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Problemas de Contorno no Lineales
Tesis Doctoral

Antonio J. Urena

Version espanola resumida

En 1900, el mismo ano en que Fredholm desarrolld, en Sur une nouvelle méthode pour la résolution du
- probleme de Dirichlet, su teoria de las ecuaciones integrales, y dos afios antes de la defensa de la tesis doctoral
de Lebesgue, Intégrale, longueur, aire, Hilbert plantea 23 problemas en el Segundo Congreso Internacional de
Matematicas de Paris como un desafio para el siglo XX. Estos problemas incluyen la hipétesis del continuo,
el tratamiento matematico de los axiomas de la fisica, la conjetura de Goldbach, la trascendencia de las
potencias de los numeros algebraicos, la hipétesis de Riemann y muchos otros. Algunos de los problemas

fueron resueltos a lo largo del siglo XX, y cada ocasién en que uno de los problemas fue resuelto constituyd
un gran evento para las matematicas.

El problema vigésimo se llamaba ‘El problema general de los valores de contorno’. En su discurso, Hilbert
lo describe en los siguientes términos:

Un importante problema, estrechamente relacionado con el anterior es la cuestién que concierne
a la existencia de soluciones de ecuaciones en derivadas parciales cuando los valores en la frontera,
de la regién estdn prescritos. Este problema ha sido resuelto en su mayor parte por los métodos
finos de H. A. Schwarz, C. Neumann, and Poincaré para la ecuacién diferencial del potencial. No
obstante, estos métodos parecen ser incapaces en general de extensiones directas a 1os casos donde,
a lo largo de la frontera son prescritos, bien los coeficientes diferenciales, bien una determinada
relacion entre ellos y los valores de la funcién. Ni tampoco pueden ser extendidos de forma
inmediata a el caso donde el problema no es la biisqueda de superficies de potencial sino, por
ejemplo, de superficies de drea minima, o superficies de curvatura gaussiana positiva y constante
que pasen a través de una curva dada o extenderse sobre una superficie prescrita. Es mi conviccién
que sera posible probar esos teoremas de existencia a través de un principio general cuya naturaleza
ha sido indicada por el principio de Dirichlet. Este principio general nos permitird quizés entonces
abordar la cuestién: ;Tiene cada problema variacional una solucién cuando se verifican ciertas
condiciones relativas a las condiciones de frontera dadas (por ejemplo, que las funciones que
aparecen en las condiciones de contorno son continuas y poseen en secciones una o mas derivadas),
Yy quizas tras haber extendido, si es necesario, la nocién de solucién?

Muchos de los matemaéticos més importantes del siglo pasado (entre los cuales se encontraban gente del
rango del propio Hilbert para la primera parte de la pregunta y Schwartz y Sobolev para la segunda) dedicaron
sus esfuerzos al estudio de este problema y otros relacionados. Sus trabajos sirvieron par establecer una teoria
bien desarrollada de problemas de contorno para ecuaciones diferenciales lineales, dando lugar a disciplinas
con la relevancia moderna del anélisis convexo, teorfa de distribuciones, teoria de puntos criticos, espacios de
Sobolev, etc.

No obstante, la mayor parte de los fenémenos del mundo que nos rodea parecen exhibir un comportamiento
un comportamiento no lineal. Es por ello que en este momento pasé a ser una prioridad el comprender,
asimisio, los problemas no lineales. En muchos casos, los problemas que surgen en la biologia, mecénica,...
pueden ser vistos como perturbaciones no lineales de problemas lineales.

En esta memoria tratamos principalmente con problemas de contorno semilineales elipticos de segundo

orden, asi como problemas periédicos asociados con ecuaciones diferenciales ordinarias no lineales. Todos
ellos pueden representarse en la forma abstracta




Lu=Nu, (8)

donde L: X — Y y N : Y — Y representan operadores adecuados entre espacios de Banach X X YA CY
de manera compacta. Cuando L es inversible, () puede reescribirse como una ecuacién de punto fijo:

u=[L7'Nu.

Cuando L7 : Y - X y N :Y — Y son operadores continuos y llevan conjuntos acotados en con-
juntos acotados, L7™'N : Y — Y es completamente continuo. En consecuencia, el Teorema del Punto Fijo
de Schauder ([76]), que extendia a operadores completamente continuos entre espacios de Banach infinito
dimensionales el bien conocido teorema del punto fijo de Brouwer, constituyd un paso muy importante hacia
la resolucién de este tipo de problems. El articulo de Schauder fue rdpidamente seguido por la introduccidn,
en 1934, del grado topoldgico de Leray-Schauder [50]. En este importante articulo ya aparecieron hechos
-tales como la existencia de continuos de soluciones para ciertas ecuaciones semilineales dependientes de un
parametro unidimensional- que iban a ser utilizados de forma sistemé&tica por matematicos del dltimo cuarto
del siglo.

La Segunda Guerra Mundial estallé, y los articulos de Schauder y Leray-Schauder tuvieron un escaso
impacto fuera del &mbito de las perturbaciones no lineales de operadores invertibles. En este contexto, los
anos sesenta fueron testigos de un tremendo desarrollo de la teoria de operadores monétonos (véase, por
ejemplo [9], [51]), que podia tratar algunos problemas fuera del &mbito de la teoria de Leray y Schauder, pero
que dificilmente podia aplicarse a la resolucién de problemas donde la ecuacién es una perturbacién no lineal
de un operador lineal cuyo ntcleo cambia de signo, o incluso una perturbacién no monétona de un operador
lineal con un nicleo de signo constante. Es por esto que el articulo de Landesman-Lazer [46] fue un gran

paso hacia adelante en el tratamiento de este tipo de problemas. En este trabajo los autores consideraban el
problema de contorno

Au+ Agu+ g(u) = h(z) in D (1)
U|aD — Or

donde D es un dominio acotado en R¥, h € L?(D), Mk es un valor propio simple de — Ay g: R — R es una
funcién continua para la cual los limites g(+00) = lim,_,+o0 g(s) existen y son finitos, y

g(—o0) < g(€) < g(+00) V€ €R,

para demostrar que, si ¢k es una funcién propia correspondiente a Ay, D~ := {x € D: pp(z) < 0}, ¥
D™ := {z € D : px(x) > 0}, entonces la condicién

g(—o0) [ prdt + g(+00) [ @rdt < / hordt < g(+00) [ rdt + g(—o0) [ prdt
D+ D- D D+ D-
es al mismo tiempo necesaria y suficiente para la existencia de una solucién débil de (1).

En la medida en que este articulo fue capaz de superar los requerimientos de monotonicidad, tuvo un
tremendo impacto, y la recién nacida condicién de Landesman-Lazer fue répidamente adoptada para situa-
ciones similares en otros problemas resonantes (véase, por ejemplo, [58]). Es justo decir, sin embargo, que
resultados del tipo Landesman-Lazer ya habian aparecido en [35] y [48], poco antes de la publicacién de
[46]. Més atin, [48] presentaba una dificultad adicional, puesto que estudiaba perturbaciones de operadores
lineales con un nicleo bidimensional. Ambos articulos buscaban soluciones periddicas y casi periédicas de

ecuaciones diferenciales ordinarias, y no encontraron la misma resonancia entre los expertos como el articulo
de Landesmann y Lazer.

En otro contexto, the ecuacién del péndulo forzado
—u" + Asinu = h(t) (2)

habia sido estudiada en profundidad desde 1922, cuando Hamel publicé, en un nimero especial del Matema-
tische Annalen dedicado al sexagésimo cumpleafios de Hilbert, los primeros resultados generales de existencia




de soluciones 27 —periddicas de la ecuacion (2) cuando h(t) = bsint. Haciendo uso de los métodos directos
del calculo de variaciones, Hamel mostré la existencia de, al menos, una solucién de este problema.

Casi 60 anos después, y cuando el interés en la ecuacién del péndulo habia decaido, Fucik reabri6 el
problema y escribid, en 1969:

Una descripcion del conjunto P de [las funciones| h para las cuales la ecuacion u” + sinu = h(t) tiene
una solucion T'-periddica aparenta continuar siendo terra incognita.

En esta tarea, las condiciones de Landesman-Lazer no simplificaron mucho la tarea; desafortunadamente,
los limites lim;_, 4o sin(z) no existen. Este hecho dio lugar a trabajos tales como [21], [25], [86], [62] que
reintrodujeron, en los tempranos anos ochenta, el uso de métodos variacionales en el estudio de soluciones
periodicas de la ecuacidon del péndulo forzado. Desde entonces, esta ecuacién se ha convertido en un paradigma

para el andlisis no lineal y los sistemas dindmicos [57], y ha sido el objeto de una extensa labor investigadora
por muchos matematicos, véase, por ejemplo, [56].

Sea ahora ¢ > 0 dado. La ecuaciéon
—u"” — cu' + Asinu = h(t) (3)

modela las oscilaciones de la cuenta de un péndulo plano inmerso en un medio con coeficiente de friccién
constante ¢, bajo la accién de una fuerza externa dependiente del tiempo h = h(t). Cuando h es T-periddica
y, por ejemplo, continua, aparecen cuestiones tales como la existencia, o la multiplicidad geométrica (es
decir, multiplicidad salvo miiltiplos constantes de 27), o la estabilidad de las soluciones periédicas de (3).
Audn cuando se han dado muchas respuestas parciales a estos problemas, éstos no estdn, ni mucho menos,
cerrados, y otras cuestiones relacionadas contintian abiertas. En el Capitulo 3 de esta memoria, damos un
paso en la segunda direccion y tratamos el problema de el nimero de soluciones peridédicas geométricamente
diferentes de (3) dependiendo de h. Este problema habia sido ya estudiado, entre otros, por Mawhin and
Willem [62], y posteriormente, por Ortega [65] en el caso conservativo ¢ = 0, y Katriel [42] cuando la
funcién Asin(-) es sustituida por una funcién 27 —periédica y de clase C*? g verificando ciertas condiciones
que conciernen a sus coeficientes de Fourier - condiciones que no son satisfechas en el caso g(u) = Asinu -.
En este capitulo generalizamos los resultados de Ortega-Katriel, y, asimismo, establecemos para ecuaciones
conservativas de tipo péndulo, resultados exactos de multiplicidad.
Maés reciente es la historia del problema analogo con condiciones de contorno de Dirichlet:

—u"" — u+ Asin(u) = h(t)
u(0) = u(w) =0 (4)

y sus generalizaciones a EDP. Como ha sido detallado en [41], la ecuacién diferencial en (4) modela las oscila-
ciones de un reloj de péndulo cuando éste es excitado por la fuerza externa —h. Por supuesto, las condiciones
de Landesman-Lazer tampoco se aplican a este problema, y el uso del principio de la fase estacionaria fue
ya sugerido por Dancer en [25] con objeto de obtener resultados de existencia y multiplicidad a través de
la descomposicién de Lyapunov-Schmidt de este problema. En ciertos aspectos, este problema es mas dificil
de tratar que (2) puesto que, por ejemplo, la periodicidad del funcional de accién desaparece, pero, en otros
aspectos, es mas sencillo, ya que es precisamente este hecho el que permite el uso de técnicas asintéticas (ba-
sadas en el lema de Riemann-Lebesgue) para obtener resultados de resolubilidad o multiplicidad, y nosotros
hacemos uso de esta idea a lo largo del primer y segundo capitulos de esta memoria.

Con més precisién, el primer capitulo estd dedicado al estudio de problemas de contorno de Dirichlet no
autoadjuntos del tipo

—u"” —au' — A\ (a@)u+ g(u) = h(t), tel0,n] (5)
u(0) = u(w) =0,
donde a € R estd dado, A\ (a) :=1+ ‘;—2 es el primer valor propio del problema lineal

—u"(t) — av/(t) = Mu(t), te€|0,n]
u(0) = u(xr) =0,
g € C(R/TZ) es continua y periédica, y h € L'[0,n]. En el caso en que h es una funcién continua y o = 0,

este problema habia sido estudiado por autores como Dancer [25], Ward [85], Schaaf y Schmitt [73], Arcoya
y Canada [6], Canada [11], o Cafiada y Roca [15], [16].



Nosotros extendemos sus resultados al marco més general descrito anteriormente. Nuestras principales
herramientas aqui son la descomposicién de Lyapunov-Schmidt del problema junto con la versién del lema de
Riemann-Lebesgue desarrollada en [85]. En particular, mostramos que el hiperplano de resolubilidad R del
problema linear asociado estd incluido en (el interior de) el conjunto de resolubilidad de (5). Como es bien
sabido desde el primer contraejemplo dado por Ortega [64], el resultado an4logo no es cierto para el problema
T-periédico asociado a (3). Ademds de esto, también establecemos resultados asintéticos y de multiplicidad.

El segundo capitulo estd dedicado al estudio de resultados de resolubilidad y multiplicidad para problemas
elipticos autoadjuntos del tipo

—Au— Au+ g(u) = h(z) = h(z) + ho(z), z € (6)
u(z) =0, T € 0f)
donde (2 es un dominio acotado y regular de R, \; es el primer valor propio de —A actuando sobre H}(f2),
g : R — R, es continua y periédica, y h : @ — R es Lipschitz. Este problema, que puede verse como
la extension natural a EDP de (4), habia sido ya considerado por autores tales como Amann, Ambrosetti y
Mancini (5], Solimini [78], Lupo y Solimini [52], Costa, Jeggle, Schaaf and Schmitt, [23], o Schaaf and Schmitt,
[74], [75] entre otros. Bajo ciertas hipétesis geométricas sobre £ que se verifican, en particular, si  es convexo
o simétrico Steiner, usamos técnicas asintéticas para obtener resultados de resolubilidad, multiplicidad, y no
degeneraciéon. Dichas técnicas son particularmente fructiferas en el caso N = 3; para N > 4 solamente somos
capaces de obtener resultados genéricos, y algunos problemas contintdan abiertos. Asimismo mostramos
ejemplos que muestran diferencias cualitativas que aparecen en el problema de la multiplicidad de soluciones
(con respecto a los casos de dimensiones pequeiias N = 1,2,3) cuando la dimensién N es grande; con
precisiéon, N > 5.
Recientemente, se ha dedicado mucha atencién, tanto en el caso de EDO como el el de EDP, a la extensién

de resultados espectrales, de bifurcacién o de existencia de soluciones, desde ecuaciones semilineales de
segundo orden a perturbaciones de operadores no lineales como el p-Laplaciano

u— Apu = div(|VulP~2Vu)

u otra generalizacién adecuada (véase, por ejemplo, [29], [53], [54], [30], [31]). Dedicamos el capitulo 4
a la extension a sistemas de EDO con el operador p-Laplaciano de un resultado anterior de un resultado
anterior demostrado por Hartman [39] y mejorado después por Knobloch [44] sobre la existencia de soluciones
Dirichlet o periédicas de perturbaciones no lineales del perturbaciones no lineales del operador Laplaciano
que verifican una condicién de Nagumo. Nuestras principales herramientas aqui son una adecuada extensién

de la desigualdad de Hartman-Nagumo, -que nos va a permitir la obtencién de cotas a priori- junto con un
teorema de continuacién probado en [60].
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Chapter O

Introduction

In 1900, the same year as Fredholm developed, in Sur une nouvelle méthode pour la résolution du probléme de
Dirichlet, his theory of integral equations, and two years before Lebesgue’s dissertation, Intégrale, longueur,
aire, Hilbert poses 23 problems at the Second International Congress of Mathematicians in Paris as a challenge
for the 20th century. The problems include the continuum hypothesis, the mathematical treatment of the
axioms of physics, Goldbach’s conjecture, the transcendence of powers of algebraic numbers, the Riemann
hypothesis and many more. Some of the problems were solved during the 20th century, and each time one of
the problems was solved it was a major event for mathematics.

The 20th problem was called ‘The general problem of boundary values’. In his speech, Hilbert describes
it in the following terms:

An important problem closely connected with the foregoing is the question concerning the exis-
tence of solutions of partial differential equations when the values on the boundary of the region
are prescribed. This problem is solved in the main by the keen methods of H. A. Schwarz, C.
Neumann, and Poincaré for the differential equation of the potential. These methods, however.
seem to be generally not capable of direct extension to the case where along the boundary there
are prescribed either the differential coefficients or any relations between these and the values
of the function. Nor can they be extended immediately to the case where the inquiry is not for
potential surfaces but, say, for surfaces of least area, or surfaces of constant positive gaussian
curvature, which are to pass through a prescribed twisted curve or to stretch over a given ring
surface. It is my conviction that it will be possible to prove these existence theorems by means
of a general principle whose nature is indicated by Dirichlet’s principle. This general principle
will then perhaps enable us to approach the question: Has not every reqular variation problem a
solution, provided certain assumptions regarding the given boundary conditions are satisfied (say
that the functions concerned in these boundary conditions are continuous and have in sections one

or more derivatives), and provided also if need be that the notion of a solution shall be suitably
extended?

Many of the most outstanding mathematicians of the twentieth century (among which there were people
of the rank of Hilbert himself for the first part of the question and Schwartz and Sobolev for the second)
devoted their efforts to study this problem and related ones. Their works established a well-developed theory
of boundary value problems for linear differential equations, and gave rise to disciplines with the modern
relevance of convex analysis, monotone operators theory, distribution theory, critical point theory, Sobolev
spaces, etc.

However, most phenomena in our world seem to display an intrinsically nonlinear behavior. Thus, it

became a priority to understand, as well, nonlinear problems. In many cases, problems arising in biology,
mechanics,... may be seen as nonlinear perturbations of linear ones.

In this memory we mainly deal with second order, elliptic, semilinear boundary value problems, or periodic

problems associated with nonlinear ordinary differential equations. All these can be represented in the
abstract form



Lu=Nu, ()

where £L: X — Y and N : Y — Y are suitable operators between Banach spaces X,Y, and X C Y compactly.
When L is inversible, (§) can be rewritten as a fixed point equation:

u=[L"'Nu.

Incase L7 :' Y - X and N : Y — Y are continuous and carry bounded sets into bounded sets,
LN :Y — Y is completely continuous. Thus, the 1930 Schauder’s Fixed Point Theorem ([76]), which
extended to completely continuous operators on infinite dimensional Banach spaces the well-known Brouwer’s
fixed point theorem, was a landmark in the treatment of such problems. Schauder’s paper was closely followed
by the introduction, in 1934, of the Leray-Schauder topological degree [50]. In this remarkable paper already
appeared some facts -such as the existence of continua of solutions for some semilinear equations depending
on a one-dimensional parameter- which were going to be systematically employed by mathematicians in the
last quarter of the century.

The World War II broke out, and Schauder’s and Leray-Schauder’s papers had little impact outside the
scope of nonlinear perturbations of invertible operators. In this background, the sixties saw a tremendous
development of the the theory of operators of monotone type, ([9], [51]), which could treat some problems
outside the scope of the Leray-Schauder theory, but could hardly be applied to solve problems where the
equation is a nonlinear perturbation of a linear operator with nontrivial, sign-changing kernel, or even a
nonmonotonous perturbation of a linear operator with a constant-sign kernel. Thus, the 1970 paper by

Landesman and Lazer [46] was a mayor step in the treatment of such problems. In this work, the authors
considered the boundary value problem

Au+ Agu + g(u) = h(x) in D (1)
ulap =0, ‘

where D is a bounded domain in RY, h € L*(D), A\x is a simple eigenvalue of —A and ¢ : R — R is a
continuous function such that the limits g(£o0) = lims_, 4o g(s) exist and are finite, and

g(—o0) < g(€) < g(+00) VEE€R.

It was shown that, if yi is an eigenfunction corresponding to Ax, D~ := {z € D : pi(z) < 0}, and
DT :={z € D : px(z) > 0}, then the condition

D+ A

g(—o0) wrdt + g(+00) prdt < / hprdt < g(+oo)/ prdt + g(——oo)/ Qxdt
D- D D

is both necessary and sufficient for the existence of a weak solution of (1).

In the mesure that this paper was able to overcome the monotonicity requirements, it had a tremendous
impact, and the just born Landesman-Lazer condition was rapidly adopted for similar situations in other
problems at resonance (see, for instance, [58], for a quick survey). It is fair to say, however, that results of

Landesman-Lazer type had already appeared in [35] and [48], shortly before the publication of [46]. Moreover,
[48] presented an additional difficulty, since it dealt with perturbations of linear operators having a bidimen-

sional kernel. Both papers were looking for almost periodic and periodic solutions of ordinary differential
equations and they did not find the same resonance among experts as the Landesman-Lazer monograph.
In a separate context, the forced pendulum equation

—u" + Asinu = h(t) (2)

had been thoroughly studied since 1922, when Hamel published, in the special issue of the Matematische
Annalen dedicated to Hilbert’s sixtieth birthday anniversary, the first general existence results for 27-periodic

solutions of equation (2) when h(t) = bsint. Using the direct method of the calculus of variations, Hamel
was able to show the existence of, at least, one solution of this problem.

Almost 60 years later, and when the interest in the pendulum equation had decayed, Fu¢ik reopened the
problem and wrote, in 1969:
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Description of the set P of h for which the equation u” + sinu = h(t) has a T-periodic solution seems to
remawn a terra incognita.

In this task, Landesman-Lazer’s conditions did not help much; unfortunately, the limits limz_, 4o Sin(z)
do not exist. It motivated works such as [21], [25], [86], [62] which reintroduced, in the early eighties, the use
of variational methods in the study of the periodic solutions of the forced pendulum equation. Since then,
this equation has become a paradigm for nonlinear analysis and dynamical systems [57], and been the object

of a extensive research by many mathematicians, see Section 3.1. We refer to [56] for a more complete survey
on this equation.

Let now ¢ > 0 be given. The equation
—u"” —cu' + Asinu = h(t) (3)

models the swing of a planar pendulum rod immersed in a medium with constant friction coefficient ¢, under
the action of a time-dependent external force h = h(t). When h is T-periodic and, say, continuous, questions
such as the existence, or the geometric multiplicity (that is, multiplicity up to constant multiples of 27), or
the stability of periodic solutions of (3) appear. Even when many partial answers to these problems have
been given, they are far from closed, and open questions remain. In Chapter 3 we give a step in the second
direction, and we deal with the problem of the number of geometrically different, periodic solutions of (3)
depending on h. The problem had already been studied, among others, by Mawhin and Willem [62], and
later on, by Ortega [65] in the conservative case ¢ = 0, and Katriel [42] when the function A sin(-) is replaced
by a 2m-periodic, C? function g verifying certain additional conditions concerning its Fourier coefficients -
conditions which do not hold for g(u) = Asinu -. Along this chapter we generalize their results and further
establish, for conservative pendulum-type equations, exact multiplicity results.
More recent is the history of the analogous Dirichlet boundary value problem

—u" —u+ Asin(u) = h(t)
u(0) = u(r) = 0 (4)

and its PDE generalizations. It has been detailed in [41] that the differential equation in (4) models the swing
of a pendulum clock as it is excited by the external force —h. Of course, Landesman-Lazer conditions do not
apply here either, and the use of the stationary phase principle was already suggested in Dancer’s paper [25]
in order to obtain existence and multiplicity results through the Lyapunov-Schmidt decomposition of this
problem. We refer to Sections 1.1 and 2.1 for a more detailed overview of its history. In some sense, this
problem is more difficult to deal with than (2), since, for instance, the periodicity of the action functional is
lost, but, in other sense, it is easier, since it is precisely this fact which allows the use of asymptotics (which
are, at the end, based in the so-called Riemann-Lebesgue Lemma) to obtain solvability or multiplicity results,
and we employ this idea along the first and second chapters of this memory.

More precisely, the first chapter is devoted to the study of non self-adjoint, Dirichlet boundary value
problems of the type

—u’ —au' — A (a)u + g(u) = h(t), te]0,n]
w(0) = u(r) = 0, (3)

where a € R is given, A\;(a) :=1 + -“Tg- is the first eigenvalue of the linear problem

—u"(t) — au'(t) = Au(t), te|[0,n]
u(0) = u(w) =0,

g € C(R/TZ) is continuous and periodic, and h € L![0, 7]. In case h is a continuous function and a = 0, this
problem had already been studied by authors such as Dancer [25], Ward [85], Schaaf and Schmitt [73], Arcoya
and Canada [6], Canada [11], or Cafiada and Roca [15], [16]. We extend their results for the more general
framework described above. Our main tools here are the Lyapunov-Schmidt decomposition of the problem
together with the Riemann-Lebesgue Lemma as developed in [85]. In particular, we show the solvability
hyperplane R of the associated linear problem to be included in (the interior of) the solvability set of (5).
As it is well-known since Ortega’s first counterexample [64], the analogous thing does not occur for the
T'—periodic problem associated to (3). We further establish some multiplicity and asymptotic results.
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The second chapter is devoted to the study of solvability and multiplicity results for elliptic self-adjoint
problems of the type

—Au— M\u+ g(u) = h(z) = h(z) + hp(z), z€Q (6)
u(z) = 0, x € 0f)

where (2 is a bounded, regular domain in RY, \; is the first eigenvalue of —A when acting on Hj(R2),9:R—>R
is continuous and periodic, and h :  — R is Lipschitz. This problem, which can be seen as the natural
extension to PDE of (4), had already been considered by authors such as Amann, Ambrosetti and Mancini
5], Solimini [78], Lupo and Solimini 152], Costa, Jeggle, Schaaf and Schmitt, 23], or Schaaf and Schmitt,
[74], [75] among others. Under some geometric assumptions on © which hold, in particular, if © is convex
or Steiner-symmetric, we use asymptotic techniques to obtain solvability, nondegeneracy and multiplicity
results. These are particulary fruitful in case N = 3; for N > 4 the asymptotics only provide generic
results, and open problems remain. We also display examples showing qualitative differences appearing in
the multiplicity problem (with respect to the cases of low dimensions N = 1, 2, 3) when the dimension N is
big; precisely, N > 5.

In recent times, a lot of attention has been given, both in the ordinary and the partial differential cases,

to extend spectral, bifurcation or existence results from semilinear equations of second order to perturbations
of nonlinear operators such as the p-Laplacian

u— Ayu = div(|VulP~%Vu)

or some suitable generalization (see, for instance, [29], [53], [54], [30], [31]). In Chapter 4 we extend to the
vector p-Laplacian case a former result first proved by Hartman [39] and later improved by Knobloch [44]
on the existence of Dirichlet or periodic solutions of nonlinear perturbations of the ordinary Laplacian which
verify a Nagumo condition. Our main tools here are a suitable extension of the so-called Hartman-Nagumo
inequality, -which is going to provide a priori bounds-, together with a continuation theorem proved in 160].

A more detailed overview on the history of the previously mentioned problems, as well as the main

contributions of this doctoral thesis and related open questions, may be found at the beginning of each one
of the four chapters in which it is divided.
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Chapter 1

Dirichlet problems for resonant,

pendulum-like equations: the first
eligenvalue

1.1 Introduction

Second order, ordinary differential equations of the type

—u" —au' + f(t,u) =0

and associated boundary value problems, have been extensively studied in the literature since Newton’s times,

not only because of its intrinsic mathematical importance, but also because of the huge variety of phenomena
in nature they may be used to model.

A particular case is given by nonlinearities f of the form f(¢,u) = r(u) — h(t). They give rise to equations
of the type

—u" — au’ + r(u) = h(t)

In this chapter we deal with nonlinear, resonant boundary value problems having the form

—u” — au’ = \(@)u+ g(u) = h(t) = h(t) + hy(t), te [0,7] (1.1)
u(0) = u(r) =0, |

where the following set of hypothesis is assumed

[H,] a is a given real number, A\;(a) = 1 + a?/4 is the first eigenvalue of the linear problem

—u"(t) — au/(t) = Au(t), te|0,n]

u(0) = u(w) =0, t2)

g € C(R/TZ) is a continuous and T-periodic function with zero mean, and h € L*[0, 7] is an integrable
function.

Here, h is usually called the forcing term, or the external force of the equation. We decompose it as
h = h + hvy, being

1 3
Y(t) = ez’ sint, Dt <,

\/ID1T [e%’ sin s]2d3

and



One important reason to do this is that, in case g is trivial, the resulting ]mear problem (1.1) is solvable
if and only if h = 0. We will call ¥~ this hyperplane in L'[0, 7] :

P = {B e L'[0, 7] : / h(s)y(s)ds = 0} = {h € L'[0,7] : (1.1) with g = 0 is solvable } -
0

The question of the solvability of nonlinear problems of the type (1.1) had already been considered by
different authors, starting with the pioneering work of Dancer ([25]). Here, the boundary value problem (1.1)
was first explored in detail, in the more restricted framework of h being continuous, a = 0, g(u) = Asinu.
In this setting, it was shown ([25], Theorem 4, pp. 182) that, for any given h, there exists ¢g = €o(h) > 0
such that problem (2.1) has solution for any \h| < €o. Further, the problem was also seen to have infinitely
many solutions for A = 0.

Many subsequent efforts were devoted to extend the Theorem above to general periodic nonlinearities g.
We briefly describe some of them in a chronological order. Still assuming the continuity of the forcing term
h, Ward [85] extended Dancer’s results for arbitrary oscillating functions g, showing, in the non-friction case
(cr = 0), that if h = 0, problem (1.1) has at least one solution. His result was improved two years later by
Schaaf and Schmitt (73], who used methods from global bifurcation theory to show that Ward’s problem has
in fact infinitely many positive and infinitely many negative solutions.

A related problem was to show nondegeneracy. It follows from the lower and upper solutions method,
the boundedness of g, and Ward’s results ([85]), that, for any given h € C[0,n], there exists a nonempty,
closed and bounded interval Z; > 0 of real numbers such that (1.1) is solvable if and only if h € Z;. In case
this interval contains a nelghborhood of zero, the equation is said to be nondegenerate. Thus, in Dancer’s
work already appeared the nondegeneracy of (1.1) when & = 0 and g(u) = Asin(u). It was extended for
general periodic nonlinearities (still assuming the continuity of h and the absence of friction) by Canada
and Roca in [15], using a Lyapunov-Schmidt reduction of this problem and a suitable generalization of the
Riemann-Lebesgue lemma developed in [85].

In the first part of this chapter, we further generalize these results for problem (1.1) in the broader
framework established in [H;]. First of all, we have an analogous non-degeneracy result.

Theorem 1.1.1. Assume g £ 0. For any given h € zbi there exist real numbers —e_(h) < 0 < e4(h) such
that problem (1.1) is solvable if and only if —e_(h) < h < e (h).

Further, if H C ¥ is an equi-integrable subset, that is,

there exists hg € L'|0, 7] such that |h| < hg Vh € H,

then, there erists a positive constant € > 0 such that
e_(h), e+(h) > € Vh € H.

