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Abstract

Monocytes and macrophages constitute the first line of defense of the immune system

against external pathogens. Macrophages have a highly plastic phenotype depending on

environmental conditions; the extremes of this phenotypic spectrum are a pro-inflammatory

defensive role (M1 phenotype) and an anti-inflammatory tissue-repair one (M2 phenotype).

The Inhibitor of Apoptosis (IAP) proteins have important roles in the regulation of several cel-

lular processes, including innate and adaptive immunity. In this study we have analyzed the

differential expression of the IAPs, NAIP, cIAP1 and cIAP2, during macrophage differentia-

tion and polarization into M1 or M2. In polarized THP-1 cells and primary human macro-

phages, NAIP is abundantly expressed in M2 macrophages, while cIAP1 and cIAP2 show

an inverse pattern of expression in polarized macrophages, with elevated expression levels

of cIAP1 in M2 and cIAP2 preferentially expressed in M1. Interestingly, treatment with the

IAP antagonist SMC-LCL161, induced the upregulation of NAIP in M2, the downregulation

of cIAP1 in M1 and M2 and an induction of cIAP2 in M1 macrophages.

Introduction

The innate immune system is the first line of defense against external pathogens. The innate

immunity response to pathogens is nonspecific and largely depends on macrophages. Macro-

phages are a heterogeneous cell population that also participates in tissue homeostasis, includ-

ing the removal of apoptotic cells and cellular debris and in tissue remodelling and repair [1,

2]. Due to their multifunctional roles, macrophages are highly plastic and can modify their

PLOS ONE | https://doi.org/10.1371/journal.pone.0193643 March 8, 2018 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Morón-Calvente V, Romero-Pinedo S,
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metabolism and phenotype in response to microenvironmental cues. Two principal polariza-

tion states have been described, M1 macrophages, or classically activated macrophages, and

M2 macrophages, or alternatively activated macrophages [3, 4]. M1 macrophages exhibit a

pro-inflammatory response, with a high production of effector molecules (reactive oxygen spe-

cies and nitrogen intermediates) and immunostimulatory cytokines (TNFα, IL-1β and IL-6).

Due to their cytotoxic activity, microbicidal and tumoricidal properties, M1 macrophages are

mostly associated with cell-mediated immune responses. On the other hand, M2 macrophages

are characterized by a high level of scavenger-, mannose- and galactose-type receptors, and

they have an important role during allergies and helminth-driven inflammatory reactions [5,

6]. The dysregulation of macrophage polarization is implicated in the development of patholo-

gies [7], such as diabetes [8, 9], cancer [10–13], atherosclerosis [14, 15], myocardial infarction

[16], obesity [17] and asthma [18]. Thus, there is a growing interest in understanding the bal-

ancing of M1/M2 polarization and for the possible therapeutic modulation of M1 and M2.

The inhibitor of apoptosis (IAPs) family are required for multiple cellular processes, such as

apoptosis, cellular proliferation, cytokinesis, [19, 20], signal transduction, heavy metal homeo-

stasis [21, 22], and immunity [23, 24]. The IAP family members are characterized by the pres-

ence of at least one BIR (Baculovirus inhibitor of apoptosis repeat) domain that facilitate

protein-protein interactions. As part of the immune response against pathogens, monocytes

that are differentiating into macrophages undergo apoptotic stress [25]. In addition, the cellu-

lar IAP 1 (cIAP1) is involved in the secretion of proinflammatory cytokines in macrophages

and is redistributed from the nucleus to the cytoplasm during PMA-induced differentiation of

monocytes to macrophages [26, 27]. Furthermore, NAIP participates in the formation of the

NLRC4 inflammasome, a signaling platform that, upon binding of a pathogen-associated

molecular pattern (PAMP) ligand to NAIP, recruits and activates caspase-1, a proteolytic

enzyme that processes the precursors of interleukin-1β and interleukin-18 cytokines for extra-

cellular secretion. [28–30].

The expression profiles of the IAPs, namely cIAP1, cIAP2 and NAIP during the differentia-

tion of monocytes to macrophages and in polarization into M1/M2 states is unknown. More-

over, the functional roles of the IAPs in modulating these processes is also unknown. The aim

of this study is to examine the differential expression of the most immunologically relevant

IAPs during monocyte-to-macrophage differentiation and polarization; an analysis that will

help in setting direction for future studies aimed at the functional and molecular dissection of

the IAPs roles in these critical transitions. We chose to work with two different lineage models,

the monocytic human cell line THP-1, which can be in vitro differentiated into macrophages

[31], and also with human peripheral blood monocytes from healthy donors.

Materials and methods

Cell culture, differentiation and polarization

The use of human samples was approved by the “Comité de Ética en Investigación Humana” of

the Granada University. Approval number 417. Informed consent was obtained from all the

participants.

