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This article deals with a numerical approximation method using an evolutionary partial differential equation
(PDE) by discrete variational splines in a finite element space. To formulate the problem, we need an evo-
lutionary PDE equation with respect to the time and the position, certain boundary conditions and a set of
approximating points. We show the existence and uniqueness of the solution and we study a computational
method to compute such a solution. Moreover, we established a convergence result with respect to the time
and the position. We provided several numerical and graphic examples of approximation in order to show
the validity and effectiveness of the presented method. © 2017 Wiley Periodicals, Inc. Numer Methods Partial
Differential Eq 34: 5–18, 2018
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I. INTRODUCTION

In Computer-Aided Design (CAD), the construction of curves and/or surfaces is done tradition-
ally using geometric primitives such as lines, cones and other types of shapes which can be
characterized by some simple equations.

However, when faced with complex problems in engineering, architecture, and geology, what
is needed are smooth curves and/or surfaces, which are shapes that cannot be described by a simple
equation. Commonly, these problems appear in the automotive or aerospace industries where the
section of manufactured objects are designed from some interpolation or approximation data, and
also verifying some hydrodynamic properties that can be modeled by certain ordinary differential
equation (ODE) and/or partial differential equation (PDE). Hence, it is natural to use free-form
curves. In [1], the authors present a design method for free-form curves from a set of approxi-
mation points and a boundary value problem for an ODE. In [2], the authors present a general
scheme for using PDEs to solve surface modeling problems with high-order boundary continuity
conditions.
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This article deals with a numerical solution of evolutionary partial differential equation prob-
lem respect to the time and the position, by discrete variational splines in a finite element space.
A discretization problem in a suitable finite element space is studied. We show the existence and
the uniqueness of the solution of such problem and we study a computational method to com-
pute such solution. Then, we establish a convergence result with respect to the time and position.
Finally, we analyze some numerical and graphical examples to show the validity and effectiveness
of our method. We want to emphasize that this manuscript is entirely different of [3], because
we solve the problem in a finite element space at the same time with respect to the time and the
position, that is, solving a three-dimensional problem; while in [3] first, we resolve the problem
with respect to the time with the finite differential method, second, we resolve the problem in a
finite dimensional space with respect to the position. Working in a space of 3D finite element is
more difficult, which gives more value to the manuscript due to multiple applications in various
fields of science and design.

The remainder is organized as follows. In Section 2, we introduce some notations used in the
article; Section 3 is devoted to formulate the evolutionary problem; then in Section 4, we study the
resolution of such problem in a finite element space, in Section 5, we give a detailed description of
the computation of the method; and we study the convergence of a discrete solution in Section 6.
The Section 7 is finished by presenting some numeric and graphical examples to show the validity
of the method.

II. PRELIMINARIES

The following notations are used:

• Let n, m ∈ N.
• The Euclidean norm and inner product in R

m will be denoted by 〈·〉m and 〈·, ·〉m, respectively,
for m ≥ 2.

• � is an open bounded subset of R
2 and L2(�) stands for the linear space of real Lebesgue

measurable functions such that
∫

�
u2(x)dx < +∞.

• Hn(�) represents the usual Sobolev space Hn(�) of order n of (classes of) functions
u ∈ L2(�), together with all their partial derivatives ∂ iu, in the distribution sense, of order
|i| ≤ n, where for all i = (i1, i2) ∈ N

2, |i| = i1 + i2 and ∂ iu(x) = ∂ |i|u
∂x

i1
1 ∂x

i2
2

, for any

x = (x1, x2) ∈ �;
• Hn

0 (�) is the closure of C∞
0 (�) in Hn(�). Obviously H 0

0 (�) = L2(�);
• Finally, with the same letter C we denote various strictly real positive constants.

The linear space L2(�) is equipped with the inner product

(u, v)0 =
∫

�

u(x)v(x)dx

and the corresponding norm |u|0 = (u, u)
1
2
0 .

