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Abstract— In this paper, we show a simulation strategy for
composite dispersive thin-panels, starting from their microscopic
characteristics and ending into a time-domain macroscopic
model. In a first part, we revisit different semianalytic methods
that may be used to obtain the S-parameter matrices. The
validity of them is assessed with numerical simulations and
experimental data. We also include some formulas that may be
used to tailor the shielding effectiveness of panels in a design
phase. In a second part, we present an extension to dispersive
media of a subgridding hybrid implicit–explicit algorithm finite
difference time domain (FDTD) devised by the authors to deal
with that kind of materials. The method, here presented and
applied to the FDTD method, is a robustly stable alternative
to classical impedance boundary condition techniques. For this,
a previous analytical procedure allowing to extract an equivalent
effective media from S-parameters is presented, thus making this
road map able to simulate any kind of dispersive thin layer.
A numerical validation of the algorithm is finally shown by
comparing with experimental data.

Index Terms— Finite difference time domain (FDTD), implicit–
explicit schemes, subcell models, thin-layer modeling, time
domain (TD).

I. INTRODUCTION

THE ADEQUATE simulations of the electromagnetic
(EM) properties of composite multilayered complex thin-

panels are of extreme importance, since they are part of
modern materials used, e.g., in the automotive or aeronautic
industries. The challenge emerges because of the multiple
scales which are involved, being impossible in practice to
mix microscopic and macroscopic geometrical features in
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a single simulation. A typical workflow to approach this
type of problems can be sectioned in two stages: the EM
modeling of the thin-panel properties and the incorporation
of this model into a numerical solver. In a first stage, our
concern is to obtain an accurate EM characterization of the
thin-panel transmission and reflection properties for normal
incidence as a function of frequency. We can distinguish
three distinct procedures to obtain these parameters: to per-
form experimental measurements with standard setups such
as ASTM D4935 or its variants [1]–[3], to derive analytical
formulations accounting for its microscopic structure [4]–[6],
or to carryout simulations of the unit cell with appropriate
periodic boundary conditions [6]–[8]. These results can be
typically expressed in two frequency-dependent matrix forms:
transmission matrices (ABCD) and S-parameters, both linked
by well-known equivalence relations [9].

In a second stage, the treatment of the obtained
S-parameters depends on the method to be used by the
solver. A common approach to this problem is to treat each
thin-panel by impedance boundary conditions (IBCs) to avoid
costly fine meshings of the material structure. In the frequency
domain (FD), the introduction of IBCs is similar to classic
BCs such as perfect electrically/magnetically conducting, and
the macroscopic parameters can be used with little or no
treatment, directly modifying the BCs on the element surfaces
accordingly. In time domain (TD), on the contrary, these para-
meters cannot be used directly and require the extraction of
appropriate dispersive models. Specifically within the frame-
work of the finite difference time-domain (FDTD) method,
a typical approach consists of using a technique known as
network IBC (NIBC) [4], [10]. For this, a partial fraction
expansion, in terms of complex-conjugate pole–residue pairs,
is performed by fitting the frequency-dependent S-parameters,
e.g., by using a vector-fitting (VF) technique [11]. However,
the poles need to be carefully chosen to avoid instabilities, and,
even in this case, late-time instabilities are reported to appear
because of the noncollocated nature of FDTD [12], [13].

To overcome these limitations, in [14], we proposed a novel
technique based on a robustly stable subgridding boundary
condition (SGBC), which does not present the late-time insta-
bilities of NIBC. The method was based on a hybrid implicit–
explicit (HIE) combination of the classical FDTD with a
Crank–Nicolson time-domain (CNTD) unconditionally stable
method. However, the formulation presented in [14] required
to know the multilayer interior structure of the thin panel,
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in terms of its bulk conductivity and the thickness of each
layer. As a consequence, that approach could not be used
to model arbitrarily dispersive thin-panels, and it has been
extended to this end.

In this paper, we extend the contribution made in [15] and
present a full road map which starts from the S-parameters,
found either by simulation or by semianalytical methods
and finishes with a dispersive set of constitutive parameters
that can be efficiently simulated by FDTD by using the
SGBC method. The rest of this paper is organized as fol-
lows. In Section II, we present a discussion on the available
analytical models for the panels and discuss which ones
are preferable for different configurations. We also present
a discussion on the factors that dominate the SE behavior
of the panels which may be useful, for instance, to decide
on the optimal materials, densities, or shapes of a fiber.
To validate these analytical models, in Section IV, we cross-
compare with results from simulations of their microscopic
structure. In Sections V and VI, we briefly describe how to
find a suitable TD model in terms of constitutive parameters,
and we extend the SGBC method to deal with arbitrarily
dispersion by generalizing the unconditionally stable CNTD
to dispersive media. Finally, we present a simple validation
with experimental data where we have followed the whole
road map described in this paper.