We also have a multiplicity result, showing that the number of solutions of (1.1) diverges to infinity

whenever |h| is small enough. This divergence can be seen to be uniform with respect to h belonging to
equi-integrable subsets of ¥=:

Theorem 1.1.2. Let H C ¥+ be an equi-integrable subset. Then, for each m € N there ezists €, > 0 such
that problem (1.1) has at least m different solutions for any h € H, |h| < em.

Finally, it is possible to show that the length of the solvability interval [—e_(h), e, (h)] tends to 0 as the
damping a becomes large. This convergence is uniform with respect to h.

Theorem 1.1.3. lim|q|o0{€+ + €~} = 0 uniformly in o+

Thus, we generalize the existing results in two different directions. Firstly, a damping a is taken into con-
sideration. And, secondly, we deal with forcing terms which are no longer continuous or bounded. This latter
fact is, with much, which introduces the main new difficulties in our problem, and a delicate computations
are needed to tackle it. As in (25, 85, 15|, our approach is based in the Lyapunov-Schmidt decomposition of
equation (1.1).

In the last two sections of this chapter we develop a multi-dimensional generalization of the Riemann-
Lebesgue Lemma, which we use to explore the behavior at infinity of 5. Our arguments there may be
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extended to a much wider variety of problems -say, elliptic problems associated to PDE of the type of these
considered in Chapter II, or resonant problems in higher eigenvalues such as

—u" — au’ — Ag(a)u + g(u) = h(t), te|0,n]
u(0) = u(w) = 0.

where A\x(a) = k% + a?/4 is the kt* eigenvalue of (1.2). However, to decide whether a similar theorem to
(1.1.1) holds for this problem seems to remain an open problem, even though some partial answers have been

given (see [38], [83]).
1.2 Preliminary results. The alternative system

Let us fix h € Y1 and define

T; = {I_z € R : problem (1.1) is solvable} . (1.3)
We consider the linear differential operator
L:Wa'o,n] — L0, x], Lu=—-u" —au — X (a)y, Vu € W0, ],
and the Nemytskii operator associated with —g
N : Wy [0, 7] — L0, ), Nu(t) = —g(u(t)), Vu € W't(0,x], Vt € [0, 7,
so that (1.1) is equivalent to the operator equation
Lu=Nu+h | (1.4)

It is well known that £ is a linear Fredholm operator of zero index. Furthermore,

ker £ = (), im £ = ¢+

where
1 o

p(t) = > e~ 2%sint, O<it<m (1.5)
\/fow le=%°sins| " ds

1s a normalized generator of the eigenspace associated with the first eigenvalue A = ); () of the linear problem
(1.2). Observe that

W20, 7] = ot @ (p),
being

ot {sewgton: [ atpions=o).

This splitting is also well adapted to our problem; just note that £ : 9+ — ¢+ is a topological isomorphism,
and we will use it to rewrite any element u € Wg’l[O, m) as u = U + 1y, where & € R and @ € 1. We call
K : ot — 1t the inverse of this isomorphism and define

Q:L'[0,7] — L0, n], h — (f(: h(s)go(s)ds) ©

In this way, equation (1.4) becomes equivalent to the so-called Lyapunov-Schmidt system

i =K(I - Q)N (ap + @) + Kh (1.6)

h= [ g(ap(s) + a(s))y(s) ds (1.7)

o~



Let us firstly study the so-called auziliary equation (1.6). Let us call 7 the set of its solutions

T:z{(ﬁ,ﬁ)GRxwl:ﬁ

K(I — QN (@ + @) + Kifi} | (1.8)

Something can be said about the set 7. Observe, to start, that being AN/ bounded, and X compact, the
Schauder fixed point theorem implies the existence, for any @ € R, of @& € ¢t such that (a,u) € T:

prr7 = R.

Another important fact, 7 is contained in a cylinder:

There exist M > 0 and an integrable function m € L![0, 7], such that

lu|, |@'| <M, @] < m a.e. in [0, 7],
(1.9)
for any (u,u) € 7.
But then, the Riemann-Lebesgue lemma ([85]) together with (1.6) imply indeed
lim || — Khllcijo,x) = O (1.10)
Uu— 00

uniformly for (a,4) € 7.
Finally, T is locally compact, as it can be easily checked from its definition (1.8).

Other well-known properties of T, related with the existence of ‘large’ connected subsets, will be described

later. In our next step, we are going to start the proof of theorem 1.1.1 by showing the set I; (deﬁned in
(1.3)) to be an interval.

Using the well-known change of variables v = u — KCh, problem (1.1) becomes

—v" — v’ — A1(a)v + g(v+ Kh) = hap(t), te 0, 7
:J)(O)gz v(r) = 0. ] (Ll

Thus, the lower and upper solutions method in a particular version which does not require any ordering
of the lower and upper solutions (see [5, 12]), shows that Z; is an interval. Moreover, if it contains both
positive and negative values, it must be closed. To check this, we will just show that in case m := inf I; <0,

then m € Tj. Tt is indeed a consequence of Ward’s version of the Riemann-Lebesgue lemma ([85]). Let {€,}n
be any sequence in Z; with {€,} — m and let {(@n,,%,)} C R x ¢t be such that

in = K(I — QN (tnp + in) + K(h) (1.12)

and

g5 = /0 " 9(Bnp(8) + tin(s))¥(2)ds (1.13)

We showed in (1.9) that the sequence {i,} must be bounded in C'[0,#]. It implies the sequence {i,}

has, at least, a bounded subsequence, since the contrary would mean {|%,|} — oo and the Riemann-Lebesgue
lemma (85| would imply

n—0oo

m = lim {e,} = '}eréo /; 9(Unp(s) + un(s))y(s) ds = 0.

Thus, we may find subsequences {uy,,_}, of {u,} and {@,, }, of {@,}, together with elements u € C[0, 7],
u € R such that {@,,} — u in C[0,7], {2, } — @. Taking limits as r — oo in (1.12) and (1.13) we deduce:

u=K({ - QN (up+ 1)

and

m= [ " pliale) - alalials) ds (1.14)
0




that is, m € 7.

The idea to show that 7; contains both positive and negative values is roughly that, for || big enough,
u,u) € T,

/ glup + u)y ds = / g(up + Kh)yds
0 0

as a consequence of (1.10). But this latter integral can be shown to oscillate around zero as & — +00. This

—

1s something where the fact that we are dealing with integrals on an interval plays an important role; even

when it remains valid for dimensions 2,3, it is no longer true for N > 4. We will study this in detail in
Chapter 2.

1.3 Study of some oscillating integrals

We may rewrite the bifurcation equation (1.7) as follows:

I = {/0# g(ap(s) + u(s))y(s) ds : (a,4) € T} : (1.15)

On the other hand, well-known results, based upon the continuity property of the Leray-Schauder topo-

logical degree (see, for instance, [25]), show the existence of a continuum (i.e., a closed, connected set)
S C R x ¢+ of solutions

i = K(I — Q)N (ap + @) + Kh V(@,4) €S
with projection on R covering the whole real line
prr(S) = R.

Of course, from (1.15) we know

/0"“' g(ap(s) + u(s))yY(s) ds € I; V(u,a) € S. (1.16)

Relation (1.16) will be later used at big values of || to deduce that Z; contains both positive and negative

values. And, in order to study the asymptotic behaviour of functions defined by integrals of this type, it is
firstly convenient to understand the shape of ¢:

Lemma 1.3.1. There is an (unique) real number 0 € ]:21, g—[ such that:
1. ¢'(t) >0, Vt€ [0,5 —0[, ¥'(t) <0, Vte]|Z —8,n].
2. (5 —-0)=0, (£ -0)<0.

As a consequence, the mazimum value of ¢ on [0, 7] is attained at > —0.

Proof. We recall the explicit expression of ¢, given in (1.5). If, for simplicity, we call

C .= \/f [e‘%"sins]zds ,
0

we have 1
o(t) = Ee“%tsin t,
1 ~ o
fp"(t) = ﬁc-.-e“'ﬂ't (—% sint + Cost) = -ge_?t (% cost 014/12 sin t) )
being
2
A:\/H-‘-;—. (1.17)
7



Since

there is an unique point 0 €] — 7/2, /2 satisfying

1 | /2
COSQ—H, smﬁ——A—.
Then,
A == —_
p'(t) = —C—,e'i_'t cos(t + 6), o"(t) = —A%e™® tsin(t + 20),

and the lemma follows.

Let G be the primitive with zero mean of g. We choose b_, b, € R such that

0<b_,by <T, Gb-) = rn]%n G, G(by) = max G.

Being S connected, for each n € N there exist (@i, in), (Un,9,) € S C T with

Unp (g- —9) + Uy (g - 9) = b_ + nT. (1.18)
Upn 0 (g— — 9) + Uy, (-g— — 9) = by + nT; (1.19)

We plan to prove that, for sufficiently large n,

/w g(Unp + 1n)Y ds < 0 (1.20)
0

and

/w 9(Vnp + Un)8 ds > 0. (1.21)
0

uniformly with respect to h as it varies on equi-integrable subsets of 1. This motivates Theorem 1.3.2
below.

Theorem 1.3.2. Let ) C W02 ’1([0, m|) be bounded in the C*[0,n] topology. Assume, further, that
{w” W E Q} 18 equi-integrable.

Then, there exists n. € N such that for any n € N with n > n,, there ezists a positive constant K, > 0
verifying

/ g(re +w)ydt > K, V(r, w)ﬁ € R x Q with ry (-g—- — 9) + w (g— - 9) = by + nT, (1.22)
0
i , s s
/ g(re + w)pdt < —K,, V(r,w) € R x Q with ry (E = 9) + w (5 — 9) = b_ +nT. (1.23)
0

All the remaining of this Section is consecrated to the proof of this theorem. However, let us firstly see
how to deduce Theorems 1.1.1 and 1.1.2 from this.

Proof of Theorem 1.1.1. Let H C 1% be equi-integrable. Then, the set

§d = U {i} €Ep-:9=K({ - QN(+ 1) +}CB} c W20, n)
heH, TER




is bounded in the C'[0, 7]-topology, while

{'Er”:ﬁEQ}

1s equi-integrable. Thus, n, € N may be chosen such that for any n € N with n > n,, there exists a positive
constant K, > 0 verifying (1.22) and (1.23).

Then, in view of (1.19), (1.18) and (1.3), it implies, for the particular case of n = Ty,

I; O [-Kn., Ky Vh € H,

showing Theorem 1.1.1.

Proof of Theorem 1.1.2. Let H C ¥+ be equi-integrable and choose n, € N as in the proof of Theorem 1.1.1
above.
It follows from our auxiliary equation (1.6) that the limit in (1.10) is indeed uniform with respect to h

belonging to bounded subsets of ¥*. Thus, a natural number n* 2 n, may be found such that given any
n > n* and

{(ﬁﬂ:ﬁﬂ)}nznnn ) {(ﬁﬂlﬁﬂ)}nznn )
sequences of solutions of (1.6) for some h € H, verifying (1.18) and (1.19) for each n > n., we have
Un@(t) + Un(t) < Vnp(t) + On(t) < Bp190(t) + Unpq(t) Vi €0, 7[ in case b_ < by ; (1.24)
‘L-Jn(p(t) + 'En(t) < ﬁn(p(t) o ﬁn(t) < 17n+1go(t) a7 'En+1(t) Vi E]O,ﬂ'[ in case b+ < b_ . (125)
We observe that we further have
i, ' (0) + 4, (0) < 99" (0) + 77, (0), in case b_ < by ;
ﬁn‘P’(O) 0= ﬁ;(O) < 1-)n+1(,0f(0) i ﬁn+1(0), In case b+ < b -

the nonstrict inequalities being a consequence of (1.24) and (1.25), while equalities cannot occur.
Thus, the lower and upper solutions method gives us, for any h € H and

Al <  min  {K,},

n*<n<n*+m

the existence of at least m different solutions of (1.1).

Proof of Theorem 1.3.2. Of course, (1.22) and (1.23) are analogous, and we may restrict ourselves to prove,

for instance, (1.22). In order to achieve that we may well concentrate in the case of {vn} and limit ourselves
to show

lim ﬁn/ 9(Vnp + Un)Y ds = 400, (1.26)
n—oo 0
uniformly with respect to h belonging to equi-integrable subsets of 9. Thus, we choose any sequence

{(Wn,@n)} in R x ¢+, (in fact, our proof will only need a sequence {(©n,@n)} in R x W' [0, 71]), from which
we assume:

3M > 0, 3m € L'[0, 7] such that |w,| < M, jwn| <M, |W!|<m VneN, (1.27)
D (g - 9) + @n (% = 9) =b, +nT VYneN, (1.28)

and we are going to show that i
lim @, /0 HEpF )it dai= St (1.29)

Note that, from (1.27) and (1.28) we deduce that @,, — 400 as n — +oo. Thus, it is not restrictive to
assume w, > 0 Vn € N. Let us define

1
Pn =9+ —wpy (130)

Wn

As {wn} — +o00 and ¢'(t) # 0if t # Z — 6, it seems reasonable we will be able to control by below |p/ |
by 3|¢’| whenever n is big and we are not too close to 5 — 6. This is shown next:

9



Lemma 1.3.3. There ezist D > 0 and n; € N such that

. : 1| , z D D
pn(t)——fp(t)‘g—go(t)l, vte[0,m]\ |z -0-=Z2_6+=| VYn>n. (1.31)
2 _2 Wy 2 Wn |
Proof. Pick 0 < e < —¢"(% — 6) and D > 0 satisfying
2M
D > 2 1.32
—(5—0)—¢ L

where M is the constant given in (1.27). Moreover, since

n (T a2\ _ s ' (t)
4 (2 9) —t_l.l%n—e i~ (% =0)

we may choose ¢ > 0 such that [ — 60 —4,% — 60 + 6] C [0,7], and

P'(t)2 (" (F-0)+e)(t—(3-0) Vte[2-0-06,Z 0],

(1.33)
P'() < (¢"(F-0)+¢)(t—(5-6)), Ve [E—0,T—0+7].
Finally, select n; € N such that
' 2M i1 ™ D
> ——f -5 — — el
ltp (t)l > — Vit € [0,7]\ [2 03, 9+5], = & Vn > ;. (1.34)

Then, if n > n;,and t € [0, 5 =0 = 5], we have from (1.34)

1

: A’I/‘Dn) = E(Pr(t)

Palt) 2 9'(0) = M/in = 54/(0) + (9 (/2 = M/5) 2 50/(0) + (1/227

Also, if n > ny, and t € [12'- =il =9, %—10 D/E;n], we have from (1.32)

Pn(t) > %so’(t) + (%tp’(t) = M/Qn) >

30+ (3 (-0 +9 (- (G-0)] -w) =

> -%(p'(t) n (_;_ [(‘PH(% —0) +e) (—D/u‘.:n)] —M/u_ﬁn) >
2300 (37 (5-9)+9 o g =) ~Mon = 140

Therefore, if n > n;, we obtain

Pa() 2 500,V te 0,2 0 - D/a, (1.35)
p(t) <500V te 0.2 -0-D/a, (1.36)

To see this, it is sufficient to show

O(t) > 2M/o,, Yt € [0"'2r o D/u‘;n] |

10



However, it is shown in ( 1.34) that previous inequality holds in [0, = — 0= 6] . Moreover, from (1.33), we
obtain that if t € [ —60—4,Z — 0 — D/@,],

o (t) > (tp” (7_2r_ —-9) + e) (t (; 9)) > 2M/D (-7—; —0— t) > 2M /.

Now, (1.35) and (1.36) prove (1.31) in 0,7 — 6 — D/®,]. And an analogous reasoning establishes (1.31) on
[-g— — 0+ D/w,, .

Recall from (1.28) that the sequence Pn was chosen in such a way that p, (-"-"5 — 9) = by + nT. In these
points g vanishes, making the sequence

F‘

D = BN

T _
—2- — 0 G}n’ 5 0 + 5:_ — R, S = g(wnpﬂ(s))lb(S) )

=

(and thus, also its mean) converge to 0. We write the detailed proof below.

Lemma 1.3.4.

Proof. By using the substitution t = 5 — 0 + s/@,, previous limit becomes

= w m

nllnéo Dg(a;n(p (-2— —9+s/£&n) + @, (2 9-!-3/&':,,,))1,0 (-g— —B-f—s/ch) ds =0

However, {t — g(@nw(g— —0+t/on) +0(Z -6+ t/u';n))} — 0 uniformly on [0, 7]. To check this, let

€ € R™ be given and 6 > 0 such that 19(v)] <€ Y v e [by —6,by, +8]. Since g 1s T-periodic, we have

lg(v)| <€ Yve by +nT -4, by + nT + 6], V n € N. Also, from the equality ¢’(5 — 6) = 0, it follows that
for sufficiently large n,

™

@W(-Q-—eﬂ/an) — G (-2’3—9)]56/2 V s €[-D,D].

Moreover, from (1.9), we deduce that if n is sufficiently large, then

™

@n(-z-—ws/on)—@n(g—e)[gé/z Vse[-D,D)

Thus, previous relations and (1.19) imply that for sufficiently large n,

Ig(@ntp(; 0+ 5/@n ) + (g——e+s/¢aﬂ))| <e¢ Vse[-D,D]

In our next result we show we may substitute the sequence of integrals

{on [ s@apatyvie it |

by another more appropriate sequence which points out the oscillations of the function G.

Lemma 1.3.5. Let D be chosen as in Lemma 1.9.9. Then

im_ {an [ o@npn®)0(0) &t - 7 - 7 }=o,

n—oo

11



where

Proof. From Lemma 1.3.4 we know

- !.,____D
7 —0

lim |, /0 " 9(@npa(®)$(t) dt — @ / 9(@npn (D)) 9(2) di—

N—00 0

-

—an [ g@npa®)(t) &t| =0

D
30+

e

On the other hand, Lemma 1.3.3 gives us that, for n > ny, the function

L, Y@
pn(t)

1s absolutely continuous both on [0, =0 {.f ] and on [-’g— — 0+ E—fi, ﬂ']. Therefore, for n sufficiently large,
it follows from integration by parts that

_[EE ordte [ oo Mo () (PO g
oo [T o) w0t = [T g@npn)ane) (L) e =

- G(@npn (%-9*;‘—2‘)) G w((%_i" —i))+
n Pn (% o
" /:_ ~n (mﬁxc —G(c‘anpn(t))) % (;2(8)) =

and, analogously,

Wn [: g (Wnpn(t)) ¥(t)dt = (—G (@npn (3 — 6+ -_—12-)) + max G) (G -0+5) +

—_9+3D: R p'n(%_g_" ',L%)

i ﬁ_eh_% (maxG = G(@npn(®) 3 (25 ) 2

- J

Therefore, to finish the proof of this lemma it is sufficient to show that

lim -maxRG_G(Q"p“ (g—M%))” — 0 (1.37)
n-—-oo_ pg(%—G'i‘aD':) ]
lim r_maXRGJrG(@“p" ("5-— _ﬁ)) - (1.38)
L mEee-R)




and we will restrict ourselves to prove (1.37). Of course., (1.38) would we proved analogously.
From Lemma 1.3.3, we know

1
OS T D S 1T : D '
s 2 e) T 9 E—0F )
Since
©'(F -0+ =) 7r
l- Wn — I’ o __9
ne Dfan ¢ g7 0<0

we need only to prove

However,

] T DA\ Onpn(F—6)
Wn ml?xG-—G(&npn (— — 0 + -_—-)) =E{Jn/ g(s)ds <
- D

< @Wn |@nDn (3—94- 2—) — WnPn (2—9) max |g|

=/0D ((,of (5 -0+ 5/@n) + 51——&; (5 —9- s/@n)) s 2,

as a consequence of (1.27). Then, from (1.19), max;, [g| — 0 as n — oo. So, the proof will be finished if we
show the sequence of real numbers

{@n :L'ann (g- — 0 + a%) — WnPn (-g- — 9) }

D 7-—9""'5;“
Wn [J.ann (; g 4 > ) — Wy Pn (g- —9)] =G}nj;t . {an;(s)dsz
D D
i (T - 56l n l = —
——wn/O @(2 0+ s/, d:s-i—/0 wn(2 Q.S/wﬂ)ds

)
b ™ 7r P,
=ch/0 (cp’(-i-—ﬁi—s/cbn)—@’(-2-—9))ds+]l; d'):,_(-z—-—f?-f-s/&vn)ds:
- (@n/”“"wff(g_m.,)dr) ot [y (5 =0+ ofun) ds =
0 0 0
_—_/D (/stpﬁ(g—*e'f't/@n) dt) ds+fDa:r; (%—9+3/Dn)ds
0 0 0

whose boundedness derives from (1.27).
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Proof of (1.29). It follows from Lemma 1.3.5 above that what we want to prove is nothing but
lim {7t +J7} =+ (1.39)
n— 00
Indeed, what happens here is that both the terms in the sum above diverge:

lim J, = lim J =+

n—0o0 n—oo

To see this, we consider the functions %y, : [0, 7] — R given by

Y1(t) = e /% sin(t + 6), Pa(t) = e~ 2 cos(t + 6),

where 6 is the real constant defined in Lemma 1.3.1. Then, since
1 ’ ™ ;[T
vG-0>0 w00 wmG-0)-o  w(E-9>o

there exist (unique) real constants 3;, B, € R with 8, > 0, and a function R € C°°[0, n] with (& —0) =
R'(Z —0) = 0, such that

Y =011+ B2+ R (1.40)
Let us divide the proof of (1.39) into two steps.

Step 1: Here, we plan to establish the equality

i [T (g = Glonan) 5 (20 s
+ /:_9#9- (ml?,xG - G(ann(t)))% (z((tt))) il —o.

J

To show this, recall (1.27) and Lemma 1.3.3 to write, for n is sufficiently large and t € [0, & —0— ﬁ] U
[325 — 0+ '&%1 ‘n'],

d [ R(t) R'(t)| | R(®) |, , R'(t) R(t) " .
i (p;.,(t>) < o |t | PO <2 ||+ e (W01 me) o
Moreover, both functions
1 B ., R
o'(t) o (t)2°

are continuous on [0, 7]. Thus, we may apply the Lebesgue Convergence Theorem to obtain that the sequence
of L![0, 7]-functions given by

d _)SR(t : T _g_ D T _ D
t — it (p:"(t) Tfte 2’2 6 Dmﬂ,r]u [2 DG_I—Q“,?!'],
0 if t e 5 — —E,E“Q*FE"]

converges in L![0, 7] to




and we conclude that

" fmp
nler;D./{; (m&xG’ G’(wnpn(t))) (

b

Thus, to finish this step, it remains to show that

nango Oﬂ (m&x(}' — G(ann(t))) ( ’((?)) =0 (1.42)

However,

/0 (m}_%xG — G(J)npn(t))) jt (j((?)) dt =
R(w)  R(0) R(t
- (mn?'xG) (w’(fr) ©'(0) ) ./ G(w"p"(t)) ( ’(tz) %
At this point, we apply the Riemann-Lebesgue lemma ([85]), which says that

nlﬂ:;o/ G wnpn(t)) dt( f((?))d =0

R(m)  R(0)
¢'(m)  ¢'(0)°

while it follows from (1.40) that

showing (1.42).
Step 2. We claim that

n

e ) e e
-

| 2 ) d t t

ﬂ]Ln;O . (m&xG — G(wnpn(t))) = (131?.01(1)):1‘25211)2( )) At
= " Br1 (L) + B2a(t) _
= nlem b (mélxc G(wnpn(t))) 7 ( o () ) dt =

To prove this, we may concentrate, for example, in the first limit, the second one being analogous. The
following equality is straightforward:

a (ﬁﬂl’l (1) + 52¢2(t)) _ ot An(t) 1 ot B, (t)
dt P (1) Pn(t)? @y P} (t)%

(1.43)

where

An(t) = 1A+ gie“m cos(t + 0)@;, (t) — P2 e®/2 sin(t + 6)o “(L);

n Wn

Ba(t) = (B sin(t +6) + By cos(t + ) gdg GEA0)!

being A = \/1 + 9‘; as defined in (1.17). Moreover, from (1.27) we deduce

1. {An} — B1 A, uniformly on [0, 7].
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2. There exists a function B € L'[0, x| such that |B,| < B for n € N sufficiently large.

At this point we consider the sequences {r,}, and {s,}, of real numbers defined below:

= ./0 (mRaxG G(wnpn(t))) € p;(t)2dt’
- 1 '-9_% . —at Bﬂ(t)
By o 0 (rnl?.xG — G(wnpn(t))) e o (1)’

so that, for each n € N, from (1.43) we may write

/0%-9—-% (max G ~ G(@apa(t) ) = at (ﬂml(t) T ﬁwz(t)) e

Pn(t)
To finish, we will show that

limr,, = +o0;

{sn} is bounded.

In orden to check (1.44), choose n large enough so that

A
An(t) > 51“2— vt € [0, ],

and fix any p € |0, Z — 6| with

Then, from Lemma 1.3.3, we have

A4 0% i e 1
Tn/B1 > 239 / (ma.x G — G(wnpn(t))) e dt >

R o’ (t)*
24 [P ) BV
= (mng—G(wnpn(t)))e ttpf(t)gdt'"
2A [? _ 1
9 /0 (rné.xG - G(w“p"(t))) A? cos?(t + 6) at =
2 4 1
9A (max G)/O cos?(t + 6) = _/ G(@npn(t)

and letting n tend to infinity, the Riemann-Lebesgue lemma ([85]) gives

2 P
im 1 > — ;
ot AR iy Ll e

(1.44)
(1.45)

(1.46)

dt

cos?(t + 0)

Since p € ]O, g 9[ was chosen with the only restriction of verifying (1.46) for n big enough, we may let it

tend to 7 — 6 to obtain (1.44).
Finally, to show (1.45), we observe the following consequence of Lemma 1.3.3:

s |<4/_ —6-2% maxg G — G(wnpn
— Jo

)) —at _ %—6
AT et B(t) dt = 4 /0 o () dt

where v, : [0, Z — 0] — R, is defined by

™ D
S'ﬁ"—g—a:a
-0

Wn e’ (t)? ’

0, fZ—9-£ <

Wn

Tn(t) =

maxg G— G(wnpﬂ(t.)) fO <t
t<z
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Since v, converges pointwise to zero, (1.45) will be proved if the sequence v, is uniformly bounded on L![0, 7.
But, for n sufficiently large and ¢ e [0, S f ], we have (see 1.19):

mn

0 < u(t) = G (@npn (5 = 6)) — G (@npa(t)) - ( ) Pr(3 = 6) = pa()] _

On ()2 R 7' (1) =
0(3-6)—pt) 1 (5~ 6) — @ (t)
= (mé“"g) 2 o' (t)2 = (mf"g) 2 o' (t)2

However, it follows from Lemma 1.3.1 the existence of a constant k > 0 satisfying

(t = (g - 9))2 < k¢'(t)?, Yt e [0,n].

Wn

Consequently, for n sufficiently large and ¢t € [0, z — 0 — TD-—] ,

0 < 7(t) < k (mﬁ‘xg) |<P|(:)_—'(_‘; (_%9‘)‘13) | + —g— (maxg) (ma.xc'&’) :

whose boundedness is a consequence of (1.27). This ends the proof. C

Theorem 1.3.2 follows. As seen before, it implies Theorems 1.1.1 and 1.1.2.

At this point, we turn ourselves to the proof of Theorem 1.1.3.

Proof of Theorem 1.1.3. Since up to now, the damping coefficient o was always fixed, it was not necessary
to introduce it in the notation of the functions ©, ¥, €4,etc. However, here we will make a vary and we

will adapt our notation by adding « as a superscript; in this way we will write %, ¥2, %, etc. From our
bifurcation equation (1.7) we deduce:

_ o - & it 1
IR < llglloo 1%l L1 (0,x) Vh € I¥, Vhe (p*),

and, consequently,
0<ex <|lgllccll¥®llLr(0,x -

However, the quantity ||4¢|| L1[o,] 1S easily computable, and we have

[ e%tsintdt (1 +exp(ar/2))/(1 + a?/4)

”"\ba”Ll[O,r] — E
\/fﬂTr leFtsin t]2 dt \ﬂexp (am) —1)4/(8a + 2a3) 9)=c0

0,

which finishes our proof.

1.4 'The continuity of .

In this section, we want to show the continuity of the functionals e4. This problem was already studied, in
a broader, PDE setting, by Dancer [24], Ortega, [63]. We briefly recall here their argument, adapted to our
framework. In order to show lower semicontinuity of, say, e; (upper semicontinuity is straightforward), take
some point h, € p=. Corresponding solutions u_ and u. of problem (1.1) with h = 0, e, (h) respectively,
may be [ound. Moreover, after some turther work which was basically carried out in [5], it is possible to
choose u_ and uy with u_(t) < uy(t) Vt €]0, 7|, v’ (0) < 4 (0), u” () > u/, (7). We then consider the set G
of C*[0, 7] functions u with v’ (0) < u'(0) < uf(0), u_(t) < u(t) < uy(t) Ve €0, 7|, ul(7) > u'(w) > o/, (7)
(which is an open, bounded subset of C[0, m|. Given any 0 < a < e, (h), problem (1.1) with A = a may be
equivalently reformulated as: find the fixed points of a suitable completely continuous operator P on C*[0, .
Being u_ a lower solution and u, an upper solution, Hopf’s Lemma shows that there are not solutions in
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dS2, and the Leray-Schauder degree of I — P in 2 is shown to be 1. Both things keep true under small
perturbations of P, so that, for h near h, and h = a, we have still solutions of (1.1) in G and e+(h) > a.
When it uses Hopf’s Lemma, this argument needs the nonlinearity g to be Lipschitz, at least in a neigh-

borhood of 0. In our setting, g is merely assumed to be continuous. We devote this section to overcome this
difficulty by replacing the function v, which vanishes at 0 and 1, by a strictly positive function.

Lemma 1.4.1. Let E be a metric space, e_, ey : E — Rt positive functions defined on E. We consider the
set

C = {(w,t) EEXR:—-e_(z)<t< e...(:r)}
Then,

1. & is closed in E x R if and only if e_ and e, are upper semicontinuous.

2. £ Cint(€) if and only if e_ and e, are lower semicontinuous.

The proof is straightforward (see, for instance, [27]). However, it gives rise to the following interesting
consequence:

Corollary 1.4.2. Let X be a Banach space, H C X a closed hyperplane and u,v € X\H. Assume that
ey, €4 : H — R" are functions verifying

{h+ tu:he H,—e%(h)<t< e‘_‘,‘_(h)} = {h+tv che H,—e? (h) <t< ef’l_(h)}

Then, e} tis lower (respectively, upper) semi-continuous if and only if el has the same property.

