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Chapter 1

Introduction

1.1 Motivation and Objectives

Beyond any doubt, brain is one of the most exciting subjects a human can

propose to study. This magnificent organ is able to perform the most awesome

tasks, such as remembering data, taking decisions, learning from the outcomes,

creating a set of conventions with other individuals in order to establish a com-

munication and so on. Moreover it can develop more sophisticated thoughts,

combine feelings and logics to create a picture of reality, for example through

music, art or philosophy, feel emotions, elaborate on them while resting and

dreaming, regulate tens of contradictory instances while working on di↵erent

layers of consciousness...

Last decades have witnessed a spectacular improvement of functional and

structural imaging techniques and the development of new methods of mea-

1



2 Chapter 1. Introduction

sure, allowing to boost formidably the resolution and the quality of recordings

of electrochemical activity across neural units. All this e↵orts allow to acquire

insights into the physiological mechanisms ruling such an intricate machine,

but of course a long way remains before this approach can try to explain phe-

nomena as complex as the ones named above. There is still a big gap to fill

before understanding how such a huge variety of abilities can emerge from the

cooperation of a collection of cells exchanging electrical signals. Nevertheless

it is certainly an extraordinary challenge to try to characterize the dynamics

of activity in the brain and address the question of which types of collective

behaviors it is possible to reproduce from an ensemble of model-neurons and

what are the minimal ingredients to be considered in the model.

One fascinating idea that emerged in Neuroscience, in parallel with other bio-

logical fields, is that this amazing complexity of performances must arise from

the cooperation between units interacting e�ciently at a wide scale. Such

a long-range dynamics could spontaneously emerge as a consequence of the

system being posed in the vicinity of the critical point of a phase transition.

Moreover, if the system operates in a critical regime, it is conceivable that it

might feature some self-regulatory mechanism guiding it and keeping it close

to such a regime, under standard (healthy) conditions. Much work has been

done after the proposal of this scenario, and many controversies emerged – of

which we will try to give a glimpse along this thesis – but very often it is not

even clear which are the two phases separated by the transition. Along this

PhD thesis we will explore this subject, trying to develop general schemes in

order to shed light on the, so-called, criticality hypothesis. We will not claim
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that the brain is critical, nor that it’s not, but we will present several possi-

ble interpretations to the phenomenology reported by experiments, adopting a

neutral point of view. To the best of our knowledge, at present there exist no

“smoking gun” experiment allowing to confirm or disprove the criticality hy-

pothesis in Neuroscience: empiric evidence from larger systems, more accurate

measurements, and less ambiguous analyses would be highly needed to prove

or exclude such a scenario. However, we clarify some crucial issues related,

e.g., to the features of the existing models, to the methods used in experimen-

tal measurements and to the very essential features of the dynamics, which we

think that can significantly improve the discussion.

1.2 Background context: Criticality in Neuro-

science

Interesting phenomena in Biological systems are usually collective abilities

emerging from the interactions among many constituents. During the last

decades, statistical physics has proven more and more useful to collaborate

with biology in solving problems concerning the study of life and living organ-

isms. One tremendously simple observation is that biological systems are nor

simple, ordered and symmetric as a crystal, nor completely random or chaotic

and disordered. Moreover, those systems usually show spatial and temporal

long range correlations, high sensitivity to stimuli, and the ability to adapt to

perform a wide variety of complex tasks. All those hints readily suggest that

living systems might be operating close to the critical point of some phase
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transition, hypothetically meaning that millions of years of evolution have se-

lected for tuning “life” to the point that maximizes complexity, variability and

repertoire of behaviors.

According to this hypothesis, some living structures tend to achieve an optimal

trade-o↵ between robustness (resilience to external perturbations, a property

of ordered phases) and flexibility (responsiveness to environmental stimuli, a

trademark of disordered phases). From a statistical physics point of view, a

most favorable balance between two competing tendencies can be accomplished

by keeping the system’s dynamical state at the borderline of an order-disorder

phase transition.

In 1990 Christopher Langton [1] proposed a way to parametrize the space of

all possible cellular automata, evidencing the existence of a phase transition

between highly ordered (deterministic) and highly disordered (chaotic) dy-

namics. He showed that optimal conditions for the support of transmission,

storage and processing of information, are achieved in the vicinity of the tran-

sition point. Cellular automata in the vicinity of such a critical point appear to

be non-degenerative, constructive, and open ended: they were demonstrated

to be capable of universal computation, being equivalent to Universal Turing

Machines. This means that in order for physical systems to support primitive

functions required for computation (transmission, storage and modification of

information), they must operate at the “edge of chaos”, i.e. they must be

hovering over some kind of phase transition.

Langton’s idea was received with enthusiasm by Per Bak and colleagues [2],
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whose research aimed at finding a model for a general mechanism encoded

in natural systems, allowing them to self-adjust in the vicinity of a phase

transition, without any need of an external experimentalist who tunes the

system to the critical point. They came up with a toy-model, for piles of

grains of “sand” arriving at a threshold level and toppling, by redistributing

grains to the neighbors in a 2D lattice. Cascades of toppling events, named

avalanches, showed power law distribution of size and duration, fulfilling finite

size scaling. Subsequently, further theoretical work [3, 4] established clearly

that the sandpile undergoes a proper dynamical phase transition and identified

the specific universality class it belongs to. We refer to the Appendix A for a

brief presentation of the Self-Organized Criticality (SOC) paradigm.

Nevertheless, both edge-of-chaos and SOC frameworks encountered the disap-

pointment of a section of the complex systems community, since they seemed

to be destined to stay confined to the realm of simple toy-models, not apt for

describing any real natural system.

After a pioneering experiment performed in 2003 by John Beggs and Dietmar

Plenz [5], the perspective of the criticality hypothesis spread into Neuroscience

and the paradigm of SOC got rejuvenated. Beggs and Plenz were able to mea-

sure spatially distributed electrical activity on a slice of rat neocortex, through

an array of microelectrodes superimposed to the slice, detecting the activity

of small communities of neurons. This allowed them to measure the statis-

tics of clusters of activity –from there on named neuronal avalanches–, which

resulted free of any characteristic scale, both in time and in space extension,

with a behavior very similar to sandpile’s avalanches. On one hand, the work
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of Beggs and Plenz inspired a whole new research line in experimental neu-

rophysics, aiming at checking their findings in a vast variety of experimental

settings, across scales and species [6, 7, 8, 9, 10, 11, 12]. An important remark

to stress is that, under un-healthy or pathological conditions, the features of

criticality are lost [13], giving a hint for a natural parametrization of the alleged

phase transition, or at least suggesting possible candidates for the subcritical

and supercritical regimes –which, in this case, might be more than unaccessible

imaginary phases of the parameter space– and thus conferring a much stronger

basis to the idea of optimality achieved in the vicinity of a phase transition.

On the other hand, it found a solid and most appropriate theoretical support

in Langton’s result, since the cerebral cortex certainly requires optimal com-

putational capabilities, in a sense most pertinent with the one it was originally

proposed for. Moreover it is worth to note that, in the perspective of artifi-

cial neural networks, it has also been suggested in recent years that criticality

features result essential for optimal deep learning proficiency [14, 15] .

1.3 Outline of the work

The appearance of scale-invariant episodes of collective activity in networks of

synthetic units is rationalized under several distinct frameworks (both critical

and not) during this thesis, posing new and fascinating questions that may

contribute to clarify the criticality hypothesis in the cortex and its implications

for function and learning.

From a statistical physics point of view, several models have been developed
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[16, 17], which claimed to reproduce self-organization to criticality, relying on

neurophysiologically plausible models of neurons or communities of neurons

and synapses.

In particular, we analyze in depth the model of Millman et al. [17], which

claims to reproduce self-organized criticality with its concomitant self-similar

activity patterns in a whole set of parameter space corresponding to the ”Up”

state. In Chapter 2 we clarify that self-organzied criticality cannot be pos-

sibly obtained in a state of sustained collective activity and we show that the

interesting model proposed by Millman et al. reports scale free distributed

coexisting avalanches, as a consequence of “neutrality” of the avalanches (no

avalanche expands or shrinks in a preferential way with respect to the others).

Moreover the scale-invariance is lost if precise causal information –of which

neuron provokes the firing of which– is removed from the picture and it is

worth to stress that this type of information is mostly unaccessible in real

experiments. Thus, Millmann’s model, although apparently physiologically

accurate at a single-unit scale, is not apt to reproduce empirical results on

emergent collective behaviors.

As reported in Millman model and in every biologically-inspired model of

neurons (see Perceptron, Leaky Integrate and Fire, Wilson-Cowan, Brunel,

Hodgkin and Huxley models etc.1), an essential feature of neural units is to

integrate the inputs arriving from neighboring presynaptic active sites and

produce a (significative) response only if/when such an input is su�ciently

1We refer to Appendix B for a short presentation of some models in neuroscience, which
are most relevant for a comprehensive view on this thesis
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high. This very basic property gives rise to a positive feedback loop such that

activity fosters the generation of further activity: a feature that suggests a

scenario in which either the system is very active, or it is very silent. This

observation naturally suggests the possibility that neural systems are posed in

the vicinity of a first order (discontinuous) phase transition2, which will be a

leitmotiv throughout the thesis.

We construct a general theory for self-organization to an abrupt phase tran-

sition, closely following the footprints for the origin of SOC, but introduc-

ing a facilitation mechanism mimicking the positive feedback discussed above

(Chapter 3). Not only we succeed in creating the theory for the so-called

“Self-Organized Bistability” (SOB), but we uncover that such theory shows

a phenomenology whose details are consistent with the empirical observa-

tions in neural experiments, paving the way for a new rationale for neuronal

avalanches, apparently more relevant than SOC. Moreover, we think that this

new paradigm might find realizations in several fields, given that multistability

is shown by a vast variety of systems.

Next, keeping in mind the SOB paradigm, we propose to answer the question:

if neural systems are settled in the vicinity of a phase transition, which sort of

phase transition is it? In Chapter 4 we construct a parsimonious stochastic

mesoscopic theory for a cortical network, being at the same time biologically

consistent and minimal. We follow the Landau-Ginzburg approach, building

our model from essential principles/symmetries, inspired to the physiology of

2This is also strongly evoked by the existence of states characterized by a clear alternation
between periods of high and low activity
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neurons or groups of neurons. Such a model allows a comprehensive view

on other relevant models in neuroscience [17, 16, 18, 19, 20, 21] and naturally

reconciles the branch studying criticality in the brain and neuronal avalanches,

to the (more traditional) one investigating macroscopic oscillatory electrical

signals (as stemming e.g. from EEG) as a result of synchronization of neural

units.

Moreover, since neuronal avalanches are empirically found to be consistent

the universality class of the un-biased branching process –a feature which is

common to all mean-field systems with absorbing states– in Chapter 5 we

propose to derive those exponents, under a simple and unified perspective. The

Langevin equation of four di↵erent universality classes (directed percolation,

dynamical percolation, compact directed percolation and conserved directed

percolation), crucially involving a square-root multiplicative stochastic term,

can be analyzed by mapping them into random walkers confined to the origin

by a logarithmic potential. This point of view allows to have a compact vi-

sual of the di↵erence between random walk and branching process, unfolding

the common existing confusion between the avalanches generated by the two

processes. Moreover it also allows to report on the emergence of non-universal

continuously-varying exponent values stemming from the presence of small ex-

ternal driving –that might induce avalanche merging– and might account for

deviations from the un-biased branching process exponents.

Chapter 6 is specifically addressed to examine the experimental method of

measuring avalanches introduced by Beggs and Plenx [5], which is naturally

inherited by most of the computational analyses in literature. We synthetically
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present some preliminary studies designed to check the aptness of the method

for distinguishing between critical and not critical regimes. More specifically,

we compare the avalanches deriving from clustering algorithms inspired by the

experimental procedure to the avalanches defined in more traditional and intu-

itive ways in simple dynamical known models. We suggest that,under certain

conditions and, in particular in the presence of noise, the experimental proce-

dure might detect signs of criticality even far away from the phase transition.

Finally, in Chapter 7, we explore another mechanism that has proven useful

to describe power law distribution of avalanches, stemming from the condition

of balance between excitation and inhibition, but, importantly, not requiring

criticality. Self-similar bursts of activity can emerge in finite-size systems of

spiking neurons because of the reactiveness of the mean field dynamics. In

fact in presence of excitatory and inhibitory components the Jacobian of the

dynamics results non-normal, giving rise to extraordinary long transient be-

haviors, in particular when excitation and inhibition are balanced. The intro-

duction of noise on top of such non-normal dynamics, stabilizes the transient

behavior, which e↵ectively amplifies the fluctuations generated by the noise, so

that the dynamics results in scale invariant bursts of collective spiking events.

We analyze in detail this intriguing mechanism, both analytically and numeri-

cally, in order to identify the role of each ingredient and clarify their interplay,

and we build a zero-dimensional model that reproduces the behavior of the

system.
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1.5 Resumen en Castellano

La observación de que los sistemas biológicos a menudo muestran correlaciones

de largo alcance tanto a nivel espacial como temporal, que son capaces de

responder a una amplia gama de est́ımulos y son capaces de adaptarse para

realizar una gran variedad de funciones, sugirió la hipótesis de que operan cerca

del punto crtico de una transición de fase, lo que les daŕıa un equilibrio óptimo

entre solidez (estabilidad con respecto a perturbaciones externas, propiedad

t́ıpica de las fases ordenadas) y flexibilidad (capacidad de responder a est́ımulos

ambientales, propiedad t́ıpica de fases desordenadas). Esta hipótesis también

se ha establecido en el campo de las redes neuronales, en particular después

de un pivotal experimento de 2003, en el que se midió la actividad eléctrica

de la neocorteza de roedores con resoluciones espaciales y temporales que han

permitido identificar clusters de actividad. Esto condujo a la definición de las

avalanchas neuronales, que, en condiciones fisiológicas, presentan tamaños y

duraciones distribuidas de acuerdo con las leyes de potencia.

El debate sobre la hipótesis de que la invarianza de escala en estas distribu-

ciones es un śıntoma de criticidad sigue abierto y en esta tesis el asunto se

investiga en detalle, a partir de principios simples y tratando de unificar varios

modelos existentes en la literatura. Este trabajo muestra que algunos modelos

de inspiración neurofisiológica reproducen las distribuciones de avalanchas me-

didas empricamente, no tanto como una consecuencia de la supuesta criticidad

hacia la cual se organiza el sistema, sino como consecuencia de un principio de

neutralidad entre las cascadas de eventos, en virtud del cual cada una tiene la
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misma probabilidad de expandirse y contraerse en comparación con las demás.

El enfoque introducido permite subrayar cómo el protocolo experimental para

medir avalanchas implique una aproximación en la evaluación de la causalidad

de los eventos registrados, la cual debe tenerse en cuenta a la hora de inter-

pretar los resultados experimentales. Las señales neuronales se estructuran en

una alternancia de estados de actividad muy alta o muy baja (“Up and Down

states”). Este comportamiento biestable sugiere analizar la posibilidad de que

un sistema se autoorganice en un punto de transición no del segundo, sino de

primer orden. Repasando las etapas de la teoŕıa de criticidad autoorganizada

(SOC), se desarrolla una teoŕıa general para la autoorganización en un punto

de coexistencia de fases –candidata para encontrar aplicaciones en varios cam-

pos de investigación– , que muestra invarianza de escala en combinación con

eventos anormales que involucran a todo el sistema.

A menudo, en el ámbito del debate sobre la hipótesis de criticidad en el cerebro,

no se especifica claramente la naturaleza de la transición de fase que genera

la criticidad, y la referencia común al SOC o al branching process implica

una transición entre estado absorbente y estado activo, estados que no reflejan

con claridad posibles condiciones patológicas. Una descripcin minimal à la

Landau-Ginzburg nos permite crear una teoŕıa simple con un pequeño número

de parámetros, pero de inspiración fisiológica, que muestra una transición de

fase de sincronización –más plausible desde un punto de vista biológico– en

la que medimos (según el protocolo experimental) avalanchas que reproducen

muchos de los comportamientos observados en los experimentos. Además anal-

izamos en detalle un mecanismo propuesto en la literatura como alternativa
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a la criticidad para la generación de avalanchas neuronales, que tiene su fun-

damento en una fuerte inestabilidad producida por el balance entre excitación

y inhibición. Explicamos el papel de los diversos componentes del modelo

(dinámica determińıstica non normal, ruido demográfico y ruido térmico) con

la ayuda de experimentos numéricos y técnicas anaĺıticas. Finalmente, se pre-

senta un enfoque anaĺıtico superuniversal (que incluye al menos 4 clases de uni-

versalidad) para el cálculo de los exponentes de las distribuciones de avalanchas

en las transiciones de fase de no equilibrio.



Chapter 2

Neutral theory of neural

avalanches

2.1 Introduction

Scale-free distributed events or bursts of “activity” such as earthquakes, vortex

avalanches in superconductors, and Barkhaussen noise are common place in

Nature (see e.g. [22, 23]) and are often ascribed to their underlying dynamics

being poised at a critical point. The paradigm of “self-organized criticality”

was developed to explain how and why natural systems could self-tune to the

vicinity of critical points [22, 24, 25]: in this context, scale-free distributed

avalanches turn out to be the fingerprint of critical points of a phase transition

into quiescent (or “absorbing”) states [26, 27]. Despite the success and concep-

tual beauty of this framework, not all scale-invariant episodes of activity can be

15
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ascribed to underlying criticality [28, 29]; for instance, power-law distributed

excursion sizes and times can also emerge from unbiased random walks [30]

(see Chapter 5), self-organization to the edge of a discontinuous phase tran-

sition (see Chapter 3), the Yule-Simon or “the rich gets richer” process [29]

and, as discussed here, neutral dynamics [31, 32]. In the present Chapter,

we explore the possibility that avalanches measured in the most relevant ex-

isting models in neurophysical literature could be scale-free as a result of an

underlying neutral dynamics –i.e. that each single event of activity is indistin-

guishable from others and can potentially propagate through the network in a

marginal way, i.e. without an intrinsic tendency to either expand or contract–

alternatively to being self-organized to the edge of a phase transition. That

is, we explore whether scale-free avalanches could stem from the neutral com-

petition of activity (generated from di↵erent sources or stimuli) for available

space. We put forward a subtle but important di↵erence between such causal

avalanches and existing empirically measured ones, and discuss how neutral

patterns of activity –i.e. coexisting causal avalanches of many di↵erent shapes,

sizes and durations– could be exploited by real neural systems for e�cient cod-

ing, optimal transmission of information and, thus, for memory and learning

[33].
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2.2 Main Results

2.2.1 Computational model and its phenomenology

Designing a model of leaky integrate-and-fire neurons regulated by synaptic

plasticity, Millman, et al. [17] were able to capture the empirical observation

of bistability in cortical networks, i.e. the existence of two well di↵erentiated

stable patterns of cortical activity, called Up and Down states (see e.g. [34, 35]

and references therein, as well as [16, 36] for related and rather interesting

models). Briefly, the model of Millman, et al. consists of N leaky integrate-

and-fire excitatory neurons forming a directed random Erdős-Rényi network

with average connectivity K. Neurons integrate synaptic inputs from other

neurons and fire action potentials, which rapidly deplete the synaptic resources.

These resources recover at a slow time scale, thereby limiting the overall level

of activity in the network (see Appendix B.4). When not specified, model

parameters were taken as in [17]: K = 7.5, nr = 6, R = 2/3 G⌦, C = 30 pF,

Vr = �70 mV, ✓ = �50 mV, we = 95 pA, win = 50 pA, pr = 0.25, ⌧rp = 1 ms,

⌧s = 5 ms and ⌧R = 0.1 s.

The model can be tuned by controlling e.g. its average synaptic strength. For

weak synaptic strengths, a quiescent phase with very low levels of activity, the

Down state, exists, whereas a second, stable state with high firing rates, the

Up state, emerges for large synaptic strengths (see Fig. 2.1A). For interme-

diate strengths, spontaneous fluctuations allow for rapid Up and Down states

alternations (see Fig. 2.1B). This phenomenology –which could also be repro-
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duced by keeping synaptic strength fixed and varying the synaptic recovery

time or some other parameter of the model– corresponds to a discontinuous

phase transition (see Fig. 2.1 and Fig. 1 in [17]) and therefore lacks the criti-

cal point characteristic of continuous transitions. However, remarkably, when

tracking cascades of neuronal firing based on participating neurons, i.e. causal

avalanches (see below), the model was shown to exhibit scale-free distributions

of sizes and durations during Up-states, with associated exponents ⌧ ⇡ 3/2

and ↵ ⇡ 2, i.e. the hallmark of neuronal avalanches measured in brain activ-

ity. Accordingly, Millman et al. considered the Up state as “self-organized

critical”, in contrast to the Down state which was “subcritical” with causal

cascades that were not scale-free [17]. Given that critical dynamics emerge at

continuous phase-transitions, the presence of scale-invariant avalanches within

the Up state in the absence of any such transition in this model is unusual.

This observation prompted us to identify possible alternative mechanisms for

the emergence of scale-free avalanches.

2.2.2 Causal avalanches

Following [17], we tracked causal cascades/avalanches 1. Each one is initi-

ated when an external input depolarizes a neuron’s membrane potential above

threshold to fire an action potential, it unfolds as the membrane potential of a

postsynaptic neuron surpasses threshold, as a result of a synaptic input from

1Here, we use indistinctly the terms “avalanche” and “cascade”. See [37] for a recent and
interesting analysis of causal avalanches on complex networks.
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Figure 2.1: Numerical integration of the model of Millman et al.
[17] with N = 300 neurons. (A) Bifurcation diagram of the mean
firing rate as a function of the synaptic strength parameter, win.
For low values of win, the stable state is a quiescent state with very
low levels of activity (Down state), whereas for large values of win,
the system exhibits high levels of activity (Up state). Both states
coexist for intermediate strength values (shaded region), allowing
for Up-and-Down transitions. Importantly, the transition is discon-
tinuous. (B) Time series of the network firing rate for win = 50
pA illustrate the system’s bistability, with eventual (stochastic)
jumps between Up and Down states. (C) Raster plot (for the same
times as above) in which distinct colors are used for di↵erent causal
avalanches. Each avalanche is started when a neuron fires owing
to an external input and is defined as the subsequent cascade of
activated neurons firing as a consequence of such initial event [17]
(see Section “Causal avalanches”). (D) Raster plot zoom (broken
lines) demonstrating the intermingled and temporally overlapping
organization of di↵erent causal avalanches. Model parameters have
been set as in [17].
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active neurons in the cascade, and stops when this does not happen 2. The

size of a cascade is the total number of action potentials triggered, while the

cascade duration is the timespan between its initiation and the time of its last

action potential [17]. Avalanches were analyzed separately for Up and Down

states in a network with N = 3000 neurons, using di↵erent values of the ex-

ternal firing rate, fe; in particular we analyzed the slow-driving case fe ! 0 in

which new cascades arrive at a slow pace.

Our results are in perfect agreement with the phenomenology found in [17]:

cascades in the Down state do not exhibit scale invariance but instead have a

characteristic scale (see Section D.1.2). In contrast, cascades during Up-states

distribute in size and duration according to power-laws with exponent close to

⌧ = 3/2 and ↵ = 2, respectively (see Fig. D.1A). As already observed in [17],

these results are quite robust, do not depend on how deep into the Up state

(i.e. how far from the transition point) simulations are run, nor on simulation

details, nor do they change upon introducing inhibitory neurons (see Section

D.1.3).

2.2.3 Time-correlated avalanches from time binning

A key point of the previous analysis is that causal information between activa-

tion events (i.e. “who triggers who”) is essential to define avalanches. However,

in empirical analyses it is not clear whether events occurring nearby in time

2Usually many inputs contribute to the firing of a given neuron; each neuron firing is
ascribed to the avalanche having produced the last or final input making it go over threshold
[17].
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–usually ascribed to the same avalanche in statistical analyses– are actually

causally connected or not. The standard approach, that has been successfully

used in the analysis of experimental data, where causal information of event

propagation is typically not accessible [5, 6], consists in defining cascades from

a series of discrete supra-threshold events, by choosing a discrete time bin �t.

An avalanche is defined as a sequence of successive time windows with at least

one event in each that is preceded and ended by an empty bin. Following

[5, 6] –where it was shown that scaling relations obtained with di↵erent time

bins �t could be collapsed– we take �t to be equal to the average inter-event

interval (IEI), defined as the average time interval between successive events3.

Using this binning procedure in timeseries from the computational model, we

find that cascade duration and size distributions obtained from Up states are

exponentially distributed with a characteristic scale, showing no signs of scale-

invariant behavior (see Fig. D.1B). Distributions did not change qualitatively

for di↵erent values of �t. Thus, in the model of Millman et al., cascades based

on temporal proximity di↵er significantly from cascades based on causal in-

formation. This finding is in contrast to the established scale-free avalanche

distributions that emerge from experimental data based on temporal proxim-

ity.

In the model of Millman et al., causal avalanches can (and do) coexist in time

(see Fig. 2.1C and D); thus, the temporal proximity approach does necessarily

fail to uncover true causal avalanches. Summing up, our observations, together

3Even though the IEIs can vary for di↵erent experimental situations, size and duration
distributions have been claimed to exhibit universal behavior with exponent ⌧ ⇡ 3/2 and
↵ ⇡ 2, respectively, provided that data are binned using the IEI.
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with the lack of a continuous phase transition, question the origin of scale

invariance within Up states and its actual relationship with empirically found

(time-correlated) scale-free avalanches. To shed light on this problem, in the

next section we analyze a minimal model which captures the main ingredients

for activity propagation, showing that the observed scale-free causal avalanches

in the model of Millman et al. stems from an underlying neutral dynamics

[31, 32].

2.2.4 Neutral (causal) avalanches in a minimal model

for activity propagation

In archetypical models of activity propagation such as the contact process,

directed percolation and the susceptible-infected-susceptible model [40, 41],

“active” sites propagate activity to their nearest neighbors or become de-

activated at some transition rates. As a result, depending on rate values,

there exist a quiescent and an active phase, as well as a critical point separat-

ing them [40, 41]; avalanches triggered from a single initial event, exhibit scale

invariance only at criticality (see Figure D.3 in Section D.1.4) and, if they are

triggered at a su�ciently slow rate, they do not overlap.

In contrast, within the framework of neutral dynamics (that we are about to

define), multiple avalanches can propagate simultaneously. The di↵erence be-

tween critical and neutral avalanches can be vividly illustrated by considering

a variant of the contact process, consisting of many di↵erent but equivalent

“species” (or “labels” or “colors” or “types”). This model can be studied
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Figure 2.2: Avalanche size and duration distributions within the
Up-state phase in the model of Millman et al. [17] using two dif-
ferent methods (double logarithmic plot). (A) Causal avalanches
were defined using the same criterion as in [17], for several values
of the external input fe, confirming the observation that sizes and
durations are power-law distributed with the same exponents of an
unbiased branching process, i.e. ⌧ = 3/2 and ↵ = 2, respectively
[38, 39]. (B)“Time-correlated” avalanches, defined with the stan-
dard temporal binning method [5] (which estimates causality by
temporal proximity), using five di↵erent time intervals �t to bin
the data, including one coinciding with the average interevent in-
terval (IEI) as usually done in the analyses of empirical data [5],
for fe = 5 Hz; in this case distributions do not obey a power-law
distribution but have a characteristic scale. In all cases, simula-
tions were performed in a network of N = 3000 neurons (model
parameters as in [17]).

with parameters (rates) arbitrarily far from the phase transition to explore

the statistics of causal avalanches. More specifically, we consider a network
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with N nodes that can be either active (A) or inactive (I). Here we discuss

the case of a fully-connected architecture –for which mathematical analysis

is simpler– but almost identical results are obtained for a directed random-

network, with the very same structure as employed in the model of Millman

et al. (see Figure D.4 of Section D.1.4). At every time, each single active site

is assigned to a unique individual avalanche/species k (the one from which it

derives) and labeled by Ak. More specifically, the dynamics is as follows: i) a

new avalanche, with a new label, is initiated by the spontaneous activation of

an inactive site at small driving rate ✏; ii) active sites propagate the activity to

neighboring inactive places at rate �, and iii) active sites become inactive at

rate µ. This is equivalent to the following set of reactions for k = 1, ...,M(t):

I
✏�! AM(t)+1

Ak + I
��! Ak + Ak

Ak
µ�! I

(2.1)

where M(t) is the total number of avalanches triggered up to time t. This

dynamical process is neutral (or symmetrical) among species/avalanches as

rates do not depend on label k (see Appendix A.4 for an extended presentation

of neutral theories). The duration (resp. size) of an avalanche k is the time

elapsed (resp. total number of activations) between its spontaneous generation

and the extinction of its label. Observe that di↵erent avalanches can coexist

(all the most in the active phase, as in the model of Millman et al.) and

that the total number of coexisting avalanches can vary in time. The state

of the system is determined by M(t) and the number of k�type active sites,
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nk(t), or, equivalently, their corresponding densities ⇢k(t) = nk(t)/N . The

total density of active sites is defined as ⇢(t) =
PM(t)

k=1 ⇢k(t). Importantly, just

ignoring species labels, one realizes that the system of Eq. (2.1) is nothing

but the standard contact process (with a non-vanishing rate for spontaneous

activation ✏). Therefore, in the slow-driving limit ✏! 0, the system exhibits a

continuous phase transition for the total activity density at the critical point

given by �c = µ [40, 41].

We performed computer simulations of the dynamics described by Eq.(2.1)

by means of the Gillespie algorithm [42] in a fully-connected network of size

N = 104. Parameter values are chosen for the system to lie well inside the

active phase, � = 2, µ = 1 (i.e. � = 2�c), and ✏ taking small values such as

10�1, 10�2, 10�3 and 10�4. Typical timeseries for individual avalanches, ⇢k, as

well as for the total activity, ⇢, are depicted in Fig. 2.3A.

Observe that the steady-state overall density (gray color) coincides, on aver-

age, with that of the contact process in the infinite size limit, ⇢⇤ ' 1� µ/�+

✏µ/(�(� � µ)) (see Section D.1.1 for the derivation of this equality). On the

other hand, individual avalanches (colored curves in Fig. 2.3A) experience wild

fluctuations as a function of time. The statistics of avalanches is illustrated

in Fig. 2.3B revealing that avalanche sizes and durations are power-law dis-

tributed with exponents ⌧ = 3/2 and ↵ = 2 in the limit of small spontaneous

activation rate ✏! 0. Remarkably, scale-free avalanches appear all across the

active phase, � > �c (see Figure D.5 of Section D.1.4).
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2.2.5 Analytical approach

To shed light on this result, we study analytically this simplified model in

the large network-size limit. Starting from the master equation associated to

Eq.(2.1), performing a system-size expansion for large but finite system sizes

[43], the dynamics of a newly-created avalanche is described by the following

equation:

⇢̇k = (�(1� ⇢)� µ) ⇢k +

r
1

N
(�(1� ⇢) + µ) ⇢k ⇠k(t), (2.2)

with the initial condition ⇢k = 1/N , and where ⇠k(t) represents a zero-mean

Gaussian white noise of unit variance (to be interpreted in the Itô sense [43]).

If the system is very large, and when the rates lie within the active phase (i.e.

� > µ), the total activity density exhibits very small fluctuations, remaining

quite stable around the steady-state value, as illustrated by the gray-colored

timeseries in Fig. 2.3A.

To understand the variability of individual avalanches, let us assume that in

the steady state ⇢(t) ' ⇢⇤, that introduced in Eq. (2.2) leads to:

⇢̇k = � µ

�� µ
✏⇢k +

s
µ

N

✓
2� ✏

�� µ

◆
⇢k ⇠k(t). (2.3)

In the limit ✏ ! 0, the deterministic/drift term in Eq.(2.3) vanishes, and the

dynamics of avalanche k can be simply written as:

⇢̇k =
p
⇢k ⇠k(t̂), (2.4)
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where for simplicity in the notation, a factor 2µ/N has been reabsorbed into

the time scale t̂. Eq.(2.4) represents a freely-moving random-walk with de-

mographic fluctuations, as profusely analyzed in Chapter 5. It describes the

evolution of a species density in any neutral-type of dynamics –as further dis-

cussed in Appendix A.4. In other words, once an avalanche starts, its statistics

is entirely driven by neutral demographic fluctuations, without any net ten-

dency to either expand or contract, regardless of the distance to the critical

point 4. Furthermore, the avalanche exponents associated with this neutral,

noise-driven, dynamics are ↵ = 2 and ⌧ = 3/2. Actually, the previous reason-

ing holds all across the active (Up) phase; on the other hand, in the quiescent

(Down) state, the steady state activity ⇢⇤ goes to 0, as the deterministic driv-

ing force in Eq.(2.2) is negative, leading to subcritical avalanches, as indeed

reported in [17].

Thus, a simple approach allowed us to explicitly show that neutral dynamics

among coexisting dynamically-indistinguishable avalanches leads to scale-free

distributions all across the active (Up) phase, i.e. arbitrarily far away from

the edge of the phase transition, where many di↵erent causal avalanches can

simultaneously coexist, and with no relationship with self-organized criticality.

Our claim, relying on universality arguments, is that the same conclusion ex-

tends to the active phase of the model of Millman et al.; for such a case detailed

analytical calculations would be much more di�cult to perform, but it seems

rather plausible that the e↵ective dynamics is also neutral as in the case of

4Not surprisingly, Eq.(2.4) corresponds also to the mean-field description of an unbiased
branching process [38].
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the simple model discussed here, and that many neutral causal avalanches co-

exist, thus strongly supporting that as a matter of fact the scale-free causal

avalanches in the model of Millman et al. stem from neutral dynamics and not

from the model being self-organized to the critical point of any (non-existing)

continuous phase transition.
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Figure 2.3: Causal avalanches in a minimal model for propagation
activity, defined as cascades of events initiated from the sponta-
neous activation of one unit, without overlap between avalanches
(i.e. a given node cannot be simultaneously part of more than one
avalanche). (A) The activity of each avalanche is defined as the den-
sity of active elements in the system belonging to that avalanche,
identified with di↵erent colors in the plot. The global activity den-
sity is represented with the gray-colored line. Parameters of the
model are taken deep inside the active phase, � = 2, µ = 1, for a sys-
tem size N = 104 and small spontaneous activation rate ✏ = 10�3.
Whereas the global activity exhibits slight fluctuations around its
steady-state value ⇢⇤ ' 1 � µ/� (represented by the dashed line),
individual avalanches can exhibit wild variability. (B) Avalanche
size and duration distributions for di↵erent values of ✏ (other pa-
rameters as in (A), i.e. deep inside the active phase). Avalanche
statistics exhibit robust power-law scaling –limited by system size–
with the same exponents of the neutral theory for avalanche prop-
agation (marked with dashed lines for comparison).
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2.3 Summary and Conclusions

A remarkable observation –that has elicited a great deal of interest– is that

neural activity in the brain of mammals, including humans, occurs in the form

of neuronal avalanches consisting of outbursts of neural activity intervened by

periods of relative quiescence, across many resolution scales in a robust way

[5, 44]. For in vitro studies of relatively small networks it seems plausible

to assume that events occurring during one of such outbursts are causally

connected, so that activity emerges at some location and transiently propagates

through the network, causing a cascade of co-activations. However, there is

no clear empirical validation that this is actually the case; diverse causally-

connected cascades could, in principle, occur simultaneously, hindering their

experimental discrimination as individual avalanches. Obviously, the situation

is much more involved in large neural networks as analyzed in vivo at diverse

scales of resolution, e.g. from local field potential measurements, magneto-

encephalography, functional magnetic resonance imaging, etc. There is no

well-accepted empirical procedure to actually disentangle causal influences,

nor to discern whether di↵erent causal cascades of activations overlap (as they

probably do in functional brains). Developing a protocol to fill such a gap is

a task of utmost importance for the coming future (see [37]). In the absence

of a better indicator, events of activity are customarily clustered together as

individual avalanches, relying on a criterion of temporal proximity.

