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All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon’s anomalous
magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we
calculate directly the strong-isospin-breaking correction to aHVPμ for the first time with physical values of
mu and md and dynamical u, d, s, and c quarks, thereby removing this important source of systematic
uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate
light-quark masses of δaHVP;mu≠md

μ ¼ þ1.5ð7Þ%, in agreement with estimates from phenomenology.

DOI: 10.1103/PhysRevLett.120.152001

Introduction.—The anomalous magnetic moment of the
muon, aμ ≡ ðgμ − 2Þ=2, provides a stringent test of the
standard model and a sensitive probe of new particles and
forces beyond. It has been measured by BNL Experiment
E821 to a precision of 0.54 ppm [1], and the experimental
result disagrees with standard-model theory expectations by
more than 3 standard deviations [2]. To investigate this
discrepancy, theMuon g − 2Experiment at Fermilab aims to
reduce the experimental error by a factor of 4, with a first
result competitive with E821 expected within a year [3]. To
identify definitively whether any deviation observed

between theory and experiment is due to new particles or
forces, the theory error must be reduced to a commensu-
rate level.
The largest source of theory uncertainty is from the

Oðα2EMÞ hadronic vacuum-polarization contribution [2],
which is shown in Fig. 1 and is denoted by aHVPμ throughout

FIG. 1. Leading hadronic contribution to aμ. The shaded circle
denotes all corrections to the internal photon propagator from the
vacuum polarization of u, d, s, c, and b quarks in the leading one-
loop muon vertex diagram.
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this work. A well-established method for determining this
contribution employs dispersion relations combined with
experimentally measured electron-positron inclusive scat-
tering cross-section data. Recent determinations from this
approach quote errors of 0.4%–0.6% [4–6]. Numerical
lattice quantum chromodynamics (QCD) provides a com-
plementary, systematic approach for calculating aHVPμ

directly from first-principles QCD. Several independent
lattice-QCD efforts to obtain aHVPμ are ongoing [7–11], with
errors on recent determinations ranging from about 2%–6%
[8–10,12]. The theoretical precision on aHVPμ needed to
match the target experimental uncertainty is about 0.2%.
In this Letter, we remove one of the largest systematic

errors common to all current lattice-QCD calculations of
aHVPμ , namely, that arising from the use of degenerate up-
and down-quark masses. We do so by calculating directly
the strong-isospin-breaking contribution to the light-quark-
connected contribution to aHVPμ . Phenomenological esti-
mates suggest that the effect of strong-isospin breaking on
aHVPμ is about 1% [13–15]. Electromagnetic effects are also
not yet included in lattice-QCD calculations of aHVPμ and
lead to a similar-sized uncertainty [16,17]. In order to
disentangle quark-mass from electromagnetic effects, we
define the strong-isospin-breaking correction using up- and
down-quark masses tuned from experimental hadron
masses with QED effects removed [18].
The effect of strong-isospin breaking on the light- and

strange-quark connected contributions to aHVPμ has been
calculated in an exploratory study by the RBC/UKQCD
Collaborations [19] in three-flavor lattice QCD, with a
heavy pion mass of about 340 MeV, and isospin-symmetric
sea quarks. Preliminary four-flavor results for the strong-
isospin-breaking contribution to aHVPμ have also been
presented by the ETM Collaboration [20] for several pion
masses down to Mπ ∼ 210 MeV, but with low statistics. In
this Letter, we analyze two QCD gauge-field ensembles
recently generated by the MILC Collaboration with four
flavors of highly improved staggered (HISQ) sea quarks
and very high statistics; see Ref. [21] for methodology. One
of the ensembles has fully nondegenerate quark masses
with the u, d, s, and c quarks all fixed to their physical
values. Our calculation is the first determination of
δaHVP;mu≠md

