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Abstract

Different sources of imprecision and uncertainty are encountered in practi-

cal problems and, thus, many elements may need to be imprecisely observed,

defined or treated. In this setting, one of the most successfully applied tech-

niques to describe possible relationships between fuzzy variables is the regression

methodology. In this dissertation, we introduce a fuzzy regression procedure in-

volving a class a fuzzy numbers defined by some level sets called finite fuzzy

numbers. We give a characterization of the image of a finite fuzzy number in

terms of the extremes of its level sets and we present a parametric family of

fuzzy semidistances between them that let us to consider a total fuzzy error of

estimation (described as a fuzzy sum of squares of residuals in particular cases).

The estimation process consist in finding a regression model that minimizes, in a

fuzzy sense, such fuzzy error. Although spreads of finite fuzzy numbers can take

some values very close to zero, which complicate the task of finding nonnegative

models, the presented algorithm is able to guarantee that the predicted response

is a fuzzy variable. Finally a numerical example based on fuzzy economic data

of China is given to illustrate the use of the proposed method.

Keywords

Finite fuzzy numbers, Fuzzy random variable, Fuzzy distance measure, Fuzzy

regression
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Resumen

En muchas situaciones de la vida real, la información asociada a algunos

experimentos puede medirse con gran precisión. No obstante, en otras ocasiones,

sólo es imprecisa, subjetiva o evaluable. Recientes investigaciones cient́ıficas

han puesto de manifiesto la creciente inestabilidad de los sistemas económicos

y empresariales, y la necesidad de crear nuevos instrumentos para representar

y gestionar dicha inestabilidad. Elaborar modelos económicos que sean capaces

de explicar la realidad observada requiere la capacidad de gestionar diferentes

fuentes de imprecisión que surgen de manera natural por la falta de conocimiento

preciso. Los tipos de incertidumbre y sus fuentes son muy variados y pueden

clasificarse atendiendo a diversos puntos de vista de diferentes formas. Por

ejemplo, podemos considerar la aleatoriedad (o incertidumbre estocástica) en

el resultado de un experimento aleatorio (que se formaliza matemáticamente

a través del Cálculo de Probabilidades) o la imprecisión (o incertidumbre no

estocástica) que surge debido a la falta de información sobre un proceso concreto,

o la asociada a un proceso de agregación, de transmisión de datos, etc.

Desde este punto de vista, hemos de admitir que las magnitudes tanto f́ısicas

como socioeconómicas que observamos en la realidad están asociadas a medi-

ciones imperfectas, lo que puede interpretarse como un conocimiento vago, im-

preciso, incierto, ambiguo, inexacto, o probabiĺıstico, por naturaleza. La lógica

difusa, como su propio nombre indica, es una lógica alternativa a la lógica clásica

i



ii Resumen

que introduce un grado de incertidumbre en los objetos que evalúa a través de

funciones evaluadas en el intervalo [0, 1], que representan el grado de certeza de

que se dispone sobre dicho objeto. La teoŕıa de conjuntos difusos (introducida

en 1965 por Zadeh [65]) es una herramienta que resulta de gran utilidad para el

modelado de estas situaciones. Dar un enfoque difuso a un problema planteado

permite incorporar información imprecisa o incompleta, y permite entender la

realidad incorporando informaciones de gran valor tales como juicios razonados

(y/o subjetivos) acerca de lo que va a suceder. Se trata de un campo de inves-

tigación muy activo en la actualidad que cuenta con numerosas publicaciones

cient́ıficas asociadas.

El término difuso surge de la traducción al castellano de la expresión inglesa

fuzzy, que también puede ser interpretada como borroso. A lo largo de la presente

Memoria utilizaremos el adjetivo difuso por considerarlo más frecuente en el

campo cient́ıfico. Una de las nociones más importantes que se han adaptado al

ambiente difuso es la generalización del concepto de número real, dando lugar a

los números difusos (véase [19–21]). Éstos pueden interpretarse como entidades

probabiĺısticas que determinan el grado de certidumbre que se puede tener de

que cierto valor de una variable esté comprendido dentro de un intervalo real

concreto. Mizumoto y Tanaka [37] introdujeron una aritmética para operar con

números difusos que extiende a las operaciones habituales con números reales.

En la práctica, la aritmética de intervalos también ha demostrado ser un método

eficaz cuando se opera con números difusos.

Debido a su posible utilidad en algunas aplicaciones, en 2001, Voxman [60]

resaltó una clase de números difusos que vienen caracterizados por poseer un

soporte finito, y los denominó números difusos discretos. Desde entonces, nu-

merosos/as investigadores/as han han utilizado esta clase de números difusos

en el desarrollo de sus estudios de investigación (véase, por ejemplo, [8,56–59]).

En 2014, Roldán et al. [47] introdujeron una noción diferente del concepto

de número difuso discreto suponiendo que su imagen (como aplicación evaluada

G. Alfonso
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en [0, 1]) es un conjunto finito o numerable. El principal interés de esta clase de

números difusos radica en el hecho de que, en muchos casos, el cálculo habitual

que se realiza con números difusos sólo hace referencia a ciertos niveles de con-

fianza (es decir, a una aproximación finita de un número difuso arbitrario) y,

en la práctica, la mayoŕıa de ejemplos de estructuras difusas (espacios métricos

probabiĺısticos, espacios métricos difusos en varios sentidos y espacios métricos

difusos intuicionistas) se construyen utilizando este tipo de números. Una de

las propiedades más importantes de la familia los números difusos cuya imagen

es un conjunto numerable (o finito) es que ésta es cerrada bajo las operaciones

habituales, lo que posibilita la seguridad de que, operando con esta clase de

números difusos, el resultado siempre será un número difuso del mismo tipo de

los que se están considerando. Esta propiedad no se cumple, ni siquiera, con

números difusos tan elementales como los triangulares, pues su multiplicación

lleva a números difusos de tipo LR.

La presencia de incertidumbre en los procesos naturales o en su medición

nos hace plantearnos si la mejor forma de medir distancias entre números di-

fusos puede realizarse a través de números reales. A lo largo de los años, se

han propuesto distintas nociones acerca del concepto de espacio métrico difuso

(véase Roldán et al. [44, 48], y las referencias incluidas en estos trabajos) que,

en gran medida, están basadas en asociar números reales a parejas de números

difusos. Sin embargo, ninguno de estos conceptos trata, de manera particular,

el problema de cómo definir una noción de distancia (o, más bien, de medida de

similitud) entre dos números difusos arbitrarios (véase [1, 2, 4, 5, 13, 27, 55]). De

manera natural, la distancia entre números difusos debe ser medida, de nuevo,

mediante otro número difuso. La diferencia entre números difusos (utilizando el

principio de extensión de Zadh) no es un método eficaz a la hora de determinar

si dos números difusos se parecen o no, ya que su soporte puede ser muy amplio

aún cuando los números difusos sean muy parecidos. De esta forma, no existe

un procedimiento canónico universalmente aceptado que asocie, a cada par de

G. Alfonso
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números difusos, otro número difuso que mida, en cierta forma, el grado de

cercańıa o lejańıa entre ellos (es por ello que, en muchas ocasiones, esta simil-

itud entre números difusos se mide utilizando números reales). La dificultad

asociada a este problema es doble: por un lado, siguiendo la noción clásica, una

métrica en un conjunto debe tomar valores en el intervalo de los números reales

no negativos, lo cual no tiene, en principio, un análogo difuso; por otro lado, y

relacionado directamente con lo anterior, dado que el conjunto de los números

difusos carece de un orden parcial universalmente aceptado que extienda al or-

den entre números reales, la desigualdad triangular se transforma en un axioma

dif́ıcilmente generalizable. La posibilidad de ordenar números difusos arbitrarios

que representan cantidades inciertas (e incluso opiniones subjetivas) es un tema

de gran interés en el campo cient́ıfico (véase [3, 39]) pues permitiŕıa establecer

ranking entre objetos que, de forma natural, no guardan una relación ni siquiera

de orden parcial entre ellos.

Como aproximación a este problema, Aguilar et al. [2] introdujeron una fa-

milia de aplicaciones que, de muchas formas diferentes, permiten determinar un

número difuso que puede interpretarse como la distancia (en el sentido de cer-

cańıa o lejańıa) entre dos números difusos. En lugar de métricas, los autores pre-

firieron utilizan el término medidas de similitud ya que, aunque pueden cumplir

varios de los axiomas que definen el concepto de métrica sobre un conjunto arbi-

trario, su principal objetivo no es éste, sino el de expresar, en términos difusos, lo

parecidos o lo diferentes que son dos números difusos arbitrarios. Las principales

ventajas de esta familia son las siguientes: se definen en el conjunto formado

por todos las números difusos (es decir, no sólo pueden ser consideradas entre

números difusos de una misma clase, como son los triangulares o los trapezoida-

les); algunos de los subconjuntos más útiles del conjunto de todos los números

difusos (incluyendo números difusos triangulares y trapezoidales) son cerrados

bajo estas medidas de similitud; en algunos casos, como en el conjunto de los

números difusos trapezoidales, son auténticas métricas difusas (pues verifican

G. Alfonso
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propiedades análogas a los axiomas métricos); en estos casos, estos subconjuntos

están dotados de una topoloǵıa Hausdorff que verifica el primer axioma de nu-

merabilidad; por otra parte, una vez que hemos fijado los elementos geométricos

que intervienen en la definición de medida de similaridad, el cálculo que conlleva

la medida de la distancia es un proceso muy sencillo, intuitivo y con un coste

computacional muy bajo; finalmente, esta familia nos permite resolver proble-

mas que se plantean en un ambiente difuso aportando, en muchos casos, nuevas

soluciones y, en otros, obteniendo resultados tan buenos o, al menos, similares,

a los obtenidos por otras técnicas más complejas.

Otro de los temas que han suscitado gran interés en la comunidad cient́ıfica

es el estudio de las posibles conexiones entre las nociones difusas y proba-

biĺısticas. De esta convergencia ha surgido, por ejemplo, el concepto de vari-

able aleatoria difusa (véase [41]) y las técnicas estad́ısticas que utilizan este

tipo de información. Entre ellos, el problema de análisis de regresión en un

entorno difuso ha sido discutido en la literatura desde diferentes puntos de

vista y teniendo en cuenta una gran variedad de datos de entrada y de sal-

ida (véase [17, 23, 31, 52–54]). En Roldán et al. [45, 46] se presentan nuevas

metodoloǵıas para resolver el problema de regresión difusa empleando una fa-

milia de semidistancias difusas entre números difusos y considerando el método

de mı́nimos cuadrados.

El objetivo principal de esta Memoria es introducir una metodoloǵıa de re-

gresión difusa utilizando semidistancias difusas entre números difusos con ima-

gen finita. Este enfoque puede ser útil cuando se conocen unos cuantos conjun-

tos de nivel de los números difusos que intervienen en la muestra (por ejemplo,

cuando la recopilación de datos es costosa y/o requiere mucho tiempo), o cuando

sólo queremos hacer una estimación de algunos conjuntos de nivel de la variable

de respuesta difusa (véase [47]). Para ello, primero se introduce y se estudia

la clase formada por los números difusos que vamos a manejar, justificando el

interés que esta clase de números difusos podŕıa suscitar en el futuro. En se-

G. Alfonso



vi Resumen

gundo lugar, también se desarrollan las herramientas que necesitaremos para el

ajuste de un modelo de regresión difusa. A continuación se describe el algoritmo

difuso propuesto con el fin de modelizar una variable difusa que toma valores en

el conjunto de los números difusos finitos. Finalmente, mostraremos un ejemplo

numérico basado en datos financieros de la economı́a china para ilustrar el uso

de la metodoloǵıa propuesta. De acuerdo con estos objetivos, la memoria se ha

organizado en varios caṕıtulos atendiendo a los siguientes objetivos.

En el Caṕıtulo 2 está dedicado a la presentación de las nociones básicas tanto

de la teoŕıa de conjuntos difusos como de la teoŕıa de regresión.

En el Caṕıtulo 3 se estudia la familia formada por todos los números difusos

finitos, es decir, los números difusos con imagen finita como funciones valuadas

en el intervalo [0, 1] de los números reales. Aunque a primera vista se puede

considerar que esta clase es muy restrictiva, esta idea es falsa. Por ejemplo,

dado un número real α0 ∈ (0, 1), la familia formada por todos los números difu-

sos cuya imagen es el conjunto {0, α0, 1} es biyectiva a la clase formada por los

números difusos trapezoidales (que es ampliamente utilizada en la mayoŕıa de

los trabajos cient́ıficos que tratan temas difusos), y si suponemos que la imagen

del número difuso puede contener cuatro puntos distintos, entonces obtenemos

una familia aún más amplia, caracterizada por seis números reales ordenados de

menor a mayor, lo que sobrepasa al conjunto formado por los números difusos

trapezoidales. Pero ésta no es la única ventaja de este tipo de números difusos.

Cuando utilizamos números difusos triangulares para modelizar la imprecisión

inherente a un experimento aleatorio, asumimos que todos los conjuntos de nivel

de los resultados son conocidos y que éstos vaŕıan de forma lineal. Sin embargo,

los números difusos finitos pueden ser útiles para modelizar experimentos en los

que sólo conocemos algunos conjuntos de nivel (tal vez porque son dif́ıciles de

obtener o porque es costoso acceder a ellos), o incluso situaciones en las que nue-

stro conocimiento de dos o tres conjuntos de nivel es suficiente para determinar

que los números difusos involucrados no son triangulares o trapezoidales. Otra

G. Alfonso
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ventaja de los números difusos finitos es el hecho de que pueden ser fácilmente

caracterizados por un número real (que sirve como valor central y más proba-

ble) y una lista finita de números reales no negativos (llamados amplitudes a la

izquierda y a la derecha). Esta caracterización hace que la aritmética con este

tipo de números difusos sea fácil e intuitiva. Además, a diferencia de los números

difusos triangulares o trapezoidales (cuyos productos bajo la aritmética usual no

producen un número difuso del mismo tipo), siguiendo las técnicas introducidas

en [47], observamos que la familia de números difusos finitos es cerrada bajo las

operaciones habituales introducidas por Mizumoto y Tanaka [37].

En el Caṕıtulo 4 pueden diferenciarse claramente dos partes. La primera

parte del Caṕıtulo 4 se centra en la introducción de las herramientas que están

involucradas en la mayoŕıa de procedimientos de regresión. En un primer paso,

partiendo de un modelo teórico que depende de ciertos parámetros, necesitamos

medir la similitud entre los valores observados y estimados (los residuos). Los

desarrollos clásicos emplean el cuadrado de la diferencia entre ambos números

para ajustar un modelo (es el conocido método de mı́nimos cuadrados). Esta

función de pérdida no es útil en un ajuste difuso porque la diferencia entre dos

números difusos no es una buena medida de la similitud entre ellos. De hecho,

hay varias maneras de extender la diferencia entre números reales a los números

difusos, pero ninguna de ellas es compatible con la suma (en el sentido de que, en

general, el número difuso (A−B)+B es distinto de A para cualesquiera números

difusos A y B). Ante este problema, la solución propuesta en algunos enfoques

consiste en utilizar números reales para medir la distancia entre dos números

difusos. Sin embargo, desde nuestro punto de vista, esta interpretación no es

coherente con la interpretación de los números difusos como entidades inciertas.

En un entorno difuso, las medidas de similitud (es decir, procedimientos que

asocian, a cada par de números difusos, otro número difuso que se interpreta

como la similitud o la diferencia entre ellos) que se utilizan suelen producir

mejores resultados que las métricas (en el sentido clásico). En un segundo paso,
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después de determinar el proceso que se va a emplear para estimar los errores,

observamos que cada modelo ajustado conlleva una suma total difusa de los

cuadrados de los residuos y es necesario decidir el modelo óptimo, es decir, el

modelo que minimiza estos números difusos. Sin embargo, en un entorno difuso,

no hay un método universalmente aceptado para ordenar números difusos (por

el contrario, hay muchas maneras de clasificar los números difusos). En [45],

los autores introdujeron, al mismo tiempo, una familia de relaciones binarias

y medidas de distancia, que depend́ıan de varios parámetros (con una inter-

pretación geométrica) y que permit́ıan a los/as investigadores/as desarrollar un

proceso de regresión personalizado que puede variar según sus intereses, con

aplicaciones en el ámbito económico y en otros campos de la ciencia en general.

Tales relaciones binarias y medidas de distancia se convierten en órdenes par-

ciales y auténticas métricas difusas en muchos casos, lo que da una coherencia

intuitiva al procedimiento de regresión difusa. Desafortunadamente, aunque las

familias introducidas son apropiadas para manejar una gran clase de números di-

fusos (triangulares, trapezoidales, etc.), no producen resultados óptimos cuando

consideramos números difusos finitos. En el Caṕıtulo 4 mostramos cómo exten-

der las familias introducidas en [45] de tal manera que, preservando sus buenas

propiedades, la nueva familia también es capaz de manejar números difusos

finitos en el sentido de que los resultados obtenidos son coherentes con nues-

tra intuición. Estas familias han sido especialmente diseñadas para trabajar

de forma sencilla con números difusos finitos cuando se expresan a través de

la caracterización dada en el caṕıtulo anterior. Además, la nueva familia de

medidas de similitud es más amplia que la anterior y proporciona a los/as in-

vestigadores/as interesados/as en este área nuevas y diferentes opciones para

medir similitudes entre números difusos.

En la segunda parte del Caṕıtulo 4 se hace uso de las herramientas previ-

amente desarrolladas y se plantea una nueva aproximación al problema de la

regresión difusa que puede ser muy útil para muchos/as investigadores/as de
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diferentes campos: una metodoloǵıa de regresión que es capaz de manejar con

soltura una amplia variedad de números difusos, incluidos los números difusos

finitos. De la misma manera que el método clásico, el enfoque presentado con-

sidera un entorno en el que una variable aleatoria difusa finita está explicada a

partir de un vector aleatorio de variables. Sin embargo, la solución propuesta

a lo largo de la presente Memoria es novedosa por varias razones. En primer

lugar, los estudios previos que se han realizado hasta el momento nunca han

considerado números difusos finitos y, por otro lado, las herramientas desarrol-

ladas en trabajos anteriores no pueden aplicarse directamente, de una forma

sencialla y eficaz, a este tipo de números (o no funcionan correctamente en este

contexto). Ésta es la razón principal para considerar una versión extendida de

las nociones anteriores. En segundo lugar, esta Memoria también da una nueva

solución al problema del ajuste de modelos de amplitudes no negativas para las

amplitudes con objeto de garantizar que la respuesta predicha sea un número

difuso.

Finalmente, el Caṕıtulo 5 ilustra la metodoloǵıa propuesta utilizando datos

reales. El objetivo de este caṕıtulo es dar a los/as inversores/as una herramienta

cuantitativa para ayudarles a tomar decisiones de inversión y obtener un modelo

de regresión difusa que dé valor al proceso de inversión. Este ejemplo se utiliza

para ilustrar la metodoloǵıa propuesta y demostrar la eficiencia de la misma.