Theorem 1.4.3. The functionals ey : p+ — Rt as defined in Theorem 1.1.1, are continuous.
Proof. In view of (1.4.1), the upper continuity of both e_ and e is granted as soon we check the set
R :={(h,h) e Y+ xR : —e_(h)<h< e+(h)}

to be closed in 9+ x R. This argument is not new; was already used, for instance, in [15]. Given {(hn, h,)} —
(h«,h.) a sequence in R, either we have h, = 0 (and then, (h,,h.) € R), or h, # 0, and we pick a
corresponding sequence { (@, %)} C ¢t x R with

Uy = K(I — QN (inyp + in) + Kh,, (1.47)

= " glGale) & Balellla) ds (1.48)
0

It follows from (1.47) that the sequence {u,} is bounded in ¢, in particular, it is bounded in C![o, n].
Thus, {u,} should also be bounded in R, since, otherwise, the Riemann-Lebesgue lemma together with (1.48)
would imply h, = 0. Consequently, convergent subsequences {tr,} — 4, in C[0, 7] and {u,_ } — @. may be
found. Passing to the limit along these subsequences in (1.47) and (1.48) we deduce:

U, = K(I — QN (i@ + 1) + Kh,

e /0 " gfiap(s) + a(8))(s) ds

and then, (h,,h,) € R.

In orden to show the lower semicontinuity of €1, we are going to use Corollary 1.4.2. We write our
solvability set in an alternative form:

{htto:hevt, @) <t<es®}={h+t:hey’, — (k) <t<e ()

for suitable functions ey : ¥+ — IR{']". This may be done thanks to the upper and lower solutions method
([5]), and Theorem 1.1.1 above, which guarantees in particular that problem (1.1) is always solvable if h = 0.
It will be easier to show the lower continuity of ey instead of 1. Of course, we may (and we will) restrict
ourselves to study €, the case of e_ being analogous. We choose any function hg € 9.
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1. In case ¢4 (hy) — 0, €4 Leing nonuegative, it is lower semicontinuous at hg.

2. In case €+@0) > 0, choose 0 < a < ~e+(ﬁo) and take a solution u; of problem (1.1) with h(t) =
ho(t) + €4 (ho)1. We call vy := u, — Khg, which is a solution of the alternative problem

—v" —av’ = Aj(@)v+ g(v + (Kho)(t)) = v1, t¢e 10, ]
u(0) = u(m) = 0 (149)

for ¥ = €, (hg), and thus, a strictly upper solution of (1.49) for 4 = a. On the other hand, using the
Riemann-Lebesgue lemma and letting @ — —oo in (1.6, 1.7), a C?[0, ] function v_ with

v_(0) =v_(7)=0; v (0)< v, (0); v (7)> vl (7);
—vZ(t) — avl (t) — Bi(@)v-(t) + g(v_(t) + (Kho)(t)) < a/2 < a Vt € [0,7]:
v_(t) <vyi(t) Vt€o,n|,

may be found. In this way, the set
0= {w € C'0,7] : v_(0) < w'(0) < v} (0), v (m) > v (n), v_(t) <vyp(t) Vi G]O,ar[}
is open in C'[0, 7], and problem (1.49) with v = a has not solutions in 90, since v_ and vy are

respectively, strictly lower and upper solutions. The Theorem is now a consequence of known arguments
based upon the continuity of the Leray-Schauder topological degree (see, for instance, [63], pp. 38, 39)

b

y

1.5 Generic asymptotic behavior of the solvability set
In the second part of this chapter we plan to study the asymptotic behavior along lines of the functionals
E4 © t,b‘L == R+

defined in Theorem 1.1.1. These functionals delimite the solvability set of problem (1.1).

Roughly, our results can be abridged by saying that, generically, €1 converge to zero along lines. Further,
this convergence is uniform in bounded sets. However, there exists at the same time a dense set of directions

where this fails to happen. A basic ingredient of our proofs is a multidimensional generalization of the
Riemann-Lebesgue lemma which is developed in Lemma 1.5.1.

For the corresponding periodic problem, an asymptotic result on the behavior of the functionals €4 was
developed in [43]. In this paper, it was shown how these functionals converge to zero generically along lines;
that is, there exists an opcn, dense set of directious for which this happens. Examples were also given to show
that exceptional directions, where the functional do not converge to zero, also exist. In the proofs, the fact
that the principal eigenfunction of the periodic problem is constant played a key role, and the problem was
solved using the more classical, one-dimensional version of the Riemman-Lebesgue Lemma (see, for instance,
[85]).

We recall some of the notation that will be extensively used in what follows. A function h € L'([a, b))
will be called a step function if there exists a partition a = ty < t; < ... < tm-1 < tm = b of [a, b] such
that Al;,_, ¢ is constant for all i : 1,...m. In case all these constants are not 0, we will say that A is a
non-vanishing step function. A function u € W?1(a, b] will be called a parabolic spline if v” is a step function
and the set {u C W*([0, n]) : u is a parabolic spline} will be denoted as . For given 0 > 0, if there exists

a partition a =g < t; < ... < tjn_; < t,, = b of the interval la,b], and 1 < iy < m, u,C € R with C # 0
such that

tio — tio-—-l <9 (150)
u(t) = pp(t) + C Vt € [tig_1, ti,) (1.51)
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and

”ﬁti-ht;[ is constant for every 1 <1 < m, 1 # 1o, (1.52)

u will be called a d-singular function, and the set of all W 2! ([0, w]) d-singular functions will be denoted as S;.
Finally, for every measurable set I C [0, 7], we will denote by meas [ its one-dimensional Lebesgue measure.

Let B C ¢+ be a bounded subset, let h € ¥+ be given. For any b € B and h, A € R, the Lyapunov-Schmidt
system (1.6), (1.7) associated to the forcing term h = b+ Ah + h becomes:

@ = Kb+ ACh+ K(I — Q)N (up + ) (1.53)

h = /ﬂ g(ap(t) + a(t))(t)dt, (1.54)
0

the operators K, NV, and Q being defined as in Section 1.2. Thus,

o aw D= | weR, aept _
Ei(b+/\h)—maX{--/0 g(Tp + W)Y dt'ﬁ:)Cb+A)Ch+IC(I——Q)N(ﬁ<P+ﬁ)}_

_ Y (i = _ = aeR, aeyt
_max{__/o g(}Cb+A)Ch+wp+IC(I-Q)N(ucp-i—MCh—t-u))d} dt : (1.53) holds. } . (1.55)

Of course, both functionals €4 may be studied in an analogous way, so that we will concentrate ourselves
with e;. For any A € R, b € B, there exists an element (ii}“g,ﬁ%g) € ¢t x R such that

Uy 5= Kb+ MCh+ K(I — Q)N (uy 5 + 1y 5) ; (1.56)

e+(b+Ah) = / 9(ty 5 + AMCh + K(I — Q)N (1 5 + 1y 3))¥dt .- (1.57)
0
Since N is bounded, it is possible to find a constant M > 0, not depending on A € R or b € B, such that

It = QN (@ 50 + iy ) (1) <M (1.58)

C10,n] -—

All this motivates us to the study of féllowing multidimensional generalization of the Riemann-Lebesgue
lemma:

Lemma 1.5.1. Let g : R — R be continuous, bounded, and have a bounded primitive, and let uq, ..., uy €
C'[0, 7] be given functions satisfying the following property:

[P] If p1,...,pN are real numbers such that

N
meas {t € [0,n] : Zpiu:(t) & 0} >0,

t=1

thenp1=---=pN=0.

(We say that uy,...,un are linearly independent on sets of positive mesure).
Let B C C'[0, ] be such that

{b’:beB}

is bounded in C[0, 7]. Then, for any given function r € L'[0, 7], we have

« /N
lim g (Z piui(t) + b(t)) r(t)dt =0 (1.59)

ol — o0 =1

uniformly with respect to b € B.
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Proof. Let r € L'[0, 7] be any integrable function and let {p"}n CRY, {b"}, C B be given sequences with
|p™|| — oo. The sequence

p" o= p" /]|

being bounded we have, at least for a subsequence, u™ — 1 for some € RY with p +--- 4+ p? = 1. We
write

U = (ula - . ,UN),
so that, by hypothesis, meas(Z) = 0, where

Z ={te[0,n): (ud(t) =0}

This implies that the linear span of the set

S = {(u,u')xr : I is any compact subinterval of 0,7],INZ = 0} (1.60)

is a dense set in L'[0, w]. To see this, let us define

S1 = {xr : I is any compact subinterval of 0,7],INZ = P} (1.61)

Then, for any open subset A C [0, 7] (in particular, for any open subinterval of [0, 7]), meas(4 \ Z) =
meas(A). Since A\ Z is also open, there exists an at most countable collection {I;, 7 € N} of pairwise disjoint

open intervals such that A\ Z = U;en I; and meas(A \ Z) = > _:enmeas(;). Consequently, the linear span
of the set S is a dense set in the set of step functions and therefore in L'[0, n].

Now, let x; be a given element of S;. Write w = (4,u') and m = inf; |w| (m > 0). Finally, fix € > 0.
Choose a partition of I = a,b,a=ap<a; < - <ap_q < am = b such that if t,y € J; = [a;-1, 6],
1 <2 <m, then |w(t) — w(y)| < e. Then, for any t € I, there is some 7, 1 < i < m, such that t € J; and

m

oy N wxs (@) (w(as) — w(?) ¢/
x1(t) ; (e wla) | S /™
so that _
WX J;
“X‘r a ; w(aj) ll S €/

We deduce from this all that the linear span of S is dense in S; and therefore in L[0, x].

On the other hand, let us denote [ the Banach space of bounded sequences of real numbers endowed
with the uniform norm, 1° the closed subspace of converging to 0 sequences, and 7 : L!'[0, 7] — I, 5
Ts = {(Ts)"}, the linear operator defined by

(T3] = /: 9((p"™,u(t)) +"(t))s(t) ds, ¥ s € L*[0, 7], V n € N,

which is trivially continuous (||7s|lecc < ||glec|ls]] Lijo,x] )- Since our objective is to prove the inclusion
T(L'[0,7]) C I° and T is continuous, to prove Lhe lemma it is sufficient to demonstrate that 7°(S) C IV, i.e..

lim g((p™, u(t)) + b™ (t)) (u, u'(t)) dt = 0, (1.62)

n/eo Jr
for any compact subinterval I of [0, 7] such that () Z = 0. But, if v™,v: I — R are defined as
v (t) = (W™, u(t)) + 67 (t)/|lp™ |,
v(t) = (u,u(t)), Vtelo,n],
we trivially have
lim [I g(llo™ o™ () (+/(8) — (@™)'(8)) dt = 0 (1.63)

and

lim g(”pnnvn(t))(vn)f(t)) dt = Bim G(||p“||v"(maxl)) o G(||p“||v“(min I)) =

n—oo J; n—00 o™ ||

0 (1.64)

where G is any primitive function of function g. Now, (1.63) plus (1.64) imply (1.62).

21



We observe that inside the set of continuous and bounded functions having a bounded primitive are the

periodic functions with zero mean. In our next result we use Lemma 1.5.1 in this particular case to obtain
that, for generic h, limjyj_ o, €+(AR) = 0.

Corollary 1.5.2. Let h € ¥+ be a given function and suppose that the functions Kh and © satisfy the
following relationship:

[P1] If p1, p2 are real numbers such that
meas{t € [0, 7] : p1 (KR)'(t) + pop'(t) = 0} > 0,
then py = po = 0.
Let B C 9+ be any bounded subset. Then

lim e (Ah+b)= lim e_(Ah+b) =0, (1.65)

|a\]-—r00 |,\|—roo
uniformly with respect to b € B.

Proof. Immediate from (1.57), (1.58) and Lemma 1.5.1 above.

The following equivalent version of previous corollary will be very useful for our purposes.

Corollary 1.5.3. Let h € ¥+ be a gwen function and suppose that, for every p € R,

meas{t € [0, 7] : (Kh)'(t) = pe'(t)} = 0. (1.66)
Let B C ¢+ be any bounded subset. Then

lim ey (Ah+b)= lim e_(\h+b)=0, (1.67)

|A| =00 IA|— o0

uniformly with respect to b € B.

However, the set of functions h € ¥+ not verifying (1.66) for some p € R, can be seen to be residual in
. This will lead us to one of our main results in this chapter:

Theorem 1.5.4. There ezists a subset ' C ), of first Baire category in this space, such that for any
h € ¥+ \ F, and each given bounded subset B C 9L, one has

lim ey(Ah+b)= lim e_(Ah+b)=0 (1.68)

|A| =00 |A]—o00
uniformly with respect to b € B.
Proof. Let

F = {ii e L : 3 p € R with meas({t € [0,] : (KR)'(t) = pe'(t)}) > o}
Then F' = |, .n Fn, where
Fa = {71 €+*: 3 peR with meas({t € [0, 7] : (Kh)'(t) = pe'(t)}) > l/n}

Let us prove that each subset F}, is closed and has an empty interior. Given n € N, since K : Y+ — pltisa
topological isomorphism, F;, is closed in % if and only if G,, := K(F,) is a closed subset of ¢o'. However,

Gn={u€ ¢’ :3p€eR with meas{t € [0,7] : u'(t) = pp'(t)} > 1/n}
Let {un}m C G be a sequence such that {u,,} — u in 1. For any m € N, we can find p,, € R such that
meas({t € [0, 7] : up,(t) = pm¢'(t)}) > 1/n
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meas({t € [0,7] : ¢’(t) = 0}) =0,

the sequence {p,,} must be bounded and, after possibly passing to a subsequence, we can suppose, without
loss of generality, that {p,,} — p. Moreover, if we define

Mm = {t € [0, 7] : up, (t) = pm¢'(t)}
then meas(M,,) > 1/n, V. m € N and meas(N>_, Us=,. Ms]) > 1/n. Finally, let us observe that if
t € (=1 Us2,, M), then u/(t) = py'(t), so that

meas{t € [0, 7] : u'(t) = pp'(t)} > 1/n
and, consequently, u € G,,.

Next, we are going to show that F (and therefore each F},) has an empty interior. To do that, let & be

the only solution of the linear problem
P =
p(0) = ¢(m) =0

Then, ¢ € C|0, 7], ¢(t) < 0 Vt €]0, 7[ by the maximum principle, and, for any u € Wg‘l[O, 7,
mw mw w
/ u(p:_'/' u!@!___/ uﬂ(ﬁ.
0 0 0

®: ot - ot ur— u”’

As a consequence, the mapping

1s a topological isomorphism, where

ot = {h e L0, 7] : /; h(t)p(t) dt = 0} .

We deduce from this all that F has an empty interior in ¥~ if and only if ®(X(F)) has an empty interior
in ¢=. This last result will follow from points 2. and . of our next lemma.

Lemma 1.5.5. Let us denote by A the subset of L'[0, ] given by all the step functions and by B the subset
of L*[0, 7] given by all the non-vanishing step functions. Then,

1. ANgt is dense in $L;
2. BNt is dense in ¢t
3. BN®(K(F)) = 0.

Proof. 1. Take any h € @+ and € > 0. Then, there exists s € A such that

e inde/on ||95||1}
Ik '“<m“{”’n@m '

1 w
S§=8§+ — / SP
=5 0

is again a step function which belongs to ¢+ and verifies |h — 5|); < e.

Now

2. Let us show that BN ¢+ is dense in AN @L. Thus, take a function u € AN @L. Given a b € R, define
Ua,b = U + @X[0,x/2] T OX[r/2,x]- The condition for u, 3 to belong to @+ is

/2 1'r
a/ (f?-i-b/ o=10
0 w/2

Since foﬂ/z ¢ < 0 and f:/z ® < 0 (recall that ¢(t) < 0Vt €]0, (), we may choose a and b both different
from zero but with small absolute value such that ug , € BN @L.
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3. Assume, instead, that an element s € BN d)(}C(F)) may be found. Then, there exist h € F, u €

W#1([0,7]), such that )C(h) = u, ®(u) = = s. Since h € F, p € R can be chosen such that
meas({t € [0, 7] : ¥/(t) = po'(t)}) > 0. Choose some nontrivial compact interval I C [0, 7] satisfying
s|r = ¢ # 0 and such that meas({t € I : u/(¢t) = pp'(t)}) > 0. This implies that

meas({t € I : c=u"(t) = pp"(¢)}) > 0,

a contradiction.

1.6 Many ‘exceptional’ functions coexisting together

Now that we know that, generically, the functionals e4 converge to zero along lines, we are inevitably
confronted with the following questions:

1. Are there any functions h € ¥ such that lim inf)|—oo ai(,\ﬁ) > 07
2. If ’yes’, how big is this set of such ‘exceptional’ functions?

In orden to respond to these questions, we need to approximate accurately the term 4 appearing in the
Lyapunov-Schmidt system (1.6), (1.7). This is the aim of next proposition.

Proposition 1.6.1. Let B C C*[0,7] be a bounded set. Then, for any € > 0 there ezists § > 0 such that, for
any w € 85,

(A ) || —o0

uniformly with respect to b € B.

limsup ||[K(I — Q)N (Ap + pw + b)|le < €, (1.69)

Proof. Assume the stated result is false. Then, there exists ¢o > 0 and, for any § > 0, ws € W21[0, 7] such
that ws € S5, and

lim sup (Sup HKZ(I — QN (A + pws + b)" ) > €0, Vé > 0. (1.70)
(A,p)l| =00 \bEB 9

Let {h, : n € N} be a dense and countable subset of L[0,7]. For any n € N, let us choose 6, > 0 such
that
1
/ |hn(t)]dt < VA C [0, 7] measurable with meas(A) < §,,. (1.71)
A n(l + ” ”oo)

Using (1.70) and Lemma 1.5.1, for any n € N there exist w,, € 5., 0L p, € g, <1,
(An, tn) € R? and b, € B w1th

dn — Pn < 511; (1'72)
/ 7 9(Omp(t) + nws, (£) + ba () he(t) dt]| < 1/ Vel 6 (1.73)
0
/ 9@ (t) + pinws, (t) + b (£)) he () dt| < 1/n vril...n: (1.74)

[ ~ QN O + imws, +bs)

We deduce from (1.71), (1.72), (1.73) and (1.74) that

/ 9(An@(t) + pnws, (t) + ba(t)) he(t) dt| < 3/n Vr,n € N with 7 < n,
0
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aud theu, since {h, : n € N} is dense in L![0, 7| and g is bounded,

lim 9(Anp(t) + paws, (t) + bn(t))h(t) dt = 0 Vh € L'[0, 7).

n—oo 0

In particular,

™

lim g(Anp(t) + pnws, (t) + ba(t))h(t) dt = 0 Vh € L*°|0, n,

n— 00 O

that is, the L*[0, 7] sequence {N'(\,p+ pnws. + bn) }n converges weakly to zero. Since the operator X(I—Q) :
L'[0, 7] — C[0, ] is compact, it is weakly-strong continuous, and

lim {IC(I — QN (Anp + prws. + bn)} — 0 uniformly on [0, 7],

n—oo

contradicting (1.75).

Theorem 1.6.2. Let g # 0 be given. Then, there exists § > 0 such that for every h € ¥+ with }C(ﬁ) €

Ss, 6:{:()\71) A_:m 0. In particular,

{FL € Y : ex(\h) 7 0}

— 4+ 00

is || - ||1-dense in L.

Proof. Since g #Z 0 ha.s mean value, it is possible to find ¢, p > 0 and 7_, 7. € R such that g(u) < —p Yue
Y- —€,7-t € and g(u) > p VYu€ [y — €74 + €.
Observe that

B :={K[I - Q](a) : a € C[0,7], llalloo < llglloo}

is a bounded subset of C*[0,7]. Thus, using Proposition 1.6.1 above, we may find 0 > 0 such that (1.69)
holds for every w € S;. )
Let hg € ¥+ such that Kho = 49 € S be given. Find a partition 0 = g < t; < ... < t,, = 7 of the

interval [0, 7] and 1 < ip < m, u,C € R with C # 0, such that (1.50), (1.51), (1.52) with u = ug are satisfied.

Define, for each n € N, A\, := "T$7* . We claim that

liminf ey (Aphg) > p/ ’ Y(t)dt .
n—+o00 - i

0 —

In orden to check this, take some n € N. The Schauder fixed point theorem provides the existence of
some U, € ¢ C C[0, n] such that

Up = K(I — Q)N (—prnp + Antip + ) .

Thus, 1, belongs indeed to B. By the choice of §, and since ||(—pAn, A\n)|| > An — oo, for n big enough we
have the inequality

[unlleo <6, (1.76)
so that, remembering (1.55),

e+(Anh) 2 / g( — HAR® + Apuo + Un) dt = E / g(—HAnp + Antig + Un )3pdt
0 =1 :

tl-—-l

Observe now that, for each 7 # 1,
ti

lim g( = pAnp + Anilg + Uy ) dt = 0, (1.77)

n—oo f,. .
'I-—-
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as a consequence of Lemma 1.5.1 if ug is not constantly 0 on [z;,_1,z;,] and as a consequence of the classical
Riemann-Lebesgue Lemma (see [85)) otherwise. On the other hand, for each n € N,

tig tig
/ g( — pAn@ + Antip + Uy )9 dt =/ g(AnC + Gn )9t

t-ig-—-l tig-—-l

To end the proof, observe that, thanks to (1.76) and the choice of ¢,

9(AnC + 0n(t))Y(t) = g(v4 + nT + @n ()Y (t) = (74 + @n(t)) Y (t) > pt(t) vt € [0, 7],
so that,

- tig Tig
liminf &4 (Anho) > lim inf / 9(AnC + Tn(t))9(t) dt > p / (t) dt.

Of course, an analogous reasoning would give

- Tig
liminfe_(gnho) > p/ () dt.

for the sequence u, = = 'g‘T. This proves the theorem.

The final part of this chapter is devoted to check the claimed density of

{h eyt : K(h) c S5)

in ¥+ for any § > 0.

Proof. Since K : = — ¢ is a topological isomorphism, we can equivalently prove the density of S5 N ¢+
in p+. Now, recall that P N ¢, and hence, P N ¢+\{0} are dense in ¢! (this was proven in Lemma
1.5.5, 1). With this in mind we are finished if we prove that (P N ¢1)\{0} C SsN¢L. Take, therefore,
u € PNe*, uz0. It will be shown that there exists ¢ > 0 and a continuous curve U : (0, [— W{0, n]
such that U(0) = u; U(t) € Ss Nyt Vt €]0, €.

Being u € ot = {w € W3[0, n] : f{.:r w(s)p(s)ds = 0} we know that u must achieve both positive and
negative values in |0, 7[. Let po > 0 be the greater positive number p such that

Tp = {s €]0,x]: u(s) = p(ip(s) + 1)} # ¢ (1.78)

and choose some point tg € J,,,.
Being u € P, it should be possible to find a partition 0 =rg <71 <7192 < ... < Tp—1 < Tp =1p = Sp <

Sp—1 < ... < 82 < 51 < tg = 7 of the interval [0, 7] such that p > 3 and uiin_l 2o uﬁsi s;_,| are constant for

each 2 : 1...p. Define € := min{r, —r,_;,8,_1 — s5,6/3}. We will explicitly describe only U(£)(0,s,) for any
£ €10,¢[; U(€)(so,n Would be constructed similarly.

Consider the linear mapping T : R® — W?%![ry, ;] defined by

y(0) =0;  ¥'(0) = yo;
T (yg; m1, m2) := The solution y of the linear IVP { y"/(t) =my; 10 < t < 71; (1.79)

'ty =ms 11 <t <rs.
Next, define ¥ : R3 — R3 by
T2
(¥o; M1, m2) = ([T(yé;mhmz)] (T2), [T (yp; m1,m2)] (r2), f [T(yé;mhmz)](t)@(t)dt)
0

which is easily seen to have a trivial kernel, being, therefore, a linear isomorphism.
Finally, for each £ € [0, €[, U(€))(0,5,) Will be built as follows:

o Ift € [r, — &, 1p], define [U(£)](t) := po(p(t) +1).
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* Next, extend U(S) to [rp, 1] in the ouly way that keeps U(€) being a W 2! tunction which, in addition.
verifies (U (£)])” = u” in Jrg,r, — £|.

o To finish, extend U(&) to [0, sg] by setting, for any ¢ € 0, 72,

UE)@) =T | ¥ ([U(s)](rz), U(©)] (ra), /0 " slahp(a)ds ~ / ) [U(s)](s><,o(s>ds) (t).

T2

For any £ € [0, €[, U(§) is built similarly on [so, 7]. Eventually, it is clear that, as assured, U : [0, ¢[— WOQ'I[O, 7]
i1s a continuous mapping verifying U(0) = u, U(€) € ¢ NS V€ €]0, ¢[. The result is now proven. O
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Chapter 2

Periodic perturbations of linear,

resonant, elliptic operators in
bounded domains

2.1 Introduction

In this chapter we are concerned with self-adjoint, elliptic boundary value problems of the type

~Au = Au + g(u) = h(z) = h(z) + hp(z), € | (2.1)
'LL(I) — 01 & E aQ |

where the following hypothesis are made:

- 1. © is a bounded, smooth domain in R¥ for some N > 2.
[H] 2. Ay Is the first eigenvalue associated to the operator —A when acting on H}(Q2); our problem is

resonant. We call ¢ an associated normalized eigenfunction

—Ap = )\, mgxgpzl.

3. g: R — R is assumed to be Lipschitz, periodic, and to have zero mean

g € Lip(R/TZ) for some T > 0;
T
/ g(u)du=0,
0

the latter hypothesis being not restrictive (otherwise, simply subtract its medium value from both

sides of the equation in (2.1)). Also, we assume it is not the constant zero function: our problem

is not linear. Finally, we call G;, G2, G3,... the successive, periodic primitives of g with zero
mean.

4. Respecting the forcing term h = h(z), it is assumed to be Lipschitz in 2. We decompose it in the
form

h=ho+h,
where h € R, and

he L?(Q) := {h e L*(Q) : Lﬁ(x)w(x)dx = 0} .
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The following geometrical assumption on the domain  in relation with the operator —A will stand throughout
this chapter:

[C2] ¢ has an unique critical point, which is not degenerate.

Here, the expression ‘not degenerate’ means that the Hessian matrix of @ at this point is assumed to be
inversible. It follows from results in [8, 45], that all regular, convex, bounded domains verify [C;]. Regular
and bounded domains which are Steiner symmetric with respect to all N coordinate hyperplanes, i.e.

(A1T1, A2Za, ..., ANZN) EQ Vz = (Z1,z2,...,2N) €N, VA = (A1, A2,...,AN) € [-1, 1]V,

also verify [Co], (see [7]), and domains Q which result by means of small, smooth perturbations of others
verifying [Cz] do verify this same assumption. On the other hand, [C.] implies severe restrictions on the
topology of the domain; it forces Q to be C !_diffeomorphic to a closed ball, as it follows from Morse’s theory.

We observe here that this hypothesis on the domain € is not merely required by our method of proof,
since, for different types of domains, (which include, for instance, anular domains whose inner and outer
radius satisfy certain relations) there are results ([23]) displaying a different qualitative behaviour of the
several aspects of the problem. In particular, most of our results fail to hold if [C2] is simply removed.

Observe that, in case N = 1, 2 =]0, n[, we obtain the same problem which was discussed throughout
our previous chapter (for a = 0), and whose solvability, in case h = 0, had already been shown by Ward
([85]). Shortly after Ward’s paper, his result was generalized by Solimini [78], and Lupo and Solimini [52],
for resonant problems in arbitrary domains of RY and higher eigenvalues A\;, s > 1. Thus, in case h = 0,
problem (2.1) is solvable.

Using methods from global bifurcation theory, Schaaf and Schmitt studied the multiplicity of solutions
of Ward’s problem. In [73] they showed this problem to have infinitely many positive and infinitely many
negative solutions. Using a similar approach, they also studied the case of Q being a convex subset of the
plane. When h = 0, they showed ([74]) that problem (2.1) is not only solvable, but has infinitely positive
and infinitely negative solutions. Numerical experiments were provided ([23, 74]) indicating that ‘the latter
result does not hold for 2 a ball in dimensions greater than 3’ ([74], pg. 1120).

All these partial results lead us to our first question: Do Schaaf-Schmitt results hold for problem (2.1)
and dimensions N > 37. With a certain degree of generality, we answer to this question in Theorem 2.1.1

below. In particular, it is shown the answer to be ‘yes’ in case N = 3 and ‘certainly not always’ in case
N > 5. We also give a new proof of the two dimensional case.

Theorem 2.1.1. Take a Lipschitz function h = h € L?(?). Then, in case N = 2 or N = 3, problem (2.1)
has infinitely many positive and infinitely many negative solutions. Indeed,

Vp € C*(2) with p(w) = 0 Yw € N there erxist solutions uy and ug of (2.1) with u; <p < wuy.

In case N > 5 and §QQ is convez, for any bounded set B C L*(Q2) N Lip(§Y) there ezists a nonempty open

set Og C {g € Lip(R/T7Z) - fc;r g(u)du = 0} such that, if h € B and g € Og, the set of solutions of (2.1) 1is
bounded.

Thus, it remains an open problem to decide whether, in case N > 5, the set of solutions of (2.1) is always

bounded, regardless of g and h, or might be unbounded. The fourth dimensional case escapes our treatment
and remains also open.

A second related question was motivated by the work of Canada (11]. Here, it was proved that, in the
one-dimensional Ward’s problem, in case the forcing term h = h belongs to the range of the linear problem,
the associated action functional, (which turns out to be non-coercive and bounded from below), does attain

its infimum. In this chapter we also show how this result remains true for dimensions N = 2 and N = 3. For
higher dimensions N > 4 this continues to hold for generic g and all A :

Theorem 2.1.2. Assume N =2 or N =3, or N > 4 and G3(0) # 0, or G2(0) = 0 but Q is conver and
G3(0) < 0, and let h = h € L%(Q)) be a Lipschitz mapping. Then, the infimum of the action functional
corresponding to (2.1) is attained. Furthermore, this minimum is strictly lower than the minimum of the
action functional corresponding to the linear problem —Au — \ju = h, u € Hy ().
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Finally (following a historic account of the facts), the nondegeneracy problem received a separate attention.
As it. happened with the ODE problem we studied in chapter 1, it follows trom the lower and upper solutions
method, the Riemann-Lebesgue Lemma and Solimini results ([78]) that, for any given Lipschitz mapping
h eﬁEQ(Q) there exist real numbers e_(h) < 0 < e+ (h) such that problem (2.1) has solution if and only if
e_(h) < h < e, (h). In case this closed interval always contains a neighborhood of zero (that is, e_(h) < 0 <
e+(h) Vh), the nonlinearity g is said to be nondegenerate, and the nondegeneracy of g(u) = Asinu when

N =1, Q =|0, n[, was already shown by Dancer [25]. It was extended for general periodic nonlinearities by
Canada and Roca ([15]).