Analogously, the Sobolev space Hn(�) is equipped with the inner product

((u, v))n =
∑
|i|≤n

∫
�

∂ iu(x)∂ iv(x)dx,
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the corresponding norm ‖u‖n = ((u, u))
1
2
n , the semi-inner products

(u, v)l =
∑
|i|=l

∫
�

∂ iu(x)∂ iv(x)dx, 0 ≤ l ≤ n,

and the corresponding seminorms |u|l = (u, u)
1
2
l , 0 ≤ l ≤ n.

For greater clarity, we will denote ‖ · ‖n,�, ((·, ·))n,�, | · |l,�, (·, ·)l,� instead of ‖ · ‖n, ((·, ·))n, | · |l ,
and (·, ·)l , respectively.

Later, R
m,l is used to signify the space of real matrices with m rows and l columns, endowed

with the inner product 〈A, B〉m,l = ∑m,l
i,j=1 aijbij , where A = (aij ) 1≤i≤m

1≤j≤l

and B = (bij ) 1≤i≤m
1≤j≤l

, and

the corresponding norm 〈A〉m,l = 〈A, A〉 1
2
m,l .

III. FORMULATION OF THE PROBLEM

Now, let � be an open bounded polygonal subset of R
2 and T a non-negative real number. Thus,

� has a Lipschitz boundary. For simplicity of notation, we write (0, T ) × � = �T .
Let Lx be a differential operator defined from H 2(0, T ) × H 2n(�) into L2(�T ) by

Lxu(t , x) =
∑

|i|,|j |≤n

(−1)|j |∂j
x (pij (x)∂ i

xu(t , x)), (t , x) ∈ �T , (1)

where pij ∈ C |j |(�) and pij = pji for all |i|, |j | ≤ n.
We consider the symmetric bilinear form associated with Lx , defined on H 1(0, T )×Hn(�) by

(u, v)Lx
=

∑
|i|,|j |≤n

(pij (x)∂ i
xu(t , x), ∂j

x v(t , x))0,�T
(2)

this means that

(u, v)Lx
=

∫ T

0

∫
�

⎛
⎝ ∑

|i|,|j |≤n

(pij (x)∂ i
xu(t , x)∂j

x v(t , x)

⎞
⎠ dxdt .

We assume that ∑
|i|,|j |≤n−1

ξ i
pij (x)ξj ≥ 0, ∀x ∈ �, (3)

and that there exists ν > 0 such that∑
|i|,|j |=n

ξ i
pij (x)ξj ≥ ν〈ξ〉2n

2 , ∀x ∈ �, (4)

for all ξ = (ξ1, ξ2) ∈ R
2, where ξ i = ξ

i1
1 ξ

i2
2 , for any i = (i1, i2) ∈ N

2.
Due to (3) and (4), the differential operator Lx is said to be strongly elliptic on �.
It can be easily shown that according to the hypotheses (3) and (4) the bilinear form (·, ·)Lx

defines a semi-inner product on Hn(�).
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The seminorm associated to (·, ·)Lx
is denoted by |u|Lx = (u, u)

1
2
Lx

.
Likewise, let Lt be a differential operator defined from H 2(0, T ) × H 2n(�) into L2(�T ) by

Ltu(t , x) = ∂

∂t

(
p(t , x)

∂

∂t
u(t , x)

)
, (t , x) ∈ �T , (5)

where p(t , x) ∈ C1(0, T ), p(t , x) > 0, for any (t , x) ∈ �T .
Now, we suppose are given that the following functions:

• f ∈ L2(�T );
• ϕ1, ϕ2 ∈ C(�);
• ψi ∈ C(�T ) for any i = 0, . . . , n − 1, with �T = [0, T ] × �

We define the semi-inner product Lt from H 1(0, T ) × Hn(�) into R by

(u, v)Lt
= (p(t , x)∂tu(t , x), ∂tv(t , x))0,�T

and the associated seminorm |u|Lt = (u, u)
1
2
Lt

The goal of this work is to resolve the following problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ltu(t , x) + Lxu(t , x) = f (t , x), (t , x) ∈ �T ,

u(0, x) = ϕ1(x), x ∈ �,

ut(0, x) = ϕ2(x), x ∈ �,
∂i

∂ni u(t , x) = ψi(t , x), for i = 0, . . . , n − 1, t ∈ (0, T ), x ∈ ∂�.

