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Abstract—A novel implicit nodal Space-Time Discontinuous
Galerkin (STDG) method is proposed in this paper. An eigenvalue
analysis is performed and compared with that for a DG scheme
solved with a 4th-Order Runge-Kutta time integrator. We show
that STDG offers a significant improvement of dissipative and
dispersive properties and allows larger time steps, regardless of
the spatial hp-refinement. A domain-decomposition technique is
used to introduce an explicit formulation of the method in order
to render it computationally efficient.

Index Terms—Discontinuous Galerkin Methods, Computa-
tional Electrodynamics, Space-Time Discontinuous Galerkin

I. INTRODUCTION

A common approach for Discontinuous Galerkin (DG) time-
domain (TD) methods, is to treat the time and space variables
separately [1], often using an explicit time-integrating schemes
such as the 4th-Order Low-Storage Runge-Kutta LSERK4,
which prevents the full exploitation of the higher-order spatial
convergence. Although works to cope with this limitation
[2] exist, a noteworthy alternative is to use Space-Time DG
(STDG) methods, already used in other fields of Physics
[3], [4], and in Electromagnetics [5], [6]. A major drawback
of STDG resides in its implicit nature, though semi-explicit
approaches also exist [5], [6] (tent-pitching technique).

In this work, we present a novel STDG formulation com-
bined with a causal domain-decomposition technique [7] to
render it explicit (E-STDG). This letter is organized as follows:
we first formulate a nodal [1] STDG scheme, with a new
spurious-free upwind-in-space flux, combined with a centered-
in-time flux. Next, we study the properties of the resulting
implicit STDG scheme with an eigenvalue analysis, comparing
with a DG-LSERK4 one. Next, we describe the explicit causal
formulation E-STDG, and validate it with a simple resonant
problem. We finally conclude that the use a nodal approach,
together with the domain-decomposition technique provides
an affordable solution to the problem.

II. IMPLICIT FORMULATION

Let us start by defining a 2D space-time region tessellated
with k = 1, . . . ,Kx elements. With ζ ∈ V defined as a space-
time coordinate within each element, and with n̂ = (nt, nx)
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normal vectors pointing outwards from its boundary. The
weak form of 1D Maxwell’s curl equations is found by
multiplying by weighting functions αij(ζ), integrating over
V , and enforcing the residual to vanish. For instance, the free-
space Ampère’s law (taking for simplicity the permittivity and
permeability both equal to 1) becomes∫

V

(∂tE(ζ) + ∂xH(ζ))αij(ζ)dζ = 0 (1)

with E and H being the electric and magnetic fields. Integrat-
ing by parts in (1) and replacing the boundary flux-integral by
a numerical flux, as usual in DGTD, we find∫

V

∂xHαijdζ =

∫
T

dt

[∫
∂X

n̂ ·H∗αijdx−
∫
X

H∂xαijdx

]
(2)

with H∗ (and similarly E∗) being the usual numerical fluxes
[1]. Next, following the Galerkin procedure, we expand the
fields in series using the weighting functions also as basis
functions, and assuming that their space-time dependence can
be separated in polynomials of orders P t and P x for the
temporal and spatial parts, respectively

Hh(ζ) =

P t∑
i=0

Px∑
j=0

αij(ζ)Hij =

P t∑
i=0

Px∑
j=0

αt
i(t)α

x
j (x)Hij (3)

and similarly for E. Substituting (3) into (2), the spatial-
stiffness term becomes,∫
V

Hh∂xαmndζ =
P t∑
i=0

Px∑
j=0

Hij

∫
T

αt
iα

t
mdt

∫
X

αx
j ∂xα

x
ndx (4)

And the spatial-flux term,∫
T

(H∗(t, xR)αmn(t, xR)−H∗(t, xL)αmn(t, xL)) dt =

P t∑
i=0

Px∑
j=0

H∗ij (αx
n(xR)− αx

n(xL))

∫
T

αt
iα

t
mdt (5)

Flux evaluations are highly simplified by using a nodal
approach based on Lagrange interpolating polynomials [1],
since the flux in a space-time node requires only the degrees
of freedom (DOFs) at the nodes occupying the same position
in the neighboring elements. To determine the space-time flux,
let us define

[[Hij ]]
t =

Hij −Ht,+
ij

2
[[Hij ]]

x =
Hij −Hx,+

ij

2
(6)

and similarly for the E-field. There, the upper subscript x,+
refers to the neighboring node along the spatial boundary (see
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Fig. 1: Notation: a space-time element (in gray) with P t = P x = 3.

