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This paper derives a multiresolution time-domain (MRTD) scheme for the multiconductor transmission line (MTL) equations
based on Daubechies’ scaling functions. The terminations are characterized by a state-variable formulation which allows a general
description of the termination networks. For the linear load terminations, a method incorporating the terminal constraints is
proposed to work out the scheme at and close to the terminations.TheMRTD scheme is implemented with different basis functions
for linear components including resistances, inductances, and capacitances. Numerical results show that theMRTD schemes obtain
a more stable result than the conventional finite difference time-domain (FDTD) method with a coarse space step.

1. Introduction

Themulticonductor transmission line (MTL) equations have
been thought to be an efficientmodel for interconnected lines
[1]. With the increasing of the data transmission in electric
systems, transient analysis of multiconductor transmission
lines (MTLs) has significant meaning in circuit design and
electromagnetic compatibility (EMC). For the problems in
high frequency or with wide bandwidth, the time-domain
algorithm can get the solution directly and analyze the
integrated response and influence quickly. Several methods
have been introduced to analyze the time-domain response,
including the SPICEprogram, the time-domain to frequency-
domain (TDFD) transformation method and the finite dif-
ference time-domain (FDTD) method [2]. Since the SPICE
program can obtain the exact solution for the lossless lines,
it has been tried to extend to the lossy case [3–6]. Some
closed-form solutions for MTLs have been developed [7–10].
This method often needs convolution integrals to transform
the solution from frequency-domain to time-domain. As a
direct time-domain numerical method, the FDTD method
has been used to solve the MTL equations naturally [11–13].
However, this method requires a fine spatial discretization

along the lines for the rapidly varying signals, which leads to
large memory requirements to guarantee accuracy.

For saving the memory of computing, we introduce the
multiresolution time-domain (MRTD) scheme to solve the
MTL equations in this paper. The MRTD scheme provides
an efficient algorithm for the computation of electromagnetic
fields because of its excellent capability to approximate exact
solutions with lower sampling rates [14]. There are two kinds
of MRTD schemes: one is to expand the variants by scaling
functions in space domain, so it is called S-MRTD; the
other one is to expand the variants by scaling functions
and wavelet functions in space domain, so it is called W-
MRTD [14]. Since the Battle-Lemarie wavelet function used
in [14] is not compactly supported, the iterative equations in
MRTD need to be cut off and this may lead to truncation
errors. To overcome this problem, some compactly supported
scaling functions have been used to formulate the MRTD
schemes [15–19]. To ensure the stability of the solutions
and control dispersion errors of the different schemes, the
stability condition and space sampling rules for these MRTD
schemes have been studied in [20–24]. Furthermore, for
MTL equations, the MRTD schemes can obtain an accurate
solution with a coarse space interval. The MRTD scheme

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 9845702, 15 pages
https://doi.org/10.1155/2017/9845702

https://doi.org/10.1155/2017/9845702
ReviewerS
Texto escrito a máquina
Published in Mathematical Problems in Engineering, Volume 2017, Article ID 9845702, 15 pages, 2017



2 Mathematical Problems in Engineering

has been used to solve two-conductor transmission line
equations with pure resistive loads [25], and we extend this
method to the MTL equations terminated with linear load
networks. The linear terminal networks can be described
by state-variable characteristic and allow us to model the
terminal constraints directly [26, 27].

In this paper, we use MRTD scheme to analyze the
terminal response of MTLs with linear loads. In Section 2,
the MRTD scheme is derived based on Daubechies’ scaling
functions for the lossy MTL equations. In Section 3, the
iterative equations for terminal voltages are derived based
on the linear terminal networks. The iterative equations of
voltages and currents close to the terminals are modified.
In Section 4, some numerical results are presented for the
terminal response of both purely resistive terminations and
the terminations network including inductances and capac-
itances. The numerical results are compared to the results
obtained with SPICE and FDTD methods.

2. MRTD for MTL Equations

In this section, we derive the S-MRTD scheme for MTL
equations. Similarly to the FDTD method, the expansions of
the currents are shifted by half a discretization interval in
space and time with respect to the expansions of the voltages.

The homogeneous equations for (𝑚 + 1)-conductor lines
can be written as

𝜕𝜕𝑧V (𝑧, 𝑡) + RI (𝑧, 𝑡) + L 𝜕𝜕𝑡 I (𝑧, 𝑡) = 0, (1a)

𝜕𝜕𝑧 I (𝑧, 𝑡) + GV (𝑧, 𝑡) + C 𝜕𝜕𝑡V (𝑧, 𝑡) = 0, (1b)

where the column vectors V(𝑧, 𝑡) and I(𝑧, 𝑡) represent the
voltages and currents along the 𝑚 conductors (the other one
is the reference conductor) and contain 𝑚 voltages 𝑉𝑖(𝑧, 𝑡)
and 𝑚 currents 𝐼𝑖(𝑧, 𝑡) as shown below:

V (𝑧, 𝑡) = [𝑉1 (𝑧, 𝑡) , . . . , 𝑉𝑖 (𝑧, 𝑡) , . . . , 𝑉𝑚 (𝑧, 𝑡)]𝑇 , (2a)

I (𝑧, 𝑡) = [𝐼1 (𝑧, 𝑡) , . . . , 𝐼𝑖 (𝑧, 𝑡) , . . . , 𝐼𝑚 (𝑧, 𝑡)]𝑇 . (2b)

𝑚 × 𝑚 matrices R, L, G, and C represent the per-unit-
length resistance, inductance, conductance, and capacitance,
respectively.

The voltage vectorV(𝑧, 𝑡) and current vector I(𝑧, 𝑡) can be
expanded as follows:

V (𝑧, 𝑡) = +∞∑
𝑘,𝑛=−∞

V𝑛𝑘𝜑𝑘 (𝑧) ℎ𝑛 (𝑡) , (3a)

I (𝑧, 𝑡) = +∞∑
𝑘,𝑛=−∞

I𝑛+1/2𝑘+1/2𝜑𝑘+1/2 (𝑧) ℎ𝑛+1/2 (𝑡) , (3b)

whereV𝑛𝑘 and I
𝑛+1/2
𝑘+1/2

are the coefficient vectors for the voltages
and currents in terms of scaling functions, respectively. V𝑛𝑘

Table 1: Connection coefficients 𝑎(𝑖) of Daubechies’ scaling func-
tions.

