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Enzymes are flexible catalysts, and there has been substantial

discussion about the extent to which this flexibility contributes

to their catalytic efficiency. What has been significantly less

discussed is the extent to which this flexibility contributes to

their evolvability. Despite this, recent years have seen an

increasing number of both experimental and computational

studies that demonstrate that cooperativity and flexibility play

significant roles in enzyme innovation. This review covers key

developments in the field that emphasize the importance of

enzyme dynamics not just to the evolution of new enzyme

function(s), but also as a property that can be harnessed in the

design of new artificial enzymes.
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Introduction
The classical picture of enzymes has been that they are

highly specific catalysts, with one structure correlating

to one function [1]. This view was challenged, however,

with the realization that many, if not even most,

enzymes are catalytically promiscuous, and can catalyze

one or more reactions in addition to their native activi-

ties [2��,3�,4]. As early as 1976, Jensen (and later O’Brien

and Herschlag [3�]) surmised that this promiscuity pro-

vides a stepping stone for the evolution of enzyme

function, allowing for greater flexibility to acquire novel

activities. Indeed, the exponential increase in the num-

ber of publications on biocatalysis that occurred

between the 1970s and the late 1980s was to a large

extent linked to the realization that many enzymes were

not as substrate-specific as previously thought, and thus

to the emergence of the exploitation of protein
www.sciencedirect.com 
promiscuity in biotechnological applications [5,6].

Finally, Tawfik and coworkers [7��,8��] presented an

“avante garde” new view of proteins, in which they

argued that one sequence can adopt both multiple

structures and multiple functions, and that this flexibil-

ity forms the cornerstone of the evolution of new

enzyme functions. That is, by harnessing conforma-

tional diversity and catalytic promiscuity, enzymes

can vastly expand the functional diversity of a limited

repertoire of sequences, and in this way allow for new

functions to evolve in old scaffolds.

Recent years have seen an explosion of interest in

this area, focusing on both the role of conformational

dynamics in the evolution of enzyme function

[7��,8��,9,10��,11,12��,13] as well as on how an enzyme’s

dynamical properties are altered along evolutionary tra-

jectories [14–17]. Based on work by both ourselves

[14,17–22] and others [7��,8��,10��,12��,15,23,24�,25],
we propose a model for enzyme evolution that involves

a tightrope balance between flexibility, rigidity, coopera-

tivity, and modulation of active site polarity, that controls

not only an enzyme’s specificity, but also the evolution of

new active sites with novel functionalities.

Conformational dynamics and the evolution of
new enzyme functions
Enzymes are dynamical entities, that can change their

conformation in many different ways, from local fluctua-

tions of side chains, through to large scale loop and even

domain motions [26]. These changes can be intimately

linked to an enzyme’s function: for example, many

enzymes undergo conformational changes to attain cat-

alytically active conformations [27�,28], allosteric regu-

lation is critical to the function of many enzymes [29],

and several proteins undergo order-disorder transitions

to facilitate chemistry (see e.g. refs. [30–36]). These

conformational transitions also facilitate catalytic pro-

miscuity, allowing enzymes to adapt to bind substrates

at the same (or sometimes even multiple) active site(s)

[7��,8��,37], and fine-tuning these conformational

ensembles can lead to the evolution of new functions

(Figure 1) [8��]. To illustrate this point, we present a

number of case studies where conformational dynamics

clearly plays a critical role in different enzymes’ func-

tional evolution.

Dihydrofolate reductase

Dihydrofolate reductase is a monomeric catalyst of the

NADPH-assisted conversion of dihydrofolate (DHF) to
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Figure 1
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Schematic overview of the relationship between conformational dynamics and protein evolvability. In this model, proteins can interchange between

multiple conformations, with the dominant conformation being considered to be the native state, which interacts with the native ligand (blue).

Conformational fluctuations such as, for example, side chain or loop dynamics, can then lead to multiple alternative conformations which can

either interact with the native ligand, or with promiscuous ligands (red). These alternative conformations may be only rarely sampled in the wild-

type enzyme; however, mutations can gradually shift the balance of populations such that any of these alternate conformations becomes the

dominant conformation in evolved enzymes, leading to a shift in activity. This figure is adapted from Ref. [8��]. Reproduced with permission from

Ref. [8��].
tetrahydrofolate (THF) via hydride transfer [38]. This

enzyme has a catalytically important and mobile active

site loop (the Met20 loop, Figure 2) [39]. The unusual

temperature-dependence of the kinetic isotope effects

for the hydride transfer reaction catalyzed by this enzyme

[40,41] have made DHFR a historically important model

system for the study of tunneling and dynamical effects in

enzyme catalysis [10��,16,24�,42–51].

