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Chapter I

PhD dissertation

1 Introduction

Vast amounts of raw data is surrounding us nowadays, therefore one may say that we are living
in the big data era. Big Data is usually characterized by the so-called 5V’s (Volume, Velocity, Va-
riety, Veracity, and Value), describing its massive volume, dynamic nature, diverse forms, different
qualities and usefulness for human beings [MSC13].

Technologies as the World Wide Web, engineering and science applications or business services
generates quintillions of bytes daily thanks to the arising of new technologies and services (like
Cloud computing) as well as the reduction in hardware price. For instance, Large Hadron Collider
experiments in CERN is able to generate 30 petabytes of raw information every year1. Due to
this quantum leap in data size, organized knowledge can barely be understood or automatically
extracted by common analytics tools. This fact has led to the development of so-called data tombs,
i.e, large databases that will never be analyzed.

The current volume of data managed by our systems have certainly surpassed the processing
capacity of traditional systems, and this applies to data mining as well [WZWD14]. Data mining is
a specific task within the Knowledge Discovery in Databases (KDD) [HKP11] process responsible
of detecting implicit patterns and relationships in data. On the other hand, the KDD process aims
at obtaining valid and human-readable knowledge from large databases. It includes several phases
commonly performed in the order listed below:

1. Target selection: what is the aim of the discovery? which kind of knowledge we want to
extract?

2. Data preprocessing: aiming at cleaning, editing and reducing data in order to obtain quality
data for further stages (specially for data mining).

3. Data transformation: maps raw data from one or more formats to an unique and structured
format appropriate for a given objective.

4. Data mining: construct knowledge patterns through the analysis of structured data.

1http://home.cern/about/computing
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2 Chapter I. PhD dissertation

5. Data visualization: present the obtained results to the end-user in a friendly shape. Patterns
are usually represented in tables and/or illustrating plots.

Yet all these phases are interconnected and have a high influence between them, the data mining
process is the stage that has received more attention because of its weight in the KDD process.
The main purpose of data mining is to discover interesting patterns from problems informally or
vaguely defined, or those do not allow a formal and/or efficient solution. Depending on the kind
of pattern targeted [Alp10, WFH11, Agg15], we can classify data mining techniques in descriptive
methods –discover interesting relationships among data–, and predictive techniques –discover how
the model will react to future inputs–.

Additionally, depending on whether the target variable is defined or not, learning methods can
be classified into two families:

• Supervised learning: the aim is to predict the values of the target variables for new incomes
by defining the relation between input variables and the output/target variable. Two families
of supervised learners can be devised:

– Classification [DHS00]: the target variables is discrete and their possible values (called
labels or classes) are known. For example, sunny, cloudy or rainy in simple weather
forecast.

– Regression [CM98] the domain of the target variable is continuous. For example, the
foretasted temperature in Fahrenheit scale.

• Unsupervised learning: the target variable is undefined. Unsupervised algorithms are
devoted to identify descriptive relations implicit in data. They can be categorized into two
categories:

– Clustering [Har75] is devoted to create groups of similar instances (intra-cluster dis-
tance), and at the same time being as much separate between groups as possible (inter-
cluster distance).

– Association [AIS93] consists of identifying interesting relation between variables.

In this thesis we focus on supervised and classification learning. Yet the design of the mining
process is decisive for the quality of the decisions and knowledge extracted from the KDD process,
all these factors ultimately depend on the quality and suitability of input data. Unfortunately,
negative factors such as noise, missing values, inconsistent and superfluous data and huge sizes in
examples and features highly influence the learning and discovery processes. It is well-known that
low quality data will lead to low quality knowledge [Pyl99]. Thus data preprocessing [GLH15] is
a major and essential stage whose main goal is to obtain final data sets which can be considered
correct and useful for further data mining algorithms. Despite being less known than other steps
like data mining, data preprocessing actually very often involves more effort and time within the
entire data analysis process (> 50% of total effort) [Pyl99] than other stages.

Conversely, data reduction techniques as part of data preprocessing aim at simplifying data and
their inherent complexity, while maintaining their original structure. The optimal solution here
is a reduced dataset that allows to train a model without performance loss. In many cases, the
output model can even be more precise due to the simplified structure obtained (Occam’s razor
principle). From the feature space side, we can highlight feature selection/generation [BSA15]
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and discretization [GLS+13] techniques. And from the instance side, Instance Selection (IS) and
Instance Generation [GDCH12, TDGH12] methods are the most remarkable families of methods.

Data discretization revolves around the idea of transforming numerical features into discrete
ones by creating a finite set of discrete intervals [LHTD02, FFBS17]. Yet real-word data min-
ing tasks often involve numerical attributes, many algorithms can only deal with categorical at-
tributes –e.g., Näıve Bayes [WHW14]–, whereas others would perform better on discrete-valued
features [WBM+06]. Because of their simpler representation and its influence in learning models,
discretized data is deemed as more advantageous than numerical data. For example, some decision
trees are known to generate more compact, shorter, and more accurate results with discrete val-
ues [LHTD02]. Furthermore, learning algorithms have shown the effect of improving their speed
and accuracy on discrete data.

On the instance side, IS techniques isolate smaller subset of instances in order to improve the
learning performance without loss of generalization. In many cases, the subsequent model is not
only simpler and more rapid but even more precise due to noise removal. Nevertheless, the selection
of relevant instances is not a trivial task since a pairwise comparison between each instance must
be performed. This is motivated by the fact that most of instance reduction algorithms rely on
the Nearest Neighbor (NN) classifier [CH67] to select or eliminate examples. When IS or instance
generation are applied to instance-based learning algorithms, they are commonly denominated as
Prototype Selection (PS) and Prototype Generation, respectively [DGH10].

Distributed computing has been widely utilized by data scientists before the advent of Big Data.
Many standard and time-consuming algorithms were replaced by their distributed versions in order
to speed up their performance. However, for most of current real-world problems, a distributed
approach becomes compulsory since no single-node architecture is able to tackle such magnitudes.
Also many large-scale processing platforms, paradigms and tools have aroused in last years to give
support the problematic of Big Data [FdRL+14]. All these technologies are devoted to bring closer
cluster computing power to standard users by hiding the technical nuances derived from distributed
environments.

One of the first frameworks in this field was MapReduce (MR) [DG08]. This revolutionary
tool was intended to process and generate huge datasets in an automatic and distributed way. By
implementing two primitives, Map and Reduce, the user is able to create scalable workflows without
worrying about technical nuances, such as: failure recovery, data partitioning or job communication,
among others. Whereas the procedure to be included in the Map task is mostly straightforward to
determine, the hitch comes when deciding how to carry out the models’ fusion within the Reduce
task. At this point, the design depends on many factors, namely whether the submodels are different
and independent among them, or they have a nexus for being able to join them directly. Two main
types of fusion can be found in the current literature depending on how fusion is performed: direct
fusion via ensembles, and exact fusion using more sophisticated designs.

Apache Hadoop [Whi12] emerged as the most popular open-source implementation of MR,
maintaining the aforementioned features. In spite of its great popularity, MR and Hadoop were
not thought to scale well when dealing with iterative and online processes, commonly present in
machine learning and stream workflows [Lin12]. Apache Spark [ZCD+12, HKZ+15] was designed as
an alternative to Hadoop, capable of performing faster distributed computing by using in-memory
primitives. Thanks to its ability of loading data into memory and re-using it repeatedly, this tool
was able to overcome some of Hadoop’s flaws. Spark is built on top of a novel abstraction model
called Resilient Distributed Datasets, a versatile structure that enables easy customization of data
persistence and partitioning, among others features.
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Data preprocessing is able to adapt data to the requirements posed by each data mining algo-
rithm, enabling its processing that otherwise would be unfeasible. Unfortunately, data reduction
methods also suffer from the growth in size and complexity which means that their performance
may significantly deteriorate or they may even become inapplicable. Given the previous scenario,
novel distributed designs that improve the scalability of standard data reduction techniques has
become a major challenge for the data science community.

In many cases we do not only deal with static data collections, but rather with dynamic and
unbounded datasets arriving in form of continuous batches of data, known as data streams [Gam10].
In such scenarios, one must be able to constantly update the learning model with new data, to
work within time-constraints connected with the speed of arrival of instances, and to deal with
memory limitations. To add a further difficulty, many modern data sources generate their outputs
with very short intervals, thus creating the issue of high-speed data streams [YXZ+17].

Additionally, data streams may be non-stationary, leading to occurrences of the phenomenon
called concept drift [GZB+14], where the statistical characteristics of the incoming data may change
over the time. Thus, learning algorithms should take this into consideration and have adaptation
skills that allow for online learning from new instances, but also for quick changes of underlying
decision mechanisms.

Despite the importance of data reduction, not many proposals in this domain may be found in
the literature for online learning from data streams [ZG14]. Most of methods are just incremental
algorithms originally designed to manage finite datasets. Direct adaptation of static reduction
techniques is not straightforward since most of techniques assume the whole training set is available
from the beginning and properties of data do not change over time:

• Most of static instance selectors require multiple passes over data, at the same time being
mainly based on time-consuming neighbor searches that makes them useless for handling
high-speed data streams [GLH15].

• Online supervised discretization methods also remain fairly unexplored. Most of standard
solutions require several iterations of sharp adjustments before getting a fully operating solu-
tion [Web14]. Other major issues, such as interval definition/labeling or how the interaction
between learning and discretization components is performed, remain unattended as well.

• On the contrary, feature selection techniques are easily adaptable to online scenarios. Yet,
they suffer from other problems such as concept evolution, or dynamic [MCG+10] and drift-
ing [BGE15] feature space.

The present thesis addresses two different topics: data reduction on large-scale static databases
(1), and data reduction for streaming data (2). Although both topics are tightly connected related
by the big data nexus, we have wanted to split the development of Volume and Velocity in two
differentiable parts given the long list of particularities of Velocity.

• In the first part, a complete study of the big data reduction methods proposed up to date
will be performed in order to draw the current state-of-the-art in terms of scalability power
of proposals, frameworks used, open and future problems, etc. We will also analyze the dif-
ferent strategies proposed to fuse and aggregate submodels in distributed frameworks like
MR, and we will provide some guidelines to optimize these distributed models at their fullest.
Afterwards, we will design a novel evolutionary-based discretization algorithm which intro-
duces a preliminary approach for scalability improvement in the cut points selection problem.
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Then, we will re-design this algorithm for distributed environments so that it is able to pro-
vide accurate solutions, and at the same time scales properly. Finally, we will propose a
novel distributed algorithm inspired by one of the outstanding algorithms in discretization
literature.

• In the second part, a deep study on the current state-of-the-art for data streaming reduction
will be carried out. On the basis of this knowledge, we will propose a distributed IS method
which expedites neighbor searches via an implicit metric-space ordering of the underlying case-
base. Finally, we will pose and deal with several questions about how discretization should
behave in dynamic environments. Some major issues, such as dynamic interval definition or
the interaction discretizer-learner, will be jointly addressed in an unified proposal for online
discretization.

After introduction, this thesis is organized as follows: Section 2 provides some background about
the main concepts supporting this thesis: Big Data (Section 2.1), data reduction (Section 2.2,
evolutionary algorithms (Section 2.3), data streaming (Section 2.4), and nearest neighbor searches
(Section 2.5). All of them are paramount to understand the context where the following proposals
have been thought.

The reasoning about the importance and justification of this thesis will be given in Section 3.
Here the main problems addressed by this thesis are presented. The concrete objectives and the
methodology established to provide insights for these problems are described in Section 4 and
Section 5, respectively. Section 6 presents an overview of the ideas proposed, whereas Section 7
outlines the most relevant results obtained from these proposals. Particularly, this section shows
how the main objectives have been addressed by the proposals. Finally, some overall concluding
remarks are given in Section 8 which will serve to define the close horizon for the open future lines
of work derived from this thesis (Section 9).

The second part of the document consists of eight international journal publications, organized
into two main sections followings the division proposed above:

• Big data reduction on static databases:

– Big Data: Tutorial and Guidelines on Information and Process Fusion for Analytics
Algorithms with MapReduce.

– Big Data Preprocessing: Methods and Prospects.

– Multivariate Discretization Based on Evolutionary Cut Points Selection for Classifica-
tion.

– Data Discretization: Taxonomy and Big Data Challenge.

– A Distributed Evolutionary Multivariate Discretizer for Big Data Processing on Apache
Spark.

• Data reduction for streaming data

– A Survey on Data Preprocessing for Data Stream Mining: Current Status and Future
Directions.

– Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark.

– Online Entropy-Based Discretization for Data Streaming Classification.
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Introducción

Grandes cantidades de datos nos rodean hoy d́ıa, por lo que se puede decir que estamos viviendo en
la era del Big Data. Este fenómeno se caracteriza generalmente por las llamadas 5V’s (Volumen,
Velocidad, Variedad, Veracidad y Valor), que describen el gran volumen, la naturaleza dinámica,
el formato diverso, y las calidades diversas presentes en los datos actuales manejados por el ser
humano [MSC13].

Tecnoloǵıas como la World Wide Web, las nuevas aplicaciones de ingenieŕıa y ciencia, aśı cómo
diversos servicios de negocio generan actualmente millones de bytes al d́ıa gracias a la aparición
de nuevas tecnoloǵıas y servicios (como la computación en la nube), y la reducción en el precio
del hardware. Por ejemplo, los experimentos del Gran Colisionador de Hadrones en el CERN han
permitido generar 30 petabytes de información bruta todos los años2. Debido a este salto cuántico
en el tamaño de los datos, el conocimiento estructurado derivado de dichos datos a duras penas
puede ser extráıdo automáticamente por las herramientas estándar de análisis. Este hecho ha
llevado al desarrollo de las llamadas tumbas de datos: grandes bases de datos que nunca serán
analizadas.

El volumen actual de datos administrados por nuestros sistemas ciertamente ha superado la
capacidad de procesamiento de los sistemas tradicionales, y esto tambián se aplica al proceso de
minado de datos [WZWD14]. La mineŕıa de datos es una tarea espećıfica dentro del proceso
de Descubrimiento de Conocimiento en Bases de datos (en inglés, KDD) [HKP11], respon-
sable de detectar patrones y relaciones impĺıcitas en los datos. Por otro lado, el proceso del KDD
tiene como objetivo la obtención de conocimiento válido y legible a partir de grandes bases de
datos. Incluye varias fases comúnmente aplicadas en el orden que se detalla a continuación:

1. Selección de objetivos: ¿cuál es el objetivo del descubrimiento? ¿qué tipo de conocimiento
queremos extraer?

2. Preprocesamiento de datos: con el objetivo de limpiar, editar y reducir datos para obtener
mayor calidad en etapas posteriores (especialmente en la fase de mineŕıa).

3. Transformación de datos: asigna datos brutos en uno o más formatos a un formato único y
estructurado apropiado para el objetivo de entrada especificado.

4. Mineŕıa de datos: construye patrones de conocimiento a través del análisis de datos estruc-
turados.

5. Visualización de datos: presenta los resultados obtenidos al usuario final en un formato
comprensible y amigable. Los patrones generalmente se representan en tablas y/o gráficas
ilustrativas.

A pesar de que todas estas fases están interconectadas y tienen una gran influencia entre ellas, el
proceso de mineŕıa de datos es la etapa que ha recibido más atención debido a su peso en el proceso
del KDD. El objetivo principal de la mineŕıa de datos es descubrir patrones relevantes en problemas
vagamente definidos, o aquellos que no permiten una solución formal y/o eficiente. Dependiendo del
tipo de patrón fijado [Alp10, WFH11, Agg15], podemos clasificar las técnicas de mineŕıa en métodos
descriptivos –descubren relaciones interesantes entre datos– y técnicas predictivas –descubren cómo
debe reaccionar el modelo ante futuras entradas–.

2http://home.cern/about/computing
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Dependiendo de si la variable objetivo está definada o no, los métodos de aprendizaje pueden
ser clasificados en dos familias:

• Aprendizaje supervisado: el objetivo es predecir los valores de las variables objetivo para
nuevas entradas, definiendo aśı la relación entre las variables de entrada y la variable destino.
Se pueden divisar dos familias de métodos:

– Clasificación [DHS00]: las variables objetivo son discretas y sus valores posibles (llama-
dos etiquetas o clases) son conocidos. Por ejemplo, soleado, nublado o lluvioso en un
pronóstico simple del tiempo.

– Regresión [CM98] el dominio de la variable objetivo es continuo. Por ejemplo, la tem-
peratura predicha en escala Fahrenheit.

• Aprendizaje no supervisado: la variable objetivo no está definida. Los algoritmos no
supervisados se dedican a identificar relaciones descriptivas impĺıcitas en los datos. Se pueden
dividir en dos ramas:

– Agrupamiento [Har75] se basa en crear grupos de instancias similares (distancia dentro
del clúster), al mismo tiempo, maximizando la separabilidad entre los grupos (distancia
entre clústeres).

– Asociación [AIS93] consiste en identificar relaciones interesantes entre variables.

En esta tesis nos enfocamos en el aprendizaje supervisado y la tarea de clasificación. Aunque
el diseño del proceso de mineŕıa es decisivo para la calidad de las decisiones y del conocimiento
extráıdo del proceso de KDD; todos estos factores dependen en última instancia de la calidad y
la idoneidad de los datos de entrada. Desafortunadamente, factores negativos como el ruido, los
valores perdidos, los datos inconsistentes y superfluos, aśı cómo las grandes cantidades de ejemplos
y atributos en las bases de datos actuales influyen enormemente en los procesos de aprendizaje
y descubrimiento de conocimiento. Es bien sabido que los datos de baja calidad conducen a un
conocimiento de baja calidad [Pyl99]. Por lo tanto, el preprocesamiento de datos [GLH15] es una
etapa importante y esencial cuyo objetivo principal es obtener un conjunto final de datos que pueda
considerarse relevante a la vez que correcto para los fases posteriores del KDD. A pesar de ser menos
conocido que otros pasos, el preprocesamiento de datos a menudo implica más esfuerzo y tiempo en
todo el proceso de análisis de datos (> 50% del esfuerzo total) [Pyl99] que otras etapas del KDD.

Las técnicas de reducción de datos, como parte del preprocesamiento de datos, tienen como ob-
jetivo simplificar los datos iniciales aśı como su complejidad inherente, al tiempo que intentan man-
tener su estructura original. La solución óptima es un conjunto de ejemplos reducido que permita
entrenar un modelo preciso sin una pérdida excesiva de rendimiento. En muchos casos, el modelo
de salida puede ser incluso más preciso debido a la estructura simplificada resultante del conjunto
de entrada (principio de Occam). Desde el punto de vista de los atributos de entrada, podemos
destacar las técnicas de Selección/Generación de Atributos [BSA15] y Discretización [GLS+13].
Y en el espacio original, los métodos de Selección de Instancias (en inglés, IS) y Generación de
Instancias [GDCH12, TDGH12] son las familias de algoritmos más notables.

La tarea de discretización de datos gira en torno a la idea de transformar atributos numéricos
en otros discretos, creando aśı un conjunto finito de intervalos delimitados [LHTD02, FFBS17].
Aunque la mayoŕıa problemas actuales contienen atributos numéricos, muchos algoritmos están
originalmente diseñados para tratar exclusivamente datos categóricos (por ejemplo, el clasificador
Näıve Bayes [WHW14]). Otros, aunque no los exigen expĺıcitamente, se veŕıan beneficiados por
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dichos valores [WBM+06]. Debido a su representación más simple e influencia en los modelos
de aprendizaje, los datos discretizados se consideran más ventajosos que los datos numéricos en
general. Por ejemplo, se sabe que algunos árboles de decisión son capaces de generar resultados
más compactos, simples y precisos gracias a estos datos [LHTD02]. Además, los algoritmos de
aprendizaje tienden a mejorar su velocidad y precisión con este tipo de datos.

Poniendo el foco en el espacio original de los datos, las técnicas de IS tienen como objetivo
delimitar un subconjunto pequeño de instancias que mejoren el rendimiento en el aprendizaje, sin
pérdida de generalización. En muchos casos, el modelo posterior no solo es más simple y rápido,
sino que incluso es más preciso debido a la eliminación del ruido. Sin embargo, la selección de
instancias relevantes no es una tarea trivial ya que implica una comparación por cada par de
ejemplos en el conjunto original. Esto se debe al hecho de que la mayoŕıa de los algoritmos de
reducción de instancias se basan en el regla del vecino más cercano (en inglés, NN) [CH67] para
seleccionar o eliminar ejemplos. Cuando la IS o la Generación de Instancias se aplica a algoritmos
de aprendizaje basados en instancias, se denominan comúnmente Selección de Prototipos (en inglés,
PS) y Generación de Prototipos, respectivamente [DGH10].

La computación distribuida ha sido ampliamente utilizada por los cient́ıficos de datos antes de la
llegada del Big Data. Muchos algoritmos estándar de alto coste computacional fueron reemplazados
por versiones distribuidas que aceleraban su rendimiento. Sin embargo, para la mayoŕıa de los
problemas actuales del mundo real, un enfoque distribuido se torna obligatorio debido a que las
arquitecturas secuenciales actuales son incapaces de abordar tales magnitudes de datos. Diversas
plataformas, paradigmas y herramientas de procesamiento a gran escala también han surgido en los
últimos años para dar soporte a la problemática del Big Data [FdRL+14]. Todas estas tecnoloǵıas
tienen como objetivo acercar el poder del cómputo distribuido al usuario estándar, ocultando a su
vez los pormeneros técnicos derivados de estos entornos.

Uno de los primeros paradigmas en este campo fue MapReduce (MR) [DG08]. Esta herramienta
revolucionaria fue diseñada para procesar y generar grandes conjuntos de datos de forma automática
y distribuida. Mediante la implementación de dos primitivas, Map y Reduce, el usuario es capaz de
crear flujos de trabajo escalables sin preocuparse por matices técnologicos, tales como: recuperación
de fallos, partición de los datos o la comunicación entre los subprocesos, entre otros. Mientras que
el procedimiento que se debe incluir en la tarea de mapeo es bastante sencillo de determinar, el
problema surge cuando hay que decidir cómo llevar a cabo la fusión de los modelos dentro de la tarea
de reducción. En este punto, el diseño depende de muchos factores; a saber, si los submodelos son
diferentes e independientes entre ellos, o si tienen un nexo común para poder unirlos directamente.
Se pueden encontrar dos tipos principales de fusión en la literatura actual dependiendo del modus
operandi llevado a cabo por la tarea de reducción: fusión directa via ensembles y fusión exacta
usando diseños más sofisticados.

Apache Hadoop [Whi12] se erigió como la implementación de código abierto más popular de MR,
manteniendo las caracteŕısticas antes mencionadas. A pesar de su gran popularidad, MR y Hadoop
no fueron originalmente diseñados para escalar correctamente en procesos on-line e iterativos,
presentes habitualmente en el aprendizaje automático [Lin12]. Apache Spark [ZCD+12, HKZ+15]
fue diseñado como una alternativa a Hadoop, capaz de realizar una computación distribuida más
rápida mediante el uso de primitivas intensivas en memoria. Gracias a su capacidad de guardar
y cargar datos en memoria repetidamente, Spark es capaz de resolver algunos de los defectos
presentados por Hadoop y MR. Spark está construido sobre un novedoso modelo de abstracción
llamado RDD (en inglés, Resilient Distributed Datasets), una estructura versátil que permite una
fácil personalización del particionamiento y la persistencia de los datos, entre otras cosas.

El preprocesamiento de datos permite adaptar los datos originales a los requisitos planteados
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por cada algoritmo de mineŕıa, permitiendo aśı un procesamiento que de otro modo seŕıa inviable.
Desafortunadamente, los métodos de reducción también sufren el crecimiento en complejidad y
tamaño de las bases de datos actuales, lo que implica que su rendimiento puede verse deteriorado
o incluso puede ser inviable su aplicación. Dada el escenario previo, el desarrollo de nuevos diseños
distribuidos que mejoren la escalabilidad de las técnicas estándar de reducción se ha convertido en
un reto importante para la comunidad cient́ıfica.

En muchos casos, no solo se procesan grandes colecciones de datos estáticas, sino que también
es necesario procesar conjuntos de datos dinámicos e ilimitados que llegan en forma de constantes
lotes de ejemplos, comúnmente conocidos como flujos de datos [Gam10]. En tales escenarios, uno
debe ser capaz de actualizar constantemente el modelo de aprendizaje con cada entrada, teniendo
en cuenta las limitaciones de tiempo y velocidad de llegada de las instancias, aśı como las limita-
ciones de memoria del sistema. Como dificultad extra, muchas fuentes de datos modernas generan
sus resultados en intervalos muy cortos, creando aśı el problema de los flujos de datos de alta
velocidad [YXZ+17].

Además, los flujos de datos pueden ser no estacionarios, lo que conlleva la aparición del fenómeno
del concept drift [GZB+14]. Este fenómeno implica que las caracteŕısticas estad́ısticas de los datos
entrantes pueden cambiar a lo largo del tiempo. Los algoritmos de aprendizaje deben disponer
de habilidades de adaptación adecuadas que permitan el aprendizaje en ĺınea a partir de nuevas
instancias, teniendo en cuenta a su vez los rápidos cambios que se pueden dar en los mecanismos
de decisión subyacentes.

A pesar de la importancia de la reducción de datos, pocas propuestas se pueden encontrar en
la literatura de flujos de datos sobre este tema en particular [ZG14]. La mayoŕıa de los métodos
se basan en procedimientos incrementales diseñados originalmente para administrar conjuntos de
datos finitos. La adaptación directa de las técnicas de reducción estática se presenta como compleja,
ya que la mayoŕıa de dichas técnicas asumen que todo el conjunto de entrenamiento está disponible
desde el inicio y que las propiedades de los datos no cambian con el tiempo:

• La mayoŕıa de los métodos IS estáticos requieren múltiples iteraciones sobre los datos, al
mismo tiempo que se basan en búsquedas de vecinos costosas que los hacen inservibles para
manejar flujos de datos de alta velocidad [GLH15].

• Los temática de la discretización online también permanece bastante inexplorada. La mayoŕıa
de las soluciones hasta la fecha requieren varias iteraciones de ajustes bruscos en los interva-
los antes de generar una solución completamente funcional [Web14]. Otras cuestiones impor-
tantes, como la definición de intervalos y su etiquetado, o la interacción entre los componentes
del aprendizaje y la discretización, también han sido obviadas.

• Por el contrario, las técnicas de selección de atributos pueden ser fácilmente adaptadas al
escenario online. Sin embargo, éstas sufren de otros problemas tales como el concept evolution,
el dynamic feature space [MCG+10], o el drifting feature space [BGE15].

La presente tesis aborda dos temas: reducción de datos voluminosos (1) y reducción de flujos
de datos (2). Aunque ambos temas están estrechamente relacionados entre śı por el nexo del Big
Data, hemos querido dividir el desarrollo de Volumen y Velocidad en dos partes diferenciables dada
la larga lista de particularidades relacionadas con la Velocidad.

• En la primera parte, se realizará un estudio completo de los métodos de reducción de datos
para Big Data propuestos hasta la fecha para aśı conocer el estado actual en términos de poder
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de escalabilidad de dichas propuestas, aśı como de las tecnoloǵıas, paradigmas, y problemas
actuales y futuros en este campo. También analizaremos las diferentes estrategias propues-
tas para fusionar y agregar submodelos en frameworks distribuidos como MR. También se
proporcionarán algunas pautas para optimizar al máximo estos modelos distribuidos. Pos-
teriormente, diseñaremos un novedoso algoritmo basado en computación evolutiva, el cuál
introduce un enfoque preliminar para la mejora de la escalabilidad en el problema de selección
de puntos de corte. Luego, rediseñaremos este discretizador para entornos distribuidos, de
modo que sea capaz de proporcionar soluciones precisas a la vez que escalables. Finalmente,
propondremos un novedoso algoritmo distribuido inspirado en uno de los algoritmos más
relevantes en la literatura actual.

• En la segunda parte, se llevará a cabo un estudio profundo sobre el estado actual de la tec-
noloǵıa para la reducción de flujos de datos. Sobre la base de este conocimiento, propondremos
un método IS distribuido que agilice las búsquedas de vecinos mediante un ordenamiento
impĺıcito del espacio de la base de casos. Finalmente, plantearemos y abordaremos varias
preguntas acerca del comportamiento deseado de la discretización en entornos dinámicos. Al-
gunos problemas importantes, como la definición de intervalos o la interacción discretizador-
clasificador, se abordarán conjuntamente en una propuesta unificada para la discretización
online.

Tras la introducción, esta tesis se organiza de la siguiente manera. La Sección 2 aporta in-
formación básica sobre los conceptos principales que soportan esta tesis: Big Data (Sección 2.1),
reducción de datos (Sección 2.2), algoritmos evolutivos (Sección 2.3), flujos de datos (Sección 2.4),
y las búsquedas de vecinos cercanos (Sección 2.5). Todos ellos serán de gran importancia para
comprender el contexto en torno al que gira esta tesis.

El razonamiento sobre la importancia y la justificación de esta tesis se dará en la Sección 3.
Aqúı se presentan los principales problemas abordados en este documento. Los objetivos concretos
y la metodoloǵıa establecida para desarrollar las soluciones a estos problemas se describen en la
Sección 4 y en la Sección 5, respectivamente. La Sección 6 presenta una descripción general de
las ideas propuestas, mientras que la Sección 7 describe los resultados más relevantes obtenidos.
En particular, esta sección muestra cómo los objetivos principales han sido abordados por las
propuestas ideadas. Finalmente, algunas observaciones finales se presentan en la Sección 8 con
el objetivo de definir el horizonte cercano de las futuras ĺıneas de trabajo derivadas de esta tesis
(Sección 9).

La segunda parte del documento consta de ocho publicaciones en revistas internacionales, or-
ganizadas en dos secciones principales siguiendo la división propuesta anteriormente:

• Reducción de datos voluminosos:

– Big Data: Tutorial and Guidelines on Information and Process Fusion for Analytics
Algorithms with MapReduce.

– Big Data Preprocessing: Methods and Prospects.

– Multivariate Discretization Based on Evolutionary Cut Points Selection for Classifica-
tion.

– Data Discretization: Taxonomy and Big Data Challenge.

– A Distributed Evolutionary Multivariate Discretizer for Big Data Processing on Apache
Spark.
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• Reducción de flujos de datos:

– A Survey on Data Preprocessing for Data Stream Mining: Current Status and Future
Directions.

– Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark.

– Online Entropy-Based Discretization for Data Streaming Classification.
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2 Preliminaries

In this section we describe in detail all the major concepts involved in this thesis. First of all, Section
2.1 gives a brief overview of the big data phenomenon as well as outlines the modern paradigms,
frameworks and tools devised for this context. Section 2.2 presents the different family branches
of data preprocessing methods, paying special attention to data reduction (instance selection, and
discretization). Then, a couple of lines are dedicated to the evolutionary algorithms in Section 2.3,
used as optimizers in some of our works. Section 2.4 shows the main problems associated to the
processing of streaming data as well as its negative impact in data reduction techniques. Finally,
Section 2.5 describes how neighbor searches in instance selection methods can be expedited by
imposing an implicit ordering to case-bases.

2.1 Big Data

The Internet continues generating quintillions of bytes of data. By 2018, 400 zettabytes of data will
be generated according to some reports of Cisco [Cis16]. A solution for the problem of handling large
collections of data is therefore becoming increasingly urgent [MSC13]. Exceptional technologies are
now required to efficiently collect, maintain, transmit and process large datasets within tolerable
time intervals. Extracting relevant information from these collections of data is now one of the most
important and complex challenges facing data analytics research, especially since many knowledge
extraction algorithms have been rendered obsolete in the face of such vast amounts of data.

Big Data, a term coined to describe the exponential growth and availability of data nowadays,
has become a serious pain for classical data analytics. Gartner [Lan01] referred to Big Data in terms
of volume, velocity, and variety, that is, the 3Vs, to which a further 2Vs were added, namely, veracity
and value. Information thus defined requires a radically new approach to large-scale processing.
An under-explored but no less important topic is big dimensionality in Big Data [ZOT14]. This
phenomenon, also known as the “curse of big dimensionality”, reflects the explosion of features
and the combinatorial impact of new large incoming datasets with thousands or even millions of
features.

Distributed computing has been widely used by data scientists before the advent of big data
phenomenon. Many standard and time-consuming algorithms were replaced by their distributed
versions with the aim of speeding up the learning process. However, for most of current massive
problems, a distributed approach becomes mandatory nowadays since no single-node architecture
is able to cope with them. As a result of the fast evolving of big data environment, a myriad
of tools, paradigms and techniques have surged to tackle different use cases in industry and sci-
ence [FdRL+14]. These platforms bring closer cluster computing to the standard user (engineers
and data scientists) by hiding the technical nuances derived from distributed environments.

The MR execution environment [DG08] is the most common paradigm used in the distributed
processing scenario. Being a privative tool, its open source counterpart, known as Hadoop, has
been traditionally used in academia research [Whi12]. It has been designed to enable distributed
computation in a transparent way, also providing fault tolerance, automatic data partition and
management, and automatic job-resource scheduling. To benefit from MR, any algorithm must
be divided into two main stages: Map and Reduce. The first one is devoted to split the data for
further processing, whereas the second collects and aggregates the results.

