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Abstract

Background: Reproductive factors are well known risk factors for breast cancer; however, little is known about how
genetic variants in hormonal pathways interact with that relationship.

Methods: One thousand one hundred thirty nine cases of breast cancer in women and 1322 frequency-matched
controls were compared. Genetic variants in hormonal pathways (identified in the Kyoto Encyclopedia of Genes and
Genomes) were screened according to their relationship with breast cancer using the Cochran-Armitage statistic.
Information on reproductive factors was obtained using a face-to-face questionnaire. The interaction among the
selected genetic variants and reproductive factors was tested with logistic regression.

Results: Concerning C allele in rs2229712, compared to nulliparity in non-carriers the ORs for 1–2 and > 2 deliveries
were 0.48 (0.28–0.81) and 0.34 (0.19–0.59), and in C carriers they were 0.92 (0.42–1.98) and 0.71 (0.31–1.61). Similar
results were found in women carrying the C allele in rs1269851. Carriers of Allele T in rs35652107 and allele C in
rs6018027 had the delivery number effect more pronounced.

Conclusions: The number of deliveries had a dose-response protective effect on breast cancer; women carrying C
allele in rs2229712 did not benefit from this protective effect.
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Background
Breast cancer is the most frequent cancer in women
with about 1.7 million new cases per year, and the fifth
cause of death from cancer overall with about 0.5
million deaths per year [1].
Estrogen levels seem to play a major role in breast

cancer [2]. Several reproductive factors, e.g. early age at
menarche, no parity, later age at first birth and later age
at menopause, have been identified as risk factors for

breast cancer as they are associated with higher levels of
estrogens [3].
Women having a first-degree relative diagnosed with

breast cancer have twice the risk of being affected by
this disease [4]. A few rare genetic variants with high or
moderate penetrance in BRCA1, BRCA2, TP53, PTEN,
STK11, ATM, CHEK2, BRIP1, RAD51C, RAD51D,
BARD1 and PALB2 genes increase the risk for breast
cancer [5]; additionally, about 90 more frequent variants
with low penetrance have also been identified, mainly in
genome-wide association studies (GWAS) [6]. Together
these genetic variants explain about 37% of the excess
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familial risk [7]. Some studies have focused on gene-
environment interactions [7], however the stringent
requirements for p values in GWAS make it difficult to
study genetic variants – environment interactions [8].
Attention has rarely been paid to breast cancer genetic

variants and their interaction with reproductive factors.
Several genetic pathways have been identified as related
to sexual hormone production or signalling. To the best
of our knowledge a systematic evaluation of their inter-
action with reproductive factors leading to breast cancer
has not been conducted yet. The main objective in this
paper was to study the effect of the interaction between
genetic variants in hormonal related pathways and
reproductive factors on breast cancer risk.

Methods
The MCC-Spain study
The Multi Case-Control (MCC-Spain) study is a
population-based case-control study of common tumours
in Spain and has been described elsewhere [8]. It has been
carried out in 12 Spanish provinces. Recruitment included
incident cases of colorectal, breast, stomach and prostate
cancer, and chronic lymphocytic leukemia diagnosed
between September 1st, 2008 and December 31st, 2013, in
patients aged between 20 and 85 years old, and resident
within the catchment area of the hospital at least 6 months
prior to recruitment; this report only refers to breast
cancers and their controls (Fig. 1).
Cases were identified through an active search that

included periodical visits to the collaborating hospital
departments (i.e. gynaecology, oncology, general surgery,

radiotherapy, and pathology departments), but only histo-
logically confirmed incident cases of breast cancer (ICD-
10: C50, D05.1, D05.7) with no prior history of the disease
were included in this study. Ten out of 12 provinces
recruited breast cancer cases and controls. Controls were
selected from the general population according to age and
sex distribution of the cases included in the study. In this
paper, 1139 cases of breast cancer in women and 1322
frequency-matched controls were included.
Response rates were 71% for breast cancer and 53% for

controls, with no differences in age and province of
residence among those who participated and those who re-
fused to participate. The Ethics Committees of participat-
ing hospitals approved the study protocols and participants
provided written informed consent at the time of
enrolment.