(6)

where ∂� stands for the boundary of �.
We shall show that Problem (6) has a unique solution considering (1), (4), and (5).

IV. RESOLUTION BY FINITE ELEMENT METHOD

Suppose the following as given:

• a partition �s of [0, T ] is given by

0 = t1 < t2 < · · · < tR = T

with s = max
i=2,...,R

(ti − ti−1);

• a triangulation Th of � means of simplices or rectangles of diameter ≤ h being h a positive
real number;

• a finite element space Xh made up over Th such that

Xh has the finite dimension I = I (h)

and

Xh ⊂ Hn(�) ∩ Cn−1(�). (7)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Remark 1. If � is not polygonal, we approximate � by a polygonal subset �h in such a way
that lim

h→0
�\�h = 0 and we construct Th over �h.

Let S1
3(�s) be the finite element space made up over �s from the Hermite generic finite

element. Then, for any v ∈ S1
3(�s), we can write

v(t) =
2R∑
j=1

ṽj (v)vj (t),

where, for all j = 1, . . . , 2R, ṽ is the linear operator defined from H 1(0, T ) into R by

ṽj (v) =
{

v(ti) if j = 2i − 1, i = 1, . . . , R,

v′(ti) if j = 2i, i = 1, . . . , R,

and, for j = 1, . . . , 2R, vj is a basis function of S1
3(�s), defined by the expression

vj (ti) =
{

δ
j

2i−1 if j = 2k − 1, k = 1, . . . , R,

0 if j = 2k, k = 1, . . . , R,

and

v′
j (ti) =

{
0 if j = 2k − 1, k = 1, . . . , R,

δ
j

2i if j = 2k, k = 1, . . . , R.

Likewise, let {w1, . . . , wI } be the basis functions of Xh.
Now, let V = S1

3(�s)⊗Xh and for any j = 1, . . . , 2R and any k = 1, . . . , I , let i = (I−1)j+k,
we define ωi :

ωi(t , x) = vj (t)wk(x), for each (t , x) ∈ �T ,

being i ∈ {1, . . . , M} with M = 2RI .
Let δ = max {s, h} and let Aδ = {(0, ai )/i = 1, . . . , N1}, being

{
a1, . . . , aN1

}
the knots of the

triangulation Th belonging to �.
Moreover, let Bδ = {

(ti , bj )/i = 1, . . . , R, j = 1, . . . , N2

}
, being

{
b1, . . . , bN2

}
the knots of

the triangulation Th belonging to ∂�.
We define the linear operators:

ρ1 : H 1(0, T ) × Hn(�) → R
N1 ,

and

ρ2 : H 1(0, T ) × Hn(�) → R
N1 ,

by

ρ1(v) = (v(0, ai ))1≤i≤N1
, ρ2(v) = (vt (0, ai ))1≤i≤N1

.
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Moreover, let consider the linear operator τ = (τ 0, . . . , τ n−1) where

τ i : H 1(0, T ) × Hn(�) → R
RN2

defined, for each i = 0, . . . , n − 1, by

τ i (v) =
(

∂i

∂ni
v(t , b)

)
(t ,b)∈Bδ

.

For y ∈ R
nRN2 , we consider the subsets

H = {
v ∈ V |ρ1(v) = (ϕ1(ai ))1≤i≤N1

, ρ2(v) = (ϕ2(ai ))1≤i≤N1
, τ (v) = y

}
and

H0 = {
v ∈ V |ρ1(v) = 0, ρ2(v) = 0, τ (v) = 0

}
.

Remark 2. It holds that H is a nonempty bounded convex set of V. Moreover, it is an affine
variety associated with the vectorial space H0.

In this situation, we consider the discrete problem: Find σ ∈ H such that{
σ ∈ H ,

∀v ∈ H , J (σ ) ≤ J (v),
(8)

where J is the quadratic functional defined on V by

J (v) = |v|2L − 2(f , v)0,�T
, (9)

being for all v ∈ V

|v|2L = |v|2Lt
+ |v|2Lx

.