Additionally, the MR model is defined with respect to an essential data structure: the (key,value)
pair. The processed data, the intermediate and final results work in terms of (key,value) pairs. To
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summarize its procedure, Figure 1 illustrates a typical MR program with its Map and Reduce steps.

k1:va	k1:vb	k2:vc	 k2:vd	 k1:ve	 k3:vf	k3:vg	k4:vh	 k4:vj	k5:vk	 k1:vl	k3:vm	

M	 M	 M	 M	 M	 M	

k4:vi	

M	

Input 

Intermediate 

Group	by	Key	

k5:	vk	k3:	vf,vg,	vm	k1:	va,	vb,	ve,	vl	 k4:	vh,	vi,	vj	K2:vc,	vd	Grouped 

R	 R	 R	 R	 R	

Output 

Figure 1: The MapReduce programming model. k elements represent the keys in the pairs, whereas

v the values.

The MR scheme can be described as follows.

• Map function first reads data and transforms records into a key-value format. Transformations
in this phase may apply any sequence of operations on each record before sending the tuples
across the network.

• Output keys are then shuffled and grouped by key value so that coincident keys are put
together to form a list of values.

• Finally, the Reducers perform some kind of fusion on the lists to eventually generate a single
value for each pair. As a further optimization, the reducer is also used as a combiner on the
map output. This improvement reduces the total amount of data sent across the network by
combining each item generated in the Map phase into a single pair.

Apache Hadoop and MR, despite being popular tools, have been criticized by its poor perfor-
mance on certain applications, including online or iterative computing, high inter-process commu-
nication procedures or in-memory computing [Lin12].

In recent years, Apache Spark has been included in the Hadoop ecosystem [ZCD+12, HKZ+15]
as a powerful framework that performs faster distributed computing on Big Data. Spark relies
on in-memory primitives to perform up to 100 times faster than Hadoop for certain applications.
The fact that this platform enables user programs to load data into memory and to make repeated
queries means that it is particularly useful for online and iterative processing, especially for Machine
Learning (ML) algorithms. Spark is also versatile tool that integrates other programming models
such as Pregel and MapReduce.

Spark is based on a distributed data structure called resilient distributed datasets (RDDs).
RDDs are an immutable, partitioned set of records that can be generated by either stored data
or other RDDs. Users can also control other distributed features such as persistence and data
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partitioning. For instance, users may cache a dataset in memory to be reused in further iterations.
RDDs can also be persisted on disk if we consider that re-execution may be more costly than
spilling to disk. Placement of key-based data can be optimized by choosing between different
Spark partitioning schemes (range or hash) or even your custom partitioner.

Finally, as a Spark’s subproject, MLlib [MBY+16] was created to provide native learning and
statistical components to this platform. Among its many functionalities includes classification,
regression, clustering, collaborative filtering, optimization and dimensionality reduction (mostly
feature extraction).

Although several golden standard algorithms for ML tasks have been redesigned to incorporate
a distributed implementation for big data technologies, this is not yet the case for preprocessing
algorithms. Then, novel scalable designs (sometimes, completely new) of standard reduction algo-
rithms [CS17] are required to extend and maintain these libraries, which generalizes the use of ML
in large-scale scenarios.

2.2 Data preprocessing and data reduction

The set of techniques used prior to the application of data mining are named as data preprocess-
ing [GLH15], and are known to be one of the most meaningful issues within the famous KDD
process [HKP11]. Since raw data will likely contain imperfect, containing inconsistencies and re-
dundancies in their initial shape, they will not be valid for further data mining process. We
must also mention the fast growing of data generation rates and their size in business, industrial,
academic and science applications. The huge amounts of data collected nowadays require more
sophisticated mechanisms to properly analyze them. Data preprocessing is able to adapt the data
to the requirements posed by each data mining algorithm, enabling its processing which would be
unfeasible otherwise.

Albeit data preprocessing is a powerful tool that can enable the user to treat and process
complex data, it may consume large amounts of processing time [Pyl99]. It includes a wide range
of disciplines, as data preparation and data reduction techniques as can be seen in Figure 2. The
former includes data transformation, integration, cleaning and normalization; while the latter aims
to reduce the complexity of the data by applying feature or instance selection, or data discretization
(see Figure 3). After the application of a successful data preprocessing stage, the final data set can
be regarded as a reliable and suitable source for any data mining algorithm.

Among the long list of data preprocessing techniques, this thesis is focused on data reduction,
concretely, on discretization and IS. The aim of data reduction is to provide a more manageable
training set in terms of complexity and size in order to improve accuracy, memory and time per-
formance of the subsequent DM phase. Different families of techniques are part of data reduction,
here we highlight most relevant:

• Feature selection (FS): is “the process of identifying and removing as much irrelevant and
redundant information as possible” [BSA15]. The goal is to obtain a subset of features from
the original problem that still appropriately describe it. This subset is commonly used to
train a learner, with added benefits reported in the specialized literature [BCSMAB13, CS14].
FS can remove irrelevant and redundant features which may induce accidental correlations
in learning algorithms, diminishing their generalization abilities. The utilization of FS is also
known to decrease the risk of over-fitting, as well as to reduce the feature space, thus making
the learning process faster and less memory-consuming.
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Figure 2: Subcategories in data preprocessing. It includes cleaning, normalization, integration,

among others.

• Feature Extraction (FE): is the process of generating new features by transforming the train-
ing input space to a new space that better describes the problem [vdMPvdH09]. In FE,
original attributes can be removed, maintained or they may serve to create new artificial
attributes. Linear and non-linear space transformations or statistical techniques such as
principal component analysis [Jol02] or single value decomposition are classical algorithms in
this field.

• Instance selection: is comprised by a series of techniques aiming at selecting a subset of data
that replaces the original data set, at the same time being able to fulfill the learning goal de-
fined at the start [GDCH12, LGP15]. We must distinguish between instance selection, which
implies a smart operation of instance categorization, and data sampling, which constitutes a
more randomized approach [GLH15].

• Instance generation (IG): besides selecting data, may generate and replace the original data
with new artificial examples [TDGH12]. IG allows us to fill regions of the input domain in
case no representative examples exist there, or to condensate large amounts of instances in
crowded regions. IG methods are often called prototype generation methods, as the artificial
examples created tend to act as a pivotal example in a region or a subset of the original
instances.

• Discretization: transforms quantitative data into qualitative data by dividing the numeri-
cal features into a limited number of non-overlapped intervals [LHTD02, GLS+13]. Using
the boundaries generated, each numerical value is mapped to each interval, thus becoming
discrete.

As mentioned before, in this thesis we will focus on discretization and IS for being less explored
than other topics like FS. The first one focus on the simplification of the feature space whereas IS
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Figure 3: The most relevant data reduction families: feature selection, instance selection and

discretization.

focus on the reduction of the instance space. In next lines, we will deepen in the main benefits and
features of both artifacts.

Discretization is crucial in the KDD process [LHTD02] as many DM algorithms explicitly impose
constraints to the domain and type of input data. Some decision trees, for instance, perform
splits based on information or separability measures that require categorical values in most cases.
If continuous data is present, the discretization of the numerical features becomes mandatory,
either prior to the tree induction or during its building process. This is specially relevant given
the high number of real-world applications with continuous attributes. In fact, three of the ten
methods considered as the top ten in data mining [WK09] need external or embedded discretization:
C4.5 [Qui93], Apriori [AS94] and Näıve Bayes [WHW14].

Discretization also produce extra benefits, such as: data simplification –promoting faster and
more precise learning–, and improved readability –features are easier to understand and explain–
[LHTD02]. Nevertheless these benefits come at price, any discretization process is expected to
generate a subsequent loss in information. Minimizing this loss is the main goal pursued by the
discretizer, and a NP-complete problem known as the cut points selection problem. Cut point se-
lection problem can be represented as a binary search problem and optimized using metaheuristics.

Several heuristic models have been proposed to cope with discretization, for example, those
based on information entropy [FI93], statistical tests [LS97], likelihoods [Bou04] or rough
sets [ZHJ04]. Discretization methods can be categorized according to the nature of its evaluation
measure. Other criteria have been used to properly categorize discretizers [GLH15], such as uni-
variate/multivariate, supervised/unsupervised, top-down/bottom-up, global/local, static/dynamic,
etc.

Yet discretization reduces complexity of features’ spaces, it does not directly apply a straight
selection on samples or features as done by IS techniques. However, IS shares with discretization
similar computing cost. In IS a pairwise comparison between each instance is required (O(n2),
where n is the training set size). This is due to most of IS methods explicitly or implicitly relies
on the k-NN technique to discern between promising and irrelevant examples.
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Depending on the type of search implemented, IS methods may be classified into three cate-
gories [GDCH12]: 1) condensation –aiming at only retaining boundary points that are close to the
borders–; 2) edition –aiming at removing noisy boundary points–; or 3) hybrid methods –combining
the two previous approaches by removing both internal and border points–.

2.3 Evolutionary algorithms

Evolutionary algorithms (EAs), and concretely genetics algorithms (GAs), have proved to perform
well in many optimization problems [Gol89]. They have been used specially in engineering, biology
and health care [Sim08, NMH+14, CCP13, NZD11]. GAs are search heuristic methods that mimic
the process of natural selection, being mainly inspired by evolutionary techniques such as inheri-
tance, mutation, selection and crossover [ES03]. Benefits of EAs lies on the flexibility of the fitness
measure as well as the robust learning system behind them.

EAs have been used for data preparation with promising results [Fre02]. As the cut points
selection problem (in discretization) can be seen as an optimization problem with binary search
space, we resort to the use of GAs to address this problem. For both of our large-scale discretization
methods, we have elected CHC as optimizer. CHC [Esh91] is a classical evolutionary model thought
for binary coding that tries to get a suitable trade-off between a deep exploration of search space
(diversity) and the ability of exploiting the local properties of the search to avoid a premature
convergence (exploitation). CHC implements HUX operator for crossover and replaces mutation
with a reseeding process to unblock local objectives.

2.4 Data streaming and concept drift

Data stream is a potentially unbounded and ordered sequence of instances that arrive over
time [Gab12]. Therefore, it imposes specific constraints on the learning system that cannot be ful-
filled by canonical algorithms from this domain. The main differences between static and streaming
scenarios are:

• instances are not given beforehand, but become available sequentially (one by one) or in the
form of data chunks (block by block) as the stream progresses;

• instances may arrive rapidly and with various time intervals between each other;

• streams are of potentially infinite size, thus it is impossible to store all of incoming data in
the memory;

• each instance may be only accessed a limited number of times (in specific cases only once)
and then discarded to limit the memory and storage space usage;

• instances must be processed within a limited amount of time to offer real-time responsiveness
and avoid data queuing;

• access to true class labels is limited due to high cost of label query for each incoming instance;

• access to the true labels may be delayed as well, in many cases they are available after a long
period, i.e., for credit approval could be 2-3 years;

• statistical characteristics of instances arriving from the stream may be subject to changes
over time.
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Figure 4: Two main types of concept drift with respect to their influence over decision boundaries.

Let us assume that our stream consists of a set of states S = {S1, S2, · · · , Sn}, where Si

is generated by a distribution Di. By a stationary data stream we will consider a sequence of
instances characterized by a transition Sj → Sj+1, where Dj = Dj+1. However, in most modern real-
life problems the nature of data may evolve over time due to various conditions. This phenomenon
is known as concept drift [GZB+14, LA11] and may be defined as changes in distributions and
definitions of learned concepts over time. Presence of drift can affect the underlying properties
of classes that the learning system aims to discover, thus reducing the relevance of used classifier
as the change progresses. At some point the deterioration of the quality of used model may be
too significant to further consider it as a meaningful component. Therefore, methods for handling
drifts in data streams are of crucial importance to this area of research.

There are several aspects to be accounted when analyzing the nature of drift:

• Influence on the learned classification boundaries: two types of concept drift are
distinguished here. A real concept drift affects the decision boundaries (posterior probabili-
ties) and may impact unconditional probability density function, thus poses a threat to the
learning system. A virtual concept drift does not impact the decision boundaries (posterior
probabilities), but affect the conditional probability density functions, thus not influencing
the currently used learning models. However, it should still be detected. Visualization of
these drift types is presented in Figure 4.

• Types of change: three main types of concept drift are outlined here taking into consider-
ation its rapidness ratio. Sudden concept drift is characterized by Sj being rapidly replaced
by Sj+1, where Dj 6= Dj+1. Gradual concept drift can be considered as a transition phase
where examples in Sj+1 are generated by a mixture of Dj and Dj+1 with their varying pro-
portions. Incremental concept drift has a much slower ratio of changes, where the difference
between Dj and Dj+1 is not so significant, usually not statistically significant.

We may also face with so-called Recurring concept drift, what means that a concept from
k-th previous iteration may reappear Dj+1 = Dj−k and it may happen once or periodically.
Blips, also known as outliers which should be ignored as the change it represents is random
[Kun08]. Noise, which represents insignificant fluctuations of the concept and should be
filtered out [Brz15]. Mixed concept drift is a hybrid phenomenon, where more than a single
type of concept drift may appear during the stream mining process. One should note that in
real-life scenarios types of changes to appear are unknown beforehand and must be determined
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Figure 5: Six types of drifts with respect to the ratio of changes. Graphs show transitions between

the concepts along during the data stream progress.

during the stream processing. Visualization of these types of drifts are presented in Figure 5.

• Unfortunately, in real classification tasks concept drift may appear as a mixture of mentioned
above changes.

As mentioned before, managing concept drift is a crucial issue in learning from data streams.
Three common solutions are typically used to deal with drift in classification: (a) retrain classifi-
cation system from scratch every time a new instance or chunk becomes available; (b) detecting
changes and retraining classifier only when the degree of changes has been considered as significant
enough; and (c) using adaptive learning method that can follow the shifts and drifts in stream on
its own. Obviously, the first approach is characterized by an unacceptable computational cost and
therefore two remaining solutions remain valid.

There exist four main approaches to efficiently tackling drifting data streams:

• Concept drift detectors: are external tools used together with the classification mod-
ule [GMCR04]. They send signals to the the learning system informing about the severity of
current trend; the learning module decides whether the old classifier should be replaced or
not.

• Sliding windows: assume that we keep a buffer of fixed size containing most recent exam-
ples [HSD01]. They are used for the classification purposes and then discarded when new
instances become available.

• Online learners: are updated instance by instance, thus accommodating changes in stream
as soon as they occur [DH00]. Note that some standard classification algorithms may work
in online mode, e.g., Neural Networks [LWL+17] or Näıve Bayes [WHW14].

• Ensemble learners: are a popular family of methods for data stream mining [WGC14]. Due
to their compound structure they can easily accommodate changes in the stream, offering
gains in both flexibility and predictive power [KMG+17].

As in large-scale scenarios, standard reduction techniques tend to respond poorly to streaming
contexts where a new variable, time, appears on the scene. Direct adaptation of static reduction
techniques is not straightforward task since most of techniques assume the entire training set is
available from the beginning and properties of data do not change over time.

While it is true that most of filtering FS methods may be easily adapted for dynamic processing
(as most are based on cumulative functions), that is not the case for discretization and IS methods.
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Instance selection methods helps to maintain a polished base of relevant cases in memory.
Yet, case-bases naturally deteriorate and grow in size over time. In data stream scenario, past
preserved cases that belong to a previous concept may degrade the performance of the learner if
a new concept appears. Likewise, new instances that represent a new concept may be classified
as noise and removed by a misbehavior of the IS mechanism, because they disagree with past
concepts [LLZdM16].

Some enhancement (edition) and maintenance (condensation) [GLH15] should be thus per-
formed on case-bases in form of sophisticated IS processes, which select those cases that best
represent the current state of the data stream. However, most of current techniques are designed
for stationary environments and ignore the concept drift phenomenon.

Discretization algorithms for data stream scenarios must also be able to handle the appearance
of concept drifts. Definition and number of discretization intervals may change over time, following
shifts in data characteristics. It is then desirable that discretization intervals are able to smoothly
adapt to concept drift, without imposing increased computational and memory cost when being
recalculated. Otherwise any minor alteration in the meaning and/or the definition of discrete
intervals will mean a subsequent drop in prediction power. Degradation in learning is highly
related to several factors [Web14]: number of intervals affected, impact of new labels, etc.

Standard labeling schemes used in canonical discretization become outdated in when they face
real-world streaming problems. For instance, in cutpoint-based labeling, interval limits (labels) are
constantly shifted, and therefore, low information is retained. Likewise, standard interval labeling
entails a bunch of major issues to be addressed, such as: abrupt changes in the original meaning of
intervals provoked by “label swapping”, or steady transfer of instances between intervals (instance
relabel).

How interval labels are defined and labeled by discretizers in the streaming context (interval
labeling and definition), or what type of discrete information is passed to dynamic learners (inter-
val interaction) are two open problems whose importance has been neglected by the community.
Modern discretization models and schemes that explicitly address these problems are required.

2.5 Efficient nearest neighbor searches for instance selectors: metric tree in-

dexing

As mentioned in Section 2.2, the vast majority of instance selection methods exploit the Nearest
Neighbor (NN) rule in one way or another to decide which instances will compose the final selection
subset [GLH15]. k-NN [CH67] is an intuitive and effective non-parametric model used in many
machine learning problems and can be considered as one of top-ten most influential algorithms in
data mining [WK09]. Nevertheless, k-NN is also a costly method that requires to evaluate the
distance between each pair of instances (quadratic complexity) to delimit neighborhoods.

Many techniques have been proposed to alleviate the k-NN search complexity. They range
from metric trees [Sam05], which index data through a metric-space ordering; to locally sensitive
hashing [GIM99], which map (with high probability) those elements near in the space to the same
bins. In our instance selection methods, we utilize metric trees (M-tree) in order to impose a
metric order to the case-base maintained. M-trees [LMGY04] rely on properties such as the triangle
inequality to perform efficient searches on average (O(log(n)), thus improving linear search in k-
NN. As in other tree-based structures, M-trees are composed of nodes –where pointers to sub-trees
are distributed according to the input partitioning computed at the start–, and leaves –where small
subsets of data objects reside–.
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3 Justification

From previous sections, we may assert that there exist a considerable gap between the storing
and the processing capabilities of current systems. We have the right tools but we need proper
algorithms that support ML tasks in distributed scenarios. This implies that there exist a pressing
need for scalable ML proposals for modern distributed frameworks nowadays, specially in the data
preprocessing field. Moreover, the development of data preprocessing in Big Data will also serve to
enable ML algorithms where were inapplicable. Beyond voluminous data, velocity is another factor
that we must address elegantly, and if possible, in a scalable way.

In order to promote the development of ML, and concretely, data reduction in large-scale static
and dynamic environments, the followings major issues should be properly addressed:

• Large-scale data reduction is a quite young field within the more general ML field in Big Data
analytics. Few scalable proposals addressing data reduction are available in the literature.
Most of them either have been developed for single-node architectures, or have been tested
on fairly small datasets. To go further in the design of modern scalable solutions for data
reduction we consider that:

– Firstly, it is important to learn about the current technologies, paradigms and tools
used for big data preprocessing, as well as to study the current designs available in the
main ML commercial libraries for Big Data. This will give us the right knowledge to
decide which platform will support our solution according to our prior requisites, or
which distributed strategy is more appropriate for our task.

– Secondly, it is necessary to go deeper into this topic by analyzing the state-of-the-art
of big data reduction in the specialized literature. Study the models developed up to
date, categorize them, examine their scalability power, and learn from their pros and
cons to create proper further models. It is also relevant to know the main challenges to
be tackled on big data reduction for static databases.

– Data mining, and in particular, data reduction techniques have shown their lack of
scaling up capabilities to cope with large-scale problems. Therefore, the study and
design of scalable methods will be needed. Firstly, one needs to know which are the most
relevant and adequate data reduction methods in the standard literature to be adapted.
Once one has shown a preference for one algorithm, the knowledge from previous points
will be applied to properly design an equivalent distributed proposal.

• Data reduction for streaming data is another scarcely explored field whose main contributions
revolve around FS and IS. Fields like streaming discretization are left unattended and present
a bunch of major issues to be tackled (discretizer-learner interaction, interval labeling, etc.).
Moreover, high-speed big data streams present in many real-world problems urgently needs
modern algorithms that process in parallel data from multiple inputs, and quickly respond
to changes.

– As in the big data field, it is mandatory to perform a throughout study about the active
development of data reduction for data streaming. This will allows us to know what are
the strengths and weaknesses of current models, which problems remain under-explored
or even unexplored, and which subcategory of methods demands more attention, among
other issues.
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– The previous study will allow us to know the long list of open problems present in online
discretization. The development of a binding algorithm tackling all these problems at
once would be of great interest for the community.

– Finally, systems fed by high-speed data streams may benefit from the application of IS.
However, neighbor searches used in IS must be firstly accelerated in order to comply
with time and memory constraints demanded by Velocity in Big Data. The application
of some kind of instance-based indexing may boost searches, and make IS an enabling
technique for dynamic databases.

All these issues can be encompassed within the subject of this thesis: The development of
scalable data reduction models for large-scale static and dynamic databases.
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4 Objectives

Once the background have been properly described, we can move to set the aims of this thesis.
They include the study and analysis of Big Data, data reduction and data streaming, as well as
the development of rapid and effective algorithms for dynamic, and distributed environments (e.g.,
Apache Spark).

Specifically, the two main objectives behind this thesis are: analysis, design, implementation,
and evaluation of scalable data reduction algorithms for (1) large-scale static data and (2) streaming
data. In the following list, we will divide each objective into a more manageable set of items that
define the milestones to be achieved in this thesis.

• Big data reduction on static databases.

– To study the current state on big data technologies, paradigms and strategies:
An analytical study of current big data tools which will allow us to gain further knowledge
about the suitability and performance of current platforms and strategies. The end
objective is to provide an introduction of the characteristics of these technologies and
methodologies, as well as giving some guidelines about the design of novel algorithms
for Big Data.

– To study the current state-of-the-art on big data preprocessing: A theoretical
and empirical study of the state-of-the-art on big data preprocessing in order to discover
the strengths and weaknesses of current developments in the area. Also by studying
the scalability limits of current algorithms, we can define performance goals for further
developments in the field. To the best of our knowledge, there is no overview in the
literature that provides such knowledge.

– To prove that standard discretization algorithms can be redesigned to har-
ness the potential of big data. Concretely, the aim here is to prove that standard
discretization methods can be parallelized in Big Data platforms, boosting both per-
formance and accuracy. The resulting algorithm will generate similar (or identical, if
possible) intervals to those generated by canonical methods, at the same time showing
a scalable behavior in their performing. Moreover, the development of open-source soft-
ware would prove to be useful for practitioners –by providing an useful tool not available
before–, and scientists –by promoting reproducible research–.

– To provide a scalable discretizer based on evolutionary computation. After
analyzing current advances on discretization, our objective is to provide more simple
and precise remedies to the cut points selection problem by harnessing the potential of
evolutionary optimization. The end goal here is to provide a distributed version that
proves evolutionary-based algorithms may erect as a feasible alternative in the big data
discretization field.

• Data reduction for streaming data.

– To study the current state-of-the-art on data preprocessing for streaming
data: A theoretical and empirical study of the state-of-the-art on streaming prepro-
cessing. The aim is to study the features of current methods, and evaluate them both
empirically and analytically. We want to discover what are the open challenges in this
field in order to propose new models relevant for the community.
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– To provide an scalable solution for online discretization: Given the long list
of open problems in streaming discretization, we focus on providing smart solutions to
this topic. The aim here is two-folded: (1) to provide a formal definition for the open
problems discovered in the previous study, and (2) to design a compounding solution
based on adaptive discretization that encompasses all the aforementioned problems.

– To incorporate scalable instance selection to high-speed big data scenarios.
The application of IS to high-speed big data streams may erect as a good trend to
mitigate the accumulation of noisy instances in multi-input unbounded systems. The
IS method developed will leverage metric trees to expedite neighbor searches. Thanks
to this achievement, IS will be able to act in large-scale dynamic scenarios for the first
time.
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5 Methodology

This thesis requires the application of a methodology that is both theoretical and practical. There-
fore, we need a strategy that, while maintaining the guidelines of the traditional scientific method,
is able to provide the special needs of such methodology. In particular, the following guidelines
about the research work and the experiments will be applied:

1. Observation: thorough study of the large-scale and dynamic ML problem along with the ap-
plication of scalable data reduction as a fundamental step in KDD, as well as the possibilities
offered by distributed computing technologies to give a proper solution to this problem.

2. Hypothesis formulation: design of new preprocessing algorithms (concretely, data reduc-
tion methods) that make use of distributed strategies to notably reduce volume in databases.
The methods developed must comply with the objectives previously mentioned in order to
properly face the big data problem.

3. Observation gathering: retrieving the results obtained by the application of the new meth-
ods on real-world, voluminous and dynamic databases. Both efficiency and accuracy have to
be measured and considered in the designs.

4. Contrasting the hypothesis: comparison of the results obtained by the learning algorithms
after reduction in order to analyze quality in the new proposals. For that purpose we will
rely on scalable ML libraries, such as MLlib or Mahout. Other proposals in the literature
will serve to validate effectiveness and efficiency in our model.

5. Hypothesis proof or refusal: acceptance or rejection and modification, if proceed, of the
developed techniques as a consequence of the experiments performed and the subsequent
results. If necessary, the previous steps should be redone to create new hypothesis to be
proven.

6. Scientific thesis or theory: extraction, redaction and acceptance of the conclusions ob-
tained throughout the research process. All the proposals and results gathered along the
entire process should be synthesized into journal publications, and eventually, in this thesis.
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6 Summary

This section summarizes the ideas described in the publications associated to this thesis. After
that, Section 7 will present a brief overview of the associated results. The research developed for
this thesis, and the associated results obtained are collected into the published journal publications
listed below:

• S. Ramı́rez-Gallego, A. Fernández, S. Garćıa, M. Chen, F. Herrera, Big Data: Tutorial and
guidelines on information and process fusion for analytics algorithms with MapReduce. In-
formation Fusion 42 (2018) 51–61, doi: 10.1016/j.inffus.2017.10.001

• S. Garćıa, S. Ramı́rez-Gallego, J. Luengo, J. M. Beńıtez and F. Herrera, Big data prepro-
cessing: methods and prospects. Big Data Analytics 1 (2016) 1–9, doi: 10.1186/s41044-016-
0014-0

• S. Ramı́rez-Gallego, S. Garćıa, J. M. Beńıtez and F. Herrera, Multivariate discretization based
on evolutionary cut points selection for classification. IEEE Transactions on Cybernetics 46
(3) (2016) 595–608, doi: 10.1109/TCYB.2015.2410143

• S. Ramı́rez-Gallego, S. Garćıa, H. Mouriño Taĺın, D. Mart́ınez-Rego, V. Bolón-Canedo, A.
Alonso-Betanzos, J. M. Beńıtez, F. Herrera, Data discretization: taxonomy and big data
challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 6 (1)
(2016) 5–21, doi: 10.1002/widm.1173I.

• S. Ramı́rez-Gallego, S. Garćıa, J. M. Beńıtez and F. Herrera, A distributed evolutionary
multivariate discretizer for Big Data processing on Apache Spark. Swarm and Evolutionary
Computation 38 (2018) 240–250, doi: 10.1016/j.swevo.2017.08.005.

• S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak and F. Herrera, A survey on data
preprocessing for data stream mining: current status and future directions. Neurocomputing
239 (2017) 39–57, doi: 10.1016/j.neucom.2017.01.078.

• S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak, J. M. Beńıtez and F. Her-
rera, Nearest neighbor classification for high-speed Big Data streams using Spark. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47 (10) (2017) 2727–2739, doi:
10.1109/TSMC.2017.2700889.

• S. Ramı́rez-Gallego, S. Garćıa, and F. Herrera, Online Entropy-Based Discretization for Data
Streaming Classification. Submitted to Future Generation Computer Systems.

The remainder of this section is organized following the objective-driven scheme presented in
Section 4. First, Section 6.1 provides some insights about the review performed on big data artifacts.
Second, Section 6.2 analyzes the review performed on large-scale static data reduction. Then,
Section 6.3 details the first scalable proposal proposed to deal with the big data discretization
problem, whereas Section 6.4 provides an evolutionary-based alternative to the same problem.
Regarding the streaming context, Section 6.5 analyzes the thorough study performed on data
reduction for data streams. Our first contribution to this topic, concretely to online discretization,
is briefly described in Section 6.6. Finally, we conclude the chapter by detailing our distributed IS
design for high-speed data streams.
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6.1 Review on big data technologies, paradigms and strategies

The prevailing exploitation of big data analytics tools has proven its worth on both industry and
academia. The MR programming framework can be stressed as the main paradigm related with
such tools. By means of two simple functions, Map and Reduce, any implementation can be
automatically parallelized in a transparent way for the programmer, also supporting by default
the aforementioned fault-tolerant scheme. Whereas the procedure to be included in the Map task
is, most times, straightforward to determine, the hitch comes when deciding how to carry out the
models’ fusion within the Reduce task. At this point, the design depends on many factors, namely
whether the submodels are different and independent among them, or they have a nexus for being
able to join them directly.

In this work, we analyzed different paradigms and strategies implemented by modern scalable
learning algorithms. Their behavior was also analyzed into detail. The analysis mainly focused
on the level of discrepancy between the distributed models and their corresponding single-machine
versions. We considered it as the most remarkable aspect to categorize the existing solutions for
large-scale ML.

From this perspective, we identified two unlike groups: (1) approximate fusion of models (one
submodel per partition, eventually fused), and (2) exact fusion for scalable models (compounding
model with the same output as the sequential version). Other relevant aspects considered in this
model categorization were their scope (local vs. global), iteration nature (1-step vs. multistage),
or possible guidance by a master thread (guided vs. unguided).

A practical study on scalability was performed on each fusion model for the sake of contrasting
the variance of time and accuracy performance as resources increase. In order to provide a better
understanding of each type of implementation, we also presented some case studies regarding some
well-established algorithms from two well-known libraries, such as Mahout (from Apache Hadoop)
and MLlib (from Apache Spark).

The publication associated to this part is:

• S. Ramı́rez-Gallego, A. Fernández, S. Garćıa, M. Chen, F. Herrera, Big Data: Tutorial and
guidelines on information and process fusion for analytics algorithms with MapReduce. In-
formation Fusion 42 (2018) 51–61, doi: 10.1016/j.inffus.2017.10.001

6.2 Review on big data preprocessing

Novel distributed designs that improve the scalability of standard data reduction techniques has
become a major challenge for the data science community. To respond to this challenge more than
30 different algorithms have been proposed so far in the specialized literature, showing the positive
impact of large-scale learning and the demand for these algorithms present nowadays.

However, these methods are implemented in different platforms, following different design strate-
gies and patterns inherited. Despite this, many of the published methods show duplicity partly
or entirely in their algorithmic descriptions. Moreover, yet many methods have been tagged with
the Big Data term, neither they have been tested on really large databases, nor directly follow a
distributed approach. As all these problems can lead to confusion, we have proposed a complete
overview about this topic. At the time of writing this thesis there is no general categorization and
review of large-scale preprocessing methods in the literature.

The definition, characteristics, and categorization of data preprocessing approaches in Big Data
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have been introduced here. The connection between Big Data and data preprocessing throughout
all families of methods and big data technologies are also examined, including a full review of the
state-of-the-art. Additionally, research challenges are discussed with special remark on develop-
ments on different big data framework, such as Hadoop, Spark and Flink, as well as the encourage-
ment in devoting substantial research efforts in some families of data preprocessing methods and
applications on new big data learning paradigms.

We have identified some basic features to categorize large-scale reduction algorithms, includ-
ing: the supporting framework (Hadoop MR, MPI, Apache Spark, Twister, etc.), the maximum
empirical dataset size, number of features and their shape (dense or sparse format), and number
of instances addressed by each method. This thorough analysis allowed us to properly categorize
the methods, as well as to establish an illustrative ranking about their scalability power.

The journal paper attached to this part is:

• S. Garćıa, S. Ramı́rez-Gallego, J. Luengo, J. M. Beńıtez and F. Herrera, Big data prepro-
cessing: methods and prospects. Big Data Analytics 1 (2016) 1–9, doi: 10.1186/s41044-016-
0014-0

6.3 Enabling standard discretization on Big Data

Data preprocessing aims at adapting incoming data in raw shape to the strict requirements posed
by each learning algorithm. However, canonical data reduction methods are not expected to scale
well when managing huge data –both in number of features and instances– so that its application
can be undermined or even become impracticable. Despite the importance of data preprocessing in
KDD, few proposals have been thought to reduce voluminous data. Specially scarce is the impact
reached by large-scale discretization.

In order to fill this gap, in this part we proposed a distributed re-design of the entropy minimiza-
tion discretizer proposed by Fayyad and Irani in [FI93] using Apache Spark. Our main objective was
to prove that well-known discretization algorithms such as Fayyad’s discretizer can be parallelized
in these frameworks, providing reliable solutions for big data analytics tools.