μ at the physical pion mass and with sea isospin
breaking.
This Letter is organized as follows. We first present our

numerical lattice-QCD calculation in section Lattice cal-
culation. Next, in section Analysis, we calculate the strong
isospin-breaking correction to aHVPμ and discuss the con-
tributions to the systematic error. We present our final result
and compare it with phenomenological estimates and
previous lattice-QCD calculations in section Result and
outlook.
Lattice calculation.—We calculate the strong-isospin-

breaking correction to aHVPμ on two new QCD gauge-field
ensembles generated by the MILC Collaboration with four

flavors of highly improved staggered (HISQ) quarks
[21,22]. Table I summarizes key parameters of the con-
figurations. The two ensembles have the same lattice
spacing, which is approximately 0.15 fm, and the same
strange- and charm-quark masses, which are both fixed
close to their physical values. With staggered quarks, the
pions possess an additional “taste” quantum number.
Discretization errors from the HISQ action generate
Oðα2sa2Þ corrections to the squared sea-pion masses of
different tastes. On both ensembles, the mass of the taste-
Goldstone ūd pion is fixed close to nature’s value of
Mπ0 ≈ 135 MeV, which is the mass that the charged pion
would have in the absence of electromagnetism. The root-
mean-squared pion mass (averaging over tastes) is about
300 MeV.
The two ensembles differ in one key feature: the values

of the light sea-quark masses. Ensemble 1 is isospin
symmetric, with the two light sea-quark masses equal
and fixed to ml ¼ ðmu þmdÞ=2. Ensemble 2 features
isospin breaking; here the two light-quark masses have
the same average light-quark mass as ensemble 1, but the
ratio of the light sea-quark masses is fixed to the value of
mu=md determined from the MILC Collaboration’s study
of pion and kaon electromagnetic mass splittings within the
quenched approximation of QED [18]. Because the up and
down sea-quark masses on this ensemble each take their
physical values, a chiral extrapolation is not needed in our
analysis. Comparing results on the two ensembles enables
us to quantify the (tiny) effects of sea isospin breaking.
Our analysis strategy closely follows that of Ref. [8].

On each ensemble, we calculate vector-current correlators
hjμðx; tÞjμð0; 0Þi with zero spatial momentum and all
four combinations of local and spatially smeared inter-
polating operators at the source and sink. The smearing
function is given in Eq. (A1) of Ref. [8], and we employ
the same smearing parameters as in that work. To
determine the quark-mass dependence of aHVPμ , we
compute correlators with three valence-quark masses
mq ¼ fmu; ðmu þmdÞ=2; mdg. With staggered quarks,
the local vector current is not the conserved current,

TABLE I. Parameters of the QCD gauge-field ensembles. The
first column shows the ratio of the lattice spacing to the gradient-
flow scale w0 [23]. To convert quantities in lattice-spacing units to
GeV, we use w0 ¼ 0.1715ð9Þ fm [24]. The next columns show
the bare lattice up, down, strange, and charm sea-quark masses in
lattice-spacing units and the number of configurations analyzed.
The last column gives the taste-Goldstone sea-pion mass in GeV
on each ensemble obtained from fits of pseudoscalar-current two-
point correlators as in Ref. [21]. Both ensembles have the same
volume N3

s × Nt ¼ 323 × 48 in lattice spacing units.

w0=a amu=amd=ams=amcð×102Þ Nconf Mπ (GeV)

1.132 15(35) 0.2426=0.2426=6.73=84.47 1902 0.1347(7)
1.132 59(38) 0.1524=0.3328=6.73=84.47 4963 0.1346(7)
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and must be renormalized. The renormalization factor
Zqq
V for HISQ quarks, however, has only mild quark-

mass dependence so it cancels when the strong-isospin-
breaking correction is calculated as a percentage shift.
Additional details on the correlator construction and wave
function smearings can be found in Ref. [8].
We fit the 2 × 2 matrix of correlators together using the

multiexponential parametrization in Eq. (A6) of Ref. [8].
The fit function includes contributions from both vector
and opposite-parity states that arise with staggered valence
quarks. The smeared correlators have smaller overlap with
excited states than the local-local correlator, and therefore
improve the determination of the energies and amplitudes.
We fit the correlators over the symmetric time range [tmin,
T − tmin], thereby ensuring that the fit describes the
correlator over the entire lattice time extent T. To reduce
the degrees of freedom in the fit, in practice we average the
correlator at times t and T − t and fit only to the lattice
midpoint; we also average the smeared-source, local-sink
correlator with the local-source, smeared-sink correlator.
Because our limited number of configurations do not
enable us to reliably determine the smallest eigenvalues
of the correlation matrix, we employ singular-value-
decomposition (SVD) cuts with the values chosen to obtain
stable fits with good correlated χ2 values. In practice, we
replace all eigenvalues below the cut with the value of the
SVD cut times the largest eigenvalue; this prescription
increases the variance of the eigenmodes associated with
the replaced eigenvalues and, thus, the errors on the fit
parameters. We choose the number of states and fit range
based on the stability of the ground-state and first-excited-
state energies and amplitudes.
For both ensembles and all valence-quark masses, we