Human myeloid leukemia THP-1 cells (obtained from the Centro de Instrumentación
Científica, University of Granada, Spain) were grown in RPMI 1640 (Lonza, Allendale, NJ)

supplemented with 10% of heat inactivated fetal calf serum (GIBKO, California, USA), 1mM

of L-glutamine (PAA) and 1% of penicillin-streptomycin (Cambrex, Bio Science) in standard

conditions (37˚C in 5% CO2 humidified atmosphere). THP-1 monocytes were differentiated

into M0 macrophages by 24h incubation with 10ng/mL of phorbol 12-myristate 13-acetate

(PMA, Sigma-Aldrich) followed by 24h of culture in standard RPMI 1640 media. THP-1 M0
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cells were polarized towards M1 macrophages by treatment with 100ng/mL of Lipopolysaccha-

ride (LPS) and 20ng/mL of Interferon-γ (IFN-γ) for 48h. THP-1 M2 macrophages were gener-

ated by 48h treatment with 20ng/mL of IL-4.

Isolation of human primary blood monocytes. Peripheral blood mononuclear cells

(PBMCs) were isolated from buffy coats of four healthy donors by density-gradient centrifuga-

tion using Ficoll-Histopaque (Sigma-Aldrich, St Louis, MO), followed by immunomagnetic

separation according to manufacturer’s instructions (Dynabeads Untouched Human Mono-

cytes Kit from Invitrogen). The purity of the separation was confirmed measuring CD14 posi-

tive cells by flow cytometry (>to 95%). Differentiation of monocytes into resting macrophages

occurred 7 days after culture in RPMI 1640 supplemented with 10% of heat inactivated fetal

calf serum, 1mM of L-glutamine and 1% of penicillin-streptomycin in standard conditions

(37˚C in 5% CO2 humidified atmosphere). Polarization into M1 was accomplished by main-

taining the standard monocyte culture for 5 days (change of media on day 4), then treated

with 20ng/mL of INF-γ and 1 hour later with 100ng/mL of LPS for 48h. M2 polarization was

induced by culturing monocytes for 6 days in standard conditions and then maintained 24h in

the presence of 20ng/mL of IL-4. Written informed consent was obtained from all participants

(University of Granada Comité de Ética en Investigación Humana; #417).

Gene expression analysis

Total RNA was extracted from cells with Trizol (Invitrogen) as recommended by the sup-

plier. cDNA was obtained using the Promega Reverse Transcription System kit according to

manufacturer’s instructions. The synthesized cDNA was, then used for semi-quantitative

PCR or real-time quantitative PCR. For the semi-quantitative PCR, PCR mastermix of Pro-

mega was employed and PCR amplification was performed in a 2720 Thermal Cycler Gen-

eamp (Applied Biosystems) under the following conditions: after a first step of inactivation

at 95˚C for 5 min, 30 cycles of 94˚C for 45 sec, 50˚C for 1 min, 72˚C for 45sec and a final

extension step at 72˚C for 5 min. All PCR products were analyzed by electrophoresis on 1%

agarose gel, calibrated with, photographed and quantified by densitometric scanning using

ImageJ program (National Institutes of Health, USA). The real-time quantitative PCR was

performed employing the SsoAdvanced SYBR Green supermix (Biorad) on a Mastercycler

RealPlex2 (Eppendorf) using the Realplex software. PCRs were conducted using the primers

shown in Table 1.

Table 1. Pairs of primers used for mRNA determinations.

Heading1

Primers Forward (5’!3’) Reverse (5’!3’)

hNAIP exon 4 GCTCATGGATACCACAGGAGA CTCTCAGCCTGCTCTTCAGAT

hNAIP exon 16-17 GAATTTATCGAGTGGCCAAAC TCAAAGACTTGACTGTTGTGG

hCXCL10 GAAAGCAGTTAGCAAGGAAAGGTC ATGTAGGGAAGTGATGGGAGAGG

hCD14 ACAGGTGCCTAAAGGACTGC GATTCCCGTCCAGTGTCAGG

hCD18 CAGCTCACTCTGACCACTTCT TCTGCCAGGAGGTATAGACGA

hCD163 GTCGCTCATCCCGTCAGTCATC GCCGCTGTCTCTGTCTTCGC

hCD206 ACCTCACAAGTATCCACACCATC CTTTCATCACCACACAATCCTC

hActin TGACGGGGTCACCCACACTGTGCCCATCTA CTAGAAGCATTTGCGGTGGACGATGGAGGG

hHPRT1 TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT

hGAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG

human cIAP1, cIAP2 and XIAP primers were obtained from realtimeprimers.com

https://doi.org/10.1371/journal.pone.0193643.t001

IAPs expression in macrophage differentiation and polarization

PLOS ONE | https://doi.org/10.1371/journal.pone.0193643 March 8, 2018 3 / 19

https://doi.org/10.1371/journal.pone.0193643.t001
https://doi.org/10.1371/journal.pone.0193643


Western blot analysis

Cells were washed 2 times with cold PBS, scraped and lysed in radioimmunoprecipitation

assay (RIPA) lysis buffer containing a protease inhibitor cocktail (Roche) for 30 minutes at

4˚C, followed by centrifugation at 13,000g for 15 minutes. Supernatants were collected and

kept at -20˚C. Total amount of protein was determined using a Bio-Rad protein assay kit.