Some related nondegeneracy results for the PDE problem (2.1) when ||A|| L2(q) is small were also established
in [17], and, for N = 2, the nondegeneracy of every nonlinearity g was implicit in [74]. The arguments in this
latter paper do not extend to the case N > 3, and the main contribution of this chapter refers precisely to
the three dimensional case. If N = 3, we show that every nonlinearity g is not degenerate. In case N > 4 we

show that, generically, nonlinearities are nondegenerate. Finally, we give a new proof of the two-dimensional
case.

Theorem 2.1.3. Assume N =2 or N = 3. Then, problem (2.1) is not degenerate.

Assume N > 4 and that G2(0) # 0, or G2(0) = 0 but Q is conver and G3(0) < 0. Then, problem (2.1) is
nondegenerate.

Thus, for convex domains and nonlinearities g of the form, say, g(u) = Asin(u) + B cos(u), where B # ()

or B =0and A <0, problem (2.1) is not degenerate. It remains an open problem to decide if nondegeneracy
continues to hold for arbitrary dimensions N > 4 and arbitrary nonlinearities g.

Finally, a whole world of open problems appears when hypothesis [C;] is skipped. There exist some

previous work in this direction, and several nonconvex domains such as annulus are considered, (see [23]),
but the problem is far from closed.

2.2 A variational approach

Let h=hp+h:Q—>Rbea given Lipschitz mapping. Here, h € R and h € f,z(Q). In an analogous way,
the splitting

Hy(Q) = (p) @ Hy(Q), (2.2)
where

() = {a e my@). | a@e(z)de = o} |

let us to write any function u € H}(Q) as u = 1w + 4, where 4 € R . € H}(Q). Calling u; the only solution

in H}(Q) of the linear equation —Au — A\u = h, the classical change of variables v = u — u; transforms
problem (2.1) into the equivalent one:

—Av - Mv+g(v+4;) = ho, v € H} (Q) (2.3)
We consider the associated action functional ® : H}(R2) — R given by

A1

®p(v) = %L“Vt}(:{:)lﬁd:{: — Qv(:z:)zdcc + /ﬂ Gi(v(z) + 4z (z))dz — ﬁ[)w(x)v(x)dm (2.4)

where G denotes the primitive of g with zero mean. It follows that the solutions of (2.3) coincide with the
critical points of ®,. Observe that

Pr(vp + 0) =

£l 3 A 5 I _ N _ . ..
— = / | Vo(z) ||2d:c ~ —2—1 ) v($)2d1: + /Q G (v(,o(:c) + v(z) + u,;(:r:))d:c _ h”(,aﬂgv —
2 Ja

= ¥(9) + T;(3,9) — hllp||27 Vo € HL(Q), Vo € R.
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On the other hand, ®; coincides, up to a constant and a translation in Hj(f2), with the action functional
corresponding to (2.1). Consequently, it attains its global infimum in H}(Q) if and only if the action functional
corresponding to (2.1) has the same property, and the minimum of this latter functional is strictly lower than

the minimum of the associated linear problem if and only if ming1(q) P <0.
The functional ¥ : H}(92) — R is coercive while T; :Rx H}(Q) — R is bounded. On the other hand, ¥ is
weak lower semicontinuous, while, for any fixed v € R, T;(7,") : HL(Q2) — R is easily seen to be sequentially

weak lower semicontinuous. Consequently, for any ¥ € R, the infimum of the functional H}(Q) — R,
v — ®p(vp+0), is attained, and, further, there exists some R > 0 such that 10l 2 () < RV(9,9) € R x H} (Q)
with &, (vp + 1) = minge 41 (q) (v + ).

We consider the continuous function

mp : R — R; mp(v) := min Pp(p + ?)
veEHL(Q)
Observe that mp(9) = mj(?) — hl|lp||30. It follows from the Riemann-Lebesgue Lemma (see [78])

that T;(9,9) — 0 as || — oo uniformly with respect to & € HE(R), |9l 2y < R. It means that
limg| 0o mj () = 0 = ming. oy Y. And a C! function € : R — R which has the same limits at —oco and
+00, if nonconstant, has at least a critical point in R and the same thing happens to little perturbations of
the type v — £(v) — 6v with |§] small. In our case, mj is probably not necessarily C! (it will happen if g is

assumed to have a small Lipschitz constant), but anyway, we may easily obtain the same conclusion via the
Mountain Pass Theorem.

Lemma 2.2.1. Assume that m;(v) # 0 for some © € R. Then, problem (2.1) is not degenerate.

Proof. This is an immediate consequence of the direct methods of the calculus of variations if mj (V) <0 for
some ¥ € R and a consequence of the Mountain Pass theorem in case mj (%) > 0 for some % € R. (Indeed,
observe that the Palais-Smale condition for ®; holds at all levels but 0, and at all levels for ®; when h # 0,
see also [6]). In the first case it is clear that the non coercive action funcional ®; attains its infimum in R
while, if the latter possibility would hold for any v € R, there will be no global minima of ®; in H3(R). O

We devote the first part of this chapter to look for sufficient conditions implying mj to be not constantly
zero. And maybe the most elementary one follows from the observation

T;(0.,0) < 0= mj(v,) < P; (Vap) = T;(2.,0) <0,

since ¥V (v,p) = 0.
A second possibility in order to show that m; is not constant is given below:

Y;(.,7) > 0V € Hy(Q) with ®;(9,,7) = min &;(3.,3) = m(,) > 0.
J€EH} (D)

We will explore both strategies in our context. Both will give us sufficient conditions for (2.1) to be

nondegenerate. Observe that, in case this second one would happen for all 9, € R, the action functional will
not attain its infimum in H} ().

Let us take a sequence {v, }, of real numbers with

Un] > 1 Vn eN, |Un| — o0,

and, for each n € N, choose ¥, € H}(Q2) with

Qi (Unp +n) = min P; (V0 + 7).
TEHL ()

Observe that this element 0, satisfies the so-called auziliary equation in §2

~ Ay — MBn + 9(Tnp(x) + n + 15 (2)) ”;”% /Qg(ﬁntp(y) + Un(y) + 4 (y))p(v) dy| p(z) =0, (2.5)
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together with the homogeneous Dirichlet boundary conditions #,|5q = 0. Thus, regularity arguments (see,
for instance, [1],{10] (pp. 197-198), [37]) show that

{i}n N € N} c W3 (Q) Vr €]1, oo,

and {,} is bounded in the W27 (Q) topology for any 1 < r < oco. In particular, the sequence {9,}, is
contained in C%(f2), though we are not able to ensure (unlike what happens in the ODE problem we studied

in the previous chapter) that it is bounded here. In any case, the Riemann-Lebesgue Lemma ([85]) together
with (2.5) imply that {2,} — 0 weakly in W27 (Q) for any 1 < r < oo: in particular,

{n}n — 0in CH(R).
Derivate with respect to z; in equation (2.5) to obtain
= 80z, (Un/Vn) = M\10z, (Bn/0n) = = (82,0 + 02,00 /Tn + 8,87 g (Tnp + T + 1z )+
1 1 j
Un [loll3 ;

/Q 9(Onp(y) + 0n(y) + U (1)) p(y) dy | Oz,0, 1<i<N. (2.6)

Since {0, /Un} — 0in W27 (), the Riemann-Lebesgue Lemma (78] together with (2.6) imply that {9, /9,} —
0 weakly in W*7(Q) for any 1 < r < co. In particular,

{0n/0n} — 0in C%(0). (2.7)

For each n € N, we write

Un = Un@ + Up + Uj; o=

— max |v,] . (2.8)

Observe that
lim {dn — ﬁn} = ﬁﬂ(wo) ]

n—oo

being, as before, wy the unique point in where ¢ attains its maximum. In particular, if n is taken big
enough, d, # 0 and the sequence {¢,} C C%(Q) defined by

1

Pn = d_v“’ n€N, (2.9)

converges to ¢ in the C?(2) norm, while it is bounded in the W3T(Q) topology for any 1 < r < co. We will

Just need later to use that it is bounded in H3(Q).

Our hypothesis [G] on the geometry of Q says that the gradient of @ vanishes only at wg and D?p(wq)
1s negative definite. Consequently, for n sufficiently big, V¢, will vanish only at one point w, € Q0 and

D?p,(wy) will be negative definite -we will indeed assume this is true for any n € N-. The co-area formula
(see [33]) may be used then to find that

UnsUn) = T))axr = | - =
N (5516 [ﬂ G1(dnpn(z))d /0 G1(dnt) ( /{ o ”wﬂ(m)”dsz) dt

_ / 1 G1(dnt)pa(t)dt (2.10)
0

where

1

pn(t = / ds., <t <1 neN (211)
) {on(2)=t} IVien(z)]]

This idea of using the co-area formula to tackle this problem by means of a careful study of the asymptotic

behaviour of some oscillating integrals was already suggested in 125] and used in [74]. It will be shown that
{pn} converges to

1
Plt) = f{:,;:(::):t} I\V<P(-’C)|ldsx (212)
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in C*([0,1 —€]) for any 0 < € < 1. We will do this in Lemma 2.2.2 below. To end this section, we display
a lemma showing that, as announced, for any € €]0, 1], the sequence {p,}, as defined in (2.11), converges to
p in the C'[0,1 — €] topology, while it is contained and bounded in H?[0,1 — ¢]. If, further, {pn} — ¢ in
H?®(Q), the corresponding sequence {p,} converges to p in H? 0,1 —¢]. In order to do that, we need some

deeper knowledge on the level sets of ¢,. With this aim, we use adequate changes of variables carrying
N — 1-dimensional spheres into level sets of ¢,, or . The details are shown below.

Lemma 2.2.2. Let {u,} — u be a convergent sequence in C?(Q2) and let 0 < € < 1 be given. Assume that
Un(w) = u(w) =0 for alln € N and all w € 8Q, that maxgu = 1 and that Vu(w) # 0 Vw € Q with u(w) < 1.

If n € N 15 big enough, Vu,(w) # 0 Vw € Q with u,(w) < 1 —¢€; let us assume that this happens indeed for
any n. Then, the sequence {p,} defined below

1
Pnt) (un(z)=t} [[Vun(z)] (2.13)

converges in C'([0,1 — €]) to the function p defined by

1
plt) == / de, . (2.14
) (u(z)=t} [Vu(z)| )

Finally, if, further, {un}n is contained and bounded in H3(RY), then {p,} is bounded in H? 0,1 —¢], and,
in case {un} converges in H*(Q), {pn} converges in H?[0,1 — €| .

Proof. For any n € N, let us consider the mapping 6, : (092) x [0,1 — €] — R" defined as the solution of the
initial value problem

On(z,0) =z; T € 00
00, _ Vu, (61'1(5’31r t)) _ _
SR (z,1) € (9Q) x [0,1 = ¢

Analogously, define © : (9Q) x [0,1 — ¢] = R” as the solution of

O(z,0) =z z € 60
00 Vu(6(z,t))
- (z,t) = =
ot IVu(O(z,t))|

Then, for each t € [0,1 — ¢],

(z,t) € (3Q) x [0,1 — ¢

0,[(80) x {t}] = {w €0 up(w) = t} vneN;  ©[(09) x {t}] = {w €N : ulw) = t},

and the change of variables theorem gives

pn(t)zfan‘Jen(x,t)ldsz, p(t)=Aﬂ‘Je(x,t)]dsm, te[0,1— ¢

being JO, and JO the Jacobian determinants of ©,, and © respectively. Since these are C%! mappings

(indeed, C' mappings,) which do not vanish on 99 x 0,1 — €|, we deduce that p,, and p are C* mappings on
[0,1 — €] and we have, for any 0 <t < 1 — ¢,

Tirr2
(V'U«n o en) ‘(H Unp © eg) (Vun 2 en) dSz : (2 15)
V’U.n O en

2 AUnOen'—"z

b

o

p’(t)‘—‘/ ‘J9| 2 Auoe—-z(vuoe)T(quoez)(vuoe)
ol qu09| ‘Vuoe\

—

ds; . (2.16)
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being H*u, and H*u the Hessian matrices of u, and u respectively. Since ©,, — © in the C((89) x [0,1—¢])
topology, and u, — u in C*(2), we deduce that {p,} — p in C'0,1 — €.

We also deduce from (2.15) and (2.16) that, in case that {u,}, is, further, contained in C*(Q), and
it converges to some function u € C?*(2) N H3(2) in both spaces C%*(2) and H3(f2), the corresponding
sequence {p,} is H*[0,1 — €]-Cauchy. Since it already converges to p in the C[0, 1] topology, we deduce
that p € H%[0,1 — €] whenever u € H*(f2) and also that the mapping H3(2) — H?[0,1 — €], u— p = py, is
continuous. Now we see that, in case {u,} — u in C%(Q) is, in addition, bounded in the H3(Q2) topology,
{pn} is bounded in H%[0,1 — €]. The Lemma is proven.

Due to the singularity of V/||Vl||* at wg, our just developed change of variables behaves nicely only far
away from {1} x S¥~1. To know more about the convergence of {p,} to p (particularly, near 1), we need

different changes of variables, also carrying spheres into level sets, but being regular up to {1} x S¥~!. To
develop these changes of variables is the aim of the next section.

2.3 A suitable change of variables

We start this section by an auxiliary lemma which will be used repeatedly through the proof of our next
theorem.

Lemma 2.3.1. Let C be an open subset of the cylinder [0,00[xSV=1, let m € L>®[0,1] be given and let

1 <7 < oo. We assume that {0} x S¥~1 C C and, moreover, it is star-shaped with respect to {0} x SV~ in
the following sense:

(tp,0) € C V(p,0) €C, Vt € [0,1].

For any 2 € L™(C), we consider the mapping

1
Z:C—-R, Z(p,0) := / m(t)z(tp, 0) dt
0
Then, the follounng hold:

1. Ze L™ (C) and
r

r—1
In particular, the mapping L™ (C) — L™ (C), zw Z, is continuous.

1Z]|z- < Imlloollz]l - - (2.17)

2. If z 1s continuous, Z is continuous.

3. If C is bounded and z € W' (C), then Z € W7 (C) and

1 1
9pZ(p,0) = / m(t)t 9,2(tp, 0) dt, VeZ(p,0) = / m(t)Vez(tp,0)dt. (2.18)
0 0
In particular, the mapping W™ (C) - WY (C), 2z~ Z, is continuous.

Proof. To prove 1., it is not restrictive to assume C = [0,00[xS"~!. (Otherwise, simply extend z by zero).
Then, Fubini’s Theorem ensures that, for almost every § € S~ the mapping zg : [0,00[— R defined by

zg(p) := z(p, 0) belongs to L™[0, oco[; in particular, Z(p, ) is defined for a.e. § € S¥~! and all p > 0. Further,
given 6 € SV~ such that z¢ € L7[0, oo[, we have

1Z(p,0)| = A m(t)z(tp, 0) dt Sfo Im(t)z(tp,@)ldtgumllmfg |z(tp, 0)| dt .

Thus, Hardy’s inequality (see, for instance, [72], pp. 72), shows that for such a § € S¥~1, Z4 : [0,00[— R
defined by p — Z(p, ), belongs to L"[0,c0[ and verifies

-
r—1

| Zoll- < Mmool zol 2 -
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Estimation (2.17) follows now from Fubini’s Theorem.

On the other hand, statement 2. is a consequence of the Theorem of continuous dependence of integrals
with respect to parameters.

To prove 3. simply observe that, in case z € C *(C), the Theorem of derivation of integrals with respect to
parameters gives that the associated mapping F' also belongs to C!(C) and its partial derivates are given by
(2.18). Given an arbitrary function z € W17 (C), take a sequence {zn}n C CHC)NWLT(C) with {2,} — 2
in W17 (C). The corresponding sequence {Z,} C C(C) verifies

(@) Zn(0,6) =0V0 e SN-1

1 1
(b) 8,Zn(p,6) = [ tm()3,2a(tp, 0) dt. Vo Zn(0,6) = /0 m(t)Voza(tp, 0) dt .

It follows from 1. and (b) that

-

- : _
{VeZn} — (p,@)H/O m(t)Vez(tp,0) dt

and

. 1 :
{0,Zn} — |(p,0) »——»/0 t m(t)0,z(tp, @) dt
in L™(C). Being C bounded, (a) implies now 3.

We construct now the promised change of variables carrying N — 1-dimensional spheres into level sets
around nondegenerate critical points.

Theorem 2.3.2. Let 2 be an open and bounded, regular subset of RY, and let u € C?%(Q2) be given. We
assume that

(a) u(w) =0 Yw € 09
and, for some wqg € (,
(b) uwo) =1
(c¢) D?*u(wp) is strictly negative definite
(d) (Vu(w),w —wp) <0 Vw € N, w# wp.
Then, there ezists an unique C?-change of variables I : ]0, \/iﬂ xBN=1 Q\{wo} such that

u(l'(p,0)) =1 — %:i Y(p,0) € ]0, \/ﬁ] x SV-1 (2.19)

['(p,0) € wo +R*0 V(p,0) € ]0,v2] x V-1 (2.20)
Furthermore, I’ € C! ([0, \/ﬂ x S¥=1) and the mappings

- o0*T
s ]01 \/5] X SN 1 _, MN)((N-—].)(R) ) (pi 8) — apae (p! 9) (221)
N-1 N 0°T
G:]0,v2] xs"! - RV, (p,0) = P75 (s,) (2.22)
are continuously defined on [O, \/2_] x SV=1. The following hold:

or’ or’ or o°T
— —(0,6) = — 0) is i ble VO e SVL, 2.23
<3P (0, 9),9> > 0, 2 (0,8) =0, (Bp' Bpaﬁ) (0,6) is inversible S (2.23)

Finally, if, in addition u € H*(Q2), then T € H? ([0, \/ﬂ X SN‘I), and both F and G are H' mappings

on [O,\/Z_] x SN-1
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Proof. We deduce from (a) and (d) that Q is star-shaped with resﬁect to wg and

0 <u(w) <1=u(wy) Vw e Q, w # wy.

Let us consider the set
Ch= {(p,@) € [0, +oo[xSN 1 : wo + pf € Q} :

It is a closed, bounded subset of the semi-infinite cylinder [0, +00[xS™ 1, and {0} xS¥—! c C. Moreover,
for any § € SV-1,

Co := {p € [0, +0c0: (p,0) € C} = {p € [0, 400[: wp + 0B € Q}
1s a compact interval which starts at 0.
We next consider the C? mapping

v:C — R, (P, 0) — u(wo + ph)
We observe that, for any § € SV—1, v(-,0) : Cp — 0,1], p+ v(p,0) is strictly decreasing,
9pv(p, 0) = (Vu(wo + pb),0) <0VpeCy, p>0
and surjective. We call w(-,6) : [0,1] — R its inverse, and the implicit function theorem says that

w:]0,1[xSV¥"1 5 R

is a C*? mapping. On the other hand, w : [0,1) x S¥=! — R is continuously defined.
Now, conditions (2.19) and (2.20) can be rewritten in the form

['(p,0) = wo + k(p,0)8, (p,6) € . \/ﬂ x SV-1 (2.21)
where & : |0, v2] x SN-1 Ry should verify

2
k(p,8) € Co. v(k(p,0),6) = 1 — -"2—, Vp €]0,v2], 6 € SN-1, (2.25)

that is,
2
(0, 6) = w (1 - -‘-’2-,9) , (,0) € [0,7/2) x SN~ (2.26)

At this point observe that, if k is defined by (2.26), the mapping T in (2.24) is a truly C? diffeomorphism
from |0, v/2] x S¥—1! into (0\{wo}, its inverse being given by

M\ {wo} — ]0,v2] x SV, W (ﬁ\/l—u(u) = ) .

’ ”W = wﬂ“

Further, k € C(|0, v2] x S ~1), and, consequently, ['(p,0) = wo + k(p,0)8 itself is continuously defined on
[0, V2] x SV

Next, let us show that I is indeed continuously derivable on this set. Of course, it will suffice to check
that k € C1([0, V2] x S¥-1). In order to do this, we will simply derivate in the equality

V2y/1 = v(k(p,6),0) = p V(p,0) €]0,v2] x N1 (2.27)
which follows from the definition of k in (2.26). First of all, let us define

s:C— R, (0,0) — /1 =1v(p,0) = \/1 —u(wo + pb)
Since v € C%(C), s € C?(C\({0} x S¥—1)). Straightforward computations show, for (p,0) € C, p # 0,
Vu(wo+pf)
@(p 6) = (Vu(wo + p0), 6) _ < ’ ’9> (2.28)
dp "’ 2/1 — u(wp + ph) 2\/1—u(::g+p0)
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Do[Vu(wo + p8)]  To[Vu(wo+pg)] Mo | entedl]
Ves(p,0) = p llg{Vulwo + pv)] olVulwo + pt)| p

= —§
2\/1 — u(wo + ;99) 2\/1—’“(:514‘99) 2\/1‘U(§g+99)

(2.29)

being, for each 8 € S¥~1 I, : RY — R the orthogonal projection onto (#)*, that is, IIs(y) := y — (y,0)6 .
We consider the mappings

1
B:C—RY: (p,0) — Vu(w(;—i- ad = / H%u(wq + tpd)0 dt (2.30)
0
1
a:C—R; (p,8) — = u(wzg + #9) = —/ t(G(tp,0),0)dt (2.31)
P 0

which are, as a consequence of Lemma 2.3.1, continuous on C. Furthermore, a(p, 8) > 0 for every (p,0) € C,
and, in case u € H>(Q2), 8 € H!(C,RY) and a € H(C). Now, (2.28) and (2.29) read

Os __(B(p,0),6)
Vos(p,0) = —p WX (2.33)
for any (p,0) € C, p # 0. We deduce that
s€C1(0) 5(0.0) > 0¥(p,0) € C,

and, since a is bounded away from 0, in case u € H3(Q) we further have
s € H*(C).

Thus, derivating in (2.27), which we may rewrite as

V25s(k(p,6),8) = p, (p,0) €]0,v2] x SV1,

we obtain

ok 1 Ves(k(p,0),0) N-1

—(p,0) = , Vek(p,0) = , ,0) € [0,vV2| xS . (2.34

00" = B ERe0) 0= "m0 0 POV )

Consequently,

1 N-1 ok =1
keC ([0\/5] xS ), b-;(p,@))-OV(p,G)E [0, V2] x SV-1,
that is,
PGCI([O@xSN“IRN) -B—F(pe)e >0V(p,0) € [0,V2] x SV,
) ? ) 3p ? ) b b

and, since g—i"; is bounded away from 0, in case u € H3(Q), the function k belongs to H? ([0, v2] x SN-1)
u

and we conclude

r e H?(]0,v2] x Y1, RY) .
On the other hand, derivating in (2.28) and (2.29), for (p, 0) € C, p # 0, we obtain
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AY
L(p,0) := 855(»0- 0) =

_ [Ig|Vu(wy + pl)] + pﬂe[Dzu(wo + p0)0] p(Vu(wo + p8), 0)11g[Vu(wo + pb)] _

2\/1 - u(wﬂ 3 109) 4[] — u(wg + pg)]3/2
I1g [Vu(w3+99)] I He[Di’u(wO - pa)g] <Vu(w;+99)19> I, [Vu(wg+pé)] )
— 2\/1——11(:’?-1-99) 1 [l-u(w€+p9)]3/2
_ T4 (B(p, 0)) + M| D*u(wy + p0)6]  (B(p,0),6) Iy (B(p, 6)) 2o
2/ 0) 4[a(p,0))"?
= %5, gy = _P{D*ulwo +p0)0,6)  p(Vulwo + p6),0)>
M(p,0) = papg (p,0) = 2\/1 — u(wo + pb) 4[1 — u(wg + p0)]3/2 =
2
= (DQu(wo + p0)#, 0) <V ( 3‘5'99)_’9) B (D2U(w0 + p@)e, 9) (ﬁ(ﬂ, 9)’ 9)2 (236)

2,/ 1tugtet) [ 1=togeton ]3/2 2/ (p, 6) 4[a(p, )%

where 8 and «a are the mappings defined in (2.30) and (2.31) respectively. Thus, both £ and M are contin-

uously defined on C and, in case u € H3(), these functions are in H *(C). Derivating again in (2.34), we
find

2 S ’ y S 5
ALLINP LI [k(p,ﬁ)—rgp’(k(p,e),e)]_“’“ Ko~ §2(k(p,6),0) 252 (k(p, 6), 6) )
dp & dp £ | g‘%(k(p, 0), 6)2 .

Ok ” G)M(k(p,e),a) Jy L(tk(p,6),6) dt — 22 (k(p,6),0)L(k(p,6),6)

= (2.37)
dp 82 (k(p,0),6)
P 8% s
o2k weay k(o 6) %4 (k(0,6),0)] M(k(p, 8),6)
P'a—f(ﬁ?ﬁ) - = 3 = ST (2.38)
p 282 (k(p,6),6) 222 (k(p,6),0)° [o % (tp,6) dt
and these functions are continuously defined on [O, 2| x S¥=1. On the other hand, in case H3(Q), it

follows from expressions (2.37) and (

2.38) above, together with Lemma 2.3.1 and the fact that both ‘-3—3 and
Bk

5, are bounded away from zero, that both (p,8) — p-‘%’é(p, 0), (p,0) — a—gg—f‘-(p, §) are H' mappings on
[0,v2] x S¥-1 .

Thus, the definitions of P and G at (2.21) and (2.22) imply that these functions may be

continuously extended to [0, \/ﬂ x SNV-1 and, in case u € H3(Q), belong to H! ([O, \/‘ﬂ X SN'I).
It remains to check (2.23). To do this, simply observe that

ol . ok B Ok .
ad o N-1 N .

2 2
;:9;9(0,9)11}: (83p;9(0,9)w)9+%§(0,9)w Vo € SV vw € RY with (w,0) =0,

and, consequently,

)

ar ) Bk n .
det(ap(o,ﬁ), 39(0’9))‘55(0’9) >0 V0eSN-1,

The Theorem is complete.
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At this stage, we want to explore the continuity of the mapping u — I' = I'y,. Thus, assume that we have

a sequence {u,} — u in C*(2). Assume also that maxqu, = 1 Vn € N, that u verifies the hypothesis (a),

(b), (c) of Lemma 2.3.2 and that u(w) < 1 Vw € Q with w # wy. Then, (d) may not hold, but it is possible
to find some 0 < € < 1 such that

2

(Vu(w),w —wp) <0 Vw € Q\{wo} with u(w) > 1 — % .
and thus, we have an associated C*-diffeomorphism
N-1 = - e?
[':]0, e[ xS™ ™" — Q\{wo} where () := {w € Q:ulw)>1- —2-} ,

which is built in the following form: for any (p, ) €]0, [xSN=1, I'(p, 6) is the only point z € Q,, N (wo +RT6)

2

such that u(z) =1— %ﬂ For any n, denote 2, := {w € 0 : u,(w) > 1— %} . If nis big enough, u, attains the

value 1 only at one single point w,, which belongs to Q,,, and the sequence {wy, } converges to wg. Indeed, for
big indexes n, D?u,, (w,) will be negative definite and (Vup(w),w —wp) < 0Vw € Q,, w # w,. Thus, we may
also consider, for each n € N big enough, the associated C?-diffeomorphism T, )0, e[xSV ! — Q. \{wn},
together with the related mappings F,, : [0,¢] x SV ~1 — Mpyxn=1)(R) and Q,, : [0,¢] x S¥-1 - RN, P
[0,¢] x SN-1 — M Nx(N-1)(R) and Q : [0,¢] x S¥=! — RN . We arrive at the following continuity result:

Corollary 2.3.3. Under the assumptions above, {I',} — T in C%(K) for any compact set K C ]0, e] x SN-1,
The sequence converges indeed in the C* ([0, €] x S¥=1) topology and, moreover,

(Bl o), @an

uniformly on [0,€] x SV~ Finally, if {u,} is contained and bounded in H 3(€Y), the sequence {Tp}n is
contained and bounded in H*([0, €] x SN~1), while {F,}, and {G,}n are contained and bounded in H 1(]0, €] x

SN=1). In case {u,} — u in H3(Q), {T,} — T in H?*([0,€] x S¥-1), while F, = F and G, — G in
H([0,€] x SV-1).

This result follows from our proof of Lemma 2.3.2. All objects we constructed there depended continuously
on u in the adequate topologies.

O

2.4 From integrals on the domain {2 to one-dimensional integrals

At this stage, we plan to use the results obtained in the previous section in orden to continue the work
initiated in Section 2.2 and rewrite both the sequence {p,} and its limit p considered there in a more
convenient form. This procedure will likely provide further results on the convergence of {p,} to p. As
established in Sections 2.1 and 2.2, we call ¢ the first eigenfunction of —A when acting on H} (), we fix a
Lipschitz function h € L?(Q2), and we denote by i the only solution in HE(2) N C(Q) N H3() of the linear
problem —Au — \u = h. We choose a sequence {7, } of real numbers with |Un| > 1Vn € N and an arbitrary
bounded sequence {#,,} C H}(Q) N C?(Q). It will be assumed that {9,} — 0in C'(Q), and that the related
sequence {yn }, defined by expressions (2.8) and (2.9) converges to ¢ in C2(Q2), while it is contained and
bounded in H3(2). Since our hypothesis [C3] guarantees that the eigenfunction ¢ has an unique critical

point wo and its second derivative is not degenerate there, as detailed at the end of last section it is possible
to find € > 0 such that

62

(Vo(w), w —wp) <0 VYw € Q2 with w # wp and p(w) > 1 — 7

If n is big enough, also the maximum of ¢, is attained at a single point w, and (V. (wn),w —ws) < 0 Vw €
Q\{wn} with pp(w) > 1 — f'; After possibly skipping a finite number of terms of the sequence, it will
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be a.szsumed that these things happen for all n € N. Using the change of variables theorem we obtain, for
1-5 <t<l
2 .