II. THIN PANEL MODELING

Let us start our discussion by defining some basic concepts
that will help us to fix a notation. When a harmonic plane-
wave, having an incident electric field amplitude Ei , illumi-
nates perpendicularly a flat panel, part of it is reflected (Er ),
and part of it gets transmitted through it (Et ). In consequence,
thin panels can be regarded as multiport networks, identifying
port 1 as the side of the panel illuminated by the plane-wave
and port 2 as the side where the wave is transmitted

[
E2
H2

]
= [�]

[
E1
H1

]
=

Nl∏
i=1

[�i ]
[

E1
H1

]
(1)

with � and �i being the transmission (ABCD) matrix of the
thin panel and of the stacked layers composing it, respectively.
The scattering parameters can be derived from matrix �,
using, for instance, the relations given in [9].

For panels in free-space, characterized by an intrinsic
impedance η0, we can obtain the transmission coefficient as

T = S21 = 2η0

�11η0 +�12 +�21η
2
0 +�22η0

. (2)

For anisotropic media, we have to account for TEz and TMz

polarizations, henceforth simply TE and TM. We can identify
four transmission matrices for TE and TM conversions⎡
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ETE

2
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2
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and regard them as four independent two-port networks, one
for each of the possible mode conversions. Proceeding with

Fig. 1. Geometrical characteristics of the wire array: diameter a and
period p. Wire mesh 2-D representation with local (ξ, ψ, ζ ) and global
(x, y, z) coordinate systems.

each of them in a similar way as for isotropic media, we can
obtain the four S-parameters for inter- and intramodal trans-
mission coefficients.

A typical parameter often used is the shielding effective-
ness (SE), as a measure of the capability of the panel to shield
an enclosure from the EM environment. It is defined as the
inverse of the transmission coefficient

SE = 1

T
= |Ei |

|Et | . (4)

Though the method presented in the following can in general
find the S-parameters, we will henceforth just focus in the
SE. Note that (4) is a scalar and sufficient for isotropic
media. However, for anisotropic media, a TE wave can have
transmitted TM and TE components, TTE→TM and TTE→TE,
respectively, and we can define an average SE by

SEav = 2

|TTM→TM| + |TTE→TE| . (5)

III. PERIODIC MATERIALS BASED ON

CONDUCTIVE MESHES

Modern composite materials consist often in multilayered
structures including woven/nonwoven carbon fibers (CFC),
reinforcing wire-meshes, solid or expanded metal foils, honey-
combs, and so on embedded in some matrix material (prepreg
resins and so on). In what follows, we will focus ourselves
to periodic reciprocal media, as a model of woven carbon
fiber composites and reinforcing wire meshes. For this media,
we will adopt the more convenient notation shown in Fig. 1 to
refer to the electric components of the TE and TM modes as
Eψ and Eζ , respectively. We will next revisit two of the most
well-known methods to analyze these media: the Holloway
and the Wait models.

A. Holloway’s Model

Holloway et al. [6] propose and analyze three different
models for carbon-fiber composites. These are composed of
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layers characterized with a thickness L, with round fibers of
diameter D which repeat with a periodicity P [6, Fig. 1].
The fibers have a permittivity ε f and permeability μ f and
are assumed to be surrounded by the matrix bulk material
forming the remainder of each layer with εb and μb. The fiber
composite layer is decomposed in several regions. In each of
these regions, the effective permittivity tensor ¯̄ε is calculated as

¯̄εi j = εi j δi j (6)

with

ε−1
zz = (1 − g)ε−1

b + gε−1
f (7)

εyy = εx x = (1 − g)εb + gε f (8)

and g being a geometric parameter depending on the particular
shape of the fibers. A similar formula could be obtained for the
effective permeability tensor. Transmission matrix coefficients
can be straightforwardly obtained from the stacking of layers
with these anisotropic permittivity and permeability tensors
rotated accordingly to the fiber orientation [16].