Interestingly, even though the human (hDHFR) and E.
coli (ecDHFR) enzymes are highly structurally similar,

they have significant differences in their sequences, and

also their reaction kinetics and rate-limiting steps under

physiological conditions [52–54]. To address these

apparent discrepancies, Wright and coworkers used a

combined structural biology, cell biology, bioinformatics

and mutagenesis analysis to probe dynamical differences

during the evolution of enzymes in the DHFR family

[24�]. Based on this analysis, the authors were able to

demonstrate subtle but significant differences in loop

dynamics in the two enzymes, that were used to rational-

ize why hDHFR is unable to function efficiently in the

environment of an E. coli cell. In particular, significant

differences in the flexibility of the active site loop in the
Current Opinion in Structural Biology 2018, 48:83–92 
two enzymes, as exemplified by hDHFR lacking the

critical closed-to-occluded conformational transition

observed in ecDHFR, was argued to have a major impact

on ligand flux, as well as the overall catalytic cycle,

allowing evolution to fine tune the two different enzymes

for two different types of cellular environment [24�].
Kohen and Klinman have similarly used DHFR as a

model system to probe the evolutionary aspects of

enzyme dynamics [10��], through examining evolution-

ary-dependent (coevolving) residues as well as the pres-

ervation of functional dynamics across broad spans of

evolutionary time. Based on their analysis, they have

argued that DHFR dynamics evolved with time in order

to optimize the catalyzed reaction, and that there is a

possible evolutionary conservation of functional dynam-

ics at different timescales in the enzyme, which plays a

regulatory role in both general biological function of this

enzyme as well as in the enzyme-catalyzed reaction.

Finally, based on combined isotope labeling and QM/

MM studies, Alleman and coworkers have argued for a

minimization of dynamical effects during the evolution

of DHFR, in order to optimize a nearly-static,  reaction-

ready and electrostatically optimal ground state during

the course of evolution [16].
www.sciencedirect.com
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Figure 2
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Overlay of wild-type dihydrofolate reductase (DHFR) in the closed

(blue, PDB ID: 1RX2 [39,104]) and open (gray, PDB ID: 1RX4 [39,104])

conformations of the catalytically important Met20 loop. The Met20

loop itself is highlighted in red on the closed conformation. The DHF-

H+ and NADPH ligands, and the sites of the N23 and S148 mutations

are also indicated in the closed conformation. This figure was

originally presented in Ref. [49]. Reproduced with permission from

Ref. [49].
b-Lactamases

b-Lactamases are responsible for the primary mechanism

of resistance towards lactam antibiotics [55]. Many cases

of resistance that have been observed during the so-called

antibiotic era are linked to mutant b-lactamases that have

developed the ability to degrade new antibiotics [55].

However, b-lactamases are ancient enzymes that likely

originated billions of years ago, and that are currently

widespread throughout the bacterial domain of life [55].

The availability of a substantial number of sequences of

lactamases belonging to the diversity of modern organ-

isms has allowed researchers to derive plausible approx-

imations to the sequences of ancestral lactamases [56]

using bioinformatics procedures that have been system-

atically explored in the last �20 years [57�]. The proteins

encoded by reconstructed ancestral sequences corre-

sponding to 2-3 billion year nodes were found to share
www.sciencedirect.com 
the canonical lactamase fold. However, they departed

from typical modern lactamases in terms of their stability

and catalysis profiles. That is, they were highly stable,

likely reflecting the thermophilic nature of early life [56].

Also, unlike the modern TEM-1 lactamase which is a

penicillin specialist, these Precambrian lactamases were

able to degrade a variety of lactam antibiotics, suggesting

that they represented Jensen’s generalist stage of evolu-

tion [2] (although other interpretations are also possible

[56]). Computational studies [14] have supported that

conformational flexibility, which allows the binding of

antibiotics of different sizes and shapes, is responsible for

such wide ancestral substrate scope. In addition, this

flexibility can be harnessed to predict allosteric mutations

that increase the activity of these enzymes, as shown

using the CTX-M type extended spectrum b-lactamase,

CTX-M9, as a model system [58]. Finally, very recently

[17], resurrected ancestral lactamases have been used as

scaffolds for the engineering of de novo active sites.

Specifically, a minimalist design approach that was found

to be unsuccessful on many different modern lactamases,

was able to generate levels of de novo Kemp eliminase

activity that was significantly higher than those reported

in all previous rational design efforts, even after directed

evolution (Figure 3). Molecular dynamics simulations,

NMR relaxation studies and X-ray 3D-structure determi-

nation supported an essential role for ancestral conforma-

tional flexibility in the emergence of this completely new

functionality. Overall, these [17] and other recent work

[59,60�] support the potential of ancestral reconstruction

in protein biotechnology.