1

—— —— o 1 —
Pn(t) T /SN_I |JTn (V2 —2t,6)|dss, p(t) = /SM |JT (V2 —2t,6)]|dse

being I',,,T" : [0,¢] x S¥! - Q c RV the changes of variables associated to ¢,, and @ respectively and
JI's, JI their Jacobian determinants. This leads us to consider the sequence {op, }, of C1[0-efv/2] Tunctio

defined by

and whose relation with {p,} is given by:

Pa(t) = 0\(/—:: i) e

Expression (2.41) above suggests how to extend each function o, to aC7[0, 1] function. We define
an(p) := ppa(l - p?), 0<p<l,
so that
pa(t) = 21— 0<t<l

Thus, (2.41) may be rephrased by saying that the new definition of the sequence agrees with the old one

on (0,¢]. It follows now from Lemma 2.2.2 together with (2.39) in Corollary 2.3.3 that {o,} converges in
C*[0,1] to the H?[0, 1] function o defined by |

J(p):=pp(l—p2), 0<p<1.

Moreover, {o,} is contained and bounded in H?|0, 1].

At this point, we are ready to study the asymptotic behavior of sequences of the kind of T;(@,, 4,) that
we considered in Section 2.2. We remember from (2.10) that

1
Y (Un,i,) = [) G1(dnt)pa(t)dt.

Of course, the Riemann-Lebesgue Lemma implies Y;(2n,%,) — 0 as n — oco. Thus, in orden to obtain

some information on the sign of T;(%n,un) for n big, we must take care of higher terms in the Taylor

development of this function around infinity. By writing the Jacobian determinants as finite sums of finite
products, we see that

0 < lim 7n(p) < +o00o Vn € N; 0 < lim 7(p)

< +00. (2.42)

In particular, since N > 2, 0,(0) =0 Vn € N. It motivates the Lemma below.

Lemma 2.4.1. Let g € C(R/Z) have zero mean, and let {¢,} C H2[0,1] be a bounded sequence with

€n(0) =0 Vn € N. We assume that it converges in C1[0,1] to some C'(0,1] function £. Let, finally, {d,} be
a sequence of rcal numbers with |d,| — «o. Then,

LR (V1 —t) , 1 _
lim |ds /0 9(dnt) T di = Ga(d)E (0) + Ga(0)E(D)| = 0,

being G the primitive of g with zero mean.

b
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Proof. Integration by parts gives

SN ) , LN AT
d /O 9(dnt) S dt = G (dn)€5 (0) + G (0)6n(1) = - /0 G1(dnt) - dt.

We consider the sequence {¢,} C L*[0, 1] defined by the rule

€n(x) ¢ (3:) 1r 1 y 1
(n(z) = —= - - =/0 t/ﬂ ¢ (stx) ds dt-——/ E(tx)dt: O0<z<l1,
i | 0

so that

! =t — 6 (VI—t) ! JI=t
. 1-t L . (:n( I — t)

Observe that {(,} — 0 uniformly on [e, 1] for any 0 < € < 1. Further. we have

|g,,,(:c)|gf01t/01 €ﬁ(ts:)|dt§[01/01 Iﬁﬁ(stz)|dsdt—fol

Thus, Hardy’s inequality (see, for instance, [72], pp. 72), implies that {¢n} is, indeed, a bounded sequence
in L?[0, 1]. Now, given any 0 < a < 1 which we momentarily fix, we have

: Cn(v1—t) : Cn(v1—1) : (n(V1—1)
/OGI(dnt) i /001(.9:,1::) = dt| + / G (dnt) 2" et

The first term in the sum above converges to 0 as n — oco. This is a consequence of the Riemann-Lebesgue
Lemma (see [85]). Concerning the second, we have

1
::(st:r:)l ds dt — /;

n(t)| at

I

1 (n (VI =) ' |G1(dnt)] [¢a (VI =1)|
/{lGl(d"t) it & 5/& (T—0)/% (1=¢)i/

' G1(dnt)? Y (VT —1)2 O :
< \/ e dt f = 4= IlGlllm\/L i \//mcn(x)zdxs
< |G1lloe V2¥1 = a||¢all L2101

dt <

and we obtain

, - n(V1—1 4
imsup| [ G () 250 | < 161 1ooVEYT =3 s0p Colopo

n—oo

Since it is valid for any 0 < a < 1, we conclude

Cﬂ.(V 1 _t)
v1—t

1
lim / Gl(dnt) dt=0,
0

n—00

proving the lemma.

2.5 Does the action functional attain its infimum?

We are now ready to start to obtain consequences of the work carried out in previous sections. Under the
framework established in Section 2.4, we choose a divergent sequence {#,} of real numbers,

U] — 00,
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and we take v,, :— 0 Yn C N. Thus, the related sequence {¢,},, defined 1n expressions (2.8) and (2.9),
converges to ¢ both in C?(Q2) and H3(Q), and it implies that the related sequence {0, }, defined as in (2.40),
converges to o both in C'[0, 1] and H?[0,1]. Using Lemma 2.4.1 we deduce that

n— 00

lim {5 (2n, 0) — Ga(Bn + 15 (wo))o" (0) + G2(0)o(1)] =

n—oo

= lim rﬁn L G1(Unp + uj, )dx — Go(v, + uj (wo))o’(0) + G, (0)0(1)- =0, (2.43)

and thus, if the sequence ¥, is taken in such a way that G,(7, + u;(wp)) = 0 Vn € N, we really have

lim 3, Y5 (0n,0) = —G2(0)a(1). (2.44)

n—0oo

Of course, for any dimension N € N, we have

(W) =p0) = [ =

ds, €0, col,
o TVe@] = €10

and we conclude

Theorem 2.5.1. Assume that G2(0) # 0, and take any h: Q—R Lipschitz with

/ h(z)e(z)dz = 0.
Q

Then, the action functional in (2.4) attains its global infimum in H} (), which is negative.

Proof. Expression (2.44) implies in particular that, for n big, T;(?,,0) has the same sign as —G2(0)o(1) if
Un — +00 and the opposite if 9,, — —oo. The theorem follows.

In the case N = 2, (2.42) means that o’(0) # 0. We immediately conclude:

Theorem 2.5.2. Assume
N =2
Take any h: Q — R Lipschitz with

/ h(z)e(z)dz = 0.
Q
Then, the action functional in (2.4) attains its global infimum in H} (). This minimum is strictly negative.

Proof. In case G3(0) # 0, the thesis is given by Theorem 2.5.1. In case G2(0) = 0, it follows from (2.43) that

lim [anra(aﬂ, 0) — G2 (@, + ﬁ;,(wo))a'(O)] =0,

n—oo

The result follows by taking the sequence {En} — oo with Go(T@, + Ui(wp)) = ming G2 < 0Vn € N.

In case N > 3, the sequence {p, } is contained, at least for n big enough, in W':1(0,1], and p,(1) = 0Vn €
N. Thus, if G2(0) = 0, integration by parts gives

dn Y5 (i + @in) = do /01 G1(dnt)pn(t)dt = d,, /01 Gl(d,,t)"’“(" Sl

vV1—t
:/lcz(dnt)a;(\/l—t)/\/l—tl— cr:(\/l——t)/(l —t) (2.45)
) =
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This leads us to consider the sequence {©,}, of L?[0,1] mappings defined by

T D<p<l,

so that
en(vl "t)
v1-—t

It follows from the expression of the Jacobian determinant as sum of products of partial derivatives and

(2.40) that the sequence ©,, is indeed contained and bounded in H![0, 1]. Further, it converges in uniformly
to the H(0, 1] function

1
ﬁne,-;.(ﬁn-i-&n):/ Go(dnt)
0

a'(p) a(p)
O(p) := ,
(p) . -
On the other hand, using (2.42) we find that, if N = 3,

0< p< 1.

©(0) > 0.
All this motivates the proposition below

Proposition 2.5.3. Letg € C(R/TZ), g # 0, have zero mean, and let {{,} C H'[0, 1] be a bounded sequence.
We assume that {£,} converges uniformly to some function £ € H*[0,1] with £(0) > 0. We take a sequence
{dn}n with {dn} — +00 and G1(d,) = maxg G; for any n € N, G, being a primitive of g. Then,

. fn( = ) }
lim ﬂ] g(dnt +00. (2.46)
tim {dn [ gtanty =002 _
Proof. Integrating by parts we obtain:
'En( =1 ) / d -gn( l_t)-
d dt .
d, [ 0(dnt) 2 Yt = [max Gy = Gy (0))6a(0) + | [max G = Ga(dnt) e
We observe that _ H
d [&(VT=1)] _ &(VT=18) - VI—t&,(VI—F)
dt | V1—-t 201 —1)3
for any 0 <t <1 and all n € N. We choose Ko >0, 0 <a <1 and ng € N such that, for n > ng,
En(V1I—1t) > Ko Vt € [a,1].

For n > ng, we define

Anr— {t €la,1[: &n (V1 —t) — V1 —-t& (V1 —1t) < 0} = {t €la, 1[: :t Fg“ff___"ll__tt)‘ < 0} :

and

={\/1—1—t:teAn} c|0, 1] Vn € N.

Observe that &), (z) > £ Vz € B,, Vn > ng. Since {€.} is bounded in L2?(0,1], it implies that the
sequence of real numbers
1
/ —dz, n€N
B, H &

is bounded. Thus, the sequence
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|

/ d [&n(V1—1t)] dt=/ én(VI—t) = V1 -t€ (VI-1t)
A. @t | V11—t | A, 2[1 —t]z

_ [ |l - 2€4(2) | N
_/; = i < (%iajc|gn|) Lnﬁdﬂ /Bn;d:c fggn(z)ﬂdx. (2.47)

1s also bounded. In another words, it is possible to find a constant 0 < C < oo such that

d an( Y% 1 t)- \/

dt

and we deduce that, for n > ng,

1 d (&(VTTD) d [6a(/TD)
J, tmgxGr = Grant gy (202D ) e > -2i6he [ | €[22 4> _apayc

is bounded by below. On the other hand,

/Oa[ml?.xGl _ Gl(dnt)]jt (gﬂﬁ)) it =

JI—t
— maxG, (En(\/l_-z) —fn(O)) _ /oﬂ Gl(d“t)dit (5’1‘_(%) dt

Thus, by the Riemann-Lebesgue Lemma,

lim /:[mgxcl-cl(dnt)]%( = )dt=m€xG1( — -h(O))

and consequently,

imint {d [ o) 2000} > max G, - G1(0)1AO) ~ 21610+

- max G, (h(\/l\/lT_T) h(O))

so that, letting a — 1,

Jim. {dn /: g(dnt) énf/g_?)dt} = +00,

as stated.

Note 2.5.4. By replacing g by —g, we observe that, in case the sequence {d,} is chosen in such a way that
Gi1(dn) = ming G; Vn € N, then

. ' gn(vl—t) .
nlirx;odﬂ 0 g(dnt) Vi dt = —00.

We immediately conclude:

Corollary 2.5.5. Assume N = 3. Then, the action functional in (2.4) attains its global infimum in H ().
This minimum s strictly negative.

Proof. It is an immediate consequence of our study above: In case G5(0) # 0 it follows from Theorem 2.5.1
and, otherwise, from Proposition 2.5.3 and the preceding discussion.
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Derivate now in (2.41) to find

G'ﬂ.
pl (t) = —= — | O0<t<l. (2.48)

Thus, from (2.40) and the expression of the determinant as finite sum of finite products, we see that, if N > 3,
{p,} — p’' in L'[0,1]. This fact was already stated in [74]. Derivating again in (2.48) we obtain

2220020 _ 90! (VI— 1) + ol (VI - t)VI—¢

Pna(t) = (Y , 0<t<1, (2.49)

and, again thanks to (2.40) and the expression of the determinant as finite sum of finite products, we see
that, since 0, — o in H?[0, 1], in case N > 5, the sequence {p,} converges to p in W20, 1.
First of all, let us recall (2.16) in order to estimate the value p’(0). We have

, JY(z,0) Vo(z)T H?p(z)V (:cﬂ 8%p/ 012 (6)
MO)z/"’“ e Ilwalr (p dsz=_2/<;n ||$so(e>n3

dsg

-

e

being 8%p/0v? the second derivative of ¢ with respect to the unit normal of 9.

However, in case 2 is convex, 8%¢p/dv?(6) > 0 V8 € 89Q. To see this, fix an arbitrary point 8 € 8Q and

some tangent vector w € Tp(952). It will be seen that w’ (H%p)(0)w < 0. Thus, since Ap(0) = 0, we will
conclude that Vi (w)? H%p(w)Ve(w) > 0.

Let us take some C? curve v :] — 1,1[— 8% such that v(0) = 8, 4/(0) = w. The convexity of § implies
that '

—(Vp(0),7(t)) <0 Vte]—1,1],
and, derivating twice,

—(Vy(6),7"(0)) < 0.

However, derivating twice also in the equality ¢(y(t)) = 0 Vit €] — 1,1[, which follows from the fact that
e(] — 1, 1) C 99, we obtain

w' H*p(8)w + (V(0),7"(0)) = 0
or, what is the same,
wl H2p(0)w = —(V(6),7"(0)) < 0.

Thus, if Q2 is convex, p'(0) < 0.

Assume now N > 5 and 2 is convex. Assume also G2(0) = 0 and G3(0) < 0. Integrating by parts twice,
we find

1
2 (3,,0) = d / G1(Bnyp + iz )dz = d2 / G (dnt)pn (t)dt =
Q 0
1
= Ga(O,(0) + [ Galdat)pi(t)ct.
0

Using the Riemann-Lebesgue lemma we conclude that lim dﬁTﬁ(ﬁn, 0) = —G3(0)p’'(0) < 0. It implies

n—0OoC

that, if n is big enough, T;(v,,0) < 0, and the minimum of the action functional (2.4) is negative. It finishes
the proof of Theorem 2.1.2, and Theorem 2.1.3 becomes now a consequence of Lemma 2.2.1 .
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2.6 The multiplicity problem: A topological approach

In the final section of this chapter we will study the boundedness (or unboundness) of the set of solutions

of (2.1) for given h € Lip(Q) and g € Lip(R/TZ). In case g is real analytic of a small Lipschitz constant,
this boundedness is equivalent to its finiteness, as it is well known. Straightforward arguments, using the
Riemann-Lebesgue Theorem show that the solution set is indeed bounded (in the W27 (Q) topology for any
1 <7< +00)if h #0, so that we may well concentrate in the case

h=he L3(9).
As announced in Section 2.1, it turns out that the space dimension N plays a key role in the answer of this

problem, and, while for N = 2 or 3 this set is always unbounded, for N > 5 it may be bounded. We see this
below.

Consider the linear differential operator

C:H)(Q)N H?*(Q) — L%(N), Lu = —Au— \u, Yu € Hy(Q) N H*(Q), (2.50)
and the Nemytskii operator associated with g
N : L*(Q) — L?(Q), (Nu)(z) := g(u(z)) VzeQ, Vue L), (2.51)
so that (2.3) is equivalent to the functional equation
Lyv+N@w+1a;)=0, v € Hy(Q) N H*(N). (2.52)
Let Q : L*(Q) — L?*(Q) be the linear projection given by

1

I = (nsoua /Qh(x)""("’)d"”) ¥

We observe that kerQ = L?(Q) = im L, ker £ = (p). Now, (2.52) may be rewritten as the so called
Lyapunov-Schmidt system

L)+[I-QN(w+1;)=0
0=QN(v+iz) (2.33)

where I stands for the identity operator in L2?(2). We call £ : L3(Q) — HL(Q) N H2(Q) the inverse
isomorphism of £ : Hj(Q2) N H%(Q) — L?(R), (so that u; = Kh), and (2.53) adopts the form

v+ Kl - QN (vp+ 0+ 14;) =0 (2.54)

0= / 9(0(z) + 9(z) + 9z (z))p(z) dz (2.55)
Q

where we have used (2.2) in order to write vasv = 9o+ 9, o € R, 7 € ﬁ&(ﬂ). Let us call X the set of
solutions of the auziliary equation (2.54), which is indeed the same equation which we considered in (2.5)

3} e {(ﬁ,a) eR x L2(Q) : 5 = K[I — QN (3 + +i1;1)} .

On the first hand, as seen in Section 2.2, regularity theory shows that ¥ C R x W3 () forany 1 <r <
+00. On the other, it follows from the Schauder fixed point theorem -note that A is completely continuous-
that for any ¥ € R there exists some ¢ € L2 (€2) such that (9,2) € . This is something we already know from
Scction 2.2, where we arrived at this sawe facl [rom a different argument. Let {(vn,vn)} be any sequence
in ¥ with |v,| > 1Vn € N, |,] — +00. As in previous sections, we consider the sequences {d.} and {p,}

defined by (2.8) and (2.9). And following a similar reasoning we used in Sections 2.2 and 2.4, the co-area
formula and the change of variables theorem give us, for n big enough, the relation

/ 9(Bp(z) + B(z) + i3 () p(x) dz = / 9(dnion(2))p(z) dz = / 9(dnt)gn(t)dt  Vn €N,
Q Q 0
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where the sequence {g,} C C[0, 1] is defined by

_ o(z) o
qn(t) - /{tpn(z)=t} “V@n(l‘)”d ’

_ 1 57 o — _ Ta(V1—t)
NoT fsw_l ¢ (Cn(V2 —2t,z)) |JT7(V2 - 2t,z)| ds; = 0<t<1, (2.56)
being
Tn(p) — % N @ (Fn(\/ipa 17)) IJPn(\/Ep, $)|d8x ] 0 < p < 1. (257)

Using the same type of arguments we displayed in Section 2.4 with {0,} and o, one checks that {7,}
converges in C*[0, 1] to the function 7 : [0,1] — R defined by

7(p) ;= % g @ (F(\/ip, :r)) lJI‘(\/Ep,:r)l ds; = (1 —p*)a(p), 0<p<l. (2.58)

Moreover, {7,,} is bounded in H*[0,1]. On the other hand, 7,(0) = 0 Vn € N. Thus, we are in position
to apply Lemma 2.4.1 to deduce that

n—00

lim dﬂ,/g g(dnon(z))e(z) dz — G1(d,)7'(0) + Gl(O)fr(l)‘ =

n—00

= lim dn/Q g(dnon(z))p(z) dz — Gy (Un + G5 (wo))o’'(0)| =0,

since limp oo {G1(dn) — G1(n + uj,(wo))]o’(0) = 0. In case N = 2, as seen in Section 2.4, ¢/(0) > 0. It
means that, if {9} is chosen in such a way that G1(9} + 47 (wp)) = maxg G; Vn € N,

fm dt ]Q o(d} on(2))p(2) dz = (maxGy) o'(0) > 0,

n— oo R

while, in case G1(7,, + 4;(wo)) = ming G; Vn € N,

lim d;’/ 9(d,; pn(x))p(x) dz = (min Gl) a'(0) <O.
Thus, continuation results based upon the continuity property of the Leray-Schauder topological degree, may

be used, in a similar way as in the proof of Theorem 1.1.2 in the previous chapter (page 9), in order to show
Theorem 2.1.1 in the two dimensional case.

In case N = 3, ¢/(0) = 0, but the sequence {gn } is contained in W1:1[0, 1], (in a similar way as happened
with {p,}), and, integrating by parts, we find

& [ g(dnon(@)o(a) do = & | g(dnt)"'"f/—‘:”dm

1 (V11 T"(I:t v1—t
=dn/0 Gl(dnt)( sbhg \/g—l)/ !

so that, in case {@;}} has been chosen in such a way that G;(d}) = maxg G, Proposition 2.5.3 implies that

dt ,

im (¢5)? | g(d}en(a))e(z) de = +oo,

n—oo

while, in case {u } is taken with G;(d;) = ming G,

lim (d;;)’ /Q 9(dnpn(z))p(z) dz = —00,

n— 00
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implying Theorem 2.1.1 in the three dimensional case.

Assume now that N > 5 and ) is convex, and let B ¢ f:?(Q) M Lip(§2) be a bounded set. Let us see that
there exists some positive number € = ¢z > 0 such that, if h € B and

)

; 1 ,
g€ 0= {9 € C(R/TZ,R) : |G:1(0)] > 51G1lloos l9lleo < € llg'[leo < 6}

then, the set of solutions of (2.1) (or (2.3)), is bounded. Otherwise, it would be possible to find sequences

{g9m} C Lip(R/TZ) with g,, € O1/m VYm € N, and {hm}m C B, such that. for each m ¢ N, the set of
solutions of the equation

—QAvy, — A1V + gm(vm Oy ﬁﬁm) = 0, Um € Hé (Q) ; (259)

is unbounded. Let us take, for each m, a solution v,, = Um+0m With |0,| > 1 and 9, € H}(Q)NC2(Q)NH? (§2)
of (2.59). Relation (2.54) reads

—

~AUm = AMUm + g (Imp () + O + @) — | fn Im (Tme(¥) + Om (v) + iz (v)) (v) dy- p(z) =0

for any m € N. .
It follows that {#,,} — 0 both in C}(Q) and in H? (€2). Derivating in the equality above we find

- Aa:l:i (ﬁm/ﬁm) o Ala:r:i (ﬁm/ﬁm) = *(aﬂ:i‘p + 837:' ﬁ1'1"1/;6"1"1"& 2 81?:1'&;;)9!(5"‘(’0 + ﬁm + ﬁfl)+
1 1
Urm l0lI3

-

Lg(ﬁm¢(y) + Um(y) + 45 (v))p(y) dy| 82,0, 1<i<N,

and we deduce that the sequence {%,,/7,} converges to 0 in W3T(Q) for any 1 < r < co. In particular, it
converges to 0 in C?(2) N H3(Q2). Consequently, the sequence {y,} defined as in (2.9),(2.8), converges to
both in C*(2) and H3(Q2) and the sequence {7,,}, defined as in (2.57) converges to 7 in H2[0,1]. Thus, a
similar reasoning to the one carried out in the previous section in order to show Theorem 2.1.2 for N > 5,

shows that the sequence {g,} defined by (2.56) converges in W 21[0,1] to the function g : [0,1] — R defined
by

t 1
glt)— / |JT(vV2 —2t,6 d39=t/ dz = tp(t), 0<t<l.
BT g S 1950 = J armsy TR = PO

We have proved that, given € > 0, there exists some index mo € N such that, for any v = %y + ¥ solution
of the equation
_Av—)\lv-i—gmﬂ(vnl-ﬁ;lmo):o, Vi Hg(ﬂ),
with |9] > 1, we have
lgy — Q"”Ll[o,u < E€.

We choose € = —¢'(0)/4 = —p’(0)/4 > 0. Since the set of solutions Um, Of equation (2.59) (for m = my) is
H{ (2)-unbounded, it is possible to find a sequence of solutions {vn}n With v, = B + B, {|Ta|} — 00. We

call g := gmy, h := hp,. Since the corresponding sequence {gn} is contained in W%1[0, 1], we may integrate
twice by parts, to find

d; /Q 9(vn + U;) () dz = d; /g; 9(dnpn(z))p(z) dx = d2, fo g(dnt)gn(t)dt =
- —d, / G1(dnt)g, (t)dt = Ga(0)q., (0) + / Ga(dnt)q! (t)dt,
0 0
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so that

“1 /01 Ga2(dnt)q” (t)dt| + /01 ‘Gz(dnt)

+

and then,

imsup |d2 [ g(un + 24)0(z) dz ~ G2(0)q'(0)

It implies in particular that, for n big enough

& | 9o+ @3)e(z) dz — G2(0)d (0)| < |G2(0)] |an(@) — ¢ O]+

]0  Galdut)d ()t

< |G- IIWIq’(0)|/4 :

(1) = ¢"(8)]dt < |G2(0)| |an(0) — g’ (O)|+

+ [|G2llolq’ (0)[/4,

lim sup dﬁ/ﬂ 9(vn + uj)p(z) dz| > le(O)Q’(O)l — [IG2lleolq’ (0)1/4 > [IG2]leolq’(0)]/4,

a contradiction. It finishes the proof of Theorem 2.1.1.
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Chapter 3

On the multiplicity of periodic
solutions for pendulum-type equations

3.1 Introduction

In this chapter we turn back to ordinary, resonant, pendulum-like equations. We deal with boundary value
problems of the type

{un +cu’' + g(u) = e(t) = & + &(t) (3.1)

w(T) —u(0) =k; u/(T)—u(0) =k
where the following hypothesis are made:

[Ha}

1. k, k', T, c are given real constants with T > 0.

2. g € C'(R/2xZ) is a continuous, 27-periodic function with zero mean, i.e.,

27
/ g(u)du = 0,
0

3. e € L'[0,T] is decomposed as e = & + €, where

= ! "+ ck
e € R, ec L'0,T) := {eeLl[O,T]:%/ e(s)ds=k ;C .
0

Simply integrate both sides of the differential equation in (3.1) to check that, in case ¢ = 0, a necessary
condition for the linear problem (3.1) to have a solution, is e = é € 1:,1[0, T, which is easily shown to be
also sufficient. Further, the whole set of solutions can be obtained by adding all constant functions to any
particular solution. This case being completely understood, we will always assume that ¢ is nontrivial in
what follows. On the other hand, the simple change of variables @(t) := u(T — t), 0 <t < T shows that it is
not restrictive to assume ¢ > 0.

Observe also that, in case u is a solution of (3.1), u + 2 is again a solution. These solutions are called
geometrically equal (they coincide when seen in the circumference R/2nZ), and our objective in this chapter
is, for given T, k,k’, c, g, to find external forcing terms e such that (3.1) has at least, or exactly, a prefixed
even number 2n of geometrically different solutions.

This problem, which contains in particular the periodic problem (k = k' = 0) for the dissipative pendulum
equation (g(u) = Asin(u)), has therefore a long history that may be found, for instance, in [57]. As a

consequence, many aspects of this problem are known even though also many important and profound
questions remain still open.
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Most results in literature in connection with this problem deal with the periodic setting:
w' + o' + g(u) = e(t) = &+ &(1) -
w(T) —u(0) =0; o (T)—v'(0) =0 |

In this framework, it was proved in the 1984 work by Mawhin and Willern [62] that, if the problem is
conservative, (¢ = 0), for any given e = &€ € L![0,T] = {h € L'[0, T} fo s)ds = 0}, problem (3.2) has,
at least, two different solutions. This result, which turns out to be false for the nonconservative case, (just

remember the first counterexample, given by Ortega [64], showing that, if ¢ # 0, (3.2) may not have solutions
at all even for e = € € L[0, T]), was attained through the use of variational arguments.

More recently, it was proved by Donati [28] that, in the periodic problem for the conservative, forced
pendulum equation, (g(u) = Asin(u)), it is always possible to find forcing terms e = é € L'[0,T] such
that (3.2) has, at least, four geometrically different solutions. This result was extended by Ortega [65], who
established that, in the same framework, it is possible to change 4 by any number. Independently, it was
shown by Katriel ([42]) that, in case g is not a trigonometric polynomial, has C? regularity and verifies

g(z + m) = —g(z) Vz € R, for arbitrary damping ¢ the number of geometrically different solutions of (3.2) is
not bounded as e = € varies in L! (R/TZ).

All these partial results lead to the following question: Are additional assumptions for g € C(R/27Z)
with zero mean, essential to find, for each n € N, forcing terms e € L! (R/TZ) such that problem (3.1) has,

at least, n geometrically different periodic solutions? In this chapter we complete the work initiated in [80]
to show the answer to be ‘no’:

Theorem 3.1.1. Assume g € C(R/27Z) is not trivial. Then, for eachn € N,

Sn := {e € L' (R/TZ) such that (3.1) has at least n geometrically different solutions}
has nonempty interior in L' (R/TZ). Moreover, |

1. &, nlL} (R/TZ) # 0 if c =0 or g is not a trigonometric polynomial.

Sa{e=¢é+eec L' (R/TZ): €€ L'(R/TZ), —e <& <0} # 0 #

;é.S{; Me=é+ée L' (R/TZ):é € L'(R/TZ), 0 <& < €}

for every € > 0 in case g is a trigonometric polynomial and ¢ # 0.

As a consequence, there are (infinitely many) analytic functions e € C*([0,T)) such that problem (3.1)
has at least n solutions. On the other hand, in view of Theorem 3.1.1, the following question arises:

Is it true that S, NL'[0,T] # 0 independently of g,c?

We do not give the answer to this question, which seems likely to be positive.

Theorem 3.1.1 is proved in two stages. In the first one, we start by considering as forcing term e, a
constant function

e=E¢e.
For a certain value &€ = €, 1 of this constant, (which is zero if @ = 0) the differential equation in (3.1) has

a closed orbit, and this orbit generates a continuum of solutions u of this equation. These are solutions of
(3.1) for k = 2w, k' = 0, and, thus, T-periodic solutions for the equation

u’ +cu' + g(u) = eqr — 278,

being ¢’ the derivative of the usual Dirac delta function at an arbitrary, given instant of time. At this stage,
bifurcation results which follow from the implicit function theorem, allow us to obtain, for suitable curves of

L'[0,T] functions bifurcating from é. 1 — 276, many corresponding curves of solutions bifurcating from this
continuum.
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However, in order to ensure this argument to work. we further need (together with regularity) some
additional nondegeneracy hypothesis. It was shown by Ortega [65] that these hypothesis are met in case
g(u) = Asinu and ¢ = 0. This is not the case for general nonlinearities g, not even for ¢ = 0, as it is shown
in Remark 3.3.2. However, we show here that the hypothesis always hold when g is the restriction to the real
line of an entire function on the complex plane. This allows us to prove Theorem 3.1.1 in this particular case.

It is also possible to ensure nondegeneracy hypothesis in another cases: this gives rise to Theorems 3.1.2 and
3.1.3 below.

In a second stage, we take a nonlinearity function g which is assumed to be not a trigonometric polynomial.
The main idea here comes from Katriel’s work [42]. For the limit case of zero period (T" = 0), it could be
thought, of course, in a heuristic way, that the forced pendulum-type equation (3.2) has the following curve
of ‘periodic solutions’: for any a € R, we may consider the ‘solution’ which remains still at a along this
zero-length time period. Under some regularity, symmetry and nondegeneracy hypothesis on g, Katriel was
able to bifurcate, for small positive time period T, forcing terms e with many associated periodic solutions.

Here, we modify Katriel’s argument so that regularity and symmetry hypothesis are no longer needed.
And, in the second hand, we manage to bifurcate forcing terms with many associated ordered branches of

strictly lower and upper solutions, so that we are in the appropriate framework to use topological arguments
In order to obtain open sets of forcing terms with the same properties.

Subsequently, we devote ourselves to the study of the particular interesting case of conservative, pendulum-
type systems:

{u” +g(u) = e(t) = & + &(t)
w(T) —u(0) = k; o/(T) — u'(0) = K

This time we may use our better knowledge of the problem to explore ezact multiplicity results. To get
a feeling of what we should expect, observe that, in case g is %-periodic for some p € N, the number of

geometrically different solutions of (3.3) (or (3.1)), if finite, is always a multiple of p. Consequently, we impose
a new assumption on g implying, in particular, that its minimal period is 2.