Several problems arouse during the adaptation of the algorithm. The first issue revolved around
the distribution of complexity burden, mainly determined by two time-consuming operations:

• the sorting of candidate points, whose operation exhibits a O(|A|log(|A|)) complexity where
A represents the set of candidate points (originally composed by all distinct points).

• the evaluation of candidates, which conveys a O(|BA|2) operation where BA means the set of
points close to class borders.

Note that the previous complexity is bounded to a single attribute. To avoid repeating the
previous process on all attributes, we designed the algorithm to sort and evaluate all points in a
single step. Only when the number of boundary points in an attribute is higher than the maximum
per partition, computation by feature is compulsory. Our algorithm was denoted by Distributed
Minimum Distance Length Principle (DMDLP).

Finally, to demonstrate the effectiveness of DMDLP, a complete experimental evaluation was
launched. This framework was composed by two large datasets with up to 60 millions of instances,
two distributed classifiers from MLlib, and another discretizer.

The journal contribution associated to this part is:
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• S. Ramı́rez-Gallego, S. Garćıa, H. Mouriño Taĺın, D. Mart́ınez-Rego, V. Bolón-Canedo, A.
Alonso-Betanzos, J. M. Beńıtez, F. Herrera, Data discretization: taxonomy and big data
challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 6 (1)
(2016) 5–21, doi: 10.1002/widm.1173I.

6.4 Distributed discretization based on evolutionary computation

EAs have been used for data preparation with promising results [Fre02]. However, few evolutionary
approaches can be found in the discretization literature. They encompass a wide range of techniques
and combinations, such as: GA+clustering [HTH06], GA+rough sets [CLQW03], or GA+Näıve-
based wrapper [FILn07]. Given the outstanding results generated by EAs in other fields, a further
study in discretization can be quite positive for the literature.

Then we proposed the reformulation of the cut points selection problem as an optimization
problem with binary search-space, and the subsequent application of a EA-based optimizer. The
EA proposed relies on a wrapper fitness function based on a tradeoff between the classification
error provided by the application of two classifiers, and the number of boundary points produced.
Another advancement introduced in our method is the multivariate ability to leverage from the
existing interactions and dependencies among input attributes and the class. Our proposal is
denoted by Evolutionary Multivariate Discretizer (EMD).

EMD have been contrasted with the top-7 in discretization according to [GLH15]. The empirical
study consists of 45 datasets, 4 classifiers for comparison, and an analysis based on nonparametric
statistical testing.

The next target was to design an scalable approach on Spark able to deal with thousands of
cut points, while keeping the original idea behind EMD. Three main problems were faced in this
extension:

• In the cut points selection problem, discretizers are mainly affected by the number of boundary
points to evaluate (long chromosomes). In particular, this problem is influenced by two
factors: the number of instances and features present in the problem. Another hidden factor
that influences the complexity is the number of distinct points present in each feature. If this
value is high, the algorithm will process a high number of boundary points.

In order to keep the multivariate philosophy and to alleviate the complexity derived from
these two problems, our distributed proposal introduced some major changes, such as to
divide the complete set of features into partitions so that point evaluation is performed in a
parallel way.

• For the second problem (high number of instances), we proposed to partition the set of
instances into a set of equal-sized partitions. Each data partition will serve to evaluate
different parts of the chromosome. Once data partitions have been evaluated following the
standard scheme, the subsequent partial solutions are aggregated through a voting scheme.

• Regarding the evaluation, one classifier was removed from the fitness function. Näıve Bayes
was elected to evaluate fitness because of its simplicity and efficiency in its close-form expres-
sion (linear order).

The distributed approach, called Distributed Evolutionary Multivariate Discretizer (DEMD),
was tested in a thorough experimental evaluation with several large-scale datasets (up to O(107)
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instances and O(104) features). Experiments on real-world datasets have shown the simplicity and
precision of outcomes.

The journal papers associated to this part are:

• S. Ramı́rez-Gallego, S. Garćıa, J. M. Beńıtez and F. Herrera, Multivariate discretization based
on evolutionary cut points selection for classification. IEEE Transactions on Cybernetics 46
(3) (2016) 595–608, doi: 10.1109/TCYB.2015.2410143

• S. Ramı́rez-Gallego, S. Garćıa, J. M. Beńıtez and F. Herrera, A distributed evolutionary
multivariate discretizer for Big Data processing on Apache Spark. Swarm and Evolutionary
Computation 38 (2018) 240–250, doi: 10.1016/j.swevo.2017.08.005.

6.5 Review on data reduction for streaming data

With the advent of Big Data comes not only an increment in data volume, but also the notion of its
velocity. Velocity means data will expand itself over time and new samples will arrive continuously
in form of streams. These imposes specific constraints on the learning system that cannot be
fulfilled by canonical algorithms, so that new specific models for all areas contained in the KDD
process are required.

In spite of the long list of benefits guaranteed by data reduction, not many proposals in this
domain can be found in the literature for online learning from data streams [ZG14]. Most of methods
are just incremental algorithms originally designed to manage finite datasets. Direct adaptation
of static reduction techniques is not straightforward since most of techniques assume the whole
training set is available at the start, and properties of data do not change over time:

• Most of static instance selectors require multiple passes over data [GLH15], at the same
time being mainly based on time-consuming neighbor searches that makes them useless for
handling high-speed data streams.

• Online supervised discretization methods also remain fairly unexplored. Most of standard
solutions require several iterations of sharp adjustments before getting a fully operating so-
lution [Web14]. Other major issues, such as interval definition/labeling or the interaction
between the learning and discretization components also remain unattended.

• On the contrary, feature selection techniques are easily adaptable to online scenarios. Yet,
they suffer from other problems such as concept evolution, or dynamic [MCG+10] and drift-
ing [BGE15] feature space.

This analysis encouraged us to perform a deep study in this area, which includes a thorough
enumeration, classification, and analysis of existing contributions for data stream preprocessing.
Although there exist previous studies that have performed a coarse-grained analysis on some tasks
individually –feature selection and instance selection– [BCnAB15, LLZdM16], this work is the first
complex overview of advances in this field, additionally outlining vital future challenges that need
to be addressed to ensure meaningful progress and development of novel methods.

In addition to discussing the literature in preprocessing methods for mining data streams, we
performed a conscious experimental study to further enrich the work. We have analyzed predictive,
reduction, time and memory performance of selected most relevant algorithms in this field. Ad-
ditionally, nonparametric statistical tests were used to give support to the final conclusions. The
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discussed experimental framework involved a total of 20 datasets and 10 reduction methods: three
feature selectors, three discretizers, and four instance selectors.

The journal publication associated to this section is:

• S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak and F. Herrera, A survey on data
preprocessing for data stream mining: Current status and future directions. Neurocomputing
239 (2017) 39–57, doi: 10.1016/j.neucom.2017.01.078.

6.6 Online discretization

Data streams demand novel learning schemes that not only adapt well, but also that constantly
revise their time and memory requirements. Nevertheless, up to date few supervised approaches for
online discretization have been presented in the literature. Another requirement to face is the likely
non-stationary of incoming data (concept drift). Sudden or abrupt changes in data distribution
require outstanding adaptation abilities to follow drifting movements in decision borders. Also
adjustments should not imply complex rebuilding processes, but should be solved rapidly.

Finally, how interval labels are defined and labeled by online discretizers, or what kind of discrete
information is passed to learners are other unsolved problems that have received even less attention
in the literature. Recent proposals on online discretization confirm that canonical label indexing
is unable to cope with all these flaws, thus showing a deficient behavior in the subsequent learning
phase.

In this section we have tackled the previous problems by developing a modern discretization
solution that smoothly and efficiently adapts to incoming drifts. Our method, called Local Online
Fusion Discretizer (LOFD), mainly relies on highly-informative class statistics to generate accurate
intervals at every step. Furthermore, local nature of operations implemented in LOFD offers low
response times, thereby making it suitable for high-speed streaming systems.

On the other hand, we have designed two alternatives to effectively improve the underlying in-
teraction between the discretization and the learning phases. The first approach naturally provides
class information to learners, whereas the second one (called smooth shift) is a renovated version
of the standard scheme.

In order to measure the performance of our method, we have evaluated it on a conscious exper-
imental framework, composed by 12 streaming datasets, 2 online learning algorithms, the current
state-of-the-art for online discretization, and a set of non-parametric and Bayesian statistical tests.
Plus a study concerning the impact of the proposed alternatives for interaction was applied.

The journal paper associated to this section is:

• S. Ramı́rez-Gallego, S. Garćıa, and F. Herrera, Online Entropy-Based Discretization for Data
Streaming Classification. Submitted to Future Generation Computer Systems.

6.7 Distributed instance selection for high-speed big data streams

Lazy learning is considered as one of the simplest, yet most effective schemes in supervised learning.
As generalization in these learners is deferred until the test phase, they tend to have much slower
classification phase than other learners. Lazy learners (e.g., k-NN) also tend to accumulate in-
stances from data streams, thus leading to using data related to the outdated concepts may for the
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decision-making process. As of these reasons lazy learning has not been widely used in streaming
environments in spite of its attractive properties.

Data reduction techniques may be applied to improve the performance of lazy learners. Con-
cretely, instance selection techniques can be very effective as they reduce the total number of
samples stored in the case-base, and therefore, they simplify the underlying search space. Yet to
the best of our knowledge, there is no instance selection method up to date able to deal with the
phenomenon of high-speed big data streams.

In order to fill this gap, we have proposed an efficient nearest neighbor solution to classify high-
speed and massive data streams using Apache Spark. Our algorithm, called DS-RNGE, consists
of a distributed case-base and an IS method that enhances its performance and effectiveness. A
distributed metric tree has also been integrated with the aim of imposing an order to the preserved
case-base, so that further neighbor searches are boosted. Finally, performance is further improved
thanks to a distributed edition-based IS technique whose objective is to select correct examples
and remove the noisy ones.

Several experiments were performed to asses the time performance of different components
contained in DS-RNGE: the distributed tree, the selection, and the lazy learner. Likewise, the
precision gradient obtained after each selection phase is measured and analyzed here. 6 large-scale
datasets were used to evaluate the performance and precision of our entire system.

The research work associated to this part is:

• S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak, J. M. Beńıtez and F. Herrera,
Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark. IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47 (10) (2017) 2727–2739, doi:
10.1109/TSMC.2017.2700889.
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7 Discussion of results

The following subsections are devoted to summarize and provides further discussion regarding the
results obtained in each stage of this thesis.

7.1 Review on big data technologies, paradigms and strategies

This review has been devoted to the the design of scalable ML algorithms following the MR program-
ming model and similar where the process fusion is the core in the design. A thorough taxonomy of
distributed models for ML based on both the fusion tactic and the model scope has been analyzed,
distinguishing between two main categories: approximate fusion, and exact fusion of models.

To obtain well-founded conclusions about these different types of methodologies, we have car-
ried out an experimental study to contrast the scalability of the different schemes. Our results
have determined the higher quality of those algorithms based on exact fusion of models. In addi-
tion, we have observed the best option to a 2x partition rate for Spark-based Machine Learning
implementations.

The strong and weak points for both types of the fusion models have been also analyzed. This
have allowed us to provide several guidelines on this topic:

• The main point is to favor the development and adoption of global and exact model over the
use of approximate fusion as they are more precise and more consistent with theory behind
standard methods.

• There is a necessity in developing more theoretical studies to facilitate the migration of
current ML models towards Big Data. This way, a direct connection between a certain
learning methodology and its distributed design can be established.

• Approximate models may still offer many interesting opportunities for research, specially
when no reliable exact alternative is feasible and speed is a must. In particular, the case of
ensemble learning is of extreme importance in this scenario.

• Finally, a smart utilization on the distributed operators beyond MR is mandatory in order to
implement robust and scalable solutions for the fusion process from a practical point of view.
In this respect, Apache Spark stands as a outstanding option in the market as it natively
supports several paradigms and operators in its engine.

7.2 Review on big data preprocessing

Different families in big data preprocessing (IS, FS, discretization, imbalanced preprocessing, incom-
plete treatment, etc.) have been thoroughly studied in this review throughout the categorization
and the analysis of the few techniques proposed so far in the literature. The main features and
achievements showed by them have been measured and captured in our work.

The results of our comparison have highlighted some negative aspects to be considered in the
further development of big data preprocessing methods. We highlight here some:

• The vast majority of methods studied have been implemented on platforms (e.g., Apache
Hadoop) that show clear deficiencies when dealing with iterative process such as those present
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in preprocessing methods. Only 5 methods are built on top of distributed frameworks based
on in-memory processing (e.g., Apache Spark or Twister).

• The size of datasets tested are on average far from reality. Most of real-world problems
exceeds hundreds of gigabytes of memory, whilst only 6 methods in our study are able to
cope with such magnitudes.

• In fact, more than 50% of methods studied either do not specify the size of the problems, or
process datasets expanding less than 1 GB on disk.

In the future, significant challenges and topics must be addressed by the industry and academia,
especially those related to the use of new platforms such as Apache Spark and Flink, the enhance-
ment of scaling capabilities of existing techniques (e.g., IS or missing values imputation) and the
approach to new big data learning paradigms (e.g., unsupervised learning and semi-supervised
learning, or data streaming).

7.3 Enabling standard discretizers to deal with Big Data

In the corresponding section, we have proposed a completely distributed method for data discretiza-
tion which is inspired by Fayyad’s discretizer. The aim of this work is to prove that canonical
discretizers can be parallelized in big data platforms, boosting both performance and accuracy.

According to the experiments, our solution, called DMDLP, is able to perform 270 times faster
than the sequential version in our cluster, improving the accuracy of baseline Gaussian estimation
in all the datasets used. The latter fact highlights the positive impact of proper discretization in
both small and large-scale learning. This means that not only the learning performance is boosted
thanks to discretization but also the precision of derived schemes. This is notable the case study
of ECBDL14, where the learning would be likely impractical without the contribution of DMDLP
as the dataset is too large for common single-node architectures.

Another important feature to remark from DMDLP is that is able to produce identical dis-
cretization schemes to those generated by the original proposal. We thus commit the previous
statement of promoting exact models in contrast to approximate-based ones. We also rely on an
in-memory computing platform and its complex operators to implement our model, again following
the guidelines appointed by the previous survey.

7.4 Distributed discretization based on evolutionary computation

In this section, we have presented a new evolutionary-based discretization algorithm called EMD,
which selects the most adequate combination of boundary cut points to create discrete intervals.
The proposed algorithm follows a multivariate approach, being able to take advantage of the existing
interactions and dependencies among the set of input attributes and the class output to improve
the discretization process. It also includes a chromosome reduction mechanism to tackle larger
problems.

The large experimental study performed allows us to show that EMD is a suitable method for
discretization in small and large problems. It requires a lower number of cut points than the other
discretizers, thus producing much simpler discretization solutions. Additionally, EMD outperforms
the state-of-the-art discretizers on classification accuracy. It can be considered as the best choice
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for classifiers, such as C4.5, Naive Bayes, PART, or PUBLIC. Positive outcomes were confirmed by
a non-parametric statistical test with high confidence.

In a further extension, called DEMD, a distributed multivariate discretization algorithm based
on evolutionary optimization was proposed for Apache Spark. In this remodeled design, a new
system of cross-evaluation between partitions of instances and cut points was introduced to evaluate
cut points. Despite its approximate nature, the previous evaluation showed promising discretization
schemes supported by precise splits, and a quite similar behavior to the inspiring method EMD.

The experimental framework applied on several big datasets (up to O(107) instances and O(104)
features) have shown the improvement on accuracy and simplicity when relying on DEMD. More-
over, DEMD enables to tune the simplicity/accuracy rate of the generated solutions regarding our
available computing power.

7.5 Review on data reduction for streaming data

Here we have presented a thorough survey of data reduction methods applied on data streams. We
have focused on analyzing basic related concepts, existing works, and present and future challenges.
Based on a number of relevant characteristics, we have proposed a simple, yet useful taxonomy of
current developments in dynamic preprocessing.

Starting with FS, we have divided the methods according to the type of selection operator
implemented –filter, wrapper, or hybrid–, the type of feature space conversion between different
steps –Lossy-F, Lossy-L, Lossless–, or whether new classes can emerge from streams –concept
evaluation–. In case of IS methods, we provide a taxonomy based on: the type of selection measure
–case accuracy, instance weighting, competence-based, and many more–, whether they include drift
detection, and whether they perform edition and/or condensation as treatment. Finally, discretiza-
tion categorization only depends on a single factor: the splitting/merging strategy implemented by
the methods –only merge, only split, both–.

Most relevant methods have also been analyzed empirically through a conscious experimental
framework, which includes a long and diverse list of artificial and real datasets with different types
of drift. A statistical analysis based on non-parametric tests have been conveyed to support the
resulting conclusions. The previous results have shown the wide range of phenomenons affect-
ing features in data stream mining, as well as the lack of methods capable of dealing with such
shortcomings. Furthermore, the results witness the unfavorable performance of instance selectors
regarding time and memory requirements, thus preventing their meaningful impact on high-speed
data stream mining.

According to these evidences, it can be claimed that data preprocessing for data streams is still
in its early days. Great progress has been made in instance and feature selection, but other tasks
like discretization remains yet to be properly addressed.

7.6 Online discretization

This section was thought to gain even further knowledge from the major issues to be faced by
contemporary online discretizers. As a potential solution for the interval labeling and interaction
problems, we have proposed and analyzed two opposing strategies. Both alternatives have shown
in the experiments their positive effect on the transition between consecutive discretization states,
and the most advantageous scenarios for them.
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In order to solve the adaptation problem we have integrated all the labeling schemes in a novel
online discretization algorithm. LOFD generates self-adaptive and highly-informative discretization
schemes, in which precise intervals are supported by updated class statistics. LOFD presents a high
level of responsiveness as well due to the fully local strategy implemented (only a reduced subset
of intervals is considered in each split/merge phase).

The experimental framework has proven that LOFD is by far the most competitive solution in
terms of predictive accuracy. Compared with other options, which either barely cover the search
space or generate too many meaningless intervals, LOFD is able to achieve an excellent trade-off
between simple and precise solutions. LOFD is also ranked as one of the most rapid supervised
discretizers.

7.7 Distributed instance selection for high-speed big data streams

In this part of the thesis, we have presented DS-RNGE, a nearest neighbor classification solution
for processing massive and high-speed data streams using Apache Spark. Up to our knowledge,
DS-RNGE is the first lazy learning solution designed for high-speed streaming scenarios. DS-RNGE
includes an IS echnique that constantly improves the performance and effectiveness of the built-in
learner by only allowing the insertion of correct examples, and the subsequent removal of outdated
samples.

The experimental analysis, involving several datasets with millions of instances, shows that
DS-RNGE combines high accuracy with significantly reduced processing time and memory con-
sumption. DS-RNGE without removal of outdated cases showed more precise results than those
held by the baseline model in all cases. DS-RNGE also performed faster in the prediction phase,
whereas the baseline model performed faster in updating the case-base. In general, both algorithms
present similar performance ratios in terms of overall runtime.
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8 Concluding remarks

In this thesis, we have addressed several problems focusing on a common objective: the analysis,
design, implementation and final evaluation of algorithmic solutions for the the problem of data
reduction in large-scale databases. This thesis revolves around two main research lines: (1) big
data reduction on static databases, and (2) data reduction for data streaming.

In the first research line, our primary objective was to gain full understanding of the current
technologies, paradigms, and tools present in the big data environment, as well as the algorithmic
designs already present in these platforms. The results derived from this study encouraged us to
shift towards exact theoretically-founded models instead of approximate and ad-hoc solutions. To
gain even further foundation, we carried out a second study about the current state-of-the-art in the
specialized literature on big data reduction. We found that few reduction methods were adapted
to deal with large-scale static data, and most of them either are built on poor designs, inadequate
platforms, or have overestimated their scalability power.

Bearing this knowledge in mind, we proposed an scalable adaptation for a golden discretiza-
tion algorithm in the literature which guarantees identical results to the original inspiring method.
This means that the theoretical assumptions supporting the latter method has also served as a
basis for the new model. This algorithm, called DMDLP, showed that canonical algorithms may
actually develop well in distributed environments, and at the same time, be handy for the KDD
process. The next challenge in this field was to leverage from the outstanding capacity of EAs
to create a competitive discretizer whose scope was not only bounded to the single-thread sce-
nario. The first commitment was achieved with excellency by EMD. This empirically outperformed
the current state-of-the-art in discretization thanks to its evolutionary nature and the multivari-
ate approach implemented. The second goal was eventually achieved with a extension work that
originated DEMD, a distributed multivariate discretizer based on evolutionary optimization. De-
spite emulating its predecessor through an approximate procedure, DEMD provided competitive
discretization schemes for large-scale real-world problems. Empirical outcomes acknowledge the
superiority in simplicity and precision of DEMD’s schemes with respect to those generated by its
closest competitor (DMDLP).

The second part of this dissertation is dedicated to reduction in data streaming. Once again,
we started by studying the current state-of-the-art, as well as by providing a survey that analyzes,
categorizes and evaluates the last developments in this area. We also analyzed the close-future
goals to be tackled in streaming reduction. The outcomes derived from here were uneven: some
fields, such as FS, proved to be quite advanced, while others, such as online discretization, were
in the early days and with many present issues to be addressed (even discovered). Yet IS for data
streaming is a fairly well-established field, the results in our study witness the poor adequacy of
current proposals to cope with high-speed big data streams in terms of time performance.

Two promising research branches and commitments arise from the previous analysis. Firstly,
the necessity of efficient and effective evolving schemes in discretization, as well as the long list
of open problems to be faced in this field. We arranged both concerns in LOFD, a self-adaptive
discretizer which leverages from updated class statistics to smoothly shift interval limits. As a
potential solution for the interval labeling and interaction problems, we proposed and integrated in
LOFD two opposing and functional strategies. The experiments confirmed LOFD is by far the most
competitive solution in the field nowadays. The second branch lies in the requirement for rapid IS
methods able to process several high-speed data streams in parallel. The answer to this demand
was DS-RNGE, the first known proposal in this area. DS-RNGE applies IS to each streaming
iteration so that a sanitized and downsized case-base is maintained over time. The subsequent
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output is an accurate and scalable system capable of processing thousands of instances per second
in modest cluster of machines.
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Conclusiones

En esta tesis hemos abordado varios problemas centrados en un objetivo común: el análisis, diseño,
implementación y evaluación final de soluciones algoŕıtmicas para el problema de la reducción
de datos en bases de datos de gran escala. Esta tesis gira en torno a dos ĺıneas principales de
investigación: la reducción de (1) datos voluminosos y (2) flujos de datos.

En la primera ĺınea de investigación, nuestro principal objetivo fue estudiar en profundidad
las tecnoloǵıas, paradigmas y herramientas presentes en entorno de datos grandes, aśı como los
diseños algoŕıtmicos ya presentes en estas plataformas. Los resultados derivados de este estudio
nos animaron a promover desarrollos exactos con una consistente base teórica, en contraposición
a soluciones aproximadas y ad-hoc. Para obtener un mayor fundamento teórico, realizamos un se-
gundo estudio sobre el estado actual de la literatura especializada. Descubrimos que pocos métodos
de reducción fueron adaptados para manejar datos estáticos a gran escala, y que la mayoŕıa de ellos
están construidos sobre diseños deficientes, plataformas inadecuadas, o que éstos han sobreestimado
su capacidad real de escalabilidad.

Teniendo en cuenta este conocimiento, propusimos una adaptación distribuida para un algo-
ritmo de discretización de gran relevancia en la literatura. Dicha aproximación garantiza esquemas
idénticos a los generados por el método original. Esto implica que los fundamentos teóricos que
sustentan el método original también han servido de base para el nuevo modelo. El desarrollo
final, llamado DMDLP, demostró que los algoritmos tradicionales de reducción tambien pueden
desempeñar bien en entornos distribuidos y, al mismo tiempo, ser útiles para el proceso KDD.
El siguiente reto en este campo consist́ıa en aprovechar la extraordinaria habilidad de los algorit-
mos evolutivos para crear un discretizador competitivo cuyo alcance no se limite únicamente al
escenario secuencial. El primer compromiso fue alcanzado con excelencia por EMD. Esto superó
emṕıricamente el actual estado del arte en discretización gracias a su naturaleza evolutiva y al en-
foque multivariado implementado. El segundo objetivo fue finalmente en un trabajo de extensión
que originó DEMD, un discretizador multivariado distribuido basado en optimización evolutiva. A
pesar de emular a su predecesor v́ıa un procedimiento aproximado, DEMD proporcionó esquemas de
discretización competitivos para diversos problemas reales de gran escala. Los resultados emṕıricos
reconocen la superioridad en simplicidad y precisión de los esquemas de DEMD con respecto a los
generados por su competidor (DMDLP).

La segunda parte de esta tesis está dedicada a la reducción de flujos de datos. Una vez más,
comenzamos estudiando el estado actual de la temática, aśı como proporcionando una revisión que
analiza, categoriza y evalúa los últimos desarrollos en el área. También analizamos los próximos
objetivos a ser abordados en la reducción para datos dinámicos. Los resultados derivados de este
estudio fueron desiguales: algunos campos, como la selección de atributos resultaron estar bastante
avanzados, mientras que otros, como la discretización, estaban todav́ıa en sus primeros d́ıas con
muchos problemas por tratar, incluso descubrir. Aunque la IS se ereǵıa como campo bastante
establecido, los resultados de nuestro estudio atestiguaron una claro insuficiencia en el rendimiento
de las propuestas actuales cuando hacen frente a flujos de datos de alta velocidad.

Del análisis anterior se desprenden dos prometedoras ramas de investigación a abordar. En
primer lugar, la necesidad de contar con esquemas evolutivos eficientes y eficaces en la discretización,
aśı como la necesidad de hacer frente a la larga lista de problemas abiertos en este campo. Ambos
compromisos fueron abordados en LOFD, un discretizer auto-adaptativo que se basa en estad́ısticas
de clase actualizadas para aplicar cambios suaves en los ĺımites de los intervalos. Como solución
potencial para los problemas de etiquetado de intervalos y de interacción, propusimos e integramos
en LOFD dos estrategias opuestas y completamente funcionales. Los experimentos confirmaron
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que LOFD es con diferencia la solución más competitiva en la literature actualmente. La segunda
rama descansa sobre la necesidad de rápidos selectores de instancias que sean capaces de procesar
varios flujos de datos de alta velocidad en paralelo. La respuesta a esta demanda fue DS-RNGE,
la primera propuesta conocida en abordar este problema. DS-RNGE aplica IS a cada iteración
para mantener una base de casos saneada y reducida a lo largo del tiempo. El resultado final es
un sistema preciso y escalable capaz de procesar miles de instancias por segundo en un modesto
clúster de máquinas.
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9 Future work

From the conclusions drawn from this thesis, we envision some promising research lines for future
work. They aim at either improving previous models, or to address new problems that have already
emerged or surely will emerge from the ever-evolving Big Data scenario.

• Evolutionary data reduction for large-scale instance selection: EAs have shown to be
well-reputed in dealing with IS in standard environments [GLH15]. Some of the most effective
IS algorithm in the state-of-the-art include some type of evolutionary-based procedure to
optimize selections. Benefits of using EAs come from the flexibility provided and their fitness
to the objective target in combination with a robust behavior. However, the main flaw
exposed by EAs is its poor scalability power [CLS+16]. Our next aim focuses on adapting
these type of IS algorithms to be run in distributed platforms thus expecting a considerable
leap in effectiveness.

• Spark GPU-CPU integration and data reduction: Recent technology advances have
displaced CPU in rankings in favor of special-purpose acceleration provided by GPUs. Nev-
ertheless, single-GPU or GPU-only cluster now cope with the challenges of processing big
datasets. Spark, on the other hand, provides fast in-memory computing power for large clus-
ter of nodes, not always with optimal performance and energy efficiency. A plausible solution
would be to combine both perspectives to create faster clusters –accelerated by GPUs– with
less machines –less deployment effort and less energy waste–. In fact, there already exist some
young projects working to make this idea true 3, even some algorithms have been already
proposed mixing GPUs and Spark in the specialized literature [GLBH17]. Our plan is to
complement the current developments with data reduction alternatives that leverage from
both sides.

• Address the problem of dimensionality reduction with feature weighting: Com-
pared to FS techniques, feature weighting algorithms offer less constrained solutions to the
dimensionality reduction problem (ranking vs. closed selection) [GLS+13]. On the other
hand, some algorithms in the feature weighting literature (e.g., Relief) [KŠRŠ97] hinges upon
class separability of instances to rank features. We may leverage the potential and knowledge
of previous NN-based developments to create a preliminary approximation to the large-scale
feature weighting problem.

• Redundancy elimination on high-speed big data streams: Although DS-RNGE per-
fectly fits its role of controlling the entry of noise in massive streaming systems, it circumvents
the strong redundancy commonly attached to real-world datasets. In order to control the
ever-growing size of case-bases over time and the constant flow of redundant data, we will
put further effort on adding some kind of IS condensation technique to DS-RNGE. On doing
so, the time cost cost derived from the edition and prediction phase will be sharply alleviated,
at the same time maintaining the original effectiveness.

• Concept-drift adaptation for instance selection: Stationary of streaming data is being
less and less frequent in modern problems. Renovated approaches that incorporates mecha-
nisms to follow drifting movements are required. These mechanisms are aimed at rebuilding
completely or partially the devised model as soon as the change occurs. For instance, in DS-
RNGE, the distributed metric tree is built at the very beginning and left ad infinitum until

3http://www.spark.tc/gpu-acceleration-on-apache-spark-2/
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the end. Data streams, however, may modify their properties thus demanding a shift in the
host tree. We plan to tackle this challenge by implementing a drift detection module, and/or
by using instance weighting with forgetting to allow for smooth adaptation to changes.

• Promoting active learning solutions: Many works on supervised learning in streaming
scenarios assume that class labels become available soon after the instance was being classified
by the system, or arrive with some delay. However, the costs of labeling the entire data stream
are far from realistic and thus we must deal with limited availability of true class labels. Our
plan is to move towards more realistic designs that assume the lack of labels. In online
discretization, for instance, it would be possible to only inspect labels from those samples
with highest probability of influencing the intervals’ definitions.
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A B S T R A C T

We live in a world were data are generated from a myriad of sources, and it is really cheap to collect and storage
such data. However, the real benefit is not related to the data itself, but with the algorithms that are capable of
processing such data in a tolerable elapse time, and to extract valuable knowledge from it. Therefore, the use of
Big Data Analytics tools provide very significant advantages to both industry and academia. The MapReduce
programming framework can be stressed as the main paradigm related with such tools. It is mainly identified by
carrying out a distributed execution for the sake of providing a high degree of scalability, together with a fault-
tolerant scheme.

In every MapReduce algorithm, first local models are learned with a subset of the original data within the so-
called Map tasks. Then, the Reduce task is devoted to fuse the partial outputs generated by each Map. The ways
of designing such fusion of information/models may have a strong impact in the quality of the final system. In
this work, we will enumerate and analyze two alternative methodologies that may be found both in the spe-
cialized literature and in standard Machine Learning libraries for Big Data. Our main objective is to provide an
introduction of the characteristics of these methodologies, as well as giving some guidelines for the design of
novel algorithms in this field of research. Finally, a short experimental study will allow us to contrast the
scalability issues for each type of process fusion in MapReduce for Big Data Analytics.

1. Introduction

Big Data Analytics is nowadays one of the most significant and
profitable areas of development in Data Science [1–6]. One of the main
reasons of its success is related with the Internet-of-Things (IoT), the
Web 2.0 and the social networks, and all the myriad of data from dif-
ferent sources that can be collected and processed [6–8]. In this sense,
corporations that are able to extract valuable knowledge from large
volumes of data in a reasonable time, may obtain significant advantages
over their competitors [9,10]. Researchers from academia are also
aware of the interest in developing robust and accurate models for Data
Mining in Big Data applications [11,12]. There is a clear growing rate in
the number of research studies [13,14], and the trend is not expected to
change in the short future.

However, even years after the boom of Big Data, there is still a
misleading definition for the concept itself [15]. We must stress that the
topic of Big Data is strongly linked with the scalability issue [16]. Those
models developed in this context must be able to adapt dynamically the
data growth, as well as being fault tolerant to be reliable in case of time

consuming operations. In order to fulfill these requirements, a change
in the traditional technology and framework for carrying out the
learning process is mandatory [17].

MapReduce (MR) has established as a de-facto solution that com-
prises all the previous capabilities [18–20]. It is basically an execution
environment which lays over a distributed file system [21]. By means of
two simple functions, Map and Reduce, any implementation can be
automatically parallelized in a transparent way for the programmer,
also supporting by default the aforementioned fault-tolerant scheme.

• The Map function is devoted to divide the computation into dif-
ferent subparts, each one related to a partial set of the data.

• The Reduce function needs to fuse the local outputs into a single
final model.

Whereas the procedure to be included in the Map task is, most
times, straightforward to determine, the hitch comes when deciding
how to carry out the models’ fusion within the Reduce task. At this
point, the design depends on many factors, namely whether the
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submodels are different and independent among them, or they have a
nexus for being able to join them directly.