Data collection
Participants were interviewed face-to-face by trained
interviewers with a comprehensive epidemiological ques-
tionnaire that assessed socio-demographic information,
personal and family history of cancer, anthropometric
data, smoking habits, occupation, physical activity, water
consumption, reproductive and medical history and medi-
cation/drugs use, sun exposure, sleep habits, use of
hygiene products and cosmetics, signs and symptoms.
Participant’s weight was recorded by self-report, as
estimated 1 year before diagnosis for cases and for
controls. Body mass index (BMI) was estimated from
self-reported weight and height 1 year before the diagnosis

Fig. 1 Recruitment procedure in the MCC-Spain study

Dierssen-Sotos et al. BMC Cancer  (2018) 18:280 Page 2 of 9



for cases and 1 year prior to the interview for controls.
Similar estimates provided total energy consumption.
Regarding reproductive history, detailed information was

obtained on age at menarche, parity, age at first delivery,
menopausal status, age at menopause, hormonal contra-
ceptive use, and postmenopausal hormone therapy.

Genotyping
The Infinium Human Exome BeadChip (Illumina, San
Diego, USA) was used to genotype > 200,000 coding
markers plus 5000 additional custom SNPs selected
from previous GWAS studies or in genes of interest.
For this analysis we only considered the SNPs selected as

follows. Firstly, we searched for sexual hormone pathways
in the Kyoto Encyclopedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg/) [9]; the following pathways
were selected: hsa00140 (steroid hormone biosynthesis);
hs4912 (GnRH signalling pathway); hsa04913 (ovarian
steroidogenesis); hsa04914 (progesterone-mediated oocyte
maturation); hsa04915 (estrogen signalling pathway);
hsa04917 (prolactin signalling pathway); hsa04921 (oxyto-
cin signalling pathway); hsa05213 (endometrial cancer);
hsa05215 (prostate cancer); Additional file 1: Table S1
reports the genes included in each pathway and the num-
ber of SNPs in each gene that are included in the Infinium
Human Exome BeadChip (See Additional file 1). Secondly,
we performed a preliminary analysis (screening) with the
SNPs included in these pathways in KEGGS (see statistical
methods, below). Thirdly, the main analysis was carried
out using only those SNPs that passed the screening.

Statistical analysis
For each preselected SNP, the Cochran-Armitage statis-
tics was estimated for the SNP-breast cancer (as a whole
or any of its subtypes) relationship, using the metric 0, 1,
2 for the number of mutated alleles (i.e.: we assumed the
additive model of inheritance). SNPs with p value lower
than 0.001 were included in the main analysis.
In order to adjust for confounding factors, a propensity

score was built using non-reproductive risk factors for
breast cancer. In order to do that, we performed a logistic
regression analysis with breast cancer as outcome and age
at recruitment, province of residence, educational level,
family history of breast cancer, smoking, and BMI as re-
gressors; the propensity score was created as the predicted
probability of being a breast cancer case according to this
logistic regression.
The main analysis was carried out by logistic regression,

using breast cancer as effect and reproductive factors as
regressors. This analysis was performed twice: first,
without genetic information; second, stratifying by each
selected SNP. All logistic regression models were adjusted
for the propensity score and the remaining reproductive
factors. Their results are reported as odds ratios (OR) with

95% confidence intervals (CI). All statistical analyses were
performed with the statistical package Stata 14/SE (Stata
Corp. College Station, TX, USA).

Results
Sample description
One thousand one hundred thirty nine cases and 1322
controls were included in the analysis. Table 1 displays
the main characteristics of the sample. Breast cancer
cases were 2 years younger than controls on average
(56.8 ± 12.6 years for cases and 59.2 ± 13.2 for controls)
and they had a slightly lower educational level. Cases
had a higher number of deliveries than controls, but they
did not differ in age at menarche, age at first birth or
age at menopause. Eight hundred forty nine tumors were
hormone (estrogen or progesterone) receptors positive,
161 were ERBB2 positive and 102 were triple negative.

Reproductive factors and breast cancer
Table 2 demonstrates the reproductive factors – breast
cancer relationship without taking into account genetic
information. The number of deliveries shows a dose-
response protective effect (OR = 0.58, 95%CI: 0.38–0.90
for women with 1–2 deliveries compared with women
with nulliparous, and OR = 0.43, 95% CI: 0.27–0.68 for
women with more than 2 deliveries); age at menopause
lower than 50 years was also protective (OR = 0.77, 95%
CI: 0.62–0.96), while first time delivery when younger
than 20 years old increased the risk for breast cancer (OR
= 1.65, 95% CI: 1.00–2.75, compared with 25–29 years).