Catalytically promiscuous phosphatases

Phosphoryl transfer reactions are central to biology, and

the enzymes that catalyze these reactions play an essen-

tial role in many life processes, including cellular signal-

ing, energy production and protein synthesis [61–63].

Interestingly, many of these enzymes exhibit varying

degrees of catalytic promiscuity, which makes them

not only inherently important for understanding the

mechanisms of phosphoryl transfer, but also makes them

valuable model systems for studying the underlying

principles of enzyme multifunctionality.

Among these enzymes, the alkaline phosphatase super-

family have long served as model systems for understand-

ing catalytic promiscuity [64]. The members of this super-

family are metallohydrolases that can efficiently catalyze

the cleavage of P-O, S-O and P-C bonds, and many

members of this superfamily are highly promiscuous

(including the ability to hydrolyze xenobiotic substrates)

[64]. These enzymes have been extensively studied both

experimentally [65–70,71��] and computationally [18,72–

76]. In recent computational work [18], we demonstrated

that the underlying feature driving promiscuity among the

members of this superfamily is the electrostatic coopera-

tivity of the key catalytic residues, which when combined
Current Opinion in Structural Biology 2018, 48:83–92
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Figure 3
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(a) Comparison of the backbone flexibilities of different modern and ancestral b-lactamases tested as scaffolds for the engineering of Kemp

eliminase activity [17]. The backbone is colored according to root mean square deviations calculated from long-timescale molecular dynamics

simulations, as described in Ref. [17]. BL and TEM-1 refer to the modern Bacillus licheniformis and TEM-1 b-lactamases. The ancestral

b-lactamases are proteins encoded by reconstructed sequences corresponding to the common ancestors of Enterobacteria (ENCA), various

Gram-negative bacteria (GNCA) and various Gam-positive and Gram-negative bacteria (PNCA). Only variants at the GNCA and PNCA nodes

showed substantial Kemp eliminase activity upon minimalist active-site design, although activity at the GNCA proteins was significantly higher. (b)

Schematic phylogenetic tree showing the nodes targeted for ancestral sequence reconstruction in Ref. [17]. The proteins encoded by the

reconstructed sequences at these nodes, as well as 10 different modern b-lactamases, were used as scaffolds for de novo engineering of in ref.

[17]. While all engineered ancestral proteins (with the exception of ENCA) showed significant Kemp eliminase activity, all the modern lactamases

tested led to activity levels barely distinguishable from background. (c) Catalytic activities (kcat) of rationally designed Kemp eliminases (dark blue)

and improvements achieved through directed evolution (light blue). The numbers of mutational changes involved in the rational designs are shown.

Values for the minimalist designs on ancestral scaffolds are taken from Ref. [17]. The value for design based on Rosetta is taken from Ref. [86]

and the directed-evolution optimization was reported in Ref. [105]. The iterative design value is taken from Ref. [106] and the directed evolution

was reported in Ref. [75]. In each case, we use the value for the best reported variant. This figure was adapted from Ref. [17]. Reproduced here

with permission from Ref. [17].
with the very large active sites typically present among

members of these superfamily, allows them to accommo-

date multiple chemically distinct substrates while retain-

ing high activity towards their native substrates. That is,

the enzyme’s active site provides a subset of key residues

to optimally stabilize the transition state for the native

reaction, and at the same time this electrostatic preorga-

nization is flexible enough to accommodate electrostatic

requirements of various, chemically distinct substrates.
Current Opinion in Structural Biology 2018, 48:83–92 
The importance of such electrostatic flexibility is further

supported by comparison of the active site properties of

different members of the superfamily, which show a

correlation between larger active site volume and solvent

accessible surface area (SASA), and a higher number of

characterized activities for different key superfamily

members [18]. This specific type of flexibility of the

active site can be understood as a form of enzyme dynam-

ics, in which large structural effects or conformational
www.sciencedirect.com
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diversity are not observed, but rather the local adaptation

of active site residues allows the enzyme to facilitate the

hydrolysis of various substrates. We note that this obser-

vation and its implications for the promiscuity observed in

the AP superfamily has been indirectly supported

through other studies revealing networks of cooperative

residues coupled to the alkaline phosphatase activity

[71��]. In addition, even when large changes in active

site dynamics are not observed, electrostatic flexibility

appears to be important in driving catalytic promiscuity,

as exemplified by methyl parathion hydrolase (MPH) [20]

and serum paraoxonase 1 (PON1) [21], both of which

contain multiple catalytic backups in their active site that

allow for multiple substrates to be hydrolyzed through

either different mechanisms or interactions with different

key residues. MPH also exhibits a different form of

electrostatic flexibility, through promiscuity in the cata-

lytic metal ions used, which not only allows for metal-

dependent specificity patterns, but also the appearance of

cryptic promiscuous activities with different metal ions

[77��].