It remains to be fully elucidated what is the true nature of scale-free avalanches

in actual neural systems. To shed light on this, here we scrutinized the most
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commonly referred model –introduced by Millman and coauthors [17]– justify-

ing the emergence of power-law distributed avalanches in networks of integrate-

and-fire neurons with synaptic plasticity. First of all, we reproduced the find-

ings in [17], and confirmed that the model exhibits two di↵erent phases in

parameter space, an Up-state characterized by large average firing rates and

a Down-one with small firing, separated by a discontinuous phase transition.

We carefully analyzed the dynamics within the active phase, and corroborated

that diverse avalanches can coexist, and that their sizes and durations are

scale-free (with exponents, 3/2 and 2, respectively) if and only if precise in-

formation on which neuron triggers the firing of which –which is accessible in

computational models– is used to identify (causal) avalanches [37]. On the

other hand, a di↵erent analysis –which is the one customarily applied to em-

pirical data– based on defining avalanches through a time-binning procedure,

blind to detailed causal information between activation events, does not reveal

any trace of scale-freedom in avalanche distributions.

These observations naturally pose two important questions. First, if this

model is not self-organized to the edge of a phase transition, where do the

computationally-reported scale-free (causal) avalanches within this model stem

from? And second, does this model constitute a faithful representation of ac-

tual neural dynamics, including the experimentally observed scale-invariant

avalanches?

To answer the first question we designed a simplified dynamical model with an

overall phenomenology very similar to that of the model of [17]: i.e. it exhibits

scale-invariant causal avalanches all along its active phase, regardless of the
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distance to a phase-transition point (which actually can be either a continuous

or a discontinuous one depending on model details). This simplified model –a

variant of the contact process with many di↵erent types of active sites– allowed

us to uncover that scale-invariant avalanches within the active phase stem from

the neutral dynamics among diverse coexisting (causal) avalanches. In partic-

ular, if new seeds of activity are injected at a very slow rate in a system with

recurrent background activity (i.e. in its active phase) each one does not have

a net drift toward contracting or expanding in the background of recurrent ac-

tivity in which it unfolds; its dynamics just follows demographic fluctuations,

much as in neutral theories of population genetics. Moreover, the branching

ratio is equal to unity, and causal avalanches are power-law distributed (as in

the unbiased branching processes), without the model being posed at the edge

of a phase transition. In summary, the observed scale-invariance in a well-

accepted computational model for neuronal dynamics as well as in a simplified

model stems from the neutrality or symmetry between diverse co-existing cas-

cades of causally-related events which coexists in a background of recurrent

activity.

Further results, details and comments can be found in Appendix D.1.



Chapter 3

Self-organized bistability

3.1 Introduction

Self-organized criticality elucidates the conditions under which physical and

biological systems tune themselves to the edge of a second-order phase tran-

sition, with scale invariance. We propose and analyze a theory for the self-

organization to the point of phase-coexistence in systems exhibiting a first-

order phase transition, motivated by the empirical observation of bimodal dis-

tributions of activity in neuroscience and other fields.

Indeed multistability –understood as the existence of diverse stationary states

under a fixed set of conditions– is ubiquitous in physics and in biology [45,

46, 47]. Bistable switches are a common theme in the regulation of cellular

processes such as cycles, di↵erentiation and apoptosis [48] and, often, genes are

expressed in huge episodic bursts interspersed with periods of quiescence [49].

33
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The cerebral cortex exhibits bistability during deep sleep, with an alternation

between high or low levels of neural activity [50, 51, 35]. Real neural networks,

both in vitro and in vivo have been reported to exhibit power-law distributed

avalanches of activity –interpreted to be a sign of underlying criticality– [5];

however, when inhibitory mechanisms are repressed or under epileptic condi-

tions [52], very large events (beyond the expectations of criticality) appear,

and size-distributions become bimodal, suggesting some kind of underlying

bistability.

Here we are interested in spatially extended noisy systems –such as the whole

cortex or gene-expression patterns across tissues– for which a statistical me-

chanics framework is most appropriate. In this context, bistability is tanta-

mount to the existence of a first-order phase transition at which two phases

coexist [46]. A cornerstone result of equilibrium thermodynamics, the Gibbs’

phase rule, establishes that two phases can coexist only at a single tran-

sition point of a one-dimensional parameter space [46] (see however, [53]).

Thus, if biological systems operate in regimes of bistability, there should exist

mechanisms by which they self-tune to the edge of a first-order phase transi-

tion. This idea resembles the rationale behind self-organized criticality (SOC)

[2, 22, 24, 54, 26], which explains why critical-like phenomena are ubiquitous

despite the fact that second-order phase transitions, with their associated crit-

icality, power-laws and scaling, occur only at singular points of phase spaces.

SOC toymodels, such as sandpiles [2, 55, 56]), illustrate how self-tuning to

criticality may occur (see Appendix A.3). Theoretical progress [57, 3, 26, 27]

allowed for a rationalization of how SOC works, by relating it to a standard
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second-order phase transition [46, 58].

The purpose of the present Chapter is to formulate a general theory of self-

organized bistability (SOB) or self-organized phase coexistence by extending

the ideas of self-organization to bistable systems.

3.2 Main Results

3.2.1 “Facilitated” sandpiles.

Early experimental attempts aimed at observing scale-invariant (SOC) avalanches

in real sandpiles did not find the expected power-law distributions. Instead,

they found anomalously large quasi-periodic avalanches, that exceeded the ex-

pectations for large events in SOC (see, e.g. Figure 4 in [59]). The reason

for this is that real sandgrains have a tendency to keep on moving once they

start doing so, dragging other grains, and facilitating the emergence of huge

avalanches. To mimic this e↵ect in a highly-stylized way, we consider the

Manna sandpile and modify it with a facilitation mechanism. In particular,

we let sites that receive grains simultaneously from more than one neighbor

(e.g. from 2) to temporarily (one timestep) decrease their instability threshold

(e.g. to z = 1). This type of cooperative activation is expected to generate

discontinuous transitions [58].

Steady-state avalanche-size distributions P (s) for this facilitated sandpile are

plotted in Fig.3.1 for di↵erent linear system sizes, L. Two facts are in bla-
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Figure 3.1: Avalanche size distributions for the (LEFT) standard
2-dimensional Manna sandpile model and the (RIGHT) facilitated
sandpile model (time distributions for the 2 cases are shown in
the upper insets). Observe the di↵erence in the avalanche expo-
nents, corresponding to the so-called Manna class in the standard
(SOC) case (⌧ ⇡ 1.26, ⌧t ⇡ 1.48) versus (⌧ ⇡ 3/2, ⌧t ⇡ 2) for
the facilitated sandpile. In the facilitated case there are bumps of
anomalously large avalanches or “kings” [60]. The lower insets illus-
trates that“energy” time series are much more sawtooth-like in the
facilitated than in the SOC case owing to the existence of “kings”.

tant contrast with usual sandpile results (also portrayed in Fig.3.1): (i) the

distributions are bimodal and consist of two di↵erent types of avalanches: “reg-

ular ones” and huge avalanches or “kings” [60] –corresponding to the bumps

in the distributions– which reverberate through the whole system, and (ii)

regular avalanches are (nearly) power-law distributed, but with an exponent

⌧ ⇡ 1.5 significantly di↵erent from the value ⌧ = 1.26(5) of standard sandpiles

[61]. The relative abundance of regular and king avalanches can be altered by

changing model details. In any case, the resulting bimodal distributions stem

from the self-organization to a state of bistability, as will shall show by putting

these findings onto a much general framework: the theory of SOB.
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Figure 3.2: Sketch of how –within mean-field theory– the self-
organization mechanism (alternating driving and dissipation at in-
finitely separated timescales) tunes to (A) the critical point of a
second-order phase transition (SOC) or (B) to the hysteretic loop
of a first-order one. In inset in (B) sketches the shape of the po-
tential V and the position of the minima (color code as in the dots
of the main plot) as E is changed. (C) Potential, V (⇢) for di↵erent
values of b, both positive (one minimum) and negative (two min-
ima). For b < 0, the potential depth at the active minima, �, grows
with |b|. Parameters: a = �1.3, ! = c = 1.

3.2.2 SOB: mean-field picture

To construct a mean-field theory of SOB, one needs to replace the model

showing a continuous transition (see Appendix A.3), by its counterpart for a

discontinuous one: ⇢̇(t) = a⇢ � b⇢2 � c⇢3, with b < 0 and c > 0 (the r.h.s.

derives from the potential V (⇢) shown in Fig.3.2, and can be obtained from

the continuous-transition case by assuming an additional facilitation e↵ect).

Indeed, to implement a positive feedback (facilitation) one needs to increase

the a, in the presence of activity, as a ! a + ↵⇢, where ↵ is some constant

shifting �b toward larger values b ! �b + ↵. Also, an additional cubic term

is included to avoid ⇢ ! 1. For the above equation, there is a regime of

bistability for the active and absorbing states, the domains of attraction of
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which are separated by the spinodal line (dashed line in Fig.2B). Coupling, as

in SOC, this dynamics to that of an energy field, E fostering the creation of

further activity (⇢̇(t) = (a + !E)⇢ � b⇢2 � c⇢3), with dynamics Ė = h � ✏⇢

(where ! > 0 is a constant and the double limit h, ✏ ! 0, h/✏ ! 0 should be

considered –see Appendix A.3), the system follows a limit cycle (the hysteretic

loop in Fig.2): a departure from the absorbing/active state is observed only

when local stability is lost (ending points of the spinodal line). Therefore,

within the mean-field approximation, a self-organizing mechanism identical to

that of SOC leads to cyclic bursts of activity –i.e. a sort of phase alternance

1– rather than to a unique point.

3.2.3 SOB: beyond mean-field

To investigate how this simple mean-field picture changes in spatially-extended

noisy systems, in full analogy with the mean-field case, we propose the follow-

ing equations for discontinuous transitions:

@t⇢(~x, t) = [a+ !E(~x, t)]⇢� b⇢2 � c⇢3 +Dr2⇢+ �⌘(~x, t)

@tE(~x, t) = Dr2⇢(~x, t),
(3.1)

with b < 0 and c > 0. In what follows, we vary b (keeping other parameters

fixed) to explore whether diverse regimes emerge. Direct numerical integration

of Eq.(3.1) can be performed in a very e�cient way using the split-step integra-

tion scheme of [63]. Simulations are started by either low or high densities to

1This switching is not to be confused with stochastic resonance [62] which is a noise
induced phenomenon.
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enable the system to reach di↵erent homogeneous steady states, which are sep-

arated by a spinodal line. Results, summarized in Fig.3.3, confirm that both

the size of the jump and the bistability region shrink upon reducing |b| and

that they shrink significantly with respect to their mean-field values (Fig.3.2).

Remarkably, for small values, e.g. b = �0.1, the transition becomes contin-

uous, even if the mean-field approximation predicts a discontinuous one. As

discussed in [64], fluctuation e↵ects typically soften the discontinuity, shrink

bistability regions, and can even alter the order of the phase transition, leading

to noise-induced criticality. For values of |b| larger than a certain (unspecified)

tricritical value |bT | the transition remains discontinuous [65]. We have also

verified that there exists a point of true phase coexistence within the bistabil-

ity regime, i.e. a Maxwell point (defined as the value of Ē, EM , at which a flat

interface separating two halves of the system, one in each phase, does not move

on average, while, for Ē < EM (resp. Ē > EM) the absorbing (active) phase

invades the other one; see dashed lines in Fig.3.3). Moreover, the observed

metastability region shrinks upon enlarging system size.

Having characterized the fixed-energy ensemble, we now let the system self-

organize by switching on slow driving and boundary dissipation as in SOC,

and allow the system to reach its steady state. As illustrated in Fig.3.3, we

observe di↵erent scenarios depending of the value of |b|: (i) Noise-induced

critical regime– For su�ciently small values of |b| (such as b = �0.1) the

transition becomes continuous and the phenomenology is as in SOC (scale-

invariant avalanches with ⌧ ⇡ 1.26 and ⌧t ⇡ 1.48). (ii) King-avalanche dom-

inated regime– In the opposite limit of large values of |b| (e.g. b = �2), we
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Figure 3.3: The three rows show: (Upper) steady state density
⇢ as a function of E in the fixed-E ensemble, (Central) color-
temperature plot of the conditional size distributions P (s|Ē) as
a function of E; king avalanches plotted with a distinct color (ma-
genta), and (Lower) P (s) for di↵erent system sizes; for large |b|,
king avalanches coexist with smaller ones. The three columns show
three di↵erent values of b < 0, (b = �0.1, b = �1 and b = �2, re-
spectively) representatives of di↵erent regimes. System size in the
first two rows is L2 = 212, and L2 = 212, 214, 216 in the bottom one.
Parameter values: a = �1.3, ! = c = D = � = 1.

observe large peaks in P (s) and P (t) for large events or “kings”, coexisting

with smaller (regular) avalanches which are exponentially truncated above a

characteristic cuto↵ time/size, and are responsible for large energy-dissipation

events. (iii) Hybrid regime– For intermediate values of |b| (e.g. b = �1.0), one

has a situation similar to that of the facilitated sandpile (Fig..3.1), in which

power-law distributed regular avalanches (with ⌧ ⇡ 3/2 and ⌧t ⇡ 2) coexist

with kings. In cases (ii) and (iii), E(t) exhibits characteristic sawtooh-like

profiles (as the facilitated sandpile of Fig.3.1) which –as revealed by the pres-

ence of a clear peak in their power spectra (not shown)– are quasi-periodic,
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i.e. E cycles between high and low values (the larger |b| the larger the ex-

cursions). Indeed, Fig.3.3 (central) shows the conditional distribution P (s|Ē),

illustrating that avalanches can be triggered at diverse values of Ē. However,

even if for any finite system, SOB leads to excursions all through the bista-

bility region, we have verified that such regions (and excursions) shrink upon

enlarging system size; thus, in the thermodynamic limit, Ē self-tunes in SOB

systems to a unique point of phase coexistence –the Maxwell point– much as

in SOC [27] and unlike the mean-field picture.

Let us now describe the properties of regular and king avalanches. For regular

ones, recall that right at the Maxwell point Ē = EM both phases are equally

stable, and thus the dynamics is as in the so-called compact directed perco-

lation [66] or voter model, in which a stable phase tries to invade an equally

stable one, giving rise to a complex dynamics at the boundaries separating

both. This type of dynamics is well-known to lead to ⌧ = 3/2 and ⌧t = 2

in two (or larger) dimensions [66, 61, 31], 2, so that –as Ē wanders around

EM– one could anticipate that P (s) ⇠ s�3/2 for regular avalanches, with some

cut-o↵ that depends on |b| (see below).

As illustrated in Fig.3.3, king avalanches (magenta color) can be triggered

whenever Ē is above the Maxwell point of the fixed-energy diagram (Fig.3.3),

i.e. Ē � EM (and not only when Ē reaches the limit of instability of the

absorbing state, as happens in the mean-field picture). The reason for this lies

in the existence of a nucleation process [45] as we describe now. Imagine that,

after driving the system, a large fluctuation creates a large droplet of activity –

2With the possibility of logarithmic corrections in two dimensions.



42 Chapter 3. Self-organized bistability

of linear size/radius R– in an otherwise absorbing configuration. To investigate

the fate of such a droplet in a simple though approximate way, we switch o↵

noise by fixing � = 0 in Eq.(3.1). In this deterministic approximation, one

can safely define a free energy which has two additive contributions: one for

the space integral of the potential V (⇢) (shown in Fig.3.2C), and a surface

tension term proportional to D
R
d~x(r⇢)2. When Ē > EM , the potential at

the active steady state (⇢ > 0) is negative (� < 0) and thus, deeper than that

at 0 (Fig.3.2C). Thus, the creation of an active droplet leads to a competition

between the gain of bulk free energy and the penalty associated with the

formation of an interface between the active and absorbing states. Equating

these two trends, one obtains a critical radius Rc ⇡ 2D/� above which the bulk

contribution dominates and the droplet expands ballistically and compactly

through the whole system [45], giving rise to a “king avalanche”. This heuristic

argument does not strictly apply in the presence of (multiplicative) noise for

which a free energy cannot even be defined. However, recent analytical work

has shown that the most probable path to jump from active to inactive states

in this type of bistable noisy systems involves the creation of a critical droplet

that then expands ballistically through the system [67], putting under more

solid grounds our heuristic approach. Finally, observe that the larger |b| the

smaller Rc, and the stronger the cut-o↵ for regular avalanches.

To visualize these e↵ects, we have kept track of di↵erent avalanches –both

regular and kings– and computed their averaged shape [68]; this is close to a

semicircle for regular avalanches, as correspond to random-walk like processes

[68], while kings, after a transient time, have a radically di↵erent triangu-
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Figure 3.4: Di↵erent averaged shapes of regular an king avalanches.
The inset shows regular avalanches (rescaled by the square-root of
time) as a function of the re-scaled time. The green curve stands for
their average. Main figure: shape of three di↵erent king avalanches,
showing a characteristic triangular shape (linear growing followed
by linear shrinking). The rightmost inset show the activity time-
series fro which these data have been extracted, illustrating the
presence of quasi-periodicity.

lar shape (with linear growth stemming from ballistic expansion, followed by

ballistic extinction stemming from large energy dissipation) – see Fig.3.4.

3.2.4 E↵ects of varying the Di↵usion Coe�cient

Here we briefly present a calculation that allows us to show that the discontinu-

ity as well as the bistability region decrease by decreasing the di↵usion coe�-

cientD. First of all, by assuming that the activity field is homogeneous in space

we can approximate the di↵usion term in equation 3.1 as Dr2⇢ ⇠ 4D(h⇢i�⇢).
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This approximation will work better for bigger values of the di↵usion coe�-

cient. We will treat the expected value of the activity as a constant h, write

down the expression for the stationary probability distribution (which will

contain h) and set up the self-consistency equation h⇢i =
R1
0 ⇢P (⇢)d⇢ = h,

which has an explicit dependence on D. The Fokker-Plank equation (inter-

preted with Itō convention) that describes the time evolution of the probability

density function of the activity field reads:

Ṗ (⇢, t) = � @

@⇢
[(ã⇢+ b⇢2 � c⇢3 + 4Dh)P (⇢, t)] +

�2

2

@2[⇢P (⇢, t)]

@⇢2
, (3.2)

where ã = a+!E�4D. By imposing the probability current to vanish we find

the stationary probability density P (⇢, t) ⇠ exp[ 2
�2 (ã⇢+

b
2⇢

2� c
3⇢

3+4Dh ln ⇢)�

ln ⇢].

3.3 Summary and Conclusions

In summary, we have defined the concept of “self-organized bistability” (SOB)

by extending well-known ideas of self-organization to critical points to systems

exhibiting bistability and phase coexistence and provided an explanation for

the emergence of bimodal distributions –combining aspects of scale invariance

and bistability– as often observed in biological problems. Our goal here is

not that of analyzing a specific example of a real system exhibiting SOB –

of which we believe there are plenty of instances– but rather to characterize

the general mechanism, much as done in SOC. The most promising specific
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example to be pursued is that provided by real neural networks (for which

synaptic resources play the role of E and neural activity that of ⇢), in which

avalanches appear to be distributed with exponents ⌧ ⇡ 3/2 and ⌧t ⇡ 2 [5].

These values –at odds with the expectations of SOC in either 2 or 3-dimensional

systems– are usually justified by making assumptions about the architecture

of the underlying network of connections, a hypothesis which is not always

obvious. Furthermore, anomalously large (king) events, inconsistent with the

predictions from criticality, appear when inhibitory mechanisms are repressed

or under epileptic conditions [52] and a non-trivial temporal organization of

neural avalanches [69] has been reported to exist. Thus, we suggest that it

should be carefully scrutinized under which circumstances cortical networks

(which are known to have facilitation mechanisms) are not self-organized to

a critical point (SOC) –as usually considered– but to a region of bistability

(SOB) with its concomitant mean-field like avalanche exponents, the natural

possibility of king avalanches, and a non-trivial temporal organization. In

future work, we shall extend our theory in a number of ways, including self-

organization in the absence of conservation laws and/or of infinitely separated

time-scales, as well as allowing for global rather than point-like driving; these

extensions will hopefully allow for a more direct connection with biological

systems.



Chapter 4

Synchronization Phase

Transition

4.1 Introduction

Scale-free synchronized outbursts of neural activity recorded by Beggs and

Plenz [5] has been taken as empirical evidence backing the criticality hypoth-

esis, i.e. the conjecture that the awake brain might extract essential func-

tional advantages –including maximal sensitivity to stimuli, large dynamical

repertoires, optimal computational capabilities, etc.– from operating close to

a critical point, separating two di↵erent phases [70, 44, 71, 72].

In order to make further progress, it is of crucial importance to clarify the

nature of the phase transition marked by such an alleged critical point. It is

usually assumed that it corresponds to the threshold at which neural activity

46
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propagates marginally in the network, i.e. to the critical point of a quiescent-

to-active phase transition [5], justifying the emergence of branching-process ex-

ponents [41, 40]. However, several experimental investigations found evidence

that scale-free avalanches emerge in concomitance with collective oscillations,

suggesting the presence of a synchronization phase transition [73, 74].

From the theoretical side, on the one hand, very interesting models account-

ing for the self-organization of neural networks to the neighborhood of the

critical point of a quiescent-to-active phase transition have been proposed

[16, 75, 17, 76]. These approaches rely on diverse regulatory mechanisms [77],

such as synaptic plasticity [78], spike-time-dependent plasticity [79], excitabil-

ity adaptation, etc. to achieve network self-organization to the vicinity of a

critical point. These models have in common that they rely on an extremely

large separation of dynamical timescales (as in models of self-organized critical-

ity1 [22, 24]) which might not be a realistic assumption [16, 52, 80, 76]. Some

other models are more realistic from a neurophysiological viewpoint [17, 11],

but they give rise to scale-free avalanches if and only if causal information

–which is available in computational models but not accessible in experiments

(see Chapter ch:neutral)– is considered. Thus, in our opinion, a sound theo-

retical model justifying the empirical observation of putative criticality is still

missing. On the other hand, from the synchronization viewpoint, well-known

simple models of networks of excitatory and inhibitory spiking neurons exhibit

di↵erentiated synchronous (oscillatory) and asynchronous phases, with a syn-

chronization phase transition in between [19, 81, 18, 82]. However, avalanches

1See Appendix ap:ASOC.
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do not usually appear (or are not searched for) in such modeling approaches

(see, however, [12, 83, 84]).

Concurrently, during deep sleep and also under anesthesia the cortical state

has long been known to exhibit, so called, “up and down” transitions between

states of high and low neural activity, respectively [85, 86], which clearly de-

viate from the possible criticality of the awake brain, and which have been

modeled on their own [50, 51, 17]. Thus, it would be highly desirable to design

theoretical models describing within a common framework the possibility of

criticality, oscillations, and up-down transitions.

Our aim here is to clarify the nature of the phases and phase transitions of

dynamical network models of the cortex by constructing a general unifying the-

ory based on minimal assumptions and allowing us, in particular, to elucidate

what the nature of the alleged criticality is.

To construct such a theory we follow the strategy pioneered by Landau and

Ginzburg. Landau proposed a simple approach to the analysis of phases of mat-

ter and the phase transitions they experience. As we briefly review in Appendix

A.1.3, it consists in a parsimonious, coarse-grained, and deterministic descrip-

tion of states of matter in which –relying on the idea of universality– only rele-

vant ingredients (such as symmetries and conservation laws) need to be taken

into account and in which most microscopic details are safely neglected [87, 46].

Ginzburg went a step further by realizing that fluctuations are an essential in-

gredient to be included in any sound theory of phase transitions, especially

in low-dimensional systems. The resulting Landau-Ginzburg theory, includ-
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ing fluctuations and spatial dependence is regarded as a meta-model of phase

transitions and constitutes a firm ground on top of which the standard theory

of phases of matter rests [46]. Similar coarse-grained theories are nowadays

used in interdisciplinary contexts – such as collective motion [88], population

dynamics [64], and neuroscience [89, 90, 91]– where diverse collective phases

stem out of the interactions among many elementary constituents. In what

follows we propose and analyze a Landau-Ginzburg theory for cortical neural

networks –which can be seen as a variant of the well-known Wilson-Cowan

model (see Appendix ap:BWC) including, crucially, stochasticity and spatial

dependence– allowing us to shed light from a very general perspective on the

collective phases and phase transitions that dynamical cortical networks can

harbor. Employing analytical and, mostly, computational techniques, we show

that our theory explains the emergence of scale-free avalanches, as episodes of

marginal and transient synchronization in the presence of a background of on-

going irregular activity, reconciling the oscillatory behavior of cortical networks

with the presence of scale-free avalanches. Last but not least, our approach

also allows for a unification of existing models describing diverse specific as-

pects of the cortical dynamics, such as up and down states and up-and-down

transitions, within a common mathematical framework, and is amenable of

future theoretical (e.g. renormalization group) analyses.
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4.2 Main Results

We construct a mesoscopic description of neuronal activity, where the building

blocks are not single neurons but local neural populations. These latter can be

thought as small sections of neural tissue [92, 93] consisting of a few thousand

cells (far away from the large-network limit), and susceptible to be described

by a few variables. Even though this e↵ective description is constructed here

on phenomenological bases, more formal mathematical derivations of similar

equations from microscopic models exist in the literature (see e.g. [94]). In

what follows, first (i) we model the neural activity at a single mesoscopic

“unit”, then (ii) we analyze its deterministic behavior as a function of parame-

ter values, and later on (iii) we study the collective dynamics of many coupled

units.

4.2.1 Single-unit model

At each single unit we consider a dynamical model in which the excitatory

activity, ⇢, obeys a Wilson-Cowan equation [95] (that, following the Landau

approach, we truncate to third order in a series expansion) 2:

⇢̇(t) =
⇥
� a+R(t) + b⇢(t)

⇤
⇢(t)� ⇢3(t) + h (4.1)

2We keep up to third order to include the e↵ect of the sigmoid response function; a
variant of the model considering the non-truncated Wilson-Cowan equation leads to almost
identical results; see Section D.3.5
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where a > 0 controls the spontaneous decay of activity, which is partially

compensated by the generation of additional activity at a rate proportional

to the amount of available synaptic resources, R(t); he quadratic term with

b > 0, controls non-linear integration e↵ects3; finally, the cubic term imposes

a saturation level for the activity, preventing unbounded growth, and h is an

external driving field.

A second equation is employed to describe the dynamics of the available synap-

tic resources, R(t), through the combined e↵ect of synaptic depression and

synaptic recovery, as encoded in the celebrated model of Tsodyks and Markram

(TM) for synaptic plasticity [78, 21]:

Ṙ(t) =
1

⌧R
(⇠ �R(t))� 1

⌧D
R(t)⇢(t), (4.2)

where ⌧R (resp. ⌧D) is the characteristic recovery (depletion) time, and ⇠ is the

baseline level of non-depleted synaptic resources. Importantly, we have also

considered variants of this model, avoiding the truncation of the power-series

expansion, or including an inhibitory population as the chief regulatory mech-

anism: either of these extensions leads to essentially the same phenomenology

and phases as described in what follows, supporting the robustness of the

forthcoming results (see Appendix D.3.5).

3Single neurons integrate many presynaptic spikes to go beyond threshold, and thus
their response is non-linear: the more activity the more likely it is self-sustained [92]. As
a matter of fact, the Wilson-Cowan model includes a sigmoid response function with a
threshold, implying that activity has to be above some minimum value to be self-sustained,
and entailing b > 0 in the series expansion (see Appendix D.3).
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Figure 4.1: Phase portraits and nullclines for the (deterministic)
dynamics, Eqs.(D.13) and (4.2). Nullclines are colored in blue
(⇢̇ = 0) and red (Ṙ = 0), respectively; fixed points (⇢⇤, R⇤) –at
which nullclines intersect– are highlighted by green full (empty)
circles for stable (unstable) fixed points. Background color code
(shifting from blue to purple) represents the intensity of the vector
field (⇢̇, Ṙ), whose direction is represented by small grey arrows. A
trajectory illustrating a limit cycle is showed in green in (A). The
system exhibits either (A) an oscillatory regime or (B) a region of
bistability, in between a down (left) and an up (right) state. It is
possible to shift from case (A) to case (B) and viceversa by chang-
ing just one parameter; e.g. the timescale of resources depletion,
⌧�1
D (0.016 and 0.001 for cases (A) and (B), respectively). Other
parameter values: h = 10�3, a = 0.6, b = �1.3, ⌧R = 103; control
parameter, from left to right, ⇠ = 0.3, 1.6, 2.3 in the upper panel
and ⇠ = 0.2, 0.4, 0.7 in the lower one.
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4.2.2 Mean-field analysis

We analyze, both analytically and computationally, the dynamics of the single

unit, as given by Eqs.(D.13) and (4.2). We obtain the fixed points (⇢⇤, R⇤) of

the dynamics –i.e. the possible steady-states at which the system can settle– as

a function of the baseline-level of synaptic resources, ⇠, which plays the role of

a control parameter (all other parameters are kept fixed to reasonable values,

as summarized in the caption of Fig.4.1). For small values of ⇠, the system falls

into a quiescent or down state with ⇢⇤ ⇡ 0 and R⇤ ⇡ ⇠ 4. Instead, for large

values of ⇠ there is an active or up state with self-sustained spontaneous activity

⇢⇤ > 0 and depleted resources R⇤ < ⇠. In between these two limiting phases,

two alternative scenarios can appear, depending on some parameter values,

as illustrated in Fig.4.1 and summarized in the phase diagram of Appendix

ap:Csynchro) can appear depending on the time scales ⌧D and ⌧R:

(A) A stable limit cycle (corresponding to an unstable fixed point, with com-

plex eigenvalues) emerges for intermediate values of ⇠ (in between two Hopf

bifurcations) as illustrated in Fig.4.1A. This Hopf-bifurcation scenario has been

extensively discussed in the literature (see e.g. [96]) and it is at the basis of

the emergence of oscillations in neural circuits.

(B) An intermediate regime of bistability including three fixed points is found

for intermediate values of ⇠ (in between two saddle-node bifurcations): the up

and the down ones, as well as an unstable fixed point in between (as illustrated

in Fig.4.1B). This saddle-node scenario is the relevant one in models [50, 36, 17]

4Deviations from ⇢

⇤ = 0 stem from the small but non-vanishing external driving h 6= 0.
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describing transitions between up (active) and down (quiescent) states as they

occur in the brain during sleep or under anesthesia [85, 86]

Two remarks are in order. The first is that one can shift from one scenario to

the other just by changing one parameter, e.g. the synaptic depletion timescale

⌧D 5; the second and important one is that none of the two scenarios exhibits

a continuous transition (transcritical bifurcation) separating the up from the

down regimes; thus, at this deterministic level there is no precursor of a critical

point for marginal propagation of activity.

4.2.3 Stochastic network model

We now introduce stochastic and spatial e↵ects in the simplest possible way.

For this, we consider a network of N nodes coupled following a given connec-

tion pattern, as described below. Each network node represents a mesoscopic

region of neural tissue or “unit” as described above. On top of this deter-

ministic dynamics, we consider that each unit (describing a finite population)

is a↵ected by intrinsic fluctuations [94, 90, 97]. More specifically, Eq.(D.13)

is complemented with an additional term +A(⇢)⌘(t) which includes a (zero-

mean, unit-variance) Gaussian noise ⌘(t) and a density-dependent amplitude

A(⇢)6 i.e. a multiplicative noise [43].

5Note that the slope of the the nullcline deriving from Eq.(4.2) (red in Fig.4.1) is propor-
tional to ⌧D: if it is small enough, there exists only one unstable fixed point, giving rise to a
Hopf bifurcation; otherwise the nullclines intersect at three points, generating the bistable
regime.

6In the limit of slow external driving and up to leading order in an expansion in powers of
⇢, this can be written as A(⇢) = �

p
⇢(t), where � is a noise amplitude; this stems from the

fact that the spiking of each single neuron is a stochastic process, and the overall fluctuation
of the density of a collection of them scales with its square-root, as dictated by the central
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At macroscopic scales, the cortex can be treated as a two-dimensional sheet

consisting mostly of short-range connections [98]7. Although long-range con-

nections are also known to exist, and small-world e↵ects have been identified in

local cortical regions [100], here we consider a two-dimensional square lattice

(size N = L2) of mesoscopic units as the simplest way to embed our model

into space. Afterward, we shall explore how our main results are a↵ected by

the introduction of more realistic network architectures including additional

layers of complexity such as long-range connections and spatial heterogeneity.

Following the parsimonious Landau-Ginzburg approach adopted here, the cou-

pling between neighboring units is described up to leading order by a di↵usion

term. This type of di↵usive coupling between neighboring mesoscopic units

stems from electrical synapses [92, 101], has some experimental backing [102],

and has been analytically derived starting from models of spiking neurons [89]

8. Thus, finally, the resulting set of coupled stochastic equations is:

8
>><

>>:

⇢̇i(t) = (�a+Ri + b⇢i)⇢i � ⇢3i + h+Dr2⇢i + �
p
⇢i⌘i

Ṙi(t) =
1
⌧
R

(⇠ �Ri)� 1
⌧
D

Ri⇢i

(4.3)

where, for simplicity, some time dependences have been omitted; ⇢i(t) and

Ri(t) are, respectively, the activity and resources at a given node i (with i =

1, 2, ...N) and time t, Dr2⇢i ⌘ D
P

j2n.n.i(⇢j � ⇢i), describes the di↵usive

limit theorem [43] (see also [94] for a detailed derivation of the square-root dependence).
7This type of approach is at the bases of, so-called, neural-field models, with a long

tradition in neuroscience [99].
8More elaborated approaches including coupling kernels between di↵erent regions, as well

as asymmetric ones, are also often considered in the literature (e.g. [91]), but here we stick
to the simplest possible coupling.
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coupling of unit i with its nearest neighbors j, with (di↵usion) constant D.

The physical scales of the system are controlled by the values of the parameters

D and �; however, given that, as illustrated in Appendix ap:Csynchro, results

do not change qualitatively upon varying parameter values (as long as they are

finite and non-vanishing), here we take D = � = 1 for the sake of simplicity.

Eq.(4.3) constitutes the basis of our theory. In principle, this set of equations

is amenable to theoretical analyses, possibly including renormalization ones

[46]. However, here we restrict ourselves to computational studies aimed at

scrutinizing what is the basic phenomenology, leaving more formal analyses for

the future. In particular, we resort to numerical integration of the stochastic

equations Eq.4.3, which is feasible thanks to the e�cient scheme developed in

[63] to deal with multiplicative noise. We consider �t = 0.01 as an integration

timestep and keep, as above, all parameters fixed, except for the baseline level

of synaptic resources, ⇠, which works as a control parameter.

4.2.4 Phases and phase transitions: Case A

We start analyzing a sets of parameters lying within case A above. We study

the possible phases that emerge as ⇠ is varied. These are illustrated in Fig.