𝑖 Db2 Db3 Db4
0 1.2291666667 1.2918129281 1.3110340773
1 −0.0937500000 −0.1371343465 −0.1560100110
2 0.0104166667 0.0287617728 0.0419957460
3 −0.0034701413 −0.0086543236
4 0.0000080265 0.0008308695
5 0.0000108999
6 −0.0000000041
𝑞max 0.7500 0.6844 0.6585

and I𝑛+1/2
𝑘+1/2

are𝑚 dimensions vectors which are represented as
follows:

V𝑛𝑘 = [𝑉𝑛1,𝑘, . . . , 𝑉𝑛𝑖,𝑘, . . . , 𝑉𝑛𝑚,𝑘]𝑇 , (4a)

I𝑛+1/2𝑘+1/2 = [𝐼𝑛+1/21,𝑘+1/2, . . . , 𝐼𝑛+1/2𝑖,𝑘+1/2, . . . , 𝐼𝑛+1/2𝑚,𝑘+1/2]𝑇 . (4b)

The index 𝑖 represents the number of the conductors and the
indices 𝑛 and 𝑘 are the discrete spatial and temporal index
with respect to space and time coordinates via 𝑧 = 𝑘Δ𝑧 and𝑡 = 𝑛Δ𝑡, where Δ𝑧 and Δ𝑡 represent the spatial and temporal
discretization intervals in 𝑧 and 𝑡 direction. The functionsℎ𝑛(𝑡) and 𝜑𝑘(𝑧) are defined as

ℎ𝑛 (𝑡) = ℎ ( 𝑡Δ𝑡 − 𝑛) , (5)

𝜑𝑘 (𝑧) = 𝜑 ( 𝑧Δ𝑧 − 𝑘) . (6)

The function ℎ(𝑡) is defined as Haar’s scaling function and𝜑(𝑧) is Daubechies’ scaling function.
To derive the MRTD scheme, we need the following

formulations:

⟨ℎ𝑛 (𝑡) , ℎ𝑛 (𝑡)⟩ = 𝛿𝑛,𝑛Δ𝑡,
⟨ℎ𝑛 (𝑡) , 𝜕ℎ𝑛+1/2 (𝑡)𝜕𝑡 ⟩ = 𝛿𝑛,𝑛 − 𝛿𝑛,𝑛+1, (7)

where 𝛿𝑛,𝑛 represents the Kronecker symbol.

⟨𝜑𝑘 (𝑧) , 𝜑𝑘 (𝑧)⟩ = 𝛿𝑘,𝑘Δ𝑧,
⟨𝜑𝑘 (𝑧) , 𝜕𝜑𝑘+1/2 (𝑧)𝜕𝑧 ⟩ = 𝐿𝑆−1∑

𝑖=−𝐿𝑆

𝑎 (𝑖) 𝛿𝑘+𝑖,𝑘 , (8)

where 𝐿𝑆 denotes the effective support size of the basis func-
tions. The coefficients 𝑎(𝑖) are called connection coefficients
and Table 1 lists 𝑎(𝑖) for 0 ≤ 𝑖 ≤ 𝐿𝑆 − 1 according to [22]. For𝑖 > 𝐿𝑆 − 1, 𝑎(𝑖) = 0, and, for 𝑖 < 0, 𝑎(𝑖) fulfills the symmetry
relation 𝑎(−1 − 𝑖) = −𝑎(𝑖).

Daubechies’ scaling functions satisfy the shifted interpo-
lation property [28]

𝜑 (𝑖 + 𝑀1) = 𝛿𝑖,0 (9)
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for 𝑖 integer, where𝑀1 = ∫+∞
−∞

𝑧𝜙(𝑧)𝑑𝑧 is the first-moment of
the scaling functions.

Making use of (9), the basis function (6) is modified as
[16]

𝜑𝑘 (𝑧) = 𝜑 ( 𝑧Δ𝑧 − 𝑘 + 𝑀1) . (10)

In spite of the support set length of the scaling functions [29],
single point sampling of the total voltages and currents can be
taken at integer points with negligible error. Taking voltage at
spatial point 𝑘Δ𝑧 and at time 𝑛Δ𝑡, for example, we obtain

V (𝑘Δ𝑧, 𝑛Δ𝑡) = ∬+∞
−∞

+∞∑
𝑘 ,𝑛=−∞

V𝑛


𝑘𝜑𝑘 (𝑧) ℎ𝑛 (𝑡)

⋅ 𝛿 ( 𝑧Δ𝑧 − 𝑘) 𝛿 ( 𝑡Δ𝑡 − 𝑛) 𝑑𝑧 𝑑𝑡 = +∞∑
𝑘 ,𝑛=−∞

V𝑛


𝑘𝜑 (𝑘
− 𝑘 + 𝑀1) ℎ (𝑛 − 𝑛) = V𝑛𝑘,

(11)

where 𝛿 is the Dirac delta function. Equation (11) means the
voltage value at each integer point is equal to the expansion
coefficient.The current values have the same character at each
half-integer point. Therefore, we use V𝑛𝑘 and I

𝑛+1/2
𝑘+1/2

directly to
represent the voltages at (𝑘Δ𝑧, 𝑛Δ𝑡) and the currents at ((𝑘 +1/2)Δ𝑧, (𝑛 + 1/2)Δ𝑡) in this paper.

The modified 𝜑𝑘(𝑧) in (10) also satisfies integrals (8).
Substituting (3a) and (3b) into (1a) and (1b) and applying
the Galerkin method to (1a) and (1b), which means usingℎ𝑛(𝑡)𝜑𝑘+1/2(𝑧) as the test function for (1a) and ℎ𝑛+1/2(𝑡)𝜑𝑘(𝑧)
as the test function for (1b), we can obtain the following
iterative equations for the voltages and currents:

V𝑛+1𝑘

= A1 [A2V𝑛𝑘 − Δ𝑡Δ𝑧
𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) (I𝑛+1/2𝑘+𝑖+1/2 − I𝑛+1/2𝑘−𝑖−1/2)] , (12a)

I𝑛+1/2𝑘+1/2

= B1 [B2I𝑛−1/2𝑘+1/2 − Δ𝑡Δ𝑧
𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) (V𝑛𝑘+𝑖+1 − V𝑛𝑘−𝑖)] , (12b)

where 𝑎(𝑖) is the connection coefficient and A1, A2, B1, and
B2 are constant matrices:

A1 = (C + Δ𝑡2 G)−1 ,
A2 = (C − Δ𝑡2 G) ,
B1 = (L + Δ𝑡2 R)−1 ,
B2 = (L − Δ𝑡2 R) .

