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Abstract—This paper presents a computational procedure to
simulate the time-domain behavior of photoconductive antennas
made of semiconductor and metal materials. Physical modeling
of semiconductor devices at terahertz regime can be achieved by
applying joint electronic and electromagnetic procedures, e.g.,
solving a coupled system of equations inferred from Poisson’s
drift-diffusion andMaxwell’s equations. A set of discrete equations
are derived by applying a combined finite-difference methodology
for the previous steady-state and the finite-difference time-domain
procedure for the transient regime. The results for the radiated
electric field at broadside direction show good agreement with the
experimental results previously reported in the literature.

Index Terms—Finite-difference time-domain (FDTD), photo-
conductive antennas (PACs), semiconductor device modeling,
terahertz sources.

I. INTRODUCTION

D ESPITE being introduced for more than 30 years ago, the
design and manufacture of efficient sources operating in

the terahertz regime currently remain an active topic of research
[1]–[3]. In fact, the development of sources that can provide ad-
equate power will define the future of THz systems, which are
usually limited by the loss propagation factor [4]. Today, the
choice of THz sources for systems operating in THz regime is
made among: 1) laser-based sources (quantum-cascade lasers
and optically pumped molecular lasers), which provide max-
imum power but present drawbacks in terms of size, weight,
and cost [2]; 2) the solid-state sources (e.g., the microvacuum
traveling-wave tube) [3], as an intermediate solution with ad-
vantages in terms of mechanical properties and price but with
the disadvantage of reduced power; and 3) the photonics-based
sources (e.g., optical rectifiers, photomixers, and photoconduc-
tive antennas), which present serious problems in terms of deliv-
ered power yet remain unbeatable as low-profile devices [1]. In
this context, this paper is intended to be a computational assess-
ment of the radiation parameters in photoconductive antennas,
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as an initial step toward developing photoconductive sources
able to increase the delivered power in THz systems. Photocon-
ductive antennas (PCAs) are widely used in applications such
as THz spectroscopy [5]. Their ability to produce time-domain
waveforms ranging from several tenths of GHz up to 5–10 THz
is appropriate for testing signatures of materials in THz regime
with a single pulse [6]. The first device designed for this pur-
pose was the Auston switch [7], which confirmed the ability
of photoconductive materials to propagate and radiate transient
electromagnetic waves within the range of the subpicoseconds,
as previously reported [8]. Laser pulses were later used to ex-
cite photoconductive antennas and to generate terahertz pulses
[5], [9], and since then experimental measurements have been
made from different semiconductors (e.g., LT-GaAs [10], [11],
InGaAs [12], [13] or SiC [14]), emphasizing the advantages and
disadvantages of each photoconductive material. Furthermore,
CAD techniques used to design innovative PCAs have also been
described. A simple numerical approach was made by formu-
lating an equivalent current injected into the gap, modeled as a
function of the incident laser power, which acts as a source term
in Maxwell’s curl equations [9]. However, this assumption ne-
glects the mutual coupling between the equations governing the
current generation at the gap and Maxwell’s equations. Other
semi-analytical approaches proposed one-dimensional models
of the source currents in order to derive the radiated electric field
[15], [16], but the assumptions of those techniques are only ac-
complished for some geometries (e.g., large apertures or sym-
metric electrodes). Thus, full-wave numerical models were then
introduced, and different implementations of finite-difference
time-domain (FDTD) techniques were proposed for solving a
coupled drift-diffusion model and Maxwell’s equation model
[17]–[22]. Further improvements to match numerical and ex-
perimental data sought a better description of the steady state
[23], and a high-accuracy model developed for electron devices
[24] was included for photomixers [25].
The main objective of this paper is to present computational

procedures and explicit equations leading to reproduce the ex-
perimental behavior of PCAs. Eventually, this formulation will
enable the exploration of CAD geometries of PCA which may
outperform the performance of the actual ones. Also, procedures
described in this paper incorporate all of the abovementioned
numerical contributions (e.g., solution of Poisson and conti-
nuity equations or the employment of the Shockley–Read–Hall
recombination model), and add the following improvements
in the calculations to assess the performance of PCAs: 1) the
accurate nonequilibrium distribution of carriers in the steady
state; 2) the consideration of nonhomogeneous mobilities in
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(a) (b)