SNP selection
Out of 1314 SNPs preselected, 7 SNPs reached a
Cochran-Armitage based p value lower than 0.001 and
were therefore selected for the main analysis
(Additional file 1: Table S1). They were located in 5 genes
(RPS6KA1, ATF6B, HSD17B3, CREB3L1 and SRC), which
fell under the estrogen signalling pathway (5 genes), the
steroid hormone biosynthesis pathway, the GnRH
signalling pathway, the progesterone-mediated oocyte
maturation pathway, the prolactin signalling pathway, the
oxytocin signalling pathway and the prostate cancer
signalling pathway (one gene each). The minor allele
frequency in controls ranges from 5.5% to 39.7%. Three
SNPs (rs204890, rs1269851 and rs204894) were located in
the same gene (ATF6B), being 8.4 Kb the longest distance
among them; they were in strong linkage disequilibrium
with each other (p < 0.001), so from here on we limited
our analysis to rs1269851 (the one with higher Cochran-
Armitage association); results on rs204890 and rs204894
were similar with those on rs1269851.
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Stratified analysis
Table 3 summarizes the stratified analysis on the effect
of the number of deliveries and age at menopause; the
alleles referred to from here on are the minor alleles in
each SNP. Women carrying C allele in rs2229712

(RPS6KA1 gene) did not benefit from the protective
effects of number of deliveries, as ORs for 1–2 and > 2
deliveries compared to 0 deliveries were 0.48 (0.28–0.81)
and 0.34 (0.19–0.59) in non-carriers, and 0.92 (0.42–
1.98) and 0.71 (0.31–1.61) in C carriers. Similar results

Table 1 Sample description

Variable Category Cases (%) Controls (%) p

Age at recruitment < 45 years 214 (19) 234 (18) < 0.001

45–54 years 317 (28) 282 (21)

55–64 years 296 (26) 290 (22)

65–74 years 180 (16) 313 (24)

≥ 75 years 132 (12) 203 (15)

Educational level Unfinished primary 162 (14) 246 (19) 0.02

Primary studies 391 (34) 405 (31)

Secondarystudies 366 (32) 405 (31)

High education 220 (19) 266 (20)

Parity Nulliparous 254 (22) 242 (18) 0.007

1 207 (18) 200 (15)

2 445 (39) 516 (39)

≥ 3 233 (21) 364 (28)

Age at menarche ≤ 12 years 436 (38) 487 (37) 0.46

> 12 years 703 (62) 835 (63)

Menopausal status Premenopausal 657 (59) 889 (67) < 0.001

Postmenopausal 464 (41) 433 (33)

Age at menopause < 50 years 329 (47) 445 (50) 0.18

≥ 50 years 378 (53) 447 (50)

Age at first delivery < 20 years 70 (8) 70 (7) 0.50

20–24 years 247 (28) 286 (28)

25–29 years 329 (37) 410 (40)

30–34 years 163 (19) 187 (18)

≥ 35 years 69 (8) 64 (6)

Tobacco use Non- smoker 607 (53) 792 (60) 0.001

Former smoker 304 (27) 274 (21)

Current smoker 228 (20) 256 (19)

Body Mass Index (kg/m2) < 18.5 15 (1) 26 (2) 0.34

18.5–24.9 527 (46) 638 (48)

25.0–29.9 387 (34) 414 (31)

≥ 30.0 210 (18) 244 (18)

Family history of breast cancer No 764 (67) 1097 (83) < 0.001

First-degree relative 167 (14) 121 (9)

Second-degree relative 24 (2) 14 (1)

Other relative 178 (16) 89 (7)

Hormonal contraceptive No 628 (55) 725 (55) 0.88

Yes 511 (45) 597 (45)

Hormone replacement therapy No 1021 (90) 1177 (89) 0.70

Yes 83 (7) 100 (8)

Dierssen-Sotos et al. BMC Cancer  (2018) 18:280 Page 4 of 9



were found in women carrying the C allele in rs1269851
(ATF6B gene). Carriers of Allele T in rs35652107
(CREB3L1 gene) and allele C in rs6018027 (SRC gene)
however, had a more pronounced effect of the number
of deliveries, although the p values for interaction were
not significant in these two cases.
The protective effect of the early age at menopause

disappeared in women with the C allele in rs2229712
(OR = 0.64, 95% CI: 0.48–0.86 in non-carriers; OR =
1.06, 95% CI: 0.74–1.54 in carriers); the same effect

modification was found in women carrying the C allele
in rs1269851 and the T allele in rs35652107. No other
pattern of effect modification could be found in other
reproductive factors. Tables S2-S6 display the effect of
reproductive factors on breast cancer risk stratified by
genetic variants (See Additional file 1).
To further explore these effect interactions, we con-

structed an ad hoc genetic score including the four SNPs
able to modify the number of deliveries – breast cancer
relationship (i.e.: rs2229712, rs1269851, rs35652107 and