[Ga] g € C*(R/27Z) has a primitive G which attains its maximum only once in [0, 27|

Then, if the time period T is big enough, it is possible to show the existence of forcing terms e = é € [ 0, 1]
such that problem (3.3) has exactly a prefixed even number 2n of solutions.

Theorem 3.1.2. Assume [G3]. Then, for each given n € N there exists To = To(n) > 0 such that, for any
L' > To(n), there exists an open set O, v C L'([0,T]) with On1r N LY0,T) # 0, and with the property that
for any e € O, 1, problem (3.3) has ezactly 2n geometrically different solutions.

In particular cases, say, in the case of the pendulum equation, we are able to estimate the quantity Tp(n).
We obtain:

Theorem 3.1.3. Assume q(z) = Asin(z), A #0, and let n € N be given. If

V3 +1 n
7 ) \/m (3.4)

then, there ezists an open set Op 7 C L*([0, T)) with O, 1N L[0, T] # 0, such that for any e € O, 1, problem
(3.3) has ezactly 2n geometrically different solutions.

T > 1210g(

Thus, it remains an open problem to decide whether this result continues to hold without assuming (3.4).
Next result will follow from Theorem 3.1.2 above.

Corollary 3.1.4. Assume [G3]. Then, for each given n € N, there ezists a discrete and closed set F,, C R,
such that, for any T € R\ F,, there ezists an open set O, v C Ll([O,T]) with Op, v N L0, T] # 0, and with
the property that, for any e € O, 1, problem ( 3.8) has ezxactly 2n geometrically different solutions.

In particular, there ezists a countable subset F of Rt such that, for any T € R*\F and for any n € N,

there exists an open set O, v C L' ([0, T)) with O, 1 NLY0,T) # 0, with the property that, for any e € O, r,
problem (3.3) has ezactly 2n geometrically different solutions.
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Some remarks on the notation. Through this chapter, a function of several variables, S = S(z;, z», ..., L)y
defined on a open subset of the cartesian product of the Banach spaces X, Xo, ..., X,, will be called C! (or
continuously differentiable) with respect to z; if it is continuous and the partial derivative 9, S is continuously
defined on the whole domain of S. We write T := R/TZ, (so that L}(T) = L!([0,T]), C(T) = {f ¢
C([0,T)) : f(T) - £(0) = 0}, CX(T) = {f € C*([0,T)) : £(T) — £(0) = 0= f/(T) — £(0)}, Wi(T) = {f €
W1.1([0,T]) : f(0) = f(T)}, etc). Given s € R we call 7, the associated translation operator (defined by
7sf(z) := f(s+ z)). A (real) trigonometric polynomial of degree r € N on T is a function P : T — R of the
form P(t) = pg + Z;=1[pj cos(j%“t) + g; sin(j%,’f-t)] for some real coefficients p;, g; with pf =} qf # 0, or, in

. . Do . : =
complex notation, P(t) =) ___w;e T* for some complex coefficients w; with w_; = @; and w, # 0.
j=—7 ) J J J

3.2 The abstract framework: A bifurcation result

The implicit function theorem may be used to obtain the existence of nontrivial branches of solutions bifur-
cating from a trivial one. There are many results of this type in the literature, see, for instance, [3], [22].
This section is devoted to recall some general bifurcation arguments, which we will need later.

Let X,Y be real Banach spaces, let U C X, V C Y be open and yg € V; let I C R be an open interval
with 0 € I; finally, let H: I xU xV — X, (A, z,y) — H()\, z,y) be a C! mapping. We think of A\, z,y as

being the bifurcation parameter, the variable, and an extra perturbation parameter respectively.
We are interested in the solutions of the equation

H(X,z,9)=0; Ael, zelU, yeV, (3.5)
for A # 0.

We assume that for (A,y) = (0,y0) there exists a trivial branch of solutions given by the C! curve
vy:R->UCJX

H(0,7(s),y0) =0VseR (3.6)

~ The curve 7 is further assumed to have the following property: There exists some closed, linear hyperplane
X C X such that

Y(s)¢ X Vs eR (3.7)
(in particular, 7 should be injective and %/(s) # 0 Vs € R). Derivating (3.6) with respect to s, we obtain

9z H(0,7(s), %0)7'(s) =0 Vs € R, (3.8)

and consequently,
0 # ~'(s) € ker 0. H(0,v(s),y0) Vs € R

We further assume that

(@) 0z H(0,7(s),y0) : X — X is a Fredholm operator of zero index for every s € R

(b) dimker 8;H(0,v(s),y0) = 1, (that is, ker 8, H(0, y(s), yo) = (v'(s))) Vs € R.
Hypothesis (a) implies the equality

[im 8.1(0,7(s). yo)]l — ker 8,H(0,7(s), yo)" Vs € R, (3.9)

((-)* denoting adjoint operator), which allows us to use the implicit function theorem to obtain the existence
of a continuous curve! ¢ : R — X* such that

lo(s)|l. =1, (o(s)) = [im &H(On(s),yg)]l\is e R. (3.10)

1Observe that, due to hypothesis (b), -after, possibly, a reparametrization- v will be of class CP+1(R), p > 1, provided
U— X, z+— H(0,z,y0) has class CP*1. In this case, o will be of class CP(R).
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Using a partition of the unity argument, it is not difficult to show the existence of a C® curve m : R — X
such that

m(t) € im O, H(t,y(t),yo) Vit R

Thus, for any t € R, the space X splits as X = (m(t))®im 9. H(t,v(t), yo) and also as X = (v (t))®X. We use
this latter splitting together with the inverse function theorem to uniquely write each element z € X in a small

(‘tubular’) open neighborhood of v(J) as z = ¥(t)+%, t € J, % € X near 0, and we call I, : X — (m(t)) =R
the linear projection associated with the first one. Observe that e(z) = i2,(8) (t) Vte R, Vre X.

(mt),o(t))
With this notation, equation (3.5) can be rewritten as the system

(Ix — M) H(A,~(t) + Z,y) =0 (3.11)
IeH(A,v(t) + Z,y) =0 (3.12)

This is the so-called Lyapunov-Schmidt system for (3.5). Usually, (3.11) is referred to as the auxiliary
equation and (3.12) as the bifurcation equation of the system.

Let us fix instants —00 < a < b < +c0 and denote J :=]a, b[. Our task will be to study the bifurcation
branches, alongside with A, of solutions of equation (3.5) emanating from the curve Mg - J — X. Using the
implicit function theorem we may solve equation (3.11) near {0} x v(J) x {0}, obtaining:

Lemma 3.2.1. There exist open sets U C X with y(J) CUCU, ITCRwith0eIcCI,VCVY with
Yo €V CV, and a C* mapping ¥V :Z x J xV — X such that

{(A,x,y) EIXxUXV:(Ix —II))H(\ z,y) = O} =
= {(\() + ¥\ t,9),9) : (M ty) €I x T x V}

This means that, on Z x U x V, equation (3.5) reads
(H(A, () + ¥(\ t,v),y),0(t)) =0, (Mt,y) €I xT xV
We start by exploring the structure of the solution set of this equation for y = yp. We define
§:IxJ CR? =R, (A, 1) = (H(A, 7(2) + ¥(X, £, %0), %0), o ()
Of course, € is a C' mapping and verifies £(0,t) = 0 Vt € J. Further,

8'\6(01 t) == (a)tH(O: 7(t)1 yO) ) aIH(O:r 'Y(t), yo)aAlIJ(O, L yg), O’(t)) =
- (6AH(O,’}’(t), yO): o'(t)) Vie J

Therefore, the mapping ¥ : T x J — R defined by the rule

(A, t) 36 1) = X (H(A (1) + ¥ (A, t,%0),v0), 0(t)) if A # 0
T aaH(0,7(8),%0), 0 (1)) s o

is continuous. We recall that equation (3.5) with y = yo, A € Z\{0}, z= € U, reduces to ¥(\,t) =0, t € J.
Thus, we are lead to consider the real-valued, continuous curve:

I''R—R, t +— (OaH(0,7(), ¥o), o (t)) (3.13)

A remarkable fact of this formula is that no explhicit mention to ¥ appears in the right hand side, even

though it was built using this function. In particular, the curve I' : 7 — R does not depend on the
particular choices of X, m.

It does not seem strange now that, under suitable nondegeneracy hypothesis, zeroes of ' could be bifur-
cated to zeroes of {(J,-) and, consequently, to zeroes of H(], -, yo) for |\| small. This is shown below.
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Lemma 3.2.2. Let U, be any open subset of U withU, D v(T), andleta<cog <c; < ... < cp < b verify

(—=1)'T(c;) > 0 1 =10.,...p (3.14)

Then, there exists some €, > 0 with Z, :=]0, €,[C I such that H(X,v(c;)+¥ (X, ci, %), v0) € (=1)'Rtm(c;) VA €

Z., V1:0,...,p. In particular, for any A € I., equation (3.5) with y = yo has, at least, p different solutions
xz €U forall A€ Z,.

Furthermore, for any \ € I., there erist an open interval T C I, with A € I and an open set V C V with

Yo € V such that H(A\, v(c:) + Y (), ¢,9),y) € (= 1)'R*tm(c;) VX € Z., Vy € V, Vi:0,...,p. In particular,
equation (3.5) has at least p different solutions x € U, for all A\ €I, y € V.

Of course, all this is a simple consequence of the continuity of ¥J; if it is positive somewhere, it remains

positive in a neighborhood, and, whenever J(},-) has different sign at two instants ¢;, c¢;41, it vanishes
somewhere between them.

To proceed, we will need some extra regularity on . Namely, let us assume that both mappings
IxU—- X, (Az)— hH z, ) and IxU— L(X), (Az)—8:H(\ z, )

are C' with respect to z. If this is the case, o is a C! curve and 9 is itself continuously differentiable with
respect to ¢t. In particular, ' : R — R is C!.

Let us call U, the open subset of U delimited by the (affine) hyperplanes v(a) + X and ~(b) + X. We
further assume:

() OyH:IxUsp xV — L(Y,X)and \H : I x Uy p x V — X are bounded.

(d) For any sequence {zn}n C U, such that {H(0,zn,30)} — 0, {dist (z,,v(R))} — 0.

The purpose of these two hypothesis is to guarantee that given any open subset O of X containing v([a, b])
there exist open sets Z, C I and V, containing 0 and yq respectively, such that equation (3.5) has no solutions
x € Ugp\O for any (A, y) € Z, x V.. In this way, under hypothesis ensuring the nondegeneracy of the zeroes
of I, the implicit function theorem may be used to obtain precise results on the number of solutions of (3.5)
for ¢ € Uy p.

Lemma 3.2.3. Assumea <co<c; <...<cp <b verify

Lie;) =0, M(e;) #0, 1=0,...,p ['(t) # 0Vt € [a,b]\{co,c1,---,¢p}

Then, there exist €, > 0 with | — €., €,[:= Z, C I, and continuous curves YseoosYp i Lo = Ugp C X which
are, further, C' on Z,\{0}, such that v;(0) = v(¢;), 1 < i < p, and

P
{(X\2) €L, xUap: A #0, H(X z,50) =0} = | J{(A,%(N) : A € Z,, A#0}.
=1

Moreover, given any A € I, , A =0 there exist an open interval T C I containing )\, an open subset V C Y
with yo € V C V, and C! mappings 31, .. I xV —UC X such that

SiMw) =1(A) VA el

p
{(A,:I:,y) €T x Uap X V:H(\ z,y) = 0} = U {()\, 5(NY),y): (N y) €T x ]7}

=1

3.3 A functional framework for the periodic pendulum

The goal of this section is to establish the needed functional setting in order to reformulate problem (3.1) as
a fixed point one for a regular mapping on a Banach space and apply the results in last section.
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Denoting by ¢ the only solution to the linear problem
P+ cp’ = é(t)
2(0) =0; ©(T) =k; ¢'(T)—¢'(0) =k
the standard change of variables v = u — ¢ transforms problem (3.1) into the periodic problem

{v” +cv' +g(v+ p(t)) =&

v(T) —v(0) =0; '(T) - v'(0) =0 (3.15)

It will be more convenient to work directly on this problem rather than with the original one. Namely,
for any and given ¢ € L*(T) and & € R we may consider the problem

v+ cv' +g(v+p(t) =& ve Wy (T) (3.16)
We define the linear differential operator
L% : Wy (T) = LY(T), L£°(v) :=v" Yo € Wy, (T),
and the Nemytskii operator associated with g
N : LY(T) — LY(T),

N(@)|(z) :=g(v(z)) V€T, Vve L (T),
so that (3.16) is equivalent to the functional equation

LX)+’ + Nv+p) =8¢ ve Way(T) (3.17)

The operator £° is not injective, but (3.17) is not changed if the same quantity v is subtracted and added,
to get the equality

[Eo(v) —v+Nw+p)+v+c)=¢ ve Wy (T) | (3.18)
whose first term is invertible. We denote by X the inverse operator of v — L°(v) — v, which is a compact
operator when seen from L'(T) to W1,;(T). We also observe that K is ‘self-adjoint’ in the sense that

T T
/0 K(H))(z)g(z)dz = /0 f(@)K(9)(z)dz  Vf,g € LY(T) (3.19)
In this way, equation (3.18) can be rewritten as a fixed point problem

v=-KN@v+p)+v+ec —¢ = —KIN(w+¢) +v+cv'] —¢, v e Wy, (T) (3.20)
We fix ¢p in W ;(T) (which will be determined later) and define

H:Rx W 1(T) x []R X Ll(T)] — Wii(T), (Mv,&,0) = v+ KN+ Mo+ ¢)+v+ cv'|+e (3.21)

It is easily checked that H is C? and the coulinuous, linear operator d,H(A,v,€,¢) : Wy 1(T) — Wiy 1(T)
has the form identity minus compact for any (), v, €, @), so that (a) is automatically satisfied. Furthermore,

the partial derivatives O\ H,9:H : R x Wi11(T) x [IR x L1 (T)] — W1,1(T), and 9, H : R x W, 1(T) x []R X

L (T)] - L(LI(T),WM(T)) are clearly bounded, as required in (c). Finally, it is easily checked that. in
case g € C*(R), both mappings

R X Wl,l(T) — Wl,l (T)a (A!v) = BAH(AE v, é: QO)
R x WI,I(T) — L(WI,I(T))a (A: U) — a‘UH(A: ‘U,é, (}0)

are continuously differentiable with respect to v for any (€, p) € R x L}(T).

In orden to position ourselves in the abstract framework studied in previous section we still have to find

é € R and ¢ € L'(T) such that (3.20) has a whole nontrivial curve of solutions. Alternatively, we may try to
find e=e+ée€ L'(T), k,k’ € R such that problem (3.1) has a curve of solutions.
The following proposition has interest by its own.
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Proposition 3.3.1. There exists an unique constant external force € = e. T € R such that

{u” +cu' +g(u)=¢€

(3.22)

u(0)=0; u(t+T7T)=2r+u(t) Vt € R;

has solution. This solution ts unique (we will call it uc. ) and verifies
T
u, r(t) >0Vt € R, Ue T (_2_71_-'5) o t uniformly w.r.t. t € R, forc > 0 fized. (3.23)
Finally,

_ ~ 27 B 27

eor=0VT >0 €T > ¢ Ve, T > 0 €T — 7€ - BO for ¢ > 0 fized. (3.24)

Proof. Observe that condition u(0) = 0, which appears in (3.22), is nothing but a normalization condition.
By this, we mean that, since our equation is autonomous and every solution to

/" ’ =
u' +cu' +g(u) =é (3.25)
u(t+T) = 27 + u(t) Vt € R;
verifies lim;_, ;oo u(t) = +o0; limy_,_ u(t) = —o0, solutions to (3.25) are, up to translations in the time
variable ¢, solutions to (3.22). Therefore, in order to find € € R such that (3.22) has at least one solution,

it suffices to show the existence of € € R such that (3.25) has some solution. At this point we introduce the
change of variables v(t) := u(t) — 25t, which transforms (3.25) into
2m = 2
v b dalfito)=a—F (3.26)
v(t+ T) = v(t) Vt € R;

and the existence of the constant € we were looking for, follows now from Schauder’s fixed point theorem.
Thus, we may fix such an €. € R and a corresponding solution u.r to (3.22) for € = é.1; ver(t) :=
uer(t) — %F*t. Now, for € = €., t — u.1(t + s) is a solution of (3.25) for every s € R and, consequently,
t— uer(t+8) — 2t = ver(t + s) + % s is a solution to (3.26) for every s € R .

Second orden, periodic problems such as (3.26), having a nontrivial curve

v:R — Wy 1(T)
2w (3.27)

S TsgUeT + S

T

of solutions for some value €. 1 of € are usually called degenerate, and have been extensively studied in the
literature. In particular, it is known ([77], see also [67]) that system (3.26) cannot have solutions for € # é. 1

and not other solutions than {~v(s) : s € R} for € = €. . We shortly recall the argument for completeness.
Let us take € € R such that (3.26) has a solution u. We consider the quantities

a:=min{s € R: 3t € R with u(t) = [y(s)](t)} (3.28)
B := max{s € R: 3t € R with u(t) = [v(s)](¢)} (3.29)
Then, there exist t,,t3 € R such that
[Y(@)](ta) = u(ta); (o)) (ta) = ¥'(ta); (v(2)](t) < u(t) Vt € R
(B)](ts) = ultp); [v(B)) (tg) = u'(tp); [Y(B)](t) > u(t) Vt € R
and we obtain
_ 27 i : 2T
€c, T — ?C = [v(a)]" (ta) + C['T(a)] (ta) + g (['7((1)] (ta) + "f.'ta) <




so that
EC,T S €
and similarly, comparing u and «(3) in a neighborhood of tg, we get

éc,T Z e

obtaining the equality € = &, 7. Now,

[’7(‘1)]“&) = u(ta); h(a)]f(ta) e uf(tc:)
so that y(a) = u. Similarly, v(3) = w.

A similar reasoning shows indeed that the curves 7(a) and (b) do not intersect as soon as a # b.
Otherwise, there would exist a,b € R with @ < b and £ € R such that [v(@)](t) = [v(b)](f). We may define
u :=(b), and a as in (3.28), and the argument above shows that v(b) = u = y(a), which is a contradiction
since & < a < b and consequently, y(a) and ~(b) have different mean. And we conclude that

a <b— [y(a)](t) <[¥(D)](t) Vt €T

It means also that no different solutions to system (3.22) (¢ = eé. 1) intersect. On the other hand, as
ue,7(t + T) = uc1(t) + 27, there exists some point t, € R such that u; r(to) > 0. Let us assume that the
same inequality did not hold always and let ¢; be the minimum of those ¢ > t1 such that u; »(t) = 0. Being
Uc, T a solution of the autonomous equation (3.22) (é = é..r), which is not an equilibrium, u; (¢1) # 0, and
we deduce u_ 1-(t;) < 0.

In this way, for s # 0 small, u. r and t — uc,7(t + s) are different solutions to (3.22) -they are different
at to- but intersecting near t,, which is a contradiction.

Being g bounded, it follows from (3.26) that, for fixed ¢ > 0,

1 (T
Ve, (") — ——/ Ve,r(8)ds — 0as T — 0,
T'Jo L>[0,T]

so that, as stated, uc(%t) — t uniformly with respect tot € R as T — 0. Finally, to prove (3.24), just
multiply equation (3.26) by %% + v’ and integrate on 10, T, to get:

C T 27C

2 —
a;r- 8 v::,T(S) ds = €e,T — i b
so that egr =0, .1 > %?-c Ve, T > 0. Furthermore,

B 27 1 [T or 12 T I r*
cer — e =% /0 9(5s + veir(s))ds = o- /0 o(s + ve;r(5-8))ds — o /0 9(s)ds = 0.

Remark 3.3.2. Assume now ¢ € R is fized. The Mapping:

4 27
v {g € C'(R/27Z)\{0} : / g(s)ds = 0} — {v € C*(T) : v(0) =0, =+ v'(t) > 0Vt € ]R}
0

mapping g into the only solution v to (3.26) with & = éc;p-—%”-c verifying v(0) = 0 is continuous. Furthermore,
it s clearly bijective, its inverse being given by the rule

2T 1= 1 g2 27 171
v —(v" 4+ ') o Tt +_f/; (v + ') o Titv|  (z)do

- -

(L(t) :=t Vt € R), which is also continuous. Then, both laws are homeomorphisms and it is easily checked
that they conserve regularity:

- R

¥(g) € C*"*(T) < g¢ C*(R/27Z) Vn > 1

In particular, for any trigonometric polynomial P(t) = pq D i=1lpj cos(52t) + g, sin(j 4% t)] with P'(t) >
H%"’ Vi € T, there exists g € C°(R/27Z) whose associated curve Y(g) is exactly P.
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3.4 Many periodic solutions bifurcating from a closed loop at a
constant external force

Thus, we have found that the equation

H(A, v, €, q:?) = () v E W}J(T)

with H given in (3.21), has a nontrivial curve v (given in (3.27)), of solutions for A =0, € = &, — z%c, =
wol(t) := 2;51& Ent (-Q%t) To set ourselves under the framework of section 2, we still have to check

(b) dim [ker 9:H(0,~(s),é.r—%c, (po)] = 1, (that is, (¥'(s)) = ker (8:H(0,v(s), &1, o)) for every s € R.

This is to say that the only solutions of the linear problem

{w” +cw’ + g'(ucr(t+ 5))w =0 (3.30)

w(t+T)=w(t)VteR

should be the scalar multiples of TsU, 1, for every s € R. Equivalently, the only T—periodic solutions of Hill’s
equation

w” + cw' + ¢'(uer(t))w =0 (3.31)

should be the scalar multiples of u, r- To see this we apply the reduction of order method; we already know
that u 1 is a solution to (3.31) and we conclude that

e Tdr

wc,T(t) = u::,T(t)/O ! T(T)z

1s another. Of course, this latter is not T—periodic,

we(0) = 0; we,T(T) > 0.
We next establish (d) for any a < b € R. With this aim, take any sequence {v,} C Wj 1(T) such that

2
{H(O': Un, EC,T - -,-I—‘J::C, ()00)} — 0

1 (T
{-j—,- / 'un(t)dt} bounded.
0

n

For any n € N, write v,, := 0, + Uy, Uy, := % f(;r v (t)dt, 7, € X. By hypothesis, {9} is bounded, so that
it has some convergent subsequence. Let us check that the same thing happens also for {v,}. We call, for
eachneN, 0, :=H(0,v,,e — -2'.-11’-‘5-0, ©0), o that

27
T

The sequence {N (0, + U +ci;, + o)} being bounded in L>(T), there exists a subsequence {vg(n)} of {vn}
such that {)C[N(i)a(n) + Dg(n) + U + :pg)]} is convergent in Wj ;1 (T). As the operator v — v+K [v+cv']
n

is a linear homeomorphism when seen from X to its image (endowed with the W1 .1(T) topology), we deduce
from (3.32) that {v,(n)} itself converges in X. Thus, there exists a convergent subsequence of {v,} and the
limit must be a zero of H(0, -, e— z%c, wo). However, the set of zeroes of this mapping, as shown in Proposition

3.3.1, reduces to v(R), implying (d). We finally note that hypothesis (¢) holds as soon as g € C%(R).

To proceed further with the scheme of Section 2., let us pick a nonzero T-periodic solution v, 7 of the
adjoint equation of (3.31),

U + K[On + i) = —K[N(Bp + 0 + ¢ + 90)] — Ecr + ==c+ 0, Vn €N (3.32)

W' —ecw' + g (uer(t))w =0 (3.33)

In the conservative case, problem (3.30) is self-adjoint and vg,r can be taken as u; .. Consequently, v T
does not change sign on T. Let us see that the same thing happens for v, r when ¢ € R is arbitrary.
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Lemma 3.4.1. For any c € R, consider the Hill’s equation

y' +cy +a(t)y=0 (E.)

where a : R — R is a given locally integrable, T'-periodic function. Then, (E.) has a T’-periodic, positive
solution i+f and only if (E_.) has a T-periodic, positive solution.

Proof. The solutions of (E.) are related with those of (E_c) by the rule

y(t) is a solution of (E,) <= 2z(t) = e%y(t) is a solution of (E_,) (3.34)

Using a Sturm-Liouville argument we know that, in case (E.) has a never vanishing solution, the equation
1s disconjugate, meaning that any other nonzero solution of (Ec) vanishes, at most, at one single point in R.
Thanks to (3.34) we know that also (E_.) is disconjugate, and therefore, its periodic solution cannot vanish.

Observe that, for any s € R, 7, Ve,r 18 a solution to the adjoint problem of (3.30)

(3.35)

W' —cw' + g'(uer(t + s))w =0
wit+T)=w(t)VteR

Thus, given h € L!(T), the nonhomogeneous, linear problem

w”’ + cw’ + ¢'(uc,r(t + s))w = h(t)
w(t+T) =w(t) Vit € R

has solution if and only if fOT h(t)ve,r(s + t)dt = 0. Using (3.19) we deduce

T
im 0, H (0, Y(8), e — -z%rc, cpo) = {v € W1.1(T) : /0 v(t) [LO(Tsver) — TsVe,r|(t)ds = 0}

so that, thanks to Lemma 3.4.1 above, we may take m(s) =1Vs € R, and

. 1L
im 0, H (0: 7(5): €T — '2%51 900) == (EO(TSVC,T) = Tch,T) = (TS(EO(VC,T) — Vc,T)) Vs € R,

equality where the identifications L*(T) = L%(T)* € W, 1(T)* have been utilized. In this way, we obtain a
explicit form for the curve o in (3.10):

o :R — L%T) c Wi ,(T)*
S Tg [ﬁo (Vc:,T) — Vc,T]

Finally, we are lead to consider the real valued, continuous curve ' : R — R given by

S <5AH (0: V(8), €, — -2%6-.. <Po> , U(S)> =

= — /OT ()C Ny (v(s) + ‘Po)'ﬁa]) (CO(TSVC,T) = Tch,T)dt

T T
= ——/ QI(UC,T(t + S))Vcl’]‘(t = 8)1/)0 (t)dt — / (V::J:T(t -+ 3) — CV;‘T(t T S))w()(t)dt (336)
0 0
that is, the convolution of v;’ — cv r and 9. In the conservative case, Vo T = quT and I' is the

convolution of ug'r and .
The following result is now an straightforward consequence of Lemma 3.2.2
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Proposition 3.4.2. Let

2 [~ 2 f
An = % /0 ver(t) cos(nt)dt B, :=-72: /0 VC,T(t)sin(n%it)dt,

be the sequences of Fourier coefficients of v.r. We assume that, for some ng € N,
2 2
Ag, + By, #0

Then, given any € > 0, it is possible to find ¢ € C(T) and vy, ...,ven, € C*(T), oo, ..., 02n, € RY such
that:

U2no(t) = vo(t) + 27 VE € T, 09 = 021, (3.37)

/ _ 2
v, (t) + cvg(t) + g(vg(t) + @(t)) = écr — 71.,7-1-0 + (=1)%, Vt €T, YVg=0,...,2n (3.38)
Vg-1(t) <v(t) Vt €T, Vg=1,...,2n0 (3.39)

Proof. Write v, T as the sum of its Fourier series

(e @)
2
vei(t) = 3 [Ancos(Znt) + By sin(22ne)] + Ag
n=]

T

Being v, r € C*(T), we are allowed to derivate twice in the infinite sum above to get

v p(t) + cv,p(t) =

-—i [—n2 il 2A +cn*2—ﬂB]cos(2—W t)+[— ZWA —n?(Z 2B]sin(2—ﬂnt)
= T) " T " T ATt A\T) O T

1

i

Observe now that, if for some n € N,

—n? (%Z’i)zAn +cnZ B, = (
—cn#t A, —n? (2,_;2"-’-)2 B, =0

then, A,, = 0 = B,,, since the determinant of the linear system 1s strictly positive. We conclude that

2 2m\? 1?2 2 ZANRE:
Cna = [ono Bas =13 () ] + [~ cn0 2 ny — 8 (22 8] >

At this point, we choose g(t) = -,% cos(z%’-ngt) in (3.36). We obtain:

_ 2 < 2
['(s) = A,, cos(n()%s) + By, sin(no%s)

for some A,,, Bnﬂ € R with \/ ﬁﬁo + Bﬁﬂ = y/Cne > 0. This function has exactly 2no zeroes in [0, T[ and,
on each one, its derivative does not vanish. The theorem follows from Lemma 3.2.2

From such a scheme of ordered lower-upper-lower-upper... solutions, it follows immediately the existence
of at least no (geometrically) different solutions for the equation {v” + cv’ + g(v + p(t)) = ., — % c} -one
between each pair of consecutive ordered lower and upper solutions. The three solutions theorem (see [4]) in
fact implies the existence of at least 2nq different solutions for this same equation. These solutions turn to

come from mappings with nonzero degree so that all this keeps its validity under small perturbations. We
state the precise result below:
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Proposition 3.4.3. Let fo: [0,T] xR, (t,z) — fo(t,z) be continuous. Assume vg, vy, vy, v3 € C?*(T) verify:
it 'Uo(t) <V (t) < ’Ug(t) < Ug(t) Vt € R.
9. (—1) [’Uf(t) + cvl(t) + fo(t,u,-(:))] >O0VteT, i=0,.... 3.