obtain good correlated fits with stable central values and
errors using tmin=a ≥ 3, Nstates ≥ 3, and an SVD cut of
0.015, which modifies about 40% of the eigenvalues of the
correlationmatrix. For eachof our six fits, the contribution to
the χ2 from the 66 correlator data points ranges from about
45–80. Although the lowest-energy states in the vector-
current correlators are I ¼ 1 ππ pairs, we do not see any
evidence of such states in our two-point correlator fits. This
is not surprising because there are only a few ππ states below
the ρ mass in these correlators, and their amplitudes are
suppressed by the reciprocal of the spatial volume. The
ground-state energies for the correlators with mq ¼ ml are
E0 ¼ 776.7ð6.5Þ and E0 ¼ 779.4ð5.1Þ MeV on the Nf ¼
2þ 1þ 1 and Nf ¼ 1þ 1þ 1þ 1 ensembles, respec-
tively; these are statistically consistentwith the PDGaverage
for the Breit-Wigner mass Mρ0 ¼ 775.26ð25Þ MeV [25].
Following Ref. [8], we reduce the statistical errors in

aHVPμ by replacing the correlator data at large times by the
result of the multiexponential fit. Although the fit function
is appropriate for the periodic lattice temporal boundary
conditions, we correct for the finite lattice temporal size by
using the infinite-time fit function and doubling the

correlator extent to t ¼ 2T. We use the fitted correlator
above t� > 1.5 fm; with this choice, roughly 80% of the
value of aHVPμ comes from the data region. The values of
aHVPμ computed with GfitðtÞ for t� > 1.5 fm agree within
∼1σ with those computed entirely from data, but with more
than 10 times smaller statistical errors for mq ¼ mu.
Analysis.—We calculate aHVPμ using the method intro-

duced by the HPQCD Collaboration [26], in which one
constructs the ½n; n� and ½n; n − 1� Padé approximants for
the renormalized hadronic vacuum polarization function
[Π̂ðq2Þ] from time moments of zero-momentum vector-
current correlation functions. These moments are propor-
tional to the coefficients Πj in a Taylor expansion of Π̂ðq2Þ
around q2 ¼ 0. The true result is guaranteed to lie between
the ½n; n� and ½n; n − 1� Padé approximants. We employ the
[3, 3] Padé approximant for Π̂ðq2Þ obtained from the first
six Taylor coefficients; the values of aHVPμ computed
from the [3, 2] and [3, 3] Padé approximants differ
by 0.1 × 10−10.
In Ref. [8], the ½n; n� and ½n; n − 1� Padé approximants

for Π̂ðq2Þ are constructed from rescaled Taylor coefficients
Πj × ðE0=Mρ0Þ2j, where E0 is the ground-state energy
obtained from the two-point correlator fits. The rescaling
was found to reduce the valence-quark-mass dependence of
aHVPμ because the ρ-meson pole dominates the vacuum
polarization. In addition, the rescaling cancels most of the
error from the uncertainty on the lattice scale w0, which
enters via the muon mass present in the one-loop QED
integral for aHVPμ . Figure 2 shows aHVPμ on ð1þ 1þ 1þ 1Þ-
flavor ensemble at the up, down, and average light-quark
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FIG. 2. Valence-quark-mass dependence of the light-quark-
connected contribution to aHVPμ on the Nf ¼ 1þ 1þ 1þ 1
ensemble without rescaling (open symbols) and with rescaling
each ΠðqqÞ