In this paper, we aim at analyzing the different alternatives on
process fusion for Big Data Analytics models under the MR framework.
To do so, we propose a brief taxonomy distinguishing two types of
approaches.

1. Direct fusion of models: approximate methods. We refer to those
that carry out a direct fusion of partial models via an ensemble
system [22].

2. Exact fusion for scalable models: distributed data and models’ par-
tition. In this case, they are those designs that carry out a global
distribution of both data and sub-models (the prior types mentioned
just considered data division), and iteratively build the final system.

We will carry out a practical study on scalability for each of the
different fusion proposals with the sake of contrasting how time and
accuracy performance vary as resources increase. In order to provide a
better understanding of each type of implementation, we will present
some case studies of these algorithms from both well-known Machine
Learning libraries such as Mahout [23–25] (from Apache Hadoop
[26,27]) and MLlib [28] (from Apache Spark [29,30]).

In order to address all these objectives, this paper is organized as
follows. First, Section 2.1 presents an introduction on the MR pro-
gramming framework, also stressing some alternatives for Big Data
processing. Section 3 includes an overview on those technologies cur-
rently available to address Big Data problems from a distributed per-
spective. Section 4 presents the core of this paper, analyzing the dif-
ferent design options for developing Big Data Analytics algorithms
regarding how the partial data and models are fused. Then, we show a
case study in Section 5 to contrast the capabilities regarding scalability
of the different approaches previously introduced. In Section 6 we
present a discussion on the findings obtained in this research, as well as
several guidelines for future study on the topic. Finally, Section 7
summarizes and concludes this paper.

2. MapReduce as information and process fusion

The rapid growth and influx of data from private and public sectors,
and the novel opportunities derived from the IoT [31], have popular-
ized the notion of “Big data [3,4,11]”. This scenario has led to the
development of custom paradigms for distributed processing that are
able to extract significant value and insight in different areas such as
Bioinformatics [32], health care [33], social mining [34,35], and so on.

Although focused on standard processing, distributed paradigms
have also been widely utilized for fusing information [36,37] (ontolo-
gies and genetic data) and learning models [38,39] (trees and fuzzy
rules). This section describes in detail these paradigms, paying more
attention to the most widespread paradigm in the market: MR. Fur-
thermore, several examples on how MR is applied as a fusion process
are given here.

2.1. MapReduce programming model

The MR execution environment [18] is the most common paradigm
used in the distributed processing scenario. Being a privative tool, its
open source counterpart, known as Hadoop, has been traditionally used
in academia research [27]. It has been designed to allow distributed
computations in a transparent way for the programmer, also providing
fault tolerance, automatic data partition and management, and auto-
matic job/resource scheduling. To take advantage of this scheme, any
algorithm must be divided into two main stages: Map and Reduce. The
first one is devoted to split the data for processing, whereas the second
collects and aggregates the results.

Additionally, the MR model is defined with respect to an essential
data structure: the (key,value) pair. The processed data, the

intermediate and final results work in terms of (key,value) pairs. To
summarize its procedure, Fig. 1 illustrates a typical MR program with
its Map and Reduce steps.

The MR scheme can be described as follows.

• Map function first reads data and transforms records into a key-
value format. Transformations in this phase may apply any sequence
of operations on each record before sending the tuples across the
network.

• Output keys are then shuffled and grouped by key value so that
coincident keys are grouped together to form a list of values. Keys
are then partitioned and sent to the Reducers according to some key-
based scheme previously defined.

• Finally, the Reducers perform some kind of fusion on the lists to
eventually generate a single value for each pair. As a further opti-
mization, the reducer is also used as a combiner on the map outputs.
This improvement reduces the total amount of data sent across the
network by combining each word generated in the Map phase into a
single pair.

Apart from considering MR as a processing paradigm, this scheme
(concretely, the Reduce stage) can also be seen as a fusion process that
allows to blend partial models and information schemes into a final
fused outcome. Fusion of models in MR is typically performed following
some sort of ensemble strategy that combine multiple hypothesis
through voting or attachment. Also other proposals exist that go beyond
ensemble learning, and offers as outcome a single coalesced model. For
example, logistic regression in Spark is composed by several sub-
gradients that are locally computed and eventually aggregated (more
examples will be given in Section 4). From another perspective, we may
refer to aggregation of partial information collected within different
maps. In this case, the fusion process will be more dependent from the
input domain. The amount of scenarios that can be found in this context
is highly diverse. Use cases for MR in the literature range from fusion of
ontologies [36] to the composition of fuzzy rules [39], among others.

Word Count comes to be one of the most widespread examples to
illustrate the intrinsic information fusion process behind MR.
WordCount is intended to count the number of occurrences per word in
a set of input text files. Each mapper reads a set of blocks formed by
lines, and splits them into words. It then emits a key-value pair with the
word as key, and 1 as value. Afterwards, each reducer sums the scores
for each word, and outputs a single key-value pair with the word and
sum.

Consider the phrase ‘knock, knock, who is there?”. A single mapper
would receive and split this sentence as words, and then, it would form
the initial pairs as: (knock,1), (knock,1), (who,1), (is,1), (there,1). In
reducers, the keys are grouped together and the count values for
identical keys (words) are added. In this case only one pair of similar
keys ‘knock’ would be aggregated so that the output pairs would be as

Fig. 1. The MapReduce programming model. k elements represent the keys in the pairs,
whereas v the values.
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follows: (knock,2), (who,1), (is,1), (there,1). As result, the user would
receive the final number of hits for each word.

2.2. Alternative distributed processing paradigms

Although MR is the most popular paradigm to tackle distributed
processing, there exist other modern distributed frameworks, conceived
prior to the dawn of MR, that offer other alternatives for information
and model fusion. Most of them follows a Single Instruction Multiple
Datasets (SIMD) [40] scheme to execute the same sequence of in-
structions simultaneously on a distributed set of data partitions. In this
section we focus on two paradigms (graph and bulk processing) re-
levant for current Big Data platforms.

2.2.1. Directed Acyclic Graph Parallel processing
All distributed frameworks based on Directed Acyclic Graph (DAG)

[41], like Spark, organize their jobs by splitting them into a smaller set
of atomic tasks. In this model vertexes correspond with parallel tasks,
whereas edges are associated with exchange of information. As shown
in Fig. 2, vertexes can have multiple connections between inputs and
outputs, which imply that the same task can be run in different data and
the same data in different partitions. Data flows are physically sup-
ported by shared memory, pipes, or disks. Instructions are duplicated
and sent from the master to the slave nodes for a parallel execution.
Notice that MR can be deemed as an specific implementation of DAG-
based processing, with only two functions as vertexes.

2.2.2. Bulk Synchronous Parallel processing
Bulk Synchronous Parallel (BSP) [42] systems are formed by a series

of connected supersteps, implemented as directed graphs. In this
scheme input data is the starting point. From here to the end, a set of
Supersteps are applied on partitioned data in order to obtain the final
output. As mentioned before, each Superstep correspond with an in-
dependent graph associated with a subtask to be solved. Once all
compounding subtasks end, bulk synchronization of all outputs is
committed. At this point vertexes may send messages to the next Su-
perstep, or receive some from previous steps, and also to modify its
state and outgoing edges. Fig. 3 shows a toy example for BSP processing

with two Supersteps and one synchronization barrier.

3. Big Data technologies for analytics

Nowadays, the volume of data currently managed by our storage
systems have surpassed the processing capacity of traditional systems
[11], and this applies to Data Mining as well. Distributed computing has
been widely used by experts and practitioners before the advent of Big
Data to boost up sequential solutions in medium-size data. Never-
theless, for most of current massive problems, a distributed approach
becomes mandatory nowadays since no batch architecture is able to
address such magnitudes.

Beyond High Performance Computing solutions, new large-scale
processing platforms are intended to bring closer distributed processing
to practitioners and experts by hiding the technical nuances derived
from these environments. Novel and complex designs are required to
create and maintain these platforms, which generalizes the utilization
of distributed computing for standard users.

As a result of the fast evolving of Big Data environment, a myriad of
tools, paradigms and techniques have surged to tackle different use
cases in industry and science. However, because of this large number of
alternatives, it is often difficult for practitioners and experts to analyze
and select the right tool for each goal.

In this section we present and analyze three well-known alternatives
for distributed processing belonging to the “Apache Hadoop eco-
system.” The objective is providing the necessary knowledge that helps
users to decide which alternative better fits their requirements. We also
outline the software libraries that gives support to the distributed
learning task in these platforms, being summarized in Table 1.

3.1. Apache Hadoop

Undoubtedly Hadoop MapReduce may be deemed as the primary
platform in the Big Data space. After the presentation of MR by Google
designers [43], Hadoop MapReduce was grown by the community, and
became the most used and powerful open-source implementation of
MR. Nowadays leading companies such as Yahoo has scaled from 100-
node Hadoop clusters to 42K nodes and hundreds of petabytes [44]
thanks to the outstanding performance of Hadoop.

The main idea behind Hadoop was to create a common framework
which can process large-scale data on a cluster of commodity hardware,
without incurring in a high cost in developing (in contrast to HPC so-
lutions) and execution time. Hadoop MapReduce was originally com-
posed by two elements: the first one was a distributed storage system
called Hadoop Distributed File System (HDFS), whereas the second one
was a data processing framework that allows to run MR-like jobs. Apart
from these goals, Hadoop implements primitives to address cluster
scalability, failure recovery, and resource scheduling, among others.

But Hadoop is today more than a single technology, but a complete
software stack and ecosystem formed by several top-level components
that address diverse purposes. For instance, Apache Giraph for graph
processing or Apache Hive for data warehousing. The common factor is
that all of them rely on Hadoop, and are tightly linked to this tech-
nology. Some projects are actually Apache top-level projects [45],
whereas others are continuously evolving or being created.

HDFS [46] can be deemed as the main module of Apache Hadoop. It
supports distributed storage for large-scale data through the use of
distributed files, which themselves are composed by fixed-size data
blocks. These blocks or partitions are equally distributed among the
data nodes in order to balance as much as possible the overall disk
usage in the cluster. HDFS also allows replication of blocks across dif-
ferent nodes and racks. In HDFS, the first block is ensured to be placed
in the same processing node, whereas the other two replicas are sent to
different racks to prevent abrupt ends due to inter-rack issues.

HDFS was thought to work with several storage formats. It offers
several APIs to read/write registers. Some relevant APIs are:

Fig. 2. Direct Acyclic Graph Parallel Processing. Squares represent the tasks to process
and the nodes in the graph, arrows connecting nodes represent the data flow between
nodes and the vertexes in the graph, dashed lines represent the dependencies between
data blocks (cylinders).
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InputFormat (to read customizable registers), or RecordWriter (to write
record-shaped elements). Users can also developed their own storage
format, and to compress data according to their requirements.
Persistence in Hadoop is mainly performed in disk. However, there are
some novel advances to optimize persistence by introducing some
memory usage. For instance, in Apache Hadoop version 3.0 was in-
troduced the option of memory usage as temporary storage.

Although MR [43] is the native processing solution in Apache Ha-
doop, today it supports multiple alternatives with different processing
schemes. All these solutions have in common that use a set of data
nodes to run tasks on the local data blocks, and one master node (or
more) to coordinate these tasks. For instance, Apache Tez [47] is a
processing engine that transforms processing jobs into direct acyclic
graphs (DAGs). Thanks to Tez, users can run any arbitrary complex
DAG of jobs in HDFS. Tez thus efficiently solves interactive and itera-
tive processes, like those present in machine learning processes. Its
most relevant contribution is that Tez translate any complex job to a
single MR phase. Furthermore, it does not need to store intermediate
files and reuses idle resources, which highly boost the overall perfor-
mance.

Hadoop MapReduce evolves to a more general component, called
Yet Another Resource Negotiator (YARN) [48], which provides extra
management and maintenance services relied to other components in
the past. YARN also acts as a facade for different types of distributed
processing engines based on HDFS, such as Spark, Flink or Storm. In
short, YARN was intended as a generic purpose system that separates
the responsibilities of resource management (performed by YARN), and
running management (performed by top-level applications).

Among the full set of advantages claimed by YARN, we can high-
light its capacity to run several application on the same cluster without
the necessity of moving data. In fact, YARN allows reusing resources
across alike applications in parallel, which improves the overall usage
of resources.

3.1.1. Apache Mahout
Since the magnitude of learning problems has been growing ex-

ponentially, data scientists demands rapid tools that efficiently extract
knowledge from large-scale data. This problem has been solved by MR
and other platforms by providing scalable algorithms and miscellaneous
utilities in form of machine learning libraries. These libraries are
compatible with the main Hadoop engine, and use as input the data
stored in the storage components.

Apache Mahout [49] was the main contribution from Apache Ha-
doop to this field. Although it can be deemed as mainly obsolete
nowadays, Mahout is considered as the first attempt to fill the gap of
scalable machine learning support for Big Data. Mahout comprises
several algorithms for plenty of tasks, such as: classification, clustering,
pattern-mining, etc. Among a long list of golden algorithms in Mahout,
we can highlight Random Forest or Naïve Bayes.

The most recent version (0.13.0) provides three new major features:
novel support for Apache Spark and Flink, a vector math experi-
mentation for R, and GPU support based on large matrix multi-
plications. Although Mahout was originally designed for Hadoop, some
algorithms have been implemented on Spark as a consequence of the
latter one’s popularity. Mahout is also able to run on top of Flink, being
only compatible for static processing though.

3.2. Spark

Apache Spark Framework [50] was born in 2010 with the pub-
lication of Resilient Distributed Datasets (RDD) structures [30], the
keystone behind Spark. Although Spark has a close relationship with
Hadoop Ecosystem, it provides specific support for every step in the Big
Data stack, such as its own processing engine, and machine learning
library.

Apache Spark [51] is defined as a distributed computing platform
which can process large volume data sets in memory with a very fast
response time due to its memory-intensive scheme. It was originally
thought to tackle problems deemed as unsuitable for previous disk-
based engines like Hadoop. Continued use of disk is replaced in Spark
by memory-based operators that efficiently deal with iterative and in-
teractive problems (prone to multiple I/O operations).

As stated previously, the heart of Spark is formed by RDDs, which
transparently controls how data are distributed and transformed across
the cluster. Users just need to define some high-level functions that will
be applied and managed by RDDs. These elements are created when-
ever data are read from any source, or as a result of a transformation.

Fig. 3. Bulk Synchronous Parallel processing.
Subtasks in each Superstep are depicted as rec-
tangles with variable height (task duration), and
data flows as dashed lines. Synchronization barrier
acts as a time proxy between stages.

Table 1
Analytics tools for each Big Data platform.

Big Data distributed platforms Analytics tools

Hadoop Mahout
Spark MLlib
Flink FlinkML
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RDDs consist of a collection of data partitions distributed across several
data nodes. A wide range of operations are provided for transforming
RDDs, such as: filtering, grouping, set operations, among others.
Furthermore RDDs are also highly versatile as they allows users to
customize partitioning for an optimized data placement, or to preserve
data in several formats and contexts.

In Spark, fault tolerance is solved by annotating operations in a
structure called lineage. Spark transformations annotated in the lineage
are only performed whenever a trigger I/O operations appears in the
log. In case of failure, Spark re-computes the affected brach in the
lineage log. Although replication is normally skipped, Spark allows to
spill data in local disk in case the memory capacity is not sufficient.

Spark developers provided another high-level abstraction, called
DataFrames, which introduces the concept of formal schema in RDDs.
DataFrames are distributed and structured collections of data organized
by named columns. They can be seen as a table in a relational database
or a dataframe in R, or Python (Pandas). As a plus, relational query
plans built by DataFrames are optimized by the Spark’s Catalyst opti-
mizer throughout the previously defined schema. Also thanks to the
scheme, Spark is able to understand data and remove costly Java seri-
alization actions.

A compromise between structure awareness and the optimization
benefits of Catalyst is achieved by the novel Dataset API. Datasets are
strongly typed collections of objects connected to a relational schema.
Among the benefits of Datasets, we can find compile-time type safety,
which means applications can be sanitized before running.
Furthermore, Datasets provide encoders for free to directly convert JVM
objects to the binary tabular Tungsten format. These efficient in-
memory format improves memory usage, and allows to directly apply
operations on serialized data. Datasets are intended to be the single
interface in future Spark for handling data.

3.2.1. MLlib
MLlib project [28] was born in 2012 as an extra component of

Spark. It was released and open-sourced in 2013 under the Apache 2.0
license. From its inception, the number of contributions and people
involved in the project have been growing steadily. Apart from official
API, Spark provides a community package index [52] (Spark Packages)
to assemble all open source algorithms that work with MLlib.

MLlib is a Spark library geared towards offering distributed machine
learning support to Spark engine. This library includes several out-of-
the-box algorithms for alike tasks, such as: classification, clustering,
regression, recommendation, even data preprocessing. Apart from dis-
tributed implementations of standard algorithms, MLlib offers:

• Common Utilities: for distributed linear algebra, statistical analysis,
internal format for model export, data generators, etc.

• Algorithmic optimizations: from the long list of optimizations in-
cluded, we can highlight some: decisions trees, which borrow some
ideas from PLANET project [53] (parallelized learning both within
trees and across them); or generalized linear models, which benefit
from employing fast C++++-based linear algebra for internal
computations.

• Pipeline API: as the learning process in large-scale datasets is tedious
and expensive, MLlib includes an internal package (spark.ml) that
provides an uniform high-level API to create complex multi-stage
pipelines that connect several and alike components (preprocessing,
learning, evaluation, etc.). spark.ml allows model selection or hyper-
parameter tuning, and different validations strategies like k-fold
cross validation.

• Spark integration: MLlib is perfectly integrated with other Spark
components. Spark GraphX has several graph-based implementa-
tions in MLlib, like LDA. Likewise, several algorithms for online
learning are available in Spark Streaming, such as online k-Means.
In any case, most of component in the Spark stack are prepared to
effortlessly cooperate with MLlib.

3.3. Flink

Apache Flink [54] is a distributed processing component focused
on streaming processing, which was designed to solve problems derived
from micro-batch models (Spark Streaming). Flink also supports batch
data processing with programming abstractions in Java and Scala,
though it is treated as a special case of streaming processing. In Flink,
every job is implemented as a stream computation, and every task is
executed as cyclic data flow with several iterations.

Flink provides two operators for iterations [55], namely, standard
and delta iterator. In standard iterator, Flink only works with a single
partial solution, whereas delta iterator utilizes two worksets: the next
entry set to process and the solution set. Among the set of advantages
provided by iterators is the reduction of data to be computed and sent
between nodes [56]. According to the authors, new iterators are spe-
cially designed to tackle machine learning and data mining problems.

Apart from iterators, Flink leverages from an optimizer that ana-
lyzes the code and the data access conflicts to reorder operators and
create semantically equivalent execution plans [57,58]. Physical opti-
mization is then applied on plans to boost data transport and operators’
execution on nodes. Finally, the optimizer selects the most resource-
efficient plan, regarding network and storage.

Furthermore, Flink provides a complex fault tolerance mechanism
to consistently recover the state of data streaming applications. This
mechanism is generating consistent snapshots of the distributed data
stream and operator state. In case of failure, the system can fall back to
these snapshots.

FlinkML is aimed at providing a set of scalable ML algorithms and
an intuitive API to Flink users. Until now, FlinkML provides few alter-
natives for some fields in machine learning: SVM with CoCoA [59], or
Multiple Linear regression for supervised learning, k-NN join for un-
supervised learning, scalers and polynomial features for preprocessing,
Alternating Least Squares for recommendation, and other utilities for
validation and outlier selection, among others. FlinkML also allows
users to build complex analysis pipelines via chaining operations (like
in MLlib). FlinkML pipelines are inspired by the design introduced by
sklearn in [60].

3.4. Comparison among Big Data alternatives (Hadoop, Spark and Flink)

Main divergence between Big Data frameworks rests on its design
philosophy, and how they respond to different data formats such as
data streams. Starting from Hadoop, we can directly assert that Hadoop
is essentially batch-oriented due to its intensive disk usage. In contrast,
Flink is a native streaming technology originally designed to work with
memory-based streams. Although Apache Spark was not originally de-
signed for static problems, it provides a micro-batching strategy capable
of easily processing streaming data. Spark micro-batching however may
be deteriorated when it faces low latency requirements.

Unlike Hadoop MapReduce, Spark and Flink both offer native sup-
port for in-memory persistence and iterative processing. Spark allows
users to persist data in memory, and load them in several occasions.
Regarding the execution engine, Spark relies on an acyclic graph
planner formed by vertices and edges, which can be seen as a strict
generalization of MapReduce. In counterpart, Flink utilizes a thor-
oughly iterative processing scheme created from the scratch, which is
based on cyclic data flows (a single iteration per schedule).

Moving to optimization matters, Spark and Flink both provide me-
chanisms to analyze, control and optimize user code so that the best
execution plan for each program is obtained. Spark mainly exploits new
SQL-based DataFrame API and the Tungsten engine for optimization,
whereas Flink did that as first citizen. Manual optimization can also be
carried out by controlling how data are partitioned, or transmitted
across the network.

Finally, Apache Spark and Flink offer plenty of alternatives to co-
ders specially attached with a given programming language. Namely,
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Spark offers ad-hoc APIs for R, Java or Python, and a native support for
the Scala language, whereas Apache Flink only focus on Java Virtual
Machine, providing full APIs for Scala and Java. In contrast, Hadoop
only supports Java. For further comparison insights, please refer to
García-Gil et al. [61].

4. Big Data analytics as a process fusion

“Synchronizing flags” in every distributed algorithmic approach is
undoubtedly the most challenging part during the design process. This
issue is not an exception in the MR scheme. In this particular case,
developers must take two significant decisions. On the one hand, the
components selected for the key-value representation in both the Map
and Reduce input and outputs. On the other hand, how the list of values
are aggregated in the Reduce step. In this section, we want to analyze in
detail this characteristic of the MR programming environment by in-
troducing a taxonomy to organize current state-of-the-art approaches
regarding how partial models from the Map task are aggregated. We
will determine how this fact may also affects the actual scalability of the
whole system.

Specifically, we distinguish among two different type of models
according to the fusion strategy implemented. First, those that produce
an approximate model by applying a direct process fusion on partial
submodels (Section 4.1). Second, those that distribute both data and
models to iteratively build a final exact system (Section 4.2).

Besides this standard categorization, some further considerations
must be taken into account in order to properly classify large-scale
learning algorithms. Among others, we must distinguish between:

• Whether the model (or required statistics) is evaluated (or are
computed) on all the distributed partitions (global), or local sub-
models are independently yielded by each task and then fused
(local).

• Whether algorithms only consist of a single stage (1-step) or several
iterations/stages are required (multistage).

• Whether a master node guides the model construction process
(guided) or it is fully decoupled (unguided).

Table 2 enumerates and categorizes the distributed methods de-
scribed below according to the previous taxonomy. Note that although
some categories appear more frequently with others, all categories are
independent.

4.1. Direct fusion of models: approximate methods

Roughly, approximate distributed models are those that emulate the
learning behavior of sequential algorithms, yet generating a completely
different and non-exact solution. Most of them follows an ensemble
paradigm, which is straightforwardly parallelizable in the MR

framework following the rule of thumb: one submodel per mapper. The
compounding model will be eventually generated by directly joining all
submodels in the reduce phase [71]. Note that the MR approach re-
minds of the traditional bootstrap aggregating (bagging) approach; yet in
this case with no replacement.

The premise for this type of methodologies is simple yet effective.
Each Map task works independently on its chunk of data. Depending on
the user’s requirements, each Map function is devoted to build one or
more models. For example, a pool of 100 classifiers to be obtained from
5 Maps will result on 20 classifiers per Map, each one of them built from
a 20%% of the original dataset. The “key” is shared by all values given
as output from the Map. This fact makes the logic of the Reduce phase
to stress for its simplicity. Every single classifier is directly joined into
the final system. In the following, we shortly describe some algorithms.

• One of the first approaches to build an approximate ensemble with
MapReduce was the Random Forest for Hadoop [72,73], whose
implementation can be found at Mahout-MapReduce Machine
Learning library [23,24]. The algorithm consist of two MR phases:
the first one is devoted to the development of the model (where
model fusion occurs), and the second one is focused on class pre-
diction once the model is built.
In the first phase, each Map creates several random trees (a subset of
the forest) using the partitions given as input [74]. The reduce phase
simply concatenates all the trees forming the final forest of random
trees. The second task replicates the forest across the nodes, and
launches the mappers on the test set partitions. Mappers predict the
class for each record assigned by using the final model. Finally,
reducers concatenate predictions in a single file.

• Another interesting approaches come from the boosting perspective
[75], which are AdaBoost.PL, LogitBoost.PL and MultiBoost.PL [64].
These include an ensemble of ternary classifiers [76], or an en-
semble of ensembles. In this case, the reduce phase is much more
complex than applying a simple voting or coalescing scheme. Con-
cretely, the whole boosting procedure, i.e. T iterations, is carried out
within each Map, so M ensembles of T classifiers are obtained, being
M the number of maps. Then, the T classifiers are arranged ac-
cording to their score, i.e. the weighted error, and then emitted to
the Reducers using their index as “key” and the model as value.
Finally, each Reduce process takes all classifiers with the same index
(key) and compute an average weight for this ensemble. At classi-
fication time, each “sub-ensemble” provides a vote for its class,
whose value is exactly the aforementioned weighted average score.

• Prototype Reduction [65] is also a another significant example that
provides a further complex and effective reduce process. First, each
Map process works with a different chunk of data by applying any
available reduction procedure [77]. Then, selected prototypes are
fed to a single reducer that is devoted to eliminate redundant ones.
This implies a clear fusion of data in order to obtain a final model, in
this case by merging similar examples.

• Fuzzy Rule Based Classification Systems [78] are probably one of
the clearest type of models in this category. The pioneer im-
plementation was based on the Chi et al. approach [62,63]. Each
Map task comprises a complete fuzzy learning procedure to obtain
an independent rule base. To do so, all examples from the input data
chunk are iterated deriving a single rule per example, while merging
those with the same antecedent and consequent. Then, rule weights
are computed based on a fuzzy confidence value from the input
examples, also allowing to determine the output class. We must
acknowledge that at this stage every single rule base might be used
for classification purposes. However, the system can be further en-
hanced by combining all partial models for every Map, as stated in
the beginning of this section. To do so, the Map writes as key-value
pair the antecedent and consequent (including class and rule
weight) respectively. Reducers then merges those rules with the
same antecedent (key) by averaging the values of the rule weights

Table 2
Categorization of distributed models for large-scale machine learning. Pseudonym and
reference for each method are provided.

Method Fusion tactic Model
scope

Model phases Model
guidance

Mahout-RF [23] approximate local 1-step unguided
FRBS [62,63] approximate local 1-step unguided
Boost.PL [64] approximate local 1-step unguided
Spark-PR [65] approximate local 1-step unguided
Spark-Trees [66] exact global multistage guided
Spark-Gradient

[67]
exact global multistage unguided

Spark-kMeans
[68]

exact global multistage guided

Spark-kNN [69] exact global 1-step unguided
IFSF [70] exact local multistage guided
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for the same class consequents, and then the class with the highest
rule weight is finally maintained.

There are two main advantages for this type of design. On the one
hand, we have stressed its direct synergy with the MR programming
model, easing the programmer implementation. On the other hand, we
must refer to the degree of diversity of those models obtained from
different Maps, being a crucial characteristic for the success of these
types of methods [79].

In spite of the previous goodness, there is one significant problem:
there is a limit in the scalability degree. It must be acknowledge that
there is a strong relationship between the number of Maps and the
required number of models. In other words, we cannot decrease the
total running time by adding a larger number of Maps, as this may
result in “void” functions with a data input but no output.

One final drawback that must be stressed is related to the inner
concept of ensemble. Being composed of a “large” set of individual
models, two facts must be taken into account. On the one hand, since all
of them are considered for the classification step, it is hard to under-
stand the actual reason for the labeling of the queried data. On the other
hand, the robustness of the whole ensemble system somehow depends
on the individual quality of its components, as well as their diversity.
Both properties are not easy to hold, and impose a restriction in the
building of the ensemble, for both standard and Big Data applications.

Throughout this section we have presented a short overview on
those MR methods that are based on fusion of partial models. As such,
they allow to reinforce the abilities of those individual systems, leading
to possibly more robust approaches. However, two issues must be taken
into account:

1. The key-value representation to link the Map and Reduce processes.
It must be very carefully selected as it has a strong influence in the
design of the Map function. Although the procedure is usually im-
plemented to be independent among Maps, a common point should
be given in order to allow the final combination.

2. The fusion function in the Reducer. It has a clear dependence on the
previous item, so that these must be designed as a whole to ensure a
robust workflow.

Both points will determine the scalability and exactness of the
output system. We refer to the changes in behavior when increasing the
number of Maps. Concretely, the efforts must be mostly focused on the
development of the partial models, regarding the influence of the lack
of data and/or whether the knowledge acquired from different subsets
of the problem space are able to be accurately merged.

4.2. Exact fusion for scalable models: distributed data and models’ partition

The previous scheme based on approximate models is presented as
ideal for distributed learning since submodel creation is naturally par-
allelizable and applicable to most of standard algorithms. Nevertheless,
in approximate fusion, models suffers from several deficiencies, such as:
extra parameter configuration (e.g.: number of map tasks), or a sub-
sequent drop on generalization due to a narrower view in submodel
creation. Indeed, most of supervised methods demand to access to a
large percentage of instances (usually, the whole set) during the
training step. In this scenario submodel creation is not possible because
of the strong dependency between data partitions. Throughout this
section, we analyze those algorithms whose scheme were noted as
“exact” in Table 2.

Decision trees (DT), as supervised algorithms, are an example of
methods that do not naturally support partial construction in dis-
tributed processing. They are top-down algorithms that continuously
evaluate splits by using statistics sketches computed on the entire da-
taset. In this case, all instances (and data partitions) are involved on the
statistics computation at every step, except in the rare scenario where

all feature values in a partition belongs to leaves nodes. Parallelization
here is then considered as a much more complex task.

A possible solution to this problem is to utilize partitioned data to
make decisions about how to construct a single exact model. For DTs,
statistics for each split considered are collected from the datanodes, and
used in the master node to decide which split is the best option for the
current state of the model (guided model construction).

This scheme was originally implemented in the Parallel Learner for
Assembling Numerous Ensemble Trees (PLANET) method [53]. In
PLANET, master node controls the complete tree induction process, and
launches the MR jobs that construct the nodes. It also maintains the tree
model in memory, decides which split predicates will be evaluated, and
eventually replicates the updated model across the nodes. Nodes to be
evaluated are organized through several queues, one with nodes for
MR-based evaluation and another for in-memory evaluation. De-
pending on the amount of instances involved in computations, nodes
are pushed to one queue or the other. Here we focus on MR evaluation
of nodes which is more common.

As tree construction proceeds, the master node retrieves nodes from
the queue, and schedules MR jobs to evaluate splits. Inside these jobs,
statistics for splits are computed in the map side by using the instances
in the data partitions. Finally, the reduce side decides which split is
more convenient for the tree model. Once a MR job ends, the master
nodes updates the model with the nodes and the splits predicates se-
lected, and updates the queues with new nodes at the periphery.

Notice that in this scheme, each MR job fetches the entire dataset in
order to avoid determining which records are required by each node,
and the extra communication that this step conveys. Instead, it per-
forms a level-wise computation of splits so that the tree is constructed
by following a breadth-first strategy. Thanks to this scheme, all nodes at
a given level are expanded at the same step, and every instance is part
of the input to some analyzed node.

PLANET project does not only offer an elegant solution for single
tree induction, but it also extends the original idea to provide powerful
exact algorithms based on bagging and boosting ensembles [80]. Con-
cerning bagging, PLANET allows to build multiple trees by maintaining
a single queue of nodes for the whole set of trees. By alternating eva-
luation of nodes from several trees, PLANET can build the random
forest in a parallel way. During boosting, PLANET constructs weak
learners sequentially as usual. Here training is only parallelized at the
tree level. Residuals are easily computed since the model is sent to
every MR job in full.

Based on PLANET, MLlib’ creators [28] developed two ensemble
classifiers for exact fusion: one based on random forest of trees, and
another based on gradient boosted trees [66]. Standard DTs are also
adopted in MLlib, however, note that they are implemented as an sin-
gular case of random forest with a single tree and the full feature set. In
general, all aforementioned tree-based algorithms have incorporated
several optimizations [81] with respect to PLANET, intended to boost
up the tree induction process. Major features introduced are describe
below:

• Efficient bootstrapping: one of the major drawbacks in PLANET is that
its does not allow bootstrapping in bagging. This fact was overcome
with MLlib where each record has associated a vector that indicates
the number of replicas of each instance in each tree. Note that this
strategy reduces the total amount of memory used as replication is
not performed.