(13)

For the stability of the solution, the temporal and spatial
discretization should satisfy the Courant condition [20, 25]

VmaxΔ𝑡Δ𝑧 ≤ 1
∑𝐿𝑆−1𝑖=0 |𝑎 (𝑖)| , (14)

where Vmax represents the maximum propagation velocity of
the modes. For MTLs in inhomogeneous media that have 𝑛
velocities of propagation of themodes, the Courant condition
has to be satisfied by the largest of the mode velocities, and
thereby it will be satisfied by the smaller mode velocities.

Note the Courant number as

𝑞 = VΔ𝑡Δ𝑧 . (15)

The maximum values of 𝑞 required by a stable algorithm
can be calculated from the connection coefficients. Table 1
lists 𝑞max for different Daubechies’ scaling functions. For
one-dimensional problems, the stability condition for the
conventional FDTD method can be written as [30]

VmaxΔ𝑡Δ𝑧 ≤ 1. (16)

Inequality (16) indicates that, for the conventional FDTD
method, the maximum Courant number to guarantee the
stability of the differential scheme is 𝑞max = 1. In Table 1,
all 𝑞max values for MRTD schemes are smaller than 1, which
means the MRTD schemes must obey a stricter stability
condition compared to the conventional FDTD method.
When using the same space step for MRTD schemes and
FDTDmethod, the MRTD schemes need a smaller time step
to guarantee the stability of the algorithm.

3. Terminal Formulations for Linear Loads

In this section, we consider the iterative equations at the
source and the load. Since the iterative equations in (12a)
and (12b) are not suitable for the terminations, we need to
derive the iterative equations with the terminal conditions.
As shown in Figure 1, we assume the length of the lines to be𝐿, the lines are divided uniformly into NDZ segments with
the space interval Δ𝑧, and the total solution time is divided
into NDT steps with the uniform time interval Δ𝑡. Since we
have expanded the voltages V(𝑧, 𝑡) at the integer points and
currents I(𝑧, 𝑡) at the half-integer points in (3a) and (3b), the
voltages and currents will appear alternatively along the lines
as shown in Figure 1.

As the iterative equations (12a) and (12b) indicate, there
are two parts in the iterative equations which we need to
update. One part is the voltage iterative equations at the
terminals. Since all the currents are located at the inner points
along the lines, we do not need to analyze the currents at the
terminals. The other part is the voltages and currents near
the terminals in which the voltages are V𝑛𝑖 and V𝑛NDZ−𝑖, for𝑖 = 1, 2, . . . , 𝐿𝑆 − 1, and the currents are I𝑛+1/2

𝑖+1/2
and I𝑛+1/2NDZ−𝑖+1/2

for 𝑖 = 0, 1, . . . , 𝐿𝑆−2.The iterative equations of these voltages
and currents contain some terms exceeding the index range.

Taking voltages, for example, to derive the modified iter-
ative equations, the modified iterative equations for currents
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Figure 1: Discretization of the voltages and currents.

can be obtained by the similar steps. Using the relation of the
connection coefficients [17]

𝐿𝑆−1∑
𝑖=0

(2𝑖 + 1) 𝑎 (𝑖) = 1 (17)

substituting (17) into (12a) gives

𝐿𝑆−1∑
𝑖=0

(2𝑖 + 1) 𝑎 (𝑖)V𝑛+1𝑘 = A1 [
𝐿𝑆−1∑
𝑖=0

(2𝑖 + 1) 𝑎 (𝑖)A2V𝑛+1𝑘
+ 𝐿𝑆−1∑
𝑖=0

Δ𝑡(2𝑖 + 1) Δ𝑧𝑎 (𝑖) (2𝑖 + 1) (I𝑛+1/2𝑘+𝑖+1/2 − I𝑛+1/2𝑘−𝑖−1/2)] .
(18)

Considering the corresponding terms with 𝑖, we can
decompose (18) as [18]

𝑎 (0)V𝑛+1𝑘 = A1 [𝑎 (0)A2V𝑛𝑘 − 𝑎 (0)
⋅ Δ𝑡Δ𝑧 (I𝑛+1/2𝑘+1/2 − I𝑛+1/2𝑘−1/2)] ,

(19a)

3𝑎 (1)V𝑛+1𝑘 = A1 [3𝑎 (1)A2V𝑛𝑘 − 3𝑎 (1)
⋅ Δ𝑡3Δ𝑧 (I𝑛+1/2𝑘+3/2 − I𝑛+1/2𝑘−3/2)]

...
(19b)

(2𝑖 + 1) 𝑎 (𝑖)V𝑛+1𝑘 = A1 [(2𝑖 + 1) 𝑎 (𝑖)A2V𝑛+1𝑘
− (2𝑖 + 1) 𝑎 (𝑖) Δ𝑡(2𝑖 + 1) Δ𝑧 (I𝑛+1/2𝑘+𝑖+1/2 − I𝑛+1/2𝑘−𝑖−1/2)]

...
(19c)

(2𝐿𝑆 − 1) 𝑎 (𝐿𝑆 − 1)V𝑛+1𝑘 = A1 [(2𝐿𝑆 − 1)
⋅ 𝑎 (𝐿𝑆 − 1)A2V𝑛+1𝑘 − (2𝐿𝑆 − 1) 𝑎 (𝐿𝑆 − 1)
⋅ Δ𝑡(2𝐿𝑆 − 1) Δ𝑧 (I𝑛+1/2𝑘+𝐿𝑆−1/2 − I𝑛+1/2𝑘−𝐿𝑆+1/2)]

(19d)

for 𝑖 = 0, 1, . . . , 𝐿𝑆 − 1.
Equation (19c) indicates that each subequation in (19a),

(19b), (19c), and (19d) is a central difference scheme of the
FDTDmethod with the spatial interval (2𝑖 + 1)Δ𝑧. Summing
up all the subequations in (19a), (19b), (19c), and (19d) we
can obtain (18), so we can view the MRTD schemes as the
weighted mean of the conventional FDTD method, and the
weighting number is (2𝑖 + 1)𝑎(𝑖).