j by ðE0=Mρ0Þ2j (closed symbols). From left to right,
the pairs of data points correspond to mu, ml ¼ ðmu þmdÞ=2,
and md; each pair of data points is horizontally offset for clarity.
The values of aqqμ include the charge factor q2u þ q2d ¼ 5=9
appropriate for the isospin-symmetric case.
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masses. The valence-quark-mass dependence is statistically
well resolved because the three points are strongly corre-
lated, and is smaller after rescaling.
The physical value of the light-quark-connected contri-

bution to aHVPμ is given by the sum of aHVPμ with two up
quarks in the vector current and with two down quarks in
the vector current weighted by the square of the quarks’
electromagnetic charges:

aphysμ ¼ 4auuμ þ addμ
5

: ð1Þ
We then define the absolute shift with respect to the
isospin-symmetric value as ΔaHVP;mu≠md

μ ≡ aphysμ − allμ ,
and the relative correction to be

δaHVP;mu≠md
μ ¼ ΔaHVP;mu≠md

μ

allμ
; ð2Þ

where ml ≡ ðmu þmdÞ=2.
Table II summarizes the isospin-breaking shifts on the

Nf ¼ 2þ 1þ 1 and Nf ¼ 1þ 1þ 1þ 1 ensembles, both
before and after rescaling the Taylor coefficients. As
expected, we do not observe any significant difference
between the two ensembles. The leading sea isospin-
breaking contributions to aHVPμ are quadratic in the
difference ðmd −muÞ; taking ΛQCD ¼ 300 MeV gives a
rough power-counting estimate of their size as
ðmu −mdÞ2=Λ2

QCD ∼ 0.01%. The differences in aHVPμ are
smaller with rescaling because the valence-quark-mass
dependence is milder.
The errors on the shifts in Table II stem primarily from

the two-point correlator fits. The parametric errors from the
lattice spacing are about a percent before rescaling, and are
twenty times smaller with rescaling. The parametric errors
from the current renormalization factor are ∼0.2%. The
uncertainty due to the use of Padé approximants, which we
take to be the difference between aHVPμ obtained with the
[3, 3] and [3, 2] approximants, is about a percent. The 2.7%
uncertainty on the ratio mu=md in Ref. [18] stems largely
from the estimate of electromagnetic effects, and leads to
errors of about 2% and 1% on the physical up- and down-
quark masses, respectively. Propagating the tuned quark-

mass uncertainties to the physical aHVPμ using the measured
slope of aHVPμ with respect to valence-quark mass changes
the shifts in Table II by ∼0.2–0.3 × 10−10 (≲0.1 × 10−10)
without (with) rescaling. Finally, the leading finite-volume
and discretization effects, which arise from one-loop
diagrams with ππ intermediate states, cancel in ΔaHVPμ

because the charged pions in the loop are sensitive to the
average of the up- and down-quark masses. Higher-order
contributions are suppressed bymud=Λχ ∼ 1%, where Λχ is
a typical chiral perturbation theory scale. We therefore
estimate the systematic uncertainties in the shifts in Table II
due to finite-volume and discretization effects to be 1%
times the leading contributions, or 0.5 × 10−10.
Because the sea-quark-mass dependence of aHVPμ is tiny,

we can compare the shift in the “direct” points in Fig. 2 to
the valence-quark-mass dependence observed in Ref. [8],
which analyzes several isospin-symmetric MILC HISQ
ensembles at three lattice spacings and with a wide range of
pion masses. Figure 3 of that work shows that the “raw”
data for aHVPμ are approximately linear in mq from Mπ ∼
300 MeV down to the physical value with a slope that is
independent of the lattice spacing. We can therefore
estimate the change in aHVPμ that would result from varying
mq betweenmu andmd from the unphysically heavy data in
Ref. [8], and find a value consistent with the difference
obtained from our fully physical calculation here.
The shifts in Table II only include contributions from

quark-connected diagrams, with quark-disconnected con-
tributions expected to be suppressed by 1=Nc. We estimate
the quark-disconnected contribution to the strong-isospin-
breaking correction from one-loop ππ diagrams, which are
especially sensitive to changes in the quark masses, within
finite-volume chiral perturbation theory. Including the
effect of taste splittings between the sea pions, which
reduce the isopsin-breaking shift, we obtain for the ππ-loop
contribution 0.7 × 10−10. To account for resonance and
higher-order contributions, we take about 3 times this
value, or 3 × 10−10, as the uncertainty on the isospin-
breaking shifts in Table II frommissing quark-disconnected
contributions. This conservative error estimate is approx-
imately the size of the full quark-disconnected contribution
to aHVPμ obtained by the BMW Collaboration on their
coarsest ensemble with a ≈ 0.13 fm and similar taste
splittings [27]; we expect the quark-disconnected contri-
bution to the strong-isospin splitting to be smaller.
We obtain our final results for the relative correction