Equal amounts of soluble protein was separated on polyacrylamide gels (7-10%) followed by

transfer to nitrocellulose membranes.

Individual proteins were detected by Western blotting using the following antibodies:

NAIP-J2 [32] and RIAP1 [33] rabbit polyclonal antibodies were used to detect human NAIP

and cIAP1/2 respectively. HSC-70 (sc-7298) from Santa Cruz biotechnology were used as load-

ing control. AlexaFluor680 (Invitrogen) or IRDye800 (Li-Cor) were used to detect the primary

antibodies, and infrared fluorescent signals were detected using the Odyssey Infrared Imaging

System (Li-Cor). Quantification was performed by densitometry analysis using the ImageJ pro-

gram (National Institutes of Health, USA).

Flow cytometry

Cells were washed 2 times with cold PBS, scraped and collected by centrifugation and resus-

pended in FACS buffer (PBS supplemented with 0,5% bovine serum albumin and 5mM of

EDTA). Cells were stained with anti-CD11b (clone ICRF44, FITC conjugated; Biolegend) or

isotype control (mouse IgG1 FITC conjugated biolegend);, anti-CD14 (clone M5e2, APC con-

jugated; Biolegend) or isotype control (mouse, IgG2a, κ, APC conjugated, Biolegend), anti-

CD206 (clone 15-2, APC/cy7 conjugated; Biolegend) or isotype control (mouse IgG1, APC/

cy7 conjugated, Biolegend), anti-CD86 (clone IT2.2, Alexa Fluor 488 conjugated; Biolegend)

or isotype control (mouse IgG2b, κ, Alexa Fluor 488 conjugated, Biolegend) and anti-CD163

(clone RM3/1, Alexa Fluor 647 conjugated; Biolegend) or isotype control (mouse IgG1, κ,

Alexa Fluor 647 conjugated, Biolegend) Cells were analyzed on a BD LSRFortessa X-20 Cell

Analyzer (BD Bioscience) with post-processing in FlowJo software (Tree star Inc). Cell popula-

tions were gated on forward and side scatter to select intact single cells. The gating strategy

and a representative flow diagram is shown in S2 Fig.

Immunostaining and microscopy

Macrophages were grown in 2-well glass chambered coverslip (ibidi Ca#80286). Cells were

fixed for 10 minutes in ice-cold 2% paraformaldehyde in PBS, briefly rinsed in PBS and per-

meabilized with 0.2% Triton X-100/PBS for 10 minutes. Cells were incubated overnight at 4˚C

with the primary antibody diluted in PBS (abcam ab98020, human NAIP, 1:200), rinsed 3

times for 5 minutes with PBS and incubated for 50 minutes at room temperature with the sec-

ondary antibody (goat anti-mouse Alexa Fluor 488, Invitrogen, A-11070, diluted at 1:1000 in

PBS). The slides were counterstained for 5 minutes with Hoechst 33342 (Invitrogen) diluted at

10μg/ml in PBS. The coverslips were then rinsed 3 times for 5 minutes with PBS and mounted

with ProLong Gold (Invitrogen). Confocal microscopy was performed with a Nikon Eclipse

Ti-E microscope. Mean fluorescence intensity per pixel per cell in resting and polarized macro-

phages was determined using using the ImageJ program (National Institutes of Health, USA).

Statistical analysis

Statistical analysis was performed with Graphpad Prism 5 software. Unpaired 2-tailed Stu-

dent’s t-test was used to compare data sets consisting of 2 treatment groups. One-way

ANOVA with a Bonferroni post hoc test was used to calculate the levels of significance between

IAPs expression in macrophage differentiation and polarization
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multiple groups. All THP-1 results were obtained with a minimum of three independent

experimental replications and PBMC results were obtained from samples from four healthy

individuals.

Results

Establishment of the THP-1 macrophage polarization model

The THP-1 cell line has been amply used for in vitro studies of monocyte-to-macrophage dif-

ferentiation [34, 35] and as a model for macrophage polarization [36–38]. We adapted and

optimized these protocols for macrophage differentiation and polarization into M1/M2 sub-

sets. We obtained THP-1 macrophages by initially treating cells with 10ng/mL of PMA (24

hours) and then cultivating with fresh media, without PMA for 24 hours to allow full differen-

tiation into macrophages (denoted M0). Polarized cells were obtained either by culturing M0

cells for 48 hours with 100ng/mL LPS and 20ng/mL INFγ to obtain classical activated macro-

phages (M1) or with 20ng/mL IL-4 to acquire an alternative activation phenotype (M2).