Cabe señalar que el objetivo ha sido en ningún momento crear un algoritmo para

indicarle a un/a inversor/a cuándo debe comprar o vender el bono convertible,

sino una herramienta cuantitativa que le ayude a hacerlo de acuerdo con sus

propias expectativas sobre las variables independientes que se consideraron, el

precio de las acciones en Hong Kong y Shangai y el valor SHIBOR. Cabe destacar

en relación al ejemplo numérico que no podemos utilizar un análisis clásico

porque los datos no se publican simultáneamente en el mismo d́ıa (no es posible

obtener información diaria el mismo d́ıa para todas las variables financieras

consideradas). Si resumiésemos los datos del mes utilizando una medida de
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tendencia central, estaŕıamos perdiendo mucha información de gran interés sobre

la evolución del valor a lo largo del mes. De esta manera, el análisis clásico no nos

proporciona una respuesta razonable a este problema. Para evitar la pérdida

de información, trabajadores/as de la empresa Shenwan Hongyuan Securities

(HK) Limited, como expertos/as en análisis financiero, describieron las variables

en términos de números difusos finitos. A partir de los datos de cada mes,

obtuvieron medidas diferentes (tales como la media, la desviación estándar, la

mediana, los percentiles, etc.), y sobre en base a dicha información, propusieron

un valor central representativo, dos extremos (sin incluir valores at́ıpicos) para

definir el soporte del número difuso finito y dos valores intermedios, de modo que

aproximadamente el 50% de los datos caen dentro del rango de puntuaciones

definidas por ellos/as. Si el/la investigador/a no fuese un/a experto/a en el

campo, podŕıa considerar un gráfico de caja y bigotes (por ejemplo, el primer

y el tercer cuartil pueden ser utilizados como valores intermedios y percentiles

apropiados, tales como los correspondientes al 2%, 9%, 91% y 98%, para los

extremos del gráfico, que determinaŕıan los valores correspondientes al soporte

del número difuso).

De manera resumida, las principales ventajas de la metodoloǵıa propuesta

en esta Memoria son las siguientes:

• Proporciona a los/as investigadores/as un enfoque fácil para el problema

de analizar relaciones de regresión cuando los datos observados pueden

verse afectados por diferentes fuentes de incertidumbre.

• No se consideran restricciones de no negatividad desde el principio.

• Los/as investigadores/as pueden modelizar relaciones estad́ısticas entre

variables difusas con un método que se puede aplicar en el ámbito económico

y financiero y en otros contextos diferentes.

• La técnica no se limita a considerar modelos lineales.
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• La metodoloǵıa propuesta no se limita a intervalos numéricos o variables

difusas triangulares (como en otros trabajos).

• El método descrito puede considerarse como genuinamente difuso ya que

no se limita a variables explicativas de tipo real ni a funciones de pérdida

de tipo real.
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CHAPTER 1

Introduction

1.1 Presentation

In many real-life situations the information associated with some random

experiments is perfectly measurable but, in many cases, is only valuable. Re-

cent scientific research shows the increasing instability of economic and business

systems and the need to create new instruments to represent and manage this

instability. The development of current economic models demand the ability to

manage different sources of imprecision that arise naturally due to the lack of

precise knowledge. Nowadays the management of uncertainty (also called im-

precision, vagueness or ambiguity) considers different approaches that are not

competitive but complementary: the probabilistic approach and fuzzy approach.

The theory of fuzzy sets (introduced in 1965 by Zadeh [65]) is a very useful

tool for modeling these situations. To give a fuzzy approach to a classical

1
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problem allows the incorporation of inaccurate or incomplete information and

uncertainty on parameters, properties, geometry, initial conditions, etc. We can

also understand real-world problems incorporating valuable information, such

as reasoned judgments about what will happen and about what has happened.

The term fuzzy is used as a designation for a particular class of sets. How-

ever we observe that this term caused different reactions, because it sound like

something “unclear”. However, the apparent internal contradiction of its own

name has not been an inconvenience to a increase of theoretical developments

and applications of fuzzy logic to the field of science, technology and, even, em-

pirical analysis in the social sciences. Moreover, many authors agree that “there

is nothing fuzzy about fuzzy logic”. It is the theory of fuzziness, not being fuzzy

itself. On the contrary, there is a powerful mathematical support behind it.

One of the most important notions that have been adapted to a fuzzy context

is the generalization of the concept of real number, giving rise to the term

fuzzy number (see [19–21]). Fuzzy numbers do not refer to one single value

but rather to a set of possible values, where each possible value has its own

weight, in general, between 0 and 1. That is, using or proposing a membership

function which associates these weights appropriately. Mizumoto and Tanaka

[37] introduced a way to operate with FNs that also extends the usual operations

with real numbers. However, some difficulties are found when we try to use

this definition. In practice, the interval arithmetic has also proven to be a

powerful method when operating with FNs. In 2001, Voxman [60] introduced

the conception of discrete FN (which is useful in some applications) assuming

that its support is finite and gave out a canonical representation. Note that his

notion of discrete FN is not a FN in the sense that we will use. Since then, a lot

of work in this direction have been done and many results have been obtained

(for instance, see [8, 59]).
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1.2 Motivation and previous works

In 2014 Roldán et al. [47] introduce a slightly notion of discrete FN assuming

that its image is a finite or countable set. This kind of FNs is interesting since,

in many cases, the usual computation of FNs is only referred to certain data

(a finite approximation of a FN) and, in practice, most of examples of fuzzy

structures (probabilistic metric spaces, fuzzy metric spaces in several senses and

intuitionistic fuzzy metric spaces) are constructed using these classes of FNs.

The family of all FNs whose image is a countable (or finite) set is closed under

the usual operations (notice that, in general, arithmetic operations between

discrete FNs in the sense of Voxman [60] do not preserve the closeness of the

operations when we use the Zadeh’s Extension Principle).

The presence of uncertainty also leads us to consider whether a real number

is the best way to measure distances between fuzzy numbers. Over the years, dif-

ferent notions have been proposed about the concept of fuzzy metric space (see

Roldan et al. [44, 48], and the references therein). However, none of these con-

cepts deals in particular with the problem of how to define a notion of distance

or measure of similarity between two arbitrary fuzzy numbers [1,2,4,5,13,27,55].

In principle, it is not clear how to consider a canonical way to associate to two

fuzzy numbers another fuzzy number that can be interpreted as the proximity

or distance between them. Therefore, in many problems, this similarity between

fuzzy numbers is measured using real numbers.

The problem is twofold: on the one hand, following the classical notion, a

metric on a set must take values in the range of nonnegative real numbers, but

the substraction between fuzzy numbers is not clear; on the other hand, and

directly related to the above, the absence of a partial order leads the triangular

inequality becomes an axiom hardly generalizable. In relation to the latter the

introduction of new ranking concepts and the study of their properties is also a
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topic of interest [3, 39].

To solve this problem, Aguilar et al. [2] introduced a family of measures of

similarity that, in many different ways, allow to obtain a fuzzy number that can

be interpreted as the closeness between two fuzzy numbers . The main advan-

tages of this family are the following: they are defined in the set of all the fuzzy

numbers (not only among trapezoid diffuse numbers); some of the most useful

subsets of the set of all fuzzy numbers (including triangular and trapezoidal

diffuse numbers) are closed under these measures of similarity; in some cases,

as in the set of the trapezoidal diffuse numbers, are authentic fuzzy metrics; in

these cases, this set is endowed with a Hausdorff topology that verifies the first

axiom of numerability; on the other hand, once we have fixed the geometric

elements involved in our definition, the calculation of the distance measurement

is a very simple, intuitive process and with a very low computational cost; fi-

nally, this family allows us to solve problems that arise in a fuzzy environment

by providing, in some cases, new solutions and, in others, obtaining results as

good or at least similar to those obtained by other more complex techniques.

On the other hand there is a great interest in studying the connections be-

tween fuzzy and probabilistic concepts (see [44]). From this convergence arise,

for example, the concept of fuzzy random variable [41] and statistical tech-

niques that use this kind of information. Among them, the problem of regres-

sion analysis in a fuzzy environment has been discussed in the literature from

different points of view and taking into account a variety of input and out-

put (see [36, 45, 46]). Roldán et al. [45, 46] introduced new methods to solve

the problem of fuzzy regression using a family of fuzzy semi-distances between

fuzzy numbers and considering the method of least squares.
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1.3 Objetives

The main objetives of this report are:

• To introduce and study the class of fuzzy numbers which we are going to

handle justifying the need of this class that could be very interesting for

further studies.

• To develop the tools we need to fit a fuzzy regression model;

• To introduce and describe a fuzzy regression algorithm using fuzzy semidis-

tances in order to model a fuzzy variable that takes finite fuzzy numbers

as outputs. This approach can be useful when a few level sets of the fuzzy

numbers are known (for instance, when collecting data is expensive and

time consuming) or when we only want to do an estimation of some level

sets of the fuzzy response variable.

• To illustrate the use of the proposed method considering a numerical ex-

ample based on financial data.

1.4 Structure of the document

This manuscript is divided into different parts with distinct objectives.

Chapter 2 presents some basic notions of the theory of regression and the

theory of fuzzy sets.

In Chapter 3 we study the family of all finite fuzzy numbers, that is, fuzzy

numbers with finite image as real-valued functions. Although at a first sight one

can consider that this class is very restrictive, this idea is false. For instance,

given a real number α0 ∈ (0, 1), the family of all fuzzy numbers whose image

is the set {0, α0, 1} is bijective to the class of triangular fuzzy numbers (which
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is widely used in most of scientific papers treating fuzzy topics), and if we

suppose that the image of the fuzzy number can contain four distinct points,

then we obtain a family which properly contains a subset bijective to the class

of all trapezoidal fuzzy numbers. But this is not the unique advantage of this

kind of fuzzy numbers. When we use triangular fuzzy numbers to modelize the

imprecision inherent to a random experiment, we are assuming that all the level

sets of the results are known and they vary in a linear way. However, finite

fuzzy numbers can be useful to modelize experiments in which we only know

some level sets (maybe because they are difficult to be obtained or because it is

expensive to access them), or even situations in which our knowledge of two or

three level sets is sufficient to determine that the involved fuzzy numbers are not

triangular or trapezoidal. Another advantage of finite fuzzy numbers is the fact

that they can be easily characterized by a real number (which serves as a central

and most likely value) and a finite list of nonnegative real numbers (called left

and right spreads). This characterization makes that the computation of this

kind of fuzzy numbers is easy and intuitive. Furthermore, unlike triangular

or trapezoidal fuzzy numbers (whose products are not a fuzzy number of the

same type), following the techniques introduced in [47], we observe that the

family of finite fuzzy numbers is closed under the usual operations introduced

by Mizumoto and Tanaka [37].

The first part of Chapter 4 is dedicated to introduce the tools that are in-

volved in many regression procedures. In a first step, starting from a theoretical

model depending on certain parameters, we need to measure the distance be-

tween observed and estimated values (the residuals). Classical developments

can employ the square of the difference between both numbers to fit a model

(the least squares method). This loss function is not useful in a fuzzy setting

because the difference between two fuzzy numbers is not a good measure of the

distance between them. In fact, there are several ways to extend real differ-

ence to fuzzy numbers, but none of them is compatible with the sum (in the
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sense that, in general, (A − B) + B is distinct to A for fuzzy numbers A and

B). Furthermore, some approaches uses real numbers to measure the distance

between two fuzzy numbers but, from our point of view, this interpretation is

not coherent with the meaning of fuzzy numbers as uncertain entities. In the

fuzzy setting similarity measures (that is, procedures that associate, to each pair

of fuzzy numbers, another fuzzy number that is interpreted as the similarity of

difference between them) are used to produce better results than metrics (in the

classical sense). In a second step, after determining the process that is going

to be employed to estimate the errors, we have that every fitted model leads

to a fuzzy total sum of squares of residuals and we need to decide the optimal

model, that is, the model which minimize these fuzzy numbers. However in a

fuzzy setting, there is not an universally accepted method for ordering fuzzy

numbers (on the contrary, there are a lot of ways for ranking fuzzy numbers).

In [45], the authors introduced, at the same time, a family of binary relations

and distance measures, involving many variables that permit the researchers to

develop a customized regression process depending on their interests, with many

applications to economics and other fields in general. Such binary relations and

distance measures became partial orders and genuine fuzzy metrics in many

cases, which gives an intuitive coherence to the fuzzy regression procedure. Un-

fortunately, although the introduced families are appropriate to handle a large

class of fuzzy numbers (triangular, trapezoidal, etc.), they do not produce opti-

mal results when we consider finite fuzzy numbers. In Chapter 4 we show how

to extend the families given in [45] in such a way that, preserving their good

properties, the novel family is also able to handle finite fuzzy numbers in the

sense that obtained results are coherent with human intuition. Such families

have been especially designed to work in a simple way with finite fuzzy num-

bers when they are expressed through the characterization given in Section 3.

Furthermore, the new family of similarity measures is wider than the previous

one and it gives to researchers interested in this topic new different possibilities
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for measuring similarities between fuzzy numbers.

In the second part of Chapter 4 the tools previously developed are consid-

ered to introduce an approach to the problem of fuzzy regression which can be

very useful for many researchers of different fields: a regression methodology

involving finite fuzzy numbers. In the same way that the classical method, the

presented approach considers a setting in which a finite fuzzy random variable

is intended to be explained from a random vector of variables. However the

solution proposed in this report is novel for several reasons. Firstly previous

studies have never considered finite fuzzy numbers and the tools developed in

previous papers cannot be directly applied to this kind of numbers (or they

do not work properly in this setting). This is the main reason to consider an

extended version of previous notions. Secondly, this dissertation also gives a

new solution to the problem of fitting nonnegative models for the spreads to

guarantee that the predicted response is a fuzzy variable.

Finally, Chapter 5 illustrates the proposed methodology using real data.

We emphasize that we cannot use a classical analysis because the data are not

published simultaneously on the same day (it not possible to obtain daily infor-

mation or on the same day for all the considered financial variables). However if

we decide to summarize the data of the month using a central tendency measure,

we are losing lots of information. In this way, classical analysis does not pro-

vide us a reasonable response to this problem. To avoid the loss of information,

experts in financial analysis of Shenwan Hongyuan Securities (HK) Limited (a

Hong Kong-based investment holding company principally engaged in financial

businesses) described the variables in terms of finite fuzzy numbers. They ob-

tained from each month different measures (such as mean, standard deviation,

median, percentiles, etc.), and based on them, they proposed a representative

central value, two extreme values (not including outliers) to define the support

of the finite fuzzy number and two intermediate values, such that approximately

50% of the data fall within the range of scores defined by them. If the researcher
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is not an expert in the field, he/she could consider a box and whisker plot (the

first and third quartiles can be used as intermediate values and appropriate per-

centiles like 2%, 9%, 91%, 98% can be also used for whisker ends, that is, those

values corresponding to the support of the fuzzy number).
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CHAPTER 2

Preliminaries

In this chapter we give some established concepts and results which are

needed in the development of this report. Firstly we provide some background

on binary relations, on the classical regression analysis and on fuzzy set theory.

A section of this chapter will be devoted to each of them.

2.1 Sets and binary relations

Throughout this memory, we denote by R, R+ = (0,∞), R+
0 = [0,∞) and

R−0 = (−∞, 0] the set of all real numbers, the set of all positive real numbers,

the set of all nonnegative real numbers and the set of all non positive real

numbers, respectively. From now on, let X and Y be two nonempty sets and

let f : X → Y be a mapping. The domain of f is denoted by dom(f), and its

image (or range) is f (Y ) = { f (x) : x ∈ X }. If A is a subset of X we will write

A ⊆ X, and if A and X are distinct, then A ⊂ X.

A binary relation on X is a nonempty subset R of the product space X×X.

For simplicity, we denote x 4 y if (x, y) ∈ R, and we will say that 4 is the

binary relation on X. We shall use 4 and v to denote binary relations on X.
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A binary relation 4 on X is:

• reflexive if x 4 x for all x ∈ X;

• transitive if x 4 z for all x, y, z ∈ X such that x 4 y and y 4 z;

• antisymmetric if x 4 y and y 4 x imply x = y.

A reflexive and transitive relation on X is a preorder (or a quasiorder) on X.

In such a case, (X,4) is a preordered space. If a preorder 4 is also antisymmetric,

then 4 is called a partial order, and (X,4) is a partially ordered space (or a

partially ordered set). For instance, the binary relation ≤ is a partial order on

any nonempty subset of real numbers.

A binary relation 4 is a total order if it is transitive, antisymmetric, and it

satisfies:

• totality : x 4 y or y 4 x for all x, y ∈ X.

Throughout this memory, we will use some abbreviations: we use “FN ”

rather than “fuzzy number” and we abbreviate “trapezoidal fuzzy number” by

“TFN ”.

2.2 Background on fuzzy numbers

The uncertainty naturally arises in many real experiments different by the

lack of precise knowledge. The types and sources of uncertainty are varied and

cannot be classified into a single category. For example, the randomness or pro-

babilistic uncertainty in a experimental study, that appears selecting a sample

from a given population, is formalized through the Calculus of Probabilities and

studied using the classical concept of random variable. Another type is the non-

stochastic inaccuracy or uncertainty which arises due to the lack of information
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or associated with a process of aggregation, the imprecision in the transmission

of data or as a consequence of the experimental errors, etc. In this case, new

concepts (such as fuzzy random variable) are needed in order to manage the

uncertainty.

Consequently, in the real world there is a non-perfect knowledge, i.e., vague,

uncertain, ambiguous, inaccurate, or probabilistic knowledge in nature. Human

thought and reasoning often leads such information, probably originated from

the inherent uncertainty of human concepts and from reasoning based on similar

but not identical experiences. The theory of fuzzy sets and fuzzy logic, as its

name suggests, is a logical alternative to classical logic which aims to introduce

a degree of vagueness in the things that qualify.

The concept of fuzzy set and operations between fuzzy sets were introduced

by Lotfi Zadeh in 1965. Zadeh was born in Baku in 1921, Azerbaijan, as Lotfi

Aliaskerzadeh. In 1943 he decided to emigrate to the United States where he

changed his name to Lotfi Asker Zadeh. This mathematician, electrical engineer,

computer scientist, artificial intelligence researcher and professor emeritus at the

University of Berkeley, is famous for introducing the theory of fuzzy sets or fuzzy

logic and he is also considered the father of the theory of possibility.

This theory gives the mathematical framework to treat uncertainty and im-

precision. Since its introduction, much time and effort is being devoted to

research in this area. Nowadays, this field of research is very important, both

for mathematical or theoretical implications as for its practical applications and

proof of this importance is the large number of international journals (Fuzzy Sets

and Systems, IEEE Transactions on Fuzzy Systems, etc.), conferences (FUZZ-

IEEE, IPMU, EUSFLAT, ESTYLF, etc.), and many books dedicated to this

topic.

When handling vagueness, there are two points of view. In a first approach

the focus is on a real random variable that cannot be observed accurately. For
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instance, if we want to measure something, a real accurate measure underly

which quantification will be performed with a measuring instrument that can

have a certain degree of inaccuracy. Another studies in which there is no under-

lying real variable, the focus is to obtain conclusions based on a proper imprecise

variable.

To handle the uncertainty, sometimes it is synthesized into a real value and

classical statistical techniques are applied, with the drawback that this process

entails that a lot of information is lost, due to experimental inaccuracy. To

avoid the loss of information we use the concept of fuzzy set. Formally, any

[0, 1]-valued function determines a fuzzy set. In real problems, the class of

fuzzy numbers consisting of upper semi-continuous [0, 1]-valued functions with

compact support is rich enough to cover most of the applications (see [18]).

However, this class is still very general, and most researchers use simple shapes,

such as triangular fuzzy numbers, trapezoidal and LR-fuzzy numbers which

satisfy the need of modeling fuzzy problems and are easier to fix and handle.

A function that assigns a fuzzy subset to each possible output of a random

experiment is a fuzzy random variable. This concept was introduced by Puri

and Ralescu [41] in 1986. In recent decades various studies have been developed

on random sets and fuzzy random variables among which the formalization of

concepts, strong laws of large numbers, definition of various measures of central

tendency and dispersion, hypothesis testing, etc.

Next we will give some fundamental notions of this theory.

2.2.1 Fuzzy sets and fuzzy numbers

One of the key tools of classical sets theory is the concept of subset. Given a

nonempty set X (interpreted as the universe), we will say that A is a subset of

X, and we will denote it by A ⊆ X, if each element of A is also an element of X.

Subsets of X are completely characterized by their corresponding characteristic
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functions, which are functions whose domains are X and whose ranges are the

discrete set {0, 1}. In this way, if A is a subset of X, then its characteristic

function is χA : X → {0, 1}, given by

χA (x) =





1, if x ∈ A,
0, if x ∈ X�A.

Conversely, any map χ : X → {0, 1} is the characteristic function of the subset

A = {x ∈ X : χ (x) = 1 } .