By viewing the MRTD schemes as the weighted mean
of the conventional FDTD method, (18) also indicate that
the MRTD schemes contain 𝐿𝑆 differential terms in each
iterative equation. For the conventional FDTD method, the
iterative equations only contain 1 differential term for one-
dimensional problems. Ignoring the addition terms in the
iterative equations, that means the computational complexity
of MRTD is 𝐿𝑆 times of conventional FDTD under the same
grid numbers.

We will use this relationship between FDTDmethod and
MRTD scheme to derive the voltage iterative equations at the
terminals and the voltages and currents close to the terminals.
Firstly, we take V𝑛+10 as an example to derive the voltage
iterative equations at the terminals.
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DecomposingV𝑛+10 as (19a), (19b), (19c), and (19d), we can
obtain each subequation as follows:

(2𝑖 + 1) 𝑎 (𝑖)V𝑛+10 = A1 [(2𝑖 + 1) 𝑎 (𝑖)A2V𝑛0
− (2𝑖 + 1) 𝑎 (𝑖) Δ𝑡(2𝑖 + 1) Δ𝑧 (I𝑛+1/2𝑖+1/2 − I𝑛+1/2−𝑖−1/2)]

(20)

for 𝑖 = 0, 1, . . . , 𝐿𝑆 − 1.
As shown in Figure 1, the term I𝑛+1/2

−𝑖−1/2
(for 𝑖 = 0, 1, . . . , 𝐿𝑆−1) in (20) does not exist, its subscript for spatial discretization

exceeds the index range, and therefore the central difference
scheme is not suitable for (20). Using the forward difference
scheme to replace the central difference scheme, we obtain

(2𝑖 + 1) 𝑎 (𝑖)V𝑛+10 = A1 [(2𝑖 + 1) 𝑎 (𝑖)A2V𝑛0
− (2𝑖 + 1) 𝑎 (𝑖) Δ𝑡(2𝑖 + 1) Δ𝑧/2 (I𝑛+1/2𝑖+1/2 − I𝑛+1/20 )]

(21)

for 𝑖 = 0, 1, . . . , 𝐿𝑆 − 1.
Summing up all the subequations in (21), we obtain the

iterative equations at the terminals

V𝑛+10 = A1 [A2V𝑛0 − 2 Δ𝑡Δ𝑧
𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) (I𝑛+1/2𝑖+1/2 − I𝑛+1/20 )] . (22)

In (22), the term I𝑛+1/20 represents the current expansion
coefficient at the point 0Δ𝑧, and since the terminal network is
located at the point 0Δ𝑧, the formulation of I𝑛+1/20 must satisfy
the constraint condition from the terminal network.

In the case of a linear network, the terminal can be
characterized in a state-variable form [13]

𝑑𝑑𝑡X (𝑡) = MX (𝑡) + NU (𝑡) (23a)

with an associated output relation

Y (𝑡) = OX (𝑡) + PU (𝑡) + Q 𝑑𝑑𝑡U (𝑡) . (23b)

The vector X contains the state variables of the lumped
network. These are typically the inductor currents and
capacitor voltages in that network or some subset of those
variables. The vector U contains the independent sources
in the network (the inputs), and the vector Y contains the
designated outputs (currents and/or voltages) of the network.
M,N,O, P, andQ are constant coefficient matrices, which are
all determined by the specific linear network.

Define the output in (23a) and (23b) as I𝑆 and I𝐿, and then

𝑑𝑑𝑡X𝑆 (𝑡) = M𝑆X𝑆 (𝑡) + N0V0 (𝑡) + N𝑆S𝑆 (𝑡) , (24a)

I𝑆 (𝑡) = O𝑆X𝑆 (𝑡) + P0V0 (𝑡) + P𝑆 (𝑡) S𝑆 (𝑡)
+ Q0

𝑑𝑑𝑡V0 (𝑡) + Q𝑆
𝑑𝑑𝑡S𝑆 (𝑡)

(24b)

𝑑𝑑𝑡X𝐿 (𝑡) = M𝐿X𝐿 (𝑡) + NNDZVNDZ (𝑡) + N𝐿S𝐿 (𝑡) , (25a)

I𝐿 (𝑡) = O𝐿X𝐿 (𝑡) + PNDZVNDZ (𝑡) + P𝐿 (𝑡) S𝐿 (𝑡)
+ QNDZ

𝑑𝑑𝑡VNDZ (𝑡) + Q𝐿
𝑑𝑑𝑡S𝐿 (𝑡) ,

(25b)

where 𝑆 and 𝐿 represent the networks at the source and the
load.

Since the variables I𝑆(𝑡),X𝑆(𝑡), and S𝑆(𝑡) are located at the
integer point, we can expand them as (3a) and (3b):

I𝑆 (𝑡) = +∞∑
𝑛=−∞

I𝑛+1/2𝑆 ℎ𝑛+1/2 (𝑡) ,

X𝑆 (𝑡) = +∞∑
𝑛=−∞

X𝑛+1/2𝑆 ℎ𝑛+1/2 (𝑡) ,

S𝑆 (𝑡) = +∞∑
𝑛=−∞

S𝑛𝑆ℎ𝑛 (𝑡) .