Under these conditions, THP-1 cells demonstrated typical macrophage morphological

changes (Fig 1A). Undifferentiated THP-1 cells are non-adherent and have a round shape,

while PMA treated cells become adherent with a flat and amoeboid shape. M1 and M2 polar-

ized THP-1 cells presented typical cellular protrusions of an activation state, including lamelli-

podia and filopodia [39]. To confirm macrophage differentiation and polarization, we

measured gene expression of the macrophage markers CD14 and CD163 and of the M1/M2

markers, respectively, CXCL10 and CD206. We observed a trend, albeit not statistically signifi-

cant, of the expression of CD163 and CD14 upon differentiation of THP-1 cells into M0 (Fig

1B). However, we observed a significant increase in the expression of CXCL10 in THP M0

cells treated with LPS and INF-γ and a significant increase of CD206 expression in M0 cells

treated with IL-4. Together, these results confirm that we are able to differentiate THP1 cells

into macrophages and to further induce polarization of these cells into M1 or M2 states.

Expression of the IAPs in monocytes and polarized macrophages

NAIP expression in M0, M1 and M2 THP-1 cells. The expression profile of NAIP in

monocytes and macrophages is currently unknown. Western blot and RT-qPCR analysis were

performed to characterize the expression of NAIP during the differentiation of THP-1 mono-

cytes into M0 and M1/M2 polarized macrophages. We observed that the protein levels of

NAIP were significantly downregulated upon differentiation into M0 macrophages and that

the expression of NAIP was significantly upregulated in the M2 subset (Fig 2A and 2B). We

observed a similar trend of NAIP mRNA expression, using primers that amplify regions at

exon 4 and a region between exons 16 and 17 (Fig 2C).

Analysis of NAIP expression in PBMC-derived M1/M2 macrophages

We next assessed whether the expression pattern of NAIP in polarized THP-1 macrophages is

consistent in primary human macrophages. Prior to the analysis of NAIP expression, we con-

firmed that PBMC monocytes can be polarized to M1 or M2 macrophages. As expected, the

expression of M2 markers, CD206, CCL18 and CD163, considered both an M0 and an M2

marker, were significantly upregulated after IL-4 treatment and the expression of the M1

marker CXCL10 was only present in macrophages treated with LPS and INF-γ (S1 Fig). For

the analysis of NAIP expression, we observed that the mRNA level of NAIP was similar in

monocytes and M2 macrophages, but was significantly downregulated in M1 macrophages

(Fig 3A). However, while we did not observe an statistical difference in the protein levels of

IAPs expression in macrophage differentiation and polarization
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Fig 1. Validation of the macrophage differentiation and polarization THP-1 model. THP-1 monocytes were

incubated with 10ng/mL PMA for 24 h to obtain M0 macrophages and then cultured in regular media for 24 h. Cells

were then treated with 20 ng/mL IFNγ and 100 ng/mL LPS or 20 ng/mL IL-4 for 48 h for the induction of the M1 or

M2 states, respectively. A: Phase contrast microscopy images of THP-1 monocytes, and M0-, M1- and

M2-macrophages. B: The expression of the indicated genes was examined by RT-qPCR. Values are normalized to

internal controls (HPRT1 and GAPDH) in each group and then the fold change was calculated taking the expression in

M1 as the base line in the study of CXCL10 and CD163, M2 expression as the base line in the CD206 analysis and

monocyte expression as the baseline in CD14 analysis. Data represent the mean and standard deviation of three

independent experiments. ��� P<0.001 (ANOVA with Bonferroni post hoc).

https://doi.org/10.1371/journal.pone.0193643.g001
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NAIP between monocytes and M0 or polarized macrophages (P = 0.363, Fig 3B), we observed

a significant increase of NAIP levels in M2 macrophages by immunofluorescence (Fig 3C and

3D); with respect to NAIP expression in polarized macrophages we want to emphasized that,

lower NAIP expression in M1 cells with greater NAIP levels in the M2 state are shown both in

THP-1 and PBMCs derived M1/M2 macrophages with a good correlation in NAIP mRNA

and protein levels by western blot (Figs 2 and 3A and 3B).

cIAP1 and cIAP2 expression in M0, M1 and M2 cells. We next determined the expres-

sion profiles of the cellular IAPs, cIAP1 and cIAP2 in THP-1 monocytes, M0- and polarized-

macrophages. We found that the cIAP1 protein expression level was significantly increased

following PMA-induced differentiation of monocytes into M0 and that that level of expression

was maintained in M2 macrophages (Fig 4A and 4B). However, the mRNA levels of cIAP1 in

polarized macrophages did not correlate with the protein levels of cIAP1 (Fig 4C), indicating

that there may be post-transcriptional or post-translational processes that regulate cIAP1 pro-

tein levels. On the other hand, we observed consistent upregulation of cIAP2 mRNA and pro-

tein levels in M1 macrophages (Fig 4A, 4B and 4C).