Then, there erists € > 0 such that, for any Carathéodory function f :[0,T] x R — R with

/OT sup ({lfo(t,a:) - f(t,x)|})dt < €, (3.40)

z€ER
the perturbed problem

{w” +cw' + f(t,w) =0

w € Wa i (T) (3.41)
has at least three solutions w;, wy, ws verifying
1. vo(t) < wi(t) <wvi(t), va(t) < wa(t) < wvs(t) Vt e T.
2. v1(t) < wa(t) < vo(t) for somet e T.
Proof. Problem (3.41) can be rewritten as
w' +cw' —w+ [f(t,w)+w] =0 w € W ,(T) (3.42)

The advantage in this reformulation is that the linear operator W2 1(T) —» LY(T), w— w"’ + cw’ — w, is
invertible. We call K : L*(T) — W3 (T) its inverse, so that problem (3.42) becomes

w + K[Nf(w) + w] =0 w € C(T) (3.43)

being Ny the Nemytskii operator associated with g, that is, N/ y : C(T) — L*(T) is the continuous mapping
defined by [Ny (z)|(t) = f(t,z(t)) Vt € T, Vz € C(T).
We consider the completely continuous, nonlinear operator

Ty : C(T) - C(T) ww— —K[w + N¢(w)] (3.44)

so that the solutions of (3.41) coincide with the fixed points of 7 7. At this point it would be desirable to
compute the Leray-Schauder degree of Ic(ty — 75 on convenient open sets. We define

Gy :={w € C(T) : vo(t) < w(t) < vi(t)} Gz :={w € C(T) : v2(t) < w(t) < vs(t)}
G :={w € C(T) : vo(t) < w(t) < vz(t)} G2 = G\(G, UG3)

Being vg a strict C'? subsolution and vs a strict C2 supersolution for problem (3.41) with f = fy, which
is continuous, it follows that there may not exist fixed points of 7, on G = {w € C(T) : vo(t) < w(t) <

v3(t) Vt € T}\G. Similarly, there may not exist fixed points of 7¢, on G, 0G3 or G, C G U 8G; U 8G3.
Indeed, it follows from the method of upper and lower solutions that

deg(lc(r) — 75,,G) = 1 deg(Ic(ry — T5,,G1) = 1 deg(Ic(ry) — 75,,G3) = 1
so that, by the aditivity property of the Leray-Schauder degree,

deg(l — Ty,, G2) = —1 (3'45)

On the other hand, 7y, being completely continuous, I — T}, is closed. It means in particular that
(I — T5,)(0G U 8G, U 8Gs) is a closed subset of C(T) and, as 0 is not in this set, there exist § > 0 such
that |lw — 7, (w)llo > 6 Yw € 0G U 8G; U 8G3. The continuity of K as an operator from LY(T) to C(T)
implies that there exists € > 0 such that |[K(z)||cc < § Vz € L*(T) with ||z|| Li(1) < €, and this means that

|77 (w) — T5(w)|leo < 6 Yw € C(T), so that w # T;(w) Yw € 8G U 8G; U G5 as soon as f verifies (3.40).
The invariance by homotopies of the Leray-Schauder degree shows that

deg(Icm — 75,G) = 1 deg(Ic(m) — 77,G1) = 1 deg(Ic(r) — 75,G3) = 1

which proves the theorem.
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Along next results, it will be necessary to take into account, not only the time period T, which was, so

far, fixed, but also all its divisors. Let us call, for any m € N, Anm and B, ,, the respective quantities 4,
and B, corresponding to the time period %

Corollary 3.4.4. Assume that, for some n,m € N, Ai,m + BZTm # 0. Then, there erists an open set

n

O c L*T) with On {e =eée+ecL'(T):e= €T im — 2‘:rcm/T} # 0 such that, for any e € O, problem
(3.1) has at least n geometrically different solutions.

Proof. From Proposition 3.4.2 we know the existence of ¢ € C® (IR/%;—Z) and a scheme of lower and upper

solutions as given there on the interval [0, 5] These give rise to a corresponding scheme of ordered lower

and upper solutions associated to ¢ € C*°(T) on the interval [0, T)]. The result follows now from Proposition
3.4.3.

Corollary 3.4.5. Letn € N be given, and assume that, for infinitely manym € N, Ve, T/m S not a trigonomet-

Tic polynomial of degree strictly lower than n. Then, for any € > 0, there exists an open set O = O, . C L*(T)
such that

ONLYT)#0 ifc=0
ONn{e=eé+éecL!(T):—e<e<0}#0#0N{e=é+écL*(T):0<e<e} ifc#0

and for any e € O, problem (3.1) has at least 2n geometrically different solutions.

Proof. The case c = 0 follows directly from Corollary 3.4.4. Concerning the case ¢ > 0, observe that it suffices
to prove ON{e=e+ec L}(T):0<é< e} # 0 Ve > 0, since the remaining statements follow from the
change of variables 4 = —u, §(x) := —g(—z). In this way, this becomes a consequence of Corollary 3.4.4 and
the fact that, as seen in Proposition 3.3.1, {€cr/m — ?T“nu:}m 1S a sequence of positive numbers converging
to 0 as m — +oc.

]

Proof of Theorem 8.1.1 when g s the restriction to the real line of an entire function. In view of Corollary
3.4.5, we may assume there exist ng, mg € N such that Ve T/m 18 & trigonometric polynomial of degree
not bigger that ng for all m > my. We choose Ve, T/m SO that ”VC!T/m“Lm[O’_‘T_] = 1 and write v, 7/, (t) =

2™M ;. ) N
D i o Wmge T Yt t € [0,25]) Ym > myg, where the complex coefficients {Wm,j}—no<i<no Verify wpy, —; =
Wm,j, )+ —No,---,No. The sequences {wm ;}m>m, are bounded for any j : —nyg, ..., ng, and, after possibly
passing to a subsequence, we may assume {wnm;} — w; Vj : —ng,...,no. Passing to the limit in the
o

inequality ) o rrio lwm | = 1 VYm > mg we deduce that Yo . lwj| = 1, and the trigonometric polynomial

“ j=-n
Velt) = E;i_no wje?'t is not the zero polynomial. We recall the differential equation verified by v, r/m

T

V::iT/m(t) _ CVL,T/m(t) i gr(uc,T/m (t))Vc,T/m (t) =0, 0<t< ;‘n'

or, what is the same,

L T g /

Ve m(5—t) = Ve rim(5—t) + 4 (Ue,r/m(5—1))Ver/m(5—t) =0, 0<t<2m

Using the explicit form of v, 1/, as a trigonometric polynomial and passing to the limit as m — +00, we
deduce

vy (t) —cvi(t) + g’ ()ve(t) =0, 0<t<2rm

since, as shown in Proposition 3.3.1, u. 1/m (af—m(t)) — t uniformly with respect to ¢t € R as m — +o00. Here,
we have an entire function which vanishes on a whole segment. It is, consequently, zero everywhere:

ve (2) — eve(2) + ¢'(2)ve(2) = 0Vz € C (3.46)
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Observe now that both nonzero trigonometric polynomials v,. and v, — cv! have the same degrec (recall
the proof of Proposition 3.4.2 above). Therefore, by similar argument to those carried out in the proof of
Theorem 3.5.2, they have the same number of roots, counting multiplicity. However, as given in (3.46), any

root of v, is a root of ¥/ — cvl, so that they are in fact equal. It means ¢’(2) = 1 Vz € C, which is a
contradiction. The theorem is now proved.

The proof of Theorem 3.1.1 will be completed in Section 3.6 using a different approach. Now,we have the
following consequence of Lemma 3.2.3.

Theorem 3.4.6. Assume g € C’2(R/27rZ), let A,, B, n > 1, be the sequences of Fourier coefficients of
Ve,r as defined in Proposition 8.4.2, and fiz k. k' € R. If, for some ng € N, Aio + Bﬁo # 0, then there exists
an open set O C L'([0,T)) with O N {e=ée+éee L0,T):e= €T — %;L’-’-c} # 0, such that, for any e € O,
problem (8.1) has ezactly 2ng geometrically different solutions.

3.5 The conservative pendulum problem

Theorem 3.4.6 can be criticized on the fact that it may not be easy to explicitly compute the Fourier series
of the function v, 7. In the conservative case. problem (3.30) is self-adjoint and things are simplified.

Corollary 3.5.1. Let g € C*(R/27Z), and let

S 2 20 L
A, = Tfo ug 7(t) cos(n?;-t)dt and B, := -i,-/o ug (1) sm(n—,ft)dt, n > 1, (3.47)

be the sequences of Fourier coefficients of ug . As before, fir k, k' € R. If, for some n € N, AZ + B2 # 0,

then there erists an open set @ C L'([0,T]) with On L'[0,T] # 0, such that for any e € O, problem (3.1)
has ezactly 2n geometrically different solutions.

In [65], it was seen that, in the special case of the conservative, pendulum equation (problem (3.3),
g(u) = Asin(u)), ugr cannot be a trigonometric polynomial, and this was used to see that the number of
periadic solutions for the forced pendulum equation was not bounded as the forcing term varies in C*°(T). In
this chapter we have seen (Remark 3.3.2) that the analogous statement is not true for an arbitrary C®°(R/2#Z)
function g. However, an improved argument can be used to prove that '“f),T 1s not a trigonometric polynomial

when g belongs to an intermediate class of periodic nonlinearities, namely, those which are restriction to the
real line of an entire function.

Theorem 3.5.2. Assume that there exists an entire function whose restriction to the real line is g. Then,

S K :
the number of n € N such that | fOT u’D,T(t)em'ﬂT'tdt 7 0 1s infinite. Consequently, there erists a sequence

{nm}men — +00 of natural numbers and, for each m € N, an open set Op,,, C L'(0,T] with O, NLY0,T] #
0, such that for any € € Oy, problem (3.1) has ezactly 2n,, geometrically different solutions.

Proof. To deny the statement of the Theorem above is to say that “f),T iIs a trigonometric polynomial. In

complex notation, this can be written as uf ;(t) = e —p W5 et for some complex coefficients {w;}r_
which should, furthermore, satisfy the relationship w—; = wj. Of course, uy r» = cte is only possible if g = 0,

and thus, we should have p > 1, wp 7# 0. On the other hand, the inequality UB,T(t) > 0 Vt € R implies

wo > 0. Now, HO‘T(t) = wot + Z?:l %i(w_je:}"ijt — wjegf'ijt), Ug:T(t) = — ?=_p(2—qﬂ-.i)2wj8%j"'ijt’ and the
7,

equality ug'r(t) = ¢’ (wo,7(t))ug 1(t) becomes

-7

p . p Y
2 - T B L L
s E ( ;])2wje%"13f — gf (W{)t + z :___z(w—.?e? -171 _ wje%rtjt)) § : wje%-tjt Vt c ]R

J=-p J=1 I=—p

Here, we have two entire functions which coincide on the real line. They are, consequently, equal on the
whole complex plane:

p - P P
’ g e e o
- E (‘_";J)zwjejﬂjz =g (woz + E —i(w_je L wje%"‘”)) E wje%"'“ VzeC

j==—p =1 I==P
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We multiply both sides of the equality above by e! FP? to get

2p p 2p

2“'[']—-—p) 29, - - T ) —2w .. 2 27 ;o
E ( wj_pe_"f“”z =g (UJ{]Z 1 E —i(w_je T Y% —weT ”"‘)) :): wj_peT *°
=0 = 27} =0

Vze C (3.48)

What is of interest for us in the equality above is the following: there exists an entire function 9 : C — C

such that
. (2n(i —p)\ o 27 5
— Z ( T ) wi_geT % ={i(2) ij_pe"r"t VzeC
7=0 '

We consider the complex polynomials

q(z) =-337 (2”(3 - )) wj—p?’ q2(2) = ;2o wj—p?’

Both of them have degree 2p, so that both of them have 2p roots, counting multiplicity. Furthermore, 0 is
not a root of either. However, the equality

q1(eT %) = 9(2)ga(eF?) VzeC

says that every root of ¢; is a root of ¢, with at least, the same multiplicity. We deduce that there exists
¢ € C such that ¢g; = g, that is

¥z)=cVzeC
In particular, 9(t) = ¢'(uo(t)) = ¢ Vt € R. Thus, ¢ =0 and g = 0, a contradiction.

For pendulum-type equations without friction, a conservation of energy argument provides a explicit
expression for ug 7. Indeed, derivating the sum of kinetic plus potential energy along the trajectory ug 7,

£(t) = 5 r(t)? + Gluor(t)

(here, G is any primitive of g), we find that the total energy does not change with time: there exists & € R
(total energy), such that

1

&g = §uf0‘T(t)2 + G(upr(t)) Vt € R

As ug p(t) > 0Vt € R, we find that £ > maxg G, and, further,

uh 7 (t) = \/2(&0 — Gluor(t))) Ve € R.

Equivalently,
ug 1 (t)

=1Vt eR.
V/2(E0 — G(uor (1))

We consider the mapping

fEO:IR——*R

“ _/ \/eo-—c(y) #

which is a increasing diffeomorphism in R. Now,

Feoluor(t)) =t VvVt € R
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as it follows by simply derivating both sides of the equality. Therefore,

uo,r(t) = F;'(t) Vt € RY, (3.49)
in particular,
I T 1
T'=Fe (2n)= / dy . (3.50)
F V2Jo & - G(y)

Previous result motivates the following question: Will it be possible, to find natural numbers n such that,
with the notation of (3.47), 42 + B? = 07 That is, may both terms of the same degree n in the Fourier
series of ug  vanish simultaneously? If the answer were no’, at least for some ‘nice’ class of functions g, it

would imply, as a consequence of Theorem 3.5.1, the existence, for each even number 2n, of forcing terms
e € L'[0,27] such that (3.3) has exactly 2n solutions.

However, as seen in the introduction, this cannot be true in general, since, in case g is 27 /p-periodic for
some entire number p > 2. the number of geometrically different solutions to (3.1), if finite, is always an entire

multiple of p. Indeed, what happens here is that the assoclated curve “6,’1‘ is %"-periodic and consequently,
all Fourier coefficients of degree not an integer multiple of p are zero.

On the other hand, numerical experiments carried out by the author seem to indicate that cosine Fourier
coefficients of all orders

T
A, :=f ug (1) cos(n%zr-t)dt, n >0
0

are positive in the case of the pendulum equation [9(u) = Asin(u)]. However, we do not know a proof of this
fact, and the question remains open.

We observe here that all sine Fourier coefficients of up 7 vanish as soon as g is an odd function. Indeed,
if this happens, the uniqueness of ug,7 as a solution to (3.22) implies that

‘U.O‘T(—*t) = _UO,T(t) Vt - ]R,

and, consequently,
UIO,T(—'t) = UB,T(t) Vit € R,
so that

& . _ 2m
= / ug (1) 31n(n-7—_,t)dt =0VneN
0

However, cosine Fourier coefficients can be shown to be positive when the time is big enough under our
hypothesis [H3]. Indeed, it follows from (3.49) that

1
ugr(t) = ——— Vt € R,
N TN TI0)
which implies
T o i 27
27 1 27 27
Aﬂ=/ U tcosn-——tdt=/ — cosn———tdt=/ cos(n—Fg, (z))dz =

27T

” 1 i\ 55
=j; =08 (""?175/0 V€ — G(v) y) 50

Assume now that G allains its maximum only once on the interval [0, 27[. Furthermore, assume the only
point where this maximum is achieved 1s, precisely, 7. Fix n € N and let us make the time T diverge in

expression (3.51). Simultaneously, &, the energy of the trajectory, whose relation with 7 is given by (3.50),
decreases to maxg G. Thus,

27 = 1
n—— dy — 2mnX)r 2m(z), 0< 1z < 27
T\/i 0 \,/SO—G(y) =2 ]()
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uniformly on compact subsets of [0, 7[U]m, 27]. Consequently,

2T 271_ I 1
,4,1:/ CosS | n—— dy |dr — 1 asT — 4+
0 ( Tv'2 Jo V& — G(y) y)

We can use now Corollary 3.5.1 to prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Of course, the maximum of G may not be attained precisely at 7, but the number of

solutions to problem (3.1) is not changed if g is translated on the real line, that is, replaced by g(w+(+)), w e
R. The Theorem follows now from the discussion above.

Proof of Theorem 3.1.3. We may well concentrate in the case A > 0, since the number of solutions of problem

(3-3), is not changed as the periodic term g(u) is replaced by g(u+ 7). In this way, G(u) = —Acos(u) attains
its maximum at 7. Now, for any 0 < z < 2* we have

0</z : dy</%1 : dy<-—1—/%1 - dy =
~Jo & + Acos(y) o /& + Acos(y) VA Jo \/1+ cos(y)

_ 22 (\/§+1) T

VA V2 = 3nv/2

and, consequently,

27 % 1 1 27
cos | n—— dy | dz > cos(n/3) = - Vz € [0, —
( TV2 Jo /& + Acos(y) y) /%) =2 [ 3_[

Therefore,

A -—/%cos sl /I : dy | do =
" Jo TV2 Jo /& + A cos(y) .

2/# cos | n < , dy | d
— _ 4
0 TV2 Jo /& + A cos(y) 7

2

% 2r  [* 1
= 2/ cos n———/ dy | dz+
0 ( TV2 Jo /& + Acos(y) y)

" r [* 1 2m T
it 2/ CoS | n—— dy | dz > 2— =0
27 /3 ( TV2Jo /& + A cos(y) ) 3 3

Proof of Corollary 3.1.4. We simply observe that for any g € C? (R/2nZ), expression (3.51), which relates
An, & and T, is analytic in these variables. Also, we know since (3.50) that & is an analytic function of

T'. An analytic function cannot be zero in an open set unless it is constantly zero, and, thus, Theorem 3.1.2
implies in fact Corollary 3.1.4.

3.6 Many periodic solutions bifurcating from zero period

The key idea across previous sections was the following one: The autonomous, pendulum-type problem (3.25)
has, when € = é. 1, a closed orbit, and this orbit generates a continuum of solutions for (3.26). All our results
there were on the line of looking for sufficient conditions (nondegeneracy conditions) on the closed orbit u,
to ensure the existence of many branches of solutions bifurcating from this continuum.
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Ior the limit case of zero time period (7" = 0), it could also be thought, of course, in a heuristic way,
that the autonomous, unforced pendulum-type equation (3.52), (e = 0, ¢ = 0] has the following curve of
‘'solutions’: for any a € R, we may consider the ’solution’ which remains still at a along this zero-length time

period. Under new nondegeneracy hypothesis on g we will be able to bifurcate from this continuum, for
small positive time T, many branches of periodic solutions, and these will generate branches of subharmonic,

periodic solutions, for big time intervals. The method of lower and upper solutions will be used to find many
solutions for non-periodic problems of the type (3.1).

After the change of variables in (3.15), problem (3.1) can be rewritten in the form

Vit +g(v+p(t) =€ ve W, (R/TZ), (3.52)

where ¢ € L' (R/TZ) and € € R are data of the problem. Also in this chapter, we will work on this problem
in order to study (3.1).

Let us consider the linear, differential operator

L :Wa1 (R/TZ) — L' (R/TZ), L(v):=v"+cv' Yove Wa1(R/TZ),
and the Nemytskii operator associated with g
N :L'(R/TZ) — L' (R/TZ),
N (©)|(z) :==g(v(z)) VYzeR/TZ, Yve L (R/TZ),
so that (3.52) is equivalent to the functional equation
LW)+Nv+op)=€, veW, (R/TZ) . (3.53)

L€ is a Fredholm operator of zero index, its kernel been made up by the the set of constant functions

(which can be naturally identified with R) and its image by the integrable functions of zero mean. Such a
behaviour suggests the following splittings of its domain and codomain |

Wo1(R/TZ) = kerL]® X =R X L'(R/TZ)=Re®[imL]=R& Z

being X := {a € Wy, (R/TZ) : l/TfoT u(s)ds = 0}, Z := {h € L' (R/TZ) : l/TfDT u(s)ds = 0}. We
use the first splitting to write each v € W, , (R/TZ) in the form v = 5+ 9, 5 € R, % € X, and we call

Q: L' (R/TZ) — R the linear projection associated to the latter one, (given by Q[h] = % fOT h(s)ds). With
this notation, problem (3.53) reads

L)+ (T -QN@+ 5+ ¢)] =0, (3.54)
QIN@+7+¢)] = (3.55)

This is the so-called Lyapunov-Schmidt decomposition of problem (3.53). We call K. : Z — X the inverse
operator of the topological isomorphism £¢: X — Z so that (3.54) becomes

1+ K [(I-Q)N@+5+¢)]] =0 (3.56)
On the other hand, taking into account the explicit expression for Q, (3.55) is nothing but

T
-;-,- /0 g(v + 9(t) + (t))dt = e. (3.57)

We denote by S the set of solutions of (3.56), that is,

S = {(ﬁ,i‘i) ERXX:5+K: [(I - Q)[N(@+ 5+ ¢)]] = 0}. (3.58)

Well-known results based upon the continuity of the Leray-Schauder topological degree, (see, for instance,
[25]), show that for any ©_ < 7, € R there exists a connected subset Sio_,5+] € SN([v—, v4] x X) intersecting
SN ({v-} x X) and SN ({vy} x X). We study the number of solutions of equation

&
- / 9@ +T(t)+o(t)dt=¢2, (3,5) €S, 0<v<2m (3.59)
0
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Observe now that, if T is small, the norm of K. when seen as an operator from

Y {h € C(R/TZ) : /T h(t)dt = o} c C(R/TZ) (3.60)
0

to itself is small. On the other hand, ||(I — Q)N ()|l < 2maxg|g| Vz € L (R/TZ) with independence of
T'. We deduce from (3.58) that |||« is small for every (9,%) € S, so that

7 iy i
7], 9@ +30 + et~ 1 [ oo+ p(0)a (3:61)

as soon as T is small. The discussion above motivates the following result, which slightly improves Proposition
2 in [42].

Proposition 3.6.1. Let ng € N, a > 2 be given. Then, there ezists a periodic function ¢n, € C°(R/27Z)
such that, for any g € C(R/2nZ) with zero mean,

2n 2 2
3= | 9t bng(t) + 0yt = YA BraO o0 v e R (3.62)
0

where Ano(g9) = L [ g(z) cos(noz)dzx and B, (g) = - 02” g(z) sin(ngz)dz are the ng'”® coefficients in the
Fourier series of g.

Proof. Define H : R — R by

2
H(z)=z+ = sin z. (3.63)

Then, H'(z) = 1+ % cosz > 0 Vz € R, so that it is an increasing diffeomorphism in R.. Define ¢, : R — R
by the rule

1
Yno(t) = —H™! (not) —t+d
no
where d € R is a constant which will be fixed later. In this way,
1
wng(t + 2?1') = n—H_l(not + n027r) == (t + 2?’!‘) +d = ’C,bnﬁ(t) Vt € R.
0

Also, taken g € C(R/27Z) with zero mean and a € R, we have

1 27 1 2x 1
— ; t)dt = — d+ —H! dt =
) g(a+ Pn,(t) +t) 2ﬂ/0 g(a+ +n0 (not)) t
1" (a +d+z) H (nozx)dr = : /21{ (“+d+$)(1+‘2“305(” z))dz =
=z ; g 0 ~ o . g 5 0 =
1 27 1 27
= — /0 g(a+ d+ z)cos(noz)dr = — -/; g (z) cos (no(z — a — d))dz =

1

= ~[Ane(9) cos(noa + nod) + Bq (9) sin(noa + nod)].  (3.64)

It is clear now that d € R can be chosen so that (3.62) is satisfied.

Corollary 3.6.2. Let ng € N, a > 2 and g € C(R/27Z) with zero mean be given. Then, for any € > 0,
there ezists an open set G = G, C L' (R/TZ) such that, with the notation from Proposition 3.6.1:

1 2“9(a+h(t))dt v/ Ano(9)? + Byy(9)?

— cos(npa)| < € YVa € R, Vh € G.
27 0 8
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Proof. By Proposition 3.6.1, it is possible to find h, € L'(R/27Z) such that

1 2w

e g(a+ ho(t))dt = v An, (g)i: Do (9)° cos(nga) Va € R. (3.65)
T Jo

However, the operator

UL (%) — C(R/27Z)

(3.66)

F 2m T
h — _a s —2%?/0 g(a + h(t))dt

-l

is continuous. To see this, choose a sequence of L!(R/ 2mZ) functions {h,} — h and a sequence of real numbers

{an} C R/27Z. Take subsequences {h,, } and {@n.} such that {an, }x — a € R/27Z and {h, }x — h a.e.
Apply the Lebesgue Theorem to conclude

1 1
Il' 92 ne T Nn, (T at = "—"2 =t
-—- h d — h d q —
. 9 n i t 2 Nk )
lim - g(an, + (t))dt / g(an, + h(t)) t_ 0

in another words,
hin [[qjhnk](ank) — [lph](aﬂh )]

Being {a,} an arbitrary sequence in R/27Z, it follows that {Whn, }x converges to Yh uniformly. This
completes the argument.

At this stage, we are ready to use the abstract work carried out above in this section to obtain our next

result, on the existence of many ordered lower and upper solutions for some specific pendulum-type equations.
This should lead us to complete the proof of Theorem 3.1.1.

Proposition 3.6.3. Let ng € N and g € C(R/27Z) with zero mean be given. We assume that, with the

notation from Proposition 3.6.1, An,(9)® + Bny(9)? # 0. Then, for any T' > 0, € > 0, it is possible to find
p € C®(R/TZ) and 0 S vp < v1 < ... < Vang—1 < Vo, = vg € C? (R/TZ) such that:

I / Anﬂ 2 + Bnﬁ <
(—=1)%v] + cvg + g(vg + ()] > VAne(9) y ) Vg=0,...,2n9 — 1, (3.67)
vy (t) — ;’iq <eVteR/TZ. ¥q=0,... 2ng— 1. (3.68)
0

Proof. It suffices to prove the result for T > 0 small. since, given any p € N, whenever vg,...,von, 1 €
C*(R/TZ), ¢ € C= (R/TZ) satisfy (3.67), To...,b2m-1 € CX(R/pTZ), ¢ € C®(R/pTZ) defined by the
rule

G(t) = vg(t),  B(t) = p(t), teR

will do the job for the period pT. We may (and we will) also assume 0 < € < =
By Corollary 3.6.2, we are able to find some ¢ € ("°(R/ 27Z) and § > 0 such that

"2"1"" N g(a+ @o(t) + h(t))dt VAn, (9)23+ B, (9)* cos(nga)| < V Ang (9)21;_ Bro (9)°
T Jo

Va € R, Yh € L*(R/27Z), ||hll; < 6. (3.69)
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At this point, let us fix 7" > 0 so small that

1Kelly < 1 min{—q— }

2maxn Igl 2’:»’1’1'6

where ||K.||y stands for the operator norm of K. when seen as an operator from the space Y defined in (3.60)
to itself. In this way, we ensure that
_ . d
oo < min { 57|
2T

for any (7,7) in the set S := {('E’), V) € Rx X : 7+ K, [(I—-Q)[N(ﬁ+i5+cp)]] = 0} (where ¢(t) =

po(2mt/ T)) In particular, ||9||; < g—z— V(v,7) € S. Now, a simple change of scale in (3.69) gives

{ &

oT
Va € R, Vh € L*(R/TZ), |h|: < o

and we conclude

T 2 2 2
% /0 g (5 -+ (t) + (1)) dt — YAne(9) 3+ Brol9)” o5(nop)| < YAnel9) 1; Bro(9)”

V(3,9) € S. (3.70)

Inequality (3.70) implies, for o = 9, = Zq, (¢=0,...,2n0— 1), that

T An.(9)% + B, (g)2
(—l)q-i,-/ g (f—-q+6(t)+go(t)) dt > VAo (9)? + Bno(9) Vo € X with (lq,i}) € S.
0 o 4 ‘no

We have shown:

Corollary 3.6.4. Let ng € N and g € C(R/2nZ) with zero mean be given. We assume that, with the
notation from Proposition 3.6.1, Ap,(9)* + Bno(9)* # 0. Then, there ezists an open set O C L' (R/TZ) with

ONn{he L' (R/TZ) : -13-4 foT h(t)dt = kr}‘*k} # 0, such that for any e € O, problem (3.1) has at least 2ng
geometrically different solutions.

Proof. It is a consequence from Proposition 3.6.3 above and the three solutions theorem (see [4]). Simply

take 0 < € < 7nc 10 this Proposition to obtain a ordered scheme of lower and upper solutions.

Proof of Theorem 3.1.1. In case g is a trigonometric polynomial, we already proved it in page 64. In case it
i1s not, apply Corollary 3.6.4 above.
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Chapter 4

A Hartman-Nagumo inequality for the
vector ordinary p-Laplacian and

applications to nonlinear boundary
value problems

4.1 Introduction

In 1960, Hartman [39] (scc also [40]) shiowed Lhat the second order system in RY

u’ = f(t,u,u'), (4.1)
u(0) = ug, u(l) = uy, (4.2)

with f: [0, 1] x R¥ x R¥ — R¥ continuous, has at least one solution % such that |u(s)]] < R for all s € [0, 1]
when there exists R > 0, a continuous function ¢ : [0, +00[— R™* such that

+oo
/0 205) ds = +00 (4.3)

and nonnegative numbers v, C such that the following conditions hold :
(1) (z,f(t,z,y)) + ||ly||* > 0 for all t € [0,1] and z,y € RY such that lzl| = R, (z,y) =0.

(@) 175z, 9)l < @(llyl) and [I£(t,z,9)]l < 2v((z, f(t,2,9)) + |y|[?) + C for all ¢ € [0,1] and z,y € RN
such that ||z|| < R.

(%) |luoll, lluill < R.

In 1971, Knobloch [44] proved, under conditions (2) and (i7) on the (locally Lipschitzian in u,u’) nonlin-
earity f, the existence of a solution for the periodic problem arising from equation (4.1). The local Lipschitz

conditions was shown to be superfluous in [79]. A basic ingredient in those proofs is the so-called Hartman-
Nagumo inequality which tells that if z € C2([0, 1], RV ) is such that

lz@®)l < R, 2”@l < ¢(llz'#)Il), and ")) < v (lz()]?)" + C, (¢t e [0,1]),

for some ¢ satisfying (4.3), some R > 0. ¥ 20, C > 0, then there exists some K > 0. only depending on
¢, R, v and C, such that

I" )l < K, (t € [0,1)).
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Recently, Mawhin [60, 59] extended the Hartman-Knobloch results to nonlinear perturbations of the
ordinary vector p-laplacian of the form

(Il IP=2u)" = f(¢, u).

His approach was based upon the application of the Schauder fixed point theorem to a suitable modification
of the original problem whose solutions coincide with those of the original one.

Our aim here is to extend, at the same time, the Hartman-Knobloch results to nonlinear perturbations of
the ordinary p-laplacian and Mawhin’s results to derivative-depending nonlinearities. In the case of Dirichlet
boundary conditions, we use the Schauder fixed point theorem to find solutions to a modified problem, while
in dealing with periodic ones, our main tool is the continuation theorem proved in [60]. Both procedures
strongly depend on the extension of the Hartman-Nagumo inequality developed in Section 2.

Even though Theorem 4.4.1 exactly yields, when p = 2, the Hartman-Knobloch theorem, this is probably
not the best possible extension. On the other hand, further extensions to more general operators of, say,
¢-laplacian type u — (¢(u'))’ (as considered in (60]) remain, as far as we know, unezplored.

For N € Nand 1 < p < +o0 fixed, we denote by | - || the Euclidean norm in R" and by | - | the absolute
value in R, while (-, -) stands for the Euclidean inner product in RY. By p’ we mean the Holder conjugate of
p (given by -5;; | ;, = 1). For q € {p,p'}, the symbol ¢q is used to represent the mapping

q—2 '
(f’q ZRN —-*RN, T —> ”:B” L lff.C;éO
0 it =0.