The value of χ (x) is, from this point of view, interpreted as the membership

function that decides if the point x belongs to A: if χ (x) = 1 then x belongs to

the subset, and if χ (x) = 0, then x does not belong to the subset. Replacing the

finite set {0, 1} by the continuous interval [0, 1] we obtain the notion of fuzzy

set. Due to its significance and importance throughout this memory, we will

denote by I the compact (closed, bounded) subinterval of real numbers [0, 1].

Definition 2.2.1 (Fuzzy set) A fuzzy set on X is a function A : X → I.

Each value A (x) ∈ I is interpreted as the probability that x belongs to the

fuzzy set. Following this conception, if A (x) = 1, we are completely sure that

x belongs to the fuzzy set; conversely, if A (x) = 0, then x does not belong to

the fuzzy set. For intermediate values A (x) ∈ (0, 1), we have only a degree of

uncertainty about the fact that x belongs (or not) to the fuzzy set.

Due to its great applications, literature on fuzzy sets is very extensive. We

refer the reader to [19–21,42].

Among the whole family of fuzzy sets, we are especially interested in the

class of them that, in a natural sense, extend the notion of real number. Given

a real number r ∈ R, the characteristic function of the subset {r} on R is

r : R→ I, r (x) =





1, if x = r,

0, if x 6= r.
(2.1)
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The fuzzy set r on R uniquely determines the real number r, so any extension of

real numbers to the fuzzy framework must necessarily identify any real number

r with its corresponding fuzzy set r. Anyway, there are several notions of fuzzy

number (see, for instance, [42,43,59,60]) trying to carry out such generalization

(for which their supports are compact or not, and imposing or nor the condition

of normality). For our purposes, we will employ the following definition (which

is widely assumed by most of researchers in this field).

Definition 2.2.2 (Fuzzy number) A fuzzy number (for short FN) on R is a

fuzzy set A on R such that:

a) Normality condition: There exits a real number x0 ∈ R such that A (x0) = 1.

b) For all α ∈ ]0, 1], the α-level set (or α-cut)

Aα = {x ∈ R : A(x) ≥ α }

is a non-empty, closed subinterval of R.

For more details about FNs, see Dubois and Prade [19]- [21], Mizumoto and

Tanaka [37] and Wu and Ma [61]. The previous concept of α-level set (or α-cut)

plays a key role in fuzzy set theory.

Definition 2.2.3 (Kernel or core) The kernel (or core) of a FN A is its 1-level

set, that is,

kerA = A1.

Definition 2.2.4 (Support) The support of a FN A is the closure (in the Eu-

clidean topology of R) of the subset of points in which the FN takes strictly

positive real values, that is,

supp(A) = {x ∈ R : A(x) > 0 }.
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A = (a/b/c)
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1

d

A

1

2

Figure 2.1: A fuzzy number with unbounded support.

Under the previous definitions, the support of a FN is not necessarily a

bounded subset of R (see, for instance, Figure 2.1). However, for our purposes,

throughout this memory, we will only consider FNs with bounded support.

Therefore, it will be a compact subinterval of R. Coherently, we will denote by

F be the family of all FNs (with compact support). We advise the reader that

the FNs we employ henceforth will have compact support.

Under these considerations, for each α ∈ I, the α-level set Aα of A is a

compact subinterval of R that can be expressed as

Aα = [ aα, aα ] ,

where aα is the inferior extreme and aα is the superior extreme1 of the interval

Aα. Following this notation, we will also denote the support of A by A0 =

[ a 0, a0 ], and A1 = [ a 1, a1 ] = kerA will stand for the kernel of A.

Given a FN A and varying α on I, we can consider two functions

a, a : I→ R

1We point out that many researchers also use the notation Aα = [LA (α) , RA (α)] to

explicitly declare the left and the right extremes of each level set.
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where

a (α) = aα = min (Aα) = min ({x ∈ R : A (x) ≥ α }) and

a (α) = aα = max (Aα) = max ({x ∈ R : A (x) ≥ α })

for all α ∈ I. In particular, notice that

A (aα) ≥ α and A (aα) ≥ α for all α ∈ I, (2.2)

and

a (A (x)) ≤ x ≤ a (A (x)) for all x ∈ R.

These functions completely determine the FN A in the following sense.

Lemma 2.2.5 (Goetschel and Voxman [24]) A fuzzy set A : R → I is a FN if,

and only if, there exist two left continuous mappings a, a : I → R such that a is

non-decreasing, a is non-increasing and Aα = [ aα, aα ] for all α ∈ I.

Furthermore, if x0 ∈ kerA, then aα ≤ x0 ≤ aα for all α ∈ I.

With respect to the shape of the plot of a FN, the following results shows

some geometric properties that any FN must satisfy.

Lemma 2.2.6 ( [24], [47]) If A ∈ F and x0 ∈ kerA, then A|[x0,∞[ is a non-

increasing and left-continuous mapping and A|]−∞,x0] is a non-decreasing and right-

continuous mapping.

Given a FN A, as there exists a point x0 ∈ R such that A (x0) = 1 (as

we have commented above, some authors refer this property as normality), the

1-level set A1 = [ a 1, a1 ] of A is a non-empty bounded interval. The center and

the radious2 (or central spread) of the interval A1, that is, the numbers

DcA =
a 1 + a1

2
and sprA =

a1 − a 1

2
,

2We use the term radious in the sense that if c is the center and r is the radious, then the

interval is [c− r, c+ r].
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are called, respectively, the center and the central spread of the FN A (see

[2, 45]). This leads us to consider two functions

Dc : F → R and spr : F → R+
0 (2.3)

that assign, to each FN A, its center and its central spreads, respectively.

2.2.2 Some classes of fuzzy numbers

Next, we present some families of fuzzy numbers whose membership func-

tions have very simple geometric shapes but which are, at the same time, widely

used in current research mainly because they satisfy the modeling needs that

arise in fuzzy problems and, in general, they are easier to set, manage and

understand than other more general concepts (see [2]).

As we have just pointed out in (2.1), real numbers { r : r ∈ R } can be seen

as the FNs { r : r ∈ R } ⊂ F . These FNs are usually called crisp FNs.

 

  

   

x 

1 

y 

Figure 2.2: A real number r, defined as a fuzzy number.

In general, FNs whose image is the discrete set {0, 1} are rectangular FNs,

which can be expressed as:

A(x) =





1, if a ≤ x ≤ b,

0, in any other case
(2.4)

(where a, b ∈ R are such that a ≤ b).
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1 

a b 

Figure 2.3: Plot of a rectangular fuzzy number.

Definition 2.2.7 A triangular fuzzy number is a fuzzy number denoted by A =

(a/b/c), where a, b, c ∈ R, a ≤ b ≤ c, defined by:

A(x) =





x− a
b− a , if a < x ≤ b,

c− x
c− b , if b < x < c,

0, in any other case.

If a < b < c, the plot of a triangular fuzzy number corresponds to a triangle

which base is [a, c] and the vertex is located at x = b. The kernel of the triangular

fuzzy number A = (a/b/c) is {b} while its support is the interval [a, c].

Triangular fuzzy numbers belong to even more general fuzzy number classes

that are very useful in practice for modeling uncertainty.
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A = (a/b/c)
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2

Figure 2.4: Plot of the triangular fuzzy number (a/b/c).

Definition 2.2.8 A trapezoidal FN (for short, a TFN) is a FN A = (a/b/c/d)

given by

A(x) =





x− a
b− a , if a < x < b,

1, if b ≤ x ≤ c,

d− x
d− c , if c < x < d,

0, in any other case,

where a, b, c, d ∈ R (known as the corners of the FN) are such that a ≤ b ≤ c ≤ d.

Let T the family of all trapezoidal FNs on R.

Clearly, the kernel ofA = (a/b/c/d) is [b, c] and its support is [a, d]. Although

the classical notion of TFN occurs when a < b < c < d, the previous definition,

including the possibility of equality of corners, is useful in practice because we

capture FNs that are not necessarily continuous as mappings (see Figure 5.3).

TFNs can be uniquely determined by their kernels and their supports, i.e.,

if A and B are TFNs, then A = B if, and only if, kerA = kerB and suppA =

suppB.

It is clear that a triangular fuzzy number can be considered as trapezoidal
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Figure 2.5: Plot of the trapezoidal fuzzy number (a/b/c/d).

 

 

 

 

1.55 

1.5 

1.45 1.4 1.6 

1.3 1.5 1.7 

1.3 1.7 

1 1 

1.5 

a) 

b) 

c) 

d) 
1 1 

Figure 2.6: Numerical examples of trapezoidal fuzzy numbers.
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when a < b = c < d. In addition, the real numbers r, seen as fuzzy numbers r,

can also be considered trapezoidal if we choose the case with r = a = b = c = d.

The center of the trapezoidal FN A = (a/b/c/d) is

Ac = DcA =
b+ c

2
,

and the three spreads of A are the nonnegative real numbers

Am = sprA =
c− b

2
≥ 0, A` = b− a ≥ 0, Ar = d− c ≥ 0.

The centers and the spreads also completely determine the trapezoidal fuzzy

number, since:

a = Ac − Am − A`,

b = Ac − Am,

c = Ac + Am,

d = Ac + Am + Ar.

Thus, a trapezoidal number, as a function of its center and its spreads, will be

denoted by

A = Tra(Ac, Am, A`, Ar), (2.5)

and if it is a triangular number we will use the notation

A = Tri(Ac, A`, Ar).

Using this notation, R can be embedded in T in the simple way r 7→ r =

Tra(r, 0, 0, 0) = Tri(r, 0, 0) ∈ T .

Fuzzy numbers similar to trapezoidal fuzzy numbers but considering curves

on both sides may also be defined as follows.

Definition 2.2.9 (Left right FN) A left right FN (for short LRFN) of Dubois

and Prade is a FN A = (a/b/c/d)LR, where a, b, c, d ∈ R (also known as the
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32 CAPÍTULO 2. PRELIMINARES

es decir, si A y B son dos números difusos trapezoidales, entondes A = B śı, y

sólo śı, kerA = kerB y suppA = suppB.

Claramente, el núcleo de A es [AJ , AR] y su soporte es [AI , AS]. El número

Ac = AJ+AR

2
es su centro y los diferenciales (spreads) son los siguientes valores:

Am =
AR − AJ

2
≥ 0, A` = AJ − AI ≥ 0, As = AS − AR ≥ 0.

El centro y los diferenciales también determinan un número difuso trapezoidal

ya que AI = Ac − Am − A`, AJ = Ac − Am, AR = Ac + Am y AS = Ac +

Am + As. En este sentido también es usual utilizar la siguiente notación A =

Tra(Ac, Am, A`, As) (véase Fig. 2.1).
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 1 

AI      AJ   Ac  AR                   AS    

Al     A
m  Am        Ar

   

 
0 

 1 

AI    AJ = Ac = AR                 AS    

    Al                    Ar
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 1 

   AI =AJ   Ac  AR                AS    

        A
m  Am        Ar

   

 

Figura 2.1: Ejemplos de números trapezoidales generalizados

Sea T la familia de todos los números difusos trapezoidales (generalizados)

sobre R. Claramente, R puede embeberse en T : si r ∈ R, entonces r̃ ∈ T , donde

r̃ : R→ I está dado, para todo x ∈ R, por

r̃(x) =





1, if x = r,

0, if x 6= r.

Un número difuso trapezoidal es real (respectivamente, rectangular, triangular)

si a1 = a2 = a3 = a4 (respectivamente, a1 = a2 ≤ a3 = a4, a1 ≤ a2 = a3 ≤ a4).

Un número trapezoidal real se dice que es un número difuso crisp (cuanti-

tativo).

Finalmente comentar que los investigadores que trabajan con números di-

fusos trapezoidales suelen considerar las defuzzificaciones que asignan, a cada

C. Aguilar

Figure 2.7: Center and spreas of a trapezoidal fuzzy number
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Figure 2.8: Examples of trapezoidal fuzzy numbers

corners of the FN) are such that a ≤ b ≤ c ≤ d, defined by:

A(x) =





L

(
x− a
b− a

)
, if a < x < b,

1, if b ≤ x ≤ c,

R

(
x− c
d− c

)
, if c < x < d,

0, in any other case.

where L,R : I→ I are strictly monotone, continuous mappings such that L(0) =

R(1) = 0 and L(1) = R(0) = 1.

In particular, L is strictly increasing and R is strictly decreasing. Clearly,

the kernel of A is [b, c] and its support is [a, d]. Note that a LRFN can be a

discontinuous mapping at x = b and x = c. Trapezoidal FNs are special cases

of LRFNs with L(x) = x = 1−R(x) for all x ∈ I.
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Figure 2.9: Plot of a LR fuzzy number.

2.2.3 Defuzzification of fuzzy numbers

FNs were born in order to generalize the notion of real number to an un-

certainty framework. They are used in order to describe natural phenomena

in which measure instruments are not precise enough or in which the stocas-

tic nature of experiment produce random results. From this view-point, a FN

intrinsically contains more information than a real number. However, in some

cases, it is convenient to simplify the representation of a FN and to capture

the information that it contains by using a unique real number. With this idea

in mind, some parameters were introduced. For our purposes, a defuzzification

(or a valuation method) will be a process in which fuzzy quantities are approx-

imated by real numbers, that is, a mapping D : F → R. Let us introduce some

of them (see [5, 60]).

Following [6], a function S : I → I is a reducing function if it is increasing

and it satisfy the boundary conditions S (0) = 0 and S (1) = 1. Given a FN

A ∈ F and a reducing function S, we consider the following definitions.

• The value of A (with respect to the reducing function S), denoted by
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ValS (A), is the real number

ValS (A) =

∫ 1

0

S (α) (aα + aα) dα.

• The ambiguity of A w.r.t. S is the real number:

AmbS (A) =

∫ 1

0

S (α) (aα − aα) dα.

• The nonspecificity of A is:

w (A) =

∫ 1

0

(aα − aα) dα.

• Given q ∈ I, the weighted expected value of A is introduced by:

EVq (A) = (1− q)
∫ 1

0

aα dα + q

∫ 1

0

aα dα.

• The expected value of the FN A is EV (A) = EV1/2 (A).

Notice that the value of A depends on the middle points aα + aα of its

level sets Aα. However, other parameters are defined by considering the width

aα − aα of each interval Aα.

Finally, the area under A, that is,

∫

R
A(x)dx,

can also be seen as a valuation method of FNs (notice that it is finite because

A has bounded support).

Notice that the previous defuzzifications try to summarize the information

that each FN contains by using a unique real number. Rather the defuzzifica-

tions Dc : F → R and spr : F → R+
0 , defined in (2.3), try to describe some

geometric characteristic of a FN.
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2.2.4 Operations between fuzzy numbers

The fuzzy arithmetic plays an important role when multiple fuzzy variables

are involved.

The usual arithmetic defined by Minkowski for non-empty, compact and

convex sets with the Euclidean norm ‖ · ‖ is based on the following operations:

• Minkowski sum: A+B = { a+ b : a ∈ A, b ∈ B } ;

• scalar product: λA = {λa : a ∈ A }

for all A,B ⊂ Rn non-empty, compact and convex sets and all λ ∈ R.

This space has a semi-linear structure (not a vector space) because there does

not exist a symmetrical element respect to the sum (only the neutral element

for the sum). To consider a space similar to a linear space, if there exists, the

Hukuhara difference is introduced.

This arithmetic can be extended to the set of FNs following the Zadeh’s

extension principle (1975). Thus the space F of all FNs can be provided with

a semi-linear structure induced naturally by the following sum and product:

• sum: (A+ B)α = { a+ b : a ∈ Aα, b ∈ Bα } ;

• scalar product: λAα = {λa : a ∈ Aα }

where A,B ∈ F and λ ∈ R whatever α ∈ (0, 1]. Notice that the crisp FN

0 : R→ I, 0 (x) =





1, if x = 0,

0, if x 6= 0,

is a neutral FN for the sum of the semi-linear structure.

If A = (a/b/c/d) is a trapezoidal FN, its α-cuts are

Aα = [ (1− α)a+ α b, α c+ (1− α)d ]
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for all α ∈ I. As a consequence, it is easy to check that:

• Tra(Ac, Am, A`, Ar) + Tra(Bc, Bm, B`, Br)

= Tra(Ac +Bc, Am +Bm, A` +B`, Ar +Br);

• λTra(Ac, Am, A`, Ar) = Tra(λAc, λAm, λA`, λAr)

for all A,B ∈ T and all λ ≥ 0.
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Figure 2.10: Sum of two trapezoidal fuzzy numbers.

G. Alfonso



2.2. Background on fuzzy numbers 29

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Multiplicación de dos números difusos trapezoidales

x

α
A
c
c*A

Figure 2.11: Product of a trapezoidal fuzzy number by a scalar.

2.2.5 Fuzzy random variables

Fuzzy random variables have attracted a great interest in recent years due

to their interest in probabilistic studies and for practical applications. We first

give the notion of random vector.

Definition 2.2.10 (Random vector) Let (Ω,A, P ) be a probability space and

let (RN ,B) be a measure space and its Borel σ-algebra. A measure function

X : Ω→ RN is a random vector. If N = 1 we say that X is a random variable.

Several notions of fuzzy random variables (for short, FRVs) can be found in

the literature. The most widely used are: the definition due to Kwäkernaak [34],

who considered a FRV as a fuzzy perception of a crisp random variable, and

the one due to Puri and Ralescu [41], who regarded FRVs as random fuzzy

sets. Following this last point of view, given be a probability space (Ω,A, P ),

a mapping X : Ω → F is a FRV on R if for all α ∈ I the α-level mappings
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Xα : Ω → K (R) (where K (R) stands for the family of all nonempty compact

subintervals of R) defined so that for all ω ∈ Ω,

Xα (ω) = (X (ω))α

are convex compact random subsets of R.

Classical real-valued random variables are called crisp random variables in

the fuzzy context.

In our context, we will use the following notions.

Definition 2.2.11 ( Trapezoidal fuzzy random variable) A function X : Ω →
T is a trapezoidal fuzzy random variable (TFRV) if its representation

(xI/xJ/xR/xS) : Ω→ R4

is a random vector.

Sometimes it is interesting to summarize the information of a fuzzy ran-

dom variable into a value that allows us to obtain its expected value to better

understand of its behavior, to make comparisons, etc.

Definition 2.2.12 ( Expected value of a trapezoidal fuzzy random variable)

The expected value of a trapezoidal fuzzy random variable X , is the unique fuzzy

set E[X ] in T whose representation is (E[xI ]/E[xJ ]/E[xR]/E[xS]).

2.3 Background on classical regression analysis

Regression analysis is a powerful tool that has a wide variety of applications

in areas such as Finance, Psychology, Social Sciences, Biomedicine, Engineer-

ing, etc. This methodology is used to find the relationship between two or more

quantitative variables (see [11,63]). For the conventional regression analysis we

can find several methods in the literature among which the least squares method

G. Alfonso



2.3. Background on classical regression analysis 31

is probably the most used procedure in research that is based on experience and

experimentation, empirical research. The field of linear regression provides a ba-

sic theory for a variety of important statistical techniques, such as Discriminant

Analysis, Experimental Designs, etc.

Nowadays regression methods continue to be an area of active research. In

recent decades, new methods have been developed for robust regression involving

correlated responses such as time series and growth curves, regression in which

the predictor variables are curves, images, graphs, or other complex data objects.

Regression methods accommodates various types of missing data, nonparametric

regression, Bayesian methods for regression, regression in which the predictor

variables are measured with error, regression with more predictor variables than

observations and casual inference with regression.

Many statistical programs have contributed to the comprehensive under-

standing and use of this technique providing a large number of procedures for

fitting different types of regression models.

This section provides a simple introduction to regression analysis.