Fig 2. NAIP expression in monocytes, M0-, M1- and M2-macrophages. A, B: The protein level of NAIP was assessed by

western blotting of cell extracts from undifferentiated monocytes and M0 or polarized M1/M2 THP-1 macrophages. HSC-70 was

used as loading control. A: Representative western blot of one of three experiments with similar results. B: Quantification of

NAIP protein abundance in western blots normalized to HSC-70 of three independent experiments. C: NAIP mRNA expression

of NAIP was was analysed by RT-qPCR using primers that span exon 4 or between exons 16 and 17 of NAIP. Values are

normalized to internal controls (HPRT1 and GAPDH) and presented as mean values ± s.d. of fold-change of three independent

experiments. �P<0.05 ���P< 0.001 (ANOVA with Bonferroni post hoc).

https://doi.org/10.1371/journal.pone.0193643.g002

IAPs expression in macrophage differentiation and polarization

PLOS ONE | https://doi.org/10.1371/journal.pone.0193643 March 8, 2018 7 / 19

https://doi.org/10.1371/journal.pone.0193643.g002
https://doi.org/10.1371/journal.pone.0193643


Fig 3. NAIP expression in polarized primary human macrophages. A: NAIP mRNA levels from PBMC-derived

monocytes or M1 and M2 macrophages were analyzed by RT-qPCR. Values are normalized to internal controls (HPRT1

and GAPDH) and presented as mean values ± s.d. of fold-change of three independent experiments. B: Protein levels of

NAIP in the indicated cell populations were assessed by western blotting. Representative western blot from samples of one

of the donors. Graph represents the quantification of the NAIP protein, normalized to HSC-70 of experiments from four

different healthy donors. C: Representative confocal microscopy images of monocytes, M1 and M2 macrophages from

IAPs expression in macrophage differentiation and polarization
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Effect of IAP inhibitors during macrophage polarization

SMAC mimetic compounds (SMCs) are a class of small molecules that mimic the structure of

the endogenous Second mitochondrial activator of caspases (SMAC). SMCs are IAP antago-

nists, whereby they inhibit the function of cIAP1, cIAP2 and XIAP [40]. We next determined

whether IAP antagonism through the use of SMC-LCL161 can modulate polarization of mac-

rophages into M1 or M2 [41, 42]. We examined whether SMC treatment affected the expres-

sion levels of NAIP, cIAP1 and cIAP2 in M0 macrophages exposed to LCL161 prior to

stimulation into M1 or M2 states. We found that pre-polarization treatment with LCL161 sig-

nificantly enhances NAIP levels in M2 macrophages (Fig 5A and 5B). We observed a similar

trend, albeit not statistically significant, of the mRNA levels of NAIP by RT-qPCR using prim-

ers that span exons 16 and 17 or exon 4 (Fig 5C). A property of SMCs, including LCL161, is

the downregulation of cIAP1 and cIAP2 [43]. We consequently analyzed the levels of cIAP1

and cIAP2 in treated M0 and polarized macrophages pre-treated with LCL161. We found a

reduction in the protein levels of cIAP1 in LCL161-treated M0, M1 or M2 cells (Fig 5A and

5B). On the other hand, we observed elevated protein levels of cIAP2 in LCL161-treated M1

cells (Fig 5A and 5B). Similarly, cIAP1 and cIAP2 mRNA expression in SMC pre-treated M1

and M2 cells matched the corresponding protein levels (Fig 5C).

Given the differences in NAIP and cIAP2 expression in SMC-treated polarized macro-

phages, we next assessed whether SMC treatment affects macrophage polarization into M1 or

M2 by flow cytometry and RT-qPCR. We observed an attenuated expression of the M1 marker

CD86 in THP-1 macrophages stimulated into the M1 state which is concomitantly upregulated

under conditions that induce polarization into M2 (Fig 6B). Consistent with these results, we

observed a downregulation of CXCL10, a chemokine commonly associated with M1 [36], in

SMC treated THP1 M1 cells (Fig 6A). On the other hand, we observed complete ablation of

the M2 marker CD206 in SMC treated M2 cells (Fig 6A). Interestingly, when we profiled the

expression of macrophage markers, such as CD14 and CD163, we observed consistent upregu-

lation of these markers in LCL161-treated M2 THP-1 cells and a similar trend for CD11b (Fig

6A and 6B), which is consistent with the enhanced levels of NAIP (Fig 5) in SMC treated

THP-1 M2 cells. The significance of this upregulation of NAIP and macrophage markers upon

antagonism of the IAPs will need to be analyzed in future studies.

Discussion

The IAPs have been characterized to be involved in several immunological processes. How-

ever, the differential expression of the IAPs in polarized macrophages remained unexplored.