4.2 where characteristic snapshots, overall-activity time series, as well as raster

plots are plotted.
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Figure 4.2: Illustration of the diverse phases emerging in the model
(case A). The baseline of synaptic resources, ⇠, increases from top
to bottom: ⇠ = 0.4 (down-state), ⇠ = 1.2 (synchronous regime),
⇠ = 2.47 (critical point for the considered size, N = 1282), ⇠ = 2.7
(asynchronous phase), and ⇠ = 5 (active phase). First column:
Snapshots of typical configurations; the color code represents the
level of activity at each unit as shown in the scale. The network-
spiking or synchronous irregular case, is characterized by waves of
activity growing and transiently invading the whole system, before
extinguishing the resources and coming to an end. On the other
hand, in the nested-oscillation or asynchronous irregular regime
multiple traveling waves coexist, interfering with each other. In the
up-state waves are no longer observed and a homogeneous state
of self-sustained activity is observed. Second column: Timeseries
of the overall activity averaged over the whole network. In the
down state activity is almost vanishing. In the synchronous phase
macroscopic activity appears in the form of almost synchronous
bursts, interspersed by almost silent intervals. At the critical point
network spikes begin to superimpose, giving rise to complex oscil-
latory patterns (nested oscillations) and marginally self-sustained
global activity all across the asynchronous regime; finally, in the
up state the global activity converges to steady-state with small
fluctuations.
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Figure 4.2: Third column: Steady state probability distribution
P (⇢) for the global activity: in the down state and the network
spiking regime the distributions are shown in a double-logarithmic
scale; observe the approximate power-law for very small values of
⇢ stemming from the presence of multiplicative noise (see Chapter
5). Fourth column: Illustration of the di↵erent levels of synchro-
nization across phases: a sample of 200 randomly chosen units are
mapped into oscillators using their analytic-signal representation
(see Methods); the plot shows the time evolution of their corre-
sponding phases �A

k . Observe the almost periodic behavior in the
synchronous phase, which starts blurring at the critical point, and
progressively vanishes as the control parameter is further increased.
Parameter values: a = 1, b = 1.5, ⌧R = 103, ⌧D = 102, h = 10�7.

(A1) Down-state phase

If the baseline level ⇠ is su�ciently small (i.e. ⇠ . 0.75), resources R are

always scarce and the system is unable to produce self-sustained activity

(i.e. it is hardly excitable) giving rise to a down-state phase, character-

ized by very small stationary values of the network time-averaged activity

⇢̄ ⌘ 1
T

R T

0 dt 1
N

PN
i=1 ⇢i(t) for large times T (see Fig.4.2a). The quiescent state

is disrupted only locally by the e↵ect of the driving field h, which creates local

activity, hardly propagating to neighboring units.

(A2) Synchronous irregular (SI) phase

Above a certain value of resource baseline (⇠ & 0.75) there exists a wide region

in parameter space in which activity generated at a seed point is able to prop-

agate to neighboring units, triggering a wave of activity which transiently in-

vades the whole network until resources are exhausted, activity ceases, and the
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recovery process restarts (see Fig. 4.2b). Such waves or “network-spikes” ap-

pear in a non-periodic fashion, with an average separation time that decreases

with ⇠. In the terminology of Brunel [18], this corresponds to a synchronous

irregular (SI) state/phase, since the collective activity is time-dependent and

individual spiking is irregular (as discussed below). This wax-and-wane state

resembles the huge bursts of anomalous synchronous activity as they appear

in e.g. epileptic tissues [103].

(A3) Asynchronous irregular (AI) phase

For even larger values of resource baseline (⇠ & 2.15), the level of synaptic re-

covery is su�ciently high so that network-regions depleted of resources recover

fast enough as to become susceptible of propagating new waves before activity

has extinguished in the network. Thereby, diverse spatially extended waves

coexist in the network, giving rise to a collective complex oscillatory pattern

(see Fig. 4.2d; which is strikingly similar to, e.g. EEG data of ↵�rhythms

[104]). The amplitude of these oscillations, however, decreases upon increasing

network size (as many di↵erent local waves are averaged and deviations from

the mean tend to be washed away). This regime can be assimilated to an

asynchronous irregular (AI) phase of Brunel [18] (see below).

(A4) Up-state phase

For even larger values of ⇠, plenty of synaptic resources are available at all

times, giving rise to a state of perpetual activity with small fluctuations around
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the mean value (Fig. 4.2e), i.e. an up state. Let us finally remark, that as

explicitly shown in the Section D.3.9, the AI phase and the Up-state cannot

be distinguished in the infinite network-size limit, in which there are so many

waves to be averaged that a homogeneous steady state emerges on average in

both cases.

Figure 4.3: Overall network activity state (case A) as determined by
the network time-averaged value ⇢̄ (h = 10�7). (A) Order param-
eter ⇢̄ as a function of the control parameter ⇠ for various system
sizes N = 642, 1282, 2562, 5122 (from bottom to top); observe that
⇢̄ grows monotonically with ⇠ and that an intermediate regime, in
which ⇢̄ grows with system size, emerges between the up and the
down states. (B) Inset: Standard deviation of the averaged overall
activity in the system multiplied by

p
N ; ⌅ = �⇢

p
N (see main

text); The point of maximal variability coincides with the point of
maximal slope in (A) for all network sizes N . (C) Finite-size scal-
ing analysis of the peaks in (B). The distance of the size-dependent
peak locations ⇠c(N) from their asymptotic value for N ! 1, ⇠1c ,
scales as a power law of the system size, taking ⇠1c ⇡ 2.15, revealing
the existence of true scaling as corresponds to criticality.
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Figure 4.4: Synchronization transition elucidated by mea-
suring the Kuramoto parameter as estimated using (A) the
analytic signal representation Ak(t) of activity time series ⇢k(t) at
di↵erent units k and for various system sizes (N = 1282 (red), 2562

(orange), 5122 (green)). For illustrative purposes, the top right in-
set of (A) shows the analytical representation (including both a real
and an imaginary part) of 5 sample units as a function of time; the
inset on the left shows the time evolution of one node (gray) to-
gether with the amplitude of its analytic representation (blue) Both
insets, vividly illustrate the oscillatory nature of the unit dynam-
ics. (B) Results similar to those of (A), but employing a di↵erent
method to compute time-dependent phases of e↵ective oscillators
(see Methods). This alternative method captures more clearly the
emergence of a transition; the point of maximum slope of the curves
corresponds to the value of the transition points ⇠c(N) in (A). The
inset in (B) shows the coe�cient of variation CV (ratio of the stan-
dard deviation to the mean) of the times between two consecutive
crossings of the value 2⇡; it exhibits a peak of variability at the
critical point ⇠c(N).
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Phase transitions

Having analyzed the possible phases, we now discuss the phase transitions

separating them. For all the considered network sizes the time-averaged overall

activity, ⇢̄, starts taking a distinctively non-zero value above ⇠ ⇡ 0.75 (see

Fig.4.3), reflecting the upper bound of the down or quiescent state (transition

between A1 and A2). This phase transition is rather trivial and corresponds to

the onset on network spikes i.e. oscillations (whose characteristic time depends

on various factors, such as the synaptic recovery time [105] and the baseline

level of synaptic resources).

More interestingly, Fig.4.3 also reveals that ⇢̄ exhibits an abrupt increase at

(size-dependent) values of ⇠, between 2 and 3, signaling the transition from

A2 to A3. However, the jump amplitude decreases as N increases, suggesting

a smoother transition in the large-N limit. Thus it is not clear a priori, using

⇢̄ as an order parameter, whether there is a true sharp phase transition or

there is just a crossover between the synchronous (A2) and the asynchronous

(A3) regimes. To elucidate the existence of a true critical point, we measured

the standard deviation of the network-averaged global activity ⇢̄, �⇢. Direct

application of the central limit theorem [43] would imply that such a quantity

should decrease as 1/
p
N for large N and thus, � ⌘

p
N�⇢ should converge

to a constant. However, Fig. 4.3B shows that � exhibits a very pronounced

peak located at the (N -dependent) transition point between the A2 and the

A3 phases; furthermore its height grows with N –i.e. it diverges in the thermo-

dynamic limit– revealing strong correlations and anomalous scaling, as occurs
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at critical points. Also, a finite-size scaling analysis of the value of ⇠ at the

peak (for each N), i.e. ⇠c(N), reveals the existence of finite-size scaling, as

corresponds to a bona fide continuous phase transition at ⇠1c ' 2.15(5) in the

infinite-size limit (see Fig. 4.3C). Moreover, a detrended fluctuation analysis

[106, 107] of the timeseries reveals the emergence of long-range temporal cor-

relations right at ⇠c (see Appendix D.3.8), as expected at a continuous phase

transition.

To shed further light on the nature of such a transition, it is convenient to

employ a more adequate (synchronization) order-parameter. In particular, we

consider the Kuramoto index K –customarily employed to detect synchroniza-

tion transitions [108]– defined as K ⌘ 1
N

D���
PN

k=1 e
i�

k

(t)
���i –where i is the imag-

inary unit, |·| is the modulus of a complex number, h·i here indicates averages

over time and independent realizations, and k runs over units, each of which

is characterized by a phase, �k(t) 2 [0, 2⇡], that can be defined in di↵erent

ways. For instance, an e↵ective phase �A
k (t) can be assigned to the time-series

at unit k, ⇢k(t), by computing its analytic signal representation, which maps

any given real-valued timeseries into an oscillator with time-dependent phase

and amplitude (see Appendix D.3). Using the resulting phases, �A
k (t), the Ku-

ramoto index KA can be calculated. As illustrated in Fig. 4.4A, it reveals the

presence of a synchronization transition: the value of KA clearly drops, at the

previously determined critical point ⇠c(N). An alternative method to define

a time-dependent phase for each unit (details discussed in Appendix D.3) re-

veals even more vividly the existence of a synchronization transition at ⇠c(N)

as shown in Fig. 4.4B. Finally, we have also estimated the coe�cient of vari-
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ation (CV) of the distance between the times at which each of these e↵ective

phases crosses the value 2⇡; this analysis reveals the presence of a sharp peak

of variability, converging for large network sizes to the critical point ⇠1c ⇡ 2.15

(see inset of Fig. 4.4B).

Thus, recapitulating, the phase transition separating the down state from the

synchronous irregular regime (A1-A2 transition) is trivial and corresponds to

the onset of network spikes, with no sign of critical features. In between

the asynchronous and the up state (A3-A4) there is no true phase transition,

as both phases are indistinguishable in the infinitely-large-size limit (see Ap-

pendix D.3.9). On the other hand, di↵erent measurements clearly reveal the

existence of a bona fide synchronization phase transition (A2-A3) at which

non-trivial features characteristic of criticality emerge.

4.2.5 Avalanches

For ease of comparison with empirical results, we define a protocol to ana-

lyze avalanches that closely resembles the experimental one, as introduced by

Beggs and Plenz [5]. Each activity timeseries of an individual unit can be

mapped into a series of discrete-time “spikes” or “events” as follows. As il-

lustrated in Fig.4.5A, a “spike” corresponds to a period in which the activity

at a given unit is above a given small threshold in between two windows of

quiescence (activity below threshold).9 Hence, as illustrated in Fig.4.5B, the

network activity can be represented as a raster plot of spiking units. Following

9Results are quite robust to the specific way in which this procedure is implemented. See
Appendix ap:Csynchro section as well as the caption of Fig.4.5 and Appendix D.3.10.
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the standard experimental protocol a discrete time binning �t is chosen and

each individual spike is assigned to one such bin. An avalanche is defined as

a consecutive sequence of temporally-contiguous occupied bins preceded and

ended by empty bins (see Fig.4.5B and C). Quite remarkably, using this pro-

tocol several well-known experimental key features of neuronal avalanches can

be faithfully reproduced by tuning ⇠ to a value close to the synchronization

transition. In particular:

For ease of comparison with empirical results, we define a protocol to an-

alyze avalanches, closely resembling the experimental one as introduced by

Beggs and Plenz [5]. Individual-unit activity timeseries can be mapped into a

discrete-time “spiking” pattern (see Fig.4.5A), as follows. A unit “spike” cor-

responds to a period in which its activity is above a given small threshold in

between two windows of quiescence (activity below threshold) for such a unit

10. Hence, as illustrated in Fig.4.5B, the network activity can be represented

by a raster plot of spiking units. Following the standard experimental proto-

col, a discrete time binning �t is chosen and individual spikes are grouped into

temporally contiguous clusters. An avalanche is thus a consecutive sequence

of (occupied) temporal bins, i.e. with some spike, preceded and ended by two

(empty) bins of network quiescence (this procedure is illustrated in Fig.4.5

B and C). Using this, quite remarkably, several well-known experimental key

features are reproduced if ⇠ is tuned to a value close to the synchronization

transition, namely:

10Results are quite robust to the specific way in which this procedure is implemented;
details deferred to the Methods section. See also Fig.4.5 caption and Section D.3.10).
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(i) The sizes and durations of avalanches of activity are found to be broadly

(power-law) distributed at the critical point; these scale-invariant avalanches

coexist with anomalously large events or “waves” of synchronization, as re-

vealed by the “heaps” in the tails of the curves of in Fig.4.5D and E.

(ii) Changing �t, power-law distributions with varying exponents are obtained

at criticality (the larger the time bin, the smaller the exponent) as originally

observed experimentally by Beggs and Plenz (Fig.4.5E).

(iii) In particular, when �t is chosen to be equal to the ISI (inter-spike time

interval, i.e. the time interval between any two consecutive spikes), avalanche

sizes and durations obey –at criticality– finite-size scaling with exponent values

compatible with the standard ones, i.e. those of an unbiased branching process

(see Fig.4.5B and C as well as Appendix D.3.10).

(iv) Reshu✏ing the times of occurrence of unit’s spikes, the statistics of avalanches

is dramatically changed, giving rise to exponential distributions (as expected

for an uncorrelated Poisson point process) thus revealing the existence of a

non-trivial temporal organization in the dynamics (Fig.4.5E).

(v) Away from the critical point, both in the sub-critical and in the super-

critical regime, deviations from this behavior are observed; in the subcritical

or synchronous regime, the peak of periodic large avalanches becomes much

more pronounced, while in the asynchronous phase, such a peak is lost and

distribution functions become exponential ones with a characteristic scale (see

Fig.4.5D).

Summing up, our model tuned to the edge of a synchronization/desynchronization
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phase transition reproduces all chief empirical findings for neural avalanches.

These findings strongly suggest that the critical point alluded by the critical-

ity hypothesis of cortical dynamics does not correspond to a quiescent/active

phase transition –as modeling approaches usually assume– but to a synchro-

nization phase transition, at the edge of which oscillations and avalanches

coexist.

It is important to underline that our results regarding the emergence of scale-

free avalanches are purely computational. To date, we do not have a the-

oretical understanding of why results are compatible with branching-process

exponents. In particular, it is not clear to us if a branching process could

possibly emerge as an e↵ective description of the actual (synchronization) dy-

namics in the vicinity of the phase transition, or whether the exponent values

appear as a generic consequence of the way temporally-defined avalanches are

measured (see [84]). These issues deserve to be carefully scrutinized in future

work.

The role of heterogeneity

Thus far we have described homogeneous networks with local coupling. How-

ever, long-range connections among local regions also exist in the cortex, and

mesoscopic units are not necessarily homogeneous across space [109, 100].

These empirical facts motivated us to perform additional analysis of our the-

ory, in which slightly modified substrates are employed. First, we considered

small-world networks, and verified that our main results (i.e. the existing
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phases and phase transitions) are insensitive to the introduction of a small

percentage of long-range connections (see Appendix D.3.7). However, details

such as the boundaries of the phase diagram, the shape of propagation waves,

and the amplitude of nested oscillations do change.

More remarkably, as described in detail in Appendix D.3.7, a simple exten-

sion of our theory in which parameters are not taken to be homogeneous but

position-dependent, i.e. heterogeneous in space, is able to reproduce remark-

ably well empirical in vitro results for neural cultures with di↵erent levels of

mesoscopic structural heterogeneity [110].

To further explore the influence of network architecture onto dynamical phases,

in future work we will extend our model employing empirically-obtained large-

scale networks of the human brain, as their heterogeneous and hierarchical-

modular architecture is known to influence dynamical process operating on

them [100, 111].

4.2.6 Phases and phase transitions: Case B

We discuss the much simpler scenario for which the deterministic/mean-field

dynamics predicts bistability, i.e. case B above, which is obtained e.g. con-

sidering a slower dynamic for synaptic-resource depletion. In this case, the

introduction of noise and space, does not alter the deterministic picture. In-

deed, computational analyses reveal that there are only two phases: a down

state and an up one for small and large values of ⇠, respectively. These two

phases have the very same features as their corresponding counterparts in case
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A. The phase transition between them is discontinuous (much as in Fig. 1B)

and thus, for finite networks, fluctuations induce spontaneous transitions be-

tween the up and the down state when ⇠ takes intermediate values, in the

regime of phase coexistence. Thus, in case B, our theory constitutes a sound

Landau-Ginzburg description of existing models, such as those in [17, 50, 51],

describing up and down states and up-and-down transitions.

4.2.7 Large separation of timescales: self-organized bista-

bility

Remarkably, this set of equations 4.3 exhibits profound analogies with the

theory of SOB, as introduced in the previous Chapter. We want to discuss

here if SOB can be encompassed by a synaptic plasticity mechanism, thus

proving relevant in neuroscience. An important point to stess is that while in

SOB the background field is conserved in the bulk (only driving events and

boundary dissipation make the total integral value fluctuate in time), the above

equation for Ṙ(t) is not conserved in general. However, it includes a (positive)

term for the charging/recovery of resources which is tantamount to driving

in SOB as well as a (negative) term for the activity-dependent consumption

of resources. The limit of SOB can be recovered for infinitely slow synaptic

dynamics1/⌧R ! 0 and 1/⌧D ! 0, while ⌧D/⌧R ! 0. In fact, while the

synaptic timescales become larger and larger, the dependence on the control

parameter ⇠ becomes weaker and weaker. Moreover, in the mean-field picture,

the relation between the two timescales is such that the slope of the nullcline
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Ė = 0 goes to zero in the thermodynamic limit, making sure that (for any

–reasonable– value of the parameter ⇠) only one unstable fixed point exists.

In Fig.4.6 we plot a measure of avalanches statistics, showing that SOB behav-

ior is finely reproduced: the dynamics consists of avalanches of activity (mea-

sured as activity over threshold, as usually done in absorbing/active phase

transitions) occurring in between two consecutive quiescent (down) periods,

eith the usual branching-process universality class exponents, interspersed with

anomalously large or ”king avalanches”, much as in SOB. However, this ex-

treme separation of timescales does not seem to be neuro-physiologically re-

alistic. In fact, if we take as a reference the neural activity timescale, which

is of the order of the millisecond, the self-organization limit would be repro-

duced for synaptic timescales of the order of 10 to 1000 seconds, whereas, in

neurophysiological measurements, such scales are comprised between few tens

and few hundreds of milliseconds [96, 112, 113]. Moreover an additional caveat

is that finite size scaling would be correctly reproduced if synaptic timescales

scaled with the system size, which is biologically unplausible [80]. Given the

variety of synaptic timescales measured both locally and temporally [114],

it is possible that self-organization cannot be achieved without including in

the picture further mechanisms, such as neuromodulation, inhibition, spike

timing-dependent plasticity, which regulate the synaptic timescales, allowing

biological neural networks to span from up/down states to scale-invariance

plus oscillatory behavior to self-organization to criticaliy.
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Figure 4.5: Avalanches measured from activity time series. (A)
Illustration of the activity timeseries ⇢i(t) at a given unit i. Estab-
lishing a threshold value ✓ (dashed red line, close to the origin) a
single “event” or “unit spike” is defined by convention at the time
of the maximal activity in between two threshold crossings (n.b.
the forthcoming results are robust to changes in this criterion; see
Section D.3.10); a weight equal to the area covered in between the
two crossings is assigned to each event (note the color code). This
allows us to map a continuous time-series into a discrete series of
weighted events. The time distance between two consecutive events
is called inter-event interval (IEI). (B) Raster plot for a system
with 64 units, obtained using the procedure above for each unit.
Observe that large events coexist with smaller ones, and that these
last ones, occur in a rather synchronous fashion. The overall time-
dependent activity is marked with a black line. (C) Zoom of a part
of (B) illustrating the time resolved structure and using a time
binning �t equal to the network-averaged IEI. Shaded columns
correspond to empty time bins, i.e. with no spike. Avalanches are
defined as sequences of events occurring in between two consecutive
empty time bins and are represented by the black bars above the
plot. (D) Avalanche-size distribution (the size of the avalanche is
the sum of the weighted spikes it comprises) for diverse values of
⇠ (from 1.85 to 2.05, in blueish colors, from 2.7 to 2.9 in greenish
colors, and from 3.3 to 3.45 in orangish colors) measured from the
raster plot �t = IEI.
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Figure 4.5: The (red) triangle, with slope 3/2 is plotted as a
reference, illustrating that, near criticality, a power law with an
exponent similar to the experimentally measured one is recov-
ered. Away from the critical point, either in the synchonous phase
(blueish colors) and the asynchronous one (orangish) clear devia-
tions from power-law behavior are observed. Observe the presence
of “heaps” in the tails of the distributions, especially in the syn-
chronous regime; these correspond to periodic waves of synchro-
nized activity (see Section D.3.11); they also appear at critical-
ity, but at progressively larger values for larger system sizes. (E)
Avalanche-duration distribution, determined with di↵erent choices
of the time bin. The experimentally measured exponent 2 is repro-
duced using �t = IEI, whereas deviations from such a value are
measured for smaller (larger) time bins, in agreement with experi-
mentally reported results. After reshu✏ing times, the distributions
become an exponential, with characteristic timescales depending on
�t (dashed lines).
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Figure 4.6: Avalanche distributions in the limit of extremely slow
synaptic-resources dynamics, for the spatially extended noisy sys-
tem (� = D = 1). Probability distribution for avalanche durations
T (left), avalanche sizes S (center) and average avalanche size as a
function of duration (right) in double logarithmic scale, for square-
lattice systems of sizes: N = 212, 214 and 216. The dashed lines are
plotted as a guide to the eye, and have the slopes corresponding to
the expectations for an unbiased branching process (�2,�3/2 and
2, respectively) as experimentally observed. The “bumps” in the
blue curves, correspond to anomalously large events, i.e. synchro-
nized spiking events, occurring in the SI phase. The cut-o↵s/bumps
change with N obeying finite-size scaling as in the theory of self-
organized bistability (see Chapter 3). Parameters: b = �0.5 a = 1,
h = 10�7.
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4.3 Summary and Conclusions

Aimed at shedding light on the issues concerning the criticality hypothesis in

the brain and in particular establishing what these phases are, and what the

nature of the putative critical point is, here we followed a classical statistical-

physics approach: following the parsimony principle of Landau and Ginzburg

in the study of phases of the matter and the phase transitions they experi-

ence, we proposed a simple stochastic mesoscopic theory of cortical dynamics

that allowed us to classify the possible emerging phases of cortical networks

under very general conditions. For the sake of specificity and concreteness we

focused on a regulatory dynamics –preventing the level of activity to explode–

controlled by synaptic plasticity (depletion and recovery of synaptic resources),

but analogous results can be obtained considering e.g. inhibition as the chief

regulatory mechanism. As a matter of fact, our conclusions are quite robust

and general and do not essentially depend on specific details of the implemen-

tation, the nature of the regulatory mechanism, or the network architecture.

Importantly, taking advantage of experience from the theory of phase transi-

tions, we introduce two additional key ingredients: intrinsic stochasticity stem-

ming from the non-infinite size of mesoscopic regions, and spatial dependence.

In this way, our theory consists of a set of stochastic Wilson-Cowan equations

and can be formulated as a field theory, employing standard techniques [115].

Using our Landau-Ginzburg approach, we have shown that the stochastic and

spatially extended neural networks can harbor two di↵erent scenarios depend-

ing on parameter values: case (A) including a limit cycle at the deterministic
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level and the possibility of oscillations and case (B) leading to bistability (see

Fig.4.1).

In the simpler case (B) our complete theory generates a down and a homoge-

neous up-state phase, with a discontinuous transition separating them, and the

possibility of up-down transitions when the system operates in the bistability

region. In this case, our theory constitutes a sound mesoscopic description

of existing microscopic models for up-and-down transitions [17, 50, 36, 20] as

observed in the cortex during deep sleep or under anesthesia [85, 86].

On the other hand, in case (A), we find diverse phases including oscillatory

and bursting phenomena: down states, synchronous irregular, asynchronous

irregular, and active states. 11

Within our framework, it is possible to define a protocol to analyze avalanches,

resembling very closely the experimental one [5, 7, 6, 10, 11]. Thus, in con-

trast with other computational models, causal information is not explicitly

needed/employed here to determine avalanches –they are determined from raw

data– and results can be straightforwardly compared to experimental ones for

neuronal avalanches, without conceptual gaps (see Chapter 2).

The model reproduces all the main features observed experimentally: (i) power-

law distributed avalanche sizes and durations emerge only at the critical point

of the synchronization transition, while deviations from such a behavior occur

away from the critical point, in either phase. (ii) The corresponding exponent

11As a side remark, note that, in the search of a mesoscopic description of cortical networks
of spiking neurons, we constructed a coarse-grained model for the network activity. However,
our analyses readily revealed the “spiking” nature of the activity dynamics, underlying the
fundamental role of oscillations and partial synchronization in neural dynamics across scales.
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values depend on the time bin �t, required to define avalanches, but (iii) fixing

the time bin �t to coincide with the inter-event interval, IEI, the same statis-

tics as in empirical networks, i.e. the critical exponents compatible with those

of an unbiased branching process (see Chapter 5) are obtained; and finally (iv)

scale-free distributions disappear if events are reshu✏ed in time, revealing a

non-trivial temporal organization.

Thus, the main outcome of our analyses is that the underlying phase transition

at which scale-free avalanches emerge does not separate a quiescent state from

a fully active one but a synchronization transition, separating regimes in which

mesoscopic units tend to become active synchronously or asynchronously, re-

spectively. This is a crucial observation, as most of the existing modelling

approaches for critical avalanches in neural dynamics to date rely on a con-

tinuous quiescent/active phase transition, and this is not a pertinent choice as

we have argued above.

Let us also remark that –consistently with our findings– the amazingly detailed

model put together by the Human Brain Project consortium seems to suggest

that the model best reproduces experimental features when tuned near to its

synchronization critical point [116]. In such a study, the concentration of Cal-

cium ions, Ca2+ needs to be carefully tuned to its actual nominal value to set

the network state. Similarly, in our approach, the role of the calcium concen-

tration is played by the parameter ⇠, regulating the maximum level reachable

by synaptic resources. Interestingly, the calcium concentration is well-known

to modulate the level of available synaptic resources (i.e. neurotransmitter re-

lease from neurons; see e.g. [78, 21, 93]), hence, both quantities play a similar
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role.

Summing up, our Landau-Ginzburg theory with parameters lying in case (B)

constitutes a sound description of the cortex during deep sleep or during anes-

thesia, when up and down transitions are observed. On the other hand, case

(A) when tuned close to the synchronization phase transition can be a sound

theory for the awaked cortex, in a state of alertness. A detailed analysis of

how the transition between deep-sleep (described by case (B)) and awake (or

REM sleep, described by case (A)) may actually occur in these general terms

is beyond our scope here, but let us remark that, just by modifying the speed

at which synaptic resources recover it is possible to shift between the two

cases, making it possible to speculate on how such transitions could be easily

induced.

A simple extension of our theory, including spatial heterogeneity has been

shown to be able to reproduce remarkably well experimental measurements of

activity in neural cultures with structural heterogeneity, opening the way to

more stringent empirical validations of the general theory proposed here.



Chapter 5

A simple unified view of

branching process statistics:

random walks in balanced

logarithmic potentials

5.1 Introduction

The work presented in this Chapter is intended to help avoiding the frequent

confusion we have encountered in the neuroscience literature about branch-

ing processes and their relation with random walks. It can also be useful

for interpreting empirical results, in particular in understanding non-universal

continuously-varying exponents. In fact, as already mentioned above, neuronal

78
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avalanches distributions are found to be compatible with branching process

exponents. Although a mean field scenario is not adequate to describe the

emergence of avalanching behavior in the cerebral cortex, since spatial e↵ects

must be crucial, we want to clarify under a simple, general and super-universal

analytical perspective how those exponents emerge in systems with absorbing

states.

Directed percolation (DP) is the paradigmatic example of a very large class

of systems –including catalytic reactions, growing interfaces in random media,

damage spreading, epidemic dynamics, and turbulence, to name but a few–

exhibiting a phase transition separating a quiescent or absorbing state from

an active one [117, 38, 40, 41, 118, 119]. The essence of this very robust

universality class –which, curiously enough, had to wait long for experimental

backing [120]– is parsimoniously encoded in the following Langevin equation

[121, 122, 41, 118, 119]

⇢̇(r, t) = a⇢(r, t)� b⇢2(r, t) +Dr2⇢(r, t) +
p
⇢(r, t)⌘(r, t), (5.1)

where ⇢(r, t) is the density of activity at coordinates r and time t, a is the

control parameter regulating the distance to the critical point, b and D are

constants, and ⌘(t) is a Gaussian white noise of variance �2. Critical exponents,

scaling functions, and, in general, all critical features can be obtained using

Eq.(5.1) as a starting point. The most preponderant aspect of this equation,

distinguishing it from other classes, as for instance the Ising class [46], is the

p
⇢ factor in the noise amplitude. This square-root noise term stems from

the “demographic” nature of the particle-number fluctuations; and it imposes
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that there are no fluctuations in the absence of activity, as corresponds to the

absorbing state 1.

The same type of demographic noise also appears in other slightly di↵erent

universality classes, such as (i) the voter-model or neutral class describing

the dynamics of neutral theories in which two symmetric competing states

are possible [126, 117, 127, 128]; in this class there is no deterministic force

except for di↵usion, and the noise amplitude is di↵erent from zero only at

the interfaces separating the two absorbing states e.g. at ⇢ = 0 and ⇢ =

1, i.e. ⇢̇(r, t) = Dr2⇢(r, t) +
p
⇢(r, t)(1� ⇢(r, t)) [128]; (ii) the dynamical

percolation class [129, 130] –in which re-activation of sites cannot occur and,

as a consequence, the non-linear term in Eq.(5.1) needs to be replaced by a

non-Markovian term �⇢(r, t)
R t

�1 dt0⇢(r, t0) keeping track of past activity while

the noise term remains unchanged, and (iii) the Manna class of systems with

many absorbing states such as sandpiles in which an additional conservation

law –that can be encapsulated in an additional term �⇢(r, t)
R t

�1 dtr2⇢(r, t)

[3, 27]– exists, while the noise term remains as in directed percolation.

All systems with absorbing states, including the four classes discussed above,

and some other more infrequent ones, not specified here– share the common

feature of exhibiting avalanching behavior, meaning that if the absorbing state

is perturbed by a localized seed of activity, this can trigger a cascade of events

before falling back again into the absorbing state. It is common knowledge

1Another group of universal behavior is that of systems with noise proportional to the
activity (rather that to the square-root of the activity); these encode a di↵erent type of
processes where the most dominant fluctuations are not demographic, but associated to
spatio-temporal variability in the overall parameters [123, 124, 125].
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that avalanches turn out to be scale invariant at critical points; in particu-

lar, the avalanche-size (S) and avalanche-duration (T ) probability distribution

functions can be written at criticality as

P (S) ⇠ S�⌧GS(S/SC)

F (T ) ⇠ T�↵GT (T/TC), (5.2)

where GS(S/SC) and GT (T/TC) are cut-o↵ functions, and the cut-o↵ scales,

SC and TC , depend only on system size right at the critical point, and on the

distance to criticality away from it [131]. Similarly, the averaged avalanche

size scales with the duration as hSi ⇠ T �, where the exponent � needs to obey

the scaling relation [132, 133],

� =
↵� 1

⌧ � 1
. (5.3)

In particular, for avalanches propagating in high dimensional systems (or in

densely connected networks) mean-field exponent values ⌧ = 3/2, ↵ = 2 and

� = 2 are obtained for all systems with absorbing states. A compilation of

avalanche exponents for di↵erent dimensions and universality classes, as well

as scaling relationships, can be found in [61, 134, 135, 136].
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5.2 Main Results

5.2.1 Computation of exponent values for the mean field

case

In order to explicitly compute these exponent values, textbooks usually resort

to the (Galton-Watson) branching process [137, 38, 138, 117]. In this, each

node of a tree has two branches emerging out of it; from an occupied/active

node at time/generation n each of its two out-branches (at time/generation

n+1) are occupied/active with probability p or left empty with complementary

(1�p). Observe that this is just a variant of directed percolation running on a

regular tree (see Figure 5.1). For illustration and completeness, we now present

a very simple derivation of its associated avalanche distribution functions.

To compute P (S) –where S is the total number of occupied/active nodes before

the process comes to its end– one just needs to evaluate the total number of

connected trees of size S, which is nothing but the Catalan number [139]

C(S) =
1

S

✓
2S

S � 1

◆
, (5.4)

and multiply it for the probability of each one to occur, pS�1(1� p)S+1. Eval-

uating the resulting expression P (S, p) = (2S)!/((S + 1)!S!)pS�1(1� p)S+1 in

the Stirling approximation for S >> 1, one readily obtains

P (S, p) =
Np
⇡
S�3/2(4p(1� p))S, (5.5)
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where N is a normalization constant; in particular, this becomes a power law

at the critical point p = 1/2: P (S, 1/2) = Np
⇡
S�3/2, implying ⌧ = 3/2. The

exponent � can also be derived using the statistics of branch lengths in Catalan

trees of a given size [140], leading readily to the result � = 2; and from this,

using the scaling relation Eq.(5.3), one obtains ↵ = 2.

5.2.2 A general unifying view

These results for the branching-process avalanche statistics can be derived in a

more systematic way –for di↵erent types of underlying regular or random tree

topologies– within the generating function formalism [30, 141, 39]; indeed,

already back in 1949 Otter computed the solution for the case of a Poissonian

distribution of branches per node [142]. Given that the result, e.g. a power-

law with exponent 3/2 for the size distribution, is much more general than

any specific branching process in any specific tree-like topology, it is appealing

from a theoretical point of view to derive an even more general proof of these

results, covering all cases at once. From a slightly di↵erent perspective, relying

on field theory and scaling arguments [143, 61, 144] the whole set of exponent

values can be obtained for each specific universality class, but again, the result

–being common to all classes, i.e. super-universal– should be amenable for a

more generic explanation.
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T

0 1 2 3 4

p

1-p C(3)=5

Figure 5.1: Left: Illustration of a realization of the un-biased
branching process, showing (highlighted) an avalanche of size S =
10 and duration T = 3, together with the structure of the under-
lying rooted binary tree on top of which it unfolds. Right: Visual-
ization of the 5 possible paths of S = 3 as counted by the Catalan
number C(3) = 5.
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5.2.3 Random walk in a logarithmic potential

The common feature shared by all the Langevin equations of the di↵erent

classes of systems with absorbing states, as already mentioned above, is the

presence of a demographic, square-root, noise amplitude. As a matter of fact

–as illustrated in more detail in Section D.4.1– in the mean-field limit it is easy

to derive a common and unique e↵ective Langevin equation for all classes of

systems with absorbing states at criticality, as

⇢̇ =
p
⇢ ⇠(t), (5.6)

where ⇢ is the overall activity and ⇠(t) is a Gaussian white noise with zero

mean and h⇠(t)⇠(t0)i = 2�2�(t � t0) which needs to be interpreted in the Itô

sense in order to guarantee that ⇢ = 0 is an absorbing state [145, 43]. We refer

to Eq.(5.6) as “demographic random walker” (DRW). To avoid the complica-

tions of the Itô calculus, we write the equivalent equation in the Stratonovich

interpretation [145, 43]:

⇢̇ = ��
2

2
+
p
⇢⌘(t) (5.7)

where now h⌘(t)⌘(t0)i = �2

2 �(t � t0). Using now standard calculus to change

variables to x =
p
⇢ directly gives 2

ẋ = ��
2

4x
+ ⌘(t). (5.8)

2An alternative approach to analyze Langevin equations such as Eq.(5.6) consists in
reabsorbing the noise amplitude into the time-scale, leading to a standard random walk
with a di↵erent “clock” [54]. Another interesting possibility is deriving these results from a
more general fractional Brownian motion [146].
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The resulting equation is just a particular case of a one-dimensional random

walker (RW) moving in a logarithmic potential U(x) = � log x, i.e.

dx

dt
= �dU(x)

dx
+ ⌘(t) = ��

x
+ ⌘(t), (5.9)

where � is a positive constant and, in general, h⌘(t)⌘(t0)i = 2µ�(t � t0), with

µ a generic positive constant. Observe tha Eq(5.8) corresponds to the partic-

ular case, � = µ = �2/4 –that we call balanced– in which the ratio between

the amplitudes of the logarithmic potential and the noise-correlation ampli-

tude, µ, is equal to unity: � ⌘ �/µ = 1. This perfect balance between the

deterministic-force and stochastic coe�cients is essential for what follows, as

we shall see. More in general, let us remark that, in the presence of an exter-

nal field –allowing for the spontaneous generation of activity at a fixed rate

h– Eq.(5.7) needs to be complemented with an additional +h term. Upon

changing variables, this implies � = 1 ! 1� h/µ, in Eq.(5.9) and thus, in the

presence of external driving, the perfect balance between coe�cients breaks

down.