Finally, active site dynamics is also critical to the emer-

gence of organophosphate hydrolase activity, often in

enzymes that are either primarily lactonases or have

evolved from lactonases [77��,78–80]. An illustrative

example of this is provided by PON1, the active site of

which is located in the central tunnel of a six-bladed

b-propeller structure, and which is covered by a highly

flexible loop that forms a lid that closes over the active site

upon ligand binding [81]. In a recent study [21], we

targeted a key tyrosine residue, Y71, positioned at the

tip of the active site loop, and which is part of a catalyti-

cally crucial hydrogen bonding network along the central

tunnel of the b-propeller [21]. We demonstrated that

while mutating this residue clearly changes the loop

dynamics irrespectively of which substrate is bound,

the same mutations have differential impact on the lac-

tonase and organophosphatase activities of this enzyme.

This appears to be due to differential solvation of the

PON1 active site with the two substrates bound, with the

mutation of Y71 essentially flooding the active site com-

pared to the wild-type when the organophosphate is

bound (Figure 4), but not when the lactone is bound,

thus having a much larger impact on the organopho-

sphatase than the lactonase activity. We note that, struc-

turally, most organophosphatases either have some form

of active site loop [82,83], or deeply buried hydrophobic

active sites [84], and it appears that harnessing the

dynamical properties of these enzymes to generate sol-

vent excluded active site cages appears to be crucial to the

evolution of organophosphate hydrolase activity [21,85].

Other systems

While not all relevant systems can be discussed here

exhaustively, we want to at least highlight a number of

other relevant studies in conclusion of this section. In the
www.sciencedirect.com 
context of our own work, we have examined the impact of

conformational dynamics in the context of protein engi-

neering for two key systems: 2-deoxyribose-5-phosphate

aldolase (DERA) [19], and glucose oxidase (GoX) [22]. In

both cases, a combination of experimental and computa-

tional work demonstrated that engineered mutations with

significant impact on catalytic activity change both the

global and local dynamics of the enzyme, in ways that can

be correlated with the observed changes in activity. This

agrees well also with work by Houk and coworkers, who

have studied model systems such as Kemp elimination

and transesterification (LovD) [15,25,86], and demon-

strated the importance of mutations in altering global

dynamics, active site shape, and solvent accessibility of

the active site. Parisi has argued that protein conforma-

tional diversity modulates sequence divergence [87], and

also correlates with the protein’s evolutionary rate [88].

Vila and coworkers [89] have applied NMR spectroscopy

to study the intrinsic conformational dynamics of a

metallo-b-lactamase and identified three key variants

through directed evolution. Through doing this, they

have shown both that the micro-to-millisecond conforma-

tional dynamics of the enzyme is optimized during evo-

lution, and that the effect of the introduced mutations is

epistatic. This led the authors to suggest that conforma-

tional dynamics is an evolvable trait, and that proteins

with more dynamic active sites are also inherently more

evolvable (which is conceptually similar to our analysis of

functional evolution in the alkaline phosphatase super-

family [18]). Finally, by following the evolution of a

phosphotriesterase from Pseudomonas diminuta to an ary-

lesterase, Jackson and coworkers were able to extract the

role of protein dynamics in the evolution of new enzyme

functions, arguing that changes in enzyme function can

be achieved through the enrichment of pre-existing con-

formational sub-states [12��].

Semantic and conceptual considerations
To avoid semantic confusion, it is worth emphasizing here

that protein flexibility and dynamics are often discussed in

terms of the time scales associated with conformational

motions. Motions in different time scales are in fact

experimentally observed depending of the height of the

free energy barriers separating the relevant protein sub-

states, with picosecond-nanosecond motions reflecting

local fluctuations and microsecond-second motions involv-

ing collective conformational changes. The latter “slow”

motions have received much attention recently because of

their potential role in enzyme catalytic cycles [90]. It is

important to note, however, that discussions into the role

of protein flexibility in enzyme evolution may or may not

invoke a specific motion time scale. Thus, for instance, a

native protein can be seen as an equilibrium ensemble of

more or less related conformations and evolution towards a

new enzyme function may be mediated by mutations that

shift such equilibrium towards a given productive confor-

mation (see also Figure 1). In this interpretation, flexibility
Current Opinion in Structural Biology 2018, 48:83–92
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Figure 4
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Comparison of the active sites of serum paraoxonase 1 (PON1) in complex with (a,b) paraoxon and (c,d) thiobutyl-g-butyric lactone (TBBL), in the