(26)

Here, we expand I𝑆(𝑡) and X𝑆(𝑡) at the half-integer point to
correspond with the current I𝑛+1/20 and this will lead to an
explicit expression for the iterative equations below. V0(𝑡) is
also needed in (24a) and (24b), space sampling the voltage at
the point 0Δ𝑧, and we can obtain

V0 (𝑡) = ⟨V (𝑧, 𝑡) , 𝜑0 (𝑧)⟩ = +∞∑
𝑛=−∞

V𝑛0ℎ𝑛 (𝑡) . (27)

Substituting (26)–(27) into (24a) and (24b), taking ℎ𝑛(𝑡)
as the test function for (24a) and ℎ𝑛+1/2(𝑡) as the test function
for (24b), and applying the Galerkin method to (24a) and
(24b), we obtain

X𝑛+1/2𝑆 − X𝑛−1/2𝑆Δ𝑡 = M𝑆
X𝑛+1/2𝑆 + X𝑛−1/2𝑆2 + N0V

𝑛
0

+ N𝑆S
𝑛
𝑆,

(28a)

I𝑛+1/2𝑆 = O𝑆X
𝑛+1/2
𝑆 + P0

V𝑛+10 + V𝑛02
+ P𝑆

V𝑛+1𝑆 + V𝑛𝑆2
+ Q0

V𝑛+10 − V𝑛0Δ𝑡
+ Q𝑆

S𝑛+1𝑆 − S𝑛𝑆Δ𝑡 .

(28b)
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Substituting (28b) into (22)

V𝑛+10 = A3 {A4V𝑛0 −
𝐿𝑆−1∑
𝑖=0

2𝑎 (𝑖) I𝑛+1/2𝑖+1/2 + 𝐿𝑆−1∑
𝑖=0

2𝑎 (𝑖)

⋅ O𝑆X𝑛+1/2𝑆 + 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖)

⋅ [P𝑆 (V𝑛+1𝑆 + V𝑛𝑆) + 2Δ𝑡Q𝑆 (S𝑛+1𝑆 − S𝑛𝑆)]} ,

(29)

where

A3 = [Δ𝑧Δ𝑡C + Δ𝑧2 G + 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) (P0 + 2Δ𝑡Q0)]
−1

, (30)

A4 = [Δ𝑧Δ𝑡C − Δ𝑧2 G − 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) (P0 − 2Δ𝑡Q0)] , (31)

X𝑛+1/2𝑆 = (1𝑚 − Δ𝑡2 M𝑆)−1

⋅ [(1𝑚 + Δ𝑡2 M𝑆) + Δ𝑡 (N0V𝑛0 + N𝑆S
𝑛
𝑆)] ,

(32)

where 1𝑚 represents 𝑚 dimension unity matrix.
Note that the expression of X𝑆 in (32) is a little different

from the iterative equations in [2, 13]. The expression of
state variable X𝑛+1/2𝑆 in this paper falls behind the terminal
voltage V𝑛+10 half a temporal step, while in [2, 13] the state
variable and the terminal voltage are at the same time point.
So the state variable and the terminal voltage are coupling in
[2, 13], and there is a matrix inversion process to obtain the
state variables and the terminal voltages. On the other hand,
these two variables are decoupled in (28a) and (28b). That
meanswe separate the iterative equations of the state variables
and the terminal voltages, and this separation reduces the
matrix inversion process to obtain the state variables and the
terminal voltages.

Following a similar procedure, we obtain

V𝑛+1NDZ = A5 {A6V𝑛NDZ + 𝐿𝑆−1∑
𝑖=0

2𝑎 (𝑖) I𝑛+1/2NDZ−𝑖−1/2

− 𝐿𝑆−1∑
𝑖=0

2𝑎 (𝑖)O𝐿X𝑛+1/2𝐿 − 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖)

⋅ [P𝐿 (V𝑛+1𝐿 + V𝑛𝐿) + 2Δ𝑡Q𝐿 (S𝑛+1𝐿 − S𝑛𝐿)]} ,

(33)

where

A5 = [Δ𝑧Δ𝑡C + Δ𝑧2 G

+ 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) (PNDZ + 2Δ𝑡QNDZ)]
−1

,

A6 = [Δ𝑧Δ𝑡C − Δ𝑧2 G − 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) (PNDZ − 2Δ𝑡QNDZ)] ,
X𝑛+1/2𝐿 = (1𝑚 − Δ𝑡2 M𝐿)−1 [(1𝑚 + Δ𝑡2 M𝐿)

+ Δ𝑡 (NNDZV
𝑛
NDZ + N𝐿S

𝑛
𝐿)] .

(34)

In the case of resistance terminations, the generalized
Thevenin equivalent representation in (24a) and (24b) is
written as [2, 13]

I𝑆 = −G𝑆V0 + G𝑆V𝑆,
I𝐿 = G𝐿VNDZ + G𝐿V𝐿, (35)

where G𝑆 = R𝑆−1 and G𝐿 = R𝐿−1.
Hence, X𝑆 = X𝐿 = 0,M𝑆 = N0 = N𝑆 = O𝑆 = Q0 = Q𝑆 =

0, M𝐿 = NNDZ = N𝐿 = O𝐿 = QNDZ = Q𝐿 = 0, P0 = G𝑆,
P𝑆 = G𝑆, PNDZ = G𝐿, and P𝐿 = −G𝐿.

The iterative equations of the terminal voltages can be
reduced as

V𝑛+10 = A7 [A8V𝑛0 − 2R𝑆
𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) I𝑛+1/21/2
+ (V𝑛+1𝑆 + V𝑛𝑆)] ,

V𝑛+1NDZ = A9 [A10V𝑛NDZ + 2R𝐿
𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) I𝑛+1/2NDZ−1/2

+ (V𝑛+1𝐿 + V𝑛𝐿)] ,

(36)

where

A7 = [Δ𝑧Δ𝑡 R𝑆C + Δ𝑧2 R𝑆G + 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) 1𝑚]
−1

,

A8 = [Δ𝑧Δ𝑡 R𝑆C − Δ𝑧2 RSG − 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) 1𝑚] ,

A9 = [Δ𝑧Δ𝑡 R𝐿C + Δ𝑧2 R𝐿G + 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) 1𝑚]
−1

,

A10 = [Δ𝑧Δ𝑡 R𝐿C − Δ𝑧2 R𝐿G − 𝐿𝑆−1∑
𝑖=0

𝑎 (𝑖) 1𝑚] .