2.3.1 Problem setting

The general problem of regression is to find the relationship between a de-

pendent variable (also called output, endogenous or response) Y and a set of

independent variables X = (x1, ..., xN) (also called input, exogenous, explana-

tory or predictor variables). In general, if N = 1, that is, there is a single

explanatory variable, the problem is referred to as simple regression whereas if

there is more than one explanatory variables, N > 1, is named multiple regres-

sion.

In practice, the knowledge of one or more the variables can help us to infer,

in a greater or lesser degree, on the value of another, saying then that there is a
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statistical relationship or stochastic dependence between them. Thus, regression

analysis makes use of mathematical models with the objective of analyzing and

identifying significant correlations and relationships of dependence between the

variables. This model is used to predict the behavior of a dependent variable

for given values of the independent variables.

Formally, given a data set {Xi, yi}ni=1 obtained from (X, y) where Xi ∈ RN

and yi is the value of the response variable y corresponding to Xi ∈ RN and

given a function f(X, a), the goal is to find the parameter vector a such that

yi = f(Xi, a) i = 1, 2, ..., n.

2.3.2 Loss functions

The solution to the problem is obtained by defining a loss function which

measures the prediction errors between yi and f(Xi, a). The usual choice of loss

function is the norm Lp

Lp(y, f(X, a)) = ‖ y − f(X, a) ‖p (2.6)

where p is a positive number. L1-norm loss function is also known as least

absolute deviations or least absolute errors and L2-norm loss function is also

known as least squares error. The differences of L1-norm and L2-norm as a loss

function can be summarized as follows [25,33,35,40,50,51]:

• Robustness: The method of least absolute deviations finds applications

in many areas, due to its robustness compared to the least squares method.

Least absolute deviations is robust, that is, it is resistant to outliers in the

data. Since a L2-norm squares the error, the model will see a much larger

error than the L1-norm, so the model is much more sensitive to outliers.

This may be helpful in studies where outliers may be safely and effectively

ignored. If it is important to pay attention to any and all outliers, the

method of least squares is a better choice.
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• Stability: The instability property of the method of least absolute de-

viations means that, for a small horizontal adjustment of a datum, the

regression line may jump a large amount. The method has continuous

solutions for some data configurations; however, by moving a datum a

small amount, one could “jump past” a configuration which has multiple

solutions that span a region. After passing this region of solutions, the

least absolute deviations line has a slope that may differ greatly from that

of the previous line. In contrast, the least squares solutions are stable in

that, for any small adjustment of a data point, the regression line will al-

ways move only slightly; that is, the regression parameters are continuous

functions of the data.

• Computational efficiency. Sometimes L1-norm does not have an ana-

lytical solution, i.e., there is more than one solution or there are infinitely

many solutions. However L2-norm always has one solution. This allows

the L2-norm solutions to be calculated computationally efficiently.

Least Squares Least Absolute Deviations

Regression Regression

Not very robust Robust

Stable solution Unstable solution

Always one solution Possible multiple solutions

2.3.3 Least squared method for linear regression

The case in which f is a linear function is likely the most important case.

In some instances the model is non-linear but it can be linearized using trans-

formations of variables.

The classical linear regression model, for each observation, assumes the fol-
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lowing expression:

yi = β0 + β1x1i + ...+ βNxN i,+εi i = 1, 2, ..., n

where the parameters βi are unknown and the random residuals εi satisfy:

1. The expected value of the residuals is zero: E[εi] = 0, for all i = 1, 2, ..., n.

2. The variance of the residuals is a constant value: Var[εi] = σ2 for any

i = 1, 2, ..., n. This property is known as homoscedasticity.

3. There is no autocorrelation between the random terms of the different

elements in the sample: Cov(εi, εj) = 0, for all i 6= j (i, j = 1, ..., n).

In matrix form the linear model can be written as:

y = Xβ + ε

where y is the vector of dimension n with observations of the response variable,

X is the matrix of dimension n×(N+1) with the observations of the explanatory

variable and a column of ones and β is the vector which contains N+1 unknown

parameters we want to estimate, ie:



y1

y2

...

yn




=




1 x11 · · · x1N

1 x21 · · · x2N

...
...

. . .
...

1 xn1 · · · xnN







β0

β1

...

βN




+




ε1

ε2

...

εn




To find a solution to the problem we can consider a loss function as seen

in equation (2.6). However, the method of least squares estimation is the most

widely used. This method minimizes the sum of squared residuals, i.e., mini-

mizes the expression

SSR =
n∑

i=1

εi = εtε = (y −Xβ)t (y −Xβ) = yty − 2ytXβ + βt
(
X tX

)
β.
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Differentiating with respect to β and equating to zero we obtain

β̂ =
(
X tX

)−1
X ty. (2.7)

The least squares estimator verifies to be the minimum variance unbiased esti-

mator (efficient). This result is called Gauss-Markov theorem and it justifies the

least squares method is widely used. However, this result does not guarantee

that the variance of the estimator is necessarily the smallest. The Gauss-Markov

theorem ensures that the least-squares estimators are the best in the class of

estimators that are unbiased and linear functions of the observations, but does

not guarantee that these estimators are better than other estimators that do not

belong to the previous class. This means that there may exist a biased estimator

which has lower variance than the estimator calculated by least squares.

The unbiased estimator for the unknown variance σ2 is

σ̂2 =
1

n+N − 1

n∑

i=1

(yi − ŷi)2

where the values for ŷi are derived from (2.7). The square root of σ̂2 is sometimes

called the standard error of the regression and it has the same units that the

endogenous variable. It represents the standard deviation of y compared to the

regression equation and can be used as an indicator of the fitness of the model.

Given that it has the same units than the endogenous variable it cannot be used

to compare models with different endogenous variables. Furthermore, due to σ̂2

depends on the residuals of the model, a violation of the previously mentioned

hypothesis or a model misspecification could have a very significant impact on

the value of σ̂2 as an estimator of σ2. Because of this, σ̂2 is a estimator of σ2

that depends on the model.

Using the linear model equation and the calculated estimation for the vector

of unknown parameters, we can obtain predictions of y, yi, for given values of

the independent variable X as follows:

ŷi = β̂0 + β̂1x1i + ...+ β̂NxN i = Xβ̂
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The usual interpretation of a regression coefficient, β̂i, is that it provides an

estimation of the effect of a one unit change in an independent variable, Xi,

holding the other variables constant.

Since each estimation is subject to a margin of error, a confidence interval

can be calculated. To study the behavior of the parameters, these intervals and

hypothesis tests are solving assuming a certain distribution for the residues.

Generally, it is assumed that the distribution is Normal, that is,

εi ; N (0, 1) .

Under these conditions it can be seen that β̂ leads a multivariate normal

distribution with mean vector

(
X tX

)−1
X t(Xβ) = β

and covariance matrix

(
X tX

)−1
X t(σ2I)X

(
X tX

)−1
= σ2

(
X tX

)−1
.

Hence,

β̂ ; N
(
β, σ2

(
X tX

)−1
)
.

From this distribution we can obtain a confidence interval (1− α) 100% for

values of β and solve hypothesis testing on this parameter. To solve a regression

problem requires a minimum number of observations and when this number

increases the degrees of freedom also increases, and then the intervals confidence

become more accurate.

2.3.4 The coefficient of determination

The overall evaluation of a linear regression can be made by the residual

variance, which is an index of the accuracy of the model. The fitted model is not

representative when the residual variance is large (the differences between the
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fitted and observed values, i.e., the errors, are large). However, this measure is

not useful for comparing linear regression models of different variables, because

it depends on the units of measurement of the dependent variable.

The variability of the data set is measured through different sums of squares:

the total sum of squares, SST , the regression sum of squares SSE (also called

the explained sum of squares) and the sum of squares of the residuals SSR (also

called the residual sum of squares). Therefore we can define a relative indicator

of dispersion which is a more appropriate measure of goodness of fit of a model.

The most general definition of the coefficient determinant is

R2 = 1− SSR

SST

In some cases, for example, for linear models, the total sum of squares is equal

to the sum of the two other sums of squares and the above definition of R2 is

equivalent to

R2 =
SSE

SST
=
SSE/n

SST/n

In this form, R2 is the ratio of the variance explained by the regression to the

total variance and it is often interpreted as the proportion of response variability

explained by the regressors in the model.

The coefficient of determination has the property that only takes values

between 0 and 1 (0 ≤ R2 ≤ 1) (since the total variance of the dependent variable

is equal to the sum of the explained variance and residual variance) and it is

usual to express it as a percentage. It is easy to obtain that if the fitted line pass

through all the observed points, then the residual variance is zero and R2 = 1,

in this case the regression model explains 100% of the variability of y. Thus,

values of R2 close to 1 mean that the greater part of the variability of response is

explained by the regression model. On the other hand, if the variance explained

by the regression is zero, then R2 = 0. This happens when the independent

variable does not explain any variation in the dependent variable.
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If the parameters are estimated by least squares method, R2 increases as

the number of variables in the model increases (R2 is monotone increasing with

the number of variables included, i.e., it will never decrease). This leads to the

alternative approach of looking at the adjusted R2. It will be denoted by R̄2

and defined as

R̄2 = 1− (1−R2)
n− 1

n−N − 1

2.3.5 Linear regression diagnostics

An aspect that is often forgotten is that the regression models are based

on certain assumptions about the data that are not always fulfilled, so it is

necessary to determine whether the basic assumptions of the model are satisfied

in our data before performing inference. It is known as model diagnosis.

There are several principal assumptions which justify the use of linear re-

gression models for purposes of inference or prediction:

i) Linearity and additivity of the relationship between dependent and indepen-

dent variables.

ii) Normality of the error distribution.

iii) Homoscedasticity (constant variance) of the errors.

iv) Statistical independence of the errors.

v) The independent variables are not linearly correlated; that is, there is no

multicollinearity (this assumption is made if the regression model includes

more than one independent variables)

Model diagnostic procedures involve both graphical methods and formal sta-

tistical tests. These procedures allow us to explore whether the assumptions of
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the regression model are valid and decide whether we can trust subsequent in-

ference results. We will need to test the previous assumptions.

Linearity and additivity assumption

The hypothesis of linear relationship between the response variable and the

explanatory variables is a basic assumption in the regression analysis. This lin-

ear relationship might not exists and hence a linear regression model would not

be appropriate. In this case predictions are likely to be seriously in error, espe-

cially when you extrapolate beyond the range of the sample data. Nonlinearity

is usually evident in a plot of observed versus predicted values. In multiple re-

gression models, nonadditivity may be revealed by systematic patterns in plots

of the residuals versus individual independent variables.

Normality assumption

The normality assumption of random errors is necessary to make inferences

regarding the parameters as well as for the construction of prediction intervals.

This assumption is not absolutely essential if the purpose is the estimation of

the parameters of the model. The least squares estimators are optimal, regard-

less of the probability distribution that random error leads. Moreover, if the

random variable is normally distributed, it can be shown that the least squares

estimators tend to be also normally distributed, as the sample size increase in-

definitely. The diagnosis can be made using a normal probability plot or normal

quantile plot of the residuals.

Homoscedasticity assumption

The term σ2 may not be constant, and may vary between different observa-

tions. It is called the problem of heteroscedasticity. If there is heteroscedasticity,
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the minimum squares estimators of the regression coefficients remain unbiased

but their variance would not be the minimum possible. Violation of this as-

sumption means that the Gauss-Markov theorem does not apply. This implies

that the regression coefficients would have larger standard errors and confidence

intervals and tests would be severely affected due to a loss of sensitivity. There

are several tests that can be used to detect the presence of heteroscedasticity.

No autocorrelation and independence assumption

The most common meaning of the term autocorrelation refers to the corre-

lation between the elements of a series of observations ordered in time or space.

In the context of the regression, the autocorrelation is assumed to not exist in

the random errors. Otherwise, this would be the problem of existence of auto-

correlation. The impact of autocorrelation on the estimators can be severe with

the confidence intervals and hypothesis tests based on the t-student and the

F -Snedecor distributions not being appropriate. Typically, the underestimation

of the variance causes a false impression of accuracy. Durbin-Watson statistic

is a test statistic used to detect the presence of autocorrelation.

No multicollinearity assumption

This hypothesis requires that none of the explanatory variables can be ob-

tained as a linear combination of the others independent variables. If a linear

combination of the columns of X is close to 0 (ie two or more predictor variables

in the multiple regression model are highly correlated) then the calculation of

(X tX)
−1

becomes unstable (X tX may not have an inverse) and this produces

a significant increase of the absolute value of the coefficients and the standard

errors of the affected coefficients tend to be large. The best regression models

are those in which the independent variables correlate minimallywith each other

but significantly with the dependence variable. In this case we must be alert
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to large standard errors of the regression coefficients or to large changes in the

estimated regression coefficients when a predictor variable is added or deleted.

However some authors have suggested the variance inflation factor is a more

formal way to detect multicollinearity.

Most statistical software provide charts and statistics that test whether these

assumptions are satisfied for any given model.

2.3.6 Variable selection in regression models

In multiple regression a common goal is to determine which independent

variables contribute significantly to explaining the variability in the dependent

variable. The model that contains all independent variables will give the ma-

ximum value of the determination coeficient (R2), but not mean that all the

independent variables contribute significantly to explaining the variability in

the dependent variable. Therefore a first question is whether all the variables

should enter the regression model and, if not, we want to know what variables

should enter and what variables should exclude. Intuitively it seems good to

introduce in the model all significant explanatory variables (according to the

individual t-test) to fit the model with all possible variables. But this approach

is not appropriate as the variance of the model depends of the number of vari-

ables and the variance of the parameters increases as the number of variables

increases. There may also be problems of multicollinearity when there are many

explanatory variables. Then the selection of important independent variables

may be useful in many practical problems, for example in situations we can have

a large set of potential explanatory variables.

To address this problem there are several statistical procedures. A widely

used technique is the Stepwise regression [28]. Assuming that there is indeed a

linear relation between the independent variables and the dependent variable,

this technique is a semi-automated process of building a model by successively
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adding or removing variables. This algorithm has the advantages of a progressive

introduction algorithm, but improves it, because he does not keep in the model

the variables already entered in one step, avoiding problems of multicollinearity.

This is a very frequently algorithm because it tends to give good results when

there is a large amount of variables. The main approaches are:

• Forward selection The process begins with no variables in the model

and tests the addition of each variable using a chosen model comparison

criterion, adding the variable (if any) that improves the model the most,

and repeating this process until none improves the model.

• Backward elimination The process begins with all potential variables

and tests the deletion of each variable using a chosen model comparison

criterion, deleting the variable (if any) that improves the model the most

by being deleted, and repeating this process until no further improvement

is possible.

• Bidirectional elimination This process is a combination of the above,

testing at each step for variables to be included or excluded.

2.3.7 Logistic regression

Finally remark that when we have dichotomous response variable we want

to predict, or we want to evaluate the association or relationship with other

(more than one) independent and control variables, the procedure is known as

multivariate (binary) logistic regression [16, 30]. Logistic regression is probably

the type most widely used multivariate analysis in Life Sciences. There is no

doubt that this type of regression is one of the best statistical tools with the

ability to analyze data in Clinical and Epidemiological research, hence its wide

use. The logistic regression is used for predicting binary outcomes of the de-

pendent variable (treating the dependent variable as the outcome of a Bernoulli
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trial) rather than continuous outcomes. To solve this problem, the following

transformation the standard model is made

π(x) =
eXβ

1 + eXβ

The regression coefficients are usually estimated using maximum likelihood es-

timation.

2.4 Fuzzy multiple regression based on real dis-

tances

Recently the theory of fuzzy sets has been used to integrate variability and

imprecision in the analysis of statistical data. In particular, the problem of

regression analysis in a fuzzy environment has been discussed in the literature

from different points of view and considering a variety of input and output. The

conventional methods for parameters estimation are: a) linear programming

methods; b) least-squares methods; and c) support vector machines (SVMs).

Tanaka et al. [53] first introduced the linear regression analysis. They pro-

posed a formulation of possibilistic linear regression analysis and determined the

fuzzy parameters by applying linear programming models [54]. However it is

known that this method has several drawbacks [17,31,62]. It is very sensitive to

outliers and some coefficients tend to become crisp due to the characteristics of

linear programming. Another observed problem is, when the coefficients are FNs

the spread of the estimated response becomes wider as the magnitudes of the ex-

planatory variables increase, even though the spreads of the observed responses

decrease, or as more observations are included in the model. This contradicts

intuition. To overcome this problem, Diamond [17], Wu and Tseng [62] and Kao

and Chyu [31] considered numeric coefficients to describe the fuzzy relationship

between the fuzzy response variable and fuzzy (or numeric) exploratory vari-

ables. All of them, and the methodologies proposed in Chen and Hsueh [14]

G. Alfonso



44 CHAPTER 2. PRELIMINARIES

and in Roldán et al. [46], used the concept of least squares to determine the

regression coefficients. Another method is SVR [29], that is, a nonparametric,

regularized, and nonlinear regression tool used for classification and regression

analysis. See Näther [38], Chen y Hsueh [14] y Roldán et al. [46] for an extensive

review of the main approaches to fuzzy regression.

Under these conditions, we highlight the following facts:

• From the statistical point of view, the use of least squares method in

the analysis of traditional regression has numerous advantages: software

for solving linear and nonlinear cases are available in many statistical

packages, it is easy to use, handle and understand, has advantages in

computation, is more suitable for learning, etc.

• Many practical applications also show the importance of the case in which

some variables can be observed accurately, but others present vagueness/

imprecision, and they described in an approximate way rather than by

exact values.

• To represent this imprecision many researchers prefer to use simple, such

as triangular or trapezoidal FNs that satisfy the need to model and fuzzy

problems are easier to set and manage forms.

Taking into account the previous considerations, this report focuses on the

observational situation where the response variable is fuzzy and exploratory

variables are crisp. In this context, Roldán et al. [46] proposed a procedure

based on the results of traditional least squares regression verifying:

• it is easy to compute in practice,

• it may be applied in different contexts,

• it allows us to solve linear and non-linear fuzzy regression problems, and
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• a comparative study with the proposals of different authors shows that

the total error obtained is similar or lower to other complex techniques.

This report extends the fuzzy regression proposed in that paper to multiple

regression analysis. A fuzzy regression model obtained by least squares method

is proposed and discussed considering the most common membership functions.

In order to illustrate the regression method, some results obtained by analyzing

economic data of China are given in the following chapter.

2.4.1 Some real distances measures between trapezoidal

fuzzy numbers

In this section we will give some notions about distance measures that we

will use for trapezoidal fuzzy regression models.

Consider the set of trapezoidal numbers, T and the partial order A ≤ B
if, and only if, Ac ≤ Bc, Am ≤ Bm, A` ≤ B` and As ≤ Bs, where A =

Tra(Ac, Am, A`, as) and B = Tra(Bc, Bm, B`, Bs). Let P = (p0, p1, p2, p3), K =

(k0, k1, k2, k3) and Q = (q0, q1, q2, q3) with pj, kj, qj > 0 for j = 0, 1, 2, 3. We

define d = dPKQ : T × T → R+
0 for all A,B ∈ T ,

DRRM(A,B) =
(
q0

∣∣ (Ac)k0 − (Bc)k0
∣∣p0 + q1

∣∣ (Am)k1 − (Bm)k1
∣∣p1 +

q2

∣∣ (A`)k2 − (B`)k2
∣∣p2 + q3

∣∣ (As)k3 − (Bs)k3
∣∣p3) . (2.8)

Then (T , DRRM) is a semimetric space on R+
0 and if 0 < pj ≤ 1 for j = 0, 1, 2, 3,

then DRRM is a metric space on R+
0 .

For example, the center and the spreads of the distance measure defined

between two TFNs plotted in in Figure 5.4.a, are shown as blue areas in Fig.

5.4.b for the particular case pj = kj = 1, j = 0, 1, 2, 3, q1 = q2 = 1 and

q0 = q3 = 1
2
.
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Figure 2.12: (a) Two trapezoidal fuzzy numbers and (b) the center and the

spreads of the distance measure, DRRM , between them for the particular case

pj = kj = 1, j = 0, 1, 2, 3, q1 = q2 = 1 y q0 = q3 = 1
2
.