Michaelis complexes of wild-type and Y71G RePON1, respectively. The shaded area shows the solvent-accessible area, and water molecules

within 6 Å of the reacting atoms are shown explicitly. The Y71G mutation has a negative impact on the paraoxonase activity of this enzyme, while

minimally affecting the lactonase activity [21]. As can be seen here, in the wild-type enzyme, the Michaelis complex with paraoxon is almost

completely solvent excluded in the vicinity of the reacting atoms, whereas the Y71G mutation substantially increases the solvent exposure of the

active site. In contrast, in the Michaelis complex with TBBL, even the wild-type is already solvent-exposed, and thus the relative impact of this

mutation is much smaller. This figure was originally presented in Ref. [21]. Reproduced with permission from Ref. [21]. The original article is

available at http://pubs.acs.org/doi/abs/10.1021/jacs.6b10801. For further permission requests, please contact the American Chemical Society.
(conformational diversity) is key to the evolutionary pro-

cess but does not necessarily appear explicitly in the

description of the evolved enzyme. In other words, a

mechanism of functional evolution based on conforma-

tional flexibility/diversity is not inconsistent with a “rigid”

evolved enzyme that populates several closely related

conformations, which are capable of efficiently catalyzing

the new function. Still, such pre-adaptation need not be

complete, and a remaining degree of flexibility may allow

for local cooperative rearrangments to occur in response to

different substrates.

Finally, it is sometimes stated that the marginal stability

of many natural proteins guarantees the degree of flexi-

bility necessary for function. However, there exist anal-

yses that support that marginal protein stability may not

be an adaptation for enzyme function, but the result of the
Current Opinion in Structural Biology 2018, 48:83–92 
existence of a stability threshold together with the fact

that the number of available protein sequences decreases

with increasing protein stability [91–93]. Indeed, as

reviewed in ref. [94], experimental and computational

studies on several protein systems support that high

stability and enhanced conformational flexibility are

not necessarily incompatible.

Overview and conclusions
While there has been substantial research effort invested

into probing the role of enzyme dynamics in catalysis
[26,95–100], significantly less effort has been put into

understanding the role of such dynamics in enzyme

evolution. Already in 2003, James and Tawfik presented

this “new view” of the role of conformational dynamics in

protein evolution [7��]. This hypothesis has been further

supported by the demonstration that most enzymes have
www.sciencedirect.com
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evolved to only be moderately efficient [101�], in part due

to diminishing returns and tradeoffs which constrain

enzymes from reaching their maximum catalytic potential

[102]. In addition, futile encounters and enzyme floppi-

ness have significant impact in modulating an enzyme’s

reaction rate [103�]. As the field grows, an increasing

number of studies have shown that enzyme flexibility,

whether as electrostatic flexibility at the local side chain

level (as in the case of the promiscuous phosphatases

presented here), or at the level of correlated motions

across the whole enzyme, appear to play a substantial role

in allowing for the evolution of new enzyme functions. It is

clear, therefore, that flexible scaffolds may be useful as

starting points for protein engineering, thus opening new

avenues for biocatalysis. Ancestral reconstruction targeting

very ancient proteins (plausibly, Jensen’s primordial gen-

eralists) or pre-duplication phylogenetic nodes may pro-

vide a convenient route to such flexible scaffolds. Finally,

as with all biology, this flexibility is in conflict with the

specificity and precision in the position of key active site

residues required for efficient catalysis, and it’s a tight

interplay between these features that allows for new

functions to evolve in either native or de novo active sites

uncovered during evolution. While there have been semi-

nal experimental papers in this area, as highlighted in this

review, computation has struggled to keep up with exper-

iment, in no small part due to the large computational cost

associated with performing the extensive simulations

needed to understand the link between structural, func-

tional and mechanistic changes across an enzyme’s evolu-

tionary trajectory. However, advances in structural bioin-

formatics, as well as new approaches for enhanced

conformational sampling and modeling of chemical reac-

tivity, together with constant improvements in experi-

mental and structural biology methods, are changing

the landscape in this area. Taken together, interdisciplin-

ary studies such as those presented here will allow us to

obtain, for the first time, not just a complete molecular

picture of how protein function evolves, but also learn how

to manipulate the evolution of protein dynamics for the

design of artificial enzymes with tailored properties.
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