(37)
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For the iterative equations of voltages and currents near
the terminals, we will use the truncation method to remove
the terms whose index exceeds the range. This method is
based on the point to view theMRTD scheme as the weighted
mean of the conventional FDTD method. Taking V𝑛+1𝑘 as
an example, for 𝑘 = 1, 2, . . . , 𝐿𝑆 − 1, decomposing the
iterative equation ofV𝑛+1𝑘 as (19a), (19b), (19c), and (19d), each
subequation can be written as

(2𝑖 + 1) 𝑎 (𝑖)V𝑛+1𝑘 = A1 [(2𝑖 + 1) 𝑎 (𝑖)A2V𝑛+1𝑘
− (2𝑖 + 1) 𝑎 (𝑖) Δ𝑡(2𝑖 + 1) Δ𝑧 (I𝑛+1/2𝑘+𝑖+1/2 − I𝑛+1/2𝑘−𝑖−1/2)]

(38)

for 𝑘 = 1, 2, . . . , 𝐿𝑆 − 1.
Notice that if 𝑘 > 𝑖, there does not exist a term exceeding

the index range in subequation (38). That means the first𝑘 terms of the subequations in (38) do not contain the
exceeding index range terms, while the terms exceeding
the index range all appear in the last 𝐿𝑆 − 𝑘 subequations.
By viewing MRTD schemes as the weighted mean of the
conventional FDTD method, the last 𝐿𝑆 − 𝑘 subequations
are suitable for forming the iterative equations in MRTD
schemes.Using the part summation to approximate thewhole
summation, we update the iterative equation ofV𝑛+1𝑘 by using
the first 𝑘 subequations. The iterative equation becomes

V𝑛+1𝑘 = A1
{{{
A2V
𝑛
𝑘 − [𝑘−1∑
𝑖=0

(2𝑖 + 1) 𝑎 (𝑖)]
−1 Δ𝑡Δ𝑧

𝑘−1∑
𝑖=0

𝑎 (𝑖)

⋅ (I𝑛+1/2𝑘+𝑖+1/2 − I𝑛+1/2𝑘−𝑖−1/2)}}}

(39)

for 𝑘 = 1, 2, . . . , 𝐿𝑆 − 1.
Using the samemethod, we obtain the iterative equations

of voltages and currents close to the terminals. The voltage
iterative equations close to the load are

V𝑛+1𝑘 = A1
{{{
A2V
𝑛
𝑘 − [NDZ−𝑘−1∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖)]
−1 Δ𝑡Δ𝑧

⋅ NDZ−𝑘−1∑
𝑖=0

𝑎 (𝑖) (I𝑛+1/2𝑘+𝑖+1/2 − I𝑛+1/2𝑘−𝑖−1/2)}}}

(40)

for 𝑘 = NDZ − 𝐿𝑆 + 1,NDZ − 𝐿𝑆 + 2, . . . ,NDZ − 1.
The current iterative equations close to the source are

I𝑛+1/2𝑘+1/2 = B1
{{{
B2I
𝑛−1/2
𝑘+1/2 − [ 𝑘∑

𝑖=0

(2𝑖 + 1) 𝑎 (𝑖)]
−1 Δ𝑡Δ𝑧

⋅ 𝑘∑
𝑖=0

𝑎 (𝑖) (V𝑛𝑘+𝑖+1 − V𝑛𝑘−𝑖)}}}

(41)

for 𝑘 = 0, 1, . . . , 𝐿𝑆 − 2.

The current iterative equations close to the load are

I𝑛+1/2𝑘+1/2 = B1
{{{
B2I
𝑛−1/2
𝑘+1/2

− [NDZ−𝑘−1∑
𝑖=0

(2𝑖 + 1) 𝑎 (𝑖)]
−1 Δ𝑡Δ𝑧

⋅ NDZ−𝑘−1∑
𝑖=0

𝑎 (𝑖) (V𝑛𝑘+𝑖+1 − V𝑛𝑘−𝑖)}}}

(42)

for 𝑘 = NDZ − 𝐿𝑆 + 1,NDZ − 𝐿𝑆 + 2, . . . ,NDZ − 1.
4. Numerical Results

4.1. Ribbon Cables. In this section, we consider a three-wire
ribbon cable as shown in Figure 2.The total length of the line
is 2m. One wire is chosen as the reference conductor and
noted asWire 0, and other wires are noted asWire 1 andWire
2, respectively. The source is located at the left side of Wire
2, and the source resistance is 50Ω. The left side of Wire 1
is a 50Ω resistance. The right side of Wire 1 and Wire 2 are
both resistances with 50Ω, and this model comes from [2],
as shown in Figure 2(a).

The cross section of the three-wire ribbon cable is shown
in Figure 2(b). The center-to-center separation of the wires is𝑑 = 50mils (1mil = 2.54 × 10−5m). The wires are identical
and are composed of wires with radius of 𝑟𝑤 = 7.5mils
and polyvinyl chloride (PVC) insulations of thickness 𝑡 =10mils and relative dielectric constant 𝜀𝑟 = 3.5. Following
the method in [2], the per-unit-length inductance matrix L
and capacitance matrix C are computed as

L = [0.7485 0.5077
0.5077 1.0154 ] 𝜇H/m

C = [ 37.432 −18.716
−18.716 24.982 ] pF/m.

(43)

Using L and Cmatrices above we can compute the mode
velocities of propagation. They are V𝑚1 = 2.324 × 108m/s
and V𝑚2 = 2.5106 × 108m/s giving one-way time delays of
the modes of 𝑇𝐷𝑚1 = 8.606 ns and 𝑇𝐷𝑚2 = 7.996 ns. The
characteristic impedances of the modes are 𝑍𝐶𝑚1 = 91.96Ω
and 𝑍𝐶𝑚2 = 254.93Ω.

We use a ramp function as the source shown in Figure 3,
the rising time of the ramp function is 𝜏𝑟 = 2 ns, and the
total time is 𝑇 = 200 ns. The amplitude is 1 V and the initial
value of the ramp function is 0V. The bandwidth of the
source is approximate to BW = 1/𝜏𝑟 = 500MHz, so the
highest frequency of the incident wave is approximately equal
to 500MHz. Taking 1/10 of the wavelength of the highest
frequency of the incident wave as the segment length, the
segment length Δ𝑧 is 4.468 × 10−2m.This space step is often
suitable for FDTDmethod, so we use this segment length for
numerical computing first. Since we divide the line into NDZ
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Figure 2: A three-wire ribbon cable.
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Figure 3: Waveform of the source voltage.

segments uniformly, the space discretization number is NDZ
= 45. For the stability of the algorithm, taking 𝑞 = 0.5, we can
compute

NDT = NDZ × V × 𝑇𝑞 × 𝐿 . (44)

In Figures 4–12, we use Dbi-MRTD to represent the
computed results of MRTD scheme by using Dbi scaling
functions as basis functions. Since the SPICE program can
compute the response exactly for the lossless lines and the
FDTD method has been proved to be an effective algorithm
for the time-domain response, we compare the computed
results of MRTD scheme with SPICE and FDTD methods to
validate the effectiveness of the MRTD schemes.