Fig. 1). First, we find the centered version of the numerical
fluxes, as the average with the contiguous-space/earlier-time
border values

H�ij = δi0[[H0j ]]
t − δ0j [[Hi0]]x + δjPx [[HiPx ]]x (7)

and, secondly, we complete them with the lacking terms to
obtain upwind fluxes in space, keeping centered fluxes in time

H•ij = H�ij − δ0j [[Ei0]]xZ−1 + δjPx [[EiPx ]]xZ−1 (8)

where δij refers to the usual Kronecker-delta, and Z, Y the
medium impedance and admittance, respectively (both unity
in our case).

A compact matrix formulation can be written by arranging
the E and H field coefficients (DOFs) in an ordered column-
vector, e.g. E = [E0,0, . . . , E0,Px . . . EP t,0, . . . , EP t,Px ]

T .
Eq. (4), with the usual tensor product ⊗, becomes∫

V

Hh(ζ)∂xα(ζ)dζ =Mt ⊗ CxH (9)

with M and C being the mass and stiffness matrices, respec-
tively. The spatial-flux term (5) can be expressed as∫

T

(
Hh,∗(t, xR)α(t, xR)−Hh,∗(t, xL)α(t, xL)

)
dt

=Mt ⊗ (Rx
L −Rx

R)H∗
(10)

with Rt
L = eP

t

0 eP
t,T

0 and Rt
R = eP

t

P te
P t,T
P t where eNi is a

N+1 long zero vector with 1 in entry i. Operating similarly for
the rest of terms and the Ampere’s equation, we can express
the scheme locally as

εCt ⊗MxE +Mt ⊗ CxH
=Mt ⊗ (Rx

L −Rx
R)H∗ + (Rt

L −Rt
R)⊗MxE∗

(11)

Let us now assume that our computational domain is divided
by Kx space-time elements and let us define

F t
R,L = IKx

⊗I2⊗Rt
R,L⊗Mx , Fx

R,L = IKx
⊗V⊗Mt⊗Rx

R,L

St = IKx⊗I2⊗Ct⊗Mx , Sx = IKx⊗V⊗Mt⊗Cx (12)

with IN =
∑N−1

n=0 eN−1n eN−1,Tn and V = e10e
1,T
1 + e11e

1,T
0 .

We can write the following compact expression

(St + Sx)q = (F t
L −F t

R + Fx
L −Fx

R)q∗ (13)

where q represents all the field coefficients in a given space-
time element. The upwind-in-space centered-in-time numerical
flux (8) can be expressed as

q∗upwind = −EtRq′ + (EtL + ExL − ExR)q︸ ︷︷ ︸
q∗centered

+(ExL − ExR)Ṽq (14)

with q′ being the state vector of the previous space-time
element. The operators E perform the operations needed to
assemble the unknowns associated with the fluxes in the global
system of equations. The superscripts t and x and subscripts
L and R indicate the boundary at which they are operating.
The operator Ṽ = IKx

⊗V⊗IP t⊗IPx indicates the operation
on the dual field. Note that FxEtq′ = F tExq = 0 because
E is defined to extract only the unknowns needed by the flux
acting on the boundary indicated by its superscript. Replacing
the centered part of (14) into (13)

(St+ Sx−Fx
LExL + Fx

RExR + F t
LEtL)−1(−F t

LEtR)︸ ︷︷ ︸
H

q′= q (15)

and a similar expression can be formulated for upwind flux.
Eq. (15) enables us to find the current state, q, from the
previous state, q′, in a marching-in-time way. A major lim-
itation of this scheme is its spatial implicitness, requiring
matrix inversion (or solving a linear system at each time step)
of operators scaling as O(K2

x) (only tentatively efficient for
problems where the space and time scales are very dissimilar).