Here we show the expression pattern of NAIP, cIAP1 and cIAP2 during differentiation into

macrophages and polarization into M1/M2 and after the use of the IAP antagonist, monova-

lent SMAC mimetic compound LCL161, in macrophages prior to polarization stimulation.

Macrophage polarization is critical for tissue homeostasis. In certain circumstances, macro-

phages can adopt into a proinflammatory state, acting mainly as a defense against external

pathogens or participating in the repair of damaged tissue. Particular M1/M2 profiles have

been associated with pathologies in which a polarization state switch is associated with the dis-

ease [4, 7]. In cancer, tumor-associated macrophages usually present an M2 phenotype and are

believed to help tumor progression and dissemination of the cancer cells [44, 45]. M2

volunteer 1. Note the amoeboid-like shape in M1 and M2 macrophages. Bar, 10μm. D: Mean fluorescence intensity in

monocytes and M1 and M2 macrophages from two healthy donors. 10 randomly selected cells in each case were analyzed

for their mean fluorescence intensity per cell area using the ImageJ program. �Significant difference (P = 0.0163),
��significant difference (P = 0.0037), ���significant difference (P = 0.0005).

https://doi.org/10.1371/journal.pone.0193643.g003
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Fig 4. cIAP1 and cIAP2 expression in unpolarized (THP-1/monocytes and M0-) and polarized M1- and

M2-macrophages. A, B: Polarized and unpolarized THP-1 cell proteins were extracted and cIAP1/2 protein

abundance was assessed by western blotting using the RIAP1 antibody. HSC-70 was used as loading control. A:

Representative western blot of one of three experiments with similar results. B: Quantification of cIAP1 and cIAP2

protein abundance in western blots normalized to HSC-70 of three independent experiments. C: Total RNA was

extracted, reverse transcribed and cIAP1 and cIAP2 mRNA were analysed by RTq-PCR. Values are normalized to

internal controls (HPRT1 and GAPDH) and presented as mean values ± s.d. of fold-change of three independent

experiments. �P<0.05 ���P< 0.001 (ANOVA with Bonferroni post hoc).

https://doi.org/10.1371/journal.pone.0193643.g004
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Fig 5. Smac mimetics modulate IAP expression during macrophage polarization. THP-1 M0 macrophages were treated with 1μM

LCL161 for 24 h prior to polarization into M1 or M2. A, B: The levels of NAIP, cIAP1 and cIAP2 were determined by western blotting. HSC-

70 was used as loading control. A: Representative western blot from one of three experiments with similar results. B: Quantification of NAIP,

cIAP1 and cIAP2 protein abundance normalized to the corresponding HSC-70 in three independent experiments. C: Determination of

NAIP, cIAP1 and cIAP2 mRNA levels by RT-qPCR. NAIP mRNA expression was evaluated using primers spanning exon 4 or between

exons 16 and 17. Values are normalized to internal controls (HPRT1 and GAPDH) and presented as mean values ± s.d. of fold-change of

three independent experiments. �P<0.05 ��P<0.01 ���P< 0.001 (ANOVA with Bonferroni post hoc).

https://doi.org/10.1371/journal.pone.0193643.g005
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macrophages have been implicated in the pathogenesis of tuberculosis [46, 47] and in the

induction of type 2 diabetes caused by obesity [48]. A predominant M1 polarization state has

been connected to bipolar disorder [49] and the development of nonalcoholic fatty liver dis-

ease [50, 51]. Furthermore, the presence of M1 macrophages within the tumor microenviron-

ment is associated with the elimination of tumors following combinatorial anticancer therapy

strategies [12, 13]. Clearly, the investigation and further understanding of the mechanisms

leading to macrophage polarization and the switch between M1/M2 states are of current inter-

est and might contribute to novel therapeutic approaches.

In this study, we observed distinctive IAP expression profile patterns characteristic to the

M1 or M2 macrophage polarization states. We observed that NAIP expression is subdued in

Fig 6. SMCs alters the markers expression profile of polarized macrophages. THP-1 M0 macrophages were treated with 1μM LCL161

for 24 hours and then induced to polarized into M1 or M2 states. A: CD206, CXCL10 and CD163 polarization marker genes were

examined by semi-quantitative RT-PCR. mRNA expression was normalized to GAPDH in each group and then calculated as fold change

against the expression of the control group. Data represent the mean and standard deviation of three independent experiments. B: Cells

were subsequently analyzed by flow cytometry for the expression of the macrophage markers CD14 and CD11b and of the M1 (CD86)

and M2 (CD206) polarization markers. Data represents mean MFI of three independent experiments. �P<0.05 ��� P<0.0001 (ANOVA

with Bonferroni post Hoc).

https://doi.org/10.1371/journal.pone.0193643.g006
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classically activated macrophages (a.k.a., M1), a finding that was unexpected as NAIP func-

tions as a cytosolic biosensor for some PAMPs and is required for formation of the NLRC4

inflammasome complex [52]. Conversely, NAIP expression is most abundant in M2 macro-

phages. We have recently demonstrated that NAIP is positively involved in the cell division

process [20], which is in line with other studies suggesting that M2-like tissue resident macro-

phages have a self-renewal capacity [53, 54]. Hence, the enhanced expression of NAIP in M2

macrophages proliferation might account for the potential of macrophage proliferation. Inter-

estingly, NAIP expression is increased during adipogenesis [55] and the M2 state has been

described as the main macrophage phenotype found in adipose tissue also presenting local

proliferation ability [8, 48].