• Node tracking: in order to keep simple its design, PLANET do not
track the current position of instances in the tree as it evolves.
Instead, every instance needs to be evaluated at every step by tra-
versing the tree from the root. Although simpler, and less memory-
consuming, this introduces an unfordable cost in time performance.
MLlib solves this problem by assigning to each instance the node
where it is currently stacked. It is clearly a better solution since CPU
usage is an usual bottleneck for large-scale applications.
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• Enhanced group-wise training: MLlib has improved the tree-level
training scheme by extending the number of nodes to be evaluated
to the memory available in the cluster for statistic aggregation. This
means that several trees can evaluate complete levels of several trees
at the same step, which extremely reduces the number of passes over
the dataset.

• Bin-wise computation: Instead of directly implementing the best split
computation strategy, MLlib proposes to categorize each feature
value into a discrete bin. Bins are then exploited to easily compute
aggregates for bins, and to calculate information gain.

• Partition aggregation: As bin-based categorization is known from the
early stages, it is used by the learning process to reduce the number
of key-value pairs to be sent across the network (less I/O usage).
Each partition provides the aggregates in a single array for all the
bins considered, which drastically simplify the scheme proposed by
the original instance-wise map function.

Beyond tree learning, other scalable classifiers that generates exact
models can be found in MLlib [67]. Non-linear classifiers such as sup-
port vector machines, logistic regression or neural networks rely on
gradient descent optimization because of its great suitability for dis-
tributed computation, and thus these are implemented following a
linear approach in MLlib library. All of them share the same objective
function based on error minimization: ∈ Q wmin ( ),w d which is solved
by the aforementioned optimizer.

Without going into further details, gradient descent [80] aims at
finding a local minimum of a convex function by iteratively moving
towards the steepest descent, which corresponds with the negative of
the derivative (gradient) of the function at a given point.

For those optimization problems whose objective function Q can be
written as a sum of costs, a stochastic gradient descent (SGD) approach
can be used. That is the case of supervised learning, where the loss and
regularization parts can be decomposed in several single contributions
(instance-wise) as shown below:

∑= +
=
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i i
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where λ represents the trade-off factor between regularization and loss,
x the input vector, and y the output value.

In stochastic gradient descent, the exact result is approximated by
locally computing the gradient at instance-level. In MLlib, SGD im-
plementation computes (sub)gradients by partition (map phase) with
an specific sampling fraction (mini-batches). If no sampling is applied,
we get an exact gradient descent, otherwise, SGD scheme is performed
at different levels. Partial results are then aggregated/sum to obtain the
gradient contribution for each iteration (reduce phase).

In recent versions, the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) method [82] was introduced as
another alternative for optimization in MLlib. Because of great benefits
in performance, it is gaining increasing popularity in MLlib compared
to mini-batch gradient descent. The L-BFGS primitive locally approx-
imates the objective function as a quadratic by constructing the Hessian
matrix underneath. The Hessian matrix is approximated by previous
gradient evaluations, thus solving the vertical scalability issue present
in gradient descent.

Beyond classification, some clustering algorithms have been
adapted and included in MLlib. For instance, original k-Means is im-
plemented in Spark by replicating and transforming centroids in each
Spark stage. Concretely, each Map process is devoted to compute the
nearest samples (from its input chunk of data) to each of the k centroids
(initially set at random). The output key-value is the centroid “id” and
the attributes of the nearest sample respectively. Then each Reducer
recalculates the new centroids coordinates by averaging the values of
those samples given as “list of values” for each key (centroid). The
whole procedure is then iterated in order to refine the centroids, thus

improving their robustness. It must be observed the importance of the
Reduce step for the global combination of the partial information
computed within each Map. k-Nearest Neighbor (kNN) classifier [69]
has also some points in common with clustering, as it is based on dis-
tances among examples. In this case, the Map stage is devoted to obtain
the k nearest training instances to each query input. To carry out an
exact computation, the whole test set should be given as input to each
Map, allowing to obtain as key-value the index of the test instance and a
list of the k closest distances with their corresponding training class
labels. Then, the Reducer only needs to find, among all M sets of k-
nearest neighbors (with M the number of Maps) the one with lowest
value to finally assign the output class. Compared to k-Means (which
updates centroids), model guidance is more decoupled in k-NN where
the lazy model (case-base) is distributed across workers.

The information-based feature selection framework (IFSF) proposed
in [70] is an example of how submodels (importance score by feature)
can be fused in data preprocessing. This multivariate algorithm mea-
sures redundancy and relevance between the input features and the
output class in order to select a final reduce set of features. As a first
step in IFSF, input data is vertically split to strictly separate computa-
tions between features. Then feature interactions are modeled by re-
plicating the last selected feature and the class across the nodes so that
the minimum amount of communication is performed. The map stage
calculates the feature scores individually, and the reduce stage selects
the best feature from the current set of unselected features. Notice that
in this case, model’s scope is local since input data is in column-format.
This format allows Spark to compute feature scores independently in
each partition. The generalization from the perspective of information
theory is shown in a recent work in [83].

5. Practical study on scalability

In this section we present a brief experimental study on the scal-
ability of different fusion proposals. We start by presenting Higgs da-
taset, the large-scale dataset used as reference in our experiments
(Section 5.1). Then, the random forest version for Mahout-Hadoop will
serve us to illustrate the most elementary fusion process: the approx-
imate strategy based on direct fusion (Section 5.2). Finally, Section 5.3
provides outcomes for exact models, represented by Spark’s k-Means
and Random Forest.

Experiments have been launched in a 12-node cluster and an extra
master node with the following features per node: 6 CPU cores (Intel(R)
Core(TM) i7-4930K CPU at 3.40 GHz), 64GB RAM, 2TB HDD, Gigabit
Ethernet network connection. Hadoop 2.6.0-cdh5.10.0 and Mahout 0.9
were installed in all the nodes. 4GB was set as maximum for memory in
map and reduce processes.

5.1. Higgs boson data

Higgs boson dataset [84] has been elected to measure the perfor-
mance impact of distinct fusion schemes on standard learning methods.
This dataset was uploaded to the UCI repository in 2014 [85] as a result
of Higgs’s discovery in 2012, and the complex experiments performed
at the Large Hadron Collider at CERN.

In this dataset, particle data generated by Monte Carlo simulations
aim at distinguishing between a signal process generated by Higgs
bosons, and a background process with the identical decay products but
distinct kinematic attributes (binary problem). Although experts have
confirmed its decay into two tau particles, the signals are rather small
and buried in background noise.

From the total of 28 numerical features, the first 21 are kinematic
feature measured by the particle sensors in the accelerator. The last
features are high-level functions derived by physicists to improve the
discriminate power of features. Finally, 11 millions of instances were
collected for the entire dataset.
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5.2. Approximate models: random forest on Mahout-Hadoop

In order to test the scalability behavior of Mahout’s Random Forest
(200 trees), we have taken runtime measurements for different map
configurations, from 1 mapper to 200. Fig. 4 depicts how time perfor-
mance varies as resources augment.

The plot depicts an expected downtrend as more CPU power is
available. However, some rare spikes are present around the 100-cores
value. It seems that Mahout’s Random Forest prefers an amount of cores
divisible between the number of trees, in this case, only 100 and 200.
The algorithm shows some rare deficiencies when dealing with values
close to 100 (e.g.: 80 and 120) which occur during the tree construction
in the map phase. This strange behavior may be explained by some
design failures derived from the preliminary design implemented in
Mahout’s Random Forest.

Concerning accuracy, an increment of map partitions is followed by
a drop on this measure as reflected in Fig. 5. This is mainly due to
subtrees usually have a narrower view of input space when more map
partitions are present or, in other words, the learning stage for the trees
suffers from the problem of lack of data [86].

5.3. Approximate and exact fusion: k-Means and random forest on ML-
Spark

As introduced in Section 3.4, Spark is mainly formed by exact im-
plementations. Concretely, k-Means and Random Forest are two great
illustrative examples in MLlib. Scalability experiments on k-Means and
Random Forest have been performed in order to assess their scalability
power. For these experiments, Apache Spark 1.6.2 is used as reference
platform, and the Higgs dataset is previously partitioned into 216
partitions (= number of cores). Default parameter values are set for

both algorithms.
Notice that scalability evaluation implemented here is slightly dif-

ferent than that of used in Hadoop. In contrast to manual partitioning in
Hadoop, Spark allows users to specify the amount of executor cores
available for each program running. This feature is much more inter-
esting since it allows to tune resource allocation without altering the
original partitioning scheme.

Fig. 6 depicts how the k-Means implementation scales-up by aug-
menting CPU power. From 1 to 120, the method shows an expected
downtrend as more resources are provided, being the minimum stuck at
120 (9.18). The remaining values follow a smooth uptrend until 200
cores.

Fig. 7 illustrates the same study for Random Forest. The results
shows a similar trend to that of the case of k-Means, leading to the same
conclusions. The global minimum can also be found in 120 cores. The
only noticeable difference is the lower time cost held by Random Forest
compared with the clustering technique.

In both cases (kNN and Random Forest), we observe a rapid reduce
of time from 1 to 20 cores, and a barely stable behavior after 20 cores. A
possible explanation for this is the trade-off between the penalty asso-
ciated with the distributed computation versus the increment due to the
parallelization itself. This issue is mainly shown in the case of those
datasets with an average size with respect to the computing capacity.
Furthermore, we observe that in these experiments the absolute elapsed
time is low (about ten seconds), implying a threshold for a larger effi-
ciency improvement.

In addition to the former, we observe that no real scale-up happens
from 120 cores. To understand this behavior, we must cite the Spark’s
authors suggestion [67] for partition tuning, which recommends to
prepare 2–4× partitions per core. A partition rate below 2× implies
that some CPU cores may become idle as the processing granularity

Fig. 4. Average time (3 runnings) obtained by Mahout’s Random Forest (200 trees)
varying the number of mappers. Label values are displayed close to the points.

Fig. 5. Average accuracy (5-fold) obtained by Mahout’s Random Forest (200 trees)
varying the number of mappers. Label values are displayed close to the points.

Fig. 6. Average time (3 runnings) obtained by Spark’s k-Means varying the number of
cores. Label values are displayed close to the points. Y-axis in 10-log scale.

Fig. 7. Average time (3 runnings) obtained by Spark’s Random Forest varying the number
of cores. Label values are displayed close to the points. Y-axis in 10-log scale.
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becomes small. Imagine the 1× case where the most rapid thread must
wait the slowest one. A rate above 4× implies a oversized granularity
where time usage is mainly dominated by startup overheads and short
processes. In our study the closest value to a 2× partition rate (120-
cores) is ranked as the best option.

Finally, we must point out that in this case an study on accuracy is
not necessary for k-Means and Random Forest since both models pro-
vides the same predictive solution regardless of the partition scheme
used. For exact fusion models, this claim is always true because all the
methods implement the same intrinsic strategy, however, approximate
models may vary their output depending on the division scheme fol-
lowed.

6. Discussion and guidelines

The core objective in this paper was to acknowledge different
paradigms and strategies implemented by modern large-scale learning
algorithms. Their behavior was also analyzed into detail. To do so, we
selected the level of discrepancy between the distributed models and
their corresponding single-machine versions. We considered it as the
most remarkable aspect to categorize the existing solutions for large-
scale Machine Learning.

From this perspective, we identified two unlike groups: (1) ap-
proximative fusion of models (one submodel per partition, eventually
fused), and (2) exact fusion for scalable models (compounding model
with the same output as the sequential version). Other relevant aspects
considered in this model categorization were their scope (local vs.
global), iteration nature (1-step vs. multistage), or possible guidance by
a master thread (guided vs. unguided).

Approximate models present some advantages with respect to ap-
proximate fusers such as being usually faster, especially as the number
of partitions is increased. Furthermore, any existing model can be
embedded into such scheme, focusing the efforts of the design into the
Reduce stage. The main drawback of approximate solutions is the loss
of accuracy as the number of partitions increases, since there is a clear
lack of data for training. On the contrary, exact models are expected to
achieve greater accuracy, yet they require more effort in their design (in
order to meet the correctness condition).

Regarding these issues, we may provide some tips or suggestions in
the development of distributed analytics models for Big Data. These can
be considered for researchers in order to go one step further on the
topic.

• The main point is to focus on the development and adoption of
global and exact parallel techniques in MapReduce, Spark and/or
Flink technologies. One clear example is the PLANET methodology,
which allowed decision trees to have a global learning scope. This
way, a robust an scalable approach that is independent on the
number of processes / data partitions can be obtained.

• There is a necessity in developing more theoretical studies to facil-
itate the migration of current Machine Learning models towards Big
Data. This way, a direct connection between a certain learning
methodology and its distributed design can be established.

• Approximate models based on the traditional MapReduce scheme
may still offer many interesting opportunities for research. In par-
ticular, the case of ensemble learning is of extreme importance in
this scenario. The coordination among the different submodels must
be a priority for a thorough learning of the problem space, and
therefore to boost the performance of the final system.

• Finally, a smart use on the distributed operators for Scala is man-
datory in order to implement robust and scalable solutions for the
fusion process from a practical point of view.

7. Concluding remarks

In this paper, we have focused on the context of Big Data analytics

and, in particular, on the design of Machine Learning algorithms fol-
lowing the MR programming model where the processes fusion is the
core in the design. This distributed paradigm is based on parallelizing
the computation among nodes, each of which is devoted to a subset of
the main data. Then, the local learned models must be somehow fused
in order to output a single approach.

We have proposed a taxonomy of Big Data distributed models for
Machine Learning based on both the fusion tactic and the model scope,
distinguishing between two main categories. On the one hand, ap-
proximate methods that carry out a direct fusion of models. On the
other hand, those that provide an exact fusion of models. To obtain well
founded conclusions about these different types of methodologies, we
have carried out an experimental study to contrast the scalability of the
different schemes. Our results have determined the higher quality of
those algorithms based on exact fusion of models. In addition, we have
observed the best option to a 2× partition rate for Spark-based
Machine Learning implementations.

Finally, we have carried out a discussion on the main findings ex-
tracted throughout this research work. Specifically, we have analyzed
with relative detail the strong and weak points for both types of the
fusion models. This have allowed us to provide several guidelines for
future study on the topic, namely to strengthen the development of
process fusion searching for a robust design of exact parallel techniques
for analytics.
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Abstract

The massive growth in the scale of data has been observed in recent years being a key
factor of the Big Data scenario. Big Data can be defined as high volume, velocity and
variety of data that require a new high-performance processing. Addressing big data is
a challenging and time-demanding task that requires a large computational
infrastructure to ensure successful data processing and analysis. The presence of data
preprocessing methods for data mining in big data is reviewed in this paper. The
definition, characteristics, and categorization of data preprocessing approaches in big
data are introduced. The connection between big data and data preprocessing
throughout all families of methods and big data technologies are also examined,
including a review of the state-of-the-art. In addition, research challenges are discussed,
with focus on developments on different big data framework, such as Hadoop, Spark
and Flink and the encouragement in devoting substantial research efforts in some
families of data preprocessing methods and applications on new big data learning
paradigms.

Keywords: Big data, Data mining, Data preprocessing, Hadoop, Spark, Imperfect data,
Data transformation, Feature selection, Instance reduction

Background
Vast amounts of raw data is surrounding us in our world, data that cannot be directly
treated by humans or manual applications. Technologies as the World Wide Web, engi-
neering and science applications and networks, business services andmanymore generate
data in exponential growth thanks to the development of powerful storage and connection
tools. Organized knowledge and information cannot be easily obtained due to this huge
data growth and neither it can be easily understood or automatically extracted. These
premises have led to the development of data science or data mining [1], a well-known
discipline which is more and more present in the current world of the Information Age.
Nowadays, the current volume of data managed by our systems have surpassed the pro-

cessing capacity of traditional systems [2], and this applies to data mining as well. The
arising of new technologies and services (like Cloud computing) as well as the reduction
in hardware price are leading to an ever-growing rate of information on the Internet. This
phenomenon certainly represents a “Big” challenge for the data analytics community. Big
Data can be thus defined as very high volume, velocity and variety of data that require a
new high-performance processing [3].

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
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Distributed computing has been widely used by data scientists before the advent of
Big Data phenomenon. Many standard and time-consuming algorithms were replaced by
their distributed versions with the aim of agilizing the learning process. However, formost
of current massive problems, a distributed approach becomes mandatory nowadays since
no batch architecture is able to tackle these huge problems.
Many platforms for large-scale processing have tried to face the problematic of Big Data

in last years [4]. These platforms try to bring closer the distributed technologies to the
standard user (enginners and data scientists) by hiding the technical nuances derived from
distributed environments. Complex designs are required to create and maintain these
platforms, which generalizes the use of distributed computing. On the other hand, Big
Data platforms also requires additional algorithms that give support to relevant tasks, like
big data preprocessing and analytics. Standard algorithms for those tasks must be also
re-designed (sometimes, entirely) if we want to learn from large-scale datasets. It is not
trivial thing and presents a big challenge for researchers.
The first framework that enabled the processing of large-scale datasets wasMapReduce

[5] (in 2003). This revolutionary tool was intended to process and generate huge datasets
in an automatic and distributed way. By implementing two primitives, Map and Reduce,
the user is able to use a scalable and distributed tool without worrying about techni-
cal nuances, such as: failure recovery, data partitioning or job communication. Apache
Hadoop [6, 7] emerged as the most popular open-source implementation of MapReduce,
maintaining the aforementioned features. In spite of its great popularity, MapReduce (and
Hadoop) is not designed to scale well when dealing with iterative and online processes,
typical in machine learning and stream analytics [8].
Apache Spark [9, 10] was designed as an alternative to Hadoop, capable of perform-

ing faster distributed computing by using in-memory primitives. Thanks to its ability of
loading data into memory and re-using it repeatedly, this tool overcomes the problem of
iterative and online processing presented byMapReduce. Additionally, Spark is a general-
purpose framework that thanks to its generality allows to implement several distributed
programming models on top of it (like Pregel or HaLoop) [11]. Spark is built on top of a
new abstraction model called Resilient Distributed Datasets (RDDs). This versatile model
allows controlling the persistence and managing the partitioning of data, among other
features.
Some competitors to Apache Spark have emerged lastly, especially from the streaming

side [12]. Apache Storm [13] is an open-source distributed real-time processing platform,
which is capable of processing millions of tuples per second and node in a fault-tolerant
way. Apache Flink [14] is a recent top-level Apache project designed for distributed
stream and batch data processing. Both alternatives try to fill the “online” gap left by
Spark, which employs a mini-batch streaming processing instead of a pure streaming
approach.
The performance and quality of the knowledge extracted by a data mining method in

any framework does not only depends on the design and performance of the method but
is also very dependent on the quality and suitability of such data. Unfortunately, nega-
tive factors as noise, missing values, inconsistent and superfluous data and huge sizes
in examples and features highly influence the data used to learn and extract knowl-
edge. It is well-known that low quality data will lead to low quality knowledge [15].
Thus data preprocessing [16] is a major and essential stage whose main goal is to obtain
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final data sets which can be considered correct and useful for further data mining
algorithms.
Big Data also suffer of the aforementioned negative factors. Big Data preprocessing con-

stitutes a challenging task, as the previous existent approaches cannot be directly applied
as the size of the data sets or data streams make them unfeasible. In this overview we
gather the most recent proposals in data preprocessing for Big Data, providing a snapshot
of the current state-of-the-art. Besides, we discuss the main challenges on developments
in data preprocessing for big data frameworks, as well as technologies and new learning
paradigms where they could be successfully applied.

Data preprocessing
The set of techniques used prior to the application of a data mining method is named as
data preprocessing for data mining [16] and it is known to be one of the most meaningful
issues within the famous Knowledge Discovery from Data process [17, 18] as shown in
Fig. 1. Since data will likely be imperfect, containing inconsistencies and redundancies is
not directly applicable for a starting a data mining process. We must also mention the
fast growing of data generation rates and their size in business, industrial, academic and
science applications. The bigger amounts of data collected require more sophisticated
mechanisms to analyze it. Data preprocessing is able to adapt the data to the requirements
posed by each data mining algorithm, enabling to process data that would be unfeasible
otherwise.
Albeit data preprocessing is a powerful tool that can enable the user to treat and process

complex data, it may consume large amounts of processing time [15]. It includes a wide
range of disciplines, as data preparation and data reduction techniques as can be seen in
Fig. 2. The former includes data transformation, integration, cleaning and normalization;
while the latter aims to reduce the complexity of the data by feature selection, instance

Fig. 1 KDD process
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Fig. 2 Data preprocessing tasks

selection or by discretization (see Fig. 3). After the application of a successful data prepro-
cessing stage, the final data set obtained can be regarded as a reliable and suitable source
for any data mining algorithm applied afterwards.
Data preprocessing is not only limited to classical data mining tasks, as classification

or regression. More and more researchers in novel data mining fields are paying increas-
ingly attention to data data preprocessing as a tool to improve their models. This wider
adoption of data preprocessing techniques is resulting in adaptations of known models
for related frameworks, or completely novel proposals.
In the following we will present the main fields of data preprocessing, grouping them

by their types and showing the current open challenges relative to each one. First, we
will tackle the preprocessing techniques to deal with imperfect data, where missing val-
ues and noise data are included. Next, data reduction preprocessing approaches will be
presented, in which feature selection and space transformation are shown. The following
section will deal with instance reduction algorithms, including instance selection and pro-
totype generation. The last three section will be devoted to discretization, resampling for
imbalanced problems and data preprocessing in new fields of data mining respectively.

Imperfect data

Most techniques in data mining rely on a data set that is supposedly complete or noise-
free. However, real-world data is far from being clean or complete. In data preprocessing
it is common to employ techniques to either removing the noisy data or to impute (fill in)
the missing data. The following two sections are devoted two missing values imputation
and noise filtering.

Missing values imputation

One big assumption made by data mining techniques is that the data set is complete.
The presence of missing values is, however, very common in the acquisition processes. A



García et al. Big Data Analytics  (2016) 1:9 Page 5 of 22

Fig. 3 Data reduction approaches

missing value is a datum that has not been stored or gathered due to a faulty sampling
process, cost restrictions or limitations in the acquisition process. Missing values cannot
be avoided in data analysis, and they tend to create severe difficulties for practitioners.
Missing values treatment is difficult. Inappropriately handling the missing values will

easily lead to poor knowledge extracted and also wrong conclusions [19]. Missing values
have been reported to cause loss of efficiency in the knowledge extraction process, strong
biases if themissingness introductionmechanism ismishandled and severe complications
in data handling.
Many approaches are available to tackle the problematic imposed by the missing val-

ues in data preprocessing [20]. The first option is usually to discard those instances that
may contain a missing value. However, this approach is rarely beneficial, as eliminating
instances may produce a bias in the learning process, and important information can
be discarded [21]. The seminal works on data imputation come from statistics. They
model the probability functions of the data and take into account the mechanisms that
induce missingness. By using maximum likelihood procedures, they sample the approxi-
mate probabilistic models to fill the missing values. Since the true probability model for
a particular data sets is usually unknown, the usage of machine learning techniques has
become very popular nowadays as they can be applied avoiding without providing any
prior information.

Noise treatment

Data mining algorithms tend to assume that any data set is a sample of an underlying dis-
tribution with no disturbances. As we have seen in the previous section, data gathering
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is rarely perfect, and corruptions often appear. Since the quality of the results obtained
by a data mining technique is dependent on the quality of the data, tackling the problem
of noise data is mandatory [22]. In supervised problems, noise can affect the input fea-
tures, the output values or both. When noise is present in the input attributes, it is usually
referred as attribute noise. The worse case is when the noise affects the output attribute,
as this means that the bias introduced will be greater. As this kind of noise has been deeply
studied in classification, it is usually known as class noise.
In order to treat noise in data mining, two main approaches are commonly used in the

data preprocessing literature. The first one is to correct the noise by using data polishing
methods, specially if it affects the labeling of an instance. Even partial noise correction is
claimed to be beneficial [23], but it is a difficult task and usually limited to small amounts
of noise. The second is to use noise filters, which identify and remove the noisy instances
in the training data and do no require the data mining technique to be modified.

Dimensionality reduction

When data sets become large in the number of predictor variables or the number of
instances, data mining algorithms face the curse of dimensionality problem [24]. It is a
serious problem as it will impede the operation of most data mining algorithms as the
computational cost rise. This section will underline the most influential dimensionality
reduction algorithms according to the division established into Feature Selection (FS) and
space transformation based methods.

Feature selection

Feature selection (FS) is “the process of identifying and removing as much irrelevant and
redundant information as possible” [25]. The goal is to obtain a subset of features from
the original problem that still appropriately describe it. This subset is commonly used
to train a learner, with added benefits reported in the specialized literature [26, 27]. FS
can remove irrelevant and redundant features which may induce accidental correlations
in learning algorithms, diminishing their generalization abilities. The use of FS is also
known to decrease the risk of over-fitting in the algorithms used later. FS will also reduce
the search space determined by the features, thus making the learning process faster and
also less memory consuming.
The use FS can also help in task not directly related to the datamining algorithm applied

to the data. FS can be used in the data collection stage, saving cost in time, sampling,
sensing and personnel used to gather the data. Models and visualizations made from data
with fewer features will be easier to understand and to interpret.

Space transformations

FS is not the only way to cope with the curse of dimensionality by reducing the number
of dimensions. Instead of selecting the most promising features, space transformation
techniques generate a whole new set of features by combining the original ones. Such a
combination can be made obeying different criteria. The first approaches were based on
linear methods, as factor analysis [28] and PCA [29].
More recent techniques try to exploit nonlinear relations among the variables. Some

of the most important, both in relevance and usage, space transformation procedures
are LLE [30], ISOMAP [31] and derivatives. They focus on transforming the original
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set of variables into a smaller number of projections, sometimes taking into account the
geometrical properties of clusters of instances or patches of the underlying manifolds.

Instance reduction

A popular approach to minimize the impact of very large data sets in data mining algo-
rithms is the use of Instance Reduction (IR) techniques. They reduce the size of the data
set without decreasing the quality of the knowledge that can be extracted from it. Instance
reduction is a complementary task regarding FS. It reduces the quantity of data by remov-
ing instances or by generating new ones. In the following we describe the most important
instance reduction and generation algorithms.

Instance selection

Nowadays, instance selection is perceived as necessary [32]. The main problem in
instance selection is to identify suitable examples from a very large amount of instances
and then prepare them as input for a data mining algorithm. Thus, instance selection is
comprised by a series of techniques that must be able to choose a subset of data that
can replace the original data set and also being able to fulfill the goal of a data mining
application [33, 34]. It must be distinguished between instance selection, which implies a
smart operation of instance categorization, from data sampling, which constitutes a more
randomized approach [16].
A successful application of instance selection will produce a minimum data subset

that it is independent from the data mining algorithm used afterwards, without losing
performance. Other added benefits of instance selection is to remove noisy and redun-
dant instances (cleaning), to allow data mining algorithms to operate with large data sets
(enabling) and to focus on the important part of the data (focusing).

Instance generation

Instance selection methods concern the identification of an optimal subset of representa-
tive objects from the original training data by discarding noisy and redundant examples.
Instance generationmethods, by contrast, besides selecting data, can generate and replace
the original data with new artificial data. This process allows it to fill regions in the domain
of the problem, which have no representative examples in original data, or to conden-
sate large amounts of instances in less examples. Instance generation methods are often
called prototype generation methods, as the artificial examples created tend to act as a
representative of a region or a subset of the original instances [35].
The new prototypes may be generated following diverse criteria. The simplest approach

is to relabel some examples, for example those that are suspicious of belonging to a
wrong class label. Some prototype generation methods create centroids by merging sim-
ilar examples, or by first merging the feature space in several regions and then creating
a set of prototype for each one. Others adjust the position of the prototypes through the
space, by adding or substracting values to the prototype’s features.

Discretization

Data mining algorithms require to know the domain and type of the data that will be used
as input. The type of such data may vary, from categorical where no order among the
values can be established, to numerical data where the order among the values there exist.



García et al. Big Data Analytics  (2016) 1:9 Page 8 of 22

Decision trees, for instance, make split based on information or separabilitymeasures that
require categorical values in most cases. If continuous data is present, the discretization
of the numerical features is mandatory, either prior to the tree induction or during its
building process.
Discretization is gaining more and more consideration in the scientific community [36]

and it is one of the most used data preprocessing techniques. It transforms quantitative
data into qualitative data by dividing the numerical features into a limited number of non-
overlapped intervals. Using the boundaries generated, each numerical value is mapped
to each interval, thus becoming discrete. Any data mining algorithm that needs nominal
data can benefit from discretization methods, since many real-world applications usually
produce real valued outputs. For example, three of the ten methods considered as the top
ten in data mining [37] need an external or embedded discretization of data: C4.5 [38],
Apriori [39] and Naïve Bayes [40] In these cases, discretization is a crucial previous stage.
Discretization also produce added benefits. The first is data simplification and reduc-

tion, helping to produce a faster and more accurate learning. The second is readability,
as discrete attributes are usually easier to understand, use and explain [36]. Neverthe-
less these benefits come at price: any discretization process is expected to generate a loss
of information. Minimizing this information loss is the main goal pursused by the dis-
cretizer, but an optimal discretization is a NP-complete process. Thus, a wide range of
alternatives are available in the literature as we can see in some published reviews on the
topic [36, 41, 42].

Imbalanced learning. Undersampling and oversampling methods

In many supervised learning applications, there is a significant difference between the
prior probabilities of different classes, i.e., between the probabilities with which an exam-
ple belongs to the different classes of the classification problem. This situation is known
as the class imbalance problem [43]. The hitch with imbalanced datasets is that standard
classification learning algorithms are often biased towards the majority class (known as
the “negative” class) and therefore there is a higher misclassification rate for the minority
class instances (called the “positive” examples).
While algorithmic modifications are available for imbalanced problems, our interest

lies in preprocessing techniques to alleviate the bias produced by standard data mining
algorithms. These preprocessing techniques proceed by resampling the data to balance
the class distribution. The main advantage is that they are independent of the data mining
algorithm applied afterwards.
Two main groups can be distinguished within resampling. The first one is undersam-

pling methods, which create a subset of the original dataset by eliminating (majority)
instances. The second one is oversamplingmethods, which create a superset of the original
dataset by replicating some instances or creating new instances from existing ones.
Non-heuristic techniques, as random-oversampling or random-undersampling were

initially proposed, but they tend to discard information or induce over-fitting. Among
the more sophisticated, heuristic approaches, “Synthetic Minority Oversampling TEch-
nique” (SMOTE) [44] has become one of the most renowned approaches in this area.
It interpolates several minority class examples that lie together. Since SMOTE can still
induce over-fitting in the learner, its combination with a plethora of sampling meth-
ods can be found in the specialized literature with excellent results. Under-sampling has
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the advantage of producing reduced data sets, and thus interesting approaches based
on neighborhood methods, clustering and even evolutionary algorithms have been suc-
cessfully applied to generate quality balanced training sets by discarding majority class
examples.

Data preprocessing in new data mining fields

Many data preprocessing methods have been devised to work with supervised data, since
the label provides useful information that facilitates data transformation. However, there
are also preprocessing approaches for unsupervised problems.
For instance, FS has attracted much attention lately for unsupervised problems [45–47]

or missing values imputation [48]. Semisupervised classification, which contains
instances both labeled and unlabeled, also shows several works in preprocessing for
discretization [49], FS [46], instance selection [50] or missing values imputation [51].
Multi-label classification is a framework prone to gather imbalanced problems. Thus,
methods for re-sampling these particular data sets have been proposed [52, 53]. Multi-
instance problems are also challenging, and resampling strategies have been also studied
for them [54]. Data streams are also a challenging area of data mining, since the informa-
tion represented may change with time. Nevertheless, data streams are attracting much
attention and for instance preprocessing approaches for imputing missing values [55, 56],
FS [57] and IR [58] have been recently proposed.

Big data preprocessing
This section aims at detailing a thorough list of contributions on Big Data preprocess-
ing. Table 1 classifies these contributions according to the category of data preprocessing,
number of features, number of instances, maximum data size managed by each algorithm
and the framework under they have been developed. The size has been computed mul-
tiplying the total number features by the number of instances (8 bytes per datum). For
sparsemethods (like [59] or [60]), only the non-sparse cells have been considered. Figure 4
depicts an histogram of the methods using the size variable. It can be observed as most of
methods have only been tested against datasets between zero an five gigabytes, and few
approaches have been tested against truly large-scale datasets.
Once seen a snapshot of the current developments in Big Data preprocessing, we will

give shorts descriptions of the contributions in the rest of this section. First, we describe
one of the most popular machine learning library for Big Data: MLlib; which brings a
wide range of data preprocessing techniques to the Spark community. Next the rest of
sections will be devoted to enumerate those contributions presented in the literature, and
categorized and arranged in the Table 1.

MLlib: a spark machine learning library

MLlib [61] is a powerful machine learning library that enables the use of Spark in the data
analytics field. This library is formed by two packages:

• mllib : this is the first version of MLlib, which was built on top of RDDs. It contains
the majority of the methods proposed up to now.