Definition 3. The unique solution of Problem (8), if it exists, will be called an evolution PDE
variational spline associated with Lx , Lt , Aδ , Bδ , (ϕ1(ai ))1≤i≤N1

, (ϕ2(ai ))1≤i≤N1
and y.

The next result shows the existence and uniqueness of the solution.

Theorem 4. Problem (8) admits a unique solution, which is also the unique solution of the
following variational problem: Find σ ∈ H such that, for all v ∈ H0, one has

(σ , v)L = (f , v)0,�T
, (10)

being for each u, v ∈ V

(u, v)L = (u, v)Lt
+ (u, v)Lx

Proof. Let H = H 1(0, T ) × Hn(�) and consider the application a : H × H → R, given by
a(u, v) = 2(u, v)L. Obviously, the form a(·, ·) is bilinear and symmetric in H. From (3)–(5) we

Numerical Methods for Partial Differential Equations DOI 10.1002/num



NUMERICAL APPROXIMATION 11

have that a is coercive (see [4], Theorem 6.3.12]) and its continuity is deduced from the continuity
of (·, ·)L.

Let ϕ(v) = 2(f , v)0,�T
, which is clearly linear and continuous in H. So, by applying

Stampacchia’s Theorem (see [5]), we conclude that there exists a unique θ ∈ H such that
a(θ , w − θ) ≥ ϕ (w − θ) , for all w ∈ H , which implies that a(θ , v) ≥ ϕ(v) for all
v ∈ H0. As H0 is a vectorial subspace, then if v ∈ H0 hence −v ∈ H0, and it follows that
a(θ , −v) ≥ ϕ(−v), for any v ∈ H0.

From this, we obtain that a(θ , v) = ϕ(v) for any v ∈ H0. Furthermore, θ is the minimum in
H of the functional 
(v) = 1

2a(v, v) − ϕ(v), which is the minimum of J since 
(v) = J (v).
Hence, we conclude the result.

Theorem 5. There exists a unique (σ , λ1, λ2, λ3) ∈ V × R
N1 × R

N1 × R
nRN2 such that

(σ , v)L + 〈ρ1v, λ1〉N1
+ 〈ρ2v, λ2〉N1

+ 〈τv, λ3〉nRN2
= (f , v)0,�T

, (11)

for all v ∈ H , where σ is the unique solution of Problem (8).

Proof. Let us reordered the basis of V as follows: we consider the family
{
ω1

1, . . . , ω1
N1

}
as

the basis functions associated with the degree of freedom{

j ,1(v) = v(0, aj ) : j = 1, . . . , N1

}
;

and the family
{
ω2

1, . . . , ω2
N1

}
as the basis functions associated with the degree of freedom

{

j ,2(v) = vt (0, aj ) : j = 1, . . . , N1

}
;

and the family
{
ω3

1, . . . , ω3
RN2

}
as the basis functions associated with the degree of freedom

{
�j(v) = ∂i

∂ni
v(tk , bl) : j = 1, . . . , nRN2

}

with j = (k − 1)N2n + (l − 1)n + i, for k = 1, . . . , R, l = 1, . . . , N2, i = 0, . . . , n − 1.
Now, for each v ∈ H let

ω = v −
N1∑
i=1


i,1(v)w1
i −

N1∑
i=1


i,2(v)w2
i −

nRN2∑
i=1


i,3(v)w3
i .