Another concept of distance between TFNs introduced by Yang and Ko [64]

is as follows,

D2
Y K(A,B) = (Ac −Bc)2 + ((Ac − Am)− (Bc − λ1B

m))2 +
(
(Ac − A`)−

(
Bc − λ2B

`
))2

+ ((Ac − As)− (Bc − λ3B
s))2 . (2.9)

where λi = 1
2

with i = 1, 2, 3. (T , DY K) is a metric space on R+
0 .

2.4.2 Fuzzy multiple linear regression

In this section we analyze a linear regression model with a fuzzy response

variable and N crisp explanatory variables. The response variable is described

by TFNs.

Trapezoidal fuzzy random variables are introduced to model those random

experiments in which the characteristic observed for each output may be des-

cribed with a particular class of FNs determined by four random values: the

center value, the center spread and the left and right spreads.

Let us consider a random experiment in which a trapezoidal fuzzy random

variable Y and N real random variables X = (x1, ..., xN) are observed in n

statistical units, {Xi,Yi}ni=1 where Xi = (x1i, ..., xN i)
t. Since Y is determined
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by Tra(yc, ym, y`, ys), the linear regression model refers to these four real values

which define a TFN.

The center yc can be related to variables x1, ..., xN through the classical

regression model. However, the estimated values of variables ym, y` and ys must

be positive so we should be careful when performing the corresponding regression

analysis. We propose to model the spreads using the classical regression method

finding a model that only takes non-negative values, it is well defined in the

domain of X and in the set of values that will make the predictions the problem

would be solved, D.

Under these conditions, the regression problem that we will solve in this

chapter can be expressed as





yc = Xac + εc,

f (ym) = Xam + εm,

g
(
y`
)

= Xal + ε`,

h (ys) = Xas + εs,

(2.10)

where εc, εm, ε` y εs are random variables with crisp values such that E[εc|X] =

E[εm|X] = E[ε`|X] = E[εs|X] = 0 and whose variance σ2
εc , σ

2
εm , σ2

εl
and σ2

εs , are

finite and strictly positive, ac = (ac0,ac1, . . . , acN)′, am = (am0, am1, . . . , amN)′,

a` = (a`0, a`1, . . . , a`N)′ y as = (as0, as1, . . . , asN)′ are (N + 1)× 1-vectors of the

parameters related to X. The covariance matrix of the vector of explanatory

variables X will be denoted by ΣX and the covariance matrix of the vector

(εc, εm, εl, εs) by Σ. Considering the above expected values, we conclude that

εc, εm, ε` y εs are uncorrelated random variables with the explanatory variables.

To solve the above regression problem we will consider the distance measure

defined in (2.8) with pj = 2 and qj = kj = 1 for j = 0, 1, 2, 3.

Proposition 2.4.1 Let Y be a trapezoidal fuzzy random variable and X a vector
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of N random variables verifying the model (2.10), then we have

âc =
(
X tX

)−1
X tyc,

âm =
(
X tX

)−1
X tf (ym) ,

âl =
(
X tX

)−1
X tg

(
yl
)
,

âs =
(
X tX

)−1
X th (yc) .

Proof. According to the definition of the distance measure between the

TFNs in (2.8) with pj = 2 and qj = kj = 1 for j = 0, 1, 2, 3, the objective

function is:

Φ = ‖yc − ŷc‖2 +
∥∥∥f (ym)− f̂ (ym)

∥∥∥
2

+
∥∥∥f
(
yl
)
− f̂

(
yl
)∥∥∥

2

+
∥∥∥f (ys)− f̂ (ys)

∥∥∥
2

where ‖.‖2 denotes the Euclidean square norm. Therefore, the problem can be

divided into four independent least square problems that would lead us to the

result.

Proposition 2.4.2 Under the previous conditions, the distance measure DRRM

defined in equation (2.8) for pi = 2 y ki = qi = 1 for i = 0, 1, 2, 3, produces the

same estimators âc, âm, âl, âs that the distance introduced by Yang and Ko DY K

(see equation (2.9)).

This proof can be found in [22].

Proposition 2.4.3 Under the above conditions, the estimators âc, âm, âl, âs, are

unbiased, strongly consistent and efficient.

These properties are direct consequences that the fuzzy regression problem

has been reduced to four problems of classical regression.

Therefore confidence regions and hypothesis tests on the regression para-

meters can be solved in the classical way.
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2.4.3 The determination coefficient

Let Y be a trapezoidal fuzzy random variable and let X be a vector of N

crisp random variables satisfying model (2.10). Then once obtained optimal

regression models taking into account the results of the previous sections for

the center and the spreads, the fuzzy linear regression model is obtained as:

Ŷ = Tra(ŷc, ŷm, ŷ`, ŷs).

To assess the goodness of fit of the model we will use a coefficient of determi-

nation that we define below. Let us note by SSEi the sums of squares explained,

by SSRi the residual sums of squares corresponding to the fittings ŷi, and by

SSTi the total sums where i = c,m, `, s. It is cleat that for i = c,m, `, s, SSTi =

SSEi+ SSRi. Therefore, considering the definition of the distance function given

in equation (2.8), the sum of squares explained, and the total residual, denoted

by SSE, SSR and SST, respectively, of the regression model are obtained as

follows:

SSE = D2
RRM(Ŷ , Ȳ) = SSEc + SSEm + SSE` + SSEs,

SSR = D2
RRM(Y , Ŷ) = SSRc + SSRm + SSR` + SSRs,

SST = D2
RRM(Y , Ȳ) = SSTc + SSTm + SST` + SSTs.

Definition 2.4.4 (Determination coefficient) Let Y be a trapezoidal fuzzy ran-

dom variable and X a vector of N crisp random variables satisfying model

(2.10). The determination coefficient R2 is the part of the sum of squares ex-

plained by the regression model, that is defined,

R2 = 1− SSR

SST
=
SSE

SST
=
D2
RRM(Ŷ , Ȳ)

D2
RRM(Y , Ȳ)

=
SSEc + SSEm + SSE` + SSEs
SSTc + SSTm + SST` + SSTs

.

Since the distance function allows the decomposition SST = SSE + SSR,

this coefficient represents the the proportion of the total variation in the fuzzy

response variable that is explained by the fuzzy regression model.
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2.4.4 Fuzzy nonlinear regression

Nonlinear regression is a form of regression analysis in which observational

data are modeled by a function which is a nonlinear combination of the model

parameters and depends on one or more independent variables. While the linear

model describes some of the relationship between the variables, a nonlinear

model is likely to do a much better fit.

Let us consider the fuzzy simple regression problem, that is, we consider only

one independent variable. This can be useful for multiple regression analysis in

the case that stepwise regression only introduces one explanatory variable in the

model (this case is happening in our case study).

Formally we are interested in a random experiment in which a trapezoidal

fuzzy random variable Y and a crisp random variable x are observed. If we

consider pj = 2 and kj = qj = 1 in the distance measure defined in (2.8), for

j = 0, 1, 2, 3, we obtain the usual mean square error, so the minimization process

is reduced to apply the widely used and well known method of least squares to

estimate the functions ycx, y
m
x , yix or/and ysx. The use of this method is justified

by its important properties and because it allows to use different types of settings

(linear, parabolic, polynomial, exponential, etc.) that are already implemented

in the programs and tools (some of them are free software) used for the analysis

of statistical data. Our goal is not to improve this method but use it to make

our method more powerful and useful.

If we plot the data and observe a curvilinear trend, we can then proceed to

fit a model using two types of models:

• Nonlinear models such as exponentials, growth curves, and other types of

functions, and

• Polynomial models involving powers of x.
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Statistical packages, such as Statgraphics (distributed by Statpoint Technolo-

gies, Inc., www.Statgraphics.com), fit a variety of functional forms, listing the

models in decreasing order of R-squared. Another approach to fitting a non-

linear equation is to consider polynomial functions of x. Polynomials have the

attractive property of being able to approximate many kinds of functions.

In this conditions, we may fit a nonlinear model for ycx, y
m
x , yix or/and ysx

taking into account a least squares criterion. However we must take into account

that the models spreads, ymx , yix, y
s
x, does not take negative values on the domain

of x. Therefore between the different functions that could be obtained using a

statistical package, we should be careful and choose that model that remaining

significant, it only takes non-negative values on the domain of x.

2.4.5 Fuzzy regression when the expected values of the

spreads do not depend on the explanatory variables

If we cannot find a model that is significative and does not take negative

values for the center, left or right spread, we can estimate them by positive

constants considering an appropriate error function as proposed below.

Henceforth we will assume that the expected values of the center spread,

M1, ...,Mn, do not depend on the explanatory variables and it has not been

possible to fit a significant model for the center spread (similarly for the left or

the right spread) and we are interested in estimating it by a constant. Next

theorem gives the estimator M̂ . According to the distance measure defined in

(2.8), the error can be expressed as: e =
∑n

i=1

∣∣xk1 −Mk1
i

∣∣p1 where e : (0,∞)→
(0,∞) for all x ∈ (0,∞). For simplicity we will denote k1 = k and p1 = p.

Proposition 2.4.5 In the previous conditions, the estimator M̂ for M , can be

obtained as follows:
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a) Si p > 1, M̂ is the only positive solution of the equation system:

M̂ →





r∑
i=1

(
xk −Mk

i

)p−1
=

n∑
i=r+1

(
Mk

i − xk
)p−1

in the interval ]Mr,Mr+1] r=n−1
r=1




. (2.11)

b) If p = 1, M̂ is the median of the spreads (M̂ → medianMi).

c) If 0 < p < 1, M̂ is obtained by searching the following values:

M̂ →Mj such that

{
n∑
i=1

∣∣Mk
j −Mk

i

∣∣p
}n

j=1

is minimum. (2.12)

Furthermore, M̂ is uniquely determined if p > 1, or p = 1 and the median of the

corresponding spreads is unique or 0 < p < 1 and corresponding values in (2.12)

have a unique absolute minimum.

In the case p = 3, the system (2.11) is equivalent to the biquadratic system:





(2r − n)x2k − 2xk
(

r∑
i=1

Mk
i −

n∑
i=r+1

Mk
i

)

+

(
r∑
i=1

M2k
i −

n∑
i=r+1

M2k
i

)
= 0

in the interval ]Mr,Mr+1]





r=n−1

r=1

.

In practical situations, M̂, Î, or Ŝ can be calculated as the solution of a min-

imization problem, directly programming and minimizing the distance function

(using, for example, Mathematica).

Note that all the proposed estimators are unbiased and consistent as the

experiment simulation shows in [46]. The aim of previous proposition was to

propose alternative estimators that can give a solution to particular real cases

and that can be easily obtained.
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2.4.6 An extension of the previous methodology

The approach considered in the previous sections can be generalized to the

case in which the explanatory variables are also fuzzy.

Let us consider a random experiment in which a trapezoidal fuzzy ran-

dom variable Y and N trapezoidal fuzzy random variables X = (X1, ...,XN)

are observed in n statistical units. If we are interested in analyzing the re-

lationship between Y and X , this problem can be reduced to the previous

approach considering the following explanatory crisp random vector: X =

(xc1, x
m
1 , x

i
1, x

s
1, x

c
2, ..., x

c
N , x

m
N , x

i
N , x

s
N).
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CHAPTER 3

Finite fuzzy numbers and finite fuzzy

random variables

In [47], Roldán et al. did a complete study of the image of a FN. In their

manuscript, they considered FNs A whose image (or range) A (R) is a coun-

table (or finite) subset of I, and they called them discrete FNs. Among other

properties, they succeeded in proving that such family of FNs is closed under

the usual operations between FNs, that is, if A and B are discrete FNs, them

A+ B, A− B, A · B and A/B (if this last FN is well defined) also are discrete

FNs.

One of the main aims of this report is to study a more restrictive, but great

enough, subclass of FNs: the family of FNs whose image is a finite subset of I.

In this chapter we characterize each finite FN using its center and its spreads.

We also show that they are dense in the set F of all FNs, so they can be used

to approximate any fuzzy quantity.
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3.1 Finite fuzzy numbers

In this section we study FNs whose image is finite. In general, given two

nonempty sets X and Y , we will say that a function f : X → Y is finite if the

image of f is a finite subset of Y . The following notion is a key piece of the

current study.

Definition 3.1.1 (Roldán et al. [47]) A FN A is finite if its image, A (R), is

a finite subset of I. If Λ is a finite subset of I, we will denote by FΛ the family

of all finite FNs A ∈ F such that A (R) ⊆ Λ.

A = (a/b/c)

a b c

1

A = (a/b/c/d)

a b c

1

d

A = (a/b/c/d)

a b c

1

d

A

1

A

1

2Figure 3.1: A finite fuzzy number.

As the support of any FN A ∈ F is bounded, then A (x) = 0 for all x ∈
R� supp (A). Furthermore, the normality condition implies that there exists

x0 ∈ R such that A (x0) = 1. This means that the points 0 and 1 are always

included in the image A (R) of any FN. Thus, in order to guarantee that the

set FΛ is nonempty, we will always assume that the points 0 and 1 are included

in the finite subsets Λ that we will consider inside the interval I.

The converse property characterizes a subclass of finite FN.

Proposition 3.1.2 A FN A is rectangular if, and only if, its image is A (R) =

{0, 1}.
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Proof : Taking into account (2.4), it is clear that the image of any rectangular

FN is {0, 1}. Conversely, suppose that A ∈ F is a FN such that A (R) =

{0, 1} and let [a, b] = kerA. Then a and b are real numbers such that a ≤ b.

Furthermore, A (x) = 1 if, and only if, a ≤ x ≤ b. As A (R) = {0, 1}, then

necessarily A (x) = 0 for all x ∈ R� [a, b]. Therefore A is the rectangular FN

whose corners are a and b.

Lemma 3.1.3 If Λ1and Λ2 are finite subsets of I such that Λ1 ⊆ Λ2, then FΛ1 ⊆
FΛ2 . And if Λ1 ⊂ Λ2, then FΛ1 ⊂ FΛ2 .

Proof : Given A ∈ FΛ1 , we know that A (R) ⊆ Λ1, and as Λ1 ⊆ Λ2, then

A (R) ⊆ Λ2, so A ∈ FΛ2 . In particular, FΛ1 ⊆ FΛ2 .

If Λ1 ⊂ Λ2, then there is α0 ∈ Λ2 such that α0 /∈ Λ1. If we consider the FN

A given by:

A(x) =





α0 , if 1 ≤ x < 2,

1, if 2 ≤ x ≤ 3,

0, in any other case,

then A (R) = {0, α0, 1} ⊆ Λ2, so A ∈ FΛ2 . But as α0 /∈ Λ1, then A /∈ FΛ1 .

Corollary 3.1.4 If Λ1,Λ2, . . . ,Λm are finite subsets of I containing the points 0

and 1, then FΛ1 ∪ FΛ2 ∪ . . . ∪ FΛm ⊆ FΛ1∪Λ2∪...∪Λm .

Proof : If we denote Λ1 ∪ Λ2 ∪ . . . ∪ Λm by Λ, then Λ is a finite subset of I

such that Λi ⊆ Λ for all i ∈ {1, 2, . . . ,m}. Then Lemma 3.1.3 ensures us that

FΛi
⊆ FΛ for all i ∈ {1, 2, . . . ,m}, so FΛ1 ∪ FΛ2 ∪ . . . ∪ FΛm ⊆ FΛ1∪Λ2∪...∪Λm .

In [47], the authors did a study of finite (and countable) FNs. They proved

that if A and B are finite FNs, then A + B, A − B and A · B are also finite

FNs. Later, in [2], the authors introduced a family of distance measures D :

F × F → F between FNs that, in many cases, is closed on the family of all

finite FNs, that is, if A and B are finite FNs, then D(A,B) is also a finite FN.
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3.2 A characterization of finite fuzzy numbers

In (2.5) we described an easy-to-handle method to characterize trapezoidal

FNs by using their centers and spreads in the following way. If A = (a/b/c/d)

is a trapezoidal FN, then the real number

Ac = DcA =
b+ c

2

is its center, and the three spreads of A are the nonnegative real numbers

Am = sprA =
c− b

2
≥ 0, A` = b− a ≥ 0, Ar = d− c ≥ 0.

Center and spreads completely characterize the trapezoidal FN because:

a = Ac − Am − A`,

b = Ac − Am,

c = Ac + Am,

d = Ac + Am + Ar.

Hence, A can be written as follows:

A = Tra(Ac, Am, A`, Ar). (3.1)

Representation (3.1) of the FN A has several advantages when we study a fuzzy

regression methodology by involving trapezoidal FNs.

In this section, inspired by the previous alternative expression, we describe

an equivalent way to represent finite FNs by using a real number (that can be

interpreted as its center) and a finite set of nonnegative real numbers (that we

will call its spreads).

Theorem 3.2.1 A FN A is finite if and only if there exist n ∈ N, {αi}ni=0 ⊂ I,
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{ai}ni=1 ⊂ R, {bi}ni=1 ⊂ R, such that

0 = α0 < α1 < α2 < . . . < αn−1 < αn = 1, (3.2)

a1 ≤ a2 ≤ . . . ≤ an−1 ≤ an ≤ bn ≤ bn−1 ≤ . . . ≤ b2 ≤ b1, (3.3)

A(x) =





αn = 1, if x ∈ [an, bn] ,

αi, if x ∈ [ai, bi]� [ai+1, bi+1] i ∈ {1, . . . , n− 1},
0, otherwise.

(3.4)

In such a case, kerA = [an, bn] and suppA = [a1, b1]. Furthermore,

ai = aαi
and bi = aαi

for all i ∈ { 1, . . . , n }. (3.5)
Dibujos

x

y

Ac

Am Am

r2

r1

l2

l1

1
α2

α1

a1 a2 a3 b3 b2 b1

Versiones anteriores

x

y

Ac

Am Am

r2

r1

l2

l1

1
α2

α1

x

y

Ac

Am Am

r2

r1

l2

l1

1
α2

α1

a1 a2 a3 b3 b2 b1

1

Figure 3.2: A finite FN whose image is included in {α0 = 0 < α1 < α2 < α3 =

1 }.

Proof : Assume that A is a finite FN and let A (R) = { 0 = α0 < α1 < α2 <

. . . < αn−1 < αn = 1 } be its finite image. Let ai = aαi
and bi = aαi

for all

i ∈ { 1, . . . , n }. Hence [ai, bi] = Aαi
for all i. Since αi < αi+1, then [ai+1, bi+1] =

Aαi+1
⊆ Aαi

= [ai, bi], so ai ≤ ai+1 ≤ bi+1 ≤ bi for all i ∈ { 0, 1, . . . , n − 1 }.
In particular, (3.3) holds. It is clear that if t ∈ [an, bn] = Aαn = A1 = kerA,

then A(t) = 1, and if t /∈ [a1, b1] = Aα1 , then A(t) < α1, so A(t) = α0 = 0.
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Finally, if t ∈ [ai, bi]� [ai+1, bi+1] = Aαi
�Aαi+1

for some i ∈ { 1, . . . , n − 1 },
then αi ≤ A(t) < αi+1, which means that A(t) = αi because the image of A is

the finite set {αi}ni=0. Hence (3.4) also holds.

Conversely, assume that there exist n ∈ N, {αi}ni=0 ⊂ I, {ai}
n
i=1 ⊂ R and

{bi}ni=1 ⊂ R such that (3.2)-(3.4) holds. In particular, by (3.4), the image of the

membership function A is included in the finite set { 0 = α0 < α1 < α2 < . . . <

αn−1 < αn = 1 }, so A is a finite FN.

In other words, a finite FNs whose image contains exactly n + 1 points

depends on 3n− 1 variables (that is, {αi}n−1
i=1 ⊂ I, {ai}

n
i=1 ⊂ R and {bi}ni=1 ⊂ R

because α0 = 0 and αn = 1 always take the same values) that satisfy the

relationships (3.2)-(3.4).