The model predictions are compared there with results
obtained from finite element method (FEM) simulations.
From them, the authors conclude that their so-called three-
layer inhomogeneous model, referred hereafter as Holloway’s
model, provides the best results for frequencies in which
P/λ < 1. At frequencies below the skin depth of an equivalent
conductive layer, the model matches the expected results.
At higher frequencies, the model will still produce accurate
results, when the conducting fibers are closely packed, and
the proximity effects dominate over inductive and skin effects
such as the ones discussed in Section III-B. This proximity
effect is caused by conduction time-varying currents inside
the wires which create nonnegligible eddy currents in their
neighbors. Similar to the skin effect, this effectively increases
their total impedance. This effect becomes more important
when several layers of wires are stacked closely and has been
studied in detail in the context of the transformer windings
used in electric engineering [17], [18].

B. Wait’s Model

Wait [5] obtains the following expression for the surface
impedance presented by an array of wires. The assumptions
made to obtain such formula are that there are no resonances
within the wire or on its surface (λ � a), and as long
as the distance between wires compared with their radius is
sufficiently high to avoid proximity effects, i.e., P � a

Zs = ZwP + jηb
P

λb
log

P

πa
. (9)

The sheet impedance can be used with the transmission
matrix formalism in the following way [4]:

⎡
⎢⎢⎣
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Hζ (a/2)
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Hψ(a/2)

⎤
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with

[
�i

] =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/Zs 1

⎤
⎥⎥⎦ . (11)

In [4], metallic meshes and expanded foils are modeled
using (11). The stacking of several layers is a valid approach
when then interactions between different wire grids can be
neglected. This will be true if the wire grids are perpen-
dicular; however, if several layers of aligned wire grids are
stacked, the effective periodicity is reduced and this results
in proximity effects not being negligible, invalidating the
model.

IV. VALIDATION WITH FINE-STRUCTURE SIMULATIONS

In this section, we will discuss the validity of the presented
models. To do so, the periodic microscopic pattern of several
geometries is simulated with an FEM FD tool, Ansys HFSS,
in the range between 0.1 and 100 GHz; and the results are
compared with Holloway and Wait’s predictions. Note that a
TD simulator is not efficient performing these microscopic
simulations as the space-step necessary to properly resolve
these geometries would be approximately 1 μm, therefore
imposing a time-step which does not allow us to obtain
low-frequency results in an acceptable number of iterations.
The structures have been chosen as representative of four
common situations found in materials used in the industry:
two wire meshes, one dense and one nondense, with no
ohmic connection between different wires, an expanded metal
foil with ohmic connections at the metal intersections, and a
one-layer single-orientation CFC material. For all the cases
considered, we will assume that the materials are embedded
in free-space as the effect of resin materials (nonconductive
and with a low permittivity) is negligible for fibers of the
conductivity considered here.

A. Loose Wire Mesh

Let us start by modeling a loose wire mesh [Fig. 2(a)]
consisting of two arrays of parallel wires and forming an
angle of 89◦. This panel was obtained from [4] (S1) and was
modeled with two layers of wires having a1 = a2 = 50 μm,
σ = 58 MS/m, and P1 = P2 = 558 μm. In this case, wires
are widely separated (P/a ≈ 11) and therefore we can expect
the inductive effects to dominate. As expected, we obtain a
good match between simulations and Wait’s model (Fig. 3),
with differences of less than 0.5 dB. Holloway’s model fails
for this case as it does not take into account inductive effects,
and proximity effects are negligible. Experimental data for
the SE of this test case are also shown in Section VII
compared with FDTD results found after Wait’s prediction for
the macroscopic S-parameter matrix.

B. Expanded Foil

The second test-case is an aluminum expanded foil
[Fig. 2(b)], similar to the ones presented in [4]. In this case,
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Fig. 2. Microscopic models employed for simulations. (a) Prepreg copper mesh of [4] (S1). (b) Aluminum expanded foil. (c) Stainless steel wire mesh.
(d) CFC layer model composed of 24 sublayers.