To compute avalanche exponents from Eq.(5.9), let us define an avalanche as a

random walk x(T ), starting at x(t = 0) = 0+ and returning for the first time to

the origin at time T , x(T ) = 0 (see Figure 5.2). The distribution or its return

times is nothing but F (T ) as defined in Eq.(5.2). The problem of computing

such a return-time distribution for the random walk in a logarithmic potential,

i.e. by Eq.(5.8), was solved by A. Bray [147] and revisited by F. Colaiori in

the context of Barkhaussen crackling noise [68]. The solution requires writing

down the equivalent Fokker Planck equation for the Langevin dynamics, with
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a delta-like initial condition centered at a value slightly larger than x = 0, and

computing the probability flux F at the origin as a function of the time T

(more detailed sketch of the analysis is presented in Section D.4.2 for the sake

of completeness). The resulting first-return probability distribution function

is

F (T ) =
4µ✏2⌫

�(⌫ � 1)
(1 + �)(4µT )�⌫�1e�

x

2

4µT

⇠ T�⌫�1 = T� 3+�

2 , (5.10)

where ⌫ = (1 + �)/2, implying ↵ = 3+�
2 . Observe that, in the limit of van-

ishing potential amplitude, � = 0, this result reproduces the statistics of a

freely-moving random walk, F (T ) ⇠ T� 3
2 , while in the opposite perfectly-

balanced limit, � = µ (i.e. � = 1) the result is F (T ) ⇠ T�2 in agreement

with the expectations for the un-biased branching process. It is noteworthy

that –despite the fact that the random walk in a logarithmic potential gives

a non-universal avalanche duration exponent– for the undriven DRW case, in

which the logarithmic potential derives from a change of variables in Itô cal-

culus, there exists a perfect balance between the coe�cients of the equation;

they both depend on the noise amplitude and, compensating each other, they

generate the universal value ↵ = 2. However, as said above, in the presence of

an external field, � = 1� h/µ breaking down the perfect balance between co-

e�cients, non-universal continuously-varying avalanche exponents appear (see

Figure 5.3); in particular,

↵ = 2� h

2µ
. (5.11)
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In any possible discrete/particle model with absorbing states, this change of

exponents stems from the fact that –owing to the external driving– avalanches

from di↵erent initial seeds (each of them spontaneously generated by the exter-

nal driving field) can merge, which allows their combination to survive longer

and be larger, thus leading to smaller e↵ective exponents ↵ and ⌧ (see Table

1).

5.2.4 Derivation of avalanche exponents

Turning back to the general discussion, using the above result together with

simple scaling, we can readily derive the associated avalanche size exponent,

⌧ . In order to have a unified notation let us use a generic variable v(t), which

can be in particular, x(t) for the RW, or ⇢(t) for the DRW. The size of any

given avalanche is defined as the area under the curve defined by the random

walk, i.e. S =
R T

0 v(t) dt, and we are interested in the distribution of such sizes

as a function of T , P (S|T ). Given that the typical displacement of a random

walk in time t scales as v ⇠
p
t, for the DRW (for which there is an additional

square-root factor) we have v ⇠ p
v
p
t, and thus, v ⇠ t; hence, we can write,

in general, v ⇠ t�, with � = 1/2 and � = 1 for the RW and the DRW (either

driven or undriven), respectively.

It is natural to define a new rescaled variable ṽ(t/T ) = v(t)/T � which describes

a random excursion in the interval [0, 1]. In these terms,

S =

Z T

0

v(t)dt ⇠ T �+1

Z 1

0

ṽ(z)dz. (5.12)
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Thus, the average avalanche size, hSi obtained averaging over all possible

avalanche shapes, ṽ(z), scales also with T �+1, implying � = �+ 1.

Using the previous result, P (S|T ) can be written as a scaling form P (S|T ) =

T��G (S/T �) where the factor T�� comes from the normalization condition,

and the unspecified scaling function G obeys G(z) � 0 for all z and
R1
0 G(z)dz =

1. Having computed the conditional probability P (S|T ), we can explicitly ob-

tain P (S) as

P (S) =

Z 1

0

dTP (S|T )F (T )

⇠ C

Z 1

0

dT T��T�↵G (S/T �)

⇠ CS�(�+↵�1)/�

Z 1

0

duu
(↵�1)

� G (u) , (5.13)

and, thus, ⌧ = (�+↵�1)/� (which is nothing but the scaling relation Eq.(5.3)).

Plugging the value of ↵ and � derived above one obtains the well-known result

⌧ = 4/3 for the standard random walk 3 and

⌧ =
3

2
� h

4µ
, (5.14)

for the DRW, which reduces to the well-known result ⌧ = 3/2 for the un-driven

case. Table 1 contains a summary of the exponents for the di↵erent cases.

Results beyond critical exponents have also been obtained in the literature,

for example, the average shape of random-walk excursions is a semi-circle for

3In the case of the standard RW case the scaling function GRW has been exactly derived
(see e.g. [148]), but its specific form is not essential for our purposes here.
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Unbiased

RW

Demographic

RW

Driven

Demographic RW

P (T ) ⇠ T

�↵ ↵ = 3/2 ↵ = 2 ↵ = 2� h/2µ
P (S) ⇠ S

�⌧ ⌧ = 4/3 ⌧ = 3/2 ⌧ = 3/2� h/4µ
P (S|T ) ⇠ T

�� � = 3/2 � = 2 � = 2

Table 5.1: Summary of the avalanche exponents for standard RW,
for the demographic RW and for the driven demographic RW (in
the presence of an external field, allowing for the spontaneous gen-
eration of activity at a fixed rate h).

standard un-biased random walkers [133] while it is a parabola for demographic

walkers [149]. This can be easily seen by rescaling the walks to ṽ and the times

to t/T to collapse curves as described above. In this way ṽ(t/T ) = F(t/T )

where F(t/T ) is a scaling function. Given that, v(t) ⇠ t��1, dividing by T ��1,

ṽ(t/T ) ⇠ (t/T )��1, at least for small times, t << T . Considering that a

similar relation holds for the reverse time walk starting from t/T = 1, then

the avalanche shape is F(t/T ) = [(t/T )(1� t/T )]��1 which is a semicircle for

� = 3/2 (RW) and a parabola for � = 2 (DRW and driven DRW).
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Figure 5.2: Illustration of the time evolution of a standard random
walk (RW) and a demographic random walk (DRW); each color
corresponds to a di↵erent realization. Upper panel: standard RW
that, in principle, can freely cross the origin. Avalanches start and
end when the walker crosses the origin. Lower panel: the DRW can
be represented as a stochastic RWmoving in a balanced logarithmic
potential that keeps the walker bounded to the origin. Since the
variable is always strictly positive, the avalanches can be defined as
the activity over a threshold ✏! 0.
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Figure 5.3: Size-avalanche and duration-avalanche distributions for
the un-driven demographic random walk as described by Eq.(5.6),
as well as for diverse values of the external driving field (marked
with symbols) h = 0.01 (blue squares), h = 0.1 (yellow stars),
h = 0.2 (green crosses) and h = 0.3 (red triangles), with refer-
ence curves (solid lines) t�2+h/(2µ) and s�3/2+h/(4µ) (as derived in
the text), respectively, illustrating the agreement with theoretical
predictions.
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5.3 Summary and Conclusions

In summary, we have explicitly shown that the mean-field values of avalanche

exponents in systems with absorbing states can be computed in a general way

by mapping them into a random walk confined by a logarithmic potential,

Eq.(5.8). Of course, this same conclusion could have been reached by arguing

in a heuristic way that all of high-dimensional processes involving absorbing

states should be e↵ectively described by an un-biased branching process, and

then constructing a continuous description of it (i.e. a Fokker-Planck or equiv-

alently a Langevin equation) which would be nothing but Eq.(5.6).

An interesting corollary is that the exponents do change in the presence of

spontaneous creation of activity, even if the rate is arbitrarily small. This re-

sult, which stems from the marginality of the associated logarithmic potential

could be relevant to understand empirical results; for instance in cortical net-

works, avalanches of neural activity have been reported to exhibit branching

process statistics [5]; still inspection of some of the most careful estimations

reveals possible deviations from ⌧ = 3/2 [44], which could be potentially as-

cribable to a non-vanishing inherent spontaneous-activation.



Chapter 6

On Beggs-Plenz measure of

avalanches

6.1 Introduction

In this Chapter we analyze in more detail the method used by Beggs and Plenz

[5] to define avalanches, i.e. the conventionally used experimental protocol

to identify avalanches starting from a raster plot. As we have already seen

in Chapter 2, defining avalanches in di↵erent ways may lead to completely

di↵erent results. Moreover, one of the main sources of disappointment on the

criticality hypothesis in the brain stems from the fact that the exponents of

the power laws describing the length and duration of neuronal avalanches –i.e.

the key piece of information used to infer the generating process– depend on a

parameter: the time bin used for the clustering procedure. The lack of a strong

94
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physical criterion to set this parameter shed skepticism on the universality of

the measure and, consequently, on the critical hypothesis. In the Beggs-Plenz

procedure the time-bin is fixed to the average inter event interval in neuronal

LFP recordings, which is considered a plausible intrinsic timescale defined by

the system itself. Anyways, some authors [150] remark that “it is perhaps not

so surprising, for example, that selecting the time bin size as the average inter

event interval in neuronal LFP recordings results in an exponent close to the

theoretical exponent of the branching process universality class, as in this way

each event will be followed by, on average, one more event in the next bin”.

That means that there is a possibility that neuronal avalanches are power-law

distributed, with the exponents of the branching process, as a consequence of

the procedure used for their definition, which might create an e↵ective process

with branching ratio 1, i.e. an artificial critical branching process. Moreover,

some authors thoroughly suggest that the measure of avalanches of activity

in cortical signals is misleading, since originally avalanches are measured for

systems undergoing an absorbing transition, while electric macroscopic activity

might emerge as the result of a synchronisation of microscopic units, so that –as

we discussed in Chapter 4– if any transition exists, it is not between a quiescent

and an active state, but instead between a synchronous and an asynchronous

phase [116, 18]. In the next sections we briefly go through the Beggs-Plenz

protocol, then apply it to measure avalanches generated from various processes

(Contact Process, Brunel model, an artificial stochastic distribution of spikes),

in the attempt to understand whether or not this measure is able to distinguish

between critical and non-critical processes. The results are resumed in the

table in Figure 6.5. We warn the reader that this Chapter does not attain
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a complete answer to the question: here we just present some preliminary

results. Moreover we analize some further problems linked with the definition

of avalanches from continuous activity variable processes, in order to shed light

on possible misunderstandings that we encountered in the literature.

6.1.1 Beggs-Plenz procedure for avalanche measure

In this section we briefly explain the steps necessary to perform a measure

of an avalanche’s size and duration, starting from a raster plot, as usually

done in experimental setups [5]. First of all, the Inter-Event-Interval (IEI)

is measured, as the average time interval between two consecutive spikes of

(whichever two elements of) the network. Then the raster plot is divided in

contiguous bins of width equal to the IEI (see Fig.6.2). A bin is considered

“empty” if no events are reported within it, and “occupied” otherwise. Con-

secutive series of occupied bins, preceded and ended by an empty one, define

an avalanche. The avalanche duration is just the time interval between the

preceding and the ending empty bins, and avalanche size is the total number

of spikes that occurred in that time-interval.

6.2 Main Results: BP measure on known mod-

els

We already discussed in Chapter 2 the outcome of BP measure of avalanches

in the Millman model: we learned that, when measuring avalanches on a state
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Figure 6.1: Sketch of the procedure for the definition of avalanches
introduced in [5].

of sustained activity with BP-protocol (without precise causal information) no

power laws appear: this is in agreement with criticality hypothesis, since Mill-
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man system is not critical. Also in Chapter 4 we discussed a BP measure on our

Landau-Ginzburg model, which also was in favour of BP measure as an unbi-

ased interpretation of criticality (critical avalanches are power law distributed,

whereas non-critical ones are less broadly-distributed –see Fig.4.5D–).

6.2.1 Avalanches in the Contact Process

We measured avalanches à la Beggs-Plenz (BP) in the Contact Process (see

A.2). At the critical point avalanches result power-law distributed, with an ex-

ponent dependent on the time-bin, whereas in the subcritical phase avalanches

have an earlier cuto↵ and on the supercritical phase avalanches are exponen-

tially distributed. These results suggest that the method proposed by Beggs

and Plenz is consistent with the correct definition of avalanches for the Contact

Process1.

6.2.2 Avalanches in Brunel model

In 2000 N.Brunel [18] proposed a microscopic model for neuronal spiking (see

Appendix B.1), predicting various macroscopic behaviors –Synchronous Regu-

lar, Asynchronous Regular, Synchronous Irregular and Asynchronous Irregular

phases– according to the level of synchronization of the spiking units and to

the regularity of the firing (measured by the coe�cient of variation of the

inter-event intervals of each unit). In between the phases the model predicted

1Although also the subcritical phase is consistent with the power law behavior, but with
a earlier cuto↵.
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Figure 6.2: Upper Panel: Comparison between avalanches mea-
sured with causal information and avalanches measured by BP-
protocol in a critical Contact Process. Central Panel: Avalanches
à la BP in the critical Contact Process for varying bin sizes
�t = ↵IEI with ↵ = 0.1, 0.5, 10, 50. IEI stands for Inter-Event
Interval. Lower Panel: Avalanches à la BP for subcritical, critical
and supercritical Contact Processes (µ = 1,� = 0.8, 1, 1.1).
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dynamical bifurcations, i.e. phase transitions. We reproduced Brunel’s re-

sults and measured avalanches à la BP in the various phases. Avalanches in

the Asynchronous phases (both AI and AR) are exponentially distributed, in

agreement with the results in Chapter 2. Nevertheless avalanches measured in

the whole SI phase (both close and far away from the bifurcation) result power

law distributed (see Fig. 6.3).

Moreover, in the limit of very small integration step, we found some broadly

distributed avalanches for the Synchronous Regular phase, whereas a mean-

ingful measure would report delta-like distributed avalanches. This is because

if the resolution of spiking is high enough, the neurons in the SR phase don’t

happen to fire exactly at the same time –as a consequence of the intrinsic

stochasticity of external current arriving to each neuron–. The IEI of the whole

network results of the order of the integration step2 and the BP procedure splits

into many smaller clusters what one would naturally call an avalanche. Those

clusters result broadly distributed, as a consequence of the fact that external

inputs are modeled as independent Poisson processes. This means that BP

measure in this case only measures noise. This is definitely a problem of the

method of Beggs-Plenz.

2Approximately one can evaluate that the units spike with an average delay of dt from
each other, except for the first one of the cascade, which fires with a delay of T , i.e. the
period of the regular spiking (IEI ' ((N � 1)dt+T )/N ' dt). Instead one would naturally
define an IEI of the order of T .
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Figure 6.3: Upper Panel: Raster Plot of Brunel model in the Syn-
chronous Irregular phase. Lower panel: Avalanche size (main fig-
ure) and duration (inset) distributions in Brunel’s model for a sys-
tem close to and far away from the bifurcation (g = 6 and g = 8
respectively). Other parameter values are N = 104, J = 0.4, ⌧rp =
20ms, ⌧ = 200ms, Vr = 10mV,D = 30ms,C = 400, ✓ = 20mV , see
[18].

6.2.3 Avalanches from an artificial distribution of spikes

The results on SR phase of the Brunel model exposed in the previous section

suggest us to perform a measure on an artificially defined very simple model,
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which evidently has nothing to do with criticality, but still shows power-law

behavior. We construct a raster plot as follows: we define a period T , and N

neurons firing exactly together with period T . Now we redefine the spiking

time of each neuron, by adding to it a random delay extracted from a gaussian

distribution centered in zero and with standard deviation �. If � is of the same

order of T , then the system mimics an asynchronous regime and BP avalanches

result exponentially distributed (see red crosses in Fig. 6.4), whereas if � is

smaller and the synchronicity between the units is not completely broken,

BP avalanches result power-law, only by the e↵ect of noise on the temporal

distribution of spikes. Moreover, the results still hold if we substitute the

gaussian distribution with a uniform distribution. This approach is suitable

for analytical calculations, which we leave for future work.

6.3 Further Results: Misunderstandings on avalanches

measure

As it has already been widely discussed in the literature, not all power laws

are a signature of criticality [151, 29, 152]. In this Section we highlight some

possible sources of error while investigating the relation between self-similarity

and criticality in the brain.
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Figure 6.4: Upper Panel: Raster Plot as constructed by the arti-
ficial model, with N = 50, T = 10 and � = 10 (asynchronous, red
squares) and � = 1 (synchronous, blue squares). Lower Panel: BP
Avalanches from the artificial distribution of spikes. Triangles in
di↵erent colors correspond to di↵erent sizes N and � = 0.1T , red
crosses correspond to N = 200 and � = 10.

6.3.1 Non critical avalanches

In a simple continuous-time stochastic process describing the activity of a

system, the duration of an avalanche could be defined as the extent of the

time interval during which activity stays over a threshold (i.e. an avalanche

begins/ends when the activity signal crosses beyond/below threshold). Let
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Figure 6.5: Scheme of results on BP measure in various models
and evaluation . Millman model is not critical (the scale-invariance
derives from a neutral dynamics, intead), as discussed profusely in
Chapter 2. Consistently with this, avalanches a la BP result ex-
ponentially distributed. Also in Landau-Ginzburg model presented
in Chapter 4, BP-measured avalanches give a good description of
the dynamical behavior of the system, since avalanches are scale-
invariant at the critical point, whereas far from it the distribu-
tion becomes less large. In the Contact Process BP measure of
avalanches is almost undistinguishable from the usual definition in-
cluding precise causal information: scale-free avalanches are mea-
sured only at the critical point. In Brunel’s model, instead, one
finds power-law distributed BPavalanches both at the critical point
and in the whole Syncronous Irregular phase. Thus in this case BP
measure is not a satisfying method, since it is not able to discrim-
inate between critical and non-critical dynamics. Finally, we built
a simple artificial model, showing that noise alone (together with
a certain coherence) can generate scale-invariant BP avalanches.
Thus the measure of power-law distributed BP avalanches does not
guarantee that the system is at its critical point.

us suppose, for argument’s sake that the original signal was a Wiener process

(unbiased random walk), this would correspond to determining the statistics of

first passage times through a barrier (i.e. the threshold); which is well known
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(both numerically and analytically) to show scale-invariance, as a consequence

of the lack of any characteristic length scale, but not critical in the sense of

lying at the edge of a phase transition (see Chapter 5). Thus let us note that
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Figure 6.6: Illustration of the first return time statistics of a Ran-
dom Walk. Left panel: a sketch of the process together with the
illustration of the sizes and durations of three avalanches. Thresh-
old is set to 0. Right panels (from up to down): distribution of
size, duration and average size of a given duration, showing good
agreement between numerical results (open symbols) and analytical
ones (full lines).

if the global activity of a neural system happens to fluctuate around a stable

sustained state, when performing an analysis of avalanching behavior through a

thresholding procedure, cascades of activity would result scale free distributed,

just as an e↵ect of fluctuations. In fact, this scenario, at a macroscopic scale,

is equivalent to an Ornstein-Uhlenbeck process:

ẋ(t) = �ax(t) + h+ �⌘(t), (6.1)
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where ⌘(t) is a delta-correlated, white noise with zero mean and unitary vari-

ance; the linear term (force) �ax corresponds to the derivative of a parabolic

potential bounding the walker close to h/a. Note that with a = 0 this is

nothing but the usual free random walker or Wiener process [43]. The force

introduces an upper cuto↵ in the first return times (i.e. avalanche duration)

statistics, which, otherwise, follows the same exponents as the unbiased ran-

dom walk. Thus, studying avalanches by analyzing fluctuations about a given

threshold in a process with a well-defined steady-state value, one recovers

power-laws, up to a scale controlled by 1/a. These, however, are not critical

in the sense of lying at the edge of a continuous phase transition.

6.3.2 On avalanche size

Also, particular attention is needed for the correct definition of the “size” of

an avalanche: for example in a recent work by Poil et al. [12], where avalanche

dynamics and oscillations were jointly reported in a network of excitatory

and inhibitory neurons, the authors used a definition of size, which leads to a

misclassification of the power law exponent and thus, to a possible misinterpre-

tation of the results. Indeed, Poil et al. defined the size of an avalanche as the

integral of the activity during the avalanche (instead of the integral of the ac-

tivity over threshold during the avalanche); this is illustrated in Fig.6.7. Other

works in literature show the same misdefinition of the size of avalanches[153].

Proceeding in this way, the actual size is corrected with an additional term

proportional to the avalanche duration (as also illustrated in the Figure). This

additional term complicates the scaling analysis.
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Figure 6.7: Analysis of first-passage times in a stochastic process;
✓ (magenta dashed line) is the threshold value employed to define
crossings. S is the proper avalanche size (area above threshold,
colored in blue in figure), T is its duration, ⌃ (delimited by the
green contour) is the misleading definition of the avalanche size, as
used in [12]. One has ⌃ = S+ �, with � colored in orange in figure
(note that � / T ).

In particular, given that a standard random walk (or a Ornstein-Uhlenbeck

process describing fluctuations around a mean value) has first-return times

distributed as P (T ) ⇠ T�3/2 (↵ = 3/2), sizes measured as in Poil et al. have

a correction to the true asymptotic behavior which scales with an exponent

⌧ ⇡ 3/2, which actually comes from including in the measure of the size

an extra part proportional to the duration of the avalanche [12]. Observe,

therefore, that this 3/2 has nothing to do with a critical branching process

(beside the numerical coincidence): it is a spurious e↵ect, coming from the

first-passage time distribution of an e↵ective Ornstein-Uhlenbeck process. In

particular, both sizes and durations turn out to be distributed with the same
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exponent with this definition of size, which is not the case in critical branching

processes. One needs to go to huge system sizes, to see the actual scaling.

In order to illustrate the problem, we generate an Orstein-Uhlenbeck process

and measure the avalanche size distribution (P (S) ⇠ S�⌧ ) using this equivoque

definition. In Fig. 6.8 we can see that, for low values of the threshold ✓ ' 0,

one finds the known avalanche exponent ⌧RW = 4/3 but, as the threshold

grows, the exponent grows up to ⌧ 0 ' 3/2 (which, remarkably, is the avalanche

size exponent of a Branching Process).

Figure 6.8: Avalanche pseudo-size distributions P (⌃) for di↵erent
threshold values (in di↵erent colors, as shown in the Right panel).
Black continuous lines represent the power laws P (⌃) = ⌃�4/3 and
P (⌃) = ⌃�3/2. We can see that for the smaller threshold value
(red triangles), the correct RW statistics is recovered, while for the
bigger threshold value (purple circles) the avalanche size statistics
is well fitted by an exponent ⌧ = 3/2.

A couple of recent papers underline the “perils” associated with thresholding,

which can certainly be a source of confusion [154, 155]. In what follows we

will try to explain analitically how, if one, erroneously defines the size of an
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avalanche as in Fig.6.7, the exponent of the avalanche size distribution results

polluted by the exponent of the duration distribution. Referring to the Right

panel of Fig.6.8, representing an avalanche of an Ornstein Uhlenbeck process,

one has:

P (T ) = NT�3/2,

where N is a normalization constant. Now we want to calculate the distribu-

tion of the misdefined-size ⌃. One has ⌃ = S + � = cT 3/2 + ✓T and hence

d⌃ = (cT 1/2 + ✓)dT , from which we can readily calculate

P (⌃) = P (T )
dT

d⌃
= N T�3/2

cT 1/2 + ✓
.

From this it follows that, if ✓ is small one has

P (⌃) ' N
c
T�2 ' N

c
[(⌃/c)2/3]�2 = N 0⌃�4/3,

which is the correct result for the avalanche size distribution of an Ornstein-

Uhlenbeck process. On the other hand, if ✓ is big, for small values of T , one

has

P (⌃) ' N
✓
T�3/2 ' N

✓
[⌃/✓]�3/2 = N 00⌃�3/2,

which would lead to the absurd that the original process is in the Branching

Process universality class.

It is important to note that, if one had a good statistics for huge avalanches

(and no cuto↵s), he would recover the correct asymptotic value for the avalanche

size exponent, ⌧ = 4/3, for any value of ✓.



Chapter 7

Non-critical amplification of

fluctuations in simple models of

persistent neural dynamics

7.1 Introduction

The lack of striking arguments in favour of the criticality hypothesis, has fos-

tered the growth of competing explanations for power-law like distributions of

neural events. Given that criticality is not a must in order to obtain power-law

distributions –which, on the contrary, can be generated by a variety of alter-

native mechanisms [152, 29, 156, 157, 158, 17]– some authors have highlighted

that it is not clear wether the available empirical evidences actually call for

criticality or alternative origins could be invoked. Some possible alternatives

110
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have been already discudded along this Thesis: neutral theories, bistability

and noise [159, 160]. In particular, the emergence of highly irregular bursts

of activity has often been reported in association with balance between exci-

tatory and inhibitory instances [18, 19], but it is not always clear whether or

not implementing a balance condition can be interpreted as tuning the system

close to the point of transition between two distinct phases.

In this context, Benayoun et al. [94] introduce an intriguingly puzzling, very

general and solid machinery, giving rise to the emergence of self-similar bursts

of activity in finite-size systems of spiking neurons. Poising the system in a

regime of balance between excitation and inhibition results in an avalanching-

like behaviour where the system wanders through an almost-linear phase space

which is very wide with respect to the level of the demographic noise present.

Here the results presented in [94] are confirmed for a much wider window of

scales and extensively tackled. The intriguing phenomenon of balanced am-

plification of fluctuations that they introduce is deeply scrutinized, in order

to uncover the interplay between the factors concurring to the appearance of

non-critical avalanches of activity. In order to explain the phenomenon, we

recover the mathematical rationale of “non-normal” forms and in particular

we study the transient behaviour of “reactive” systems and try to explain the

emergence of a non-di↵erentiable manifold (a “scar”) close to the fixed point.

Also, this framework allows to precisely survey the relationship that exists be-

tween “balance” and “criticality” and to explain that the system being close to

the transition between two phases is not a necessary nor su�cient condition for

the emergence of the phenomenon. Although the specific meaning of the two
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concepts of “balance” and “criticality” might vary in other contexts, clarifying

the di↵erences between them in a simple framework, may give a hint on how

they can be correctly interpreted in more complex setups. Moreover we give

specific quantitative insights on the exponents of the power laws, measured

at a mesoscopic level and relate them to two di↵erent types of noise (multi-

plicative and additive –see Chapter 5–), that become dominant at di↵erent

scales. Finally we show that the described mechanism is not a peculiarity of

the excitatory/inhibitory underlying structure, but it applies to a wider sce-

nario: a similar non-crtitcal scale-invariance can be obtained by changing the

regulatory mechanism that drives the dynamics, i.e. excluding inhibition and

introducing synaptic plasticity. As encountered before in this PhD thesis, also

in this case inhibition and synaptic plasticity can be considered as alternative

homeostatic mechanism. Finally we highlight that spatially (di↵usively) cou-

pled noisy reactive units are likely to show spatio-temporal patterns in a wide

region of the parameter space.

7.2 Main Results

7.2.1 Simplified Wilson-Cowan model

Following [94], we consider here a version of the Wilson-Cowan model (see

Appendix B.2) simplified and reduced to an elementary setting, where only

one stable fixed point exists and depending on whether excitation or inhibition

dominates, the steady state is respectively active or inactive. More specifically,
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by considering that the coupling constants depend uniquely on the pre-synaptic

cell type, i.e. !EE = !EI = !E and !II = !IE = !I (and fixing the decay

constant ↵ and the small external current h), the system is left with a two

dimensional parameter space, which consists of the excitatory and inhibitory

synaptic strengths. Under this symmetry, the unique steady state only depends

on !0 = !E�!I . In Fig.7.1 we plot the value of the fixed point, in the variable

⌃ = (E+ I)/2, for di↵erent values of !0, while keeping !s = !E +!I constant.

The system shows a phase transition in the critical value !0 = 0 separating an

active (excitation dominated) from an inactive (inhibition dominated) phase.

Note that since a small external field h is present, the fixed point doesn’t

loose its stability at criticality. Strikingly, this remarkably simple and intuitive

behavior is overturned when finite size e↵ects are taken into account.

7.2.2 Phenomenology

Benayoun et al [94] showed that, in a regime of balance between excitation

and inhibition, or, equivalently, when the di↵erence between excitatory and

inhibitory synaptic weights is very small with respect to their sum !0 ⌧ !s,

low levels of noise (i.e. large but not infinite system sizes) generate highly

bursty (pseudo-scale-invariant) behavior. This is in outstanding countertrend

with respect to the mean field case, which, as stated above, would predict a

single sustained steady state, while the former, on the contrary, shows an al-

ternation of highly bursty time intervals, interspersed with periods of silence,

extremely reminiscent of the experimental evidences showing self-similar bursts

of activity in the resting state of cortical dynamics. In fact a measure of the
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avalanches size and duration, defined in complete analogy with the experimen-

tal setup, gives power-law distributions. Thus the mechanism presented here is

a candidate to model neuronal avalanches. It is noteworthy to stress that this

avalanching behavior can be observed far from the critical point, establishing

an alternative to the criticality hypothesis, which ascribes the scale-invariance

observed in experiments to the system being poised close to a critical transition

point.

7.2.3 Criticality and Balance

Here we address the problem of fully expliciting the di↵erence between critical

and balanced. First of all we should better talk about “quasi-criticality” [80],

given both the inherent limitedness of the system size and the existence of

a small external field h. The condition for the system to be quasi-critical is

!0 ⌧ 1, while the system is balanced when !0 ⌧ !s, thus quasi-criticality

is not necessary nor su�cient for balance. In order to clarify this issue and

discriminate the e↵ects of criticality and balance we plot in Fig.7.2 the phase

plane of the deterministic system (Eq.D.9). In the first row (Fig.7.2 a and b)

the parameters set the system in a (close to) critical sate, (the stable fixed

point, i.e. the point where the nullclines intersect, is evidenced with a red

dot) corresponding to the the blue arrow in Fig.7.1, while in the second row

(Fig.7.2 c and d) the deterministic system spontaneously evolves towards a

stable highly active phase (red arrow in Fig.7.1). Moreover, the first column

(Fig.7.2 a and c) shows non-balanced configurations (i.e. small values of the

sum !s) while the second column (Fig.7.2 b and d) shows balanced ones.
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Figure 7.1: Left: sketch of the Wilson Cowan model. The exci-
tatory population interacts with a single parameter, !E and the
same applies to the inhibitory population, with !I . Right: Phase
transition for the model, the phase of the system depends on the
diference !0 = !E �!I ; if !0 > 0 the system is in the active phase.
From left to right the system is in the ’down’ state, critical point,
a ’weakly-stable’ up state and in the ’up’ state (green, purple, blue
and red, respectively).

At this heuristic level we can remark that in the balanced case there is some

sort of “scar” in the phase portrait, such that two shear stresses flowing in

opposite directions, coexist very close to each other. In other words the vector

field ( ~̇E, ~̇I) shows a discontinuity all along a manifold (a line in this case) that

corresponds to a whole (infinite) set of (unstable – or marginally stable – )

points in which the nullclines superimpose. As we shall explain in further

details in what follows, this “scar” is responsible for the amplification of the

fluctuations around the fixed point introduced by demographic noise: as soon

as a small noise drives the system “slightly” away from the fixed point, these

strong flows hardly pull the system towards very low (or very high) levels

of activity. Conversely, in the case of a critical, but non-balanced system
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Figure 7.2: (a) E-I phase portrait for an stable state near the critical
point (!E = 1

5 , !I = 0). The stable fixed point – wherein the
nullclines intersect– is represented as a circle. The eigenvectors
direction in the stable ’up’ state are indicated by black arrows, (b)
E-I phase portrait for a balanced-amplification condition (!E = 7,
!I = 34

5 ). The nullclines are in close proximity to each other, in
contrast with the former case, (c) E-I phase portrait for a stable
state far from the critical point (!E = 4, !I = 1). and, (d) E-I
phase portrait for the same situation in the active phase but, with
(!E = 20, !I = 17). The proximity between the nullclines makes it
easy to see that the systems evolves, near the critical point, around
a (1+ ✏)-dimensional movement; i.e. any small perturbation results
in great fluctuations from the ’up’ state to the ’down’ state.

(Fig. 7.2 a) it is immediately evident that the same mechanism causing brutal

fluctuations is not at work.
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7.2.4 Linearized dynamics is non-normal

Folowing Murphy et al. [161] this phenomenon can be explained under the

rationale of non-normal dynamics. Considering that the dynamics in the bal-

anced case naturally selects a preferential direction along the diagonal [94], let

us change variables to ⌃ = (E + I)/2, � = (E � I)/2. Eq. D.9 becomes

8
>><

>>:

d⌃
dt

= �↵⌃ + (1�⌃) f (✓)

d�
dt

= �� (↵ + f (✓))

with ✓ = !0⌃ + (!s)� + h. Elementary algebra can be employed to verify

that the fixed point lays in (⌃0, 0), i.e. always in the diagonal in the (E, I)

reference frame. A standard linear stability analysis around the fixed point

gives the Jacobian

J =

0

@ ��1 !ff

0 ��2

1

A

where the eigenvalues are �1 = (↵ + f(s0)) + (1 � ⌃0)!0f 0(s0) and �2 =

(↵ + f(s0)) and !ff = (1� ⌃0)(!E + !I)f 0(s0).

Note that if !0 is small and positive, so are �1 and �2. To see this, note that

�2 is the sum of two small terms ↵, which is chosen to be small in this case

(↵ = 0.1) and f(s0) ⇡ s0. The extra term in �1 is also small, since f 0 < 1.