We can characterize the finiteness of a FN by the finiteness of the functions

that determine its level sets.

Theorem 3.2.2 A FN A is finite if, and only if, its corresponding functions a , a :

I→ R (such that Aα = [ aα, aα ] for all α ∈ I) are also finite.

Proof : Suppose that a FNA is finite and let {αi}ni=0 ⊂ I, {ai}
n
i=1 ⊂ R, {bi}ni=1 ⊂

R be constants as in Theorem 3.2.1. By (3.5),

{a1, a2, . . . , an} =
{
aα1

, aα2
, . . . , aαn

}
⊆ a (I) and

{b1, b2, . . . , bn} = {aα1 , aα2 , . . . , aαn} ⊆ a (I) .

Let us show the contrary inclusions, that is,

a (I) ⊆ {a1, a2, . . . , an} and

a (I) ⊆ {b1, b2, . . . , bn} .

Indeed, let r ∈ a (I) be arbitrary. Then there is β0 ∈ I such that a (β0) = r. If

β0 = 0, then

r = a (β0) = a (0) = min (suppA) = min ([a1, b1]) = a1 ∈ {a1, a2, . . . , an} .
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Next assume that β0 > 0. Since 0 = α0 < α1 < α2 < . . . < αn−1 < αn = 1, there

is a unique i0 ∈ {1, . . . , n} such that αi0−1 < β0 ≤ αi0 . Since A (R) ⊆ {αi}ni=0,

then, for t ∈ R,

A (t) ≥ β0 ⇔ A (t) ≥ αi0 .

Therefore

r = a (β0) = min ({t ∈ R : A (x) ≥ β0})

= min ({t ∈ R : A (x) ≥ αi0}) = a (αi0) = ai0 ∈ {a1, a2, . . . , an} .

In any case, r ∈ {a1, a2, . . . , an}, so a (I) ⊆ {a1, a2, . . . , an}, which means that

a (I) = {a1, a2, . . . , an}. Similarly, it can be proved that a (I) ⊆ {b1, b2, . . . , bn}
and we deduce that a , a : I→ R are finite functions.

Conversely, suppose that a , a : I → R are finite functions. Let a (I) =

{a1, a2, . . . , an} and a (I) = {b1, b2, . . . , bm} be such that

a1 ≤ a2 ≤ . . . ≤ an−1 ≤ an ≤ x0 ≤ bm ≤ bm−1 ≤ . . . ≤ b2 ≤ b1,

where x0 ∈ R is a point such that A (x0) = 1 (that is, x0 ∈ kerA). Let

αi = A (ai) for all i ∈ {1, . . . , n} and let βj = A (bj) for all j ∈ {1, . . . ,m}.
Hence Λ = {αi}ni=1 ∪ {βj}

m
i=1 ∪ {0} is a finite subset of I. Let us show that

A (R) ⊆ Λ. Let t ∈ R be arbitrary. If A (t) = 0, then A (t) ∈ Λ. Next, suppose

that A (t) > 0. We consider the cases t ≤ x0 and t ≥ x0.

• Suppose that t ≤ x0 and let α = A (t) > 0. Since a (t) ∈ a (I) =

{a1, a2, . . . , an} and a (t) ∈ a (I) = {b1, b2, . . . , bm}, there are i0 ∈ {1, . . . , n}
and j0 ∈ {1, . . . ,m} such that

Aα = [ aα , aα ] = [ ai0 , bj0 ] .

Since A (t) = α, then A (t) ∈ Aα = [ aα , aα ] = [ ai0 , bj0 ]. In particular,

aα = ai0 ≤ t ≤ x0. By Lemma 2.2.6, the restriction A|]−∞,x0] is a non-

decreasing function. Therefore A (aα) = A (ai0) ≤ A (t). But as A (t) = α
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and (2.2) implies that A (aα) ≥ α, then

α ≤ A (aα) = A (ai0) ≤ A (t) = α.

As a consequence, A (t) = α = A (ai0) = αi0 ∈ Λ, so A (t) ∈ Λ.

• If t ≥ x0, we can repeat the previous arguments but, in this case, A (t) =

A (bj0) = βj0 ∈ Λ.

In any case, as A (R) ⊆ Λ, we conclude that A is a finite FN.

Numbers ai and bi in Theorem 3.2.1 can be positive or negative, but there is

an order between them. For our purposes, we present a canonical representation

of finite FNs involving nonnegative real numbers. To do this, given a finite FN

A, let

Ac = DcA =
a1 + a1

2
=
an + bn

2
∈ R and

Am = sprA =
a1 − a1

2
=
bn − an

2
≥ 0

be the center and the central spread of a A, respectively. Hence

kerA = [an, bn] = [Ac − Am, Ac + Am] .

Next, let us consider the numbers

A`,i = aαi+1
− aαi

= ai+1 − ai ≥ 0 and (3.6)

Ar,i = aαi
− aαi+1

= bi − bi+1 ≥ 0 for all i ∈ {1, 2, . . . , n− 1} . (3.7)

Since A`,i and Ar,i are nonnegative numbers, we can also call {A`,i}n−1
i=1 the left

spreads of A, and {Ar,i}n−1
i=1 will be called the right spreads of A. Thus, a finite

FN can equivalently be characterized in the following way.

Theorem 3.2.3 Given n ∈ N, {αi}ni=0 ⊂ I verifying 0 = α0 < α1 < α2 < . . . <

αn−1 < αn = 1, Ac ∈ R and Am, A`,1, A`,2, . . . , A`,n−1, Ar,1, Ar,2, . . . , Ar,n−1 ∈
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[0,∞), there exists a unique finite FN A such that

aα =





Ac − Am, if αn−1 < α ≤ 1,

Ac − Am − A`,n−1 − A`,n−2 − . . .− A`,i+1, if αi < α ≤ αi+1

(for some i ∈ {1, 2, . . . , n− 2}),

Ac − Am − A`,n−1 − A`,n−2 − . . .− A`,1, if 0 ≤ α ≤ α1;

(3.8)

aα =





Ac + Am, if αn−1 < α ≤ 1,

Ac + Am + Ar,n−1 + Ar,n−2 + . . .+ Ar,i+1, if αi < α ≤ αi+1

(for some i ∈ {1, 2, . . . , n− 2}),

Ac + Am + Ar,n−1 + Ar,n−2 + . . .+ Ar,1, if 0 ≤ α ≤ α1.

(3.9)

The FN A is the unique finite FN whose center is Ac, whose central spread is Am,

whose left spreads are {A`,i}n−1
i=1 , whose right spreads are {Ar,i}n−1

i=1 and whose image

is included in {αi}ni=0.

Proof : If we consider the funstions a , a : I → R given by equations (3.8) and

(3.9), and taking into account that A`,i, Ar,i ≥ 0 for all i ∈ {1, 2, . . . , n− 1}, we

deduce that a is non-decreasing, a is non-increasing and both of them are left

continuous functions. Furthermore, if α, β ∈ I are such that α ≤ β, then

aα ≤ aβ ≤ Ac − Am ≤ Ac ≤ Ac + Am ≤ aβ ≤ aα.

Lemma 2.2.5 guarantees that there is a unique FN (let us call it B) whose level

sets are determined by the functions b = a and b = a. As the functions a

and a are finite, Theorem 3.2.2 guarantees that such FN is also finite. Since

kerB = [ a 1 , a1 ] = [Ac − Am, Ac + Am ], then the center of A is Ac and its

central spread is Am. Furthermore, for all i ∈ {1, 2, . . . , n− 1},

B`,i = bαi+1
− bαi

= aαi+1
− aαi

=
(
Ac − Am − A`,n−1 − A`,n−2 − . . .− A`,i+1

)

−
(
Ac − Am − A`,n−1 − A`,n−2 − . . .− A`,i+1 − A`,i

)

= A`,i
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and, similarly, Br,i = Ar,i. Finally, we check that the image of B is included in

Λ = {αi}ni=0. To prove that B (R) ⊆ Λ, we reason by contradiction. Suppose

that there is some t ∈ R such that α = B (t) satisfies α ∈ I�Λ. As 0, 1 ∈ Λ,

then 0 < α < 1. Hence, there is a unique i ∈ {1, 2, . . . , n− 1} such that

αi0 < α < αi0+1. By (3.8)-(3.9),

Bα = [ aα , aα ] =
[
aαi0+1

, aαi0+1

]
= Bαi0+1

,

so

{x ∈ R : B (x) ≥ α } = Bα = Bαi0+1
= {x ∈ R : B (x) ≥ αi0+1 } .

As a consequence, since B (t) = α, then t ∈ Bα = Bαi0+1
, which means that

α = B (t) ≥ αi0+1. This contradicts the fact that α < αi0+1. Therefore, it is

impossible to find a point α ∈ B (R)�Λ, which concludes that B (R) ⊆ Λ.

This proves that the FN B given by functions (3.8)-(3.9) is the unique finite

FN whose center is Ac, whose central spread is Am, whose left spreads are

{A`,i}n−1
i=1 , whose right spreads are {Ar,i}n−1

i=1 and whose image is included in

{αi}ni=0.

Following the previous characterization, a finite FN can be equivalently de-

termined in the way

A = FN
(
{αi}ni=0 , A

c, Am,
{
A`,i
}n−1

i=1
,
{
Ar,i
}n−1

i=1

)
,

which has the advantage that all spreads are nonnegative, that is,

Ac ∈ R but Am, A`,i, Ar,i ≥ 0.

If we set

Λ = {α0 = 0, α1, . . . , αn−1, αn = 1} ⊂ I,

then we will use the notation

A = FFNΛ

(
Ac, Am,

{
A`,i
}n−1

i=1
,
{
Ar,i
}n−1

i=1

)
(3.10)

to describe any FN F in FΛ, where Ac is its center, and Am,
{
A`,i
}n−1

i=1
and

{Ar,i}n−1
i=1 are its (nonnegative) spreads.
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3.3 Finite fuzzy random variables

In order to describe a regression procedure involving fuzzy variables that

only take finite FNs, the following notion is necessary.

Definition 3.3.1 Given a finite set Λ ⊂ I, we will say that a fuzzy random

variable X : Ω→ F is a Λ-fuzzy random variable if its image is included in FΛ.

For short, we will say that X is a Λ-FRV, and we will denote it by X : Ω→ FΛ.

Using the canonical representation (3.10), any Λ-FRV X can be written as

X = FFNΛ

(
Xc, Xm,

{
X`,i

}n−1

i=1
,
{
Xr,i

}n−1

i=1

)
,

where Xc : Ω→ R is a real random variable and

Xm, X`,1, X`,2, . . . , X`,n−1, Xr,1, Xr,2, . . . , Xr,n−1 : Ω→ [0,∞)

are nonnegative real random variables. Hence, X can be equivalently seen as

the real random vector

(Xc, Xm, X`,1, X`,2, . . . , X`,n−1, Xr,1, Xr,2, . . . , Xr,n−1),

whose first component is valued in R but the other ones only take nonnegative

values.

Sometimes it is interesting to summarize the information of a fuzzy random

variable into a unique value that allows us to obtain its expected value to better

understand of its behavior, to make comparisons, etc.

Definition 3.3.2 The expected value of a Λ-FRV X is the unique finite FN

E[X ] in FΛ whose representation is

E[X ] = FFNΛ

(
E[Xc],E[Xm],

{
E[X`,i]

}n−1

i=1
,
{

E[Xr,i]
}n−1

i=1

)
.
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3.4 Density in F of finite fuzzy numbers

The following result shows that the set of all finite FNs is dense in the set

of all FNs.

Theorem 3.4.1 Given a FN A ∈ F and ε > 0, there is a finite subset Λ ⊂ I and

a finite FN A′ ∈ FΛ such that

sup ({ |A (x)−A′ (x) | : x ∈ R }) ≤ ε. (3.11)

Proof : Let consider a point x0 ∈ kerA and the funcions F1, F2 : R → I given,

for all x ∈ R, by:

F1 (x) =




A (x) , if x ≤ x0,

1, if x > x0;

F2 (x) =





0, if x ≤ x0,

1−A (x) , if x > x0.

In [44], the authors proved that F1 and F2 are distribution functions representing

some unique real random variables X1 and X2. In particular, X1 ≤ x0 and

X2 ≥ x0. Furthermore, as the support of A is bounded, then X1 and X2 are

also bounded. As the set of all finite random variables is dense in the set of all

bounded, real random variables, there are finite, bounded, real random variables

X ′1 and X ′2 such that

sup ({ |X1 (x)−X ′1 (x) | : x ∈ R }) ≤ ε,

sup ({ |X2 (x)−X ′2 (x) | : x ∈ R }) ≤ ε,

X ′1 ≤ x0 and X ′2 ≥ x0.

If we define

A′ (x) =





X ′1 (x) , if x ≤ x0,

1−X ′2 (x) , if x > x0,

then A′ is a finite FN such that (3.11) holds.
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CHAPTER 4

The fuzzy regression procedure based

on finite fuzzy numbers

In this chapter we introduce a fuzzy regression methodology considering

that the response variable is a Λ-FRV. This procedure is especially interesting

when the explained variable can only take a finite amount of values, or when the

response variable is approximated in such way that we can only access to a finite

number of its α-cuts. The first part of this chapter is dedicated to introduce

the tools that are involved in many regression procedures

4.1 Introduction to fuzzy distance measures

between finite fuzzy numbers

One of the main difficulties that we found when we handle FNs is the fact

that the set F is not canonically endowed with a partial order that could extend

the total order of real numbers. Lots of partial orders on F can be considered

but none of them is coherent with human intuition. As a consequence, it is not

easy to generalize the notion of metric to the fuzzy setting because the triangle
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inequality has not a clear interpretation without a consistent partial order.

In the first part of this chapter we explore the necessity of having a genuine

fuzzy distance in order to measure how similar of distinct are two FNs. Then,

we present what could be, from our point of view, the most coherent definition

of fuzzy distance in the set of all FNs. After that, we introduce a family of fuzzy

distance measures which is especially interesting when working with finite FNs

and that we will employ to describe a fuzzy regression methodology in the next

chapter.

4.1.1 About the necessity of handling genuine fuzzy dis-

tance measures

Due to its possible applications in several areas, the notion of metric plays

a key role in many fields of study that interpret the distance measure between

two points as the difference between them (for instance, it is basic for carrying

out a regression process). Traditionally, the distance between two points has

always been a real number. Even in a fuzzy context, the distance between two

FNs is usually interpreted as a crisp number considering, for instance, the area

between them (see [14, 46]). However, this conception does not capture both

imprecision and uncertainty and, consequently, is not consistent with factors

such as vagueness and ambiguity which affect the behavior of the phenomenon

studied in the fuzzy setting. Therefore, it would be more reasonable to use a

FN rather than a real number to measure the distance between two FNs.

4.1.2 Real-valued metrics on F

Let us recall the notion of metric in an arbitrary nonempty set X. Following

[49], a metric on a set X is a mapping d : X × X → R+
0 verifying, for all
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x, y, z ∈ X,

(i) d(x, x) = 0;

(ii) if d(x, y) = 0, then x = y;

(iii) (symmetry) d(x, y) = d(y, x);

(iv) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

A mapping d : X × X → R+
0 is a pseudometric (respectively, a semimetric;

pseudosemimetric) on X if it satisfies (i), (iii) and (iv) (respectively, (i), (ii)

and (iii); (i) and (iii)).

Having in mind the previous definition, it is not difficult to consider metrics

(or semimetrics) on F as follows. Given real numbers p ∈ (0,∞) and q ∈ (0, 1),

let δp,q : F × F → R+
0 be the function given, for all A,B ∈ F , by:

δp,q (A,B) =
p

√
(1− q)

∫ 1

0

| aα − bα |p dα + q

∫ 1

0

∣∣ aα − bα
∣∣p dα .

Then δp,q is a semimetric and, in some cases, it is a metric on F . It is of interests

the particular case p = 2 in which:

δ2,q (A,B) =

√
(1− q)

∫ 1

0

(aα − bα)2 dα + q

∫ 1

0

(
aα + bα

)2
dα .

If p =∞, we can also consider:

δ∞,q (A,B) = (1− q) sup
0<α≤1

| aα − bα |+ q sup
0<α≤1

∣∣ aα − bα
∣∣ .

As we have just commented, from our point of view, crisp distances are

not coherent in this framework because, intrinsically, they do not capture the

most important characteristic of FNs: their ability to model situations in which

uncertainty appears. If FNs represent vague and unknown quantities, how it is

possible to measure the distance between two of them by a unique, precise real

number? It seems more reasonable to use a FN in order to measure the distance

between two FNs, that is, to consider a mapping

D : F × F → F
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acting as a metric.

Nevertheless, we realize that, in order to generalize the triangle inequality,

the set F of all FNs on R carries a drawback of importance: it is not canonically

ordered. The usual order between real-valued functions (that is, f ≤ g if f (x) ≤
g (x) for all x ∈ dom(f) = dom(g)) is not consistent with human interpretation

of FNs. There exist several notions of possible partial orders on F but none of

them is widely accepted. This obstacle leads to a subsequent consequence: the

family F is not endowed with a universally accepted metric by all researchers.

In this context, it is more reasonable to consider distance measures rather

than metrics because, usually, we must measure how similar or different are two

FNs. Thus, it is of interest to extend the notion of metric to a more general

context.

4.1.3 Distance measures on an arbitrary set endowed

with a binary relation

In the next definition we establish what properties we can require to a map-

ping acting as a distance measure on a partially ordered set when it is valued

on the own set, that is, we generalize the axioms that a metric must satisfy to

the general setting of sets endowed with binary relations.

Definition 4.1.1 Let S be a nonempty set endowed with a binary relation v
and let 0S ∈ S be a selected point such that 0S v 0S. Consider the set

S+
0,v = {x ∈ S : 0S v x }

and let

s : S+
0,v × S+

0,v → S+
0,v

be a mapping. A distance function on (S, 0S,v, s) (or a metric) is a mapping

d : S × S → S+
0,v
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verifying, for all x, y, z ∈ S,

(i) d(x, x) = 0S;

(ii) if d(x, y) = 0S, then x = y;

(iii) (symmetry) d(x, y) = d(y, x);

(iv) (triangle inequality) d(x, z) v s(d(x, y), d(y, z)).

We also say that (S, 0S, s) is a metric space w.r.t. the partial order v. The

function d is:

• a pseudometric if it satisfies (i), (iii) and (iv);

• a semimetric ( on (S, 0S)) if it satisfies (i), (ii) and (iii);

• a pseudosemimetric ( on (S, 0S)) if it satisfies (i) and (iii).

4.2 Fuzzy distance measures on F

Taking into account the previous definition, we can consider the following

notion as a genuine fuzzy metric on F . Definitively, it has sense to use the crisp

FN 0̄ as the selected point 0S and the sum of FNs as mapping s : S+
0,v×S+

0,v →
S+

0,v. However, it would be depend on a binary relation.

Definition 4.2.1 Let 4 be a binary relation on F such that 0̄ 4 0̄ and

0̄ 4 A+ B for all A,B ∈ F such that 0̄ 4 A and 0̄ 4 B.

Let F+
0 = {A ∈ F : 0̄ 4 A}. A distance function (or a metric) on F is a

mapping

D : F × F → F+
0
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verifying, for all A,B, C ∈ F ,

(i) D(A,A) = 0̄;

(ii) if D(A,B) = 0̄, then A = B;

(iii) (symmetry) D(B,A) = D(A,B);

(iv) (triangle inequality) D(A, C) 4 D(A,B) +D(B, C).

We also say that (F , D) is a fuzzy metric space w.r.t. the partial order 4. The

function D is:

• a fuzzy pseudometric if it satisfies (i), (iii) and (iv);

• a fuzzy semimetric if it satisfies (i), (ii) and (iii);

• a fuzzy pseudosemimetric if it satisfies (i) and (iii).

In [45], the authors presented a first approach to the problem of introducing,

at the same time,

I binary relations on F that are partial orders, at least, on the subclass of

trapezoidal FNs;

I fuzzy distance measures on F that are true metrics, at least, on the subclass

of trapezoidal FNs.