Fig. 3. SE results for the loose wire mesh configuration of Fig. 2(a).
Holloway’s model results are not shown for falling out of the scale.

we have three significant differences with respect to the pre-
vious case: intersection points now have ohmic connectivity,
wire sections are not round, and the lines are forming an angle
of 57.16◦. For their incorporation into the analytical models,
the rectangular cross sections of the expanded foil were
substituted by area-equivalent round wires with a = 90 μm
and σ = 38 MS/m. With this geometrical data, we can
draw a unit cell with periodicities of W = 2129 μm and
H = 1259 μm. The periodicities of the two layers used
in the models were P = 1089 μm. Similar to the case in
Section IV-A, the Holloway’s model does not provide good
predictions, due to the lack of validity of the effective layer

Fig. 4. SE results for the expanded foil of Fig. 2(b). Holloway’s model
results are not shown for falling out of the scale.

approximation (Fig. 4). Wait’s model predicts an average
SE about 3 dB lower, likely due to the overestimation of
impedance in the wire intersections.

C. Dense Wire Mesh

We now aim to test the model with a dense stainless
steel mesh [Fig. 2(c)] in which the P/a ≈ 1. To model
this setup, we use two perpendicular arrays of wires with
a1 = 100 μm, a2 = 35 μm, σ = 37 kS/m, P1 = 135 μm, and
P2 = 35 μm. Results (Fig. 5) show some agreement between
Wait and Holloway’s models at low frequencies but fail at
higher frequencies. A reason for this is that when the wires
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Fig. 5. SE results for the dense steel mesh configuration of Fig. 5.

are too close to each other, there is a dominance of the prox-
imity effects, which are eventually overcome by the inductive
behavior of the grid. This mixed behavior seems to indicate
that possibly a hybrid model combining the Holloway’s and
Wait’s approach can provide optimal results for this type of
configurations.

D. Carbon Fiber Composites

Finally, woven CFC composite panels are among the most
used materials in modern industry. These panels are created
by the weaving of several sublayers of fibers with one or dif-
ferent orientations. Each of these sublayers is composed of
tows, each containing thousands of fibers. The microscopic
structure of a typical CFC layer [Fig. 2(d)] has been modeled
for our simulation by stacking 24 sublayers of fibers with
a = 5.2 μm, σ = 66.667 kS/m, and P = 6.76 μm.
Odd and even sublayers are displaced P/2 in the y-axis,
therefore leaving a distance of P

√
3/2 between them. For this,

we have just made simple assumptions based on the single
fiber radius, and the volume density fiber provided by the
manufacturer. Just a single-layer single-orientation model has
been analyzed, though usual panels may have up to several
tenths of layers with different orientations, making them dif-
ficult both to simulate and to measure. Simulation and model
results (Fig. 6) show that, as we may expect, the proximity
effects dominate not only because of the neighbor fibers in
the same sublayer but due to the ones in the neighboring
sublayers which have the same orientation. As a consequence,
the field cannot penetrate more than a few microns into the
CFC at high frequencies (Fig. 7). While all models agree at
low frequencies, Holloway’s matches simulated results with a
deviation of approximately 2 dB in the range of frequencies
studied. We can compare this result with the ones obtained for
an equivalent 76-μm bulk layer of material which presents
a much larger deviation. We can also conclude that Wait’s
model is not effective to study this type of structures, due to
the dominance of the proximity effects. It bears noticing that
we have assumed the CFC to have a homogeneous stacked
distribution of the carbon fibers, and we have neglected any

Fig. 6. SE results for the CFC [Fig. 2(d)]. TE mode is zero for all the cases.

Fig. 7. Induced currents in the CFC [Fig. 2(d)] at 100 GHz.

weaving fabric geometrical features. In practice, the weaving
will interrupt the spatial homogeneity of the fibers clustering
them in warps with some separation among them, which will
create an inductive point of entry of EM energy. This will
compete with the shielding provided by each individual warp
due to their internal proximity effect dominance.

V. FINDING A TD MODEL

Holloway and Wait’s techniques described in the previous
sections permit us to find the whole S-parameter matrices for
different material arrangements starting from their microscopic
structure. We can incorporate their behavior into numerical
methods by means of NIBCs, as described in [10], or by
the novel SGBCs introduced by Cabello et al. [14], [15].
The latter approach has proven to exhibit a superior late
time stability compared with the NIBC method. However, the
S-parameters must be first transformed into bulk constitutive
complex permittivity and permeability effective parameters
εeff and μeff, for some given thickness, to be used by
SGBC.