Figure 4 shows the time-domain response of the left-
end crosstalk of the ribbon cable by SPICE program, FDTD,
and Db2-MRTD. It indicates that Db2-MRTD does not agree
with the computed results of the SPICE program and the
FDTD method. The reason for this phenomenon is that the
scaling function of the Db2-wavelet does not have a high
enough vanishingmoment.Whenwe useDaubechies’ scaling
functions to expand the voltages and currents in the MTL
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Figure 4: Comparison of the time-domain response of the left-end
crosstalk of the ribbon cable by SPICE program, FDTD, and Db2-
MRTD. The space discretization number NDZ = 45 and Courant
number 𝑞 = 0.5.

equations, the vanishing moment decides the accuracy of
the approximation. When using scaling functions with low
vanishing moments as basis functions to approximate volt-
ages and currents, such as Db2-wavelet’s scaling functions,
the approximation may introduce a larger error, while when
using the scaling functions with high vanishing moments as
basis functions, the approximation can be more accurate.
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Figure 5: Comparison of the time-domain response of the left-end crosstalk of the ribbon cable by SPICE program, FDTD, and MRTD: (a)
for Db3-MRTD and (b) for Db4-MRTD.The space discretization number NDZ = 45 and Courant number 𝑞 = 0.5.
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Figure 6: Comparison of the time-domain response of the left-end crosstalk of the ribbon cable by SPICE program, FDTD, and MRTD: (a)
for Db3-MRTD and (b) for Db4-MRTD.The space discretization number NDZ = 12 and Courant number 𝑞 = 0.5.

Figure 5 shows computed results of Db3-MRTD and
Db4-MRTD. Both the two figures show the corresponding
computing results by SPICE program, FDTD method, and
MRTD schemes. The results of FDTD method show some
oscillation on the edge of transition, while the computing
results of Db3-MRTD and Db4-MRTD schemes show a
better solution on the edge of transition.

To validate the advantage of the MRTD schemes in space
sampling, we use a coarse space interval to compute the
terminal response. Taking the segment length Δ𝑧 to be Δ𝑧 =𝜆/4, the discretization will become NDZ = 12.

Figure 6 shows that both the computed results of FDTD
method and MRTD schemes exhibit some oscillation on
the edge of transition with the coarse space interval. The
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Figure 7: A printed circuit board.

Table 2: Runtime for different schemes with different space dis-
cretization numbers.

Different schemes Runtime for NDZ =
12

Runtime for NDZ =
45

FDTD 0.0239 s 0.1085 s
Db3-MRTD 0.1146 s 0.4693 s
Db4-MRTD 0.1855 s 0.7688 s

oscillation for the MRTD schemes appears almost at the first
“stage” with a smaller amplitude; however, the oscillation
for the FDTD method appears at several “stages” of the
computed results with a larger amplitude. This indicates that
we can use the MRTD schemes to obtain more accurate
results than the conventional FDTD method when using the
same grid.

Table 2 shows the runtime for different schemes with
different space discretization numbers.The numerical results
in Table 2 show that the runtime of Db3-MRTD is almost
5 times that of FDTD method, and the runtime of Db4-
MRTD is almost 7 times that of FDTD method. Since the
effective support sizes of Db3’s and Db5’s scaling functions
are 5 and 7 as shown in Table 1, the times of the runtime
between MRTD and FDTD are corresponding to the size of
the effective support of the basis functions.These results agree
with the analysis in Section 3.

The numerical results in Figures 5 and 6 and Table 2
show that the MRTD schemes need more time to obtain
more stable results when using the same space step with the
conventional FDTD method. This indicates that the MRTD
schemes allow obtaining more accurate results by sacrificing
the computing efficiency.

4.2. Printed Circuit Boards. In this section, we compute the
terminal response for a lossy printed circuit board. Three

conductors of rectangular cross section of width 𝑤 = 5mils
and thickness 𝑡 = 0.5mils are separated by 𝑠 = 5mils and
placed on one side of a silicon substrate having 𝜀𝑟 = 12 and
thickness ℎ = 5mils [13], as shown in Figure 7(a), noting the
reference asWire 0, and the other two lines are noted asWire
1 and Wire 2.

Following the method in [2], the per-unit-length induc-
tance and capacitance matrix are computed as

L = [0.805756 0.538771
0.538771 1.07754 ] 𝜇H/m

C = [ 117.791 −58.8956
−58.8956 71.8544 ] pF/m.

(45)

These give mode velocities in the lossless case of V𝑚1 =1.25809 × 108m/s and V𝑚2 = 1.47934 × 108m/s.
Ignoring the dielectric loss, we can obtain G = 0. The

per-unit-lengthDC resistance of each conductor is computed
as 𝑟dc = 1/(𝜎𝑤𝑡) = 10.6897Ω/m; just considering the DC
resistance, we obtain

R = [10.7897 0
0 10.7897] Ω/m. (46)

The total length of the line is 50 cm and the line is
terminated with networks as shown in Figure 7(b). These
networks at the source and load can be described by state
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variables as mentioned in Section 3. The state variables in
(24a) and (24b) and (25a) and (25b) are listed below as [13]

X𝑆 (𝑡) = 0,
M𝑆 = 0,
N1 = 0,
N𝑆 = 0,
O𝑆 = 0,

P1 = [[[
[

1𝑅𝑁𝐸 0
0 1𝑅𝑆

]]]
]

,

P𝑆 = [[[
[

1𝑅𝑁𝐸 0
0 1𝑅𝑆

]]]
]

,

Q1 = 0,
Q𝑆 = 0,

S𝑆 (𝑡) = [ 0
𝑉𝑆 (𝑡)] ,

X𝐿 (𝑡) = [𝑖𝐿 (𝑡)0 ] ,

M𝐿 = [
[
−𝐿𝑅0 ]