Fig. 1. Typical photoconductive antennas: the (a) face-to-face and (b) stripline
dipoles. Metallic parts are depicted in light gray, semiconductor materials in
blue (dark gray). Dimensions correspond to validation examples of Section IV.

the semiconductor; 3) the calculation of the divergence of elec-
tron and hole currents through Bernoulli’s functions, which is
required for higher numerical accuracy in nonlinear spatial dis-
tribution of carriers; 4) a stable marching-on-in-time procedure,
derived through a double update of carrier distributions at each
timestep considered for electric- or magnetic-field calculation;
and 5) a set of standalone, explicit numerical equations which
can be implemented without any external commercial software.
For this purpose, Section II describes the physical phenomena

involved in the radiation of THz waves, through the drift-dif-
fusion model coupled to a time-domain version of Maxwell’s
equations. Section III shows a stable computational algorithm
produced by a discretization of the resulting system of partial
differential equations. For the sake of brevity, some of the nu-
merical equations have been moved to the Appendix. Finally,
some results are depicted not only for the validation of the pro-
cedure but also as evidence of the potential of the method to
provide physical insight in PCAs.

II. PHYSICAL DESCRIPTION OF PCAS AT THZ REGIME

As pointed out in the Introduction, several configurations of
semiconductor and metallic materials to form the so-called pho-
toconductive switch have been reported [5], [7], [10], [11]. For
historical reasons and without loss of generality, the numer-
ical description of PCAs presented here is based on the Auston
switch configuration, in which a semiconductor is biased by ex-
ternal electrodes located on the top of the bulk structure in dif-
ferent geometries, such as the face-to-face (FF) or stripline (SL)
dipoles (Fig. 1) [26]. When considering these kinds of devices
of total dimensions in the micrometer range, the electromag-
netic radiation phenomena at THz frequencies can be described
by a set of coupled partial differential equations, which have to
take into account the following physical processes: 1) the ini-
tial redistribution of carriers by a biasing DC electric-field; 2)
the generation of electrons and holes (e-h) inside the semicon-
ductor, as a consequence of an impinging laser pulse; and 3) a
directive radiation of electromagnetic waves, as a result of the
acceleration of these carriers generated under the biased field.
As is well known, the electromagnetic radiation is related to

the dynamics of charge and current distributions [27]. However,
the relevance of an accurate solution of the steady state should
not be neglected because the physical description of the semi-
conductor depends strongly on the biasing electric field [26]

[28]. Thus, the initial distribution of carriers and currents as well
as the nonhomogeneous carrier mobilities in the semiconductor
has to be inferred from the steady-state solution, as a step prior
to calculating radiation parameters of the PCA [29].
The steady state at any point of the semiconductor is de-

scribed by the Poisson’s equation for electrostatic fields, as well
as by the steady formulation of the continuity equations for
holes and electrons as follows:

(1)

(2)

(3)

where and correspond to the steady-state elec-
tric-charge concentration per volume unit for electrons and
holes, respectively, accounts for the electrostatic poten-
tial, is the net doping concentration
distribution, signifying the balance of donor and acceptor
ions, and and signify the electron charge and the electric
permittivity, respectively. Electrostatic field is derived as

. In the continuity equations (2) and (3),
while and are the steady-state electric currents
for electron and holes, which can be added to form the total
steady-state electric current , we have

(4)

and is the recombination rate of carriers in the semi-
conductor at steady-state, which can be expressed by the SRH
model [30] including Auger recombination [31]