Then, ω ∈ V and ρ1w = ρ2w = 0, τ (w) = 0, consequently ω ∈ H0.
Let σ be the solution of (8). Then, by Theorem 4 we have σ ∈ H and (σ , ω)L = (f , ω)0,�T

,
this means that

(σ , v)L −
(

σ ,
N1∑
i=1


i,1(v)ω1
i

)
L

−
(

σ ,
N1∑
i=1


i,2(v)ω2
i

)
L

−
(

σ ,
nRN2∑
i=1

�i(v)ω3
i

)
L

= (f , v)0,�T
−

(
f ,

N1∑
i=1


i,1(v)ω1
i

)
0,�T

−
(

f ,
N1∑
i=1


i,2(v)ω2
i

)
0,�T

−
(

f ,
nRN2∑
i=1

�i(v)ω3
i

)
0,�T

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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and by linearity, we obtain

(σ , v)L +
N1∑
i=1


i,1(v)
(
(f , ω1

i )0,�T
− (

σ , ω1
i

)
L

)
+

N1∑
i=1


i,2(v)
(
(f , ω2

i )0,�T

− (
σ , ω1

i

)
L

) +
nRN2∑
i=1

�i(v)
(
(f , ω3

i )0,�T
− (

σ , ω3
i

)
L

)
= (f , v)0,�T

.

If we denote

λ1 =
(
(f , ω1

i )0,�T
− (

σ , ω1
i

)
L

)
1≤i≤N1

,

λ2 =
(
(f , ω2

i )0,�T
− (

σ , ω1
i

)
L

)
1≤i≤N1

,

λ3 =
(
(f , ω3

i )0,�T
− (

σ , ω3
i

)
L

)
1≤i≤nRN2

,

then, for all v ∈ H , we conclude that

(σ , v)L + 〈ρ1v, λ1〉N1
+ 〈ρ2v, λ2〉N1

+ 〈τv, λ3〉nRN2
= (f , v)0,�T

,

and (11) is verified.
Now, we suppose that there exists

(
λ1, λ1

) ∈ R
N1 ,

(
λ2, λ2

) ∈ R
N1 and

(
λ3, λ3

) ∈ R
nRN2 such

that (σ , λ1, λ2, λ3) and (σ , λ1, λ2, λ3) verify (11). Then, for all v ∈ H , we have

(σ , v)L + 〈ρ1v, λ1〉N1
+ 〈ρ2v, λ2〉N1

+ 〈τv, λ3〉nRN2
= (f , v)0,�T

,

(σ , v)L + 〈ρ1v, λ1〉N1
+ 〈ρ2v, λ2〉N1

+ 〈τv, λ3〉nRN2
= (f , v)0,�T

,

and, by subtracting, for all v ∈ H , it follows

〈ρ1v, λ1 − λ1〉N1
+ 〈ρ2v, λ2 − λ2〉N1

+ 〈τv, λ3 − λ3〉nRN2
= 0,

from which we derive λ1 = λ1, λ2 = λ2 and λ3 = λ3.
Hence, the uniqueness of (σ , λ1, λ2, λ3) is obtained.

V. COMPUTATION

We want to obtain in practice the expression of the evolution PDE variational spline.
We remember that the basis functions of V are denoted by ω1, . . . , ω2RI . Then, the function σ

can be expressed as the following linear combination σ = ∑2RI

i=1 γiωi .
Now, if the unknown coefficients γi , for i = 1, . . . , 2RI are computed then we obtain the

expression of σ .
By substituting in (11), for all v ∈ H , we have

2RI∑
j=1

γj (ωj , v)
L

+ 〈ρ1v, λ1〉N1
+ 〈ρ2v, λ2〉N1

+ 〈τv, λ3〉nRN2
= (f , v)0,�T

,

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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subject to the restrictions τσ = y, which are equivalent to⎧⎪⎨
⎪⎩

∑2RI

j=1 γj (ωj , ωk)L
+ 〈ρ1ωk , λ1〉N1

+ 〈ρ2ωk , λ2〉N1
+ 〈τωk , λ3〉nRN2

= (f , ωk)0,�T
,

for k = 1, . . . , 2RI ,∑2RI

j=1 γjτ (ωj ) = y,

that is, a linear system with 2RI + 2N1 + nRN2 equations and the unknowns

γ1, . . . , γ2RI , λ1,1, . . . , λ1,N1 , λ2,1, . . . , λ2,N1 , λ3,1, . . . , λ3,nRN2 .