• ml : it comes with the newest features of MLlib for constructing ML pipelines. This
higher-level API is built on enhanced DataFrames structures [62].
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Table 1 Analyzed methods and the maximum data size managed by each one

Methods Category # Features # Instances Size (GB) Framework

[70] FS 630 65,003,913 305.1196 Hadoop MapReduce

[69] FS 630 65,003,913 305.1196 Hadoop MapReduce

[74] FS 1,156 5,670,000 48.8350 MPI

[60] FS 29,890,095 19,264,097 4.1623 C++/MATLAB

[59] FS 100,000 10,000,000 1.4901 MapReduce

[76] FS 100 1,600,000 1.1921 Apache Spark

[80] FS 127 1,131,571 1.0707 Hadoop MapReduce

[71] FS 54,675 2,096 0.8538 Hadoop MapReduce

[75] FS 54 581,012 0.2338 Hadoop MapReduce

[73] FS 20 1,000,000 0.1490 MapReduce

[77] FS – – 0.0976 Hadoop MapReduce

[79] FS 256 38,232 0.0729 Hadoop MapReduce

[68] FS 52 5,253 0.0020 Hadoop MapReduce

[78] FS – – 0.0000 Hadoop MapReduce

[67] FS – – 0.0000 Hadoop MapReduce

[72] FS – – 0.0000 Hadoop MapReduce

[83] Imbalanced 630 32,000,000 150.2037 Hadoop MapReduce

[84] Imbalanced 630 32,000,000 150.2037 Hadoop MapReduce

[90] Imbalanced 630 16,000,000 75.1019 Apache Spark

[89] Imbalanced 41 4,856,151 1.4834 Hadoop MapReduce

[82] Imbalanced 41 4,000,000 1.2219 Hadoop MapReduce

[81] Imbalanced 14 1,432,941 0.1495 Hadoop MapReduce

[86] Imbalanced 9,731 1,446 0.1048 Hadoop MapReduce

[91] Imbalanced 14 524,131 0.0547 Hadoop MapReduce

[87] Imbalanced 36 95,048 0.0255 Hadoop MapReduce

[88] Imbalanced 8 2,687,280 0.0200 Hadoop MapReduce

[93] Incomplete 625 4,096,000 19.0735 MapReduce (Twister)

[92] Incomplete 481 191,779 0.6873 Hadoop MapReduce

[95] discretization 630 65,003,913 305.1196 Apache Spark

[96] discretization 630 65,003,913 305.1196 Apache Spark

[94] discretization – – 4.0000 Hadoop MapReduce

[97] IR 41 4,856,151 1.4834 Hadoop MapReduce

The methods are grouped by preprocessing task, and ordered by maximum data size. Those methods with no information about
number of features or instances have been set to zero size

Fig. 4 Maximum data size managed by each preprocessing method (in gigabytes)
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Here, we describe and classify all data preprocessing techniques for both versions1

into five categories: discretization and normalization, feature extraction, feature selection,
feature indexers and encoders, and text mining.

Discretization and normalization

Discretization transforms continuous variables using discrete intervals, whereas normal-
ization just performs an adjustment of distributions.

• Binarizer: converts numerical features to binary features. This method makes the
assumption that data follows a Bernoulli distribution. If a given feature is greater than
a threshold it yields a 1.0, if not, a 0.0.

• Bucketizer: discretizes a set of continuous features by using buckets. The user
specifies the number of buckets.

• Discrete Cosine Transform: transforms a real-valued sequence in the time domain
into another real-valued sequence (with the same size) in the frequency domain.

• Normalizer: normalizes each row to have unit norm. It uses parameter p, which
specifies the p-norm used.

• StandardScaler: normalizes each feature so that it follows a normal distribution.
• MinMaxScaler: normalizes each feature to a specific range, using two parameters: the

lower and the upper bound.
• ElementwiseProduct: scales each feature by a scalar multiplier.

Feature extraction

Feature extraction techniques combine the original set of features to obtain a new set
of less-redundant variables [63]. For example, by using projections to low-dimensional
spaces.

• Polynomial Expansion expands the set of features into a polynomial space. This new
space is formed by an n-degree combination of the original dimensions.

• VectorAssambler: combines a set of features into a single vector column.
• Single Value Decomposition (SVD) is matrix factorization method that transform a

real/complex matrix M (mxn) into a factorized matrix A.
The creators expose that for large matrices it is not needed the complete
factorization but only to maintain the top-k singular values and vectors. In such way,
the dimensions of the implied matrices will be reduced. They also assume that n is
much smaller than m (tall-and-skinny matrices) in order to avoid a severe
degradation of the algorithm’s performance.

• Principal component analysis (PCA) tries to find a rotation such that the set of
possibly correlated features transforms into a set of linearly uncorrelated features.
The columns used in this orthogonal transformation are called principal components.
This method is also designed for matrices with a low number of features.

Feature selection

As explained before, FS tries to select relevant subsets of relevant features without
incurring much loss of information [64].

• VectorSlicer: the user selects manually a subset of features.
• RFormula: selects features specified by an R model formula.
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• Chi-Squared selector: it orders categorical features using a Chi-Squared test of
independence from the class. Then, it selects the most-dependent features. This is a
filter method, which needs the number of features to select.

Feature indexers and encoders

These functions convert features from one type to another using indexing or encoding
techniques.

• StringIndexer: converts a column of string into a column of numerical indices. The
indices are ordered by label frequencies.

• OneHotEncoder: maps a column of strings to a column of unique binary vectors.
This encoding allows better representation of categorical features since it removes
the numerical order imposed by the previous method.

• VectorIndexer: automatically decides which features are categorical and transform
them to category indices.

Other preprocessingmethods for text mining

Text mining techniques try to structure the input text, yielding structured patterns of
information.

• TF-IDF: this tool is aimed at quantifying how relevant each term is to a document,
given a complete set of documents. Term Frequency (TF) measures the number of
times that a term appears in a documents, whereas Inverse Document Frequency
(IDF) measures how much information is given by a term according to its document
frequency. TF is implemented using feature hashing for a better performance, so that
each raw feature is mapped into an index. The dimension of the hast table is
normally quite high (220) in order to avoid collisions.

• Word2Vec: it takes as input a text corpus and yields as output the word vectors. It first
constructs a vocabulary from the text, and then learns vector representation of words.

• CountVectorizer: transforms a corpus into a set of vectors of token counts. It extracts
the vocabulary using an estimator and counts the number of occurrences for each
term.

• Tokenizer: breaks some text into individual terms using simple or regular expressions.
• StopWordsRemover: removes irrelevant words from the input text. The list of stop

words is specified as parameter.
• n-gram: generates sequences of n-grams terms, where each one is formed by a

space-delimited string of n consecutive words.

Feature selection

As mentioned before, FS has a key role to play in dealing with large-scale datasets, espe-
cially those that present an ultra-high dimensionality. However, FS methods, like many
other learningmethods, suffers from the “curse of dimensionality” [65], and consequently,
are not expected to scale well. New paradigms and tools have emerged to solve this prob-
lematic [66]. Most of them are centered in the use of parallel processing to distribute the
massive complexity burden across several nodes. Here, a list of the contributions for FS is
presented:
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• [59]: Singh et al. proposed a new approximate heuristic, optimized for logistic
regression in MapReduce, which employs a greedy search to select features
increasingly.

• [67]: Meena et al. designed an evolutionary approach based on Ant Colony
Optimization (ACO) with the aim of finding the optimal subset of features. It
parallelizes on Hadoop MapReduce some parts of the algorithm, such as:
tokenization, the computation of association degrees, and the evaluation of solutions.

• [68]: Tanupabrungsun et al. proposed a Genetic Algorithm (GA) approach with a
wrapper fitness function. In this work, the Hadoop master process is in charge of the
management of the population whereas the fitness evaluation is parallelized.

• [69]: Triguero et al. proposed an evolutionary feature weighting model to learn the
feature weights per map. They introduced a Reduce phase adding the weights and
using a threshold to select the most relevant instance. This model was the winner
solution in the ECBDL’14 competition.

• [70]: Peralta et al. proposed a different approach based on independent GA processes
(executed on each partition). A voting scheme is employed to aggregate the partial
solutions.

• [71]: Kumar et al. implemented three feature selectors (ANOVA, Kruskal–Wallis,
and Friedman test) based on statistical test. All of them were parallelized on Hadoop
MapReduce so as each feature is evaluated independently.

• [72]: Hodge et al. proposed an unified framework which uses binary Correlation
Matrix Memories (CMMs) to store and retrieve patterns using matrix calculus. They
propose to compute sequentially the CMMs, and them, to distribute them on
Hadoop to obtain the final coefficients.

• [73]: A feature selection method based on differential privacy (Laplacian Noise) and a
Gini-index measure was designed by Chen et al. This technique was implemented
using a general MapReduce model.

• [74]: Zhao et al. proposed a FS framework for both unsupervised and supervised
learning, which includes several measures, such as: the Akaike information criterion
(AIC), the Bayesian information criterion (BIC), and the corrected Hannan–Quinn
information criterion (HQC). This framework has been implemented on MPI.

• [75]: Sun et al. designed a method that computes the total combinatory mutual
information, and the contribution degree between all feature variables and class
variable. It uses a iterative process (implemented on Hadoop) to select the most
relevant features.

• [76]: A filter method based on column subset selection was implemented by
Ordozgoiti et al. However, as stated by the authors, this Spark algorithm is not
designed to tackle high-dimensional problems.

• [77]: A simple version of TF-IDF (for Hadoop MapReduce) was designed by Chao
et al. to deal with text mining problem on Big Data.

• [78]: Dalavi et al. proposed a novel weighting scheme based on supervised learning
(using SVMs) for Hadoop MapReduce.

• [79]: He et al. implemented on Hadoop a FS method using positive approximation as
an accelerator for traditional rough sets.
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• [80]: Wang et al. designed a family of feature selection algorithms for online learning.
The algorithm selects those features with bigger weights, according to a linear
classifier based on L1-norm.

• [60]: Tan et al. reformulated the FS problem as a convex semi-infinite programming
problem. They also proposed to speed up the training phase through several cache
techniques and a modified accelerated proximal gradient method. This sequential
approach (written in C++ and MatLab) has been included on this list because of its
relevance and promising results on Big Data (see Table 1).

Imbalanced data

Classification problems are typically formed by a small set of classes. Some of them
come with a tiny percentage of instances compared with the other classes. This highly-
imbalanced problems are more noteworthy in Big Data environments where millions
of instances are present. Some contributions to this topic have been implemented on
Hadoop MapReduce:

• [81]: The first approach in dealing with imbalanced large-scale datasets was proposed
by Park et al. In this work, a simple over-sampling technique was employed using
Apache Hadoop and Hive on traffic data with a 14 % of positive instances.

• [82]: Hu et al. proposed an enhanced version of Synthetic Minority Over-sampling
Technique (SMOTE) algorithm on MapReduce. This method focused on replicating
those minority cases that only belong to the boundary region to solve the problem of
original SMOTE, which omits the distribution of the original data while yields new
samples.

• [83]: Rio et al. adapted some over-sampling, under-sampling and cost-sensitive
methods for MapReduce. All these distributed algorithms apply a sampling technique
on each data partition, and reduce the partial results by randomly selecting a fixed
amount of instances. It was extended for extremely imbalanced data in [84] using a
high over-sampling rate to highlight the presence of the minority class. This proposal
has been tested against several bio-informatics problems (like contact map prediction
and orthogonal detection) with accurate results [69, 85].

• [86]: Wang et al. proposed an algorithm that weighs the penalties associated to each
instance in order to reduce the effect of less important points. This weighted
boosting method aims at adjusting the weights of each instance in each iteration. The
weighted instances are finally classified by a SVM classifier.

• [87]: Bhagat et al. proposed an extension to this work where a combination of
SMOTE and a One-vs-All (OVA) approach is tested.

• [88]: Zhai et al. designed a oversampling technique based on nearest neighbors for
ensemble learning. This technique yields several over-sampled sets by alternating the
process between positive and negative instances. In this work, only the neighbors
computation is reported to be distributed using MapReduce.

• [89]: Triguero et al. designed an evolutionary undersampling method for Big Data
classification. It is based on two MapReduce stages: the first one builds a decision tree
in each map after performing undersampling; and the second one, classifies the test
set using the set of trees. The building phase is accelerated by a windowing
technique. In [90], an iterative model was designed on Apache Spark aiming at
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solving extremely imbalance problems [90]. Through Spark in-memory operations,
this model is able to make an efficient use of data.

• [91]: Park et al. developed a distributed version of SMOTE algorithm for traffic
detection. This version consists of two MapReduce jobs: the first one calculates
distances among the input examples; and the second one sorts the results by
distance. The latter step caches the original data into a distributed cache, which can
be consider as a serious problem for scalability.

Incomplete data

In most of current real-life problems, there is a potential for incomplete data (also called
missing data). Because of either human or machine failure, input data can present some
gaps or errors. This problem needs to be faced early with some additional techniques (like
imputation methods) that prevent the learning process from its negative effect. Although
Big Data systems are more prone to incompleteness, just a couple of contributions have
been proposed in the literature to solve this:

• [92]: Chen et al. designed a data cleansing method based on the combination of set-
valued decision information system, and a deep analysis of missing information. The
algorithm implements on Hadoop MapReduce the computation of the equivalent
set-valued decision information system and the boolean equivalence matrix. By using
this information, they purge duplicate and inconsistent objects from the input
data.

• [93]: Zhang et al. run an investigation about the effect of rough sets over incomplete
information systems. Its Twister MapReduce implementation aims at accelerating
the computation of the relation matrix, one of the main structures in rough sets
theory. One of its main advantages is the Sub-Merge operation implemented, which
accelerates the process of joining the relation matrices and saves some space.

Discretization

Discretization task is frequently used to improve the performance and effectiveness of
classifiers. It is also used to simplify, and therefore, to reduce continuous-valued datasets.
For this reason, data discretization has become one of the most important task in the
knowledge discovery process. Nevertheless, standard discretization are not prepared to
deal with big datasets. Here, we present the unique contributions in this field:

• [94]: Zhang et al. implemented on Hadoop a parallel version of Chi-Squared
discretization method. However, the main drawback of this method is its poor
scalability due to the merging process is bounded by the number of input features.

• [95]: Ramírez et al. designed an efficient implementation of Fayyad’s discretizer on
Apache Spark. This entropy minimization proposal was re-adapted to completely
distribute the computation burden associated to the most-consuming operations in
this method: feature sorting and boundary points generation. In [96], an updated
taxonomy of the most relevant discretization methods is presented along with the Big
Data challenge that supposes the application of discretization techniques in
large-scale scenarios. A distributed entropy minization discretizer is presented and
evaluated on several big datasets.



García et al. Big Data Analytics  (2016) 1:9 Page 16 of 22

Instance reduction

Instance selection is a type of preprocessing technique, which aims at reducing the num-
ber of samples to be considered in the learning phase. In spite of its promising results
with small and medium datasets, this task is normally undermined when coping with
large-scale datasets (from tens of thousands of instances onwards).
Just one contribution of Triguero et al. [97] has been able to address this problem

from a distributed perspective up to now. In this work, the authors apply an advanced IR
technique (called SSMA-SFLSDE) over each data partition (map phase) using Hadoop.
The reduce phase offers several ways to aggregate the partial instance sets, either by:
concatenating all partial results (baseline), filtering noisy prototypes, or merging redun-
dant samples. An extension to this method was proposed in [98]. A second phase of
parallelization based on windowing is included in this extension on the mappers side.
In this section, we have reviewed the most important contributions on large-scale pre-

processing. Regarding MLlib, it offers a wide set of preprocessing algorithms, however,
almost all these methods looks quite simple. Indeed, focusing on FS, only a simple statisti-
cal filter (Chi-squared) has been implemented. On the other hand, a list of more complex
and diverse contributions have been presented in the literature. Nevertheless, just a few of
these methods have been tested against really huge datasets (greater than 5 GBs). Accord-
ingly, more scalable proposals are required to tackle the actual size of incoming data, and
to cover neglected fields of preprocessing (like IR).

Challenges and new possibilities in big data preprocessing
This last section of the paper will be devoted to point out all the existing lines in which the
efforts on Big Data preprocessing should be made in the next years. The new possibilities
on this topic will be centered onto three main key points: new technologies, to scale the
data preprocessing techniques and new learning paradigms on which they can be applied.

New technologies

As we can see in previous content of this paper, new technologies for Big Data are emerg-
ing in the last years and few attempts of data preprocessing proposals can be found
adapted to take advantage of them. It is clear that Spark [10] is offering better perfor-
mance results than Hadoop [7] in processing. But also, Spark is a newer technology and
there has been little time to develop ideas until now. Thus, the near future will offer new
methods developed in Spark under the library MLlib [61] which is growing increasingly.
It is worth mentioning that other emerging platform, such as Flink [14], are bridging

the gap of stream and batch processing that Spark currently has. Flink is a streaming
engine that can also do batches whereas Spark is a batch engine that emulates stream-
ing by micro-batches. This results in that Flink is more efficient in terms of low latency,
especially when dealing with real time analytical processing.
In the particular case of data preprocessing in Spark, excepting basic data preprocess-

ing, we can find some developments in FS and discretization for Big Data. Spark is a
more mature technology and implements MLlib with tens of already available learning
algorithms. This will make easy and encourage the integration of novel data prepro-
cessing methods in a near future. However, it is desirable to start the development
of data preprocessing techniques on Flink, in particular with streaming and real-time
applications.
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Scaling data preprocessing techniques to deal with big data

Another remarkable outcome derived from the previous analysis of existing Big Data pre-
processing techniques is that most of the effort has been devoted to the development of
FS methods, and even there are some data preprocessing families in which nothing or
almost nothing has been done.

• Instance reduction: these techniques will allow us to arrange a subset of data to carry
out the same learning tasks that we could do with original data, but with a low
decrease of performance. It is very desirable to have a complete set of instance
reduction techniques to obtain subsets of data from big databases for certain
purposes and paradigms. The key problem is that these techniques have to be
re-adjusted to deal with large scale data, they require high computation capabilities
and they are assumed to follow an iterative procedure.

• Missing values imputation: it is a hard problem in which many relationships among
data have to be analyzed to estimate the best possible value to replace a missing value.

• Noise treatment: it is again a complex problem in which decisions depend on two
perspectives: the computation of similarities among data points and the run and
fusion of several decisions coming from ensembles to enable the noise identification
approach.

Additionally, there is an open issue related to the arrangement and combination of sev-
eral data preprocessing techniques to achieve the optimal outcome for a data mining
process. This is discussed in [99], where the most influential data preprocessing tech-
niques are presented and some instructive experimental studies emphasize the effects
caused by different arrangement of data preprocessing techniques. This is an original
complex challenge, but it will be more complex according to the data scales in Big Data
scenarios. This complexity may also be influenced by other factors that mainly depends
of the data preprocessing technique in question; such as its dependency of intermediate
results, its capacity of treating different volumes of data, its possibility of parallelization
and iterative processing, or even the input it requires or the output it provides.

New big data learning paradigms

Data mining is not a static field and new problems are continuously arising. In con-
sequence data preprocessing techniques are evolving along with data mining and with
the appearance of new challenges and problems that data mining tries to tackle, new
proposals of data preprocessing methods have been proposed.
These problems are becoming a part of the Big Data universe and they are being cur-

rently addressed by some of the mentioned technologies [100]. In addition, they will
require data preprocessing techniques to ensure high quality solutions and good perfor-
mance in the results obtained. This is another major challenge for Big Data preprocessing
and it will concern different learning paradigms, besides classification and regression,
such as:

• Unsupervised learning: Clustering [101] and rule association mining [102] have been
addressed in Big Data. Developments on real-time applications can be also found in
the literature [103]. It is well-known that the success of these problems depends
heavily on the quality of data, being the data cleaning, transformation and
discretization the techniques with the most important role for this.
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• Semi-supervised learning: A significant growth of applications and solutions on this
paradigm is expected in the near future. Due to the fact of generating and storing
more and more data, the labeling of examples cannot be done for all and the
predictive or descriptive task will be supported by a subset of labelled examples [104].
Data preprocessing, especially at the instance level [105], would be useful to improve
the quality of this kind of data.

• Data streams and real-time processing: processing large data offering real-time
responses is one of the most popular and demanding paradigms in business [106].
Currently, there are some specific approaches in Big Data streams [107–109] and
even software development [110]. Data preprocessing techniques, such as noise
editing [58], should be able to tackle Big Data scenarios in upcoming applications.

• Non-standard supervised problems: there are some other popular supervised
paradigms in which Big Data solutions will be necessary soon. This is the case of
ordinal classification/regression [111], multi-label classification [52, 53, 112] or
multi-instance learning [54]. All the possible data preprocessing approaches will also
be required to enable and improve these solutions.

Conclusions
At the present, the size, variety and velocity of data is huge and continues to increase every
day. The use of Big Data frameworks to store, process, and analyze data has changed the
context of the knowledge discovery from data, especially the processes of data mining and
data preprocessing. In this paper, we presented a review on the rise of data preprocessing
in cloud computing. We presented a updated categorization of data preprocessing con-
tributions under the big data framework. The review covered different families of data
preprocessing techniques, such as feature selection, imperfect data, imbalanced learning
and instance reduction as well as the maximum size supported and the frameworks in
which they have been developed. Furthermore, the key issues in big data preprocessing
were highlighted.
In the future, significant challenges and topics must be addressed by the industry

and academia, especially those related to the use of new platforms such as Apache
Spark/Flink, the enhancement of scaling capabilities of existing techniques and the
approach to new big data learning paradigms. Researchers, practitioners, and data scien-
tists should collaborate to guarantee the long-term success of big data preprocessing and
to collectively explore new domains.

Endnote
1mllib andml documentation: http://spark.apache.org/docs/latest/mllib-guide.html.
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Multivariate Discretization Based on Evolutionary
Cut Points Selection for Classification

Sergio Ramírez-Gallego, Salvador García, José Manuel Benítez, Member, IEEE, and Francisco Herrera

Abstract—Discretization is one of the most relevant techniques
for data preprocessing. The main goal of discretization is to trans-
form numerical attributes into discrete ones to help the experts
to understand the data more easily, and it also provides the
possibility to use some learning algorithms which require dis-
crete data as input, such as Bayesian or rule learning. We focus
our attention on handling multivariate classification problems,
where high interactions among multiple attributes exist. In this
paper, we propose the use of evolutionary algorithms to select a
subset of cut points that defines the best possible discretization
scheme of a data set using a wrapper fitness function. We also
incorporate a reduction mechanism to successfully manage the
multivariate approach on large data sets. Our method has been
compared with the best state-of-the-art discretizers on 45 real
datasets. The experiments show that our proposed algorithm
overcomes the rest of the methods producing competitive dis-
cretization schemes in terms of accuracy, for C4.5, Naive Bayes,
PART, and PrUning and BuiLding Integrated in Classification
classifiers; and obtained far simpler solutions.

Index Terms—Classification, data mining (DM), data
preprocessing, discretization, evolutionary algorithms (EAs),
numerical attributes.

I. INTRODUCTION

DATA preprocessing [1] is a crucial research topic in data
mining (DM) since most real-world databases are highly

influenced by negative elements such as the presence of noise,
missing values, inconsistent, and superfluous data. The reduc-
tion of data is also an essential task especially when dealing
with large data sets, focusing on the selection or extraction of
the most informative features [2] or instances [3] in the data.

Discretization, as one of the basic reduction techniques, has
received increasing research attention in recent years [4], [5]
and has become one of the most broadly used techniques
in DM. The objective of a discretization process is to transform
numerical attributes into discrete ones by producing a finite
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number of intervals, and by associating a discrete, numeri-
cal value to each interval [6], [7]. Although real-word DM
tasks often involve numerical attributes, many algorithms can
only handle categorical attributes, such as CN2 [8], algorithm
quasioptimal-learning family [9], or Naive Bayes [10], [11],
whereas others can deal with numerical attributes but would
perform better on discrete-valued features[12].1

Among the most important advantages of using discretized
data is that it is simpler and more reduced than numerical
data. For example, some kind of decision trees yield more
compact, shorter, and more accurate results than the derived
ones using numerical values [6], [13]. Discretization of data
besides has the effect of improving the speed and accuracy of
DM algorithms.

Cut points selection problem for discretization is formed by
all the singleton values present in each input attribute (candi-
date points). As this space can become very complex, specially
when the data grow (both instances and features); we resorted
to the use of a subset of attribute values or cut points, consid-
ering only those points that fall in the class borders [boundary
points (BPs)]. Since this problem can be considered as an
optimization problem with a binary search space, evolutionary
algorithms (EAs) can be applied.

EAs have been used for data preparation with promising
results [14]. In discretization, few evolutionary approaches can
be found in the literature. In [15], a multivariate proposal is
presented based on finding hidden association patterns using
genetic algorithms (GAs) and clustering. Some discretiza-
tion approaches based on rough sets have been proposed
in [16] and [17], which also address this problem by using
GAs. An important development in this area was done in [18],
where an estimation of distribution algorithm is used for
optimizing a Naive Bayes wrapper-based discretizer. A multi-
variate discretization EA for optimal cut points selection was
proposed in [19]. The objective of this algorithm was to max-
imize the accuracy of the subsequent classification and to
simplify the solution by using an inconsistency-based fitness
function [20], [21].

In this paper, we present an evolutionary-based discretiza-
tion algorithm with binary representation called evolutionary
multivariate discretizer (EMD), which selects the most ade-
quate combination of boundary cut points to create discrete
intervals. Our proposal is inspired by the work presented

1Although there are subsequent versions of these classic algorithms that
are able to manage continuous attributes (e.g., for Naive Bayes [11]), in this
paper, we will focus on the standard version of these classifiers.

2168-2267 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Cut points selection: problem. (a) Candidate points. (b) Boundary points.

in [19], but we have introduced some new enhancements,
such as a wrapper-based fitness function to yield more com-
petitive discretization solutions and a chromosome reduction
mechanism to agilize the discretization process. Besides, our
algorithm is a multivariate approach as it is able to take advan-
tage of the existing dependencies among the complete set
of attributes. These enhancements allow us to obtain better
outcomes than in the previous approach.

We compare our approach with the discretizers emphasized
as the best performing according to [5]. We consider two of
the most influential classifiers that benefit from discretization:
C4.5 and Naive Bayes [22]. We also extend the experi-
ments using two additional and relevant classifiers: PART and
PrUning and BuiLding Integrated in Classification (PUBLIC).
The empirical study consists of 45 datasets, seven discretiz-
ers for comparison, and an analysis based on nonparametric
statistical testing [23]–[25].

The rest of this paper is organized as follows. Section II
defines some basic concepts used in this paper and catego-
rizes our algorithm according to a discretization taxonomy.
In Section III, our proposal is explained. In Section IV, we
provide the experimental framework, the results obtained, and
an analysis based on nonparametric statistical testing. Finally,
Section V concludes this paper.

II. BACKGROUND

In this section, we formally define the problem of dis-
cretization and we propose an approximation to reduce the
algorithm’s complexity through a reduction of the set of cut
points. After that, we enumerate the typical features used to
categorize the discretizers [5] and consequently, we classify
our algorithm.

Finally, as our algorithm is based on the evolutionary
computation idea and particularly, on the subclass of GAs;
we explain briefly them and present the CHC model used in
our proposal.

A. Definitions

Considering a classification problem with C target classes,
a set with N instances, and M attributes, we can define the

discretization as follows. A discretization algorithm would
partition a continuous attribute A into kA discrete and disjoint
intervals

DA =
{
[d0, d1], (d1, d2], . . . ,

(
dkA−1, dkA

]}
(1)

where d0 and dkA , respectively, are the minimum and maximal
value, the values in DA are arranged in ascending order. Such
set of discrete intervals DA is called a discretization scheme
on attribute A and PA = {d1, d2, . . . , dkA−1} is the set of cut
points of attribute A. Finally, P denotes the complete set of
cut points for all the continuous attributes in M. Therefore, the
search space is formed by all the candidate cut points for each
attribute, which is basically all the different existing values in
the training set, considering each attribute separately.

In order to reduce the complexity of the initial search space,
we resorted to the use of a reduced subset formed by the BPs
of each attribute. Partitioning of a numerical attribute A begins
by sorting its values into ascending order. Let Dom(A) denote
the domain of the attribute A and valA(s) denote the value of
the attribute A in a sample s ∈ S. If a pair of samples u, v ∈ S
exists, having different classes, such that valA(u) < valA(v),
and another sample w ∈ S does not exist such that valA(u) <

valA(w) < valA(v). We define a BP bp ∈ Dom(A) as the
midpoint value between valA(u) and valA(v).

Thus, the set of BPs for attribute A is denoted as BPA,
and BP denotes the complete set. BPs are known to form the
optimal intervals for most of the evaluation measures used,
as inconsistency or information gain [26]. Hence, using only
the BPs in the search space, we can obtain significant savings
in complexity and time consumption. Additionally, the above
definition of BPs allow us to achieve the maximum separability
between classes, thus obtaining better discretization results.
A representation of the candidate and BPs for the iris dataset
is showed in Fig. 1.

B. Categorization

Discretization methods may be categorized according to
many features. Typically, discretization algorithms are clas-
sified into two main categories: 1) top-down (splitting) and
2) bottom-up (merging). Top-down methods [27] start from
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Fig. 2. Chromosome representation.

the initial interval and recursively split it into smaller intervals,
while bottom-up algorithms begin with the set of all dis-
tinct values and iteratively merge adjacent intervals [28]. Apart
from that, discretization methods may be grouped as below.

1) Supervised Versus Unsupervised: Unsupervised dis-
cretizers do not consider the class label whereas super-
vised ones do.

2) Local Versus Global: Global discretizers require all
available data in the attribute whereas local ones do not.

3) Dynamic Versus Static: Dynamic discretizers act when
the learner is constructing the models whereas the static
ones proceed before the learning stage.

4) Splitting Versus Merging: This refers to the procedure
used to yield new intervals, using either splittings or
joinings.

5) Univariate or Multivariate: Univariate algorithms dis-
cretize each attribute separately whereas multivariate
ones take into account the relationships among all
attributes when attempting to find the best complete
set P. Due to the high complexity of the complete search
space, multivariate approach has been less exploited than
univariate.

6) Direct Versus Incremental: Incremental discretizers
begin with a simple discretization and pass through
an improvement process until an stopping criterion is
reached whereas direct ones divide the range into k
intervals simultaneously.

7) Evaluation Measure: Indicates which kind of metric
uses the algorithm to compare solutions (information,
statistical, rough sets, wrapper, binning, etc.).

Fig. 3. Chromosome solution.

A complete and more exhaustive taxonomy of these meth-
ods can be found in [5].

According to this categorization, we can classify our pro-
posal as a static, multivariate, supervised, global, direct,
and hybrid discretizer. Furthermore, as it uses an evalua-
tion measure (explained in the next section) based on the
classification error, we can also categorize it as a wrapper
discretizer.

C. Genetic Algorithms

GAs have proved to perform well in many optimization
problems [29]. They have been used specially in engineering,
biology, and health care [30]–[33]. GAs are search heuris-
tic methods that mimic the process of natural selection,
being mainly inspired by evolutionary techniques such as
inheritance, mutation, selection, and crossover [34].

Here, we describe the basic scheme of a GA algorithm and
we present the GA chosen for solving cut points selection
problem in discretization: the CHC model.

1) GA Basic Scheme: A GA starts with a population of
I candidate solutions, called individuals or chromosomes.
Let each individual be a L−dimensional vector Xi,G =
{x1

i,G, . . . , xN
i,G}, being the subsequent generations in GA

denoted by G = 0, . . . , Gmax. The initial population should
cover the complete search space as much as possible, as
it is randomly chosen. Afterwards, we evaluate this initial
population using a fitness measure.

To improve the quality of the solutions, the GA process
enters in a generational loop until the stopping criteria is
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Algorithm 1 GA Algorithm Basic Scheme
Initialize the population
Evaluate initial population
while Stopping criteria is not reached do

Select the best-fit individuals
Apply the crossover
Perform mutations
Evaluate new population
Replace least-fit individuals

end while

Algorithm 2 Reduction Process
Require: nr = 0, Ms = 1000, ne > 0, Me > 0

if Cs ∗ (1− Rperc) > Ms and ne/(Me ∗ Rrate) > nr then
newPop← REDUCTION(oldPop, Cp, points)
function REDUCTION(oldPop, Cp, points)

Cs = |bc| ∗ (1− Rperc)
bc = getBestIndividual(oldPop)
T = Ø
for i = 0 in |Cp| do

if bc[i] == TRUE then
T = addPoint(T, points[i])

else
RP = addPoint(T, points[i])

end if
end for
rems = Cs − |T|
if rems > 0 then

if |RP| > rems then
OP = orderByRanking(Cp, RP)
for i = 0 in rems do

T = addPoint(T, OP[i])
end for

else
T = addAllPoints(T, RP)

end if
end if
T = orderByValueAndAttribute(T)
newPop = reduceChromosomes(oldPop, T)
Cp = initializeCounter(T)

end function
newPop = restartPopulation(newPop)
newPop = evaluatePopulation(newPop)
nr ← nr + 1

end if

reached. In each generation the fitness for each individual
is evaluated. The best chromosomes of this generation are
selected according to a selection probability (proportional to
the fitness), forming the parent population. The selected par-
ents are reproduced through the crossover operator to create
a subsequent population, called the offspring population. To
create diversity, some mutations are performed (according to a
probability) on the offsprings, altering one or more gene val-
ues in a chromosome from its initial state. After evaluating
these new individuals, the GA algorithms replace the least-fit
solutions with the new best-fit ones. A basic scheme of a GA
algorithm is represented in Algorithm 1.