(5)

where and are the electron and hole lifetime, and
are the Auger recombination coefficients for electron and

hole concentrations, accounts for the intrinsic concentration
of carriers, and and are auxiliary quantities defined as the
electrons and holes concentrations, respectively, which would
exist if the Fermi energy level was at the trap energy level.
Transient electromagnetic fields and are de-

scribed by classical Maxwell equations

(6)

(7)

where is the magnetic permeability, and is the total
current in the semiconductor. In contrast to the usual electro-
magnetic devices, electromagnetic fields in the semiconductor-
based PCAs are produced by adding electron and hole currents

, which are predicted by the drift-
diffusion model in the form

(8)
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(9)

where and correspond to the transient elec-
tric-charge concentration for electrons and holes, respectively,

, are the non-homogenous field-dependent mobil-
ities for electrons and holes [32], respectively, and is the
thermal voltage of the semiconductor. It is noticeable that (8)
and (9) present separately the transient and steady-state contri-
butions of fields and densities of charges, which has been done
to allow the numerical discretization explained in Section III.
Also, it worth noting that, for these devices, the electrostatic
field is much higher than transient field , and
approximations and can
be applied to save computational time without a significant
penalty in accuracy. Once known , several models of
field-dependent mobilities can be applied to calculate
[33], being the parallel-field dependent models appropriate for
PCAs [28].
The joint set of PDEs required for an appropriate numerical

model of PCAs in the transient stage is completed by the conti-
nuity charge equations for electrons and holes

(10)

(11)

where is the net rate of recombi-
nation which accounts for the generation-recombination of car-
riers in the semiconductor. For recombination processes at any
point , is

(12)

For the generation of carriers, function accounts for the pho-
toelectric phenomena by applying a Gaussian function to de-
scribe the increase rate of the (e-h) pairs [34]. Then, generation
at any point is

(13)

where is the maximum generation rate, which
includes the parameters as the photonic absorption coeffi-
cient, and and as, respectively, the optical intensity and the
wavelength of the laser beam. The quantum efficiency
is [34]

(14)

where and are, respectively, the transmittance in the
vacuum-semiconductor interface and the rate of pairs (e-h)
which contribute to the total electric current. Finally, the spatial
distribution of carriers takes the form

(15)

(16)

where , , and are the spatial and temporal distribution of
the spot laser, is considered the point on the surface
where the center of the spot laser impinges, and corresponds
to the velocity of the photons in the semiconductor.
Therefore, once the steady state is solved by applying (1)–(3),

(6)–(7), and (10)–(11) accurately describe the carrier distribu-
tions and electromagnetic fields in the PCAs in the transient THz
regime. However, theoretical solution for practical setups is not
available, and computational models can be implemented only
through a discretized formulation, which will be developed in
the following section.

III. NUMERICAL SOLUTION OF PCAS AT THZ REGIME

The numerical solution of the PDEs can be achieved by
means of finite-difference techniques. However, time-domain
procedures are known to have stability issues, and thus an
explicit and stable formulation is not straightforward [35].
Moreover, the relevance of an accurate solution of the steady
state has been shown [25], not only because of the bias field but
also of the non-homogeneous spatial mobility [28]. Therefore,
the steady state is solved by combining the usual difference
schemes for Poisson’s (1) with a local description of the den-
sity of carriers based on Bernoulli’s functions, as proposed in
[24] to improve the numerical models of semiconductors in
electron-device simulations.
Thus, for a cuboid mesh of size , where

corresponds to the index of the cuboid, the discretized
form of Poisson’s equation is given by

(17)

where , , , and are, respectively, the
electrostatic potential, electron density, hole density, and net
concentration charge at any discrete point of the mesh. Also,
auxiliary potential , and geometrical , and parame-
ters are defined in Appendix A for the sake of brevity.
As it pointed out above, a finite-difference formulation for the

divergence operator in (2) and (3) results in solutions with poor
accuracy. The main reason for this is the exponential change in
the distributions of carriers between near neighbors in the mesh
as a function of the electrostatic potential, which produce sig-
nificant errors for a numerical calculation of the divergence of
the electric currents when a moderate mesh size is used. Instead
of reducing the mesh size, which would lead to unaffordable
computational resources for PCAs of usual dimensions, we can
be use the Bernoulli function to describe the
local variation of the carrier distribution. In this way, (2) and (3)
can be expressed as

