown in Table 9 is confirmed in the represen-
tation of the output characteristics and contact current-voltage
curves of Fig. 7, in which a better agreement between experi-
mental and estimated curves is observed. These facts confirm
the success of the evolutionary procedure to optimize a previous
solution.

7.3. Experimental Application

In the preceding sections, our evolutionary procedure has
been successfully applied as a parameter extraction and as an
optimization method to ID − VD curves generated with model
(1). In this section, these parameter optimization and parame-
ter extraction methods are tested with two sets of experimental
data measured in different OTFTs.

7.3.1. Experiment C: Parameter Optimization
The objective of this subsection is to optimize previously

extracted parameters of an octadecyl substituted copper tetra-
benzotriazaporphyrin (10CuTBTAP) based OTFT [17]. This
bottom-gate, bottom-contact OTFT was fabricated on octade-
cyltrichlorosilane treated 250-nm-thick SiO2 gate insulator on
the highly doped (resistivity 1 to 5 Ωcm) Si(110) substrate. A

Table 8: Estimated parameters of the Pareto-optimum solutions marked with
black points in Fig. 6 and represented in Fig. 7 (k′ is in A/V2+γ, VT in V and
M̂C(VG) in A/Vmk ).

Pareto-optimum Solutions

x (i) (ii) (iii)

k′ 1.41× 10−14 1.41× 10−14 1.41× 10−14

γ 9.93× 10−1 9.93× 10−1 9.93× 10−1

VT 9.91× 100 9.91× 100 9.92× 100

M̂C(0V) 1.63× 10−7 1.23× 10−7 1.04× 10−7

M̂C(−12.5V) 3.03× 10−7 2.84× 10−7 2.72× 10−7

M̂C(−25V) 6.61× 10−7 6.34× 10−7 6.16× 10−7

M̂C(−37.5V) 1.22× 10−6 1.18× 10−6 1.15× 10−6

M̂C(−50V) 2.01× 10−6 1.96× 10−6 1.93× 10−6

Table 9: Final solution of the optimization execution, original parameter set
employed and RE of the chosen final solution, (i’) in Fig. 7 (k′ is in A/V2+γ,
VT in V and M̂C(VG) in A/Vmk ).

x Original Value Estimated Value RE (%)

k′ 1.38× 10−14 1.41× 10−14 2.66× 100

γ 1.00× 100 9.93× 10−1 6.18× 10−1

VT 1.00× 101 9.91× 100 8.71× 10−1

M̂C(0V) 5.00× 10−8 1.63× 10−7 2.26× 102

M̂C(−12.5V) 2.53× 10−7 3.03× 10−7 2.00× 101

M̂C(−25V) 6.12× 10−7 6.61× 10−7 8.01× 100

M̂C(−37.5V) 1.12× 10−6 1.22× 10−6 8.21× 100

M̂C(−50V) 1.80× 10−6 2.01× 10−6 1.22× 101

70-nm-thick film of 10CuTBTAP was spin-coated onto pho-
tolithographically prepatterned 200-nm-thick gold source-drain
electrodes in an interdigitated configuration with channel width
W = 2mm and length L = 5µm. The full protocols of the elec-
trode deposition, substrate cleaning, and surface passivation
were given in [17]. The electrical measurements were per-
formed at room temperature in air under ambient conditions.

The experimental ID − VD curves of this transistor are rep-
resented with crosses in Fig. 8a. The optimization procedure
defined for experiment C is applied to the experimental data
of Fig. 8a. The NSGA-II execution parameters are shown in
Table 1 and the parameters of the bisection method in Table 2.
The parameter set extracted in [17] is shown in Table 10 and is
considered as the initial previous solution in the optimization
procedure. In this case, mk = 1.0 and the range defined for each
parameter is

11



-50 -40 -30 -20 -10 0
V

D
 (V)

-8

-6

-4

-2

0

I D
 (

A
)

#10-8

(a)

-40 -30 -20 -10 0
V

C
 (V)

-8

-6

-4

-2

0

I D
 (

A
)

#10-8

V
G

=0V

-10V

-20V
-30V

-40V

-50V

(b)

Figure 8: Experiment C. (a) Comparison of experimental output characteristics
(×) and the numerical evaluation of (1) incorporating the estimated parameter
set (solid lines) at different gate voltages. (b) Current–voltage curves at the con-
tact extracted from (6) using the experimental output characteristics at different
gate voltages (×). The solid lines are the fittings using (2) and the estimated
parameter set. In (a) and (b) VG is swept from 0 to −50 V with a −10.0 V step
(from top to bottom).

k′ ∈ [2.5 × 10−17, 2.5 × 10−15] A/V(2+γ)

γ ∈ [1.0, 2.0]
VT ∈ [25, 45] V

M̂C(VGi ) ∈ [108, 2.0 × 109] A/Vmk

(24)