Then, it is clear that ¢p and ¢, are mutually inverse homeomorphisms from R¥ to itself, and mutually
inverse analytic diffeomorphisms from R¥ \{0} to itself. Furthermore, an elementary computation shows

that
(@)= lel™? ((@-2) (750) 2+ 0) | (1.4

for all z € RV \ {0}, all v € RY, and q=0p,7p.

4.2 A Hartman-Nagumo inequality for the p-Laplacian

In this section, we extend the Hartman-Nagumo-type inequality (39, 40] associated to the second order

differential operator z — z” to the p-Laplacian case z — (#p(z"))" . We need first a preliminary result giving
an estimate on the LP~! norm of =’ when z is bounded in the uniform norm and some differential inequalities

involving (¢,(z’))" hold. Let us call, for brevity, p-admissible any C! mapping z : 0,1] — RV such that
¢p(z’) : [0,1] — RY is of class C!.

Lemma 4.2.1. Let B > 0 be given. Then, there erists a positive number M > 0 (depending only on B)

such that for each p-admissible mapping verifying the following inequalities, with r : 0,1] - R a C! convex
function :

(1) llz(@®)ll, Ir(t)] < B for all t € [0, 1];
(i1) [[(¢p(z))'ll <" a.e. on [0,1],

one has

/ 1 Iz’ ()P~ 2dt < M.
0

Proof. Condition (ii) can be rewritten as

165(2(5)) = ¢p(' @D < 7'(s) = #'(t), (0<t<s<), (4.5)

which implies that
16 (2 (NI < bz’ ) +7'(s) = 7'(t), (0<t<s<), (4.6)
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lop(z" (NN < Nlop(' @) +7'(t) = 7'(s), (0<s<t<1). (4.7)
Integrating inequality (4.6) with respect to s, we find

ft Iz ()P ds < (1 = &)llz" @I~ + (1) = r(t) — (1 = t)r'(2)

SA=OIOIP" +2B-(1-t)r'(t), (0<t<1), (4.8)
while integrating inequality (4.7) with respect to s we get

/o Iz ($)IIP~ ds < tlla"()|P~! = r(t) +7(0) + tr'(2)

<tl|"@)IP~ + 2B +tr'(t), (0<t<1). (4.9)
Adding expressions (4.8) and (4.9), we find

1
/ Il'(s)IIP~1ds < ||’ ()IP~2 + (2t — 1)r'(t) + 4B, (0<t< 1), (4.10)
0
and we deduce that .
/ I/ (s)IP~2ds < [lz’(@)|P~" + |r'(£)] + 4B, (0 <t < 1). (4.11)
0

Now, the convexity of r means that r’ is increasing. Together with the bound ir(t)] < B for all t € [0, 1],
1t implies that

Q| B

1
3

—

which, together with (4.11), gives us the inequality

1
/ |z’ (s)||P~ ds < ||z’ (#)||IP~ + 10B for all t¢
0

_
rrd 4.13
s (413

Following a similar process as before but Integrating inequalities (4.6) and (4.7) with respect to ¢ instead
of s, we get

1
=" ()P~ < /0 [="@®)IP~ dt +|r'(s)| + 4B, (0<s<1),

which, after changing the names of the variables s and t, 1s equivalent to

1
(EA0] L 5/0 |z"(s)IIP~ ds + ' (¢)] + 4B, (0<t<1), (4.14)

and, again, using (4.12), gives

: i
1z’ () |IP~ < / |z'(s)||P~'ds + 10B for all te %,g— . (4.15)

0 |9 I

The information given by (4.13) and (4.15) can be written jointly as

1 1 9
Iz ()P — / |</(s)P"ds| < 108 forall te |, 2|, (4.16)

0 J

which clearly implies that
1 o

' ()P~ — ||z’ (s)[|P~!| < 20B for all t,s e Ol (4.17)

Suppose now that the conclusion of Lemma 2.1 is not true. This would imply the existence of sequences

{zn} in C'([0,1],R"Y) and {r,} in C1([0, 1], R) such that z, is p-admissible and r,, is convex for all n € N,
and, furthermore,
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(Dn llza@)ll, Ira(t) < B forall te]0,1],
(i)n 11(p(z)) @) < 72(t) ae on [0,1],

(i) fy e, ()P~ dt — +oo

From (iii) and (4.16) we deduce that ”:c’ ( ]|p- — 400 asn — +00, or what is the same, that ":cn( )” —
+oo a.s n — +00. In particular, we can suppose, after taking apart a finite set of terms if necessary, that
) # 0 for all n € N. From (4.17) we can conclude now that the sequence of continuous functions

{"l;: (( ))I:rp_ 1} converges to 1 uniformly on [3, 3] as n — oo, or, what is the same, that the sequence of

continuous functions {t — I:l::’n(i%))‘:l } converges to 1 uniformly on [-3-, 3-] as n — o0.
Going back to (4.5) we can use (4.12) to obtain the inequalities

on@n(®) =5 (51 (5) )| < e - i (3)] < 128 (419

for all t € [5, 3-] and all n € N, and, if n is large enough so that z/(t) # 0 for all t € [
inequality (4.18) by “:c;(z)”p_ we obtain

, 2], dividing

o=

Izl ()P~ ! (t) x;(—é—) r 12B (4.19)
[ENCH] el EAOT I EACH | Rl EACH T -
for all ¢ € [% %] , and we deduce that
zh(t)  z.(3)
EACICACY

uniformly on [

Wi

%, %] . We can find, therefore, an integer ng € N such that for any n > ny,

zn() _za(3) \ 1
<||xn(t)ll’ Ilm;(-é-)ll> =2

L)\ L 1ol
< O )n> > (4.21)

forall t € [31,;, -g-] and all n > ng. To end the proof, fix any n; > ng such that

for all t € [3, 3] what is the same as

Iz, (8)]l > 12B (4.22)
for all t € [%, %] , and verify that, because of (4.21),
Zn, (3)
z! (t), —22 >> 6B (4.23)
< T lzay ()
forallt € [%, %] This inequality, integrated between % 5 and 2 3 gives us
(33 —m(@) 2B ) > 28, (4.24)

Hence, using the Cauchy-Schwartz inequality, we obtain the contradiction

(20s(3) =2 ). nx:glgu> o (5) ~=n (3)] <28 4.20)
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The following lemma provides an estimate for the uniform norm of z’.

Lemma 4.2.2. Let B > 0 be given and choose the corresponding M > 0 according to Lemma 4.2.1. Let
p : [M,+oo[— RY be continuous and such that

+00 S
/ ds > M.
M P(s)

Then, there ezists a positive number K > 0 (depending only on B, M and ¢ ) such that for each p-admissible
mapping z satisfying, for some C! convez function r : 10,1] — R, the following conditions :

1. \lz()|l, |[r(t)| < B for all te€ [0,1];
2. [(dp(z"))|| <" a.e. on 0, 1];

3. I(@p @)Y Ol < @' @®)P)  forany te[0,1] with @) > M,
one has
Iz'@®)|| < K forall tel0,1].

Proof. Choose K > *3/M such that

KP=1
/ ds =M.
M ©(s)

We show that the thesis holds for this K. To this aim, fix any z, r verifying the hypothesis of the Lemma,
and suppose that there exists some to € [0, 1] such that |z’(t0)l| > K, and hence ||z’(to)||P~! > KP~1 > M.

However, by definition of the constant M, we have fol |z’ (t)||P~'dt < M, so that there must exist some

t1 € [0, 1] (we pick the closest one to ¢g), such that |z'(t)||P~! = M.
Define

t
S

®: [M,+o0[— [0, +00f, tr—

v 205) ds, (4.26)

and notice that @ is continuous, ®(M) = 0, ® is strictly increasing and ®(K?P~!) = M. Now,

M = ®(KP™1) < ®(||z'(to)IP~1) = |8 (]|’ (to) IP~Y)|

Iz’ (to) |7~ s Iz’ (t1) |7~ 3 lép(z'(t1))]] 3
/ ds / ds / ds|. (4.27)
M w(s) _ lz’(to)||2—1 ©(s) 195 (2’ (to))| @(s)

|

|

Using the change of variables s = |#p(z(t))ll, t € [min{to,t,}, max{%o, t1}], (which is absolutely continuous
because ¢p (') is C! and || - || is Lipschitz), we obtain, from hypothesis 3,

LHCACY) . *_lgp@ @)l (dp(=' (1)), ($p(z"))(2))
v /u¢,(mr(m))u o° /to e(llen(="(NI) lés (2" ()]

dt

* / "(ép(:c’))f(t)“ g / < / -1
: d = P—d
< |, 1o Jre ] < | [ 1oy @i JACla
so that max{to.t:} ;
M < / I )Pt < / Iz’ (&) [P~dt < M, (4.28)
min{to,t; } 0

a contradiction.

The following elementary result of real analysis is used in the proof of the next theorem.

Lemma 4.2.3. Let o, h:[0,1] — R be continuous functions, a non decreasing. Suppose that h' exists and
1s nonnegative in the open set {t €|0,1[: h(t) # a(t)}. Then h is non decreasing on [0, 1].
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Proof. Suppose, by contradiction, that there exist s < t in [0, 1] such that h(s) > h(t). There must be some

z € ]s,t[ such that h(z) = a(z) (otherwise, the Lagrange mean value theorem would give us the inequality
h(s) < h(t)). Define

a :=min{z € [s,t] : h(z) = a(z)}, b:= max{z € [s,t] : h(z) = a(z)}.
Again, by the Lagrange mean value Theorem, we have the inequalities

h(s) < h(a) = a(a) < a(b) = h(b) < A(t),

a contradiction.

We can now prove the proposed extension of the Hartman-Nagumo inequality.

Theorem 4.2.4. Let R > 0,7 > 0,C > 0 be given and choose M > 0 as associated by Lemma 4.2.1 to
B := max {R,vR? + -g—} Let ¢ : [M, +o00[— RT be continuous and such that

400 s
/ ds > M.
M ‘P(S)

Then, there exists a positive number K > 0 (depending only on R, p, v, C, M and ¢ ) such that, for any
p-admissible mapping = satisfying the following conditions :

1) llz(@®)]| < R, (0<t<1);
(i) ()Y Ol < v (|z@®)]?)" + C forall te[0,1] suchthat g'(t)+#0;
(122) |[(¢p(z")) (D) < o

one has

z'(t)||P~1) for all t € [0,1] such that ||z'(t)||P~ > M,

Iz’ ()l < K (t € [0, 1]).

Proof. From the chain rule we know that z’ = ¢, (¢,(z)) is a C! mapping on the set {t € [0, 1] : z/(t) # 0}.
Let us define

2
ri0,1] =R, tr— ym(t)+ C%—, (4.29)
where m(t) = ||z(t)||%. It is clear that r is a C! function. Moreover,
r'(t) = 2v(z(t),z'(t)) + Ct (t € [0,1)). (4.30)

It means that z' does not vanish on the set {t € [0,1] : 7'(t) # Ct}, and then, on this set, r is C? and
r(t) = ym”(t) + C = [|(¢5(z))' ()]l = 0.

By Lemma 4.2.3 we deduce that r’ is increasing, what is equivalent to say that r is convex. Also, it is
clear that

lz@®)ll, [*@)| < B (t€[0,1]), (3)
and, to be able to apply Lemma 4.2.2 we only have to check that inequality
|[(8p(="))" (D) < " (2) (i)

holds for almost every t in [0, 1].

Notice, firstly, that our hypothesis (ii) says that () is true for all ¢ in 0, 1] such that z(t) # 0. Secondly,
in the interior of the set {t € [0,1] : z/(t) = 0} we have

I(8(="))' (&)l = 0 < 7"(t) = C.
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It remains to see what happens on A := 9({t ¢ 0,1] : 2’(t) = 0}). We will prove that at every point
t € ANJ0,1[ such that (r')'(t) = r"’(t) exists we have the inequality

I(@p(z")) ()] < 7" (2). (4.31)

Pick some point to € ANJ0, 1] such that r/(t) exists. If to 1s an isolated point of A, there exists some ¢ > 0
such that ]to,to + €[ C]0,1[\A. Then, r’ and ¢p(z’) are both of class C! on Jto,to + €| and we have the
inequality

1(@p(z)) @O < 7(8) (¢ €]to, to + €]). (4.32)

It follows that ||¢,(z'(t)) — ¢n(2'(s))|| < r'(t) —r'(s) for all s, t with tg < s <t < tg + €, and letting s — ¢,
that

19p(z"(8)) = dp('(t))| < 7'(2) = 7'(t0) (t €]to, to + €]), (4.33)

from which we deduce that ||¢,(z))’(t0)|| < r'’(to). If, otherwise, ty is an accumulation point of A, there

exists a sequence {a,} of points from A\ {to) converging to to. But z'(a,) = 0 for all n € N, which implies

that ¢,(z'(as)) = 0 and 7/(a,) = Ca, for all n € N. We conclude then that (¢p(z")) (t0) =0 < C = r"(ty).
Theorem (4.2.4) is now a simple consequence of Lemma 4.2 2 O

4.3 Nonlinear perturbations of the p-Laplacian

Let f:[0,1] x RY x R¥ — R” be continuous, and consider the following differential equation

(¢p(z))" = f(t,z,2"), (0<t<1). (4.34)

Our goal in the remaining part ot this chapter is to develop some existence results for- the solutions of this
equation verifying either the periodic boundary conditions :

z(0) = z(1), 2'(0) =z'(1), (P)
or the Dirichlet boundary conditions
z(0) = zo, z(1) =z, (D)

where T and z, are some given points of RV
Next, we state and prove two lemmas that will be needed later:

Lemma 4.3.1. Let = be a p-admissible mapping. For each tg €10, 1] such that ||z(to)|| = maX;eo,1) ||z(t)]|,
one has

(z(to), 2'(t0)) =0 and (z(to), (¢5())’ (to)) + [I=’ (o) || < O.

Furthermore, the same conclusion remains true when to = 0 or 1 if z is assumed to verify the periodic
boundary conditions (P).

Proof. Suppose first that to €]0, 1[. The equality

2 __ 2
Jz(to)I* = max [lz(0)] (4.35)
implies that
, d
2a(to), = (to)) = = |lz(®)]]* = 0. (4.36)
lt=to
Next, suppose by contradiction that
(z(to), (6p(2"))'(t)) + Iz’ (o) ||P > O, (4.37)
what is the same as P
o (@0, 6, ®) > 0 (4.38)
|t=to
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As
(2(0), ¢5(z'(0))) = ||="(0)[IP~*((0), 2’ (0)) = O,

we deduce the existence of some € > 0 such that ]tg — €, tg + e[C [0,1] and

(z(t), dp(z'(t))) <0, te€]tg—c¢,tof (4.39)
(Z(t), dp(z'(t))) > 0, t€lto,to+ €. (4.40)
Equivalently,
g’illx(t)ll2 = 2(z(t),z'(t)) <0, tejto—etol, (4.41)
-:—tux(t)n? = 2(z(t), 2'(t)) > 0, t€lto, to+ e[, (4.42)

which implies that [|z(¢)|| attains a strict local minimum at t = t;. Of course, this is not compatible with
our hypothesis and this first case is proved.

If now z verifies the periodic boundary conditions (P) and

=)l = lz)ll = max la(®)],

define y: [0,1] = R" by y(t) :==z(t +1/2) if 0 < ¢t < 2, y(t) :i=z(t — 1/2) if £ <t <1 and apply the above

| —

result to y (at to = 3) to obtain the desired result.

Lemma 4.3.2. Let f; : [0,1] x RY x RN — RV, (i = 1,2,3,...), be a sequence of continuous mappings,
uniformly converging on compact sets to f : 0,1] x RY x RN — RM. Suppose that there exist positive
numbers R, K > 0 such that, for every i € N, there exist a solution z; of the differential equation

(Pp(z))" = ni(t,z,2)
with
lzi(®)|| < R, |lz;(®)| < K (¢t € [0,1)).

Then there ezists a subsequence of {z;} converging in the space C'[0,7] to some p-admissible mapping 7 :
0, 1] — R¥, which is a solution of (4-34).

Proof. The two sequences of continuous mappings {z;} and {¢p(z})} are uniformly bounded together with
its derivatives, so that, by the Ascoli-Arzela Lemma, we can find a subsequence {2;} of {z;} uniformly

converging on [0, 1] and such that the sequence {¢p(z])} is also uniformly converging on [0,1]. As ¢, is an

homeomorphism from R¥ to itself, we deduce that both {2:} and {z]} are uniformly converging on [0, 1].
Finally, from the equalities

(¢p(23)) = fit,zi,2;) (i=1,2,3,...,)

we deduce that also the sequence {(¢,(2!))’} converges uniformly on [0, 1]. The result now follows.

The following set of hypothesis on the nonlinearity f will be widely used in the remaining of this chapter:

[Ha4] There exist R > 0, v > 0, C > 0, M > 0 associated by Lemma 4.2.1 to B := max{R,yR? + £} and
@ : [M,+oo[— R* continuous with
400 s
] ds > M

Mo p(s)

such that

(a) For any t € [0,1], z,y € RY such that ||z|| = R, (z,y) = 0, we have

(z, f(t,z,y)) + |lyl|” > 0.
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(b) For any t € [0,1], =,y € RN such that |z]] £ R and ||y||P~! > M,

Lf &z, v)l| < e(llyllP~).

(c) For any t € [0,1], z € RN with lz|| < R and y € R¥Y,

lylIPLf (¢, z, )

< 29((" = 9w, f(t. 2, )z, v) + [yl Xz, £(t, 2, ) + [lu]P+2) + Cly]”.

As we will see next, these assumptions on f will be sufficient to ensure the existence of a solution for both
the periodic and the Dirichlet problems associated to equation (4.34). However, in our approach to these
problems, we will have to assume firstly a slightly stronger set of hypothesis, consisting in replacing (a) by

(a) For any t € [01 1]: I,y eEc RN such thﬂt ”3.7” — R, (x, y) p— O’ we have
(z, f(t,z,9)) + ||lylI” > 0.

The new set of hypothesis will be denoted by [Hy].

Notice, furthermore, that if there exist numbers R > 0,7 20, C > 0 and a continuous function
¢ : [0, +co[— R* verifying the classical Nagumo condition

+ 00 3
/ ds = +o0,
0 cp(s)

such that (a), (b), and (¢) are still satisfied, then, the whole set of hypothesis [Hy] is ensured.

4.4 The periodic problem

We prove in this section the existence of a solution for the periodic problem associated to equation (4.34).

Theorem 4.4.1. Let f: [0,1] x RY x RY — R™ be a continuous mapping satisfying [Hy]. Then, the periodic

boundary value problem (P) for equation (4.34) has at least one solution x 0,1] = R¥ such that ||z(t)|| < R
for allt € (0,1].

Proof. The theorem will be proved in two steps. In the first one, we assume that the set of hypothesis [ﬁ4]

holds. To prove the theorem in this more restrictive case, choose K > 0 as given by Theorem 4.2.4 for
R, v, C, M and ¢, and define

Q:={z e Cr([0,1) : ||lz()|| < R, Iz’ (t)|| < K for all te|0,1]}. (4.43)

Our aim is to apply the continuation theorem 5.1 from 60] in our case. First we have to prove is that for
each A €]0, 1], the problem

(Py) = {(f;sp(:c’))’ = A (t, 2, ') (4.44)

z(0) = z(1), '(0) = z'(1)

has no solutions on 892. Indeed, notice that
Q= {zcCHO0,1). [« <R, |2'{)]| < K forall te 0, 1]}. (4.45)

Now, fix any A €]0,1[ and let Z € Q be a solution of (Py). Our hypothesis (b) tells us that

1(8p(z")) ()Nl = Al £ (2, z(2), ' (2))
< £ z(®), 2" @) < e(ll=' 1) = e(llgp(=’ @E)II)  (4.46)
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for every t € [0, 1] such that ||z’(¢)||P~! > M. That is the third hypothesis needed in Theorem 4.2.4. The
first one is obviously satisfied. Let us check the second one. We can use (4.4) to find that

z,2veRY, 2 40= b (Bp(2))v = 1zl 7P ((p" — 2)(z,v)z + ]]z||2'v). (4.47)

In our context, it means that, for each t € [0, 1] such that z/(t) # 0, z”(t) exists, and furthermore,

z(t) = (¢p (8p(2)))(t) = ¢y (8p(2'(1))) ($p(2"))' (t) = i (p(' () (Af (t, z(2), 2" (2)))
= A" OI7P((" - 2)(z'(2), £(t, 2(t), 2" (1))’ (t) + 2 £ (£, 2 (2), ' (), (4.48)

and then,

2((z(t), z" (1)) + I’ (O)11*) = 2((x (), 2" (£)) + Allz’ () ]|?)
= 2|l O™ (" — 2) (2’ (1), f(t, z(t),z'(t)))(z(t), 2/ (¢))
+ 2" OIPF + |l )11 (2 (2), z(t, z(t), ' ()  (4.49)
for all t € [0,1] with z/(t) # 0. It turns out that, if we define 7 : [0, 1] — R by r(t) = ||z(t)||?, for each t € [0, 1]
such that z'(t) # 0, we can write, using hypothesis (c),
1(65(z")) )1l = A f(t, z(t), z'(t))|]
< ZMII:B’(t)I_I"”((P’ — 2){Z'(t), f(¢, z(t), 2’ (1)) (x(t), =’ (t))
+ Iz’ @O (z(2), £, z(2), 2" (t))) + |’ (®)|IP+?) + AC
| <Ar"(t) + A\C < ~r"(t) + C. (4.50)
Now, Theorem 4.2.4 tells us that

Iz’ < K (t €0,1]), (4.51)
and therefore, in order to see that z € Q, it only remains to prove the inequality

le@®)l <R (t € [0,1]). (4.52)
Suppose, otherwise, that there exists some point ty € 0, 1] such that ||z(¢9)|| = R. Then, lz(to)|| =

maXe(o,1] ||z(t)||, and from Lemma 4.3.1 we should have

(z(to), (6p(27))'(t0)) + ll'(to) 1P = (z(to), £ (to, (o), =’ (t0))) + I’ (to)||” < O,

contradicting our hypothesis (a).
Finally, it remains to check that the equation

Fla) = /01 f(t,a,0)dt =0 (4.53)

has no solutions on (9Q2) NRY = {a € R" : ||a|| = R}, and that the Brouwer degree

degB(}', Qn RN, 0) = degB(}', BR(O), 0)

is not zero. But from hypothesis (a) (taking y = 0) we deduce

(a, f(t,a,0)) >0 forall a€R", |la]|=R, andall tel0,1], (4.54)

and, integrating from 0 to 1 we get

(a,,‘/(;1 f(t,a,0)dt) = (a,F(a)) >0 forall ae Bg(0), (4.55)
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which, effectively, implies that degg(F, Bg(0),0) = 1. This concludes our first step. The theorem is proved

assuming (a) instead of (a). And the whole theorem follows now from a simple approximation theorem that
we sketch below.

Fix some €, > 0 small enough so that, after defining

B:=max{R,'yR2+—2}, R, =R, C, :=C+ 26*,

C B,\ 7 B

. 2 * — x =
B, .—-max{R,'yR + 5 }, M, : max{( ) : B}A/I,

(where, as the reader can easily check, M, has been carefully chosen so that it satisfies the conditions of
Lemma 4.2.1 for the parameter B, ), we still have the inequality

+00 3
/ ds = M, (4.56)
M, ¥=» (3)

Next, choose a sequence {€;}ien — 0 with 0 < ¢; <€, (i € N), and define

£ :10,1] X RN x RN — RN, (t,z,y) — f(t,z,9) + &z (z € N). (4.57)
‘Now, it is clear that, for each z € N,

(ai). For anyt € [0,1], z,vy € RY such that ||z|| = R, (z,v) = 0, we have
(z, fi(t,,v)) + [lyl|” > 0.

(b:)s For any t € [0,1], z,y € RY such that ||z|| < R, and lyl|P~! > M,,
I£i(¢, z, )|l < e(llylP~1).

(ci). Forany t € [0,1], £ € RY such that ||z|| < R. and y € RV,

IlIPIfit 2, )0 < lliP £ 2, 0) I+ ylPe. R < 29((0' — 2)(w, f(t, z, v))(z, v)
+ lvll*(z, £(t, z,9)) + [WlIP*?) + Cullyll? = 2v((' - 2)(y, fi(t, z, v)) (z, v)
+ [yl*(z, fit, 2, 9)) + Iyl1P*?) + CullyllP - 2v((2' - 2)ei(z, v)? + ez )12 lwl|?)
< 2v((p" = 2)(y, F(t,z, y))(z, y) + |vl|*(z, fi(t, z, v)) + lylIP*2) + C.ly|lP. (4.58)

(because p’ — 2 > —1).

We deduce, by the first step proved above, the existence for each i € N of a solution z; : [0,1] — R¥ of the
periodic boundary value problem

(P) = {(¢p(xf))' = f(t,z,2') + & (4.50)

z(0) = z(1), 2'(0) =z'(1),

verifying ||z;(t)|| < R, ||z}(t)|| < K, for all t € [0,1]. (K, being given by Theorem 4.2.4 for R,p,~,C, and
M,).

The existence of a solution to our problem is now a consequence of Lemma 4.3.2.

4.5 The Dirichlet problem

Consider now the boundary value problem arising from equation (4.34) together with the Dirichlet boundary
conditions (D). For the reader’s convenience, we reproduce here a result of (54].
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Lemma 4.5.1. Let 7o, ; € RY be fized. Then, for each h € C[0,1] there ezists a unique solution xj €
C'[0,1] to the problem
(¢p(z’))" = h
D) = 4.60
e {x(O) ~ 20, (1) =1 +1.60)
Furthermore, if we define K : C[0,1] — C'[0,1] by h — x, the mapping K is completely continuous.

Proof. Integrating the differential equation in (4.60) from 0 to ¢t we find that a continuous mapping z : [0, 1] —
R?Y is a solution to this equation if and only if there exist some a € R" (necessarily unique) such that

dp(z'(t)) = a + H(h)(t) (t€(0,1]), (4.61)

where H(h)(t) := fg h(s)ds. This formula can be rewritten as

2'(t) = 5 (a + H(B)(1)) (¢ € [0,1)). (4.62)
Now, the boundary conditions imply that
z(t) = zg + /t ¢ (a + H(h)(s))ds (t € [0,1]), (4.63)
0
and that —
| ¢+ Hn))ds =21~z (4.64)
0

We therefore conclude that there exists a bijective correspondence between the set of solutions to (4.60) and
the set of points a € R¥ verifying (4.64), given by z — ¢p(z'(0)).

Following a completely analogous reasoning to that carried out in Proposition 2.2 from [53], we find that

(i) For each h € CI0, 1] there exists an unique solution a(h) of (4.64).

(ii) The function a : C[0,1] — R" defined in (i) is continuous and maps bounded sets into bounded sets.

We deduce that for every h € C[0, 1], there exists a unique solution K (k) of (D}), given by the formula

K(R)(2) = 20 + /0 #-1(a(h) + H()(s))ds (¢ € [0,1]). (4.65)

The continuity of the mapping a allows us to deduce the continuity of K. The boundedness of a on
bounded sets of C|0, 1] has as a consequence the compactness of K on bounded sets of C[0, 1].

This lemma is now used to prove the following existence theorem for the Dirichlet problem associated to
(4.34).

Theorem 4.5.2. Let f : [0, 1] x RY x RN — R¥ be a continuous mapping verifying [Hy]. Let xo, z, € RN

with ||zo||, ||z1]| £ R. Then, the boundary value problem (4.34) — (D), has at least one solution z : [0,1] — RV
such that ||z(t)|| < R for allt € [0, 1].

Proof. Define F : C'[0,1] — CJ0, 1] by

F(z)(t) := f(t,z(t),2'(t)), (te[0,1]), (4.66)

so that our problem can be rewritten as

z=KF(z), (zeCo,1]). (4.67)

Notice that KF : C'[0,1] — C*[0,1] is a completely continuous mapping, so that if f were bounded, F and
KF would be bounded and the Schauder fixed point theorem would give us the existence of a solution of
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our problem. Thus, our problem now is reduced ta finding some f, : [0, 1] x RY x RY — R¥ continuous,
bounded and such that every solution to the equation

(6p(z'))" = f.(t,z,2') (4.68)

verifying the boundary conditions (D) is also a solution to (4.34).

The following construction is essentially taken from [40]. As in the periodic case, start assuming that if

actually verifies the more restrictive set of hypothesis [fI4]. Let K > 0 be as given by Theorem 4.2.4 for
R, v, C,M and ¢. Choose some continuous function

p:[0,00[— RT (4.69)
such that
p(t) =1, (0<t<K), (4.70)
and
sup{o(lyl)If(t.z,9)]l : ¢ € [0, 1], |z < R, y € RV} < +o0. (4.71)

For instance, p could be chosen as

1 if 0<t<K

P = Tl et Rer oy if ¢ 2 K +1 ' ST
(1+K—t)p(K)+(t-K)p(1+K) if K<t<K+1

Define

ftzy) {p(ly)f(t,x,y) if |lz]l <R (73]

pUlyl)f (6, Ryry) if |lz|| > k.

It is easy to check that f, is still a continuous bounded function satisfying not only the same set [ﬁ4] of
hypothesis (for the same parameters R, v, C, M), but, moreover,

(a.) For any t € [0,1], z,y € R" such that |zl > R, (z,y) = 0, we have
(z, f(t, z,y)) + ||ly||” > 0.

Also, it is clear that f,(t,z,y) = f(t,z,y) if ||z|| < R and lyl| < K.

So, let z : [0, 1] — R¥ be a solution to (4.68) verifying the boundary conditions (D), where ||zo|, ||lz1]| <
R. Let us show that ||Z(t)|] < R, 1Z'(t)]] < K for all t ¢ [0,1]. First suppose that there exist some
point to € [0, 1] such that ||Z(o)|| > R. This point to can be taken so as ||Z(to)|| = maxe(o,1] |Z(2)||. As

IZ(0)|| = llzoll < R, ||Z(1)|| = |lz1]| < R, we see that to €]0,1[. Now, using Lemma 4.3.1, we deduce that
(Z(t0),Z'(to)) = O and

(Z(to), (65(2))'(t0)) + ll2’ (o) I = (Z(t0), n. (o, Z(to), ' (to))) + ||IZ'(t0)]| < O,

which contradicts (a,). It means that 1Z(t)]| < R for all t € [0, 1]. And, in the same way as happened in the

proof of Theorem 4.4.1, our hypothesis (b) and (c) on f (applied to f,) make z verify the second and third

hypothesis of Theorem 4.2.4. Applying it we obtain that I1Z'(t)|| < K for all t € 0, 1], so that Z is in fact
solution to the system (4.34-(D)). ]
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