Thus, the fixed point is weakly stable, and the linear stability of the fixed point

depends on the weights only via the di↵erence !0 [94]. Correspondingly, the

stability is weak when the system is close to the critical point and it looses

its stability (�1,2 = 0) exactly at the critical point !0 = 0. Nevertheless, the
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structure of the Jacobian makes it visible that the eigenvalues does not enclose

all the information of the dynamics, as the out-diagonal term (the so-called

feedforward term) cannot be eliminated 1. Triangular matrices such as J are

called non-normal, meaning that J⇤J 6= JJ⇤, where J⇤ is the conjugate trans-

pose of J2. The e↵ect of a big feedforward term in Eq.7.2.4 is straightforward

to verify: when operating on a small perturbation along the � direction, the

linearized dynamics gives a small response in the same direction plus a much

bigger response along the ⌃ direction, corresponding to the strong shear flows

clearly visible in Fig. 7.2. Non-normal matrices are also said to be “reactive”

[162], when the dynamics they describe shows unusually long-lasting transient

behavior: the system is strongly driven away from the fixed point before com-

ing to its steady state. We refer to Section D.5.1 for a brief overview on

non-normal forms. Thus in this case, the stability of the fixed point has to be

compared with the feedforward term !ff . A big feedforward term is able to

strongly a↵ect the dynamics when the stability of the fixed point is weak with

respect to the feedforward component (even if the eigenvalues are not close to

zero), i.e. when the non-normality is big with respect to the stability. Since

the eigenvalues depend on the control parameters through !0, while !ff only

depends on !s, the meaningful relation for the appearance of the mechanism

discussed above is the balance condition !0 ⌧ !s. Through the mathematical

aside above, we now try to clarify some details of the phenomenology presented.

First of all, just as a matter of terminology, we remark that the change of vari-

ables (E, I) ! (⌃,�), that we performed for evident convenience, turns out

1Triangular matrices are not diagonalizable.
2Note that in the quantum mechanics all non-normal matrices are “explicitly forbidden”,

since all physical operators are Hermitian and all Hermitian matrices are normal
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to be a Schur transformation, indeed generating a triangular Jacobian. The

(non-orthogonal) basis of eigenvectors in the variabes (⌃,�) is

0

@ 1

0

1

A ,

0

@ 1

⇠

1

A

with ⇠ = !0
(!

E

+!
I

) , the eigenvectors becoming more and more similar for ⇠ ! 0.

Moreover the weight of the non-normality is basically the weight of the feed-

forward interaction with respect to the eigenvalues, which means that with a

fixed !0 it grows with !s {it goes (very) roughly as 1�O(!0)/O(!s)}. In other

words the balance condition !0 ⌧ !s means exactly that the non-normality

is big with respect to the stability of the fixed point. From the phase por-

trait of Figure 2 we can imagine that, in a case where the balance condition

holds, if we perturbed the steady state slightly but su�ciently to exit from

the basin of attraction of the stable fixed point, the trajectory would perform

a big transient excursion in the direction of the scar.

7.2.5 The roles played by the noise

When the system is endowed with some small amplitude noise �, then the

e↵ects of the transient regime are stabilized and the dynamics keeps wandering

along the diagonal in the (E, I) reference-frame (Fig.7.2) resulting in the wild

fluctuations of the firing rate shown in Fig. 7.3: the fluctuations generated by

the noise are strongly amplificated under balance conditions by the mechanism

of reactivity along the ⌃ direction. In particular, intermediate values of � give
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rise to up and down states, reminiscent of experimental findings of cortical

areas in the brain. Moreover, numerical simulations suggest that the higher

the value of the noise, the more time the system spends close to the origin, in

between excursions to the ’up’ state. Such avalanche-like dynamics allows a

measure of duration and size of the mesoscopic activity over a small threshold,

which confirms the result of [94], i.e. both duration and size of the avalanches

follow a power law of the form P (T ) ⇠ T�↵ and P (S) ⇠ S�⌧ , where ↵ and ⌧

are the corresponding exponents (see lower panel of Figure 7.3). Furthermore,

it allows for an accurate analysis of the exponent of the power-laws. Although

the power law is composed by a mixture of di↵erent trends, for high values of

the noise (or at least for small avalanche sizes), the exponents are compatible

with the well known exponents for a standard random walk, i.e. ↵ = 3/2 and

⌧ = 4/3. Despite the fact that the mechanism that generates large fluctuations

has been defined, the system shows large silent time-intervals (with extremely

low activity as shown in Fig.7.3), whose existence is a necessary condition in

order to define avalanches. However, the origin of such silent intervals is not

in the picture yet but, as indicated by the temporal series it is related and

(probably) induced by high values of noise. This problem is addressed in the

next section.

7.2.6 The reduced system

The empirical observation that the system keeps wandering along the diagonal

in the (E, I) reference-frame suggests to study a reduced one variable system,

where the dynamics is strictly constrained to evolve along the diagonal (i.e.
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� = 0, E = I = ⌃). Since in this approximation ✓ is small, we take the Taylor

expansion tanh(✓) ⇡ ✓. The reduced system, in the variable ⇢ reads

d⇢

dt
= h+ (�↵� h+ !0) ⇢� !0⇢

2 + �
p

(!0 + ↵� h)⇢� !0⇢2 + h⌘⇢,

where ⌘⇢ is a gaussian white noise variable. For very low levels of activity

(⇢ ⇡ 0), the noise amplitude in Eq. 7.2.6 is dominated by the square root

term and the reduced dynamics is approximately equivalent to the Langevin

equation for the Contact Process in a fully connected network (see Appendix

A.2)

⇢̇ = h+ a⇢� b⇢2 + �̃
p
⇢⌘,

with a = (�↵� h+ !0), b = !0 and �̃ = �
p

(!0 + ↵� h).

In Chapter 5 it has been shown that Eq.7.2.6 can be mapped into a random

walk confined by a logarithmic potential, attracting the dynamics of the system

to the noise-induced singularity in the origin. This would explain the unusually

large permanence times of the original two-variable system into low activity

regimes, responsible for the avalanching behavior.

The original dynamics of eq.B.2 can be directly compared with the simplified

one introduced above (Fig.7.4). On one hand, the time series of the dynamics

of the complete system (resulting from a numerical integration of the model)

defines the e↵ective bivariate probability distribution P (⌃,�). Marginalizing

over�, one obtains the stationary distribution of the dynamics along the diago-

nal P (⌃) =
R1
0 P (⌃,�)d�, from which it is straightforward to define (the pro-

jection along the diagonal of) an e↵ective potential, as Veff (⌃) = � lnP (⌃).
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On the other hand, the stationary potential for the reduced dynamics in ⇢ can

be calculated through a Fokker-Planck approach [43] and reads:

V (⇢) /
✓
(1� 2h

�2
) ln ⇢� 2a

�2
⇢+

b

�2
⇢2 + c

◆

In Fig.7.4 the e↵ective potentials deriving from the complete and the reduced

dynamics are shown to be fairly similar. Thus we can conclude that the bista-

bility of the potential, causing the system to remain trapped close to the origin,

is generated by the square root multiplicative noise term. The presence of a

small driving h makes sure that the system never falls into the absorbing state,

but keeps trying to escape from the logarithmic potential well. Moreover, for

the reduced system in Eq.7.2.6, it has been shown in Chapter 5 that the

avalanche statistics can be fully determined calculating the first return time

to the origin of the random walk confined to the logarithmic potential. The

avalanches result to be power-law distributed, with continuously varying non-

universal exponents depending on the driving h and on the noise amplitude

�: ↵ = 2 � 2h/�2 and ⌧ = 1.5 � h/�2. However, the avalanche statistics of

the Wilson Cowan dynamics under balance condition (Eq.B.2) does not follow

the same exponents. As shown in Fig.7.3, the statistics of avalanches in the

full system is composed by a mixture of di↵erent trends, but at least for small

avalanche sizes, the avalanche exponents are compatible with the well known

exponents for a standard random walk (see Chapter 5), ↵ = 3/2 and ⌧ = 4/3.

Thus, the problem of understanding the origin of the power law exponents of

the avalanche distributions is still open: the diagonal dynamics is essential but

not su�cient to describe the whole system.
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Figure 7.3: Temporal series showing avalanches under a “balance
amplification” condition. Upper panel: Temporal series of ⌃ in a
balanced-amplification condition (!E = 7, !I = 34

5 ) for increasing
levels of noise (from left to right). Above a certain threshold the
system is allowed to reach the absorbing state, showing an avalanch-
ing behavior for high values of noise. Lower panel: Probability of
di↵erent types of avalanches for di↵erent values of the noise am-
plitude (�, see Legend); size avalanches, time avalanches and, size
versus time avalanches. Note that, in the three cases, the nature
of the avalanches highly depends on the noise amplitude. Other
parameter values: ↵ = 0.1, h = 10�3.

7.2.7 Beyond the diagonal

A possible reason for the random-walk-ike exponents found can be figured

out observing the vector field ( ~̇E, ~̇I) in Fig.7.2. Indeed, the whole semi-plane

I > E is attracted to the origin by a (roughly) parabolic potential. In an

approximate way, it is possible to imagine that half of the vector field is com-

patible with an attractive parabolic well potential with a (virtual) minimum

close to the origin, that joins discontinuously along the diagonal with the other

half system, which is another attractive potential with a (true) minimum, i.e.
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Figure 7.4: Histogram of the ⌃-signal of one Wilson-Cowan column
for di↵erent values of the noise amplitude. (a) Log-normal scale, y-
axis is inverted. Histogram of the ⌃� signal of one Wilson-Cowan
column for di↵erent values of the noise amplitude (�, see legend).
The potential change from a single potential well (for low noise,
not shown) to a bistable situation alternating between ’up’ and
’down’ states and, finally, to a new single potential with absolute
minimum on the ’down’ state. Inset: same data but in log-log scale.
Dashed lines corresponds to ��potential, showing extremely small
and parabolic-like potentials. (b) Histogram of the ⌃ � signal of
one Wilson-Cowan column for the additive noise case and di↵erent
values of the noise amplitude (�, same color code). (c) Theoretical
potential from previous one-dimensional e↵ective equations in ⇢.
The similarity among them is undeniable. Parameter values: !E =
7, !I =

34
5 , ↵ = 0.1, h = 10�6.

the up-state. Therefore, when the system is trapped very close to the origin

(by the logarithmic potential sketched above), the small fluctuations with in-

hibitory dominated activity (I > E) are subject to a quadratic-like potential

generating an Ornstein-Uhlenbeck first-passage time distribution. On the con-

trary, when the fluctuation is excitatory dominated (E > I), the system is

strongly pulled towards high activity states. In order to test this hypothesis,

and corroborate our conjecture on the role played by the various ingredients



7.2. Main Results 125

(i.e. non-normal dynamics, multiplicative and additive noise) cooperating to

produce the noise induced bursty behavior in Wilson-Cowan balanced system,

we propose a simple e↵ective model, that contains an essential version of all

the mechanisms described.

7.2.8 Minimal model

First, let us resume our understanding of the complete dynamics, keeping in

mind Fig.7.2b. Let’s say that the system is initially in the mean field steady

state. Noise (deriving from the finiteness of the neural network) will produce a

small perturbation that (if noise is big enough –i.e. if the system size is small

enough–) eventually causes the system to exit from the basin of attraction of

the (weakly) stable fixed point. If the noise on the excitatory variable prevails,

the system performs a wild excursion towards higher activity levels (by the

e↵ect of the non-normal dynamics), before coming back to the vicinity of the

fixed point. If the fluctuation is inhibitory dominated, instead, the non-normal

dynamics strongly pulls the system towards the origin, suddenly shutting down

the activity and leading the trajectory along the diagonal, where the system

experiences the singularity of the potential generated by the (square root)

multiplicative noise. At the same time, noise can perturb the system to slightly

inhibitory states, causing Ornstein-Uhlenbeck distributed small avalanches,

or to slightly excitatory states, where the non-normal dynamics immediately

raises the activity level, eventually driving the system back close to the fixed

point. The model we propose to mimic this behavior is the following:
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• The system evolves according to the following set of e↵ective equations:

8
>><

>>:

⇢̇ = h+ a⇢� b⇢2 + �
p
⇢ ⇢ > T

⇢̇ = �a⇢+ �⌘ ⇢ < T

(7.1)

where T is an arbitrary small threshold.

• The system can instantly take the value ⇢ = 0 or ⇢ = a
b
with probability

p, mimicking the shear flow close to the diagonal and allowing some type

of ’tunneling e↵ect ’.

Setting up the system in the active phase (i.e. with a > 0) this ’toy’ model

are able to reproduce the complex behavior of the avalanches shown in Fig.7.3.

Figure 7.5 shows the avalanche size and duration probability distributions for

di↵erent values of p. Just as our original model, there is a region with a

power-law behavior following the Random Walk universality class for small

avalanches, and a ’bump’ that reflects the existence of an Up (weakly) stable

state of the system. Finally, for huge avalanches there exists an exponential

cut-o↵.

7.2.9 Tsodyks Markram model for networks with synap-

tic plasticity.

We propose that this mechanism could actually be quite general in the neural

dynamics, following the idea that avalanching behavior in resting state could

be noise-induced. We conjecture that inhibition is not the only regulatory



7.2. Main Results 127

P
(t
)

−10

−5

0

5

t
−4 −2 0 2 4

P
(s
)

−10

−5

0

5

10

s
−10 −5 0 5

10-3
10-4
10-5
10-6
10-7

OU

Figure 7.5: Avalanches for the (1 + ✏)-dimensional minimal model.
Avalanche size distribution for di↵erents values of p. There is a
region of random walk movement, followed by a bump related to the
tunneling e↵ect. Inset: Same behavior for the avalanche duration
distribution. Parameters values: a = 0.5, b = 1, � = 10�3, h =
10�3, T = 2.5 · 10�4.

mechanism that induces a reactive behavior: non-normal forms might be a

common trait in neurophysics.

In this section we remove inhibition from the picture and consider a network

of only excitatory spiking neurons, communicating through plastic synapses.

More specifically we endow the system with Short-Term Synaptic Plasticity

(STP) to show that this mechanism, under some homeostatic conditions, rep-

resented here by some particular choice of the synaptic and neuronal time

scales, is su�cient for the emergence of highly untrivial reactive behaviors.
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A density (Wilson Cowan-like) variable x describes the excitatory activity

of the network, which, since the system is finite, is endowed with a demo-

graphic noise. The overall incoming current, though, is mediated by the synap-

tic density variable y, which describes the (short term) dynamic behavior of

the synapses. A common way to model Short Term Plasticity is through

the Tsodyks-Markram model [21] (see also Appendix B.3). As already men-

tioned in this thesis (see Chapter 4), this model describes the dynamics of

the transmission of the electric signal from the spiking neuron to its neighbor

through the neurotransmitter resources present in the pre-synaptic terminal.

The Langevin equations for the system read:

8
>><

>>:

ẋ = �↵x+ (1� x)f [yx+ h] + �
p
x⌘

ẏ = 1
⌧
(1� y)� uyx

where f(x) is the same sigmoid function defined for the Wilson-Cowan dynam-

ics, h is a small inhibitory external current and ⌘ is a gaussian white noise.

In absence of activity, the synaptic variable recovers (up to saturation y = 1)

with a time scale specified by ⌧ , while in presence of activity, it gets consumed,

proportionally to the overall activity, at a much faster time scale 1/u.

By similarity with theWilson-Cowan model, where only one fixed active/inactive

point exists (depending on whether excitation or inhibition dominates, respec-

tively), the specific parameters of the model above are chosen to be consistent

with the case B described in Chapter 4. In such a case, between the up and

the down states, a regime of bistability including three fixed points is found for

intermediate values of ⇠ (in between two saddle-node bifurcations). In such
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intermediate regime, for appropriate choices of the parameters, the reactive

dynamics is present. In particular, this specific case is achieved by taking the

limit of small (but non-vanishing) values of ⇥, ↵, ⌧D and ⌧R and also, with

some extra fine tuning (i.e. the condition ⌧
D

⌧
R

⌧ 1 and 1
⌧
D

⇡ ↵, where the last

equation represents a sort of balance between the synaptic depression timescale

and the neuronal decay timescale) to reach the non-normal condition shown

in Figure 7.6a. As in the Wilson-Cowan model, there exists a stable ’up’ state

with a characteristic ’shear’ flow driving the system away from the stable fixed

point and dropping it (by a noise-induce phenomenon) to the ’down’ state (see

Figure 7.6b).
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Figure 7.6: Phase portrait for the ‘balanced ’ TM model. (a) Non-
normal condition with two fixed points showing reactive dynamics.
A characteristic ’shear’ flow surrounds the two stable fixed points,
’up’ and ’down’. Parameters: h = 10�6, ⇥ = 0.03, ↵ = 0.01, ⌧D =
100, ⌧R = 2000, � = 1 (b) Stable fixed point with incoming flow
in all directions. Parameters: h = 10�6, ⇥ = 0.03, ↵ = 0.01, ⌧D =
0.2, ⌧R = 1000, � = 13.

Numerical simulation of Eqs.(7.2.9) suggest that there exists a clear distinction
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Figure 7.7: Temporal series for noisy system corresponding to pa-
rameters shown in the above figure. (a) Reactive system for di↵er-
ent values of the noise amplitude (as in the legend). For the lower
one (red line) the system features a stable ’up’ state, that can be
destabilized (green line) up to generate bursty dynamics (blue line)
for increasing values of noise amplitude. Such fluctuations are ex-
cursions between the two metastable states. (b) For identical values
of the noise amplitude, only an ’up’ stable state exists. The lack of
non-normal e↵ects around the stable state prevents noise-induced
fluctuations.

in the noisy dynamics corresponding to the two cases illustrated in Figure 7.6.

As shown in Figure (7.7), both cases have two stable states but for the first

case, the ’weak’ stable ’up’ state for relatively small amplitudes of the noise,

can be easily destabilized, generating a clear bursty quasi-periodic dynamics

with amplified fluctuations. Instead, for the second one (see Figure (7.7)b)

the same values of the noise amplitude slightly perturb the dynamics of the

system around the ’up’ state, with no trace of amplification of fluctuations.

7.3 Summary and Conclusions

Scale-invariance has been proven to be ubiquitous in nature. Power-law dis-

tributed avalanches of activity are reported in very diverse phenomena, from
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earthquakes and microfracturing phenomena, to solar flares, rainfall, or type II

superconductors [163, 164, 165, 166, 167], as we already discussed in Chapter

1. Very often such a scale-invariant behaviour is considered as the fingerprint

of underlying criticality, as widely overviewed along this thesis. Recently, some

authors have been relating the emergence of power laws in cortical systems,

with the existence of self-organized criticality [168, 17, 36, 16, 80], concerned

with the existence of a slow regulatory mechanism that tunes the system to

criticality. Nevertheless, the criticality hypothesis in cortical networks is still

controversial [159, 84] (see also 6), and, occasionally, even the significance of

their emergence in the experimental context has been questioned. The mech-

anism of balanced amplification, recently proposed by Benayoun et al. [94],

and thoroughly scrutinized here provides a (non-critical) candidate to model

some features of neuronal avalanches. Thus, the Wilson-Cowan model for ex-

citatory and inhibitory neuron populations, placed in a condition of balance

between excitatory and inhibitory couplings, is able to describe (without any

need of fine tuning to a critical point) transitions between up (active) and

down (quiescent) states as they occur in the brain during sleep or under anes-

thesia [85, 86], as well as large fluctuations that closely resemble the empirical

scale-free avalanches of brain dynamics [5]. In other words, the e↵ect of the

regime of balance is an avalanching-like (finite size) behavior where the system

wanders through an almost-linear phase space which is very wide with respect

to the level of the noise introduced. However, temporal series suggests that

the system, in order to show avalanching behavior, remains trapped very close

to the origin, that is the e↵ect of the logarithmic potential along the balanced

dynamical trajectory, i.e. the one-dimensional trajectory where excitatory and
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inhibitory activity are completely equal. Deviations from such diagonal drive

the system from one minimum to the other, mimicking something similar to

a ’tunneling e↵ect’, where the permanence time in each minimum depends on

their relative depth, which in its turn is fully determined by the intensity of

the noise. We evidenced how this mechanism is related to balance but not

necessarily to criticality. In fact the singular behavior does not stem from the

thermodynamic limit, on the contrary, the whole phenomenon is a finite-size

e↵ect. From another point of view, noise in an essential feature in order to

observe the scale invariant behavior: the avalanches in this case stem from an

amplification of noise-induced fluctuations in the system, while the determin-

istic system does not necessarily become unstable. Nevertheless, unlike the

microscopic dynamics studied by Benayoun et al. [94], our mean-field descrip-

tion shows more clearly scale-free avalanches composed by, either a mixture

of di↵erent trends or (for high values of the noise amplitude) exponents com-

patible with the standard random walk universality class, i.e. ↵ = 3/2 and

⌧ = 4/3. Thus, although reactive dynamics may be of key importance in

neural mechanisms (such as in up and down states) and in fostering large

fluctuations, it does not seem to be a plausible candidate to account for the

scale-invariance belonging to branching-process universality class observed in

experiments and already outlined in previous chapters. On the other hand, we

have shown that the reactive dynamics applies to a wider scenario, extensible

to di↵erent neural mechanisms, including synaptic plasticity as encoded in the

Tsodyks-Markram model.
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Conclusions

The human cortex operates in a state of restless activity, whose meaning and

functionality are still not well understoood.

Understanding the origin, nature and significance of complex patterns of neu-

ral activity, as recorded by diverse electrophysiological and neuroimaging tech-

niques, is a central challenge in Neuroscience and the main target of this The-

sis. These patterns include collective oscillations or rhythms, emerging out

of partial synchronization, as well as highly-heterogeneous outbursts of activ-

ity intespersed by periods of quasi-quiescence called “neuronal avalanches”.

The sizes and durations of such avalanches have been consistently found to be

scale-free and to obey scaling behavior, reminiscent of criticality. This empir-

ical evidence seems to support the theoretical conjecture proposing that the

cortex might obtain important functional advantages by operating at the edge

of a continuous phase transition.

133
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In this Thesis, we analyzed under di↵erent viewpoints this popular though

controversial hypothesis.

Self-organized criticality elucidates the conditions under which physical and

biological systems tune themselves to the edge of a second-order phase transi-

tion, entailing scale-invariant behaviors. Existing well-accepted models claim

the occurrence of self-organized criticality in the brain: nevertheless either

they are not biologically plausible, or they present some kind of shortcom-

ing, so that, in our opinion, none of them do relate exhaustingly neuronal

avalanches to self-organized criticality.

In particular, we focus on the celebrated model of Millman et al. [17], in which

diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even

if the network operates in a regime far from the edge of any phase transition

(thus being incompatible with criticality). Instead, we show that perturbations

to the system state unfold dynamically according to a neutral drift (guided only

by stochasticity) with respect to the background of endogenous spontaneous

activity, and such a neutral dynamics –akin to neutral theories of population

genetics and of biogeography– implies marginal propagation of perturbations,

responsible for scale-free distributed causal avalanches. In other words, causal

avalanches follow power-law distributions even if the system is not poised at

criticality. We argue that causal information, not easily accessible to experi-

ments, is essential to elucidate the nature and statistics of neural avalanches

and that the possibility that neutral dynamics plays an important role in the

cortex functioning, is a plausible alternative to the criticality hypothesis. We

discuss the implications of these findings, in the attempt of designing new em-
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pirical approaches to shed further light on the origin of neuronal avalanches,

on how causality could be evaluated in an experimental framework and, ulti-

mately, on how the brain processes and stores information.

Motivated by the empirical observation of bimodal distributions of activity in

neuroscience and other fields, we proposed and analyzed a general theory for

the self-organization to the point of phase-coexistence in systems exhibiting a

first-order phase transition. The theory of Self-Organized Bistability explains

the emergence of regular avalanches with attributes of scale-invariance which

coexist with huge anomalous ones, with realizations in many fields. Following

the footprints of the development of the theory of SOC, we build a microscopic

toy model, the “fixed-energy” version of the theory, and a Langevin description

of Self-Organized Bistability. Moreover we discuss the generation of system-

size “king” avalanches, through a nucleation argument. We also take into

account the e↵ects of spatial and topological heterogeneities: while on a regular

lattice the background field is able to compensate the quenched disorder on

sites’ behavior, on disordered network topologies, preliminary results suggest

that heterogeneity is able to smoothen the first order transition and reduce

SOB behavior to SOC.

The issue of the viability of SOC or SOB in cortical circuits still holds unsolved.

We address it by inheriting ideas from the physics of phase transitions and in

particular by following the principle of parsimony of Landau-Ginzburg, in order

to analyze their possible collective phases and phase transitions. The resulting

mesoscopic approach that we develop is similar in spirit to that of Wilson-

Cowan, but, crucially, including stochasticity and space. Synaptic plasticity
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or inhibition are scritinized as alternative key regulatory/homeostatic mech-

anisms, leading to very similar results. Detailed analyses reveal two types of

phase diagrams, depending on parameters. A first scenario, that could be re-

lated to an awake state of the brain, includes four possible emergent phases:

down state, synchronous, asynchronous, and up state; and reveal that all chief

empirical findings for neural avalanches are consistently reproduced by tuning

our model to the edge of synchronization. This is, the putative criticality of

cortical dynamics does not correspond to a point of marginal propagation of

activity (quiescent/active phase transition), as usually assumed, but to a syn-

chronization phase transition, at which oscillations and scale-free avalanches

coexist.

In the second scenario –achieved by a slower dynamics for synaptic resources–

the model explains up and down states as they occur, e.g. during deep sleep

and anaesthesia. The present approach constitutes a theoretical framework

to rationalize the possible collective phases and phase transitions of cortical

networks in simple terms, thus helping shed light into basic aspects of brain

functioning from a very broad perspective.

Moreover, our Landau-Ginzburg approach allows to discuss the conceivabil-

ity of self-organization in this simplified, though comprehensive model of the

cerebral cortex. We show that this description corresponds to a non-conserved

version of SOB, and that the conserved limit can be recovered by slowing

down the dynamics of synaptic plasticity with respect to membrane potential

activity. The biological inspiration of the model, allows to directly compare

the parameters of the model with experimentally measured values. We found
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that the synaptic timescales necessary in order to achieve self-organization are

not compatible with the values deriving from experimental observations. We

conclude that the empirically reported apparent criticality can only possibly

come about if the cortex is tuned at the edge of a synchronization phase transi-

tion, where neuronal avalanches and oscillations coexist, and where dynamical

diversity is maximal. Still, other possible scenarios could emerge within the

self-organization framework if one considered additional/di↵erent homeostatic

mechanisms.

The exponents measured for the distributions of neuronal avalanches are well-

known to coincide with those of un-biased branching processes. This gave us

the input to revisit the general problem of deriving the mean-field values of

avalanche exponents in systems with absorbing states. Focusing on the gener-

ality of the result, we showed how exponents can be calculated analytically by

mapping the corresponding Langevin equations describing the stochastic dy-

namics into a random walker confined to the origin by a logarithmic potential.

We reported on the emergence of non-universal continuously-varying exponent

values stemming from the presence of small external driving –that might in-

duce avalanche merging– that gives a possible explanation of the deviations

from the mean field exponents observed in real systems.

The lack of a strong physical criterion to set a parameter (the time binning)

for the definition of avalanches is one of the main sources of skepticism on

the universality of the measure of scale-invariance and, consequently, on the

critical hypothesis. Moreover it is conceivable that the scale-invariant nature

of the avalanches, could be induced by the protocol of clustering used to define
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avalanches. In fact it could be plausible that determining the time-bin as the

average time interval between two events recorded in the network, biased the

measure, artificially creating time units such that the branching parameter of

the resulting process is unitary, thus generating on average a fictitious branch-

ing process. We briefly discussed some preliminary findings on this topic.

While it is not clear yet, BP method provides a biased measure and consider-

ing as well the di�culties in acquiring accurate data for several decades –which

would be necessary to confirm the occurrence of precise finite size scaling or

other signatures of criticality– di↵erent perspectives have been proposed, in

alternative to the criticality hypothesis. For instance a di↵erent perspective

relates the emergence of highly irregular bursts of activity with the condi-

tion of balance between excitation and inhibition in the cortex. We analyzed

in detail this mechanism, which leads to the emergence of non-critical power

laws for neuronal avalanches within realistic and simple modelling framework.

Through analytical and computational tools, we made clear the role of balance

in a Wilson-Cowan-like deterministic dynamics and how this can stem from a

“non-normal” setup, under very general assumptions. Furthermore we eluci-

dated how noise superimposes to this dynamics, creating an intriguing, very

general and solid machinery, giving rise to the emergence of self-similar bursts

of activity in finite-size systems of spiking neurons.
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8.1 Summary of Thesis Achievements

In this PhD thesis we try to help elucidating the picture on the criticality

hypothesis in the brain, starting from a unifying and rigorous perspective. The

overall contribution of this thesis is an accurate analysis of the possibility of the

existence of a phase transition in the brain (and the eventual self-organization

to it). We identify that an essential element for the behavior of the synthetic

neuron is the feature of integrating signal coming from many neighbors, and

only when the total signal is above a certain value, the neuron transmits the

information to its neighbors. This mechanism creates a positive feedback loop

for the global activity, which generates a discontinuous phase transition.

Taking into account one of the most cited models that reproduce self-organized

criticality in neural networks, the model of Millman et al. [17] – which shows

the existence of a discontinuous phase transition– we show that it is not able

to reproduce avalanches unless causal information is included, information

which, very often, is not possible to evaluate or include in the experimental

settings.

Under a general point of view (not related to neural context) we developed a

theory for self organization to a first order phase transition in a spatially

extended system, in full analogy with the paradigm of self-organized criticality.

We characterize the dynamical behavior of the system, both through a micro-

scopical toy-model description and through a stochastic mesoscopic Langevin

description. We uncover that cascades of activity follow a bimodal distribu-

tion, where scale-invariance coexists with huge events, balistically invading the
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whole system.

Moreover we construct a parsimonious Landau-Ginzburg theory of the brain,

showing that if a phase transition exists in the brain, it should be a synchro-

nization phase transition, instead of an absorbing/active one, as generally

assumed. We were able to recover many of the phenomena described by ex-

periments by setting our model at the critical point of this transition.

We give an insight on mean field Directed Percolation exponents (the expo-

nents claimed to appear in neural avalanches experiments), how general they

are, what are they related to.

Furthermore we discuss the possibility that experimental protocol for the mea-

sure of avalanches introduces a bias, even though much work is still necessary

before we can draw conclusions on this point.

Finally we help shedding light on a mechanism for generation of non-critical

scale-invariance, based on a so-called reactive dynamics. This also allows an

exploration of the relation between criticality and balance between excitation

and inhibition.
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8.2 Resumen de los resultados de la tesis en

Castellano

En esta tesis doctoral intentamos clarificar asuntos fundamentales sobre la

hipótesis de la criticidad en el cerebro, a través de una perspectiva unificadora

y rigurosa. La principal contribución de esta tesis es un análisis preciso de la

posibilidad de la existencia de una transición de fase en el cerebro (y la eventual

autoorganización del cerebro en el punto de transición de fase). Identificamos

que un elemento esencial para el comportamiento de las neuronas sintéticas es

la caracteŕıstica de integrar la señal proveniente de muchos vecinos, y trans-

mitir la señal de output solo cuando la señal total en input está por encima de

cierto umbral. Este mecanismo crea un circuito de retroalimentación positiva

para la actividad global, que genera una transición de fase discontinua.

Basándonos en uno de los modelos más citados en Neurociencia, que reproduce

la criticidad autoorganizada en las redes neuronales, el modelo de Millman et

al. [17] –que involucra una transición de fase discontinua– mostramos que

este modelo no es realmente capaz de reproducir avalanchas a menos que se

incluya información causal sobre cuál neurona se activa por efecto de cuál,

información que, muy a menudo, no es posible evaluar o incluir en los ex-

perimentos. Bajo un punto de vista general (no relacionado exclusivamente

con el contexto neuronal) desarrollamos una teoŕıa para la autoorganización a

una transición de fase de primer orden en un sistema espacialmente extendido,

en plena analoǵıa con el paradigma de la criticidad autoorganizada (SOC).

Caracterizamos el comportamiento dinámico del sistema, tanto a través de
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una descripción microscópica como a través de una descripción mesoscópica

de un proceso de Langevin. Descubrimos que las cascadas de actividad siguen

una distribución bimodal, donde la invarianza de escala coexiste con grandes

eventos, que invaden balisticamente el sistema entero. Además, construimos

una teoŕıa minimal del cerebro, siguiendo el metamodelo de Landau-Ginzburg,

mostrando que si existe una transición de fase en el cerebro, debeŕıa ser una

transición de fase de sincronización, en lugar de una entre estado absorbente

y estado activo, como generalmente asumido en literatura. Tuneando nuestro

modelo en el punto cŕıtico de esta transición, pudimos recuperar muchos de

los fenómenos descritos por los experimentos. Paralelamente, proporcionamos

una visión unificadora sobre los exponentes de Percolación Dirigida (Directed

Percolation) en campo medio (los exponentes que la comunidad neurocient́ıfica

afirma aparecer en experimentos de avalanchas neurales), explicando en detalle

cuánto de general son, y con qué están relacionados. Además, discutimos la

posibilidad de que el protocolo experimental para la medición de avalanchas

pueda introducir un bias, aunque todav́ıa es necesario mucho trabajo antes

de sacar conclusiones sobre este punto. Finalmente ayudamos a arrojar luz

sobre un mecanismo para la generación de invariancia de escala no cŕıtica en

el cerebro, basada en una dinámica reactiva producida por un balance entre

excitación y inhibición.



Appendix A

Criticality in equilibrium and

non-equilibrium systems

A.1 Criticality in equilibrium transitions

We briefly expose the fundamental concepts related to criticality in equilibrium

systems, taking advantage of the Ising model and afterwards briefly describe

how those concepts can be extended to the realm of non-equilibrium phase

transitions, through the simple example of the Contact Process.

A.1.1 Elementary concepts on phase transitions

When some macroscopical property of a system change qualitatively as a re-

sponse to a small change of the environmental conditions, the system is said

143
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to undergo a phase transition. Usually the two phases are considered to be

characterized by their degree of order (i.e., the transition is between an ordered

and a disordered phase) so that the thermodynamic observable used to dis-

tinguish between them is called the order parameter, while the change in the

environmental conditions is encoded in the variation of the control parameter.

Formally, all macroscopic properties in equilibrium systems can be deduced

from the free energy of the system. Since phase transitions involve dramatic

(qualitative) changes of the macroscopic state of the system, they must corre-

spond to singularities of the free energy. Moreover, given that the canonical

partition function of a finite collection of particles is always analytic, phase

transitions must emerge by taking the thermodynamic limit.

Undoubtedly, the phase transition which is more experienced in every-day life

is the transition between states of water. When water is boiling in a kettle, a

phase transition between its liquid and its gaseous state is occurring. The two

states coexist and, at constant temperature and pressure, the volume of liquid

decreases while the volume of gas increases. This situation is represented with

a red line in Fig.A.1 and corresponds to a so-called first order phase transition.

In a plot of the order parameter (that is, in this case, the density of the sys-

tem) versus the control parameter, which, in this case, is the temperature, we

would see a discontinuous jump at T ' 100C (for P = 1atm), meaning that at

constant temperature, one jumps from a phase with high density (liquid) to a

phase with very low density (gas). The denomination of such transitions stems

from the fact that first derivative of Gibbs free energy su↵ers a discontinuity at

the transition point. If we would perform the same experiment at a lower pres-
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sure (green line in Fig.A.1), the transition between liquid and vapour would be

smooth, i.e. the order parameter would change continuously as a response to

control parameter changes. The singular point in which the order parameter

starts to grow in a second order phase transitions is called the critical point and

the behavior of the system in the vicinity of this point is characterized by a di-

vergence of the correlation length, meaning that there is no characteristic scale

for the interactions in the system, fluctuations occur at all length scales and

many quantities are described by power-law functions, since they are invariant

under dilatations (f(x) = x↵, f(kx) = k↵f(x)). Close to criticality the fluid

appears “milky” (the phenomenon is most commonly demonstrated in binary

fluid mixtures), evidencing the existence of collective fluctuations in density

at long enough wavelengths to scatter visible light (critical opalescence). At

criticality the properties of the system can be described through a set of criti-

cal exponents which do not depend on the details or parameters of the system,

but only on its fundamental symmetries and conservation laws. Remarkably

transitions as diverse as the liquid/gas and ferromagnetic/paramagnetic can

be described by the same set of critical exponents and are said to belong to

the same universality class.