Once the evolutionary procedure is executed, the differ-
ent Pareto fronts are analyzed and the best solution (follow-
ing an expert criteria) is selected. The values of the param-
eters which compose the chosen solution are shown in Ta-
ble 10 (optimized solution). The fitness function of the re-
sult obtained in [17] is f = (6.58 × 10−2, 9.92 × 10−2) while
the fitness function obtained with the evolutionary procedure
is f = (5.4 × 10−2, 7.1 × 10−2). This means an improvement
over the previous solution of 18.15% for the f1 objective
(ID − VD agreement) and 28% for the f2 objective (ID − VS

agreement). Although these percentages may not seem large
enough, the improvement on the values of the transistor param-
eters is enormous. Note simply the variation in the threshold
voltage of around 9 V from an initial value of 43 V. This opti-
mization effort means a great advance in the accurate character-
ization of OTFTs.

Table 10: Parameter values of the previous and optimized solutions of the
10CuTBTAP OTFT (k′ is in A/V2+γ, VT in V and M̂C(VG) in A/Vmk ).

Previous Optimized
x Solution [17] Solution

k′ 2.98× 10−16 2.75× 10−16

γ 1.63× 100 1.99× 100

VT 4.32× 10+1 3.43× 10+1

M̂C(0V) 1.13× 10+9 1.07× 10+9

M̂C(−10V) 6.05× 10+8 6.95× 10+8

M̂C(−20V) 5.40× 10+8 6.52× 10+8

M̂C(−30V) 5.70× 10+8 6.84× 10+8

M̂C(−40V) 5.50× 10+8 6.59× 10+8

M̂C(−50V) 4.90× 10+8 5.75× 10+8

7.3.2. Experiment D: Parameter Extraction

A parameter extraction procedure is now applied to
current-voltage characteristics of a [poly(9,9-dioctylfluorene-
co-bithiophene)] (F8T2) based OTFT designed as phototran-
sistor [73]. The structure used by these authors corresponds
to an inverted, defined-gate, gate-planarized, coplanar TFT.
The source and drain contacts were made of indium tin oxide
(ITO), the channel length L = 56µm and the channel width
W = 116µm. Benzocyclobutene (BCB) was used as the gate-
planarization layer, also acting as a gate insulator. PECVD hy-
drogenated amorphous silicon nitride (a-SiN:H) was used as
a second gate insulator layer. The effective insulator thick-
ness is 270 nm and the effective relative dielectric constant 2.3.
Chromium (Cr) was used for the patterned gate electrode. The
device was fabricated on a silicon substrate. A 1-wt % solution
of F8T2 alternating copolymer dissolved in either xylenes or
mesitylenes was used. A 1000-Å-thick polymer film was spin-
coated and was cured in a vacuum oven at 90oC. The output and
transfer characteristics measured by these authors in the photo-
transistors at 2.9 W/cm2 illumination [73] are represented with
crosses in Fig. 9a and 9b, respectively.

The aim of this experiment is not to analyze the effect of
illumination but to extend the validity of our method to exper-
imental data in different transistors operating in different con-
ditions. The incorporation of the subthreshold region shown in
the transfer characteristics (Figure 9b) adds complexity to the
procedure. In order to reproduce the subthreshold region of
Figure 9b, Equations (9)-(10) in [45] must be used instead of
model (1). These equations are an asymptotically interpolation
function of (1), and include a new parameter VS S that controls
the subthreshold slope.

The NSGA-II execution parameters defined for this experi-
ment D are shown in Table 1 and the parameters of the bisection
method are in Table 2. As in experiment A, values of mk from
1.0 to 2.0 with a 0.1 step are tested, but only the mk value that
produces the best parameter set is selected. For the remaining
parameters, the search space is defined as:
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Table 11: Extracted parameter set for the F8T2 OPTFT (k′ is in A/V2+γ, VT in
V, VS S in V, and M̂C(VG) in A/Vmk ).

x Value

mk 1.00× 100

k′ 2.37× 10−10

γ 8.81× 10−2

VT −9.94× 100

VS S 5.34× 10+1

M̂C(−10V) 1.20× 10−10

M̂C(−20V) 2.44× 10−10

M̂C(−30V) 5.60× 10−10

M̂C(−40V) 1.02× 10−09

k′ ∈ [10−12, 10−08] A/V(2+γ); γ ∈ [0.0, 2.0];
VT ∈ [−25, 15] V; VS S ∈ [0, 20] V;

M̂C(VGi ) ∈ [10−10, 10−04] A/Vmk

(25)

Again, the respective analysis of the obtained Pareto front
set is conducted selecting as final result its best solution, or
Pareto solution, f = (4.46 × 10−2, 7.54 × 10−2). The solution
is represented in Fig. 9 and its estimated parameter set in
Table 11. A good agreement between the experimental and es-
timated ID − VD and ID − VS curves is observed in Fig. 9a
and 9c respectively. The carrier mobility used in the fitting is
µ0 = 3.14 × 10−2 cm2/Vs, one order of magnitude greater than
the one obtained if using the ideal MOS model and ignoring the
contact effects [73].