Bulk parameter retrieval from S-parameters remains an
active topic of research [19]. In this paper, we will just briefly
summarize the procedure that we have adopted, based on
the work of [20]. For this, let us assume for simplicity a
nonmagnetic, isotropic, left-right symmetric (S11 = S22), and
reciprocal material (S12 = S21). The relationship between
the S-parameters under normal incidence and the effective
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permittivity can be expressed as

S11 = R
1 − ψ2

1 − R2ψ2

S21 = (1 − R2)ψ

1 − R2ψ2 (12)

with

R = ηeff − η0

ηeff + η0
(13a)

ψ = e− j neffk0th (13b)

where k0 = ω/c0 is the free-space wavenumber,
η0 = (μ0/ε0)

1/2 is the free-space impedance, and ηeff =
(μeff/εeff)

1/2 that of the effective medium. th stands for the
material thickness. There is a degree of freedom to choose this
parameter, which does not necessarily need to match the actual
physical thickness. Different bulk constitutive parameters will
be found for slabs with different th values, all with the
same S-parameters. From (12) and (13b), the procedure is as
follows.

1) The effective impedance is found after some algebra by

ηeff = ±η0

√
(1 + S11)2 − S2

21

(1 − S11)2 − S2
21

(14)

where according to [19], any choice of the sign is equally
valid (some authors also use a passivity condition to
keep just one of them).

2) The effective refractive index is next found by

neff = j
logψ

k0th
=

(
j
log |ψ|

k0
− � ψ + 2πm

k0

)
1

th
(15)

with

ψ = S21

1 − S11
and  = ηeff − η0

ηeff + η0
. (16)

Note that the refractive index admits infinite solutions
for its real part depending on the integer number m,
each one corresponding to a branch of the complex
logarithm. This fact introduces an added difficulty that
has attracted a lot of research efforts since the original
works of [21] and [22].

3) The εeff can now be found from (14) and (15); however,
the assumption of a nonmagnetic material releases us
from solving the branch problem, since εeff can be
directly found by

εeff (ω) = η2
eff/μ0

μeff (ω) = μ0. (17)

The time-domain version of the frequency-dependent εeff
can now be easily found by employing a VF procedure [23]
to obtain an N th-order pole–residue partial fraction expansion

εeff (ω) = ε∞ +
N∑

k=1

Rk

jω− pk
(18)

which can include complex or purely real pole–residues.
In case that these are complex, the complex conjugat of
the pair must also appear in the expansion. Now, following

the methodology of [24], we introduce a set of polarization
currents 	Jk(ω) each one related to the E-field in FD and in
TD, respectively, by

	Jk(ω) = jωRk

jω − pk

	E(ω) (19)

d 	Jk(t)

dt
− pk 	Jk(t) = Rk

d 	E(t)
dt

(20)

which are plugged into Maxwell equations in TD to end up
with

−∇ × 	E = μ0
∂ 	H
∂ t

(21a)

∇ × 	H =
N∑

k=1

	Jk + ε∞
∂ 	E
∂ t
. (21b)

VI. IMPLEMENTATION INTO SGBC

The SGBC method introduced in [14] was born as a robustly
stable subcell alternative of NIBC to find the tangential electric
fields at each side of the thin slab, as a function of the
magnetic fields in the adjacent host medium. It combines two
methods: 1) a CNTD method in 1-D, to find the transversal
EM solution within the slab, which is finely meshed to account
for the fields variation inside and 2) the usual 3D Yee-FDTD
method to solve the exterior problem coarsely discretized
according to the desired resolution. A proper HIE algorithm
is used to connect both methods at the slab boundaries. The
unconditionally stable nature of CNTD and the natural HIE
scheme we employ allows us to choose the time-step to meet
the stability criterion just depending on the outer coarser mesh
size, without compromising the computational affordability of
the method.

The method described in [14] for nondispersive media can
be extended to dispersive ones [15], as described next in a
simplified manner. For this, let us assume a nonmagnetic pure
homogeneous SGBC medium, meshed with a uniform space-
step �fine. To find the CNTD scheme used inside, we start
from the usual FDTD scheme for (20) and (21) to find

J n
i,k = κk J n−1

i,k + βk
(
En

i − En−1
i

) ∀k = 1, . . . , N (22)

En+1
i = Ca En

i + Cb

(
H

n+ 1
2

i− 1
2

− H
n+ 1

2

i+ 1
2

)

− CJ Re
N∑

k=1

(1 + κk) J n
i,k (23a)