III. AN EXPLICIT SCHEME

Semi-explicit formulations of STDG exist [5], [6], and in
this section we present a new explicit alternative simpler than
those, in terms of the needed mesh, and using a reduced
number of DOFs. A domain-decomposition technique [7] will
be used to formulate an explicit variant of the scheme in
(15), at the cost of adding a CFL-like causality condition.
Rather than solving the whole domain Ω, we divide the
problem into smaller regions Ωd such that

⋃Nd

d Ωd = Ω.
Then, we enlarge each region Ωd to include the elements that
are causally connected with it for a given ht, we will denote
this enlarged region with Ω′d. An element is considered to be
causally connected with another one if any of its fields at t can
propagate to Ωd at t+ ht. i. e. if it contains a point within a
distance d ≤ cht to any point in Ωd, with c being the numerical
speed of light. The border of Ω′d ends in a zero-flux boundary
condition that decouples it from the rest of the computational
domain. Finally, the problem is solved in each Ω′d using the
implicit method described above but passing only the values
in Ωd to the next step. The values in Ω′d\Ωd are discarded
as they are corrupted by the artificial boundary condition.
This approach reduces the computational cost from O(K2

x) to∑Nd

d O(K2
x,d) with Kx.d < Kx. The region sizes Ωd can be

chosen as a trade-off taking into account the computational
cost in determining the initial Hd, the cost to evolve the
scheme, and the size of the time step.

IV. NUMERICAL ANALYSIS

A PEC-terminated spatial domain has been discretized with
Kx = 4 elements of size hx = 0.25 and order P x = 4
using the spatial upwind flux (8), as a simple proof-of-concept
test-case. The eigenvalues of H have been numerically found
to investigate dispersion and dissipation independently (rather
than using error norms such as in [3]–[6]). We have conducted
studies for different ht, which have not exhibited eigenvalues
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with positive real parts, thus implying that the scheme is
unconditionally stable for any ht.

Fig. 2 shows the dispersion and dissipation properties of the
scheme for the first resonant modes to the closest analytical
mode ka = π with ωa = π for different STDG schemes and
a classical DG evolved using LSERK4 and the same upwind
spatial fluxes. The accuracy of the scheme presents high-order
convergence with ht, following the relationship (h2Pt+1

t ) for
the dissipation, and (h2Pt+2

t ) for the dispersion, in agreement
with [8] for the spatial DG semi-discrete scheme. Therefore
we can conclude that the spatial and temporal convergences of
the scheme coincide. Note that, although the LSERK4 physical
eigenvalue can be computed and represented, it is unstable for
approx. ht ≥ 0.05 because of the presence of other eigenvalues
lying outside its stability region, thus limiting with ht,max ∝
(P x)−2 minhkx. We also find that we have higher convergence
for P t ≥ 2, which is a significant improvement over LSERK4,
especially when combined with a higher P x.
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Fig. 2: Dissipative (up)/dispersive (down) convergence rates of the
eigenvalues of the evolution operator H for different orders & ht.

V. NUMERICAL RESULTS

For validation, we have simulated the above problem using
a discretization of Kx = 8, hx = 0.125, ht = 0.1, and
P t = P x = 4 and upwind fluxes up to a time T = 10000
(note that all quantities are dimensionless in our system of
units). Also, we have computed the same problem with the
explicit implementation of the scheme. The STDG scheme
has a single evolution operator with 6400 non-zero entries.
The E-STDG works with a split domain having 8 different
evolution operators totaling 4800 non-zero entries, indicating
a significant reduction in the computational complexity. Fig.
3 shows the resonances and the error for the first modes.

Fig. 3: Response to a white noise in the E-STDG and STDG schemes
with P t = 4, ht = 0.1, P x = 4 ,Kx = 8, hx = 0.125 after a time
of 100. Vertical dashed lines represent the analytical modes.

VI. CONCLUSIONS

In this work, we have introduced and analyzed a novel
implicit and stable nodal STDG technique, and compared it
with the classic DG-LSERK4 scheme. This nodal formulation
needs to store twice the DOFs of the LSERK4 formulations,
but it is suitable to be used in high-order-in-space schemes,
taking full advantage of the convergence of the spatial DG
semi-discretization. To overcome its implicitness, we have
proposed a new explicit implementation, showing that the
scheme can be computationally affordable, allowing certain
freedom in choosing the size of the time step and evolution
operators.
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