Their families depended on a large list of some geometric characteristics of

FNs. Nevertheless, for technical reasons, although such families are appropriate

to handle a large list of FNs, they are not the best possibilities for working

with finite FNs. A slight change, that generalize the family into an even more

general one, must be done. To explain such modification, we recall here the key

definitions in such paper.

A partition of the interval I is a finite set P = {δ0, δ1, . . . , δn} such that

0 = δ0 < δ1 < . . . < δn = 1. If P = {δi}ni=0 is a partition of I and f : S → R is
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a mapping defined on S ⊇ P , we will denote by ∆fi, for all i ∈ {1, 2, . . . , n}, to

the average rate of change of f on the interval [δi−1, δi], that is,

∆fi = ∆f [δi−1,δi] =
f(δi)− f(δi−1)

δi − δi−1

.

Let D : F → R be a defuzzification and let P = {δi}ni=0 be a partition of I.

Definition 4.2.2 (Roldán-López de Hierro et al. [45], Definition 2) Given two

FNs A,B ∈ F , we will write A 4 B w.r.t. (D,P) if the following conditions

are fulfilled:





DA ≤ DB,
sprA ≤ sprB,
∆a i ≤ ∆bi

∆ai ≥ ∆bi



 for all i ∈ {1, 2, . . . , n}.

Definition 4.2.3 (Roldán-López de Hierro et al. [45], Definition 5) Let q, q0 ≥
0, let q1, q2 : I → [0,∞[ be two left continuous, non-increasing mappings on I

and let φ0 : R × R → R+
0 , ψ : R+

0 × R+
0 → R+

0 , {φi : R+
0 × R+

0 → R+
0 }ni=1 and

{ϕi : R−0 × R−0 → R+
0 }ni=1 be pseudosemimetrics on their respective domains.

For all FNs A,B ∈ F and all α ∈ I, define:

D(A,B)
α

= q0 φ0 (DA,DB)− q ψ(sprA, sprB)

− q1(α)
n∑
i=1

φi (∆a i,∆bi) , (4.1)

D(A,B)α = q0 φ0 (DA,DB) + q ψ(sprA, sprB)

+ q2(α)
n∑
i=1

ϕi
(
∆ai,∆bi

)
. (4.2)

Let D(A,B) be the only FN determined by its α-cuts (4.1)-(4.2).

In some sense, functions q1 and q2 control the class of FN that contains the

FN D(A,B) (rectangular, triangular, trapezoidal, etc.) It is easy to show that if

q1 and q2 are finite, then D(A,B) is also a finite FN whateverA and B. However,
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under general finite functions, we have not a control about the resulting left and

right spreads of the obtained finite FN. Thus, we need to refine the previous

definition.

4.3 A partial order on FΛ

In this section we study the binary relation A 4 B w.r.t. (D,Λ) given in

Definition 4.2.2 when A and B are finite FNs in FΛ (notice that the partition

P coincides with the finite set Λ). For practical reasons, we are only interested

in the case in which the defuzzification D is the most important one, that is,

Dc. We prove that, when this binary relation is particularized to FΛ, then it

becomes a partial order.

Lemma 4.3.1 If we consider the defuzzification Dc and the partition Λ = {α0 =

0 < α1 < . . . < αn−1 < αn = 1 }, then two finite FNs in FΛ,

A = FFNΛ

(
Ac, Am,

{
A`,i
}n−1

i=1
,
{
Ar,i
}n−1

i=1

)
and

B = FFNΛ

(
Bc, Bm,

{
B`,i
}n−1

i=1
,
{
Br,i
}n−1

i=1

)
, (4.3)

satisfy A 4 B w.r.t. (Dc,Λ) if and only if

Ac ≤ Bc, Am ≤ Bm, A`,i−1 ≤ B`,i−1 and

Ar,i−1 ≤ Br,i−1 for all i ∈ {2, 3, . . . , n− 1} . (4.4)

Furthermore, the binary relation 4 w.r.t. (Dc,Λ) is a partial order on FΛ.

Proof : If

A = FFNΛ

(
Ac, Am,

{
A`,i
}n−1

i=1
,
{
Ar,i
}n−1

i=1

)
and

B = FFNΛ

(
Bc, Bm,

{
B`,i
}n−1

i=1
,
{
Br,i
}n−1

i=1

)
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are two finite FNs in FΛ, given by using the representation (3.10), we deduce

from (3.6)-(3.7) that, for all i ∈ {2, 3, . . . , n},

∆a i = ∆a [αi−1,αi]
=
a(αi)− a(αi−1)

αi − αi−1

=
aαi
− aαi−1

αi − αi−1

=
A`,i−1

αi − αi−1

, (4.5)

∆ai = ∆a [αi−1,αi] =
a(αi)− a(αi−1)

αi − αi−1

=
aαi
− aαi−1

αi − αi−1

=
−Ar,i−1

αi − αi−1

. (4.6)

It follows from (3.8) and (3.9) that

a(α1) = a(α0) = Ac − Am − A`,n−1 − A`,n−2 − . . .− A`,1 and

a(α1) = a(α0) = Ac + Am + Ar,n−1 + Ar,n−2 + . . .+ Ar,1,

so ∆a 1 = ∆a1 = ∆b 1 = ∆b1 = 0. Therefore, for all i ∈ {2, 3, . . . , n},

∆a i ≤ ∆b i ⇔ A`,i−1

αi − αi−1

≤ B`,i−1

αi − αi−1

⇔ A`,i−1 ≤ B`,i−1,

∆ai ≥ ∆bi ⇔ −Ar,i−1

αi − αi−1

≥ −B
r,i−1

αi − αi−1

⇔ Ar,i−1 ≤ Br,i−1.

This means that, following Definition 4.2.2, A 4 B w.r.t. (Dc,Λ) if and only if

the following conditions hold:

• DcA ≤ DcB ⇔ Ac ≤ Bc;

• sprA ≤ sprB ⇔ Am ≤ Bm;

• ∆a i ≤ ∆b i for all i ∈ {1, 2, . . . , n}

⇔ A`,i−1 ≤ B`,i−1 for all i ∈ {2, 3, . . . , n};

• ∆ai ≥ ∆bi for all i ∈ {1, 2, . . . , n}

⇔ Ar,i−1 ≤ Br,i−1 for all i ∈ {2, 3, . . . , n}.

Furthermore, the binary relation 4 w.r.t. (Dc,Λ) is reflexive, transitive and

antisymmetric, so it is a partial order on FΛ. This completes the proof.
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4.4 A family of fuzzy distance measures on FΛ

In this section we take advantage of the introduced partial order 4 w.r.t.

(Dc,Λ) to endow the set FΛ with a family of distinct fuzzy distance measures

that will be useful to describe a fuzzy regression methodology involving finite

fuzzy random variables. In the following result, we slightly modify the family

of distance measures given in Definition 4.2.3 by replacing the functions q1 and

q2 by respective families of functions {pi : I → R+
0 }ni=1 and {hi : I → R+

0 }ni=1

satisfying the same properties than q1 and q2.

Theorem 4.4.1 Let D : F → R be a defuzzification, let Λ = {α0 = 0 < α1 <

. . . < αn−1 < αn = 1 } be a partition of I, let q, q0 ≥ 0, let {pi, hi : I→ R+
0 }ni=1 be

a family of left continuous, non-increasing mappings on I, and let φ0 : R×R→ R+
0 ,

ψ : R+
0 × R+

0 → R+
0 , {φi : R+

0 × R+
0 → R+

0 }ni=1 and {ϕi : R−0 × R−0 → R+
0 }ni=1

be pseudosemimetrics on their respective domains. For all FNs A,B ∈ F and all

α ∈ I, define:

D(A,B)
α

= q0 φ0 (DA,DB)− q ψ(sprA, sprB)

−
n∑
i=1

pi(α)φi (∆a i,∆b i) , (4.7)

D(A,B)α = q0 φ0 (DA,DB) + q ψ(sprA, sprB)

+
n∑
i=1

hi(α)ϕi
(
∆ai,∆bi

)
. (4.8)

Then there exists a unique FN D(A,B) determined by its α-cuts (4.7)-(4.8).

Proof : It follows from the fact that the function α 7→ D(A,B)
α

is left contin-

uous and nondecreasing on I, and the function α 7→ D(A,B)α is left continuous

and non-increasing on I. Since D(A,B)
α
≤ q0φ0 (DA,DB) ≤ D(A,B)α for all

α ∈ I, then there exists a unique FN D(A,B) determined by the given α-cuts

(see Lemma 2.2.5).
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Observación 4.4.2 Clearly, if pi(α) = q1 (α) and hi(α) = q2(α) for all i ∈
{1, 2, . . . , n} and all α ∈ I, then equations (4.7)-(4.8) generalize equations (4.1)-

(4.2). As a result, similarity measures obtained by Theorem 4.4.1 are more

general than obtained by Definition 4.2.3.

We are interested in the following particular case of the previous theorem.

Given β ∈ I, let denote by qβ : I→ I the function given, for all α ∈ I, by

qβ(α) =





1, if α ≤ β,

0, if β > α.

Clearly, each function qβ is non-increasing and left-continuous on I.

Theorem 4.4.3 Assume that, in Theorem 4.4.1, we choose D = Dc, the partition

Λ = {α0 = 0 < α1 < . . . < αn−1 < αn = 1 }, q = q0 = 1, pi(α) = hi(α) =

qαi−1
(α) for all i ∈ {2, 3, . . . , n},

φ0(x, y) = ψ(x, y) = (x− y)2 and φi(x, y) = ϕi(x, y) = (αi − αi−1)2 (x− y)2

in their respective domains. Then, for all finite FNs A,B ∈ FΛ given as in (4.3):

D (A,B) = FFNΛ

(
(Ac −Bc)2 , (Am −Bm)2 ,

{(
A`,i −B`,i

)2
}n−1

i=1
,
{(
Ar,i −Br,i

)2
}n−1

i=1

)
. (4.9)

In particular, D (A,B) ∈ FΛ.

Notice that in the previous statement we have not considered neither p1 nor

h1 because, as we have shown in the proof of Lemma 4.3.1, in the case of finite

FNs of FΛ, we have that ∆a 1 = ∆a1 = ∆b 1 = ∆b1 = 0.

Proof : Let C = D (A,B) ∈ F . First of all, notice that

q0 φ0 (DcA,DcB) = (DcA−DcB)2 = (Ac −Bc)2 and

q ψ(sprA, sprB) = (sprA− sprB)2 = (Am −Bm)2 .
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On the other hand, by (4.5) and (4.6), for all i ∈ {2, 3, . . . , n},

φi (∆a i,∆b i) = (αi − αi−1)2

(
A`,i−1

αi − αi−1

− B`,i−1

αi − αi−1

)2

=
(
A`,i −B`,i

)2
,

ϕi
(
∆ai,∆bi

)
= (αi − αi−1)2

( −Ar,i−1

αi − αi−1

− −B
r,i−1

αi − αi−1

)2

=
(
Ar,i −Br,i

)2
.

In order to prove that D (A,B) ∈ FΛ, we use Theorem 3.2.3. Indeed, if α ∈
(αn−1, αn] = (αn−1, 1], then α > αi−1 for all i ∈ {2, 3, . . . , n}, so pi(α) = hi(α) =

qαi−1
(α) = 0. Then

D(A,B)
α

= q0 φ0 (DA,DB)− q ψ(sprA, sprB)−
n∑
i=2

qαi−1
(α)φi (∆a i,∆b i)

= (Ac −Bc)2 − (Am −Bm)2 .

If α ∈ (αn−2, αn−1], then α > αi−1 for all i ∈ {2, 3, . . . , n− 1}, but α ≤ αn−1, so

pi(α) = hi(α) = qαi−1
(α) = 0 for all i ∈ {2, 3, . . . , n − 1} but pn(α) = hn(α) =

qαn−1(α) = 1. Then

D(A,B)
α

= q0 φ0 (DA,DB)− q ψ(sprA, sprB)−
n∑
i=2

qαi−1
(α)φi (∆a i,∆b i)

= (Ac −Bc)2 − (Am −Bm)2 − qαn−1(α)φn (∆an,∆bn)

= (Ac −Bc)2 − (Am −Bm)2 −
(
A`,n−1 −B`,n−1

)2
.

Similarly, if α ∈ (αj, αj+1], for some j ∈ {1, 2, . . . , n− 2}, then α > αi−1 for all

i ∈ {1, 2, . . . , j + 1}, but α ≤ αi−1 for all i ∈ {j + 2, j + 3, . . . , n}. Therefore

pi(α) = hi(α) = qαi−1
(α) = 0 for all i ∈ {2, 3, . . . , j + 1} but pi(α) = hi(α) =

qαi−1
(α) = 1 for all i ∈ {j + 2, j + 3, . . . , n}. Then

D(A,B)
α

= q0 φ0 (DA,DB)− q ψ(sprA, sprB)−
n∑
i=2

qαi−1
(α)φi (∆a i,∆b i)

= (Ac −Bc)2 − (Am −Bm)2 − qαn−1(α)φn (∆an,∆bn)

− qαn−2(α)φn−1

(
∆an−1,∆bn−1

)
− . . .

− qαj+1
(α)φj+2

(
∆a j+2,∆bj+2

)

= (Ac −Bc)2 − (Am −Bm)2 −
(
A`,n−1 −B`,n−1

)2

−
(
A`,n−2 −B`,n−2

)2 − . . .−
(
A`,j+1 −B`,j+1

)2
.
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Finally, if α ∈ [α0, α1] = [0, α1], then α ≤ αi−1 for all i ∈ {2, 3, . . . , n − 1}, so

pi(α) = hi(α) = qαi−1
(α) = 1 for all i ∈ {2, 3, . . . , n} and

D(A,B)
α

= q0 φ0 (DA,DB)− q ψ(sprA, sprB)−
n∑
i=2

qαi−1
(α)φi (∆a i,∆b i)

= (Ac −Bc)2 − (Am −Bm)2 − qαn−1(α)φn (∆an,∆bn)

− qαn−2(α)φn−1

(
∆an−1,∆bn−1

)
− . . .

− qα1(α)φ2 (∆a 2,∆b2)

= (Ac −Bc)2 − (Am −Bm)2 −
(
A`,n−1 −B`,n−1

)2

−
(
A`,n−2 −B`,n−2

)2 − . . .−
(
A`,1 −B`,1

)2
.

The same reasoning is useful to work out the values of D(A,B)α, which are

given by

D(A,B)α =





(Ac −Bc)2 + (Am −Bm)2 ,

if αn−1 < α ≤ 1,

(Ac −Bc)2 + (Am −Bm)2 +
n−1∑
i=j+1

(Ar,i −Br,i)
2
,

if αj < α ≤ αj+1 (for some j ∈ {1, 2, . . . , n− 2}),

(Ac −Bc)2 + (Am −Bm)2 +
n−1∑
i=1

(Ar,i −Br,i)
2
,

if 0 ≤ α ≤ α1.

In particular, C = D (A,B) is the unique finite FN in FΛ whose center is Cc =

(Ac −Bc)2, whose central spread is Cm = (Am −Bm)2, whose left spreads are

{
C`,i =

(
A`,i −B`,i

)2
}n−1

i=1

and whose right spreads are

{
Cr,i =

(
Ar,i −Br,i

)2
}n−1

i=1
.

This proves that (4.9) holds.

In particular, the restriction to FΛ×FΛ of the distance measure D : F×F →
F provides us an inner distance measure, that is, it is a mapping D : FΛ×FΛ →
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FΛ that we will denote by

DΛ : FΛ ×FΛ → FΛ. (4.10)

4.5 Fuzzy regression procedure

In this section we introduce a fuzzy regression methodology based on finite

fuzzy numbers. To do this, we will use Theorem 4.4.3, which permit us to

performance a least square methodology for getting an appropriate fuzzy model

on each component, and Lemma 4.3.1 to contrast which is the model with least

(fuzzy) error.

Let X,Y be two variables where X = (X1, ..., XN)′ is a random vector and

Y is a finite fuzzy random variable taking values in FΛ (where Λ is a finite

subset of I containing 0 and 1). We are interested in analyzing the relationship

between Y and X. The regression model we consider can be formalized as:

Y = FFNΛ

(
Y c
X,ac

+ εc, Y m
X,am

+ εm,
{
Y `,i
X,am

+ ε`i

}n−1

i=1
,
{
Y `,i
X,am

+ ε`i

}n−1

i=1

)
,

(4.11)

where εc, εm, ε`i and εri are the residuals (i.e., real-valued random variables such

that E[εc|X] = E[εm|X] = E[ε`i |X] = E[εri |X] = 0 if we consider linear models

and whose variances are finite) and ac = (ac1, . . . , acN)′, am = (am1, . . . , amN)′,

ai` = (ai`1, . . . , a
i
`N)′ and air = (air1, . . . , a

i
rN)′ are the (N × 1)-vectors of the

parameters related to the vector X.

Therefore, the conditional expectation, that is, the population regression

function, is:

E[Y|X] = FFNΛ

(
Y c
X,ac

, Y m
X,am

,
{
Y `,i
X,am

}n−1

i=1
,
{
Y r,i
X,am

}n−1

i=1

)
.

The function Z : domX → FΛ that we are interested in obtaining to predict Y
from X must be defined as

ZX = FFNΛ

(
Y c
X , Y

m
X ,
{
Y `,i
X

}n−1

i=1
,
{
Y r,i
X

}n−1

i=1

)
, (4.12)
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where Y c : domX → R and Y m
X , Y

`,i
X , Y r,i

X : domX → [0,∞) are arbitrary

(nonnegative) functions.

Consider a random experiment in which we observe the variable (X,Y) on

n statistical units, i.e., suppose that we have a random sample

{(
Xs,Ys = FFNΛ

(
Y c
s , Y

m
s ,
{
Y `,i
s

}n−1

i=1
,
{
Y r,i
s

}n−1

i=1

))}k
s=1

obtained from (X,Y). If we consider the distance measure DΛ defined in (4.10),

the objective function in terms of the parameters ac, am, ai` and air of model

(4.11) is:

E =
k∑

s=1

DΛ(Ys,ZXs), (4.13)

that is, we are looking for a function ZX = E[Y|X] such that the fuzzy total

error (4.13) is as small as possible by considering the partial order 4 w.r.t.

(Dc,Λ) on FΛ. If the objective regression function ZX is given by (4.12), then

the fuzzy total error (4.13) is

E =
k∑

s=1

FFNΛ

((
Y c
Xs
− Y c

s

)2

,
(
Y m
Xs
− Y m

s

)2

,

{(
Y `,i
Xs
− Y `,i

s

)2
}n−1

i=1

,

{(
Y r,i
Xs
− Y r,i

s

)2
}n−1

i=1

)

= FFNΛ

(
k∑
s=1

(
Y c
Xs
− Y c

s

)2

,
k∑
s=1

(
Y m
Xs
− Y m

s

)2

,

{
k∑
s=1

(
Y `,i
Xs
− Y `,i

s

)2
}n−1

i=1

,

{
k∑
s=1

(
Y r,i
Xs
− Y r,i

s

)2
}n−1

i=1

)
.

As a consequence, the total fuzzy error can be considered a fuzzy sum of squares

of residuals and we must minimize each component to obtain the optimal solu-

tion. This means that the estimation problem of the regression parameters is

solved by means of the least squares criterion through a classical regression pro-

blem. Software for linear and non-linear models is available in many statistical

packages and different models can be fitted for the center and the spreads. From
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those models obtained for the spreads, we choose the positive models, which is

always possible to perform, since we can consider a logarithmic transformation

of the data or fit a positive constant (see [46]).

To sum up, taking into account classical regression techniques, the cen-

ter Y c can be related to (X1, ..., XN)′, the spread for the center Y m or some

transformation of it can be related to (X1, ..., XN)′, every left spread
{
Y `,i
}

for

i ∈ {1, ..., n− 1}, or some transformation of it, can be related to (X1, ..., XN)′,

and every right spread {Y s,i} for i ∈ {1, ..., n − 1}, or some transformation of

it, can be related to (X1, ..., XN)′.