Its matrix form is (
C D

f T 0

) (
γ

λ

)
=

(
f̂

y

)
,

where C = (cjk)1≤j ,k≤2RI
, with cjk = (ωj , ωk)L

, D = (D1, D2, D3),

D1 = (d1
kj )1≤k≤2RI

1≤j≤N1

, with d1
kj = ωk(0, aj ),

D2 = (d2
kj )1≤k≤2RI

1≤j≤N1

, with d2
kj = (ωk)t (0, aj ),

D3 = (d3
jk)1≤k≤2RI

1≤j≤N2

, with d3
jk =

(
∂i

∂ni
ωk(0, bj )

)
0≤i≤n−1

,

f = (τwj)1≤j≤2RI
, λ = (λ1, λ2, λ3)

T , with

λ1 = (λ1,1, . . . , λ1,N1)
T , λ2 = (λ2,1, . . . , λ2,N1)

T , λ3 = (λ3,1, . . . , λ3,nRN2)
T ,

and where

γ = (γ1, . . . , γ2RI )
T , f̂ = (

(f , ωk)0,�T

)
1≤k≤2RI

, y = (y1, . . . , y2RI )
T .

VI. CONVERGENCE AND ESTIMATION OF ERROR

We consider in H the seminorms | · |s,l , for s = 0, 1, l = 0, . . . , n, defined by

|v|s,l =
∑
|i|=l

∫ T

0

∫
�

∂(s,i)v(t , x)

∂t s∂xi
dxdt ,

and the norm defined by ‖v‖s,l = (∑
j≤s,i≤l |v|2j ,i

) 1
2 .

Suppose, we are given a function F ∈ H. For any r ∈ N, we consider Aδ
r , Bδ

r , Lr
x , Lr

t J r , Hr ,
H0r , Tr , Xr and V r instead of the elements Aδ , Bδ , Lx , Lt J, H, H0, T , X and V given in Section 4.

Let show, under certain hypotheses, that the evolution PDE variational spline relative to
Lr

x , Lr
t , Aδ

r , Bδ
r , ρ1F , ρ2F , and τF converges to F as r → +∞.

For this, we suppose that the following hypothesis holds:

sup
x∈�

min
a∈Aδ

r

〈x − a〉3 = o

(
1

r

)
, as r → +∞, (12)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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and we consider, for each a ∈ Aδ
r , that the linear applications v �→ v(0, a) and v �→ vt (0, a) are

freedom degrees of V r .
Moreover, we consider, for each (t , b) ∈ Bδ

r , that the linear application v �→ ∂i

∂ni v(t , b) are
also freedom degrees of V r .

For any r ∈ N, let δ = δ(r) = max {s, h} with h = h(r) = max
K∈Tr

diam(K), where diam(K) is

the diameter of K, and suppose that

δ → 0, as r → +∞. (13)

We suppose that there exists a constant C > 0 and, for any r ∈ N, a linear operator �r : L2(H) →
Vr verifying

∣∣∣∣∣∣∣∣
(i) ∀s = 0, 1, l = 0, . . . , n − 1, ∀y ∈ H,

|y − �ry|s,l ≤ Cδn−l|y|1,n;

(ii) ∀y ∈ Hn(�T ), lim
r→+∞|y − �ry|1,n = 0.

(14)

The expression of the operator �r is the following:

∀v ∈ L2(�T ), �rv =
2RI∑
i=1

ϕi(qi)ωi , (15)

being 2RI = dimVr , {ϕ1, . . . , ϕ2RI } the freedom degree of V r and, for each i = 1, . . . , 2RI , ωi

is the basis function associated with ϕi , with support Si ⊂ �T and qi ∈ Pm(Si) is the polynomial
associated with ωi defined by

∀q ∈ Pm(Si), (v − qi , q)0,Si
= 0, (16)

where (·, ·)0,Si
is defined as (·, ·)0 for Si instead of �T .

Lemma 6. We suppose that the hypotheses (7), (13), and (14) hold. Then, for all v ∈ H, there
exists a family (vr)r∈N of Vr such that, for all r ∈ N,

ρ1vr = ρ1v, ρ2vr = ρ2v and lim
r→+∞‖vr − v‖1,n = 0.