H
n+ 1

2

i+ 1
2

= Da H
n− 1

2

i+ 1
2

+ Db
(
En

i − En
i+1

)
(23b)

where the coefficients Ca , Cb, Da , Db , CJ , βk , and κk are

Ca = 2ε∞ +�− σ�t

2ε∞ +�+ σ�t
Cb = 2�t/�fine

2ε∞ +�+ σ�t
Da = 1

Db = 2�t/�fine

2μ0
CJ = Cb

2
�fine (24)
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Fig. 8. Equivalent dielectric bulk parameters for the material of Fig. 2(a)
with a thickness of 100 μm.

with

� = Re
N∑

k=1

βk�t

βk = Rk

1 − pk�t/2
κk = 1 + pk�t/2

1 − pk�t/2
. (25)

Now, the CNTD algorithm [15] is built from (23), by colo-
cating the H- and E-fields at integer time-steps, with the help
of a time average for the right-hand side to yield

En+1
i = Ca En

i + Cb

2

(
H n+1

i− 1
2

− H n+1
i+ 1

2
+ H n

i− 1
2

− H n
i+ 1

2

)

− CJ Re
N∑

k=1

(1 + κk) J n
k (26)

H n+1
i+ 1

2
= Da H n

i+ 1
2

+ Db

2

(
En

i − En
i+1 + En+1

i − En+1
i+1

)
(27)

and leaving (23a) untouched.
Now extracting H n+1 from (27) and inserting it into (26),

a fully consistent algorithm with the space positions of E and
H staggered in space, as in the usual Yee-Scheme, is yielded,
but evaluated at colocated integer time-steps. After some
algebra, a tridiagonal system of equations is found for the
E-fields

a En+1
i−1 + bEn+1

i + cEn+1
i+1 = dn

i (28)

with

a = −Cb Db

4
= c b = 1 − a − c

dn
i = Cb Db

4

(
En

i−1 + En
i+1

) +
(

Ca − Cb Db

2

)
En

i

+ Cb

2
(1 + Da)

(
H n

i− 1
2

− H n
i+ 1

2

)
− CJ J n

i . (29)

Note that the H -fields are advanced explicitly by (27) from the
E-fields. The HIE conditions to connect the CNTD equations,
used inside the slab, to the usual FDTD equations, used in the
surrounding media, are built in the same manner given in [14]
(not given here for simplicity).

TABLE I

TENTH-ORDER VECTOR-FITTED POLES AND RESIDUES
FOR THE MATERIAL OF FIG. 2(a)

Fig. 9. Comparison of the TE SE for the material of Fig. 2(a) and
experimental results from [4] (S1).

VII. VALIDATION

A canonical validation of this method is presented here.
It computes the SE of the indefinite thin panel of the
prepeg copper mesh [Fig. 2(a)] previously analyzed in
Section IV-A. The constitutive parameters of the equivalent
negative-permittivity material have been extracted from the
S-parameters found with Wait’s model (Fig. 8), assuming a
thickness th = 100 μm, and vector-fit with a tenth-order pole–
residue expansion (see Table I). We have simulated a thin-slab
of this material under plane-wave TE incidence, with the HIE
CNTD method described previously, taking ten cells along
its thickness. Results for its SE are shown in Fig. 9. They
perfectly match with the analytical ones and reasonably agree
with experimental measurements from [4] (S1).

VIII. CONCLUSION

In this paper, we have presented a full road map to start
from the microscopic nature of a composite multilayered thin
panel and end into a macroscopic TD model to be simulated
by FDTD.

In the first part, we have revisited Holloway’s and Wait’s
model and discussed some of their limitations, taking profit
of low-level simulations of their fine structure. While both
methods reasonably agree in the asymptotic low-frequency
regime, differences appear at high frequency. We have shown
that for nondense structures, Holloway’s model does not
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replicate the simulated behavior at high frequencies, whereas
Wait’s assumptions provide a more realistic model. On the
other hand, for structures densely stacked along the panel
thickness, like the CFC test-case (with the homogeneous
assumption), the material has a classical conductorlike skin-
effect behavior, properly predicted by Holloway’s model and
falling out of Wait’s hypotheses. Finally, for intermediate
structures, the behavior is a combination of both models and
still requires a deeper study.

In the second part of this paper, we have extended the
SGBC procedure to deal with the dispersive nature of thin
panels, assuming that their scattering parameters are found
with the techniques given in the first part. A parameter
extraction procedure has been presented, and a time-domain
implementation of the dispersive constitutive parameters has
been described. For this, the CNTD method used by SGBC has
been extended. Finally, the whole road map has been applied
to one of the test cases used in the first part to prove the
feasibility of this approach.
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