(18)

(19)
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Fig. 2. Extended Yee’s cell to include carrier distributions.

where auxiliary functions , , , and are detailed in
Appendix A. Discrete recombination values are calcu-
lated by a substitution of and in (12).
Another issue in the numerical discretization is to establish

proper boundary conditions for handling the finite size of com-
putational mesh. In this case, the boundary condition consid-
ered for the electrodes is the Dirichlet boundary condition, i.e.,
a perfect electric conductor (PEC) material is assumed and thus
a fixed electrostatic potential where and
are the voltage source and built-in potential, respectively. Fur-
thermore, a constant value of the carrier concentration in equi-
librium is assumed for the metal–semiconductor junction in the
electrodes

(20)

(21)

For the interface vacuum-semiconductor, the following Neu-
mann boundary condition is applied:

(22)

where and stand for normal derivative applied to
points located at the boundary in the direction of the semicon-
ductor and vacuum, respectively. For carrier distributions, the
boundary conditions applied are:

(23)

(24)

Regarding the transient stage, discretization is based of the
FDTD [35], which solves Maxwell’s equations at discrete

timesteps , corresponding to , where is the
time interval of analysis. For semiconductors, the continuity
equations will be considered by modifying the Yee’s cell [36].
Fig. 2 shows the discrete unknowns on the new Yee’s cell used
in our simulator [17], [23].
Numerical formulation of FDTD is achieved by considering

the transient current , which can be calculated by using
(8), (9), and (4) to yield

(25)

where

(26)

(27)

(28)

Source current at th timestep can be rewritten in terms
of electrostatic field and time-dependent conductivity, and
, respectively, as

(29)

Then, transient current is introduced in discrete form of Am-
pere’s equation (7) as

(30)

which enables a split formulation of Ampere-Maxwell and
Faraday laws, of the form

(31)

(32)

where

(33)

(34)

A noteworthy numerical issue may arise if , requiring
a modification of the auxiliary constants [37]

(35)

(36)

It also bears remarking that proposed procedure is prone to in-
stabilities in the numerical solution. To avoid this, the Courant
stability condition still holds for the solution of the combined
drift-diffusion and FDTD scheme, but other challenging issues
appear in this case which differ from the usual electromagnetic
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Fig. 3. Scheme of stable marching-on in-time procedure.

Fig. 4. Flowchart diagram of the transient stage. Numbers at the left part are
related update procedure of Fig. 3.

case: on one hand, the complete system of equations is non-
linear, because of the recombination function (12) appearing in
(10) and (11) and, on the other hand, terms related to distribu-
tion of carriers and act as diffusive sources of the elec-
tromagnetic field. Stable and accurate results are achieved by a
double update of the distribution of carriers for each of the elec-
tromagnetic fields, as shown in Figs. 3 and 4.
Also, the marching-on-in-time procedure for carriers is up-

dated by

(37)

(38)

as a solution in the th time step, where the net re-
combination-generation rate is noted as .
It is worth noting that, at the th timestep, the electric field is

TABLE I
PARAMETERS USED IN THE SIMULATIONS

interpolated as , while in the
th timestep this interpolation is no longer needed be-

cause the electric field is known. Notably, in (37) and
(38), it has been considered that

, because steady-state distributions have been
explicitly taking into account through the variables , in
the coefficients , , of (31) and (32).
Regarding the boundary conditions of the FDTD method,

the convolutional perfectly matched layers (CPMLs) are used
[35]. Details of notation and the explicit discretized formula-
tion are given in the Appendix A. For the sake of clarity, a
complete flowchart diagram for the calculation is presented in
Fig. 4.