2) CHC Algorithm: As a backbone of our EA, we have
used the CHC model [35]. CHC is a classical evolutionary
model thought for binary coding that tries to get a suitable
tradeoff between a deep exploration of search space (diver-
sity) and the ability of exploiting the local properties of
the search to avoid a premature convergence (exploitation).

TABLE I
SUMMARY DESCRIPTION FOR CLASSIFICATION DATASETS

TABLE II
PARAMETERS OF THE DISCRETIZERS AND CLASSIFIERS

CHC introduces several features to achieve this tradeoff, such
as incest prevention or reinitialization.

During each generation the CHC develops the following
steps.

a) It uses a parent population of the same size as the
original to generate an intermediate population using
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TABLE III
AVERAGE ACCURACY OBTAINED FOR C4.5

crossover operator. Then, this is randomly paired to
generate a new offspring population.

b) After that, a survival competition is held where the best
chromosomes from the parent and offspring populations
are selected to obtain a new population with the original
fixed size.

CHC also implements half uniform crossover (HUX), a spe-
cial and heterogeneous crossover operator for chromosomes.
HUX recombination produces two offspring which are maxi-
mally distant from their two parent vectors by exchanging half
of the bits that differ in the two parents, using the Hamming
distance. To prevent incest in the chromosomes, only those
parents who differ from each other by some number of bits
(mating threshold) are mated. The initial threshold T is set
at L/4, where L is the length of the chromosomes. If no off-
spring are inserted into the new population then the threshold
is reduced by one.

Instead of the mutation operation of GAs, CHC includes
a reseeding process to unblock the search process when it
is stuck. CHC applies the reinitialization mechanism if the
population remains unchanged during an specified number of
evaluations (i.e., the difference threshold has dropped to zero
and no new offspring generated is better than any chromo-
some from parent population). Reseeding of the population
is accomplished by randomly changing 35% of the genes in
the template chromosome (the best previous solution) to form

each new chromosome in the population; resuming the search
after that. In this manner, the algorithm introduces new diver-
sity although maintaining some of exploitation, conserving the
best solution found over the course of the previous search as
a template.

III. EVOLUTIONARY MULTIVARIATE DISCRETIZER

In this section, we describe EMD, an evolutionary-based
algorithm with binary representation for discretization. EMD
uses a wrapper fitness function based on a tradeoff between the
classification error provided by the straightforward application
of two classifiers, and the number of intervals produced.

Despite it being well-known that multivariate approaches
improve the discretization process on supervised learning, they
have been less exploited in the literature. The proposed algo-
rithm follows a multivariate approach, taking advantage of the
existing interactions and dependencies among the attributes to
improve the underlying discretization process. Furthermore,
to tackle larger problems and, in general, to speed-up the dis-
cretization process on all datasets; we include a chromosome
reduction mechanism.

A. Representation

Classically, an individual is represented in a binary array
of 0’s and 1’s. Let us define the search space of the problem
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TABLE IV
AVERAGE ACCURACY OBTAINED FOR NAIVE BAYES

as all the possible discretization schemes offered by their set
of BP (presented in Section II-A). In this way, the common
binary encoding is suitable to represent these schemes so that
each BP corresponds to a gene. A chromosome thus consists
of |BP| genes with two possible values: 0, if the associated
cut point is not included in P; and 1, if it is. The chromo-
some structure associated with the BPs approach is presented
in Fig. 2 and an example of a possible solution along with its
spatial representation are depicted in Fig. 3.

B. Fitness Function

To select the most appropriate discretization scheme from
the population, it is necessary to define a suitable fitness
function to evaluate the solutions. Let Q be a subset of cut
points selected from BP and be coded by a chromosome. We
define a fitness function as the aggregation of two objectives,
namely the classification error of the discretized data and the
minimization of the number of cut points

Fitness(Q) = α · |Q||BP| + (1− α) ·� (2)

where |Q| is the number of boundary cut points currently
selected in the chromosome, |BP| is the total number of cut
points, � is the classification error of the discretized data,
and α is the weight factor specified as input parameter. With
this fitness design, we can obtain more effective discretization

schemes (through the classifier evaluation), while maintaining
solutions as simple as possible.

The classification error is a supervised measure used to
compute the number of misclassified instances. In our case,
the classification error is computed as the aggregated error
obtained using two classifiers [22]: 1) an unpruned version of
C4.5 [36] and 2) Naive Bayes [37]. In this manner, the algo-
rithm has several criteria to evaluate the solutions. This part
is defined as follows:

� = δC45 + δNB

2
(3)

where δC45 is the total number of instances misclassified by
C4.5 divided by the total number of instances and δNB repre-
sents the same computation for Naive Bayes. This measure
is basically the arithmetic mean of the classification error
committed by these two classifiers with the domain [0, 1].

We have decided to use a wrapper fitness function because
of its promising accuracy results which outperform the results
in [19] (with an inconsistency-based function). Moreover, this
measure guarantees solutions that are simpler than those based
on inconsistency.

Regarding the time complexity of our approach, this is
mainly conditioned by the number of cut points (L) and the
number of instances (I) of the data set, as well as, the max-
imum number of evaluations (E) until the stopping criterion
is reached. According to these variables, we can state that
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TABLE V
AVERAGE CUT POINTS

the time complexity of the whole algorithm strongly depends
on the evaluation phase, which in turn depends on the time
complexity of the two classifiers used in the wrapper function.

Naive Bayes classifier provides an efficient time complexity
O(LI) similar to the consistency measures presented in [21].
For C4.5, it is known that the tree pruning introduces a time
complexity of O(LIlog(I)2) [36]. To mitigate it, we use an
unpruned C4.5 version that improves the time complexity
(O(LIlog(I))) and becomes it in a evaluation measure more
efficient and sensitive to the error. Therefore, EMD obtains a
time complexity O(ELIlog(I)).

Despite our algorithm is less efficient than other
measures [20], we can assure that the wrapper function runs
in an acceptable time complexity. Additionally, through the
chromosome reduction mechanism L is continuously reduced,
thus decreasing the time complexity aforementioned.

The objective of the GA is to minimize the fitness function
defined; therefore, to obtain consistent and simple discretiza-
tion schemes with the minimum possible number of cut points,
but always keeping a fair classification accuracy through the
error counterpart.

C. Reduction

Whenever an EA faces problems with a significant size,
its application can become unsatisfying due to the growth of
the chromosomes. A great number of attributes and examples

cause an increment in complexity because the number of BPs
represented increases.

As in any optimization problem, the cut points selection
problem offers multiple solutions (local optima) which can
be considered as valid, although not the best ones (global
optima) [38]. Agreeing that the size of the problem becomes
troublesome, it is desirable to reach some local optima to avoid
a long delay or even inability in obtaining the global optima.
In our case, we propose a chromosome reduction process to
speed-up the convergence by reducing the number of boundary
cut points to be considered. For that, in each generation, we
only preserve the most selected points in previous evaluations
(for each reduction stage).

The pseudo-code of the reduction process is described in
Algorithm 2 and applied at the beginning of each generation.
Given a counter of the times each point is selected Cp, the
current best chromosome bc, the current size of the chromo-
somes Cs (initially equal to |BP|), the number of reductions
accomplished nr, the maximum size for chromosomes Ms, the
number of evaluations accomplished up to now ne, the maxi-
mum number of evaluations Me, the reduction rate Rrate, and
the reduction percentage Rperc. EMD applies a distinct reduc-
tion process each Me ∗ Rrate evaluations, if and only if the
maximum size allowed Ms is not exceeded.

The following steps are described as follows.
1) Calculate the new reduced size for the chromosomes:
|bc| ∗ (1− Rperc).
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TABLE VI
WILCOXON TEST RESULTS FOR ACCURACY (C45 AND

NAIVE BAYES) AND NUMBER OF CUT POINTS

TABLE VII
AVERAGE RANKINGS OF THE ALGORITHMS (FRIEDMAN PROCEDURE +

ADJUSTED p-VALUE WITH HOLM’S TEST) FOR ACCURACY

(C4.5 AND NAIVE BAYES)

2) Initialize the set of new points T with all the points
marked as 1 in the best previous chromosome bc. The
remaining points are ordered (by ranking) and stored
in RP.

3) According to the counter Cp, add the most selected
points from the rest of the individuals to the new
structure until completing the new chromosome size Cs.

4) Once completed T , we reorder the points by value also
considering the original order of the attributes, form the
new chromosome structure (as in Fig. 2).

5) Apply the new structure to each individual, remove all
nonselected points.

6) Reinitialize the counter Cp according to the new
structure.

7) Restart the new population newPop using the best
previous solution bc as reference.

8) Evaluate the new population.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS

Next, we describe the methodology followed in the experi-
mental study which compares the proposed technique with the
best discretization algorithms in the experimental review [5]
using a wide range of classifiers. Here, our method is denoted
by EMD.

This section is divided in three parts: firstly, we test
EMDs performance in terms of accuracy and number of cut
points using the classifiers included in the wrapper function:
C4.5 [36] and Naive Bayes [10], [37]. Secondly, we prove
EMDs classification ability using two classifiers (PART [39]

TABLE VIII
AVERAGE RANKINGS OF THE ALGORITHMS

(FRIEDMAN PROCEDURE + ADJUSTED

p-VALUE WITH HOLM’S TEST)
FOR NUMBER OF CUT POINTS

and PUBLIC [40]) not included in its fitness function in order
to test the quality and generalization capabilities of the dis-
cretized schemes. Finally, we compare our algorithm with the
approach in which it is inspired [19] (denoted by evolutionary
cut points selection discretizer (ECPSD)) in terms of accuracy
(using C4.5 and Naive Bayes) and time complexity.

A. Experimental Framework

The discretizers involved in the comparison for the
first two parts are: Ameva [41], class-atribute inter-
dependence maximization (CAIM) [27], ChiMerge [28],
FUSINTER [42], minimum description length princi-
ple (MDLP) [43], Mod-Chi2 [44], and proportional k-interval
discretizatio (PKID) [10]. Implementations of the discretizers
as well as the classifiers used in these experiments can be
found under the KEEL DM tool [45].

Performance of the algorithms is analyzed by using 45
datasets taken from the UCI machine learning database
repository [46]. The datasets considered are partitioned using
the ten fold cross-validation procedure. Table I gives a sum-
mary of datasets used in our experiments. For each data
set, the number of examples (#Ex.), the total number of
attributes (#Atts.), some of which could be numerical (#Num.)
or nominal (#Nom.), and the number classes (#Cl) are shown.

The recommended parameters of the discretizers and
the classifiers, according to their authors’ specifica-
tion [5], [19], [39], are specified in Table II; only for
those methods that require them.

For our method, GA parameters (population size and number
of evaluations) has been established to standard values that
have been demonstrated to perform well in most of cases
where GAs have been applied on data preprocessing tasks [1].
The alpha weight factor is set to 0.7 in favor to the removal of
points for two reasons: firstly, the more points removed during
the cycle, the faster the algorithm converges. On the other hand,
the selection of candidate points is a multimodal problem in
which many subset of points achieve similar performances,
making more difficult the reduction subobjective.

B. Analysis and Empirical Results

1) Wrapper Classifiers Comparison: To compare the per-
formance of these methods, test classification accuracy
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TABLE IX
AVERAGE ACCURACY OBTAINED FOR PART

obtained by C4.5 and Naive Bayes using all discretizers
is presented in Tables III and IV, respectively. The best
case in each data set is highlighted in bold. Likewise,
Table V shows the average cut points yielded by each
discretizer. Observing the results, the following analysis can be
stated.

a) According to the classification accuracy, EMD is the
best alternative when using C4.5 as classifier on aver-
age (0.7852). Our proposal outperforms 14/45, being
the most promising algorithm out of all those used.
Regarding to Naive Bayes, EMD again represents the
best option with the most promising mean (0.7747),
outperforming on 14/45 datasets.

b) The lowest number of cut points on average (26/45) is
held by our method. EMD yields simpler discretization
schemes in almost half of the cases.

c) A remarkable case in point is observed in the simple iris
data set. EMD only requires three cut points to offer
the best accuracy with C4.5 and Naive Bayes. There
are other datasets where our method also outperforms
the others (i.e., page-blocks and segment), in both num-
ber of points and classification accuracy (for C4.5 and
Naive Bayes).

d) For larger datasets (with many attributes and/or many
examples), our algorithm generally obtains simpler

solutions with accurate schemes due to the reduction
process included.

Statistical analysis will be carried out by means of nonpara-
metric statistical tests, such as: Wilcoxon signed-ranks test and
the Friedman procedure [23]–[25].

The nonparametric Wilcoxon signed-ranks test is used for
conducting pairwise comparison between our proposal and the
rest of the techniques. Table VI collects the results offered by
the Wilcoxon test considering a level of significance equal to
α = 0.05. This table is divided into three parts, each one
associated with columns: in the first and second parts, the
measure of accuracy classification in the test is used for C4.5
and Naive Bayes, respectively. In the third part, we accom-
plish the Wilcoxon test by using as a performance measure
the number of cut points produced by the discretizers. The
table indicates, for each method in the rows, the number of
discretizers outperformed by using the Wilcoxon test under the
column represented by the “+” symbol. The column with the
“±” symbol indicates the number of wins and ties obtained by
the method in the row. The maximum value for each column
is highlighted by a shaded cell.

Tables VII and VIII present the statistical analysis conducted
by the Friedman procedure for C4.5 and Naive Bayes accuracy,
and for the number of cut points, respectively. This test gen-
erates a ranking according to the effectiveness associated with
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TABLE X
AVERAGE ACCURACY OBTAINED FOR PUBLIC

TABLE XI
WILCOXON TEST RESULTS FOR ACCURACY

(PART AND PUBLIC)

each discretizer (second column), ordering the tables from the
best to the worst Friedman ranking. The third column shows
the adjusted p-value with the post hoc Holm’s test. Note that
EMD is established as the control algorithm because it has
obtained the best position in all the rankings. By using a level
of significance α = 0.1, EMD is significantly better than the
rest of the methods, considering both C4.5 accuracy and num-
ber of cut points. Although EMD obtains the best Friedman
rank for Naive Bayes, the second column shows that EMD is
not significantly different to the rest of discretizers.

TABLE XII
AVERAGE RANKINGS OF THE ALGORITHMS (FRIEDMAN PROCEDURE +

ADJUSTED p-VALUE WITH HOLM’S TEST) FOR ACCURACY

(PART AND PUBLIC)

According to the statistical analysis, we can assert the
following.

a) Statistically, no method can be considered to be better
than our proposal in any of the measures used.

b) The nonparametric tests confirms that EMD is better
than all the other discretizers for all measures. Only
for Naive Bayes, our proposal only outperforms 4/7
methods.

c) Considering the tradeoff accuracy/simplicity, we can
establish EMD as the best option. It needs to make a
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TABLE XIII
ECPSD RESULTS

TABLE XIV
WILCOXON TEST RESULTS FOR ACCURACY (C4.5 AND NAIVE BAYES)

AND NUMBER OF CUT POINTS (ECPSD)

lower number of cut points than the discretizers which
are similar in accuracy, specially for the largest datasets.
In fact, in many cases it is capable of outperforming
in accuracy the discretizers with similar performance in
simplicity.

d) EMD obtains the best results considering both clas-
sifiers. No discretizer has performed well on both
classifiers simultaneously up to now.

2) Other Classifiers Comparison: To compare the perfor-
mance of our method using other classifiers not included in
its fitness function, we compare the accuracy obtained in test
data by the classifiers PART and PUBLIC using all previous
discretizers. This information is presented in Tables IX and X,

Fig. 4. Running times comparison (pen-based).

respectively. Observing the results, the following analysis can
be stated.

a) According to the classification accuracy, EMD is near
to the best alternative on average (Ameva, 0.5855) when
using PART as classifier (0.5819). Our proposal outper-
forms 11/45, being one of the most promising algorithm
out of all those used. Better results are obtained using
PUBLIC, where EMD represents the best alternative
with the most promising mean (0.7713), outperforming
on 19/45 datasets.

b) EMD demonstrates to perform even better than the pre-
vious classifiers with PUBLIC and in similar way to the
others discretizers with PART. It is again one of the most
of promising algorithms with classifiers not included in
its fitness function.

Statistical analysis will be again carried out by means
of nonparametric statistical tests, as we presented before in
Section IV-B1. Table XI collects the results offered by the
Wilcoxon test considering a level of significance equal to
α = 0.05. This table is divided into two columns: both of
them measure the classification accuracy on test for PART
and PUBLIC, respectively.

Table XII presents the statistical analysis conducted by the
Friedman procedure for PART and PUBLIC accuracy. EMD
is established as the control algorithm as it has obtained the
best position in all the rankings. By using a level of signif-
icance α= 0.1, EMD is significantly better than the rest of
the methods, considering PUBLIC accuracy. Although EMD
obtains the best Friedman rank for PART, the second column
shows that EMD is not significantly different to the rest of
discretizers.

According to the statistical analysis, we can assert the
following.

a) Statistically, no method can be considered to be better
than our proposal in any of the measures used.

b) The nonparametric tests confirms that EMD is better
than PUBLIC in test accuracy. Only for PART, our pro-
posal only outperforms 2/7 methods. However, it can be
established again as the best alternative.

c) EMD obtains the best results considering both classi-
fiers, as in the previous experiment.

3) ECPSD Comparison: ECPSD results are presented in
Table XIII in terms of C4.5 and Naive Bayes test accuracy
and number of cut points. We compare these results with
those yielded by our approach (Tables III–V). Additionally,
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Case study: banana. (a) EMD: % test acc. C45 (0.8730), % test acc. NB (0.7357), # intervals (15.00). (b) FUSINTER: % test acc. C45 (0.8791),
% test acc. NB (0.7162), # intervals (25.30). (c) CAIM: % test acc. C45 (0.6387), % test acc. NB (0.6049), # intervals (3.00). (d) ChiMerge: % test acc. C45
(0.6253), % test acc. NB (0.5836), # intervals (3.00). (e) MDLP: % test acc. C45 (0.7485), % test acc. NB (0.7247), # intervals (11.10). (f) PKID: % test
acc. C45 (0.7043), % test acc. NB (0.7147), # intervals (137.00).

Wilcoxon test will be used to compare both algorithms as
presented in Section IV-B1. Table XIV collects the results
offered by this test considering a level of significance equal
to α = 0.05. This table is divided into three parts, each one
associated with columns: in the first and second parts, the mea-
sure of accuracy classification in the test is used for C4.5 and
Naive Bayes, respectively. In the third part, we accomplish the
Wilcoxon test by using as a performance measure the number
of cut points produced by the discretizers.

According to this information, we can assert the following.
a) EMD outperforms 32/45 for C4.5 test accuracy, 34/45

for Naive Bayes test accuracy, and 34/45 for the number
of cut points. Besides, EMD always performs better than
ECPSD for all measures considered, on average.

b) The nonparametric tests confirms that EMD is better
than ECPSD in all measures used in these experiments.

Regarding to the time complexity of both algorithms,
Fig. 4 shows the running times derived from applying
these algorithms on different versions of penbased dataset

(described in Table I). This dataset is formed by a pen-based
database with more than 11 k isolated handwritten characters.
We have chosen this for being the set with the largest number
of instances in our experiments.

In this figure, we apply different sampling percentages over
this dataset to show the differences between both methods
when they try to scale-up large datasets. We can observe as
in the smallest cases (<50%) ECPSD is faster than EMD
due to the fastness of its inconsistency-based fitness function.
However, as the sample size grows the chromosome reduction
mechanism starts to reduce the complexity of the solutions to
evaluate, and then the convergence becomes faster. It demon-
strates EMDs ability to scale-up and the effectiveness of its
chromosome reduction mechanism.

Even though our algorithm presents a higher time complex-
ity than other discretizers, it obtains better results in accuracy
and produces simpler solutions than its competitors. Time
is not really determinant in this case since discretization is
a offline DM task that is only performed once before the
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classification task, which indeed will perform faster due to
the simpler discretization schemes derived.

C. Case Study

To illustrate the discretization schemes generated by each
different discretizer, we propose a case study depicted in
Fig. 5. This figure represents the different discretization inter-
vals generated on banana dataset by some of the algorithms
presented above. Banana is a very noisy artificially created
dataset with two dimensions (described in Table I). This was
created using a mixture of overlapping Gaussians with a
banana-shaped distribution. The data is uniformly distributed
along the clusters and superimposed with a normal distribution
with standard deviation in all directions.

In this figure, we can see how EMD and FUSINTER
clearly show good performance in the banana dataset. Both
algorithms generate a correct number of cut points that prop-
erly separate examples from different classes. There is no
clear difference between both of them on accuracy, however,
EMD needs fewer cut points; therefore obtaining far more
representative solutions than those yielded by FUSINTER.
This representativeness can be measured counting the number
of grids dominated by a class which are completely sur-
rounded by other grids also dominated by the same class.
Being approximately 3, for EMD; and approximately 15, for
FUSINTER.

The rest of the algorithms do not offer better results. In fact,
most of them do not perform very well on banana. CAIM and
ChiMerge produce a small number of cut points (only two)
whereas PKID exceed a sensible number of cut points.

V. CONCLUSION

In this paper, we have presented a new evolutionary-based
discretization algorithm called EMD, which selects the most
adequate combination of boundary cut points to create dis-
crete intervals. For this purpose, EMD uses a wrapper fitness
function based on the classification error provided by two
important classifiers, and the number of cut points produced.
The proposed algorithm follows a multivariate approach, being
able to take advantage of the existing interactions and depen-
dencies among the set of input attributes and the class output
to improve the discretization process. It also includes a chro-
mosome reduction mechanism to tackle larger problems and,
in general, to speed-up its performance on all kinds of datasets.
The large experimental study performed allows us to show that
EMD is a suitable method for discretization in small and large
problems. It requires a lower number of cut points than the
other discretizers, thus producing much simpler discretization
solutions. Additionally, EMD outperforms the state-of-the-art
discretizers on classification accuracy. It can be considered
as the best choice for classifiers, such as C4.5, Naive Bayes,
PART, or PUBLIC.
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Discretization of numerical data is one of the most influential data preprocessing
tasks in knowledge discovery and data mining. The purpose of attribute discreti-
zation is to find concise data representations as categories which are adequate
for the learning task retaining as much information in the original continuous
attribute as possible. In this article, we present an updated overview of discreti-
zation techniques in conjunction with a complete taxonomy of the leading discre-
tizers. Despite the great impact of discretization as data preprocessing technique,
few elementary approaches have been developed in the literature for Big Data.
The purpose of this article is twofold: a comprehensive taxonomy of discretiza-
tion techniques to help the practitioners in the use of the algorithms is presented;
the article aims is to demonstrate that standard discretization methods can be
parallelized in Big Data platforms such as Apache Spark, boosting both perfor-
mance and accuracy. We thus propose a distributed implementation of one of
the most well-known discretizers based on Information Theory, obtaining better
results than the one produced by: the entropy minimization discretizer proposed
by Fayyad and Irani. Our scheme goes beyond a simple parallelization and it is
intended to be the first to face the Big Data challenge. © 2015 John Wiley & Sons, Ltd
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INTRODUCTION

Data are present in diverse formats, for example
in categorical, numerical, or continuous values.

Categorical or nominal values are unsorted, whereas
numerical or continuous values are assumed to be
sorted or represent ordinal data. It is well-known
that data mining (DM) algorithms depend very much
on the domain and type of data. In this way, the
techniques belonging to the field of statistical learn-
ing work with numerical data (i.e., support vector

machines and instance-based learning) whereas sym-
bolic learning methods require inherent finite values
and also prefer to perform a branch of values that
are not ordered (such as in the case of decision trees
or rule induction learning). These techniques are
either expected to work on discretized data or to be
integrated with internal mechanisms to perform
discretization.

The process of discretization has aroused gen-
eral interest in recent years1,2 and has become one of
the most effective data preprocessing techniques in
DM.3 Roughly speaking, discretization translates
quantitative data into qualitative data, procuring a
nonoverlapping division of a continuous domain. It
also ensures an association between each numerical
value and a certain interval. Actually, discretization
is considered a data reduction mechanism because it
diminishes data from a large domain of numeric
values to a subset of categorical values.

There is a necessity to use discretized data by
many DM algorithms which can only deal with
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discrete attributes. For example, three of the ten
methods pointed out as the top ten in DM4 demand
a data discretization in one form or another: C4.5,5

Apriori,6 and Naïve Bayes.7 Among its main benefits,
discretization causes that the learning methods
show remarkable improvements in learning speed
and accuracy. Besides, some decision tree-based algo-
rithms produce shorter, more compact, and accurate
results when using discrete values.1,8

The specialized literature reports on a huge
number of proposals for discretization. In fact, some
surveys have been developed attempting to organize
the available pool of techniques.1,2,9 It is crucial to
determine, when dealing with a new real problem
or dataset, the best choice in the selection of a discre-
tizer. This will imply the success and the suitability of
the subsequent learning phase in terms of accuracy
and simplicity of the solution obtained. In spite of
the effort made in Ref 2 to categorize the whole fam-
ily of discretizers, probably the most well-known and
surely most effective are included in a new taxonomy
presented in this article, which has now been updated
at the time of writing.

Classical data reduction methods are not
expected to scale well when managing huge data—
both in number of features and instances—so that its
application can be undermined or even become
impracticable.10 Scalable distributed techniques and
frameworks have appeared along with the problem
of Big Data. MapReduce11 and its open-source ver-
sion Apache Hadoop12,13 were the first distributed
programming techniques to face this problem.
Apache Spark14,15 is one of these new frameworks,
designed as a fast and general engine for large-scale
data processing based on in-memory computation.
Through this Spark’s ability, it is possible to speed
up iterative processes present in many DM problems.
Similarly, several DM libraries for Big Data have
appeared as support for this task. The first one was
Mahout16 (as part of Hadoop), subsequently fol-
lowed by MLlib17 which is part of the Spark proj-
ect.14 Although many state-of-the-art DM algorithms
have been implemented in MLlib, it is not the case
for discretization algorithms yet.

In order to fill this gap, we face the Big Data
challenge by presenting a distributed version of the
entropy minimization discretizer proposed by Fayyad
and Irani in Ref 18, using Apache Spark, which is
based on Minimum Description Length Principle.
Our main objective is to prove that well-known dis-
cretization algorithms as MDL-based discretizer
(henceforth called MDLP) can be parallelized in these
frameworks, providing good discretization solutions
for Big Data analytics. Furthermore, we have

transformed the iterativity yielded by the original
proposal in a single-step computation. This new ver-
sion for distributed environments has supposed a
deep restructuring of the original proposal and a
challenge for the authors. Finally, to demonstrate the
effectiveness of our framework, we perform an
experimental evaluation using two large datasets,
namely, ECBDL14 and epsilon.

In order to achieve the goals mentioned above,
this article is structured as follows. First, we provide
in the next Section (Background and Properties) an
explanation of discretization, its properties and the
description of the standard MDLP technique. The
next Section (Taxonomy) presents the updated tax-
onomy of the most relevant discretization methods.
Afterwards, in the Section Big Data Background, we
focus on the background of the Big Data challenge
including the MapReduce programming framework
as the most prominent solution for Big Data. The fol-
lowing section (Distributed MDLP Discretization)
describes the distributed algorithm based on entropy
minimization proposed for Big Data. The experimen-
tal framework, results, and analysis are given in last
but one section (Experimental Framework and Anal-
ysis). Finally, the main concluding remarks are
summarized.

BACKGROUND AND PROPERTIES

Discretization is a wide field and there have been
many advances and ideas over the years. This
section is devoted to providing a proper background
on the topic, including an explanation of the basic
discretization process and enumerating the main
properties that allow us to categorize them and to
build a useful taxonomy.

Discretization Process
In supervised learning, and specifically in classifica-
tion, the problem of discretization can be defined
as follows. Assuming a dataset S consisting
of N examples, M attributes, and c class labels,
a discretization scheme DA would exist on the con-
tinuous attribute A 2 M, which partitions this attrib-
ute into k discrete and disjoint intervals:
f d0,d1½ �,ðd1,d2�,…,ðdkA −1,dkA �g, where d0 and dkA
are, respectively, the minimum and maximal value,
and PA = d1,d2,…,dkA −1

� �
represents the set of cut

points of A in ascending order.
We can associate a typical discretization as a

univariate discretization. Although this property will
be reviewed in the next section, it is necessary to
introduce it here for the basic understanding of the
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basic discretization process. Univariate discretization
operates with one continuous feature at a time while
multivariate discretization considers multiple features
simultaneously.

A typical discretization process generally con-
sists of four steps (seen in Figure 1): (1) sorting the
continuous values of the feature to be discretized,
either (2) evaluating a cut point for splitting or adja-
cent intervals for merging, (3) splitting or merging
intervals of continuous values according to some
defined criterion, and (4) stopping at some point.
Next, we explain these four steps in detail.

• Sorting: The continuous values for a feature are
sorted in either descending or ascending order.
It is crucial to use an efficient sorting algorithm
with a time complexity of O(NlogN). Sorting
must be done only once and for the entire initial
process of discretization. It is a mandatory
treatment and can be applied when the com-
plete instance space is used for discretization.

• Selection of a Cut Point: After sorting, the best
cut point or the best pair of adjacent intervals
should be found in the attribute range in order
to split or merge in a following required step.
An evaluation measure or function is used to
determine the correlation, gain, improvement in
performance, or any other benefit according to
the class label.

• Splitting/Merging: Depending on the operation
method of the discretizers, intervals either can
be split or merged. For splitting, the possible
cut points are the different real values present in
an attribute. For merging, the discretizer aims
to find the best adjacent intervals to merge in
each iteration.

• Stopping Criteria: It specifies when to stop the
discretization process. It should assume a trade-
off between a final lower number of intervals,
good comprehension, and consistency.

Discretization Properties
In Ref 1,2,9 various pivots have been used in order
to make a classification of discretization techniques.
This section reviews and describes them, underlining
the major aspects and alliances found among them.
The taxonomy presented afterwards will be founded
on these characteristics (acronyms of the methods
correspond with those presented in Table 1):

• Static versus Dynamic: This property refers to
the level of independence between the discreti-
zer and the learning method. A static discretizer
is run prior to the learning task and is autono-
mous from the learning algorithm,1 as a data
preprocessing algorithm.3 Almost all isolated
known discretizers are static. By contrast, a

Continuous
attribute

Sort attribute

Discretized
attribute

Obtain cut point
or adjacent interval

Perform evaluation

No

No

YesYes

Measure
check

Stopping

Sorting Evaluation

Stopping
criterion

Splitting / merging

Split / merge attribute

FIGURE 1 | Discretization process.
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dynamic discretizer responds when the learner
requires so, during the building of the model.
Hence, they must belong to the local discreti-
zer’s family (see later) embedded in the learner
itself, producing an accurate and compact out-
come together with the associated learning algo-
rithm. Good examples of classical dynamic
techniques are ID3 discretizer5 and ITFP.43

• Univariate versus Multivariate: Univariate dis-
cretizers only operate with a single attribute
simultaneously. This means that they sort the
attributes independently, and then, the derived
discretization disposal for each attribute
remains unchanged in the following phases.
Conversely, multivariate techniques, concur-
rently consider all or various attributes to deter-
mine the initial set of cut points or to make a
decision about the best cut point chosen as a
whole. They may accomplish discretization
handling the complex interactions among sev-
eral attributes to decide also the attribute in
which the next cut point will be split or merged.
Currently, interest has recently appeared in
developing multivariate discretizers because
they are decisive in complex predictive pro-
blems where univariate operations may ignore
important interactions between attributes60,61

and in deductive learning.58

• Supervised versus Unsupervised: Supervised dis-
cretizers consider the class label whereas unsu-
pervised ones do not. The interaction between
the input attributes and the class output and the
measures used to make decisions on the best cut
points (entropy, correlations, etc.) will define
the supervised manner to discretize. Although
most of the discretizers proposed are supervised,
there is a growing interest in unsupervised dis-
cretization for descriptive tasks.53,58 Unsuper-
vised discretization can be applied to both
supervised and unsupervised learning, because its
operation does not require the specification of
an output attribute. Nevertheless, this does not
occur in supervised discretizers, which can only
be applied over supervised learning. Unsuper-
vised learning also opens the door to transferring
the learning between tasks because the discretiza-
tion is not tailored to a specific problem.

• Splitting versus Merging: These two options
refer to the approach used to define or generate
new intervals. The former methods search for a
cut point to divide the domain into two inter-
vals among all the possible boundary points.
On the contrary, merging techniques begin with
a predefined partition and search for a candi-
date cut point to mix both adjacent intervals
after removing it. In the literature, the terms

TABLE 1 | Most Important Discretizers

Acronym Ref. Acronym Ref. Acronym Ref.