Table 2 Relationship between reproductive factors and breast cancer

Reproductive factor Category OR (95% CI) p value

Age at menarche > 12 years 1 (reference) –

≤ 12 years 0.95 (0.79–1.13) 0.55

Number of deliveries 0 1 (reference) –

1–2 0.58 (0.38–0.90) 0.01

> 2 0.43 (0.27–0.68) < 0.001

Age at first deliverya < 20 years 1.65 (1.00–2.75) 0.05

20–24 years 1.06 (0.83–1.34) 0.65

25–29 years 1 (reference) –

30–34 years 0.93 (0.70–1.23) 0.60

≥ v35 years 1.11 (0.73–1.69) 0.63

Age at menopauseb < 50 years 0.77 (0.62–0.96) 0.02

≥ 50 years 1 (reference) –

Use of hormonal contraceptives No 1 (reference) –

Yes 0.81 (0.67–0.97) 0.02

Use of hormone replacement therapyb No 1 (reference) –

Yes 1.00 (0.95–1.06) 0.89

Odds ratios (OR) adjusted for propensity score, menopausal status and mutually adjusted for the remaining variables in the table
aOdds ratio estimated only in parous women
bOdds ratio estimated only in postmenopausal women

Table 3 Relationship between reproductive factors and breast cancer stratifying by genotype

SNP Genotype Number of deliveriesa Age at menopauseb

0 1–2 > 2 < 50 years ≥ 50 years

All participants 1 (reference) 0.58 (0.38–0.90) 0.43 (0.27–0.68) 0.77 (0.62–0.96) 1 (reference)

rs2229712
(RPS6KA1 gene)

AA genotype (n = 1518) 1 (reference) 0.48 (0.28–0.81) 0.34 (0.19–0.59) 0.64 (0.48–0.86) 1 (reference)

AC or CC genotypes (n = 936) 1 (reference) 0.92 (0.42–1.98) 0.71 (0.31–1.61) 1.06 (0.74–1.54) 1 (reference)

rs1269851
(ATF6B gene)

TT genotype (n = 2075) 1 (reference) 0.54 (0.34–0.86) 0.38 (0.23–0.62) 0.73 (0.57–0.93) 1 (reference)

TC or CC genotypes (n = 383) 1 (reference) 0.78 (0.24–2.55) 0.69 (0.20–2.42) 1.16 (0.65–2.07) 1 (reference)

rs2026001
(HSD17B3 gene)

GG genotype (n = 896) 1 (reference) 0.48 (0.23–0.98) 0.31 (0.14–0.68) 0.73 (0.50–1.06) 1 (reference)

GT or TT genotypes (n = 1559) 1 (reference) 0.64 (0.37–1.09) 0.50 (0.28–0.89) 0.77 (0.58–1.02) 1 (reference)

rs35652107
(CREB3L1 gene)

GG genotype (n = 2163) 1 (reference) 0.68 (0.43–1.07) 0.51 (0.31–0.83) 0.73 (0.58–0.93) 1 (reference)

GT or TT genotypes (n = 291) 1 (reference) 0.23 (0.06–0.88) 0.13 (0.03–0.55) 1.20 (0.61–2.39) 1 (reference)

rs6018027
(SRC gene)

TT genotype (n = 1251) 1 (reference) 0.86 (0.47–1.58) 0.52 (0.27–1.00) 0.78 (0.57–1.07) 1 (reference)

CT or CC genotypes (n = 1207) 1 (reference) 0.40 (0.21–0.73) 0.35 (0.18–0.67) 0.77 (0.56–1.07) 1 (reference)
aOdds ratios and 95% confidence intervals adjusted for propensity score, menopausal status, age at menarche, age at first delivery, age at menopause, use of
hormonal contraceptives, use of hormone replacement therapy
bodds ratios and 95% confidence intervals adjusted for propensity score, menopausal status, age at menarche, number of deliveries, age at first delivery, use of
hormonal contraceptives, use of hormone replacement therapy; estimated in postmenopausal women
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rs6018027). The genetic score was obtained adding one
point each if the minor allele was present in rs2229712
and rs1269851 (where the minor allele carriers did not
benefit from the protective effect of the number of deliv-
eries) and one point each if the minor allele was absent
in rs35652107 and rs6018027 (where the minor allele
carriers had higher protective effect of the number of
deliveries). The distribution of this genetic score among
cases and controls is summarized in Additional files (See
Additional file 1: Table S7). As expected, the protective
effect of the number of deliveries disappeared as the
genetic score value increased (Table 4).