IV. RESULTS

As will be shown, the procedures described above provide
satisfactory results when compared with experimental measure-
ments [10]. However, slight differences are detected, mostly
due to the inherent complexity of a detailed numerical model of
the laboratory setups. A high number of physical values, often
omitted in reports of the experiments, are required to form a full
computational model. Thus, some of them have been assumed
to be typical values reported in the literature. A summary of the
used values is presented in Table I, which lists the numerical
values used for LT-GaAs, the source laser, and the bias elec-
trodes. At this point, it should be noted that different values of
the parameters can be found in previous papers, and Table I in-
cludes references from which they were extracted.
For validation purposes, the geometries of the electrodes

implemented (Fig. 1) correspond to those described in [10]
and [26]: the face-to-face (FF) dipole, where a small region
with high electrostatic fields is created, and the strip-line (SL)
dipole, where a large region of uniform electrostatic fields
exists. Steady-state results are summarized in Fig. 5. The 3-D
image of the electrostatic potential of Fig. 5(a) depicts the
abrupt change in the inner region of the electrodes, where the
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Fig. 5. Steady-state distribution of: (a) electrostatic potential for the FF dipole,
(b) n-carriers for the SL dipole, and (c) mobility of n-carriers for the FF dipole.

source laser acts, and it has been validated using a special-
ized CAD for electronics [33], [29]. The high value of the
subsequent electrostatic fields creates a significant drift for
photogenerated carriers, thus starting the physical processes
to generate THz radiation. Similar results are achieved for
the SL dipole. In this case, Fig. 5(b) shows the distribution
of n-charges. There is a noticeable accumulation of negative
carriers around the electrodes, which needs to be taken into
account because the source laser is usually applied near the
electrodes in practical application using this PCA. Another
noteworthy effect is the presence of strong nonlinear accu-
mulations under the tips of the electrodes, which justifies
the attention paid for an adequate computational model in
this work. Fig. 5(c) illustrates the nonhomogeneous mobility
of n-carriers for the FF dipole, calculated by applying at
each point of the semiconductor a parallel-field model of the
mobility. Thus, electrostatic field decreases substantially the

of Table I (meaning for the mobility of n-carriers in the
absence of electric field).

Fig. 6. Photogeneration of electric field at the semiconductor.

Fig. 7. Distribution of the transient current density at the interface of elec-
trodes and LT- GaAs for the FF-dipole: (a) 3 ps and (b) 3.4 ps.

The transient stage begins with the incoming laser pulse. This
generation phase is characterized for the generation of pairs
(e-h) in the semiconductor. In practice, a thin layer of photosen-
sitive LT-GaAs is placed on the top of a semi-insulating GaAs
[45], thereby creating a transient electromagnetic field. Fig. 6
illustrates this, showing also that parallel electric-field predom-
inates in LT-GaAs, justifying the use of parallel mobility models
[32], as pointed out in Section II.
Fig. 7 illustrates the induced current pulse on the interface

vacuum-semiconductor. Induced currents propagate in time
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Fig. 8. Comparison of laser pulse and transient photogenerated current. For
the sake of comparison, both lines were normalized to 3.14 A m and
0.02 A m , respectively.

along the geometry of electrodes, located at the left and right
of the figure, in similar to the electric currents at RF and
microwave dipole antennas. Then, the discontinuities of elec-
trodes act as sources of radiating electromagnetic field [46],
and they resonate at frequencies directly related to the length
of the dipole [47].
Another remarkable fact is the influence of the recombination

process in the bandwidth of the radiated field. Fig. 8 compares
in the time and frequency domains the laser pulse and the photo-
generated current at the center of the spot. It can be appreciated
that the rise time of the induced current is influenced mainly by
the waveform of the laser pulse, but, for the case of the decay
time, the main factor to be considered is the recombination of
photocarriers. Consequently, the bandwidth of the current de-
creases in comparison to the laser bandwidth, and the electro-
magnetic field is radiated in the THz regime.
Finally, the validation of the results is shown in the Fig. 9,

where a good agreement between the computational predictions
and the experimental data [10] is found for the radiated electro-
magnetic field in the broadside direction, for FF and SL dipoles.
Differences arising for the time-domain responses are again jus-
tified by the complexity of the experimental setups. For consid-
ering the effect of the dielectric lens 2.7 cm , the semi-an-
alytical approaches of [48] and [49] are applied to the radiated
electromagnetic field, derived through a near-to-far-field FDTD
algorithm [50]. Also, the receiving antenna effect is taken into
account as proposed in [51], and the received current waveform
is evaluated by applying