A.1.2 The Ising model

Let us express concepts reviewed in the previous section, in a more formal

way, benefitting from the help of the Ising model. Ising model describes the

magnetization of certain substances such as nichel or iron below a certain

temperature (called the Curie temperature). Let us consider a lattice of N
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Figure A.1: Left: Sketch of the phase diagram of water in the
space (P, T ). Red and green curve indicate first and second or-
der phase transitions respectively, at constant pressure and varying
temperature. Right: phase transitions for constant temperatures
T < Tc, T = Tc, T > Tc and varying pressure, plotted as a func-
tion of the volume. The red curve, corresponding to the first order
phase transition, evidences the phase coexistence between liquid
and gaseous phase.

binary degrees of freedom representing the spin of particles si = ±1, i =

1, ..., N . The Hamiltonian of the system reads

H = �J
X

hiji
sisj �H

X

i

si, (A.1)

where the sum runs over neighboring sites. The partition function reads

Z(T,H) =
X

{s
i

}
e��H, (A.2)

where the first sum runs over all the possible configurations of microstates

{si} = {s1, s2, ..., sN}, the energy scale � = kBT and the free energy is

F (T,H) = � 1

�
logZ = hEi � TS. (A.3)
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Figure A.2: Upper panel: diagram of the phase transitions for the
Ising model: free energy per spin f(T,H) and average magnetiza-
tion per spin m(T,H). Discontinuity of the free energy indicates
a phase transition. Red line and green line evidence respectively
a first order and second order phase transition at fixed tempera-
ture (T < Tc and T = Tc, respectively) and varying external field.
Blue line is the ferromagnetic/paramagnetic transition at fixed ex-
ternal field and varying temperature. Lower panel: example of
steady-state configurations of the 2D Ising model for temperatures
T < Tc, T = Tc, T > Tc respectively showing ordered, critical and
disordered phase.

A phase diagram for an Ising ferromagnet is reported in Fig.A.2 [169]. By

changing the magnetic field at constant temperature, the system can undergo
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a phase transition from a phase in which the magnetization is positive to a

phase in which the magnetization is negative, both a first order (T < Tc, red

curve in Fig.A.2), and a second order one (T = Tc, green curve in figure),

as occurs in the liquid-gas phase transition. However, a second order phase

transition is also achieved by changing the temperature at fixed zero magnetic

field (marked by the blue line in Fig.A.2). Remarkably this second order phase

transition is accompanied by a spontaneous symmetry breaking in which the

system spontaneously chooses to be in either un up or a down-spin phase.

The spontaneous emergence of magnetisation in zero external field as the tem-

perature is lowered below a certain critical temperature in the Ising model

is one of the simplest frameworks to study a phase transition (paramagnetic-

ferromagnetic transition), so let us focus on it, in order to formalize the features

of criticality [169]. The total magnetization, i.e. the di↵erence between the

number of spins pointing up and down, M =
PN

i=1 si is the easiest observable

to measure, distinguishing between the ordered ferromagnetic phase at low

temperatures and the disordered paramagnetic phase at high temperatures,

where the magnetization is zero. Its average is the natural order parameter to

consider,

hMi = @ lnZ
@(�H)

=
1

Z
X

{s
i

}
Me��H, (A.4)

but often one normalizes quantities of interest by the number of degrees of

freedom, thus considers

m =
hMi
N

= � @f

@H
, (A.5)

where f = F/N is the free energy per spin. The sensitivity of the average

magnetisation per spin to changes in the external field at a fixed temperature
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is given by the susceptibility per spin

�(T,H) = �@m
@H

, (A.6)

and it is related to the variance of the total magnetization (fluctuation-dissipation

theorem) through

� =
�

N
(hM2i � hMi2). (A.7)

Moreover the sensitivity of the average energy per spin ✏ = hEi/N to changes

in the temperature at fixed external field is given by the heat capacity per

spin, referred to as the specific heat:

c(T,H) =
@✏

@T
=

�

N
(hE2i � hEi2). (A.8)

The correlation function describes the correlations in the fluctuations of the

spins si and sj

g(ri, rj) = h(si � hsii)(sj � hsji)i = hsisji � hsiihsji, (A.9)

and it is related to the susceptibility by

� = �
NX

j=1

g(r0, rj). (A.10)

The correlation length ⇠ is the characteristic linear scale of the correlation

function: g(ri, rj) / e�|r
i

�r
j

|/⇠.

At relatively high temperatures, the entropic part of the free energy dominates
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and the free energy is minimised (entropy is maximised) by randomising the

orientation of spins. Meanwhile, at relatively low temperatures, the energy

component dominates so that the free energy is minimised by minimising the

energy, i.e. by aligning spins. When the thermal energy and the interaction

energy are comparable, a phase transition from a disordered to an ordered

state takes place, where

lim
H!0±

m(T,H) /

8
>><

>>:

0 for T � Tc,

±(T � Tc)� for T ! T�
c

(A.11)

The critical exponent � characterises the pick-up of the magnetisation at

T = Tc. At relatively high temperatures the variance per spin decays as �

in zero external field, i.e. the spins can be considered non-interacting. As the

temperature is lowered, the fluctuations away from the average magnetisation

per spin (m = 0) increase and the spins become increasingly more interactive,

and at the critical temperature the fluctuations diverge, meaning that the

are correlated throughout the system and the system is extremely sensitive

(responsive) to external perturbations:

�(T,H ! 0) / |T � Tc|�� for T ! Tc

c(T,H ! 0) / |T � Tc|�↵ for T ! Tc

(A.12)

As a consequence of the divergence of the susceptibility, at the critical point the

spin-spin correlation function cannot decay exponentially fast with distance.
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Indeed, at (Tc, 0) one finds

g(ri, rj) = |ri � rj|�(d�2+⌘) (A.13)

and

⇠(T,H ! 0) / |T � Tc|�⌫ . (A.14)

A.1.3 Landau theory of phase transitions

Landau was awarded with the Nobel prize in physics 1962 for ‘his pioneering

theories for condensed matter, especially liquid helium’ explaining the fluid-

superfluid phase transition in 4He [169]. He argued that if the free energy is

analytic near the critical point, then it can be expanded in terms of the order

parameter which is small in the vicinity of the phase transition.

f(T,H;�) =
1X

k=0

↵k(T,H)�k (A.15)

for T ! Tc and H ! 0 where � denotes a general order parameter and

↵k(T,H) are coe�cients that depend on the control parameters (for example

in the Ising model those parameters are the temperature and the external

field). Symmetry arguments can be used to constrain the coe�cients ↵(T,H).

For example, for the Ising model in zero external field, the free energy is an

even function of the order parameter, since in the absence of any external field

the spins are equally likely to be pointing up or down, on average: f(T, 0;�) =

f(T, 0;��), so that ↵k(T, 0) = 0 for odd k in zero external field. In the
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vicinity of the phase transition, the order parameter is small. Thus we expect

the higher-order terms in the expansion of the free energy to be negligible.

Therefore, in zero external field, the simplest possible form of the free energy

that can describe a continuous phase transition is:

f(T, 0;�) = ↵0(T, 0) + ↵2(T, 0)�
2 + ↵4(T, 0)�

4. (A.16)

Figure A.3: A sketch of the free energy per spin, f � f0, versus
the average magnetization per spin, m. The balls indicate the po-
sition of the minimum of the free energy. The three panels in the
top row are for negative external field and temperatures T < Tc,
T = Tc,T > Tc, respectively. The three panels in the middle row are
for zero external field and temperatures T < Tc, T = TC , T > Tc,
respectively. The three panels in the bottom row are for positive ex-
ternal field and temperatures T < Tc, T = Tc, T > Tc, respectively
[169].

At T = Tc, the free energy has a unique extremum at < � = 0 which is a

marginally stable minimum. Since ↵2(T, 0) is positive for T > Tc (since the
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free energy has a unique extremum) and negative for T < Tc (since the free

energy has three extrema), it follows that ↵2(T, 0) must be zero at T = Tc,

while ↵4(T, 0) remains positive to ensure that the extremum is a minimum.

Assuming that the coe�cients ↵k(T,H) are analytic around (Tc, 0), they can

themselves be expanded in powers of (T � Tc) and H. Close to the critical

temperature and for small external fields, ↵2(T,H) = ↵̃2(T � Tc). Moreover,

if we restore a small external field, we can write the full Landau theory of

continuous (second-order) phase transitions with order parameter � (and up-

down symmetry):

f(T, 0;�) = ↵̃0 + ↵̃2(T � Tc)�
2 + ↵̃4�

4, (A.17)

from which one could derive the mean-field exponents for the Ising model.

Since the Landau theory is an expansion of the mean-field model, it cannot be

employed to evaluate quantitative results, but it is an amazingly powerful tool

to straightforwardly catch the qualitative behavior of a system.

A.2 Criticality in non-equilibrium systems: The

Contact Process

A system reaches equilibrium if it is completely isolated from external influ-

ences (thermal, mechanical, chemical, etc.) such that no external flux of mass

or energy can pass through it. Such special conditions can be achieved in

laboratory-designed systems, but almost never in Nature.
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More formally, non-equilibrium systems are defined as systems for which de-

tailed balance condition may not hold:

wijP
eq
i 6= wjiP

eq
j , (A.18)

where P eq
i is the probability to find the system in the i-th stationary config-

uration and wij is the probability (rate) of transiting from configuration i to

configuration j. This means that in steady-state conditions there is some sort

of net probability flux between the configurations of the system, even though

the system may appear macroscopically time-independent.

One of the simplest possible toy models presenting a non-equilibrium phase

transition is the Contact Process. It is a birth-death stochastic process defined

on a network of N binary units, which can be either occupied or empty: each

occupied site dies with probability µ and has a probability � to reproduce,

creating a new occupied site at a randomly selected empty neighboring site.

It was first proposed by Harris [170] as a model for epidemics spreading and,

since then it has been largely used to model the dynamics of propagation of

some type of “activity” (as e.g. infections in epidemic spreading, computer

viruses in networks, etc.). It predicts two possible outcomes with a phase

transition in between: if birth rates prevails, the infection spreads throughout

the population, eventually reaching a stable percentage of infected individuals;

if death rate prevails, then the recovering is fast enough and the infected

percentage decreases until it vanishes, if birth and death rate are balanced,

the system is critical. A fundamental1 feature of the Contact Process is the

1A conjecture by Jannsen [121] and Grassberger [122] states that in every dimension,
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existence of an absorbing state: if all active sites are dead, then the dynamics

ceases. Thus, absorbing state acts as a probability sink, creating a net flow of

probability, which is an example of how the detailed balance can be broken.

For simplicity, we consider here a fully coupled network. The Master equation

reads

Ṗ (n, t) = Wn�1!nP (n� 1, t) +Wn+1!nP (n+ 1, t)+

�Wn!n+1P (n, t)�Wn!n�1P (n, t) =

= �(n� 1)N�n+1
N

P (n� 1, t) + µ(n+ 1)P (n+ 1, t)+

��nN�n
N

P (n, t)� µnP (n, t),

(A.19)

where Wn1!n2 is the transition rate between the state with n1 occupied sites

to the state with n2 occupied sites. Introducing a density variable ⇢ = n/N

and renaming ✏ = 1/N , Eq.A.19 becomes2

Ṗ (⇢, t) = �N [(⇢� ✏)(1� ⇢+ ✏)P (⇢� ✏, t)� ⇢(1� ⇢)P (⇢, t)]+

+µN [(⇢+ ✏)P (⇢+ ✏, t)� ⇢P (⇢, t)].
(A.20)

Hence, performing a (second order) Taylor expansion3 in the limit of big system

sizes ✏! 0 –which allows to approximately consider ⇢ as a continuous variable–

one has:

@tP (⇢, t) = @⇢[(�⇢(1�⇢)�µ⇢)P (⇢, t)]� 1

2N
@⇢

2[(�⇢(1�⇢)+µ⇢)P (⇢, t)]. (A.21)

all models exhibiting a continuous transition to an absorbing/quiescent phase, without any
additional symmetry or conservation law, belong to Directed Percolation universality class.

2
Wn!n+1 = WN⇢!N⇢+1 = W⇢!⇢+✏

3i.e. using the formula f(⇢� ✏) = f(⇢)� ✏@⇢f(⇢) +
✏2

2 @
2
⇢f(⇢), with f(⇢) = ⇢(1� ⇢)P (⇢)
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The last equation is the Fokker Planck equation for the Contact Process (in

a fully connected topology). The corresponding Langevin equation (à la Ito)

reads [43]:

⇢̇(t) = (�� µ)⇢� �⇢2 + �
p

(�� µ)⇢� �⇢2⌘(t), (A.22)

where ⌘(t) is a gaussian white noise with unitary variance and zero mean

(h⌘(t)i = 0 and h⌘(t)⌘(t0)i = �(t� t0)).
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Figure A.4: Transition diagram ⇢(�) of the mean field Contact
Process in light green, susceptibility �(�) in dark green.

If we consider only the deterministic part of the equation above (i.e. the

thermodynamic limit)

⇢̇(t) = (�� µ)⇢� �⇢2, (A.23)

also known as the Malthus-Verhulst equation, we can already highlight the

qualitative features of the system, in particular the existence of a phase tran-

sition. In fact,

(i) for �/µ < 1, the system decays to an absorbing state, with null stationary
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activity ⇢st = 0, (i.e. with no occupied sites), as ⇢(t) = ⇢(0) exp(��
µ
t), with

� = |�� �c|

(ii) for �/µ > 1, the system is in the active regime and there are two stationary

states: ⇢st = 0 and ⇢st = 1� µ/�;

(iii) finally when �/µ = 1 the system undergoes a bifurcation: close to the

critical point � = �c = µ

⇢st =
�� �c
�

=
�

�+ �c
=

�

�c
+O(�2) ⇠ ��, (A.24)

where � is the distance from the critical point and � = 1 is a critical exponent.

Moreover, the dynamics shows critical slowing down at the critical point, since

one obtains

⇢(t) =
⇢(0)

1 + �⇢(0)t
⇠ t�1 (A.25)

for large times. One can also define the critical exponents ⌫k and ⌫? for the

the correlation time and correlation length, characterizing the divergence of

the time and space4 correlation functions close to the critical point. If we

introduce a small driving field h to the dynamics, we are able to calculate the

susceptibility

� ⌘ @h⇢st|h!0 = ��1, (A.26)

such that infinitesimal perturbations diverge at the critical point.

Moreover, non-equilibrium phase transitions show peculiar features in their dy-

namical behavior, which have no correspondence in standard equilibrium phase

4note that ⌫? can only be defined out of the mean-field limit
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transitions. Usually one can perform spreading experiments, i.e. set an initial

condition with a single seed of activity on an absorbing background, on the

full dynamics (including the fluctuation term), and measures the statistics of

cascades of spatio-temporal activity, or ‘avalanches’ of activity. For subcritical

values of the control parameter µ/� < 1, size and durations of the avalanches

are exponentially distributed. For supercritical values µ/� > 1, on the con-

trary, a huge amount of the avalanches reach the whole system size. Right

at the critical point � = µ, sizes and durations show maximal variability, i.e.

they are power-law distributed, up to the system size, where an exponential

cuto↵ usually appears. Results of spreading experiments on network of di↵er-

ent sizes can be rescaled onto each other, or equivalently the size-dependent

distributions can be expressed as:

P (s,N) ⇠ s�⌧G(s/N), (A.27)

meaning that ”finite size scaling”, which is a signature of criticality, holds.

Finally when the Contact process is defined on a network, an additive di↵usion

term Dr2⇢ appears in the Langevin equation. The avalanches of activity

generated in a spatially explicit model are fractal at criticality.

A.3 Self-Organized Criticality

In the attempt to explain the ubiquity in nature of systems that exhibit features

of criticality, as if they where posed in the vicinity of a second order phase tran-
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sition, Bak, Tang and Wiesenfeld [2] came up with a toy-model –the sandpile–,

pointing-out a mechanism by which dynamical systems can self-organize to the

vicinity of a second-order phase transition, without needing to tune any param-

eter. The concept of Self-Organized Criticality encountered a huge resonance

during the last decade of the twentieth century, many modified versions of

the original sandpile were developed and used as toy-models to explain sev-

eral phenomena, such as earthquakes and solar flares statistics, Barkhausen

noise, vortices in type-II superconductors etc. [163, 164, 165, 166, 167]. The

original sandpile model is as follows. Consider a network, let’s say a square

lattice with open boundaries, and let’s drop randomly grains of sand or tokens

of stress(/energy) –discrete units– until one site reaches a threshold value,

✓. When a site reaches the threshold, the site “topples”, meaning that it re-

distributes its grains of sand between its neighbors. This redistribution can

eventually lead one of the neighbors to threshold, so that eventually a cascade

of events –also called an “avalanche”– takes place. When a toppling event

occurs at a boundary site, some grains of sand may fall o↵ the system (“dis-

sipate”), in such a way that each avalanche comes to an end at some point.

When the cascade of events is over, the process starts from the beginning:

new grains of sand are introduced into the system (“driving”), until a new

avalanche occurs. It has been shown that such a system has all the features

of a critical non-equilibrium phase transition, in fact it can be seen as a dy-

namical system whose fixed point is a critical point. Avalanche’s statistics are

scale-free (size, duration, average size given the duration), correlation lengths

diverge, finite-size scaling holds, scaling relations between exponents can be

found.
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The key idea to elucidate how SOC works consists in “regularizing” sandpiles

by switching o↵ slow driving and boundary dissipation. In this way, the total

amount of sand (that we call “energy”, E) becomes a conserved quantity that

can be used as a control parameter [26, 57, 3]. In the “fixed-energy ensemble”

the system can be either in an active phase (with perpetual activity) for large

values of E, or in an absorbing phase (where dynamics ceases) for su�ciently

small values of E [58]. Separating these two phases, there is a critical point, Ec,

at which a standard second-order phase transition occurs. In this setting, SOC

is understood as a dynamical mechanism which, by exploiting slow driving and

energy dissipation at infinitely separated timescales, self-tunes the system to

Ec [2, 28, 24, 54]). To illustrate these ideas, let us recall how do they operate

in the simplest possible mean-field framework [39]. For this, we consider, the

minimal form ⇢̇(t) = a⇢ � b⇢2 for a (mean-field) continuous phase transition

separating an absorbing phase with vanishing activity ⇢ = 0 (for a < 0) from

an active one ⇢ = a/b 6= 0 (for a > 0); b > 0 is a constant. This equation is now

coupled to an additional conserved “energy” variable E fostering the creation

of further activity, ⇢̇(t) = (a + !E)⇢ � b⇢2, where ! > 0 is a constant. For

sandpiles, E represents the total density of sandgrains while ⇢ is the density of

sites above threshold. In the fixed-energy variant, E is a conserved quantity,

and the critical point lies at Ec = �a/!. Instead, in the SOC version, E

is a dynamical variable, as an arbitrarily small driving rate, h, and activity-

dependent energy dissipation, ✏ are switched on: Ė = h � ✏⇢. In the double

limit, h, ✏ ! 0 with h/✏ ! 0 the steady-state solution is E = Ec, i.e. the

system self-organizes to criticality.
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To investigate how this simple mean-field picture changes in spatially-extended

noisy systems, we briefly recap the stochastic theory of SOC. The phase tran-

sition of SOC systems, in their fixed-energy counterpart, is described by the

following set of Langevin equations incorporating spatial coupling (di↵usion)

and noise in a parsimonious way:

@t⇢(~x, t) = [a+ !E(~x, t)]⇢� b⇢2 +Dr2⇢+ �⌘(~x, t)

@tE(~x, t) = Dr2⇢(~x, t)
(A.28)

where ⇢(~x, t) and E(~x, t) are fields (some dependencies on (~x, t) have been

omitted), b > 0, D and � are the di↵usion and noise constants, respectively,

and ⌘(~x, t) is a zero-mean multiplicative Gaussian noise with h⌘(~x, t)⌘(~x0, t)i =

⇢(~x, t)�(~x� ~x0)�(t� t0) imposing the absorbing state condition. Eq.(A.28) was

proposed on phenomenological grounds [57, 3] (see also [171]) but it can be

rigorously derived from microscopic rules (using a coherent-state path-integral

representation [172]) 5.

The fixed-energy theory described by Eq.(A.28) exhibits a continuous phase

transition at Ēc (where Ē is the spatially averaged energy). More remark-

ably, switching on slow-driving and boundary dissipation in Eq.(A.28)6 it self-

organizes to Ē⇤ = Ēc. The width of the spatially-averaged energy distribution

P (Ē) in the SOC ensemble around Ēc becomes progressively smaller as sys-

tem size is enlarged, ensuring that in the thermodynamic limit the system self-

5Observe that the E(~x, t) field is a sort of dynamically-generated disorder, di↵erent from
the “quenched” disorder appearing in other SOC-like phenomena such as Barkhaussen noise
[132].

6This can be done in di↵erent ways; e.g. increasing both ⇢(~x, t) and E(~x, t) at a given
point by some amount (0.1) to create a new avalanche when the absorbing state has been
reached and allowing for energy dissipation at open boundaries.
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Figure A.5: Figures from [27]. Left: Sketched diagram illustrating
the mechanism of self-organization. In the fixed-energy ensemble,
there are an active phase and an absorbing phase, separated by
a critical point, Ec. Slow driving and dissipation make sandpiles
fluctuate around their associated fixed-energy counterpart critical
point. Right: the distribution of E during avalanches, plotted for
simulations of the conserving Langevin theory, using various system
sizes (211, 212, and 213). The distributions become progressively
peaked around Ec upon increasing the system size (the value of E
has been normalized with Ec for each size), assuring that, in the
thermodynamic limit, the system self-organizes sharply to Ec.

organizes exactly to its critical point7. This Langevin approach has allowed for

establishing a connection between SOC and standard non-equilibrium phase

transitions [26, 57, 3, 54], allowing for further computational and theoretical

[63, 176] understanding.

A.4 Brief summary of neutral theory

The introduction by Kimura in 1968 of the neutral theory –hypothesizing that

most evolutionary change is the result of genetic drift acting on neutral alleles

7See [27], and [173, 174, 175] for some lingering controversy.
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[177]– caused much debate and a revolution in the way population genetics

and molecular evolution were understood. In a similar endeavor, Hubbell pro-

posed that most of the variability in complex ecological communities could

be ascribed to neutral dynamics of similar species which expand or decline

as a result of stochasticity [178, 179]. Neutral theories have in common that

they neglect any a priori intrinsic di↵erence between coexisting individuals,

regardless of their “species” (allele, tree,...) type, implying that the dynamics

is purely driven by random demographic e↵ects. For instance, the introduction

of a novel species within an established population triggers a random cascade

of changes, or “avalanche”, which –as a result of the implicit neutrality– does

not have an inherent tendency to neither shrink nor to expand at the expenses

of others. This marginal-propagation process generates scale-free avalanches,

which resemble critical ones even if the system is not necessarily posed at the

edge of a phase transition [179, 31]. Neutral models have been successfully em-

ployed to explain the emergence of scale-free distributions in (i) epidemic out-

breaks with neutral microbial strains [31], (ii) viral-like propagation of neutral

memes [180], (iii) the evolution of the microbiome [181], and (iv) the renewal

of the intestinal epithelium from neutral stem cells [32].

Consider a fully connected network with N nodes (extensions to regular lat-

tices, or more complex networks architectures are also possible but we stick

here to the simplest case) and a number of possible states (be these species, al-

leles, opinions, etc.). The simplest neutral-dynamic model is the “voter model”

(VM) [40, 117, 63, 128], also known as Moran process in the context of popula-

tion dynamics and population genetics (see e.g. [182]). The VM assumes that
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there are two types of species that we call A and B, respectively, and that the

system/network is saturated, meaning that all nodes are always occupied, each

one adopting one of the possible states at every time. The dynamics proceeds

as follows: at each time step, one randomly chosen individual is “invaded” by

a copy of another neighboring node at uniform rate, i.e. common to all the

individuals in the population independently of their species labels. Without

loss of generality we first consider the case with just two species, and later on

we explain how this can be employed to analyze the case with multiple species.

The, so defined, 2-species VM has been profusely studied in the mathematical

literature; some of its main relevant features are [40, 117, 63, 128, 182]: (i) it

has no free parameters, (ii) it lacks any characteristic (length or time) scale and

its dynamics exhibits scale-invariance, and (iii) it is characterized by purely

noise-driven di↵usive dynamics (see [63, 128] for more mathematical in-depth

presentations).

Now, we derive the coarse-grained mean-field description of a voter model;

similar derivations can be found in the literature [182]. For the sake of illus-

tration, let us consider also a more generic model in which �A (resp. �B) is

the probability for A (resp. B) to invade a site in state B (resp. A), with

�A 6= �B in general; the VM dynamics is recovered imposing the symmetrical

or neutral condition �A = �B.

As the system is saturated, the number of individuals for the other species

is nB = N � nA and the state of the system can be determined by the total

number of individuals of A, nA. The model can be expressed as a branching
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process [38], with transition ratesW (nA ! nA+1) = �AnBnA/N andW (nA !

nA�1) = �BnAnB/N . Using these rates, writing down the master equation for

the probability of finding the system in a state nA at time t –or alternatively

with a density of individuals A, ⇢A = nA/N– and performing a standard large

N expansion, one readily obtains the following Fokker-Planck equation:

@P (⇢A, t)

@t
= �(�A � �B)

@
@⇢

A

[⇢A(1� ⇢A)P (⇢A, t)]

+�
A

+�
B

2N
@2

@⇢2
A

[⇢A(1� ⇢A)P (⇢A, t)], (A.29)

or its equivalent (Itö) Langevin equation

⇢̇A = (�A � �B)⇢A(1� ⇢A) +

r
�A + �B

N
⇢A(1� ⇢A)⌘(t),

(A.30)

where ⌘ is a zero-mean Gaussian white noise with h⌘(t)⌘(t0)i = �(t� t0). The

neutrality condition �A = �B implies that the deterministic drift in Eq.A.30

vanishes thus h⇢̇Ai = 0, i.e. the average density of each species remains con-

stant on average; i.e. its population does not grow nor shrink on average, but

it just experiences stochastic demographic changes as described by

⇢̇A =
p
⇢A(1� ⇢A)⌘(t̃), (A.31)

where a factor 2�A/N has been absorbed into the new timescale t̃.

Observe that this last equation describes a stochastic process (random walk)

with two absorbing barriers at 0 and 1, corresponding to either of the species A
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or B, respectively, dominating the whole network. By neglecting the quadratic

term in the noise (which is a valid approximation as far as the avalanche is small

with respect to the much-larger system size), the avalanche-time exponent ↵ =

2 can be deduced from the first-passage time (return to the origin) statistics

of this random-walk process, and using simple scaling arguments one can also

easily derive ⌧ = 3/2 for the avalanche-size distribution [183], i.e. one recovers

the mean-field exponents of the voter model (neutral theory) class (see e.g.

[31]). These power-laws are truncated only by system size. The exponent

values could also be analytically determined by employing the more standard

generating function formalism for an unbiased branching process, as the rate of

any cluster of A nodes to expand �AnAnB/N coincides with its rate to contract

�BnAnB/N in the neutral case �A = �B (see, e.g. [38, 39]).

Two apparently important di↵erences between the VM dynamics and the

multi-species contact-process-like one that we employed in Chapter 2 are: (i)

that many species appear in our model and only two of them in the VM, and

(ii) that in the VM the system is “saturated”, in the sense that each single site

is in one of the two possible opinions/alleles/species/labels/states, whereas in

the model we study, some sites can be inactive, not belonging to any avalanche.

Regarding the first di↵erence, for any given avalanche in the multi-species

model, we can label it as “A” and the rest of species labeled together as

“B”, which is feasible given that they all obey the same dynamical rules,

i.e. are neutral. In what respects the second point, general principles of

statistical physics, relying on universality, indicate that such a di↵erence should

have little e↵ect on avalanche exponents. As a matter of fact, looking at



A.4. Brief summary of neutral theory 167

the computational results for the dynamics of individual avalanches, such a

di↵erence is confirmed to be irrelevant.



Appendix B

Famous Models in Neuroscience

Here we briefly report notorious and successful models used in neuroscience,

which succeeded in describing empirical behaviors of biological neural networks

in a simple way, including minimal ingredients and catching the essential fea-

tures of the system. To keep in mind those models will be useful in the following

discussion.

B.1 Brunel Model

The model introduced by Nicolas Brunel in 2000 [18] defines the dynamics of

a sparsely connected network of N excitatory and inhibitory leaky integrate-

and-fire (LIF) neurons. On one hand, it allows an analytical approach to the

description of the network and on the other hand, it unfolds and characterizes

a reach repertoire of dynamical regimes, based on synchronization properties

168
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of the underlying oscillating neurons. Leaky Integrate-and-Fire is one of the

simplest dynamics to describe the membrane potential Vi of a neuron i. It

reads:

⌧ V̇i(t) = �Vi(t) +RIi(t) (B.1)

In words it states that the membrane potential Vi(t) decays (polarizes) with

time constant ⌧ in absence of inputs, while it grows (depolarizes) by the e↵ect

of the incoming synaptic currents Ii(t). Whenever the membrane potential

reaches a threshold value ✓, an action potential or ”spike” is emitted (tki in-

dicates the time of the kth spike of neuron i) and the membrane potential is

reset to a value Vr, after a refractory period ⌧rp, during which the potential

is insensitive to stimulation. The synaptic current Ii(t) is just the sum of all

spikes contributions (modeled as delta functions):

RIi(t) = ⌧
X

j

Jij
X

k

�(t� tkj �D), (B.2)

where D is a transmission delay, j = 1..Ctot runs over all connections to neuron

i, i.e. excitatory, inhibitory and external Ctot = CE+CI+Cext, with Ctot ⌧ N .

External synapses (considered to be excitatory) are modeled as independent

Poisson processes with rate ⌫ext comparable to the frequency of spiking that

would be generated if the system only had excitatory synapses and synaptic

e�cacy Jij = J for excitatory synapses and Jij = �gJ for inhibitory synapses.

In the limit in which a neuron needs many inputs to reach its threshold value,

i.e. J ⌧ ✓, by virtue of Central Limit Theorem, the synaptic current can be
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approximated by:

RIi(t) = µ(t) + �
p
⌧⌘i, (B.3)

where µ(t) is related to the firing rate ⌫(t) (note that it is not dependent of the

neuron index i) and ⌘i is a gaussian white noise such that, as a consequence

of the sparse connectivity (every two neurons only share a small number of

common inputs), h⌘i(t)⌘j(t0)i = �(t � t0)�ij. In other words this means that

neurons can be considered as independent point processes sharing a common

instantaneous firing rate: between t and t+dt, a spike has a certain probability

to occur ⌫(t) for each neuron, but these events occur independently for di↵erent

neurons. If the firing rate is time-dependent, then the network will show some

degree of synchrony, since at times where ⌫(t) is big, statistically a big number

of neurons spike. This change of perspective allows to define (and characterize)

4 di↵erent dynamical regimes:

• Synchronous Regular phase (SR): the firing rate is periodic; neurons are

almost fully synchronized and their firing pattern is regular.

• Synchronous Irregular phase (SI): firing rate is time-dependent, although

it does not oscillate in a periodic fashion; single nueron’s spiking are

irregular, as measured by an high Coe�cient of Variation of Inter Spike

Intervals1.

• Asynchronous Regular phase (AR): the firing rate is sustained and its

time dependence vanishes in the thermodynamic limit; neuron’s spiking

1The Coe�cient of Variation of a set x is defined as the ratio between the standard
deviation and the mean of the set, CV

x

= �(x)
µ(x)
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pattern is almost periodic (CVISI ' 0).

• Asynchronous Iregular phase (AI): the firing rate is sustained andsta-

tionary but with strongly irregular individual firing (high CVISI).

Versions of the model including di↵erent timescales for excitatory and in-

hibitory synapses were also considered, but this did not introduce any new

dynamical regime.

B.2 Wilson Cowan Model

The Wilson-Cowan model considers mean field description of a large-scale neo-

cortical homogeneous population of excitatory and inhibitory neurons [95].

Usually the equations are thought to describe a cortical column, a densely

connected section of the cerebral cortex, composed by hundreds or thousands

of neurons. The equations describing the dynamics of the activity (density of

active neurons) for the two subpopulations E and I read [95]:

8
>><

>>:

dE
dt

= �↵E + (1� E) f (s)

dI
dt

= �↵I + (1� I) f (s) ,

where f(s) is a sigmoid arbitrary response function, that for simplicity we fix

to

f (s) =

8
>><

>>:

tanh (s) s � 0

0 s < 0
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and s is the incoming current

s = !EE � !II + h.

which is simply the sum of all synaptic inputs, i.e. the sum of the whole excita-

tory and inhibitory activity weighted by their respective synaptic e�cacy, plus

an external small constant input current h. These simple equations state that

for low incoming currents the activity of each population decays exponentially

with a time scale specified by 1/↵; on the other hand the activity grows up to

a maximum saturation value (E, I = 1) as a function of the incoming current

s. According to this mean field approach, the connections between the cells

within the described populations are assumed to be random and dense enough

so that spatial heterogeneity can be neglected.

Despite its simplicity, the Wilson Cowan model encompasses a plethora of

di↵erent possible scenarios, depending on the parameter values. The possibility

to visually display and readily understand those scenarios using phase plane

methods (together with the feasibility to analitically approach some issues)

granted a big success to the model, considering that its collection of behaviors

turned out to be very e↵ective in describing a striking variety of experimentally

observed neural behaviors, concerning both spontaneous and evoked activity,

such as the existence of multiple stable states (Up-Down states), oscillatory

behavior, simple and multiple hysteresis loops, together with the prediction

that a weak stimulus produces dumped propagating waves whereas a stronger

stimulus generates a more localized response [95, 184, 185, 186].
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In a more recent work [94], Benayoun et al recovered WC model as the mean

field limit of a coarse graining of a microscopic simple model. According to this

model a spiking neuron is a binary unit, such that (i) each neuron is either

active or quiescent (ii) the probability that each quiescent neuron becomes

active depends on (a sigmoid function of) the total synaptic input and (iii) each

active neuron decays at a constant rate. An all-to-all connectivity is considered

at first, but the results are extended to a random sparse graph. Starting

from this microscopic simple binary-neuron rate model Benayoun et al were

able to recover Wilson-Cowan (mesoscopic) dynamics, through a Van Kampen

system-size expansion [145]. Thus they determined the correct stochastic term

to be added to D.9 to consider the e↵ects of the finiteness of the population

described. After a coarse graining of the master equation, the full stochastic

equations read:

8
>><

>>:

dE
dt

= �↵E + (1� E) f (s) + �
p
↵E + (1� E) f (s)⌘E

dI
dt

= �↵I + (1� I) f (s) + �
p
↵I + (1� I) f (s)⌘I

where ⌘E,I are gaussian white variables and the stochastic term is a demo-

graphic noise (given by the second moment of the jump probabilities), which

decays with system-size and vanishes in the termodinamic limit.
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B.3 Tsodyks-Markram model for Synaptic Plas-

ticity

Synapses are the juctions between neurons, that is the points where neurons ex-

change information. Most of the time, electrical information traveling through

the axon (output terminal) of the pre-synaptic neuron must be transformed

into chemical activity, through the release of ”neurotransmitters” that bind

to receptors located in the membrane of the dendrite (input terminal) of the

post-synaptic cell. It is a common belief that this synaptic dynamics, together

with various mechanisms for its regulation are at the basis of memory storage

and learning. In a celebrated paper [21] Misha Tsodyks and Henry Markram

modeled, in a biologically plausible way, short term synaptic e�cacy changes

over time reflecting the history of presynaptic activity. In its simplified form

TM model can be resumed into the dynamical equation for one variable, being

the neurotransmitter resources R(t) present in the presynaptic terminal:

R(t) =
1

⌧R
(⇠ �R(t))� 1

⌧D
S(t). (B.4)

In words, this equation states that in absence of activity the synaptic resources

recover to a baseline level ⇠, with characteristic time 1
⌧
R

, whereas they get

depleted with a timescale 1
⌧
D

whenever the presynaptic terminal is emitting a

spike. S(t) is the spike train passing through the synapse, which can be seen

as a sum of delta-like spikes (LIF model)
P

k �(t� tk), where tk is the kth spiek

of the presynaptic neuron, or, if considered in a coarse-grained fashion, S(t) is
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just the electrical activity of the network.