Discussion
Main findings
We found that genetic variants in RPS6KA1, ATF6B,
CREB3L1 and SRC genes were associated with modified
relationships between reproductive factors and breast
cancer, especially the protective effect of the number of
deliveries and the early age at menopause. This is the
first time, to our knowledge, that genetic variants
located in hormonal pathways are found to be modifiers
of the reproductive factors – breast cancer relationship.
These four genes are involved in hormonal pathways,
which suggest a biologically plausible way for this gene-
environment interaction.

Genetic variants in rs1269851 (ATF6B gene) and
rs35652107 (CREB3L1 gene)
ATF6B and CREB3L1 are effector proteins of the unfolded
protein response (UPR) [10, 11]. When endoplasmic
reticulum is exposed to stresses such as hypoxia, glucose
depletion or expression of mutant proteins causes the
accumulation of unfolded proteins [12]. Trying to coun-
terbalance it, the endoplasmic reticulum activates the
UPR [13], which leads to an upturn in the folding capacity
of the endoplasmic reticulum and increases the misfolded
protein degradation. If this response is unsuccessful, the
UPR signals for apoptosis [14]. Proteins’ downstream UPR
receptor pathways -such as ATF6B and CREB3L1- have
proapoptotic roles [15]. UPR seems to be involved in can-
cer development, probably by increasing cancer cell resist-
ance to stresses found in the microenvironment [14].
In keeping with our results, mutations in SNPs

rs1269851 (ATF6B gene) and rs35652107 (CREB3L1 gene)
modify the number of births – breast cancer relationship.
In vitro studies have found that mouse granulosa cells
with endoplasmic reticulum stress did not show any
change in estradiol levels in response to FSH [16]. On the
other hand, estrogens can inhibit the apoptosis induced by
endoplasmic reticulum stress [17, 18], provoking an inter-
action with genes regulating UPR such as ATF6B and
CREB3L1 possible.

Genetic variant in rs2229712 (RPS6KA1 gene)
One way for sexual hormones to induce cancer is the
ability of estradiol to stimulate BAD phosphorylation and
prevent apoptosis, which is mediated via MEK/ERK/
RPS6KA1 and PI3K and Akt pathways [19]. Mutations in
RPS6KA1 could, therefore, modify the estradiol – breast
cancer relationship. In this way, we are reporting that
breast cancer risk did not decrease with the number of de-
liveries in women carrying the allele C in rs2229712. The
allele C frequency in the general population (i.e. controls)
was as high as 21.5% in our study, implying that as many
as 1 out of 5 women would not see their breast cancer risk
decreasing with parity. Public health implications of this
finding are not clear as the number of deliveries a woman
have is not expected to be changed for decreasing breast
cancer risk (21). Genetic variant in rs6018027 (SRC gene).
SRC gene encodes the protein steroid receptor

coactivator-1 (SRC1), which is able to interact with nuclear
receptors in the presence of hormones [20]; in particular,
the complex SRC1 – estrogen receptor α demonstrates
higher affinity binding than other SRC1 – nuclear receptor
complexes [21]. Although SRC1 can be regulated via sev-
eral signaling pathways (Src kinase activity [22], ERK1 and
ERK2 -two mitogen-activated protein kinases (MAPK)-
[23] or epidermal growth factor (EGF) [24]), our main con-
cern in this paper is the putative pathways for interacting
with sexual hormones. In this way, SRC1 is needed for duct

Table 4 Relationship among reproductive factors and breast
cancer stratified by the genetic score; odds ratios adjusted for
propensity score, menopausal status and the remaining variables
in the table

Variable Category Genetic score OR (95% CI)

Number of deliveries 0 Any value 1 (reference)

1–2 0 0.06 (0.01–0.72)

1 0.27 (0.12–0.62)

2 0.82 (0.43–1.59)

3 0.94 (0.35–2.53)

4 2.64 (0.09–76.7)