In the analysis of the expression profiles of cIAP1 and cIAP2 in polarized macrophages, we

observed upregulation of cIAP2 in M1 macrophages. This finding is consistent with the prem-

ise that IFN-γ [56] or LPS treatment induce the upregulation of cIAP2 [24, 57], in addition,

LPS treatment activates the alternative NF-KappaB pathway, previously reported to upregulate

cIAP2 [58].

This finding is also similar to another study in which cIAP2 transcriptional levels are upre-

gulated in M1 macrophages [59, 60]. In our attempts to analyze the expression of cIAP1, we

found that cIAP1 gene transcript levels do not correlate with the corresponding protein levels.

The levels of cIAP1 mRNA were significantly higher in M1 macrophages, but the protein levels

showed higher in M2- and M0-macrophages. A potential reason for this discrepancy is that

the induction of M1 state by LPS/IFN-γ treatment promotes cIAP1 degradation through

MyD88 [61], which is a compensatory gene expression mechanism. To our knowledge, there

have not been any studies that report the induction of cIAP1 during treatment of LPS or IFN-

γ. A further consequence of cIAP1 degradation in M1 macrophages is the resulting increase of

cIAP2 stability, as the degradation of cIAP1 promotes non-canonical activation of NF-κB that

leads to upregulation of cIAP2 genes [62].

SMAC mimetic compounds constitute a group of small molecules that target cIAP1 and

cIAP2, which promote self-ubiquitination and subsequent proteasomal mediated degrada-

tion [62]. SMCs are currently in clinical trials for the treatment of cancer [63–65]. Here, we

studied the effect of a monovalent SMC, LCL161, during in vitro macrophage polarization.

The treatment of M0 macrophages with LCL161 leads to the downregulation of cIAP1 in M1

and M2 and induction of cIAP2 in M1 macrophages. The upregulation of cIAP2 may be a

consequence of the engagement of the alternative NF-kappaB pathway by the loss of the

cIAPs or by the LPS-induced engagement of the alternative NF-kappaB pathway, which

induces the expression of cIAP2 [58, 66–68]. As different macrophage polarization states are

reported to play different roles in tumorigenesis [11, 69], it is possible that the ability of

SMCs to modulate the polarity of macrophages within tumors can be exploited to eradicate

tumors. Indeed, IAP antagonism has been shown to promote the presence of M1 macro-

phages and is postulated to be important for the eradication of tumors in mouse models

when used in combination with immunomodulatory anti-cancer therapeutics [13, 70, 71].

Overall, our results imply that either cIAP1 or cIAP2 could have a direct role in the modula-

tion of the polarization state during tissue homeostasis.

We observed that SMC treatment induces the upregulation of NAIP in M2 macrophages.

We are intrigued about the elevated level of NAIP in M2 macrophages and that this expression

pattern is further enhanced by IAP antagonism. We hypothesize that SMCs do not interact

with NAIP as has been reported that SMAC does not antagonize the ability of NAIP to inhibit

caspase-9 [72, 73]. It is possible that the induction of NAIP expression is related to engagement

of the NF-kappaB pathway; NAIP expression has been shown to be downregulated in cells

treated with NF-κB inhibitors [74]. Hence, it is probable that SMC treatment induces
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activation of the alternative NF-kappaB pathway, which leads to increased NAIP levels in M2

macrophages.

Although in vitro studies do not always mimic the in vivo situation, we would like to indi-

cate that this is the main reason for us to have explored IAP expression in a human monocytic

cell line as well as in primary derived monocytes from healthy donors; we think that the very

different lineage in both models somehow strengthens our observations.

Conclusion

Here we document a previously unknown expression profile in differentiating macrophages

and the M1/M2 macrophage polarization states for the most immunologically-relevant IAP

proteins, NAIP, cIAP1 and cIAP2. Remarkably, NAIP expression is most abundant in M2

macrophages, while cIAP1 and cIAP2 show an inverse pattern of expression in polarized cells,

cIAP2 is preferentially expressed in M1-macrophages and cIAP1 in M2-macrophages. IAP

antagonist treatment of resting M0 macrophages preceding polarization stimulation, induced

the upregulation of NAIP in M2 and the downregulation of cIAP1 in M1 and M2 but an

induction of cIAP2 in M1 macrophages. Future studies will elucidate the mechanistic roles of

these IAPs underlying macrophage differentiation and polarization and will lead to a better

understanding of the involvement of the IAPs within the M1/M2 phenotype switch, an area

that is receiving increasing attention due to the implications of M1/M2 status with diverse

pathologies and therapy strategies.
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14. Zotes TM, Arias CF, Fuster JJ, Spada R, Pérez-Yagüe S, Hirsch E, et al. PI3K p110γDeletion Attenu-

ates Murine Atherosclerosis by Reducing Macrophage Proliferation but Not Polarization or Apoptosis in