B.4 Millman Model

The model of Millman et al. [17] was introduced as a biologically realistic

model able to reproduce robust SOC behavior in networks of non-conservative

leaky integrate-and-fire neurons with short term synaptic depression, during

Up states. We discuss largely about this model in Chapter 2 and analyse in

detail the measure of the avalanches. This model consists of a population of N

leaky integrate-and-fire excitatory neurons which are randomly connected in a

directed graph to, on average, other K neurons in the population (i.e. forming

a Erdős-Rényi network [187]). External inputs, Ike (t), are Poisson-distributed

with rate fe and internal inputs, Ikin(t), are generated from spiking neurons in

the network (k accounts for the input number). Both internal and external

currents are modeled by exponentials functions of amplitude we/in and char-

acteristic time ⌧s, Ike/in
i

(t) = we/in exp(�(t � tks
i

)/⌧s), where tks
i

represents the

corresponding spiking time of neuron i. Each individual neuron i is described

by a dynamical variable Vi representing its membrane potential. When this

value reaches a threshold value ✓, the neuron spikes and it may open –with

probability pr– each of its nr associated release sites per synapse, inducing a

postsynaptic current. After spiking, the membrane potential is reset to the

resting potential value, Vr, for a refractory period ⌧rp, during which its dy-

namics is switched-o↵. Synaptic depression is implemented by means of a

dynamical “utility” variable Uij(t) 2 [0, 1] (for neuron i and release site j),



176 Appendix B. Famous Models in Neuroscience

which modulates the release probability pr ! Uijpr. The membrane potential

obeys the following equation:

V̇i = �Vi � Vr

RC
+
X

k

Ike
i

(t)

C

+
1

C

X

i02n.n.(i)
j,k

⇥(prUi0j(t
k
s
i

0 )� ⇣ki0j)I
k
in

i

0 (t), (B.5)

where R is the membrane resistance C its capacitance, k is the spike number,

i0 runs over presynaptic neurons linking to i, and j0 over its release sites; ⇣ki0j0 is

a uniform random number in [0, 1] and ⇥(x) the Heaviside step function. On

the other hand, the synaptic utility Uij is set to 0 immediately after a release

and recovers exponentially to 1 at constant rate, ⌧R:

U̇ij =
1� Uij

⌧R
�
X

k

Uij⇥(pr � ⇣kij)�(t� tks
i

). (B.6)

As equations (B.5) and (B.6) are linear during successive events, they can

be integrated exactly, which allowed us to implement both synchronous (or

clock-driven) and asynchronous (or event driven) methods [188], leading to

essentially indistinguishable results. Versions of the model including inhibitory

couplings were also studied, but this did not alter the main conclusions.



Appendix C

Disclaimer on Up Down states

Originally Up and Down states refer to single neuron states in which the neu-

ron, after firing, remains in two possible preferred subthreshold states: one very

hyperpolarized, the so-called Down state and one more depolarized, so-called

Up state. [50, 189, 95]. Nevertheless in [50] it was proposed that the exis-

tence of Up and Down states is fundamental and inherent property of a whole

neural ensemble. Consequently a vast part of the literature (see for instance

[86, 51, 17]) have assumed the use of the words ”Up and Down states” for

slow coherent oscillations in the cortex similar to those seen during deep sleep

or anesthesia, or, more in general to a bistability shown at the whole-network

scale, where the two stable states are characterized by high and low levels of

activity respectively. Although it would be more correct to talk about high

and low activity states, here for convenience we inherit the (slightly improper)

use of ”Up and Down states” when referring to collective properties of a whole

network.
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Supplementary informations

D.1 Supplementary information to Chapter 2:

Neutral theory of neural avalanches

D.1.1 Total density of activity at stationarity in the

minimal model

Neglecting fluctuations from finite size e↵ects, the dynamics of the total density

of activity for the process described by Eq.(2.1) becomes deterministic in the

limit N ! 1:

⇢̇ = (�(1� ⇢)� µ)⇢+ ✏(1� ⇢), (D.1)

178
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whose stationary solution, ⇢̇ = 0, is

⇢⇤ =
�� µ� ✏+

p
4✏�+ (�� µ� ✏)2

2�
. (D.2)

Up to first order in ✏, Eq.(D.2) can be written as

⇢⇤ '

8
><

>:

✏

µ� �
if � < µ

1� µ

�
+ ✏

µ

�(�� µ)
if � > µ.

(D.3)
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D.1.2 Avalanche statistics for Down states in the model

of Millman et al.
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Figure D.1: Avalanche size and duration distributions relative to
periods of low activity (Down states) for timeseries generated with
the model of Millman et al. [17] using two di↵erent methods. Panel
A (linear-logarithmic plot): “Causal” avalanches were defined using
the same criterion as in [17], for several values of the external input
fe, confirming the observation that sizes and durations are expo-
nentially distributed. Panel B (double logarithmic scale): “Time-
correlated” avalanches, defined with the standard temporal binning
method [5] (which ignores causal information), using five di↵erent
time intervals �t to bin the data, including one coinciding with the
average interevent interval (IEI) as usually done in the analyses of
empirical data [5], for fe = 5 Hz. In all cases, simulations were
performed in a network of N = 3000 neurons (model parameters as
in [17]).
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D.1.3 Causal avalanches in the model with inhibitory

synapses

Main results presented above are robust under the introduction of inhibitory

synapses. Following [17], we run simulations of the model for which 20% of

the neurons are initialized as inhibitory (so their output current has ampli-

tude �winh) and, to keep the network balanced, each single neuron receives

ki = k = 10 inputs, 2 of which are from inhibitory ones. The introducing of

inhibitory currents increases the coe�cient of variation of spiking times, lead-

ing to enhanced variability. Still, as above, there exists a wide region of the

parameter space, within the Up state (active phase) where causal avalanches

keep showing scale-invariant behavior (see Fig. D.2). More specifically, this

happens whenever the amplitude of the inhibitory current is not too strong (so

as to allow for the Up state to exist) and for values of the inhibitory synaptic

timescale up to four times larger than the excitatory one.
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Figure D.2: “Causal” avalanche size (Left) and duration (Right)
distributions in the model of Millman et al. including inhibitory
synapses. The avalanche statistics exhibit a robust power-law scal-
ing with the same exponents of a critical branching process (marked
with dashed lines for comparison) with the Up state, while they are
exponentials, with a characteristic scale in the Down state. Simu-
lations were performed in a network of N = 3000 neurons setting
the inhibition amplitude to winh = 50 pA, and other parameters as
in [17].
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D.1.4 Avalanche statistics in the minimal model for ac-

tivity propagation
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Figure D.3: Avalanche size (Left) and duration (Right) dis-
tributions in the minimal model for activity propagation when
avalanches propagate in the network one at a time, i.e. without
overlap between avalanches. This is done by setting ✏ = 0 and
introducing one single active node each time the activity stops.
Distributions are plotted for di↵erent values of the activation rate
� in the quiescent phase (� = 0.9), active phase (� = 1.1) and at
criticality (� = 1), illustrating the PDFs are not scale-invariant,
except right at the critical point. Parameter values are: µ = 1,
N = 103.
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Figure D.4: ‘Causal” avalanche size (Left) and duration (Right)
distributions in the minimal model for activity propagation on a
directed random network with limited connectivity. In all cases,
avalanche statistics exhibit a robust power-law scaling with the
same exponents of the fully-connected (undirected) network. Pa-
rameter values are: µ = 1, � = 2, ✏ = 10�3, N = 104 (the total
activity is ⇢ ' 0.5).
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Figure D.5: “Causal” avalanche size (Left) and duration (Right)
distributions in the minimal model for activity propagation when
multiple avalanches coexist in the network, for di↵erent values of the
activation rate � along the active (UP) phase (corresponding to sta-
tionary densities around ⇢⇤ = 0.5, 0.66, 0.8 and 0.9, respectively).
In all cases, avalanche statistics exhibit a robust power-law scaling
with the same exponents of a critical branching process (marked
with dashed lines for comparison). Increasing the spreading rate
results in an enlargement of the mean duration of avalanches, with
negligible e↵ect on the size distributions. Parameter values are:
µ = 1, ✏ = 10�3, N = 104.
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Figure D.6: “Time-correlated” avalanche size (Left) and duration
(Right) distributions in the minimal model for activity propaga-
tion, computed with the standard temporal binning method [5],
using five di↵erent time intervals �t to bin the data, including one
coinciding with the average interevent interval (IEI). In this case
distributions do not obey a power-law distribution but have a char-
acteristic scale. Parameter values are: µ = 1, � = 2, ✏ = 10�3,
N = 103 (the total activity is ⇢ ' 0.5).
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D.2 Supplementary information to Chapter 3:

Self-organized bistability

D.2.1 The role of Spatial Heterogeneity

Spatial heterogeneity is ubiquitously present in real systems, and often it is an

important ingredient to take into account, since it can change drastically the

behavior of the system.

A general result in statistical mechanics proves that discontinuous transitions

cannot possibly occur in 2D disordered systems at thermodynamic equilibrium

[190, 191, 192]. This conclusion has been recently extended to more general

systems, not necessarily at equilibrium, including stochastic systems undergo-

ing phase transitions into absorbing states [193]. In fact local di↵erences in

environmental conditions can generate regions that are more prompt to col-

lapse and others that are more resilient, giving rise to patchy and irregular

activity patterns [64]. A recent work confirming the results in [193], investi-

gates the prevention of catastrophic shifts on spatially extended noisy systems

undergoing first order absorbing phase transitions [64], and shows that any

amount of spatial heterogeneity smoothens the transition, so that the collapse

from the active phase to the quiescent one occurs in a rather gradual way in

the disordered system. Moreover the analysis reported in [64] explained the

appearance of a Gri�ths phase (i.e. a broad region around the transition point

in which power law scaling is observed [111]) due to a progressive deterioration

of the more unfavorable regions, generating successive collapses of the more
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resilient zones, in a step by step fashion.

Here we want to briefly address this issue in the SOB framework focusing on

quenched disorder (i.e. cases where disorder does not change with time): is en-

vironmental disorder a su�cient ingredient to smoothen the abrupt transition

in presence of a self-organization dynamics? Or, in other words, does spatial

heterogeneity transform SOB into SOC?

To study explicitly the consequences of heterogeneity in a system described

by Eq.(3.1), we include a spatial, quenched disorder into the system, more

precisely we add disorder (separately) on the facilitation parameter b and on

the threshold parameter DE.

D.2.2 Disorder on the facilitation parameter

In this section we assume the facilitation parameter b to be position-dependent,

i.e. b ! b(x). The value of b(x) at each location x is randomly extracted from

a uniform distribution in the interval defined by �1 and �2:

P (b) = U(�1, �2). (D.4)

In Fig.D.7 we plot the distribution of duration and size of avalanches, com-

paring the dishomogeneous case with the homogeneous case Phomog(b) = �(b�

b̄). In particular, since we want to compare the avalanches stemming from

dishomogeneous versus homogeneous case, we choose the fixed value b̄ in the

homogeneous case to coincide with the mean value of the uniform distribution
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of b(x), i.e. b̄ = E[P (b)]. We observe that there is no appreciable di↵erence be-

tween the two cases, suggesting that this kind of quenched disorder is irrelevant

for the SOB mechanism. Please note that also in the case where the uniform

distribution is nonzero for positive values of b, meaning that some sites are

not facilitated, the system behaves as if there was no spatial heterogeneity at

all. This countertrend with respect to the previous evidences [64, 193] must be

due to the presence of the energy field. In fact the existence of a background

field may allow to compensate the spatial heterogeneity, rearranging locally in

such a way to correlate with the values of b(x) and thus balance the e↵ects of

the disorder. In order to test this idea, we analyze the correlations between

b(x) and E(x, t) for the case of the upper panel of Fig.D.7. We evaluate the

variable

C(t) =
hE(x, t)b0(x)i � hE(x, t)ihb0(x)i

s[E(x, t)]s[b0(x)]

where h.i and s[.] represent respectively the average and the standard deviation,

summing over x and b0(x) = �b(x). In Fig.D.8 we see that C(t) seems to tend

to a value close to �1 for t ! 1, meaning that in the stationary state the

energy field anti-correlates with the facilitation field �b(x), thus compensating

the quenched disorder. Interestingly the small periodic jumps that we see in

Fig.D.8 are compatible with the characteristic duration of king avalanches in

this case ⇠ 6.2⇥ 103.
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Figure D.7: Distribution of duration and size of avalanches for sys-
tem sizes L = 26, 27, 28. We compare the avalanches for the homo-
geneous case b(x) = b̄ (red) with the heterogeneous case, for which
b(x) is uniformly distributed (yellow). We plot distributions P (b)
in the insets with same color code. In the upper panel the choice of
b̄ sets the system in the King-avalanche dominated regime, whereas
in the lower panel system is in the Hybrid regime. Other parameters
are a = �1.3,! = c = D = � = 1.
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Figure D.8: Time evolution of the Correlation variable C(t) for a
system of linear size L = 25 and other parameters as in the upper
inset of Fig.1. In the inset there is a sketch of the two fields b0(x)
and E(x, t), for a particular choice of a t � 1: we see that where
b0 is big E is small and vice versa.

D.2.3 Disorder on the threshold parameter

Here we analyze the case DE ! DE(x) ,

P (DE) = U(�1,�2). (D.5)

Analogously to the previous case we make a comparison with the homogeneous

case Phomog(DE) = �(DE � D̄E), with D̄E = E[P (DE)]. Also in this case the

disorder doesn’t seem to a↵ect qualitatively the avalanches statistics. As shown

in Fig.D.9 the only di↵erence is that the kings in the heterogeneous case are

slightly bigger.



192 Appendix D. Supplementary informations

Figure D.9: Distribution of duration and size of avalanches for sys-
tem sizes L = 26, 27, 28. Comparison between the homogeneous
case DE(x) = D̄E (dark red) with the heterogeneous case (green).

D.2.4 Topological disorder

All of the results above have been obtained for 2D systems. However, some

of the reported noise-induced e↵ects might depend profoundly on the system

dimensionality. Thus, we now discuss the dependence of the behavior of the

system from the dimensionality of the underlying network topology. For 1D

systems, fluctuation e↵ects are expected to be extremely severe. Indeed, ex-

isting analytical arguments predict that stochasticity completely washes away

discontinuous transitions into absorbing states, converting them into continu-

ous ones [58]. Thus, catastrophic shifts into quiescent states cannot possibly

occur in 1D systems.

As we are interested in shedding light on brain behaviour, we consider a hierar-

chical modular network (HMN) that has been recently found to play a crucial

role in neural dynamics [194]. Here we use a simple structural model to build-

up synthetic HMNs as follows: local densely connected moduli are used as

building blocks; they are recursively grouped by establishing additional inter-
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moduli links in a level- dependent way, as exemplified in Figure D.10. Further

details of the construction methods can be found in [111]. A crucial feature of

HMNs is represented by their finite topological dimension D. The topological

dimension of a network can be defined as follows: starting from a single node,

the number of neighbors Nz reachable after z steps is computed for increasing

z until the entire network is covered [195]. The network is finite dimensional

with dimension d if hNzi ⇠ zd, generalizing the familiar behavior of regular

lattices. The topological dimension of a HMN can be tuned easily, by changing

the average number ↵ of links between pairs of modules at each hierarchical

level (see Fig.D.10 and [111]).

Figure D.10: Sketch of the HMN construction method. Given a
positive integer s, consider 2s basal fully connected moduli of size
M . At the lowest hierarchical level, moduli are linked pairwise
into super-moduli by establishing a fixed number ↵ of random un-
weighted and undirected links between the elements of each mod-
ulus (↵ = 2 in figure). Newly formed blocks are then iteratively
linked pairwise with the same ↵ for a total of s iterations, until
the network becomes connected. The resulting network has size
N = 2sM .

We considered di↵erent HMNs, characterized by di↵erent topological dimen-

sions d. In particular, we show results for d = 1.6 and d = 2.8 (networks

with such properties are obtained by choosing ↵ = 1 and ↵ = 4 respectively.
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Dissipation is included by declaring 4
p
N nodes as boundary nodes. First we

plot the diagram of the transition in the fixed-energy ensemble (Fig.D.11). We

observe that, while for d = 2.8 first order maintains and that the coexistence

region is wider, for d ⇠ 1.6 the discontinuity smoothens and the transition

becomes second order transition.

Figure D.11: Phase diagrams (steady-state density as a function of
E) for di↵erent topological dimensions of the network, d = 2.8, d =
2, and d = 1.6. We plot in the fixed-E ensemble. Parameters:
b = 2, N = 212, a = 1.3,! = c = D = � = 1.

Secondly we analyzed the distribution of SOC avalanches for the considered

topological dimensions. Preliminary results (not shown) for the exponents of

the distributions are compatible with linear interpolation between SOC sys-

tems with closest integer dimensions. Then we explored the e↵ect of topology

on a SOB system (hybrid regime, b = �1). For d = 2.8, SOB behaviour is

recovered and, interestingly, for d = 1.6, two di↵erent regimes seem to appear;

SOB regime for smaller (and more densely connected) neighborhood and SOC
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regime for larger (and sparser connected) scales. Those results are preliminary

checks and further analyses are undoubtedly needed in order to elaborate firm

conclusions.

In summary, whereas for quenched disorder the background field is able to

counteract and compensate its e↵ects, in the case of topologcal disorder on

hierarchical modular networks, the smaller the spatial dimension, the more

likely fluctuations play a fundamental role, potentially breaking SOB behavior

and generating a much more gradual and smooth transition.

D.3 Supplementary information to Chapter 4:

Synchronization phase transition

D.3.1 Model details

In the Wilson-Cowan model the dynamics of the average firing rate or global

activity, ⇢, is governed by the equation

⇢̇(t) = �⇢ (t) + (1� ⇢)S (W⇢ (t)�⇥)

where W is the synaptic strength, ⇥ is a threshold value, and S(x) is a sigmoid

(transduction) function, e.g. S(x) = 1/2(1 + tanh(x)] [95, 94]. We adopt this

well-established model and, for simplicity, keep only the leading terms in a

power-series expansion, yielding the deterministic part of Eq.(D.13). To this

we add noise
p
⇢(t)⌘(t) –which is a delta-correlated Gaussian white noise of
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zero mean and unit variance, accounting for stochastic/demographic e↵ects

in finite local populations as dictated by the central limit theorem; a formal

derivation of such an intrinsic or demographic noise, starting from a discrete

microscopic model can be found in [94]). A noise term could be also added

to the equation for synaptic resources [51], but it does not significantly a↵ect

the results. Considering N mesoscopic units, and coupling them with some

networked structure (e.g. a two dimensional lattice), we finally obtained the

set of Eqs.(4.3).

D.3.2 Analytic signal representation

The Hilbert transform H(·) is a bounded linear operator largely used in signal

analysis as it provides a tool to transform a given real-valued function u(t) into

a complex analytic function, called the analytic signal representation. This is

defined as Au(t) = u(t)+ iH[u(t)] where the Hilbert transform of u(t) is given

by: H[u(t)] = h ⇤ u = 1
⇡
lim✏!0

R1
✏

u(t+⌧)�u(t�⌧)
⌧

d⌧ . Expressing the analytic

signal in terms of its time-dependent amplitude and phase (polar coordinates)

makes it possible to represent any signal as an oscillator. In particular, the

associated phase is defined by �A
k = arctan Im(Ak)/Re(Ak).

Let u(t) be a real function such that u(t) 2 Lp(R), 1  p < 1, then the Hilbert

transform of u(t) is given by the convolution u(t) with the (non integrable)

function h(t) = 1/⇡t:

H[u(t)] = h ⇤ u =
1

⇡
p.v.

Z 1

�1

u(⌧)

t� ⌧
d⌧ =

1

⇡
lim
✏!0

Z 1

✏

u(t+ ⌧)� u(t� ⌧)

⌧
d⌧,
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where p.v. indicates the Cauchy principal value of the integral. The Hilbert

transform H(·) is a bounded linear operator largely used in signal analysis be-

cause it allows to transform real functions into analytic functions, the analytic

signal zu(t) of the input u(t) being defined as

zu(t) = u(t) + iH[u(t)].

Expressing the analytic signal in terms of its time-variant amplitude and phase

(polar coordinates) allows us to look at the local signals of our problem as

oscilators, and thus measure their synchronization through the Kuramoto pa-

rameter. The envelope of the signal is just the amplitude of the analytic

signal. The Hilbert transform is a particular case of the so called singular

integral operators studied by Caldern and Zygmund and it is closely related

to the Dirichlet problem, which consists of looking for a harmonic function

that is continuous on a domain and assumes certain continuous values on the

boundary of the domain. Here we will not get much into the mathematical

details and we will not prove the particular form of the Hilbert transform, but

we will illustrate a simple example of calculation of the envelope of a signal.

Given a signal u(t) = sin!t, its Hilbert transform is

H[u(t)] =
1

⇡
lim
✏!0

Z 1

✏

sin!(t+ ⌧)� sin!(t� ⌧)

⌧
d⌧ = (D.6)

=
2 cos!t

⇡
lim
✏!0

Z 1

✏

sin!⌧

⌧
d⌧ = cos!t. (D.7)
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Hence the analytic signal is

zu(t) = sin!t+ i cos!t

and its amplitude is a(t) = 1, which coincides with the envelope of the original

function.

D.3.3 Phases from spiking patterns

An alternative method to define a phase at each unit can be constructed after

the continuous timeseries has been mapped into a spiking series. In particular,

�(B)
k (t) = 2⇡(t � tkn)/(t

k
n+1 � tkn) where t 2 [tkn, t

k
n+1) and tkn is the time of the

nth spike of node/unit k.

D.3.4 From continuous timeseries to discrete events

Local timeseries at each single unit, ⇢k(t), can be mapped into time sequences

of point-like (“unit spiking”) events. For this, a local threshold ✓ ⌧ 1 is

defined, allowing to assign a state on/o↵ to each single unit/node (depending

on whether it is above/below such a threshold) at any given time. If the

threshold is low enough, the procedure is independent of its specific choice. A

single (discrete) “event” can be assigned to each node i, e.g. at the time of

the maximal ⇢i within the on-state; a weight proportional to the integral of

the activity time series spanned between two consecutive threshold crossings

is assigned to each single event (see Fig.4.5A). Other conventions to define an
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event are possible, but results are not sensitive to it as illustrated in the SI.
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D.3.5 Robustness of the results against changes the dy-

namics

In this Section we confirm the robustness of the results and conclusions pre-

sented in the main part with respect to the modification of various ingredi-

ents and modelling details. In particular, we first discuss the full model with

synaptic plasticity (as in the Main Results Section), but without truncating

the equation for activity, and second we consider inhibition as encapsulated in

the well-known Wilson-Cowan equations (rather than synaptic plasticity) as a

chief regulatory mechanism.

Non-truncated excitatory-activity equation

The dynamics in a mesoscopic region of the cortex or “unit” is described by a

Wilson-Cowan equation [95] for the excitatory activity –such that the activity

grows with the incoming current through a sigmoid response function– together

with the Tsodyks-Markram (TM) model for synaptic plasticity [78]:

8
>><

>>:

⇢̇ = �↵⇢+ (1� ⇢) tanh (a⇢R + p) + h

Ṙ = 1
⌧
R

(⇠ �R)� 1
⌧
D

⇢R.

(D.8)

In Figure D.12, we show that a linear-stability analysis reproduces a Hopf

bifurcation scenario, as in the most relevant case (case A) discussed in Chapter

4. When noise and spatial coupling are added, and the system is integrated

on a two-dimensional lattice, a synchronous irregular regime of network spikes
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as well as an asynchronous irregular regime of nested oscillations are found.

These regimes, which are graphically illustrated by the lower panels of Figure

D.12, are fully analogous to their corresponding counterparts in the case of the

Main Results Section, unveiling the existence of a synchronization transition

in between them. This confirms that the simplified truncated equation for the

activity considered in the text is a valid approximation of the full dynamics.

Here we do not show a detailed analysis of the synchronization transition nor

of the emergence of scale-free avalanches; but, let us remark that we have not

found any relevant di↵erence with respect to the case discussed in the paper

in any of our exploratory checks.

Inhibition as main regulatory mechanism

In this section we consider the Wilson-Cowan equations [95] , including both

excitatory and inhibitory neural populations for each mesoscopic region or

unit. In this case, inhibition plays the role of chief homeostatic mechanism,

regulating the level of the overall network activity. More specifically, we con-

sider a version of the Wilson-Cowan dynamics, including also intrinsic noise

as corresponds to large but finite (mesoscopic) regions. Such a model was

derived in a very interesting work from an underlying microscopic model [94],

and is described by the following set of stochastic equations for the densities
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t t

Figure D.12: Analysis of the model of Eq. D.8. Upper panels: de-
terministic phase portrait with ⇠ = 5, 12, 28 (from left to right). re-
spectively. showing a down state, a limit cycle and up state regimes,
as in the case A in Chapter 4. Other parameters are ↵ = a = 1,
µ = 0.033, ⌧ = 500, p = �0.34, h = 0.06. Varying parameter
values, it is possible to find either a similar Hopf bifurcation (case
A) or a saddle node bifurcation (case B), as in the model with the
truncated expansion. Lower panels: Temporal evolution of the to-
tal activity ⇢(t) on a two-dimensional lattice with N = 642 (after
having introduced noise and coupling); in the (left) synchronous
(network spiking) and in the (right) asynchronous (nested oscilla-
tions) regimes, respectively, revealing the presence of a synchro-
nization phase transition in between the two regimes; parameter
values: ⇠ = 5 and ⇠ = 13, respectively.
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of excitatory (E) and inhibitory (I) neurons:

Ėi = �↵Ei + (1� Ei) tanh [!EEEi � !IEIi + h] +

+�
p
↵Ei + (1� Ei) tanh [!EEEi � !IEIi + h]

İi = �↵Ii + (1� Ii) tanh [!EIEi � !IIIi + h] +

+�
p
↵Ii + (1� Ii) tanh [!EIEi � !IIIi + h] , (D.9)

where ↵ is the decay rate for the activity, h is an external driving field, �

is the noise amplitude, and !ij (with i, j = E, I) are the couplings between

population i and j within a single unit; particularly important here is the auto-

excitation coupling !EE, which we take as a control parameter. First of all,

these equations are analyzed in the (noiseless) mean field limit. By increasing

!EE, the system exhibits a transition from a “down” state to an “up” state (see

Fig. D.13). Thus, a saddle-node bifurcation separates a state of high activity

from a state of low activity, we found no track of a possible Hopf bifurcation.

However, very interestingly, as soon as noise is switched on (i.e � 6= 0), a noise-

induced phenomenon appears: trajectories nearby the up-state fixed point,

can escape from its basin of attraction as a result of fluctuations, and are

then almost deterministically driven towards the down state, where a similar

mechanism makes them escape with some probability. This phenomenon has

been recently scrutinized in a very interesting work, where the role of non-

normal forms has been emphasized [94]. This mechanism, generates in an

e↵ective way a noise-induced limit cycle between up and down states, which

plays the same role as the deterministic limit cycle (Hopf bifurcation) of case A
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described above. As a matter of fact, computer simulations of units described

by Eq.(D.9), and coupled di↵usively, give rise to the phenomenology illustrated

in Fig.D.13: as the control parameter !EE is increased, the system undergoes

a phase transition from a synchronous phase with very distinctive network

spikes, to an asynchronous regime with nested oscillations, as it happens in

the model with synaptic plasticity. Thus, also in this case, the phases are the

same as in the Main Results Section and a synchronization transition appears

between them.

D.3.6 SI2. Robustness against changes in synaptic time

scales, di↵usion and noise

As discussed in Chapter 4, there are two possible scenarios according to the

relation between the timescales for the recovery and depletion (⌧R and ⌧D, re-

spectively). Namely, between the quiescent or ’down’ state with ⇢⇤ ⇡ 0 and

the active or ’up’ state with self sustained activity there exists a stable limit

cycle (case A) or a regime of bistability (case B). Fixing parameter values while

changing ⌧R and ⌧D, it is possible to construct a (mean-field or deterministic)

phase diagram showing the di↵erent possible cases that emerge when the con-

trol parameter ⇠ is varied (cases A and B). As shown in Fig. D.14 when the

recovery time (⌧R) is much bigger than the depletion time (⌧D) the system is

in the case A, while for bigger values of the depletion time (⌧D) it falls into the

case B with a transitions between up (active) and down (quiescent) states.

We have also explored the behavior of the system against changes in the di↵u-
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Figure D.13: Upper panels: mean-field analysis of the Wilson-
Cowan set of Eqs. (D.9) describing both excitatory and inhibitory
neural populations at each single unit, with parameters such that
a noise-induced limit cycle (see [94]) in between a down and an up
state can emerge once a non-vanishing noise is switched on. Ob-
serve that there is (left) a stable down-state fixed point (!EE = 4)
and a (right) stable up state (!EE = 16); however the basin of
attraction of the up state is small, and a relatively small fluctu-
ation can induce the system state to go beyond the saddle-node
line, where deterministic trajectories take the system toward the
down state. In the lower panels we illustrate results of a computer
simulation for a two-dimensional lattice of coupled noisy units,
Eq.(D.9), corresponding to (left) synchronous/network-spiking and
(right) asynchronous/nested-oscillation regimes. Parameter values:
D = 1, !EI = 4.65, !IE = 14.0, !II = 2.8, h = 10�3 and ↵ = 0.1.
Control parameter !EE = 15 for SI regime and !EE = 16.
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Figure D.14: Mean-field phase diagram showing the type of tran-
sition for di↵erent values of ⌧R and ⌧D. Red (blue) cross show the
particular case chosen in the Fig.1 of the main text for the case A
(B). Parameter values are a = 0.6, b = 1.3, h = 10�3.

sion constant D. Figure D.15 shows the phase diagram for di↵erent values of

D and some particular temporal series with the aim of characterize the di↵er-

ent possible behaviors. As can be observed, there exists a transition from the

synchronous irregular phase to the synchronous regular one for a wide range

of D values (e.g. from D = 0.01 (red line) to D = 2 (violet line), and D = 4

(green line)). If D is set to very large values, the system falls into the mean

field expected behavior, switching from the network spiking regime to the up

state. Similar conclusions are obtained, by fixing D and decreasing the noise

amplitude �.
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Figure D.15: Left panel: Order parameter as a function of the
control parameter ⇠ for various values of the di↵usion constant D.
Right panel: Temporal series for two particular values of ⇠ for each
value of D, (marked with colored points in the left panel), showing
the expected behavior. Low values of D show a transition between
the synchronous irregular phase to the asynchronous irregular one,
as in the main text (red, orange, violet and green line). Parameter
values: a = 1.0, b = 1.5, ⌧R = 103, ⌧D = 102, h = 10�7.

D.3.7 The e↵ect of long-range connections and network

heterogeneity

The detailed map of synaptic connections plays a central role in brain func-

tion [100]. Even if most of the neuronal connections occur within the local

neighborhood, long-range white-matter connectivity allows for information to

be distributed and processed across the whole cortex. Such long-range con-

nections comprise only about 10% of the total connections in the brain, but

their role is crucial for brain functionality [109, 100].
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Small-world topology

As the simplest possible approximation beyond a lattice of nearest neighbor

connections, and consistently with [109], we built a small-world network, as

done in the Watts-Strogatz model [196], by rewiring 10% of the links of a two-

dimensional lattice. We explored the phase space of the model defined by Eqs.

1 and 2 of the main text, on this connectivity architecture (see Fig.(D.16) up-

per panel), and observed that the leading features described in the paper (i.e.

phases and phase transitions) are preserved when long-range interactions are

introduced. Indeed, as illustrated in the lower part of Fig.(D.16), our computa-

tional analyses reveal that the emergence of synchronous and an asynchronous

phase, with a synchronization transition in between is a general intrinsic fea-

ture of our model, which is not modified by the small-world property of the

network.

In any case, it is important to remark that even if the main phases remain

una↵ected, important details such as the extension of such phases, the specific

shape of avalanches, the amplitude of nested oscillations, the broadness of the

critical-like region etc. could be potentially sensitive to the introduction of

network heterogeneity. Some of these aspects are explicitly illustrated in the

forthcoming paragraphs.

Clustered and heterogeneous networks

Recent experimental analyses have scrutinized the e↵ect of network hetero-

geneity in cultures of rat cortical neurons in vitro [110]. In particular, Okujeni
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Figure D.16: Upper panel: sketch of the rewiring procedure defin-
ing a small-world network architecture: a ten percent of the links
are rewired, in such a way that the average connectivity is pre-
served. Lower panel: Plots illustrating the results of computa-
tional analyses of the dynamics (main text, Eq. 1 and 2); in par-
ticular, temporal series of the global electrical activity in a small
world lattice for two di↵erent values of control parameter ⇠; (left,
⇠ = 2.8) synchronous/network-spike regime, and (right, ⇠ = 2.96)
asynchronous/nested-oscillation regimes, respectively; a synchro-
nization phase transition exists separating these two alternative
regimes. Other parameter values: a = 1.0, b = 1.5, ⌧D = 102, ⌧R =
103, h = 10�7.

et al. where able to control the level of clustering by experimentally modifying

the level of a given enzyme (protein Kinase C) that promotes neuronal aggre-

gation. In this way, progressively more clustered networks were generated as

the level of protein was increased (see Fig. 1 in [110]).

Keeping fixed other experimental conditions, Okujeni et al. found that in the

case in which neurons are more homogeneously distributed in the substrate
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networks spikes appear much more sporadically than when the network is

highly clustered (see Fig. D.18, which is adapted from [110]), and that network

spikes appear more clustered in time in this latter case. Thus, in conclusion,

clustering promotes the generation of spontaneous network activity.

In order to model these experimental results, we developed a heterogeneous

network in which we keep fixed the mean value of the parameter a (that controls

the decay of the activity at each single unit), but inducing some areas with

low local values of a1, i.e. with a smaller propensity for activity to decay (red

nodes in Fig. D.17), while in the rest of the network larger values of a, a2, are

considered (keeping the network-average value of a constant).

Homogeneus network Heterogeneous network

Figure D.17: Sketch of the considered networks: homogeneous to
the left and heterogeneous/clustered to the right. In both cases the
network-average value of the activity-decay parameter a is taken to
be equal. However, while in the homogeneous case the value of a
is constant across the network, in the heterogeneous one there are
some areas (marked with red nodes) with a lower value of a.