Proof. Let r ∈ N, given v ∈ H. In these conditions, we define vr ∈ Vr as a function verifying

vr = �rv +
2RI∑
i=1

ϕi(v − qi)wi , (17)

being �r the operator defined in (15). We have that

vr =
2RI∑
i=1

ϕi(qi)wi +
2RI∑
i=1

ϕi(v − qi)wi =
2RI∑
i=1

ϕi(v)wi ,

and it follows that ρ1vr = ρ1v, ρr
2vr = ρ2v and τvr = τv.
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Definitively, vr ∈ Hr for each r ∈ N. From (14), we deduced, for all r ∈ N, that

lim
r→+∞‖v − �rv

j‖1,n = 0. (18)

By reasoning as in the points 2) and 3) of Corollary 5.1 of R. Arcangéli and al. [6] we have

lim
r→+∞

∥∥∥∥
2RI∑
i=1

ϕi(v − qi)wi

∥∥∥∥
1,n

= 0,

it follows, together with (17) and (18), that

lim
r→+∞‖vr − v‖1,n = 0.

Now, let σr be the evolution PDE variational spline in V r relative to Lr
x , Lr

t , Aδ
r , Bδ

r ,
ρ1(F), ρ2(F), and τF .

Theorem 7. Suppose that the hypotheses (7), (12), (13), and (14) hold. Then, one has

lim
r→+∞||F − σr ||1,n = 0.

Proof. Applying Lemma 6, there exists a family (Fr)r∈N ⊂ Hr such that

lim
r→+∞‖Fr − F‖1,n = 0. (19)

Let r ∈ N arbitrary and we indicate by σ̃r the interpolating variational spline in � relative to
Aδ

r ,(ρ1, ρ2), (ρ1(F ), ρ2(F )), τ = 0, and ε = 1 defined in [7].
As σ̃r − Fr ∈ H0 and

H0 ⊂ Hr
0 = {

v ∈ Hn(�T )|ρr
1v = 0, ρr

2v = 0, τ rv = 0
}

,

we deduce, from Theorem 4, that

(σr , σ̃r − Fr)L = (F , σ̃r − Fr)0,�T

which implies that

(σr − Fr , σ̃r − Fr)L = (F − Fr , σ̃r − Fr)0,�T

it follows, that there exists C > 0 such that, for all r ∈ N,

|σr − Fr |1,n ≤ C‖F − Fr‖1,n‖σ̃r − Fr‖1,n.

Applying Corollary 8 of [7], and that ρ1(σr − Fr) = 0, ρ2(σr − Fr) = 0, we deduce that there
exist C > 0 and r0 ∈ N such that, for all r ≥ r0,

||σr − Fr ||1,n ≤ C‖F − Fr‖1,n‖σ̃r − Fr‖1,n.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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It is verified that

||σr − F ||1,n ≤ ||σr − Fr ||1,n + ||Fr − F ||1,n,

then, there exist C > 0 and r0 ∈ N such that, for all r ≥ r0, one has

||σr − F ||1,n ≤ (
C||σ̃r − Fr ||1,n + 1

) ||Fr − F ||1,n,

then, from (19) and Theorem 9 of [7], we conclude that

lim
r→+∞||σr − F ||1,n = 0.

We obtain the following result of estimation of the error of approximation by the evolution
PDE variational spline.

Corollary 8. Under the hypotheses of Theorem 7 then for all s = 0, 1, � = 0, . . . , n, it is verified

|F − σr |s,� = o(rs+�−n), as r → +∞.

Proof. It is obvious by applying Theorem 3.3.7 of [8] and Theorem 7.

VII. NUMERICAL AND GRAPHIC EXAMPLES

Let �T = (0, 1) × (0, 1) × (0, 1) and let f : �T → R given by

f (t , x, y) = sin π 2t2(x + y − 0.5) + cos π 2t2(x − y − 0.5)e0.5(1+t−0.5).