Lesions. PLoS ONE. 2013; 8(8):1–10. https://doi.org/10.1371/journal.pone.0072674

15. Littlefield MJ, Teboul I, Voloshyna I, Reiss AB, Reiss AB, Hospital Wu, et al. Polarization of human

THP-1 macrophages: Link between Adenosine Receptors, Inflammation and Lipid accumulation.

IAPs expression in macrophage differentiation and polarization

PLOS ONE | https://doi.org/10.1371/journal.pone.0193643 March 8, 2018 15 / 19

https://doi.org/10.1038/nri3671
http://www.ncbi.nlm.nih.gov/pubmed/24854589
https://doi.org/10.1038/nri1733
http://www.ncbi.nlm.nih.gov/pubmed/16322748
https://doi.org/10.3389/fimmu.2014.00514
https://doi.org/10.1038/nri2448
http://www.ncbi.nlm.nih.gov/pubmed/19029990
https://doi.org/10.1073/pnas.0809784106
https://doi.org/10.1073/pnas.0809784106
https://doi.org/10.1038/ni.1920
http://www.ncbi.nlm.nih.gov/pubmed/20729857
https://doi.org/10.1007/s00018-015-1995-y
http://www.ncbi.nlm.nih.gov/pubmed/26210152
https://doi.org/10.1186/s12986-015-0016-3
https://doi.org/10.1186/s12986-015-0016-3
https://doi.org/10.1016/j.yexcr.2017.03.043
http://www.ncbi.nlm.nih.gov/pubmed/28341447
https://doi.org/10.3389/fimmu.2014.00127
https://doi.org/10.1016/j.imlet.2009.02.011
http://www.ncbi.nlm.nih.gov/pubmed/19428556
https://doi.org/10.1016/j.ccell.2017.07.006
http://www.ncbi.nlm.nih.gov/pubmed/28810147
https://doi.org/10.1038/s41467-017-00324-x
http://www.ncbi.nlm.nih.gov/pubmed/28839138
https://doi.org/10.1371/journal.pone.0072674
https://doi.org/10.1371/journal.pone.0193643


International Journal of Immunology and Immunotherapy. 2014; 1(1):1–8. https://doi.org/10.23937/

2378-3672/1410001

16. Liu W, Zhang X, Zhao M, Zhang X, Chi J, Liu Y, et al. Activation in M1 but not M2 macrophages contrib-

utes to cardiac remodeling after myocardial infarction in rats: A critical role of the calcium sensing recep-

tor/NRLP3 inflammasome. Cellular Physiology and Biochemistry. 2015; 35(6):2483–2500. https://doi.

org/10.1159/000374048 PMID: 25967877

17. Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun H. Macrophage polarization in obesity and

type 2 diabetes: weighing down our understanding of macrophage function? Frontiers in immunology.

2014; 5:470. https://doi.org/10.3389/fimmu.2014.00470 PMID: 25309549

18. Girodet PO, Nguyen D, Mancini JD, Hundal M, Zhou X, Israel E, et al. Alternative macrophage activa-

tion is increased in asthma. American Journal of Respiratory Cell and Molecular Biology. 2016; 55

(4):467–475. https://doi.org/10.1165/rcmb.2015-0295OC PMID: 27248771

19. Mita AC, Mita MM, Nawrocki ST, Giles FJ. Survivin: Key Regulator of Mitosis and Apoptosis and Novel

Target for Cancer Therapeutics. Clinical Cancer Research. 2008; 14(16):5000–5005. https://doi.org/10.

1158/1078-0432.CCR-08-0746 PMID: 18698017

20. Abadı́a-Molina F, Morón-Calvente V, Baird SD, Shamim F, Martı́n F, MacKenzie A. Neuronal apoptosis

inhibitory protein (NAIP) localizes to the cytokinetic machinery during cell division. Scientific Reports.

2017; 7:39981. https://doi.org/10.1038/srep39981 PMID: 28059125

21. Beug ST, Cheung HH. LaCasse EC, Korneluk RG. Modulation of immune signalling by inhibitors of apo-

ptosis. Trends in Immunology. 2012; 33(11):535–545. https://doi.org/10.1016/j.it.2012.06.004 PMID:

22836014

22. Srinivasula SM, Ashwell JD. IAPs: What’s in a Name? Molecular Cell. 2008; 30(2):123–135. https://doi.

org/10.1016/j.molcel.2008.03.008
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