> 2 0 0.10 (0.01–1.18)

1 0.24 (0.10–0.58)

2 0.43 (0.21–0.88)

3 0.83 (0.29–2.38)

4 2.90 (0.07–118)

Age at menopause < 50 years 0 0.93 (0.18–4.69)

1 0.51 (0.33–0.79)

2 0.87 (0.62–1.22)

3 0.95 (0.58–1.55)

4 1.13 (0.17–7.41)

≥ 50 years Any value 1 (reference)

Genetic score obtained adding 1 point each if: rs2229712 C allele is present,
rs1269851 C allele is present, rs35652107 A allele is absent, rs6018027 C allele
is absent
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elongation in normal mammary tissue during puberty and
for secretory alveoli development in pregnancy [24]; which
opens a route for modifying the relationship between the
number of deliveries and breast cancer.

Genetic variant in rs2026001 (HSD17B3 gene)
The only gene in our analysis that was involved in ste-
roidogenesis was HSD17B3; we have been unable to find
any interaction of this gene with reproductive factors.
HSD17B3 encodes 17 beta-hydroxysteroid dehydrogenase
isoform 3, whose main function is to catalyze the conver-
sion of androstenedione to testosterone in Leydig cells
(testes); testosterone would be peripherally converted to di-
hydrotestosterone -catalyzed by SRDSA1- and to estradiol
-catalyzed by CYP19A1. HSD17B3 gene is also transcribed
in both subcutaneous abdominal and omental adipose de-
pots in women [25] although, its relevance for estradiol
production remains uncertain.

Limitations
Several limitations must be mentioned in our results.
Firstly, we have selected 7 out of 1314 SNPs by using a
Cochran-Armitage 0.001 cut-off p value, which is less
stringent than the Bonferroni-corrected value of 0.05/
1314 ≈ 0.00005. It should be noted, however, that this p
value is not used here for testing hypothesis but for
screening SNPs before testing them as reproductive
factors-effect modifiers. Screening SNPs with cut-off p
values without multiplicity test adjustment have been used
previously for this purpose [26] in GWAS settings.
Secondly, the main assumption in our study was that

the reproductive factors effect would be modified by
genetic variants via hormonal pathways. The four genes
we have identifiedhowever, act in several other pathways
(Additional file 1: Table S9), some of them have been
recognized as cancer-related. For instance, SRC has a
role in 26 pathways, some of them actually related to
cancer (hsa04012 [ErbB signaling pathway], hsa05203
[viral carcinogenesis], hsa05205 [proteoglycans in can-
cer], hsa05219 [bladder cancer]). Thus, we are not attrib-
uting its interaction to a specific pathway (the estrogen
signalling pathway, for instance). Instead, we are using
hormonal pathways as a trail for searching for genes that
interact with specific environmental factors, with the
specific biological mechanisms considered a matter for
lab research.
Thirdly, information on reproductive factors in the

MCC-Spain study was self-reported, which makes it more
prone to misclassification. However, women participating
in this study were not aware of our hypotheses or their
genotypes, therefore if some misclassification bias was
produced, we can expect it to be non-differential.
Fourthly, our study was exploratory by nature: further
research is needed to confirm our results.

Conclusion
In summary, we reported interactions between four gen-
etic variants and reproductive factors in breast cancer risk;
this fact, if confirmed, would modify risk scores on breast
cancer. As this is the first time such an interaction is
reported, caution should be exerted in generalizing our
results till further confirmation in independent studies.
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among reproductive factors and breast cancer stratifying by rs2229712
genotype; odds ratios adjusted for propensity score, menopausal status and
the remaining variables in the table, Table S3. Relationship among
reproductive factors and breast cancer stratifying by rs1269851 genotype;
odds ratios adjusted for propensity score, menopausal status and the
remaining variables in the table, Table S4. Relationship between reproductive
factors and breast cancer stratified by rs2026001 genotype; odds ratios
adjusted for propensity score, menopausal status and the remaining variables
in the table, Table S5. Relationship between reproductive factors and breast
cancer stratified by rs35652107 genotype; odds ratios adjusted for propensity
score, menopausal status and the remaining variables in the table,
Table S6. Relationship between reproductive factors and breast
cancer stratified by rs6018027 genotype; odds ratios adjusted for
propensity score, menopausal status and the remaining variables in
the table, Table S7. Distribution of the genetic score, Table S8. List
of pathways which the analyzed genes are involved in. (DOCX 43 kb)
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