We want to approximate the evolutionary surface given by the graph of f for each value of t. For
this, we consider the evolution problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ttu(t , x, y) + M2u(t , x, y) − Mu(t , x, y) = f (t , x, y), (t , x, y) ∈ �T ,

u(0, x, y) = f (0, x, y), (x, y) ∈ �,

ut(0, x, y) = ft(0, x, y), (x, y) ∈ �,

u(t , x, y) = f (t , x, y), (x, y) ∈ ∂(�), t ∈ [0, 1],
ux(t , x, y) = fx(t , x, y), uy(t , x, y) = fy(t , x, y), (x, y) ∈ ∂(�), t ∈ [0, 1],

Let given h nonnegative real number and Xh be the finite element space constructed from both
equidistant knot sets �x of five knots on the X-axe and �y of five knots on the Y -axe, with
max

{|�x |, |�y |
} ≤ h, from the generic Bogner-Fox-Schmidt finite element of class C1.

We discrete in time the interval (0, 1) with s = 0.1 step, we consider a set Aδ the set of scattered
points (0, ai ) with i = 1, . . . , N1 = 3000 and let consider Bδ , is the set of points of (ti , bj )

with ti ∈ (0, 1), for i = 0, . . . , 9, and bj , for j = 1, . . . , N2, are the knots of �x × �y belong-
ing to ∂� except the vertices. Hence, we compute the evolution PDE variational spline σ in
V = S1

3(�s) ⊗ Xh associated with Lx , Lt , Aδ , Bδ , (ϕ1(ai ))1≤i≤N1
, (ϕ2(ai ))1≤i≤N2

and y where
Xh and S1

3(�s) are introduced before and ϕ1(x) = f (0, x) for each x ∈ � and ϕ2(x) = ft(0, x)

for each x ∈ �.
Estimation of error:
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TABLE I. Table of the estimation of the relative error between the original surfaces and its approximations
by an evolution PDE variational spline from a partition from a partition of 5 × 5 equal rectangles for each
time ti = i

9 for i = 0, . . . , 9.

Time 0 1
9

2
9

3
9

4
9

Error 0 1.679 × 10−13 2.7415 × 10−11 6.2026 × 10−9 8.8693 × 10−9

Time 5
9

6
9

7
9

8
9 1

Error 9.7563 × 10−8 3.3885 × 10−7 1.3285 × 10−6 5.7460 × 10−6 1.2943 × 10−5

FIG. 1. For t = 6
9 . Graphs of the original surface and its approximation by an evolution PDE variational

spline from a partition of 5 × 5 equal rectangles. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. For t = 7
9 . Graphs of the original surface and its approximation by an evolution PDE variational

spline from a partition of 5 × 5 equal rectangles. [Color figure can be viewed at wileyonlinelibrary.com]

Each figure (from 1 to 3) shows the original surfaces and its approximations by an evolution
PDE variational spline from a partition of 5 × 5 equal rectangles, for the corresponding value of
ti with i = 6

9 , 7
9 , 8

9 ·
It took about 6 min to carry out the program for the construction of all the approximating

surfaces, that is, ti = i

9 for i = 1, . . . , 9, defined by some evolution PDE variational splines.

VIII. CONCLUSION

First, to obtain a logical and reasonable comparison, we have taken the same approximation data
as in the article [3], Subsection 6.3, hence from Table I, we can see that there is an improvement
in the calculation of the error estimate by applying the method of this manuscript, the latter being
more complex than the fact working in a 3D space, and programming the finite element of order
three is quite complicated.
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FIG. 3. For t = 8
9 . Graphs of the original surface and its approximation by an evolution PDE variational

spline from a partition of 5 × 5 equal rectangles. [Color figure can be viewed at wileyonlinelibrary.com]

Second, from Table I one can observe that the numerical results are compatible with the theory
presented in this work, especially Theorem of convergence, as the computation of the relative error
diminishes when the number of points is increasing. Whereas one can observe that the graphs
of the surfaces given in Figs. 1–3, left sides, and the ones defined by an evolution PDE varia-
tional spline given in the same Figures (right side) are similar. We conclude that our methodology
presented in this article is well as an approximation one.
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