The transfer characteristics of Fig. 9b are an additional test
of our procedure, showing a very good agreement between ex-
perimental (symbols) and estimated (solid line) ID −VG curves,
always within the measurement error range. Note that the four
points shown with circles in Fig. 9b correspond to values taken
from the output characteristics. These points are represented
to indicate the possible error ranges in these measurements or
other factors not considered in the model, such as dynamic or
hysteresis effects. Since the values of the contact parameter
M̂C are extracted for discreet values VGi (symbols in Fig. 9d)
a MC(VG) relation is necessary to calculate the transfer charac-
teristics shown in Fig. 9b. This relation is built by interpolating
these discreet values with [11]

MC = α2(VG − V ′T )(1+γ), (26)

shown in solid line in 9d, with α2 = 1.57 × 10−10 and
V ′T = −8 V, which is consistent with the value of VT in
Table 11, and thus, the solution can be considered physically
acceptable.

7.4. Computation costs
Since the main aim of this work is to prove that our evolution-

ary procedure can be employed as both, a parameter extraction
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Figure 9: Experiment D. (a), (b) Comparison of experimental output and trans-
fer characteristics, respectively, (symbols) and the numerical evaluation of (1)
(modified to include the subthreshold region [45]) and including the parameter
set of Table 11 (solid lines). (c) Current–voltage curves at the contact extracted
from (6) and the experimental output characteristics (×). The solid lines are
the fittings using (2) and the estimated parameter set of Table 11. (d) Extracted
values of M̂C . The solid line show the trend that the M̂C set follows according
to (26), with V′T = −8 V. In (a) and (c) VG is swept from −10 to −40 V with a
−10.0 V step (from top to bottom). In (b), VD = −10 V.

method and an optimization procedure, the computation time
is not considered a critical point in the EA definition. Even
so, our evolutionary procedure reduces the time needed to find
a solution with regard to previous extraction procedures. The
evolutionary procedure could be used to optimize the solutions
presented in this work even further at the cost of increasing the
number of iterations, and thus the computational time. Never-
theless, this effort is unnecessary when the error between the
calculated and experimental data, is equal or lower than the
measurement error, as shown in Fig. 9b.

After the evolutionary procedure execution, it was estimated
that for the experiment A each job took 3.5 ± 1.4 hours, for the
experiment B 2.4 ± 0.7 hours and for experiment C took 28 ± 3
minutes for each job. Finally for experiment D each job took
3.3 ± 1.4 hours. The difference in the execution time is mainly
caused by the different number of points used to evaluate the
fitting function.

It is very difficult to quantify the amount of time employed
to find an acceptable solution with previous extraction proce-
dures. In the situations in which the VT and γ values estimated
by the HVG function are invalid, the previous extraction proce-
dures may not find a solution (case exposed in Section 2). In
other cases, the search of the remaining parameters by previous
extraction procedures could start from an invalid or bad seed,
taking too much time to converge or even not converging at all.
On the contrary, the convergence of our evolutionary proce-
dure is ensured for the exposed cases, even starting from a bad
or invalid seed (initial population randomly generated).

13



8. Conclusion

We have used an evolutionary parameter extraction proce-
dure to extract device parameters in OTFTs affected by contact
effects. This procedure extends the applicability of compact
models in TFTs as it provides solutions to some of the limita-
tions of previous parameter extraction procedures.

Once the free parameters of the algorithm have been fixed
(number of individuals in each generation, the mutation rate,
etc), the process is fixed, and does not depend on a device-
specific expert-based application of elaborated equations and
procedures. Also complex expert knowledge must not be pro-
vided to start the search, since the evolutionary procedure is ca-
pable of converging from a random point (random initial popu-
lation), being necessary to define an acceptable physical margin
for each parameter. Thus, the use of the evolutionary proce-
dure ensures the extraction of reliable and accurate solutions
since the evolutionary procedure explores completely its de-
fined search space and will always reach an estimation of an
OTFT parameter set.

Also, by exploring the search space defined around a pre-
viously known solution, estimated by evolutionary or other
heuristic procedures, the proposed evolutionary procedure is
capable of optimizing it. The evolutionary procedure has been
successfully employed as extraction and optimization method
for OTFTs, providing accurate model parameters.

Finally, it is worth mentioning that the solution quality and
the execution time of our evolutionary procedure can be im-
proved with parallel implementations of evolutionary algo-
rithms, such as the island-based or the master/worker mod-
els. These mechanisms were not considered here as they in-
crease the complexity of the evolutionary procedure, avoid-
ing the reader to keep an easy understanding of it. For these
reasons, and since our evolutionary procedure has been suc-
cessfully applied and its basic ideas have been properly intro-
duced, improvements in the result accuracy and execution time
by means of the parallelization of the proposed evolutionary
procedure will be considered in future works.
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