δaHVP;mu≠md
μ by averaging the values on the two ensembles.
Result and outlook.—We obtain for the relative strong

isospin-breaking correction to the light-quark connected
contribution to the muon g − 2 hadronic vacuum polari-
zation

δaHVP;mu≠md
μ ¼

�þ1.5ð7Þ% direct; ð3Þ
þ0.4ð7Þ% withE0 rescaling ð4Þ

where the errors include Monte Carlo statistics and all
systematics. Our result without rescaling the Taylor

TABLE II. Shift in aHVPμ from the isospin-symmetric to the
physical valence-quark masses calculated on the ensembles in
Table I. Results are shown both without and with rescaling the
Taylor coefficients. As explained in the text, the numbers within a
column should agree, but the two columns can (and should)
differ. Errors shown include statistics and all systematic uncer-
tainties.

1010ΔaHVP;mu≠md
μ

Nf Direct with E0 rescaling

2þ 1þ 1 þ7.7ð3.7Þ þ1.9ð4.0Þ
1þ 1þ 1þ 1 þ9.0ð2.3Þ þ2.3ð2.5Þ

PHYSICAL REVIEW LETTERS 120, 152001 (2018)

152001-4



coefficients is consistent with phenomenological estimates
of the dominant isospin-breaking contribution from
ρ − ω mixing using eþe− → πþπ− data [13–15],
Δaρ−ωmix:

μ ∼ 2–5 × 10−10, and chiral perturbation theory
[28], Δaρ−ωmix

μ ∼ 6 × 10−10, although ρ − ω mixing will
also include effects from quark-line disconnected diagrams
that we do not consider here. Recent exploratory lattice-
QCD calculations obtain somewhat smaller estimates for
the relative strong isospin-breaking correction of roughly
0.2%–0.6% for Mπ ≳ 340 MeV [19,20]. We cannot
directly compare our result in Eq. (3) with these values,
however, because they were obtained with unphysically
heavy pions and do not yet include systematic uncertain-
ties. (Recently, the RBC/UKQCD Collaboration obtained a
new result for the strong-isospin-breaking shift at the
physical pion mass of 10.6ð8.0Þ × 10−10 [29], which agrees
with our “direct” values in Table II.)
The percentage shifts in Eqs. (3) and (4) can be used to

correct any existing or future result for the connected
contribution to the hadronic vacuum polarization obtained
with degenerate light quarks. Results for aHVPμ obtained
without rescaling the Taylor coefficients should be cor-
rected using Eq. (3); this applies to most recent lattice-QCD
calculations. Equation (4) should be used to correct aHVPμ

when E0 rescaling is employed.
We have performed the first direct calculation of the

strong-isosopin-breaking correction to aHVPμ at the physical
up- and down-quark masses. We obtain an uncertainty on
the relative correction of 0.7, which is smaller, and also
more reliable, than the ∼1% phenomenological estimate
used in recent lattice-QCD calculations with equal up- and
down-quark masses [8,10,30]. Thus, it reduces a significant
source of uncertainty in aHVPμ , and is a crucial milestone
towards a complete ab initio lattice-QCD calculation of the
hadronic contributions to aμ with the sub-percent precision
needed by the Muon g − 2 and planned J-PARC
experiments.
To improve our results in Eqs. (3) and (4), we will

include quark-disconnected contributions, which are the
dominant source of uncertainty, in a future work. We will
also calculate directly the electromagnetic correction to
aHVPμ using dynamical QCDþ QED gauge-field configu-
rations to be generated soon by the MILC Collaboration
with quarks, gluons, and photons in the sea [31].
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