As shown in Figure D.18, the lower the local value of a1, the more facilitated

the emergence of spontaneous activity, leading the system closer and closer to

the critical point or the asynchronous irregular phase, and reproducing quite

remarkably the chief experimental observations of Okujeni et al.
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Figure D.18: Temporal series for di↵erent level of network clus-
tering. Panel A shows the experimental results of Okujeni [110]
(adapted figure from the original paper) for increasing levels of ag-
gregation in a neural network. Panel B shows three temporal series
for di↵erent levels of network clustering and a fixed value of ⇠ = 1.2.
In the first one (red) the network is homogeneous with a1 = a2 = 1.
Observe that smaller values of a1 produce a more active network,
in particular for a1 = �0.7 (black) and a1 = �0.928 (green). In
both cases, the clustering facilitate the spontaneous activity. Other
parameter values: b = 1.5, ⌧D = 102, ⌧R = 103, h = 10�7.
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Thus, in conclusion, our general model, equipped with an additional layer of

network heterogeneity is able to reproduce specific empirical results.

D.3.8 Detrended Fluctuation Analysis

In this section we present an additional type of analyses to discriminate whether

the system lays at a critical point or in either the subcritical or the supercritical

phases. The method is based on the fact that, at the critical point of a (second

order) phase transition, the (time-dependent) order parameter, as measured

in any finite system, shows long-range temporal correlations (long-memory ef-

fects), which can be quantified by measuring its Hurst exponent [197]. The

Hurst exponent of a time series is a measure of the dispersion of a process on

a scaling support. For example the Hurst exponent of an uncorrelated signal

(white noise) is ↵ = 1/2, since the root mean square translation distance af-

ter n steps of a Wiener process, i.e. an unbiased random walk (the process

obtained by integrating white noise), is proportional to
p
n. For correlated

signals (colored noises) one expects bigger Hurst exponents (as a reference,

↵ ' 1 is found for pink noise). The Hurst exponent can be calculated by

splitting the time series into adjacent windows, plotting the square-root dis-

placement from the mean as a function of the window size and evaluating the

exponent of the resulting power law (see below). More specifically, “detrended

fluctuation analysis” (DFA) is a technique for measuring the Hurst exponent

in a non-stationary time series: the “detrending” operation allows to remove

fictitious memory e↵ects related to non-stationarity, and the method basically

consists in subtracting the local ”trend” (usually a linear fit approximation) of
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the signal before performing the analysis on each window [106, 198]. DFA con-

sists of two steps: the data series ⇢(t) is shifted by its mean ⇢̄ and integrated

(cumulatively summed) in time:

P(⌧) =
⌧X

t=1

(⇢(t)� ⇢̄) ; (D.10)

then segmented into windows of various sizes n, and in each window a fluctu-

ation function F (n) is calculated, as

F (n) =

vuut 1

T

kX

h=1

nX

⌧=1

⇣
P (n)(⌧ + (h� 1)n)�X(n)

P
⌘2

(D.11)

where X(n,h)
P is the linear regression of P (n)(⌧), with ⌧ 2 [(h � 1)n, hn], the

superscript indicates the dependence on the window size n and T = kn is the

total length of the time series. If F (n) ⇠ n�↵, then ↵ is the Hurst exponent

[106, 107]. We performed a DFA on the global signal ⇢(t) coming out of our

computer simulations for di↵erent values of the control parameter ⇠ (in the

synchronous and asynchronous phases as well as at the critical point). Results

are shown in Fig.D.19: (i) fluctuations in the asynchronous phase grow approx-

imately as the square root of the window length, as expected for (uncorrelated)

white noise; (ii) in the synchronous phase, above a certain characteristic length,

the dependence is very weak, remarking the existence of a certain degree of

order, i.e. a characteristic time scale at which there is order, i.e. synchroniza-

tion; (iii) just at the critical point the growth of the fluctuations is anomalously

large, confirming the existence of long-range correlations: a signature of criti-

cality. Therefore, from the global activity signal we are able –through a DFA
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F(
n
)

Figure D.19: Detrended fluctuation analysis of the macroscopic
signal for di↵erent values of the control parameter ⇠ = 2 (syn-
chronous phase) ⇠ = 2.47 (critical point), and 3.5 (asynchronous
phase), respectively. Close to the transition point the DFA shows an
Hurst exponent close to 1 (orange dashed line) implying long-range
autocorrelations, a fingerprint of criticality, while the white noise
value ↵ = 1/2 (green dashed line) emerges in the asynchronous
regime, and an asymptotically almost flat curve is obtained in the
synchronous phase, revealing the existence of a characteristic time
scale. Parameter values are taken as in the main text and N = 214.

analysis– to conclude that long-range correlations, characteristic of criticality,

emerge at the transition point.

D.3.9 The nature of nested oscillations

In order to unveil the nature of the nested oscillation (asynchronous irregular)

phase and to determine whether it is a finite size e↵ect or it survives in the

thermodynamic limit, the existence of a second phase transition separating it

from the up state is investigated here. In other words: are the asynchronous

irregular phase and the up-state phase two di↵erent phases, or are they just
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the same phase, with only a quantitative di↵erence in the amplitude of the

variability around the mean value? As we illustrate in what follows the correct

answer is this second one. The fraction of inactive units, ⇢0, can thus be

chosen as an order parameter for the putative phase transition between the AI

and the active phase. In Figure D.20 we plot the average over time of ⇢0 in

function of ⇠ and we verify that this alternative order parameter detects the

same phase transition already characterized in the main text, by employing

synchronization order parameters. This implies that, in the large system-size

limit, there exists no macroscopic di↵erence between the asynchronous/nested-

oscillation regime and the up state. Therefore, the nested oscillations can

be understood as the result of partial synchronization of local regions; the

superposition of a few regions gives rise to complex waves as those in Fig.2

(A3) of the main text. However, when the system becomes progressively large,

the number of such locally synchronized regions grows, and their interference

leads to a standard up state, in which fluctuations around the mean density

decay as a function of the system size.

D.3.10 On the definition of Avalanches

Since the individual signal in our analysis stems from a coarse grained section

of neural tissue, we assign a weight to each event, representing the number of

spikes in the section and determined by the integral of the signal during the

event (see 4.5A). Thus the only di↵erence between the procedure we employ

and the experimental one [5] (see Chapter 6) is that the size of an avalanche

is defined in our case as the weighted sum of the events during an avalanche.
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Figure D.20: Main: averaged fraction of inactive sites in the system
⇢0 as a function of the control parameter ⇠, revealing the presence
of a phase transition. Inset: Variance over runs of a given fixed
duration of the average value of the control parameter multiplied
by

p
N in order to highlight possible deviations with respect to

central limit theorem (CLT); as a result of which, a decay withp
N is expected; thus multiplying by

p
N a convergence to a con-

stant should be expected if the CLT holds. Observe, however, the
increase in peak height as the system size is enlarged revealing a
violation of the CLT, as expected at the critical point of a second
order phase transition. Note that for all the system sizes the peaks
are located approximately in the same spots as in Fig.4.3; thus ⇢0
is an alternative order parameter that leads to the same results as
the previously considered synchronization order parameters: it de-
tects the synchronization phase transition, and reveals that there
is no di↵erence between the AI and the active phase in the limit of
infinitely-large network sizes.
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On the definition of spiking events

In the analysis of avalanches presented in the Main Results Section, a particular

(and reasonable) criterion has been chosen to convert each local (continuous)

time signal into a discrete series of spikes, allowing to build up the raster plot,

from which avalanches are measured using the standard experimental protocol

consisting on a time-clustering the events [5].

Here, we employ a di↵erent criterion to define spikes, thereby illustrating the

robustness of our main findings against such a choice. In particular, the al-

ternative discretization criterion is sketched in Figure D.21 and is as follows:

a threshold ✓ is established at each single unit, and every unit is declared to

be in its spiking state whenever its activity is over threshold. Thus, the main

di↵erence with the protocol in the Main Results Section is that now, in be-

tween two-consecutive time steps in which the unit is below threshold, the site

is considered to be “on” not just not just at one time step (at its maximum of

activity, as in the method of the main text), but possibly during many time

steps, in a full time interval.

Considering these spiking events, avalanches are defined through the same

experimentally inspired protocol that we used in the Main Results Section; the

size of an avalanche is simply the number of spike counts during an avalanche.

Figure D.21 shows that the avalanche size distribution at the critical point

is preserved by employing this alternative definition of the spikes. Moreover

if a (random) subsampling of the units is performed, the distribution keeps

following a power law consistent with experimentally measured exponent 3/2.
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Figure D.21: A.Sample of local temporal signals are plotted in grey
(shifted for convenience of visualization) together with the global
signal ⇢(t) (shifted and rescaled) represented in red color, for a
lattice of N = 642 units. B. illustration of the alternative method
employed here to define “spike events” from a local temporal signal.
Green dots represent times during which the unit is in its spiking
state; obviously, a discrete (integration) time is required to have a
finite number of spikes per interval of local activity. C. Distribution
of avalanche sizes for various subsampling trials, using the criterion
sketched in B to define events. The black dotted line is the power
law with exponent 3/2 plotted as a guide to the eye.
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Threshold e↵ects

The standard empirical method to detect avalanches, as defined in [5], is in-

trinsically a↵ected by some arbitrariness in parameter choices, that has been

already discussed in the literature [5, 6] (see Chapter 6). In particular, one

arbitrary parameter is the threshold value ✓ above which the state “on” or

“spiking” is declared In order to avoid spurious e↵ects and consistently with

the definition of avalanches as activity propagating marginally before falling

into an absorbing state (⇢ = 0), we choose a small value ✓ ⌧ 1 (namely

✓ = 10�4). The common belief is that if, as a matter of fact, the system is

scale-invariant, this value should not a↵ect the large scale properties, such as

exponent values. However, one has to be particularly careful with any thresh-

olding procedure. For example, while for a standard one-dimensional random-

walk process the avalanche exponents are independent of the threshold value

chosen, this is not the case for other stochastic processes, e.g. birth-death

processes [155]. Moreover the threshold value should not be chosen too high

relatively to the amplitude of the signal in order to avoid splitting an event

into multiple (correlated) ones [154].

Recording a spike every time that the system crosses a very small threshold

exposes the measurements to the e↵ects of small fluctuations around the origin,

induced by the multiplicative demographic noise term in Eq.4.3 in the main

text (see Fig. D.22). In order to avoid such a problem, it is possible to set

also a second threshold value Amin for the minimal area for a spiking event

to be considered as such; below such a threshold, activity is considered just
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a noise e↵ect (not a proper spike) and, hence, disregarded. As illustrated in

Figure D.23 the statistics of avalanches does not depend significantly on the

value chosen for such a threshold, Amin.

Figure D.22: Illustration of small events in the signal of the activity
of one unit. Events covering a very small area (marked with red
crosses) are neglected, while proper spikes are marked with blue full
dots (smaller darker dots correspond to spikes with smaller area).

System-size dependence

At the critical point of a phase transition, scale-invariant behavior is expected

to be only limited by system size. This e↵ect, which was also reported to be

observed in experiments on neural avalanches, e.g. reducing the number of

electrodes used for the data analyses [5], is also a hint in favor of true scale in-

variance, since finite size scaling holds when the system is at its critical point.

In Figure D.24 avalanche size and duration distributions are compared for var-

ious system sizes. Apart from the underlying structure (which is discussed in

D.3.11), as expected, larger systems show larger avalanches with progressively

larger cut-o↵ scales, while the overall size (resp. time) distribution keeps fol-

lowing a power law trend with the usual exponents ⌧ = 3/2 (resp. ↵ = 2; see

inset).



D.3. Supplementary information to Chapter 4 221

101 102 103
T

10-5

10-3

P(
T) 103 105 107

S

10-10
10-7
10-4

P(
S)

Amin=1000
Amin=1100
Amin=1200
Amin=1300
Amin=1400
Amin=600

Figure D.23: Independence on the avalanche exponent values on the
value chosen for the threshold on the minimal area Amin, used to
declare “activity”. Apart from the details of the substructure of the
distribution, no qualitative dependence can be found by varying the
value of Amin, both in avalanche-time (main plot) and avalanche-
size (inset) distributions.
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Figure D.24: Avalanche size S and duration T distributions for sys-
tem sizes L = 26, 27, 28, 29. Although finite size scaling is not per-
fect, as the system size grows bigger, bigger avalanches are found.
Dashed lines represent an hypothetic power law trend with ⌧ = 3/2
and ↵ = 2.
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D.3.11 Oscillations coexisting with scale invariance

Usually, scale-free avalanches of activity can be measured at the critical point

of an absorbing-state phase transition. When the concept of “avalanche” is

employed to describe the critical point of a synchronization phase transition,

the marginal oscillatory nature of the system unavoidably introduces a charac-

teristic time scale –i.e. the period of the oscillation– which, in principle, is in

contrast with the idea of scale-invariance. However, the two concepts can co-

exist –at least within certain limited scales– as illustrated in Figure D.26. Here

we show how the structure (e.g. the peaks) in the avalanche-time distribution

(inset) corresponds to the period of oscillation of a macroscopic variable (the

total number of spikes, in the main plot); for instance, an isolated network

synchronization event has a typical duration of 2000 (in arbitrary units), a

sequence of two, about 5000, etc. On the other hand, the whole distribution,

once these peaks are ignored can be approximately described as a power law

with the expected exponent values.
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Figure D.25: Analysis of the structure underlying the avalanche-
duration distributions. The main figure shows the total number of
spikes at time t. Irregular oscillations of the global activity can
be recognized, as the system is close to the edge of the synchro-
nization phase transition. The characteristic period of an isolated
oscillation corresponds to the peak in the avalanche duration dis-
tribution, while its multiples correspond to smaller peaks. System
size N = 1282.

Figure D.26: Duration distribution for various values of the control
parameter ⇠. Only close to the critical point the distribution is (al-
most) scale-free with exponent consistent with the value 2 reported
in experimental literature. Supercritical distributions show marked
peaks corresponding to single oscillations of the whole network and
subcritical settings show exponential cuto↵ for relatively low values
of avalanche durations. System linear size L=64.
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D.4 Supplementary information to Chapter 5:

A simple unified view of branching pro-

cess statistics: random walks in balanced

logarithmic potentials

D.4.1 Irrelevance of non-linear terms

For the directed percolation class in the mean-field limit, where spatial het-

erogeneity is neglected, Eq.(5.1) reduces to

⇢̇(t) = a⇢� b⇢2 +
p
⇢⌘(t). (D.12)

At criticality, i.e. a = 0, there is still a non-linear (saturation) term �b⇢2

which introduces a characteristic maximal activity scale, thus apparently pre-

cluding scale-invariance. The way out of this apparent conundrum is that

when studying avalanches in discrete/particle models, activity is created at

a single location, and in the continuous limit, this corresponds to vanishing

density of activity, ⇢ = 0. Thus, one needs to consider a large but finite system

size, say ⌦ (e.g. one could think of a fully connected network with ⌦ nodes),

and perform a finite-size scaling analysis. Defining y by ⇢ = y/⌦ then –up

to leading order in ⌦– Eq.(D.12) reduces to ẏ(t̃) =
p
y⌘(t̃) where t̃ = ⌦t. In

other words, employing the correct rescaled variables y and t̃ the saturation

term is never “seen” by the expanding avalanche, which is compatible with

the density being equal to zero, as the avalanche invades an infinitely large
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system. Observe that in the main text we keep the notation with ⇢ and t, for

the sake of simplicity.

Similarly, the voter-model (or compact directed percolation [66] or neutral

theory) class –characterized by two symmetric absorbing states– is described,

as said above, by the Langevin equation [128]

⇢̇(t) = Dr2⇢(r, t) +
p
⇢(1� ⇢)⌘(r, t), (D.13)

which, again, ignoring spatial dependencies and rescaling the variables, readily

becomes the DRW equation, Eq.(5.6). The very same reasoning applies also

to the other universality classes discussed in the Introduction (i.e. dynamical

percolation and the Manna class); also in these cases the corresponding non-

linear terms, describing saturation e↵ects vanish upon properly rescaling the

system.

On the other hand, beyond the mean-field limit, the non-linearities are essential

and control the “renormalized” values of the avalanche exponents (see e.g.

[199]), which di↵er for the various universality classes [61, 135], and avalanches

can develop non-symmetric shapes [200].

D.4.2 First-return time distributions

Following the general result of A. Bray [147] (see also F. Colaiori [68]), here

we summarize the computation of avalanche exponents for a random walk in



226 Appendix D. Supplementary informations

a logarithmic potential. The general Fokker-Plank equation reads [43]

@P (x, t)

@t
= µ

@

@x

✓
@P (x, t)

@x
+
�

x
P (x, t)

◆
. (D.14)

To calculate the probability distribution F (T ) of the return times at which a

walker starting close to the origin (P (x, 0) = �(x � ✏), ✏ ! 0) first hits back

the origin, the absorbing boundary condition P (0, t) = 0 needs to be imposed.

Note that F (T ) is minus the probability flux at 0, F (T ) = �j(0, t = T ), with

j(0, t = T ) = �µ


@P (x, t)

@x
+
�

x
P (x, t)

�

x=0

. (D.15)

One can try a solution of the Eq.(D.32) of the form P (x, t) = r(x) exp(�µk2t)

and note that the resulting equation can be converted into a Bessel Equation

with the change of variable r(x) = x
1��

2 R(x),

x2R00(x) + xR0(x) +
�
k2x2 � ⌫2

�
R(x) = 0, (D.16)

where ⌫ = (1 + �)/2. The general solution of this last equation is a linear

combination of Bessel functions of the first kind of order±⌫. Putting the pieces

back together, employing the orthogonality property of the Bessel functions,

and imposing the initial condition, leads to

P (x, t | ✏, 0) =
⇣x
✏

⌘1�⌫

✏

Z 1

0

dkk[AJ⌫(k✏)J⌫(kx)

+ BJ�⌫(k✏)J�⌫(kx)]e
�µk2t, (D.17)
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where A and B are numerical constants. The integral in Eq.(D.34) gives the

modified Bessel function of the first kind I±⌫ and, it is easy to compute the

flux at the origin in the small ✏ limit [147, 68], leading to Eq.(5.10).

Following the general result of Bray[147] and Colaiori [68], we revise the an-

alytics behind the calculus of avalanche exponents of a Random Walk in a

Logarithmic Potential, from a di↵erent point of view.

The corresponding Fokker-Plank equation reads [43]

@P (x, t)

@t
= µ

@

@x

✓
@P (x, t)

@x
+
�

x
P (x, t)

◆
(D.18)

From this equation we can readily calculate the stationary distribution Pst(x)

such that @tPst(x) = 0:

Pst(x) = Nx��

We observe that if we put in our Langevin equation a constant shift term h,

it gave here as an exponential cuto↵ term exp(�hx).

As we stated above, our aim is to calculate the distribution of avalanches, that,

stated in other words, is the probability distribution of the times at which the

particle first reaches the origin (first passage time probability), having started

its motion close to the origin. This determines the initial condition that we

need:

P (x, 0) = �(x� ✏), (D.19)

where we will take the limit ✏! 0.
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To complete the definition of our system we need a boundary condition that

we choose to be absorbing.

P (0, t) = 0 (D.20)

This choice means that the probability current (defined as @tP (x, t) = �@xj(x, t))

calculated in the origin must be incoming (“something might arrive into the

origin, but nothing will exit”), hence j(0, t)  0.

We also note that this probability current (with the opposite sign) coincides

exactly with what we need: the probability of entering into the origin at time

t, which will necessarily be the first passage into the origin because after being

absorbed we remove the particle from the system.

So, once we solve the time-dependent Fokker-Plank equation, our result will

follow straightforward as:

F (0, t) = �j(0, t) = µ


@P (x, t)

@x
+
�

x
P (x, t)

�

x=0

. (D.21)

In order to solve the Fokker Plank equation, first of all we note that it is homo-

geneous, thus we can assume a solution of the form P (x, t) = r(x) exp(�µk2t).

Now our Fokker-Planck equation reads

x2r00(x) + �xr0(x) + (k2x2 � �)r(x) = 0

The latter equation can be converted into a Bessel Equation with the change
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of variable r(x) = x
1��

2 R(x):

x2R00(x) + xR0(x) +
�
k2x2 � ⌫2

�
R(x) = 0, (D.22)

where we defined ⌫ = (1+�)/2. The general solution for the previous equation

is a linear combination of Bessel Functions of the First Kind of order ±⌫.

Hence, putting the pieces back together, we can write an implicit full solution

of the form

P (x, t) = x1�⌫

Z 1

0

dk [�(k)J⌫(kx) +  (k)J�⌫(kx)] exp(�µk2t).

If we remember now the orthogonality property of the Bessel functions

Z 1

0

dkkJa(kx1)Jb(kx2) = �ab
�(x1 � x2)

x1
,

imposing the initial condition will give us the expression for �(k) and  (k).

Indeed we have

P (x, 0) = �(x� ✏) =
⇣x
✏

⌘1�⌫

✏

Z 1

0

dkk [J⌫(k✏)J⌫(kx) + J�⌫(k✏)J�⌫(kx)]

(D.23)

and solving the integral for the time dependent full solution we finally get to:

P (x, t | ✏, 0) =
⇣x
✏

⌘1�⌫

✏

Z 1

0

dkk [AJ⌫(k✏)J⌫(kx) + BJ�⌫(k✏)J�⌫(kx)] e
�µk2t =

=
✏

2µt

⇣x
✏

⌘1�⌫

exp

✓
�x2 + ✏2

4µt

◆
AI⌫

✓
✏x

2µt

◆
+BI�⌫

✓
✏x

2µt

◆�
= (D.24)
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= AP⌫(x, t | ✏, 0) + BP�⌫(x, t | ✏, 0),

where I⌫ is the modified Bessel Function of the First Kind and A and B

are numerical constants. Remembering the power series expression for the

modified Bessel Function, and that we are interested in the limit of small ✏,

we get

I⌫

✓
✏x

2µt

◆
=

✓
✏x

4µt

◆⌫ 1X

m=0

1

m!�(m+ ⌫ + 1)

✓
✏x

4µt

◆2m

=

=
1

�(m+ 1)

✓
✏x

4µt

◆⌫ �
1 +O(✏2)

�
.

By performing some substitutions, we easily get to the result

P⌫(x, t | ✏, 0) '
4µ✏2⌫

�(⌫ � 1)
x(4µt)�⌫�1e�

x

2

4µt , (D.25)

where the approximation means that we are neglecting terms O(✏2), and thus

by straightforward substitution into the definition we get:

j⌫(0, t) ' � 4µ✏2⌫

�(⌫ � 1)
(1 + �)(4µt)�⌫�1e�

x

2

4µt . (D.26)

The other part of our solution, after some simple algebra, gives

P�⌫(x, t | ✏, 0) =
4

�(⌫ � 1)
x1�2⌫(4t)⌫�1e�

x

2

4t
�
1 +O(✏2)

�

and
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j�⌫(0, t) = 0.

So our result is precisely

F (0, t) =
4µ✏2⌫

�(⌫ � 1)
(1 + �)(4µt)�⌫�1e�

x

2

4µt ⇠ t�⌫�1 = t�
3+�

2 . (D.27)

For � = 0 we would recover of course the Random walk exponent for avalanches’

duration (as the case � = 0 is precisely a standard Random Walk).

For the case we are discussing here we have � = 1, instead, and we get

F (0, t) = t�2 (D.28)

that is precisely the distribution of duration of avalanches for a Branching

Process.

This means that despite the fact that a Random Walk in a Logarithmic Poten-

tial gives non-universal exponents for avalanches, for the case presented here,

in which the logarithmic Potential derives from a change It-Stratonovich, there

exist a relation between the coe�cients of the equation. Both of them only

depend on noise amplitude, compensating each other and hence generating

Branching Process exponents.

We also remark that this result was also calculated by Feller in [138], more
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precisely he solved the equation

@u(⇢, t)

@t
=

@

@⇢

✓
a⇢u(x, t)� @

@⇢
(b⇢+ c)u(x, t)

◆
(D.29)

that is the Fokker Plank equation that corresponds to our Langevin interpreted

la Ito, plus a constant plus a linear term, namely it would be:

⇢̇ = bx+ c+
p
x⇠

with h⇠(t)⇠(t0)i = 2a�(t� t0). He found the result:

F (0, t) = � b

�
�
� c

a
+ 1
� e�bt

1� e�bt

⇢
�b

a(1� e�bt)

��c+a

a

exp

✓
� �b

a(1� e�bt)

◆

(D.30)

where � > 0 is a parameter such that a foundamental solution u(⇢, t;�) as-

sumes initial values 0 whe ⇢ < � and 1 when ⇢ > �. {I don’t understand what

this means}

It is easy to check that for t small enough we recover

F (0, t) ' t�2+ c

a (D.31)

and if we plot the whole formula in Mathematica (Figure D.27), we see that

the power law holds for all values of t up to a cuto↵ determined by b.

To calculate the probability distribution F (T ) of the return times at which a

walker starting close to the origin (P (x, 0) = �(x � ✏), ✏ ! 0) first hits back

the origin, the absorbing boundary condition P (0, t) = 0 needs to be imposed.
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Figure D.27: Plot of the result for F (0, t) by Feller in blue, in
orange a reference guide for the eye of a power law t�2. Left is for
b = 10�8, right b = 0.5. Other parameters fixed a = 1, c = 0.

Note that F (T ) is minus the probability flux at 0, F (T ) = �j(0, t = T ), with

j(0, t = T ) = �µ


@P (x, t)

@x
+
�

x
P (x, t)

�

x=0

. (D.32)

One can try a solution of the Eq.(D.32) of the form P (x, t) = r(x) exp(�µk2t)

and note that the resulting equation can be converted into a Bessel Equation

with the change of variable r(x) = x
1��

2 R(x),

x2R00(x) + xR0(x) +
�
k2x2 � ⌫2

�
R(x) = 0, (D.33)

where ⌫ = (1 + �)/2. The general solution of this last equation is a linear

combination of Bessel functions of the first kind of order±⌫. Putting the pieces

back together, employing the orthogonality property of the Bessel functions,

and imposing the initial condition, leads to

P (x, t | ✏, 0) =
⇣x
✏

⌘1�⌫

✏

Z 1

0

dkk[AJ⌫(k✏)J⌫(kx)

+ BJ�⌫(k✏)J�⌫(kx)]e
�µk2t, (D.34)
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where A and B are numerical constants. The integral in Eq.(D.34) gives the

modified Bessel function of the first kind I±⌫ and, it is easy to compute the

flux at the origin in the small ✏ limit [147, 68], leading to Eq.(5.10).
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D.5 Supplementary information to Chapter 7:

Non-critical amplification of fluctuations

in simple models of persistent neural dy-

namics

D.5.1 Insights in Non-Normal Matrices

In this section the mathematical notion and some of the properties and de-

tails of non-normal matrices are briefly reviewed. Normal matrices are usually

defined as the ones that commute with their adjoints N ⇤N = NN ⇤ [201].

One could restate this more practically saying that normal matrices have a

most convenient property: there exists an orthonormal basis consisting purely

of eigenvectors. The unitary matrix, which has the eigenvectors as columns,

transforms the original matrix into a diagonal one. Since the transformation

is unitary, the lengths and the angles between the vectors are preserved when

passing from the original basis to the eigenvectors one. This makes it most con-

venient to study the dynamics in the eigenvector basis, since the components

of a vector in the eigenvector basis, evolve independently from each other.

Conversely non-normal matrices are either deficient, in which case there are

not even enough linearly independent eigenvectors to build a basis, or, if they

are diagonalizable, there certainly exists a basis consisting purely of eigenvec-

tors, even normalized ones, but not orthonormal ones [201]. This means that

some directions are poorly (or even not at all) represented i.e. they have small
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(or zero) dot product with all eigenvectors in the basis. So if one evolves an

initial vector in the eigenvectors basis (given that it exists), the amplitudes of

its components will evolve independently (by definition of eigenvectors), but

the eigenvectors themselves are not independent (since their dot product is

not 0), making it misleading to study the dynamics in this basis [201, 161].

From another perspective, non-normal matrices are non diagonalizable by a

unitary transformation (or, if they are deficient, they are non diagonalizable

at all). Since the matrix that (supposing that it is invertible) transforms the

initial matrix into the eigenvectors non-orthogonal basis (and which contains

the eigenvectors as columns) is not unitary (i.e. the eigenvectors are not or-

thogonal), then the length and the angles between vectors are not preserved

by the transformation and thus, representing the trajectory in the basis of the

eigenvectors makes it stretched and sheared.

The Rayleigh quotient of a matrix for a non-zero vector |xi is defined as

R(A, x) ⌘ hAx|xi
hx|xi .

For any normal matrix

R(A, x) =

P
i �ix

2
iP

i x
2
i

,

where xi is the i-th component of |xi. It is easy to see that the Rayleigh

quotient reaches its maximum (minimum) value when |xi coincides with the

eigenvector relative to the largest (smallest) eigenvalue �max(A) (�min(A)) and

max(R(A, x)) ⌘ �max(A) holds (respectively min(R(A, x)) ⌘ �min(A)). This

means that for a normal matrix the strongest magnification that can occur



D.5. Supplementary information to Chapter 7 237

must take place in the eigenspace belonging to the eigenvalue with the largest

modulus; for all other vectors the magnification will be smaller. This property

(also called Rayleigh principle [202]) does not hold for a non-normal matrix.

This means that in the non-normal case, the eigenvalue with the largest mod-

ulus must by no means necessarily represent the strongest amplification factor

or, conversely, that there might exist directions that are unexpectedly strongly

amplified.

Moreover, it has been shown in [162] that, whereas the asymptotic behavior

of the system is determined by the eigenvalues of the matrix of the dynamics,

the instantaneous behavior is determined by the eigenvalues of the Hermitian

part of A, defined as1

H(A) =
1

2
(A+ AT ).

If the equilibrium itself is stable <[�max(A)] < 0, but the Hermitian part of

A has positive eigenvalues (�max(H(A)) > 0), then the equilibrium is said to

be reactive and the magnitude of some perturbations will initially grow before

decaying.

In fact, given a perturbation (of magnitude kv0k) to an asymptotically stable

equilibrium of a linear system, reactivity is defined as the maximum amplifica-

tion rate, over all initial perturbations, immediately following the perturbation

[162]:

reactivity ⌘ max
kv0k6=0

✓
1

kvk
d

dt
kvk
◆����

t=0

.

1Note that a normal matrix with real eigenvalues is an Hermitian matrix and that the
Hermitian part of an Hermitian matrix coincides with the matrix itself.
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Since we can write:

d

dt
kvk =

d

dt

p
vTv =

vT (A+ AT )v

2 kvk =
vTH(A)v

vTv
kvk , (D.35)

then, reactivity coincides with the maximum Rayleigh quotient of the Hermi-

tian part of the matrix, which, by Rayleigh principle, coincides with �max(H(A)):

reactivity = �max(H(A)). (D.36)

Even if non-normal matrices cannot be diagonalized by a unitary transforma-

tion, on the other hand Schur Theorem guarantees that any square matrix is

unitarily equivalent to a triangular matrix (let’s say upper triangular) with the

eigenvalues on the diagonal (Schur transformation). This triangular matrix is

also diagonal if and only if the original matrix is normal. The strictly upper

triangular part of the matrix corresponds to connectivity flows from node j to

node i with j > i and therefore it is often referred to as feedforward interaction

[161].

Finally, although the Schur decomposition is not uniquely specified (since it

derives from a Graham-Schmidt orthogonalization approach, starting from

whichever eigenvector), it is possible to uniquely characterize the overall strength

of the feedforward connectivity of a matrix. Indeed it can be defined by means

of two unitary invariants: the sum of the absolute squares of all of the elements

of a matrix (it is easy to check that it is invariant under a unitary transfor-

mation) and the sum of absolute squares of the eigenvalues (the eigenvalues
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of a matrix themselves are unitary invariants). So we can define unambigu-

ously the weight of the non-normality as the sum of the absolute squares of

the feedforward elements of any Schur decomposition:

f =

PN2

n=1 m
2
n �

PN
i=1 |�i|2PN2

n=1 m
2
n

where �i are the eigenvalues of the (N⇥N) matrix and mn are the single entry

values of the matrix.

D.5.2 Turing patterns

Following [203] we prove here that, in a spatially explicit version of Wilson-

Cowan model, if balance condition holds, it is possible to observe persistent

pattern activity formation through Turing instabilities.

Let’s imagine that we want to couple various cortical columns, disposed in a

square lattice, for instance. If we assume that we can neglect inter-columnar

mixed coupling, i.e. excitatory (inhibitory) subpopulation of a column only

interacts with excitatory (inhibitory) subpopulation of its neighbors, and we

choose di↵usion-like coupling, then (after linearizing the dynamics close to the

fixed point v̄) we have something of the form [162]:

@v

@t
= Av +Dr2v,

where D is a diagonal matrix containing the di↵usion coe�cients on the di-

agonal and A is the linearizd dynamics. If we apply a Fourier transform and
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define J = A� k!k2 D, the equation above can be written as

dṽ

dt
= Jṽ.

Let’s assume that �1(A) < 0, or equivalently that the individual dynamics is

linearly stable around the fixed point v̄. If there exist some values of ! such

that <[�1(J)] > 0, it means that the equilibrium v̄ can be destabilized by dif-

fusion, a phenomenon called Turing instabilities [204]. Hence (heterogeneous)

perturbations with those spatial frequency ! will grow and produce stable spa-

tial patterns. This typically occurs when the di↵usion coe�cients of the two

populations are very di↵erent from each other.

If we write

H(J) = H(A) +

 
�k!k2

2
D

!

and we remember that, by Weyl’s theorem, the largest eigenvalue of the sum

is less than or equal to the sum of the largest eigenvalue of each matrix, then

we immediately see that, if A is not reactive (�1(H(A)) < 0), then J is not

reactive (�1(H(J)) < 0) and Turing instabilities are impossible ( d
dt
kvk < 0).

Thus reactivity is a prerequisite for transient Turing instabilities.

As pointed out in [203], adding noise on top of this picture, has the e↵ect of

stabilizing those transient instabilities, allowing stable Turing patterns for a

wide range of di↵usion constants [204].

We verified that in our toy-model for the cortex, there exist spatial patterns of

excitation and inhibition, or, under a di↵erent point of view, spatial patterns
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of activity (see Figure D.28).

Figure D.28: Left: Turing patterns in Wilson-Cowan. Right: Tur-
ing pattern in Tsodyks-Markram

Pattern formation in the visual cortex has already been reported in Wilson-

Cowan model, in association with the production of hallucinations by the visual

cortex [205]. Hallucinations are geometric images that many observers see after

taking hallucinogens such as LSD, cannabis, mescaline or psilocybin. The fact

that in most cases they are seen in both eyes and move with them, suggests

that they are generated in the brain [205]. The geometrical patterns seen when

the eyes are closed could reflect spatial patterns produced in the visual cortex,

generated by a mechanism of Turing instability.

Our model allows to relate the possibility of creating geometrical patterns

of activity discussed in [205] to the reactivity provoked by balance between

excitation and inhibition.
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[111] Paolo Moretti and Miguel A Muñoz. Gri�ths phases and the stretching

of criticality in brain networks. Nature communications, 4, 2013.

[112] Gyorgy Buzsaki. Rhythms of the Brain. Oxford Univ. Press, Oxford,

2009.

[113] RS Zucker and WG Regehr. Short-term synaptic plasticity. Annu Rev

Physiol, 64(1):355–405, 2002.



BIBLIOGRAPHY 257

[114] Julijana Gjorgjieva, Guillaume Drion, and Eve Marder. Computational

implications of biophysical diversity and multiple timescales in neurons

and synapses for circuit performance. Current Opinion in Neurobiology,

37:44 – 52, 2016. Neurobiology of cognitive behavior.
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