(39)

where corresponds to the radiated electromagnetic
field calculated by the FDTD procedure, and is the
photoconductance of the receiving PCA, which has been taken
as the waveform of transient photogeneration depicted in Fig. 8.
At this point, it also bears remarking that similar results (i.e.,

radiated electromagnetic field) can be successfully reproduced

Fig. 9. Comparison of detected pulse from the radiated electromagnetic field
in the broadside direction ( , ), showing experimental

and numerical responses for the FF (upper) and SL (lower) dipoles. For sake
of comparison, simulated responses of time-domain graphs were normalized to
(a) 0.186 A and (b) 56.6 nA.

by semi-analytical methods [15], [16], which are computation-
ally faster than the presented procedure. As was stated in the
Introduction, full-wave methods are useful for cases where sim-
pler approaches are not applicable and for those aimed to pro-
vide a physical analysis of PCAs. On the other hand, a full-wave
model of lenses is computationally demanding, and other ap-
proaches as asymptotic method-of-moments [52] can be also
useful for the analysis and simulation of these devices.

V. CONCLUSION

Numerical simulations of PCAs can be implemented through
a combined drift-diffusion and Maxwell equations model. For
this purpose, the well-known FDTD procedure can be used. A
key factor for achieving satisfactory results is to provide an ad-
equate treatment of the steady model and time-update proce-
dure, which is accomplished by applying nonlinear (Bernoulli)
functions for the local distribution of carriers. Results not only
validate of the code with experimental results but also demon-
strate the potential of the method for analyzing the physical phe-
nomena involved through the observation of the inner electro-
magnetic fields. In summary, the main contribution of this paper
is the presentation of specific equations to THz researchers for
their implementation as simulation tools in THz experiments.
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APPENDIX
OPERATIONAL EQUATIONS FOR THE SIMULATION

For the sake of compactness, operational expressions arising
from the discretization of the theoretical equations have been
omitted in themain text. Here, the main results are presented in a
matrix and ready-to-implement formulation. Also, it bears men-
tioning that the symbol is used to represent an element-by-el-
ement matrix product.
For a discrete spatial point of the mesh at a discrete

time , the discrete form of the carrier distribution surrounding
that point in the and directions can be defined as

(40)

for the electrons. Similarly, for holes, this is

(41)

The discrete potential matrix surrounding the considered
point is

(42)

Also, a matrix of coefficients involving useful coefficients
related to the step sizes , , and of a nonuniform
mesh is introduced as follows:

(43)

where

and the sum of spatial elements is also useful:

Also, discrete mobilities for electrons and holes are
reorganized as

(44)

(45)

and auxiliary matrices involving finite-difference coefficients
and mobilities are then defined as

(46)

(47)

Regarding the electric fields, a generalized form is assumed
as follows:

(48)

The discrete form of the continuity (10) and (11) is written in
terms of and . To derive their operational expression,
we define an auxiliary matrix

(49)
Then, we introduce a combination of the modified mobilities

and Bernoulli’s functions

(50)

and

(51)

which allows the calculation of auxiliary matrices and
of the form

(52)

and

(53)
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For the steady-state solution, the dependence of (31) is ex-
pressed in terms of the scalar electric potential of the form

(54)

and steady-state distribution of carriers is

(55)

for the electrons. Also

(56)

for holes. Auxiliary matrices and are defined equiva-
lently to (52) and (53) in the form

(57)

and

(58)

where

(59)

and

(60)
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