It is important to remark that when we consider finite FNs, the spreads

can take small values. Therefore it is easy to obtain fitted models that could

take negative values. Only for spreads in which this problem could arise, we

will overcome it replacing the spread Ŷ r by max{ Ŷ r
X,a r

+ εr, 0 } in the fitted

regression model (r ∈ {m, `, s}). This replacement let us guarantee that the

response is always a FN.

For each of the possible combinations of a center and the corresponding

spreads we calculate a fuzzy error using the previous equation. Finally we sort

the fuzzy models using the partial order 4 w.r.t. (Dc,Λ) and, for the optimal

solution of the fuzzy regression problem, we choose the fuzzy model with the

lowest fuzzy error.

Note that the main aim of this memory is to develop a fuzzy methodology,

using finite FNs, that can be considered easy to understand and powerful. In

this sense, many people are used to consider stepwise linear regression methods

to solve problems. This is a method for regressing multiple variables which

essentially does multiple regression a number of times, each time removing the

variables that are not important for the explanation, and leaving the variables

that better explain the distribution, considering the forward selection approach

(see Section 2.3.6). We propose to consider models obtained by this method in
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the solution of the fuzzy problem.
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CHAPTER 5

A case study: Chinese convertible

bonds

In this chapter we illustrate how the fuzzy regression methodology intro-

duced in Chapter 4 can be applied in a real-world context: the case of Chinese

convertible bonds, which can be interpreted as a fuzzy random variable.

First of all, we approximate its values as an appropriate finite fuzzy random

variable and later we compute a fuzzy model in order to predict the values of

such varia ble depending on three real random variables: the price of A-share,

the price of H-share and SHIBOR rate.

5.1 Introduction to convertible bonds

In this section, in order to illustrate the theoretical results described in the

previous sections, we use data obtained from Bloomberg database, which is one

of the most used financial information system worldwide. Firstly some financial

concepts are introduced.

A convertible bond is a financial instrument composed of two parts; a bond
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and an option. A bond is a fixed income security used by corporations, countries

and supranational institutions to raise debt. Investors in bonds lend money to

these institutions and in return they receive interest (typically every quarter

or every year) and at the maturity date (when the bond expiries) it receives

its last interest payment plus the notional (the amount that the investor gave

initially to the company). The previously described bond is the most basic type

of bond and it should be noted that there are numerous variations and more

sophisticated bonds such as discount bonds or hybrid perpetual bonds.

For the purposes of this analysis we focus on convertibles bonds in which

the underlying bond is a straight “plain vanilla” bond. The other component of

the convertible bond is the option. The option gives the holder (the investor)

the right to exchange the bond for stock (equity) of the issuer company if the

stock price reaches a certain (predetermined) level.

Convertible bonds are a popular financial instrument because they gives

investors protection on the downfall (fixed income investors have priority in the

case of company liquidation) while at the same time gives the investors upside.

The return on a fixed income (if hold to maturity) is the interest received plus

the discount (if there was any) between the buying price and the par value. In

other words, the returns on fixed income securities are capped and for instance

a massive improvement in the results of the company would have very little

impact on the returns received by the investor.

On the other hand, an equity investor could benefit greatly if the share

price goes up, which tends to be linked with strong business performance of the

company but have the risk that in the case that the company goes bankrupt they

are likely to receive no return at all for their investment (in fact, in the event of

a bankruptcy equity investors tend to lose virtually all its initial investment).

In the case of bankruptcy fixed income investors have priority of claims over the

assets of the company compared to equity investors.
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In the case of a convertible bond its price is clearly impacted by changes in

the price of the underlying stock (as there is an equity option embedded in the

bond) but it is also impacted, as a fixed income security, by the market interest

level. Interest rates and bond prices are inversely related with a decrease in

interest rate typically causing an increase in price. This can be easily seen with

an example.

Let us consider the case of a straight fixed income security (no option em-

bedded) that is paying a 4 percent annual interest. Now, if the market interest

rate declines to for example 3 percent and there is no change in price in the

bond that we are analyzing then rational investors would sale other bonds and

buy the bond paying 4 percent. In reality want happens is that the price of

the 4 percent bond increases until the level in which the extra money that an

investor has to pay for buying the 4 percent bond makes the yield on this bond

and the market level the same.

5.1.1 Chinese convertible bonds

Every country has their peculiarities given to historical reasons, the country

organization, legal systems and many other factors. In the case of the Chinese

case there are two markets, one in mainland China and one in Hong Kong. These

two markets operates independently and are regulated by different institutions.

There are two stock exchanges in mainland China: the Shanghai Stock Exchange

and the Shenzhen Stock Exchange.

In Hong Kong there is only one stock exchange, The Hong Kong Stock

Exchange. The stocks listed in mainland China are usually called A-shares

while the stock listed in Hong Kong are usually called H-shares. There are

a significant amount of dual listed companies i.e., the same companies with

stocks in the mainland and Hong Kong. For instance, China Construction

Bank (CCB), which is a large national bank, is listed in Hong Kong as well as
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in Shanghai.

In this situation we have two different stocks (trading at two different prices)

that represent ownership in the same company. In a perfect, frictionless world

the prices of those two stocks should be the same but a large amount of factors

causes that in fact the prices are different. It should be noted that there are

no dual listed companies between the two mainland stock exchanges, i.e., there

are no companies listed at the same time in the Shanghai and Shenzhen stocks

exchanges. In the case of a dual listed company, it would seem reasonable to

assume that the prices in the two exchanges could have an impact on the price

of the convertible bond.

As previously mentioned, another factor that can impact the price of a con-

vertible bond is the market rate. SHIBOR (Shanghai Interbank Borrowing

Rate) is the rate at which the large domestic banks lend to each other in China

(and it is equivalent to the LIBOR rate for western countries). SHIBOR is a

very good proxy for the market interest rate and hence it was included in this

analysis.

5.2 Fuzzy regression analysis

In this section, to illustrate the theoretical results we use data obtained from

Bloomberg (one of the most used financial information system that is widely

used by professionals worldwide).

The convertible bond chosen for the analysis was issued by the Industrial

and Commercial Bank of China (ICBC) in 2010, its maturity date is 2016 and

its Bloomberg identifer is EI3894694 (a Bloomberg screen shot of this bond can

be found in Figure 5.1). ICBC is one of the largest Chinese banks (commonly

referred to as the big 4). ICBC is listed in The Shanghai Stock Exchange (ticker

601398 CH) and in the Hong Kong Stock Exchange (ticker 1398 HK).
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Figure 5.1: Bloomberg screen shot of the convertible bond chosen

All the data were obtained from Bloomberg (Bloomberg Professional), which

is one the most commonly professional data providers used in the industry. The

data set consists of the price for the convertible bond, the A-share, the H-share

and SHIBOR for the period between September 2010 and May 2014, this gives

45 data for each series.

In this context it is clear that the price of a convertible bond is related to

the value of the action in which can be converted (in this case A-shares) but as

the share price of type A may be influenced by the price of the action of H type

(and viceversa) seems logical to include the price of these two types of shares in

the analysis. Another factor that seems interesting to consider is the Shanghai

interbank offered rate (SHIBOR).
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To avoid the loss of information, experts in financial analysis described the

variables in terms of finite FNs. We assume that the central spreads are zero.

Therefore, the purpose of the following example is to study the statistical rela-

tionship between the price of a convertible bond (Y) and the price of A-share

(X1), H-share (X2), and SHIBOR rate (X3). We have considered a set of 45

data, from September 2010 to May 2014 (see Tables 5.1 and 5.2). To avoid the

loss of information, experts in financial analysis described the variables in terms

of finite FNs. We assume that the central spreads are zero.

Table 5.1: Data.

Date Response variable, Y Explanatory variable 1, X1

t FFNΛ(Y
c, Y m, Y l,1, Y l,2, Y r,1, Y r,2) FFNΛ(X

c
1 , X

m
1 , X

l,1
1 , X l,2

1 , Xr,1
1 , Xr,2

1 )

Sep-10 (110.86, 0, 0.30, 0.46, 0.75, 0.47) (3.98, 0, 0.03, 0.05, 0.04, 0.02),

Oct-10 (123.63, 0, 2.92, 2.99, 0.99, 1.06) (4.38, 0, 0.13, 0.13, 0.09, 0.03)

Nov-10 (124.11, 0, 1.00, 3.39, 1.90, 0.93) (4.52, 0, 0.06, 0.16, 0.17, 0.03)

...
...

...

May-14 (101.81, 0, 0.31, 0.81, 0.60, 0.65) (3.48, 0, 0.03, 0.03, 0.04, 0.05)

The Figures 5.3-5.2 display the plot of the fuzzy variables considered (images

are in order from left to right).

We use these data to regress the fuzzy response variable Y about the three

fuzzy exploratory variables X1, X2 and X2. This problem can be reduced to one

that can be solved with the methodology described in the previous sections and

considering the crisp random vector X = (xi1, x
c
1, x

s
1, x

i
2, x

c
2, x

s
2, x

i
3, x

c
3, x

s
3) (in this

case, xm1 = xm2 = xm3 = 0) as the exploratory random variable.

We follow the following steps:

Step 1 . Generate a Table of fits with a statistical package listing the mo-
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Figure 5.2: Price of the convertible bond (Y) (from Table 5.1)
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Figure 5.3: Prices of A-share (X1) (from Table 5.1)
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Figure 5.4: H-share values (X2) (from Table 5.2)
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Figure 5.5: SHIBOR rate (X3) (from Table 5.2)
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Table 5.2: Data.

Date Explanatory variable 2, X2 Explanatory variable 3, X3

t FFNΛ(X
c
2 , X

m
2 , X

l,1
2 , X l,2

2 , Xr,1
2 , Xr,2

2 ) FFNΛ(X
c
3 , X

m
3 , X

l,1
3 , X l,2

3 , Xr,1
3 , Xr,2

3 )

Sep-10 (5.74, 0, 0.01, 0.07, 0.05, 0.03), (1.75, 0, 0.04, 0.15, 0.16, 0.24)

Oct-10 (6.11, 0, 0.06, 0.29, 0.04, 0.06) (1.61, 0, 0.03, 0.02, 0.07, 0.22)

Nov-10 (6.22, 0, 0.08, 0.18, 0.33, 0.08) (1.57, 0, 0.02, 0.02, 0.27, 0.08)

...
...

...

May-14 (4.82, 0, 0.07, 0.14, 0.15, 0.05) (2.41, 0, 0.05, 0.08, 0.06, 0.04)

dels for the center and the spreads in decreasing order of some goodness-of-fit

statistics. The stepwise method was used in this step to select the explanatory

variables included in the the classical linear models which are needed to build

the fuzzy regression model. In the case that only a single predictor variable

contribute significantly to explaining the variability in the dependent variable,

statistical packages can fit a variety of functional forms and support different

goodness-of-fit statistics for parametric models. These functionals forms have

been considered in this case.

Step 2 . Use the distance measure selected by the researcher from the be-

ginning and calculate the fuzzy errors for each of the possible for each of the

possible fuzzy regression models.

Step 3 . Sort the fuzzy models with the partial order 4 introduced in

Definition 4.2.2 taking into account the fuzzy errors obtained in Step 2 for each

one. In the examples, these results are shown in a table named Table of fuzzy

fits. Note that the order established between the models using real numbers in

step 1, which would seem logical to keep it, do not necessarily coincide with the

ranking obtained when models are arranged in this step according to the fuzzy
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order above introduced.

Step 4 . To find the optimal solution of the fuzzy regression problem we

choose the functions corresponding to the lowest fuzzy error.

5.3 Results

In order to search for a suitable fuzzy regression model capable to express

the statistical relationship between the price of a convertible bond (Y) and the

price of A-share (X1), H-share (X2), and SHIBOR rate (X3), we consider the

methodology explained in the previous chapters.

The fitted model for the center is given by:

ŷcX = 11.268xc2 + 5.049xc3 + 17.237xs2 + 36.472.

The center spreads are zero, this means that

ŷmx = 0.

Only one variable results significant through stepwise regression for the left

spread model. Then non-linear models were considered to find the best fit. The

fitted model for the left spread is given by:

ŷiX =
√

1.3545 + 436.290 (xi2)2

The fitted model for the right spread is given by:

ŷsX = 12.935xs2 + 2.838xi3.
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Therefore the fuzzy regression model with the lowest error is given by

Ŷ = FFNΛ

(
35.002 + 11.231Xc

1 + 5.480Xc
2 + 44.545Xr,2

1 , 0,

exp{−5.576 + 10.683X l,1
2 + 0.657Xc

2 + 2.905Xr,2
2 + 11.045Xr,2

1 },

max{0.191 + 18.938X l,2
1 + 4.872X l,1

2 − 0.590Xs,1
3 , 0},

exp{−1.555 + 10.630Xr,1
1 + 0.300Xc

3},

exp{−1.801 + 12.791Xr,2
1 + 5.501Xr,1

1 + 0.145Xc
3}
)
.

The corresponding fuzzy sum of squares of residuals is

FFNΛ(276.20, 0, 14.35, 18.99, 6.47, 0.64)

and approximately 86.22% of the total variation of price of the convertible bond

is explained by the previous fuzzy model.
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CHAPTER 6

Conclusions and future work

This memory has introduced a fuzzy regression model when the response

variable is a finite fuzzy random variables. We have considered a fuzzy distance

measure that allows to solve the problem considering classical multiple regression

models and stepwise methods with crisp variables. The goodness of fit have been

measured by the fuzzy total error. However taking into account that a real-life

study can consider at the same time, fuzzy and crisp variables, a fuzzy regression

methodology should be able to deal, in a unified manner both cases. Therefore

similar to the classical regression models, the goodness of fit can be measured

using a real R-squared. Notice that it is not necessary to impose non-negativity

conditions from the beginning and the problem has been easily solved in an

optimal fuzzy way.

Summarizing, the main advantages of this methodology are:

• It provides the researchers an easy approach for the problem of analyzing

regression relationships when the observed data can be affected by different

sources of uncertainty.

• This study does not consider non-negativity restrictions from the begin-

ning.
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• Researchers can model the statistical relationships between fuzzy variables

with a method that may be applied in different contexts.

• The technique is not limited to consider linear models.

• The regression proposed in this paper is not limited to numeric intervals

or triangular fuzzy variables (as in other papers).

• The methodology is not limited to crisp explanatory variables.

Another important objective of this analysis was to give market participants

(investors) a quantitative tool to help them make investment decisions and the

obtained fuzzy regression equation seems to add value to the investment process.

This example was used to illustrate the proposed methodology and demonstrate

the efficiency of this method. It should be noted that the scope was not to create

an algorithm to tell an investor when to buy or sell the convertible bond but a

quantitative tool that would help him/her doing so by himself/herself according

to his/her own expectations on the independent variables (A-share price, H-

share price and SHIBOR level).

The results obtained in the case study have some interesting features. The

model obtained is not too complex and hence allows the practitioner to ana-

lyze from economic and finance fundamentals the regression equation obtained.

From a financial point of view is surprising that the fitted model explains ap-

proximately 85% of the variability of the price of the convertible bond without

including the A-share price in the regression equation. This is perhaps due to

having two share prices (one in Hong Kong) and one in Shanghai. It should be

noted that share prices of dual listed Chinese companies move in the same di-

rection only roughly 60% of the time, i.e., the share price (of the same company)

goes up in the Shanghai Stock Exchange and the Shenzhen Stock Exchange only

in roughly 60% of the days. There are multiple factors that cause these price
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discrepancies such as different currencies, holidays, trading hours or short-selling

regulation.

Some open problems that deserve our attention in the near future are as

follows:

• Throughout this report has arisen the need to introduce a partial order

in the set of finite data. This partial order can be considered to establish

a ranking. It would be interesting to study the corresponding properties

and its possible applications to an economic context.

• The study of the problem of the nearest parametric approximation of a

finite fuzzy number. Some properties (translation invariance, scale invari-

ance, additivity, preservation of value, ambiguity, expected value) of the

nearest parametric approximation can also be studied.
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[45] A.F. Roldán López de Hierro, C. Aguilar, J. Mart́ınez-Moreno, C. Roldán,

Estimation of a fuzzy regression model using fuzzy distances, IEEE Trans.

Fuzzy Syst. 24 (2) (2016) 344–359.

[46] A. Roldán, J. Mart́ınez-Moreno, C. Roldán, A fuzzy regression model based

on distances and random variables with crisp input and fuzzy output data:

a case study in biomass production, Soft Comput. 16 (2012) 785–795.

[47] A. Roldán, J. Mart́ınez-Moreno, C. Roldán, Some applications of the study

of the image of a fuzzy number: Countable fuzzy numbers, operations,

G. Alfonso



108 BIBLIOGRAPHY

regression and a specificity-type ordering, Fuzzy Sets Syst. 257 (2014) 204-

216.

[48] A. Roldán, M. de la Sen, J. Mart́ınez-Moreno, C. Roldán: An approach

version of fuzzy metric spaces including an ad hoc fixed point theorem,

Fixed Point Theory Appl. 2015, Article ID 2015:33, 23 pages (2015).

[49] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, New York, Dover Pub-

lications (2005).

[50] M. Shi, M.A. Lukas, An L1 estimation algorithm with degeneracy and linear

constraints, Comput. Stat. Data Anal. 39 (2002) 35–55.

[51] E. Siemsen, K.A. Bollen, Least absolute deviation estimation in structural

equation modeling, Sociological Methods and Research 36 (2007) 227–265.

[52] S.M. Taheri, M. Kelkinnama, Fuzzy linear regression based on least abso-

lutes deviations, Iran. J. Fuzzy Syst. 9 (2012) 121–140.

[53] H. Tanaka, I. Hayashi, J. Watada, Linear regression analysis with fuzzy

model, IEEE Trans. Syst. Man. Cybern. SMC-12 (1982) 903–907.

[54] H. Tanaka, I. Hayashi, J. Watada, Possibilistic linear regression analysis

for fuzzy data, Eur. J. Oper. Res. 40 (1989) 389–396.

[55] L. Tran, L. Duckstein, Comparison of fuzzy numbers using a fuzzy distance

measure, Fuzzy Sets Syst. 130 (2002) 331–341.

[56] P. Vasant, N. Barsoum, Hybrid pattern search and simulated annealing for

fuzzy production planning problems, Comput. Math. Appl. 60 (4) (2010)

1058–1067.

[57] P. Vasant, Meta-heuristics optimization algorithms in Engineering, Busi-

ness, Economics and Finance (2013).

G. Alfonso



BIBLIOGRAPHY 109

[58] P. Vasant, T. Ganesan, I. Elamvazuthi, Hybrid tabu search Hopfield re-

current ANN fuzzy technique to the production planning problems: a case

study of crude oil in refinery industry. International Journal of Manufac-

turing, Materials, and Mechanical Engineering 2 (1) (2012) 47–65.

[59] J. Vicente Riera, J. Torrens, Aggregation of subjective evaluations based

on discrete fuzzy numbers, Fuzzy Sets Syst. 191 (2012) 21–40.

[60] W. Voxman, Canonical representations of discrete fuzzy numbers, Fuzzy

Sets Syst. 118 (2001) 457–466.

[61] C.X. Wu, M. Ma, The basic of fuzzy analysis, National Defence Industry

Press, Beijing (1991).

[62] B. Wu, N.F. Tseng, A new approach to fuzzy regression models with ap-

plication to business cycle analysis, Fuzzy Sets Syst. 130 (2002) 33–42.

[63] S. Weisberg, Applied linear regression. 4th Edition. Wiley (2014).

[64] M.S. Yang, C.H. Ko, On a class of fuzzy c-numbers clustering procedures

for fuzzy data, Fuzzy Sets and Syst., 84 (1996) 49–60.

[65] L.A. Zadeh, Fuzzy set, Inform. Control 8 (1965) 338–353.

G. Alfonso