]
,

NNDZ = [
[

1𝐿0]
]

,
N𝐿 = 0,
O𝐿 = [10] ,

PNDZ = [[
[
0 0
0 1𝑅𝐿

]]
]

,
P𝐿 = 0,

QNDZ = [𝐶 0
0 0] ,

Q𝐿 = 0,

(47)

where 𝐶 = 100 pF, 𝐿 = 1 𝜇H, 𝑅 = 10Ω, 𝑅𝑆 = 50Ω, 𝑅𝐿 =50Ω, and 𝑅𝑁𝐸 = 5Ω and 𝑖𝐿(𝑡) is the inductor current.
The source is a trapezoidal pulse shown in Figure 8, and

the amplitude is 1 V. The rise time/fall time of the pulse

�휏r �휏 �휏f

t

1V

Vs(t)

Figure 8: Waveform of a trapezoid pulse.

Table 3: Runtime for different schemes with different space dis-
cretization numbers.

Different schemes Runtime for
NDZ = 199

Runtime for
NDZ = 398

Runtime for
NDZ = 795

FDTD 0.2060 s 0.5999 s 2.0181 s
Db3-MRTD 0.9581 s 2.7241 s 8.7192 s
Db4-MRTD 1.2724 s 3.6920 s 11.9143 s

are 𝜏𝑟 = 𝜏𝑓 = 100 ps and pulse width is 𝜏 = 500 ps.
The total computing time is 40 ns. The bandwidth of the
input is approximately equal to 1/𝜏𝑟 = 10GHz, taking
the segment length as Δ𝑧 = 𝜆/10. Using the small mode
velocity V𝑚1 at 10GHz, we can get NDZ = 398. Choosing the
Courant number 𝑞 satisfying the stability condition, the time
discretization number NDT can be obtained from (44).

Figures 9(a) and 9(b) show terminal voltages of Wire 1
at the source and load by the FDTD method and the MRTD
schemes. Since Db2-MRTD scheme is not an effective algo-
rithm for MTL equations, we will just present the computed
results of Db3-MRTD and Db4-MRTD. Both Figures 9(a)
and 9(b) show the agreement of these two kinds of method. It
can be seen from Figure 9(a) that there exist more oscillations
on the edge of each transition from the computed result of
FDTD method, which means the FDTD method does not
perform well with the rapid signals. On the other hand, the
computed results also show that the MRTD schemes could
lead to a more stable result for the rapid signals. And, for the
gradually changing signals, both the twomethods show good
performance as shown in Figure 9(b).

To obtain a more accurate result, we could use a smaller
space step and time step. Figures 10(a) and 10(b) show the
computed results when we increase the space discretization
number NDZ to 795. Both the figures show fewer oscillations
on the edge of transition.

Figures 11(a) and 11(b) show the computed results when
we decrease the space discretization step to Δ𝑧 = 𝜆/5.
Figure 11(a) also indicates that the MRTD schemes could
obtain a more stable solution with a coarse space step
compared to the conventional FDTD method.

Table 3 shows the runtime for Figures 9–11.Thenumerical
results show that MRTD schemes need more runtime to
obtain more stable results. The runtime of Db3-MRTD is
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Figure 9: Computing results of terminal voltages for the lossy PCB by FDTDmethod andMRTD schemes.The space discretization number
is NDZ = 398 and the Courant number is 𝑞 = 0.5.
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Figure 10: Computing results of terminal voltages for the lossy PCB by FDTDmethod andMRTD schemes.The space discretization number
is NDZ = 795 and the Courant number is 𝑞 = 0.5.

almost 5 times that of FDTD method, and the result is
corresponding to the analysis in Section 3. The runtime of
Db4-MRTD is almost 6 times that of FDTD method, while
the effective support size of the Db4’s scaling functions is 7.
The runtime of Db4-MRTD is less than the effective support
size of the Db4’s scaling functions. The numerical results
in Figures 9–11 and Table 3 also indicate that the MRTD

schemes allow obtaining more accurate results by sacrificing
the computing efficiency.

The oscillationsmay be caused by the oversampling of the
time step, so we compute the terminal voltages by different
Courant numbers. For FDTD, we take 𝑞 = 1 and, for
MRTD schemes, we take the maximum Courant number
for each MRTD scheme. Figure 12 shows the results. Since
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Figure 11: Computing results of terminal voltages for the lossy PCB by FDTDmethod andMRTD schemes.The space discretization number
is NDZ = 199 and the Courant number is 𝑞 = 0.5.
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Figure 12: Computing results of terminal voltages for the lossy PCB by FDTDmethod andMRTD schemes.The space discretization number
is NDZ = 398, and the Courant numbers are 𝑞FDTD = 1, 𝑞D𝑏3-MRTD = 0.6844, and 𝑞D𝑏4-MRTD = 0.6585 as shown in Table 1.

the MTLs have different mode velocity in each wire, the
“magic step” for one dimension does not exist, and when we
take Δ𝑡 = Δ𝑧/Vmax for the FDTD method, the oscillations
do not disappear. Figure 12(a) shows that there exist more
oscillations for the computing results of the FDTD methods
with different Courant numbers. It means that the MRTD
schemes are more stable than the FDTD methods for rapid
signals.

5. Conclusion

In this paper, we derived the MRTD scheme for multi-
conductor transmission lines with linear terminations. By
using state variant to describe the linear terminations, a
method of incorporating the terminal constraints into the
MRTD iterative equations is proposed to update the iterative
equations which contain some terms whose indexes exceed
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the index range in MRTD schemes. Using different scaling
functions as basis functions, the MRTD schemes are imple-
mented for pure resistance terminations and linear network
terminations including inductances and capacitances. The
numerical results of MRTD schemes are compared to SPICE
model and conventional FDTD, and the MRTD schemes are
proved to be an effective algorithm for MTL equations and
show a more stable performance with a coarse space step.
However, the numerical results also show that the MRTD
schemes need more time to obtain more stable results when
compared to the conventional FDTD method. It indicates
that the MRTD schemes allow obtaining more accurate
results by sacrificing the computing efficiency.
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