EqualWidth 19 EqualFrequency 19 Chou91 20

D2 21 ChiMerge 22 1R 23

ID3 5 MDLP 18 CADD 24

MDL-Disc 25 Bayesian 26 Friedman96 27

ClusterAnalysis 28 Zeta 29 Distance 30

Chi2 31 CM-NFD 32 FUSINTER 33

MVD 34 Modified Chi2 35 USD 36

Khiops 37 CAIM 38 Extended Chi2 39

Heter-Disc 40 UCPD 41 MODL 42

ITPF 43 HellingerBD 44 DIBD 45

IDD 46 CACC 47 Ameva 48

Unification 49 PKID 7 FFD 7

CACM 50 DRDS 51 EDISC 52

U-LBG 53 MAD 54 IDF 55

IDW 55 NCAIC 56 Sang14 57

IPD 58 SMDNS 59 TD4C 60

EMD 61

MDLP, Minimum Description Length Principle.
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top-down and bottom-up are highly related to
these two operations, respectively. In fact, top-
down and bottom-up discretizers are thought
for hierarchical discretization developments, so
they consider that the process is incremental,
property which will be described later. Splitting/
merging is more general than top-down/bot-
tom-up because it is possible to have discretizers
whose procedure manages more than one inter-
val at a time.44,46 Furthermore, we consider the
hybrid category as the way of alternating splits
with merges during running time.24,61

• Global versus Local: In the time a discretizer
must select a candidate cut point to be either
split or merged, it could consider either all
available information in the attribute or only
partial information. A local discretizer makes
the partition decision based only on partial
information. MDLP18 and ID35 are classical
examples of local methods. By definition, all the
dynamic discretizers and some top-down-based
methods are local, which explains the fact that
few discretizers apply this form. The dynamic
discretizers search for the best cut point during
internal operations of a certain DM algorithm,
thus it is impossible to examine the complete
dataset. Besides, top-down procedures are asso-
ciated with the divide-and-conquer scheme, in
such manner that when a split is considered, the
data is recursively divided, restricting access to
partial data.

• Direct versus Incremental: For direct discreti-
zers, the range associated with an interval must
be divided into k intervals simultaneously,
requiring an additional criterion to determine the
value of k. One-step discretization methods and
discretizers which select more than a single cut
point at every step are included in this category.
However, incremental methods begin with a sim-
ple discretization and pass through an improve-
ment process, requiring an additional criterion to
determine when it is the best moment to stop. At
each step, they find the best candidate boundary
to be used as a cut point and, afterwards, the
rest of the decisions are made accordingly.

• Evaluation Measure: This is the metric used by
the discretizer to compare two candidate dis-
cretization schemes and decide which is more
suitable to be used. We consider five main
families of evaluation measures:

– Information: This family includes entropy as
the most used evaluation measure in

discretization (MDLP,18 ID3,5 FUSINTER33)
and others derived from information theory
(Gini index, Mutual information).49

– Statistical: Statistical evaluation involves the
measurement of dependency/correlation
among attributes (Zeta,29 ChiMerge,22

Chi231), interdependency,38 probability and
Bayesian properties26 (MODL42), contin-
gency coefficient,47 etc.

– Rough Sets: This class is composed of meth-
ods that evaluate the discretization schemes
by using rough set properties and
measures,59 such as class separability, lower
and upper approximations, etc.

– Wrapper: This collection comprises methods
that rely on the error provided by a classifier
or a set of classifiers that are used in each
evaluation. Representative examples are
MAD,54 IDW,55 and EMD.61

Binning: In this category of techniques, there is
no evaluation measure. This refers to discretiz-
ing an attribute with a predefined number of
bins in a simple way. A bin assigns a certain
number of values per attribute by using a non-
sophisticated procedure. EqualWidth and
EqualFrequency discretizers are the most well-
known unsupervised binning methods.

Minimum Description Length-Based
Discretizer
Minimum Description Length-based discretizer,18

proposed by Fayyad and Irani in 1993, is one of the
most important splitting methods in discretization.
This univariate discretizer uses the MDLP to control
the partitioning process. This also introduces an opti-
mization based on a reduction of whole set of candi-
date points, only formed by the boundary points in
this set.

Let A(e) denote the value for attribute A in the
example e. A boundary point b 2 Dom(A) can be
defined as the midpoint value between A(u) and A(v),
assuming that in the sorted collection of points in A,
two examples exist u, v 2 S with different class
labels, such that A(u) < b < A(v); and the other
example w 2 S does not exist, such that A(u) < A
(w) < A(v). The set of boundary points for attribute
A is defined as BA.

This method also introduces other important
improvements. One of them is related to the number
of cut points to derive in each iteration. In contrast
to discretizers such as ID3,5 the authors proposed a
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multi-interval extraction of points demonstrating that
better classification models—both in error rate and
simplicity—are yielded by using these schemes.

It recursively evaluates all boundary points,
computing the class entropy of the partitions derived
as quality measure. The objective is to minimize this
measure to obtain the best cut decision. Let bα be a
boundary point to evaluate, S1 � S be a subset where
8 a0 2 S1, A(a0) ≤ bα, and S2 be equal to S − S1. The
class information entropy yielded by a given binary
partitioning can be expressed as:

EP A,bα,Sð Þ = S1j j
Sj j E S1ð Þ+ S2j j

Sj j E S2ð Þ; ð1Þ

where E represents the class entropya of a given sub-
set following Shannon’s definitions.62

Finally, a decision criterion is defined in order
to control when to stop the partitioning process. The
use of MDLP as a decision criterion allows us to
decide whether or not to partition. Thus a cut point
bα will be applied iff:

G A,bα,Sð Þ> log2 N−1ð Þ
N

+
Δ A,bα,Sð Þ

N
; ð2Þ

where Δ(A, bα, S) = log2(3
c) − [cE(S) − c1E(S1) − c2E

(S2)], c1 and c2 the number of class labels in S1
and S2, respectively; and G(A, bα, S) = E(S) −
EP(A, bα, S).

TAXONOMY

Currently, more than 100 discretization methods
have been presented in the specialized literature. In
this section, we consider a subgroup of methods
which can be considered the most important from
the whole set of discretizers. The criteria adopted to
characterize this subgroup are based on the repercus-
sion, availability, and novelty they have. Thus, the
precursory discretizers which have served as inspira-
tion to others, those which have been integrated in
software suites and the most recent ones are included
in this taxonomy.

Table 1 enumerates the discretizers considered
in this article, providing the name abbreviation and
reference for each one. We do not include the
descriptions of these discretizers in this article. Their
definitions are contained in the original references,
thus we recommend consulting them in order to
understand how the discretizers of interest work. In
Table 1, 30 discretizers included in KEEL software

are considered. Additionally, implementations of
these algorithms in Java can be found.63

In the previous section, we studied the proper-
ties which could be used to classify the discretizers
proposed in the literature. Given a predefined order
among the seven characteristics studied before, we
can build taxonomy of discretization methods. All
techniques enumerated in Table 1 are collected in the
taxonomy depicted in Figure 2. It represents a hierar-
chical categorization following the next arrangement
of properties: static/dynamic, univariate/multivariate,
supervised/unsupervised, splitting/merging/hybrid,
global/local, direct/incremental, and evaluation
measure.

The purpose of this taxonomy is twofold. First,
it identifies a subset of most representative state-of-
the-art discretizers for both researchers and practi-
tioners who want to compare them with novel
techniques or require discretization in their applica-
tions. Second, it characterizes the relationships
among techniques, the extension of the families and
possible gaps to be filled in future developments.

When managing huge data, most of them
become impracticable in real-world settings, due to
the complexity they cause (for example, in the case
of MDLP, among others). The adaptation of these
classical methods implies a thorough redesign that
becomes mandatory if we want to exploit the advan-
tages derived from the use of discrete data on large
datasets.64,65 As reflected in our taxonomy, no rele-
vant methods in the field of Big Data have been pro-
posed to solve this problem. Some works have tried
to deal with large-scale discretization. For example,
in Ref 66, the authors proposed a scalable implemen-
tation of Class-Attribute Interdependence Maximiza-
tion algorithm by using GPU technology. In Ref 67,
a discretizer based on windowing and hierarchical
clustering is proposed to improve the performance of
classical tree-based classifiers. However, none of
these methods have been proved to cope with the
data magnitude presented here.

BIG DATA BACKGROUND

The ever-growing generation of data on the Internet
is leading us to managing huge collections using data
analytics solutions. Exceptional paradigms and algo-
rithms are thus needed to efficiently process these
datasets so as to obtain valuable information, mak-
ing this problem one of the most challenging tasks in
Big Data analytics.

Gartner68 introduced the concept of Big Data
and the 3V terms that define it as high volume,
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velocity, and variety of information that require a
new large-scale processing. This list was then
extended with two additional terms. All of them are
described in the following: Volume, the massive
amount of data that is produced every day is still
exponentially growing (from terabytes to exabytes);
Velocity, data need to be loaded, analyzed, and
stored as quickly as possible; Variety, data come in
many formats and representations; Veracity, the
quality of data to process is also an important factor.
The Internet is full of missing, incomplete, ambigu-
ous, and sparse data; Value, extracting value from
data is also established as a relevant objective in big
analytics.

The unsuitability of many knowledge extrac-
tion algorithms in the Big Data field has meant that
new methods have been developed to manage such
amounts of data effectively and at a pace that allows
value to be extracted from them.

MapReduce Model and Other Distributed
Frameworks
The MapReduce framework,11 designed by Google
in 2003, is currently one of the most relevant tools
in Big Data analytics. It was aimed at processing
and generating large-scale datasets, automatically

processed in an extremely distributed fashion
through several machines.b The MapReduce model
defines two primitives to work with distributed data:
Map and Reduce. These two primitives imply two
stages in the distributed process, which we describe
below. In the first step, the master node breaks up
the dataset into several splits, distributing them
across the cluster for parallel processing. Each node
then hosts several Map threads that transform the
generated key-value pairs into a set of intermediate
pairs. After all Map tasks have finished, the master
node distributes the matching pairs across the nodes
according to a key-based partitioning scheme. Then
the Reduce phase starts, combining those coincident
pairs so as to form the final output.

Apache Hadoop12,13 is presented as the most
popular open-source implementation of MapReduce
for large-scale processing. Despite its popularity,
Hadoop presents some important weaknesses, such
as poor performance on iterative and online comput-
ing, and a poor intercommunication capability or
inadequacy for in-memory computation, among
others.70 Recently, Apache Spark14,15 has appeared
and integrated with the Hadoop ecosystem. This
novel framework is presented as a revolutionary tool
capable of performing even faster large-scale proces-
sing than Hadoop through in-memory primitives,
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making this framework a leading tool for iterative
and online processing and, thus, suitable for DM
algorithms. Spark is built on distributed data struc-
tures called resilient distributed datasets (RDDs),
which were designed as a fault-tolerant collection of
elements that can be operated in parallel by means of
data partitioning.

DISTRIBUTED MDLP
DISCRETIZATION

In the Background section, a discretization algorithm
based on an information entropy minimization heu-
ristic was presented.18 In this work, the authors
proved that multi-interval extraction of points and
the use of boundary points can improve the discreti-
zation process, both in efficiency and error rate.
Here, we adapt this well-known algorithm for dis-
tributed environments, proving its discretization
capability against real-world large problems.

One important point in this adaption is how to
distribute the complexity of this algorithm across the
cluster. This is mainly determined by the two time-
consuming operations: on one hand, the sorting of
candidate points, and, on the other hand, the evalua-
tion of these points. The sorting operation exhibits
a O(|A|log(|A|)) complexity (assuming that all points
in A are distinct), whereas the evaluation conveys
a O(|BA|

2) complexity. In the worst case, it implies a
complete evaluation of entropy for all points.

Note that the previous complexity is bounded
to a single attribute. To avoid repeating the previous
process on all attributes, we have designed our algo-
rithm to sort and evaluate all points in a single step.
Only when the number of boundary points in an
attribute is higher than the maximum per partition,
computation by feature is necessary (which is
extremely rare according to our experiments).

Spark primitives extend the idea of MapReduce
to implement more complex operations on distribu-
ted data. In order to implement our method, we have
used some extra primitives from Spark’s API, such
as: mapPartitions, sortByKey, flatMap, and reduce-
ByKey.c

Main Discretization Procedure
Algorithm 1 explains the main procedures in our dis-
cretization algorithm. The algorithm calculates the
minimum-entropy cut points by feature according to
the MDLP criterion. It uses a parameter to limit the
maximum number of points to yield.

The first step creates combinations from
instances through a Map function in order to sepa-
rate values by feature. It generates tuples with the
value and the index for each feature as key and a
class counter as value (< (A, A(s)), v >). Afterwards,
the tuples are reduced using a function that aggre-
gates all subsequent vectors with the same key,
obtaining the class frequency for each distinct value
in the dataset. The resulting tuples are sorted by key
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so that we obtain the complete list of distinct values
ordered by feature index and feature value. This
structure will be used later to evaluate all these points
in a single step. The first point by partition is also
calculated (line 11) for this process. Once such infor-
mation is saved, the process of evaluating the bound-
ary points can be started.

Boundary Points Selection
Algorithm 2 (get_boundary) describes the function in
charge of selecting those points falling in the class
borders. It executes an independent function on each
partition in order to parallelize the selection process
as much as possible so that a subset of tuples is
fetched in each thread. The evaluation process is
described as follows: for each instance, it evaluates
whether the feature index is distinct from the index
of the previous point; if it is so, this emits a tuple
with the last point as key and the accumulated class
counter as value. This means that a new feature has
appeared, saving the last point from the current fea-
ture as its last threshold. If the previous condition is
not satisfied, the algorithm checks whether the cur-
rent point is a boundary with respect to the previous
point or not. If it is so, this emits a tuple with the
midpoint between these points as key and the accu-
mulated counter as value.

Finally, some evaluations are performed over
the last point in the partition. This point is compared

with the first point in the next partition to check
whether there is a change in the feature index—
emitting a tuple with the last point saved, or not
emitting a tuple with the midpoint (as described
above). All tuples generated by the partition are then
joined into a new mixed RDD of boundary points,
which is returned to the main algorithm as bds.

In Algorithm 1 (line 14), the bds variable is
transformed by using a Map function, changing the
previous key to a new key with a single value: the
feature index (< (att, (point, q)) >). This is done to
group the tuples by feature so that we can divide
them into two groups according to the total number
of candidate points by feature. The divide_atts func-
tion is then aimed to divide the tuples in two groups
(big and small) depending on the number of candi-
date points by feature (count operation). Features in
each group will be filtered and treated differently
according to whether the total number of points for
a given feature exceeds the threshold mc or not.
Small features will be grouped by key so that these
can be processed in a parallel way. The subsequent
tuples are now reformatted as follows: (< point, q >).

MDLP Evaluation
Features in each group are evaluated differently from
that mentioned before. Small features are evaluated
in a single step where each feature corresponds with
a single partition, whereas big features are evaluated
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iteratively because each feature corresponds with a
complete RDD with several partitions. The first
option is obviously more efficient, however, the sec-
ond case is less frequent due to the fact the number
of candidate points for a single feature fits perfectly
in one partition. In both cases, the select_ths function
is applied to evaluate and select the most relevant cut
points by feature. For small features, a Map function
is applied independently to each partition (each one
represents a feature) (arr_select_ths). In case of big
features, the process is more complex and each fea-
ture needs a complete iteration over a distributed set
of points (rdd_select_ths).

Algorithm 3 (select_ths) evaluates and selects
the most promising cut points grouped by feature
according to the MDLP criterion (single-step ver-
sion). This algorithm starts by selecting the best cut
point in the whole set. If the criterion accepts this
selection, the point is added to the result list and the
current subset is divided into two new partitions
using this cut point. Both partitions are then evalu-
ated, repeating the previous process. This process
finishes when there is no partition to evaluate or the
number of selected points is fulfilled.

Algorithm 4 (arr_select_ths) explains the proc-
ess that accumulates frequencies and then selects the
minimum-entropy candidate. This version is more
straightforward than the RDD version as it only
needs to accumulate frequencies sequentially. First, it
obtains the total class counter vector by aggregating
all candidate vectors. Afterwards, a new iteration is
necessary to obtain the accumulated counters for the
two partitions generated by each point. This is done

by aggregating the vectors from the most-left point
to the current one, and from the current point to the
right-most point. Once the accumulated counters for
each candidate point are calculated (in form of
< point, q, lq, rq >), the algorithm evaluates the can-
didates using the select_best function.

Algorithm 5 (rdd_select_ths) explains the selec-
tion process; in this case for ‘big’ features (more than
one partition). This process needs to be performed in
a distributed manner because the number of candi-
date points exceeds the maximum size defined. For
each feature, the subset of points is hence redistribu-
ted in a better partition scheme to homogenize the
quantity of points by partition and node (coalesce
function, line 12). After that, a new parallel function
is started to compute the accumulated counter by
partition. The results (by partition) are then aggre-
gated to obtain the total accumulated frequency for
the whole subset. In line 9, a new distributed process
is started with the aim of computing the accumulated
frequencies at points on both sides (as explained in
Algorithm 4). In this procedure, the process accumu-
lates the counter from all previous partitions to the
current one to obtain the first accumulated value (the
left one). Then, the function computes the accumu-
lated values for each inner point using the counter
for points in the current partition, the left value, and
the total values (line 7). Once these values are calcu-
lated (< point, q, lq, rq >), the algorithm evaluates
all candidate points and their associated accumula-
tors using the select_best function (as above).

Algorithm 6 evaluates the discretization
schemes yielded by each point by computing the
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entropy for each partition generated, also taking into
account the MDLP criterion. Thus, for each point,d

the entropy is calculated for the two generated parti-
tions (line 8) as well as the total entropy for the
whole set (lines 12). Using these values, the entropy
gain and the MDLP condition are computed for each
point, according to Eq. (2). If the point is accepted
by MDLP, the algorithm emits a tuple with the
weighted entropy average of partition and the point
itself. From the set of accepted points, the algorithm
selects the one with the minimum class information
entropy.

The results produced by both groups (small and
big) are joined into the final point set of cut points.

Analysis of efficiency
In this section, we analyze the performance of the
main operations that determined the overall perfor-
mance of our proposal. Note that the first two opera-
tions are quite costly from the point of view of
network usage, because they imply shuffling data
across the cluster (wide dependencies). Nevertheless,
once data are partitioned and saved, these remain
unchanged. This is exploited by the subsequent steps,
which take advantage of the data locality property.
Having data partitioned also benefits operations such
as groupByKey, where the grouping is performed
locally. The list of such operations (showed in Algo-
rithm 1) is presented below:
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1. Distinct points (lines 1–10): this is a standard
MapReduce operation that fetches all the
points in the dataset. The map phase generates
and distributes tuples using a hash partitioning
scheme (linear distributed complexity). The
reduce phase fetches the set of coincident
points and sums up the class vectors (linear dis-
tributed complexity).

2. Sorting operation (line 11): this operation uses
a more complex primitive of Spark: sortByKey.
This samples the set and produces a set of
bounds to partition this set. Then, a shuffling
operation is started to redistribute the points
according to the previous bounds. Once data
are redistributed, a local sorting operation is
launched in each partition (loglinear distributed
order).

3. Boundary points (lines 12–13): this operation
is in charge of computing the subset candidate
of points to be evaluated. Thanks to the data
partitioning scheme generated in the previous
phases, the algorithm can yield the boundary
points for all attributes in a distributed manner
using a linear map operation.

4. Division of attributes (lines 14–19): once the
reduced set of boundary points is generated, it
is necessary to separate the attributes into two
sets. To do that, several operations are started
to complete this part. All these suboperations
are performed linearly using distributed
operations.

5. Evaluation of small attributes (lines 20–24):
this is mainly formed by two suboperations:
one for grouping the tuples by key (done
locally thanks to the data locality), and one
map operation to evaluate the candidate points.
In the map operation, each feature starts an
independent process that, like the sequential
version, is quadratic. The main advantage here
is the parallelization of these processes.

6. Evaluation of big features (lines 26–28): The
complexity order for each feature is the same
as in the previous case. However, in this case,
the evaluation of features is done iteratively.

EXPERIMENTAL FRAMEWORK AND
ANALYSIS

This section describes the experiments carried out to
demonstrate the usefulness and performance of our
discretization solution over two Big Data problems.

Experimental Framework
Two huge classification datasets are employed as
benchmarks in our experiments. The first one (here-
inafter called ECBDL14) was used as a reference at
the ML competition of the Evolutionary Computa-
tion for Big Data and Big Learning held on July
14, 2014, under the international conference
GECCO-2014. This consists of 631 characteristics
(including both numerical and categorical attributes)
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and 32 million instances. It is a binary classification
problem where the class distribution is highly imbal-
anced involving 2% of positive instances. For this
problem, the MapReduce version of the Random
Over Sampling (ROS) algorithm presented in Ref 71
was applied in order to replicate the minority class
instances from the original dataset until the number
of instances for both classes was equalized. As a sec-
ond dataset, we have used epsilon, which consists of
500,000 instances with 2000 numerical features. This
dataset was artificially created for the Pascal Large
Scale Learning Challenge in 2008. It was further pre-
processed and included in the LibSVM dataset
repository.72

Table 2 gives a brief description of these data-
sets. For each one, the number of examples for train-
ing and test (#Train Ex., #Test Ex.), the total number
of attributes (#Atts.), and the number of classes (#Cl)
are shown. For evaluation purposes, Naïve Bayes73

and two variants of Decision Tree74—with different
impurity measures—have been chosen as reference in
classification, using the distributed implementations
included in MLlib library.17 The recommended para-
meters of the classifiers, according to their authors’
specification,e are shown in Table 3.

As evaluation criteria, we use two well-known
evaluation metrics to assess the quality of the under-
lying discretization schemes. On one hand, Classifica-
tion accuracy is used to evaluate the accuracy yielded
by the classifiers—number of examples correctly
labeled divided by the total number of examples. On
the other hand, in order to prove the time benefits of
using discretization, we have employed the overall
classification runtime (in seconds) in training as well

as the overall time in discretization as additional
measures.

For all experiments, we have used a cluster
composed of 20 computing nodes and 1 master node.
The computing nodes hold the following characteris-
tics: 2 processors × Intel Xeon CPU E5-2620, 6 cores
per processor, 2.00 GHz, 15 MB cache, QDR Infini-
Band Network (40 Gbps), 2 TB HDD, 64 GB RAM.
Regarding software, we have used the following con-
figuration: Hadoop 2.5.0-cdh5.3.1 from Cloudera’s
open-source Apache Hadoop distribution,f Apache
Spark and MLlib 1.2.0, 480 cores (24 cores/node),
1040 RAM GB (52 GB/node). Spark implementation
of the algorithm can be downloaded from the first
author’ GitHub repository.g The design of the algo-
rithm has been adapted to be integrated in MLlib
Library.

Experimental Results and Analysis
Table 4 shows the classification accuracy results for
both datasets.h According to these results, we can
assert that using our discretization algorithm as a
preprocessing step leads to an improvement in classi-
fication accuracy with Naïve Bayes, for the two data-
sets tested. It is especially relevant in ECBDL14
where there is an improvement of 5%. This shows
the importance of discretization in the application of
some classifiers such as Naïve Bayes. For the other
classifiers, our algorithm is capable of producing the
same competitive results as those performed implic-
itly by the decision trees.

Table 5 shows classification runtime values for
both datasets distinguishing whether discretization is
applied or not. As we can see, there is a slight
improvement in both cases on using MDLP, but not
enough significant. According to the previous results,
we can state that the application of MDLP is relevant
at least for epsilon, where the best accuracy result
has been achieved by using Naïve Bayes and our dis-
cretizer. For ECBDL14, it is better to use the implicit
discretization performed by the decision trees,
because our algorithm is more time-consuming and
obtains similar results.

Table 6 shows discretization time values for the
two versions of MDLP, namely, sequential and dis-
tributed. For the sequential version on ECBDL14,
the time value was estimated from small samples of
this dataset, because its direct application is unfeasi-
ble. A graphical comparison of these two versions is
shown in Figure 3. Comparing both implementa-
tions, we can notice the great advantage of using
the distributed version against the sequential one.
For ECBDL14, our version obtains a speedup

TABLE 2 | Summary Description for Classification Datasets

Dataset #Train Ex. #Test Ex. #Atts. #Cl.

Epsilon 400,000 100,000 2000 2

ECBDL14 (ROS) 65,003,913 2,897,917 631 2

TABLE 3 | Parameters of the Algorithms Used

Method Parameters

Naive Bayes Lambda = 1.0

Decision Tree—gini
(DTg)

Impurity = gini, max depth = 5, max
bins = 32

Decision Tree—
entropy (DTe)

Impurity = entropy, max depth = 5,
max bins = 32

Distributed MDLP Max intervals = 50, max by
partition = 100,000

MDLP, Minimum Description Length Principle.
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ratio (speedup = sequential/distributed) of 271.86,
whereas for epsilon, the ratio is equal to 12.11. This
shows that the bigger the dataset, the higher the effi-
ciency improvement; and, when the data size is large
enough, the cluster can distribute fairly the computa-
tional burden across its machines. This is notably the
case study of ECBDL14, where the resolution of this
problem was found to be impractical using the origi-
nal approach.

Discretization, as an important part in DM pre-
processing, has raised general interest in recent years.
In this work, we have presented an updated taxon-
omy and description of the most relevant algorithms
in this field. The aim of this taxonomy is to help the
researchers to better classify the algorithms that they
use, on one hand, while also helping to identify pos-
sible new future research lines. At this respect, and
although Big Data is currently a trending topic in sci-
ence and business, no distributed approach has been
developed in the literature, as we have shown in our
taxonomy.

Here, we propose a completely distributed ver-
sion of the MDLP discretizer with the aim of demon-
strating that standard discretization methods can be
parallelized in Big Data platforms, boosting both per-
formance and accuracy. This version is capable of
transforming the iterativity yielded by the original
proposal in a single-step computation through a
complete redesign of the original version. According
to our experiments, our algorithm is capable of

performing 270 times faster than the sequential ver-
sion, improving the accuracy results in all used data-
sets. For future works, we plan to tackle the problem
of discretization in large-scale online problems.

NOTES
a Logarithm in base 2 is used in this function.
b For a complete description of this model and other dis-
tributed models, please review Ref 69.
c For a complete description of Spark’s operations, please
refer to Spark’s API: https://spark.apache.org/docs/latest/
api/scala/index.html.
d If the set is an array, it is used as a loop structure, else it
is used as a distributed map function.
e https://spark.apache.org/docs/latest/api/scala/index.html.
f http://www.cloudera.com/content/cloudera/en/documenta-
tion/cdh5/v5-0-0/CDH5-homepage.html.
g https://github.com/sramirez/SparkFeatureSelection.
h In all tables, the best result by column (best by method) is
highlighted in bold.

TABLE 4 | Classification Accuracy Values

Dataset NB NB-disc DTg DTg-disc DTe DTe-disc

ECBDL14 0.6276 0.7260 0.7347 0.7339 0.7459 0.7508

Epsilon 0.6550 0.7065 0.6616 0.6623 0.6611 0.6624

TABLE 5 | Classification Time Values: with Versus w/o Discretization (In Seconds)

Dataset NB NB-Disc DTg DTg-Disc DTe DTe-Disc

ECBDL14 31.06 26.39 347.76 262.09 281.05 264.25

Epsilon 5.72 4.99 68.83 63.23 74.44 39.28

TABLE 6 | Sequential Versus Distributed Discretization Time Values
(In Seconds)

Dataset Sequential Distributed Speedup Rate

ECBDL14 295,508 1087 271.86

Epsilon 5764 476 12.11

Epsilon

ECBDL14

1 100

Discretization time (Seconds)

Sequential
Distributed

10,000 1,000,000

FIGURE 3 | Discretization time: sequential versus distributed
(logaritmic scale).
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A B S T R A C T

Nowadays the phenomenon of Big Data is overwhelming our capacity to extract relevant knowledge through
classical machine learning techniques. Discretization (as part of data reduction) is presented as a real solution to
reduce this complexity. However, standard discretizers are not designed to perform well with such amounts of
data. This paper proposes a distributed discretization algorithm for Big Data analytics based on evolutionary
optimization. After comparing with a distributed discretizer based on the Minimum Description Length
Principle, we have found that our solution yields more accurate and simpler solutions in reasonable time.

1. Introduction

Among all Data Mining tasks, Data Preprocessing [1,2] stands as
one of the most important steps in the knowledge discovery process. As
input data must be provided in a suitable structure and format for a
subsequent high-quality mining process, Data Preprocessing becomes
essential in most of data analytic problems. Preparation techniques aim
at cleaning negative factors present in current databases –missing,
noise, inconsistent and superfluous data–. Conversely, data reduction
family is applied to simplify data and their inherent complexity, while
maintaining their original structure. Discretization [3,4], as part of data
reduction, has received increasing attention in last years. It transforms
quantitative data into qualitative data by performing a non-overlapping
partitioning of continuous attributes, and then associating a set of
discrete values to the resulting partitions.

Although the Data Mining discipline has been successfully applied
for several years [5], in this new era of Big Datum [6,7], the capabilities
of traditional mining systems have been surpassed by the exponential
growth of databases. Learning from large-scale datasets has become a
labored or even impracticable task when classical algorithms are used.
As in standard mining, Big Data preprocessing [8] plays an essential
role in improving the quality of large-scale data. This importance can
be deemed even greater in Big Data scenario since large amounts of
data usually implies more noise. Novel scalable, and efficient discreti-
zers [4], developed on recent distributed paradigms and tools [9], are
thus required to face the Big Data discretization problem. Up to date,
only one distributed solution for Big Data discretization [4] has been
presented in the literature.

Data discretization can be deemed as an optimization problem,
where partial solutions can be coded via binary representation. Given
the previous problem, an evolutionary-based metaheuristic [10] can be
useful at dealing with binary-based optimization. Although quite
effective, evolutionary algorithms are known for being time-consuming
and hardly scalable, specially when large-scale problems are faced [11].
A distributed solution based on evolutionary heuristics would bring us
an scalable and effective solution for Big Data discretization [12].

Evolutionary algorithms (EA) have shown their usefulness on
several optimization-based learning problems, see the following over-
views for several mining contexts, such as: rule learning [13], evolu-
tionary fuzzy systems [14], clustering [15], or multi-objective learning
[16]. Recently, we can find novel evolutionary and bio-inspirited
approaches for learning, such as: data discretization [17], rule induc-
tion [18], feature selection [19], clustering [20], or diverse applications,
like face recognition [21].

In this paper we propose a novel design for a distributed multi-
variate discretizer for Apache Spark [22] based on an evolutionary
points selection scheme. Our approach, called Distributed Evolutionary
Multivariate Discretizer (DEMD), has been inspired by the EMD
discretizer [17]. EMD is an evolutionary-based discretizer with binary
representation and a wrapper fitness function. Although both algo-
rithms share some common aspects (like representation and fitness
function), DEMD goes beyond a simple parallelization, and offers an
approximative, scalable and resilient solution to deal with the Big Data
discretization problem. Alike EMD, in DEMD, partial solutions are
generated locally, and eventually fused to produce the final discretiza-
tion scheme. Up to our knowledge, our proposal is the first evolutionary
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approach in dealing with the large-scale discretization problem.
In order to show the usefulness of our solution, a thorough

experimental evaluation has been performed using several huge
datasets (up to O (10 )7 instances and O (10 )4 features). A distributed
discretizer based on the Minimum Description Length Principle (called
DMDLP) [4] has also been included for comparison purposes.
Experiments on these real-world datasets have shown that DEMD
obtains more accurate and simpler discretization schemes than its
competitor.

The remainder of this paper is organized as follows. Section 2
briefly explains some concepts about Big Data, and the environment of
tools and paradigms around this phenomenon. Section 3 introduces the
discretization task, some related concepts, as well as a brief description
of EMD. Section 4 discusses the complexity problems faced, as well as
the solution adopted by our proposal. Section 5 describes the experi-
mental framework carried out, and the results derived from these
experiments. Lastly Section 6 gives the conclusions derived from this
work.

2. Big Data: concepts, paradigms and tools

In this section, the Big Data phenomenon is introduced through the
scheme of 5Vs. Here we also present the distributed frameworks,
paradigms and tools which have served to address Big Data problems
in a distributed manner.

Humongous amounts of information are stored in data centers now,
ready to be processed. The efficient extraction of valuable knowledge
from these datasets raises a considerable challenge for data scientists.
Gartner [23] introduced the popular concept of Big Data in 2001. In its
report, Gartner defines this concept as the conjunction of the 3Vs: high
volume, velocity and variety information that require a new large-scale
processing. This list was extended with 2 extra terms: veracity and
value.

One of the most relevant frameworks in Big Data analytics is the
MapReduce framework [24]. This framework, devised by Google in
2003, allows us to automatically process huge data by distributing the
complexity burden among a cluster of machines. Final users only have
to design their tasks specifying the Map and Reduce functions.
Partitioning and distributing of data, job scheduling or fault-tolerance
are responsibility of the platform.1

One of the most popular open-source implementation of
MapReduce is Apache Hadoop [25,26]. Despite of being well-used
and very popular, Hadoop seems not to work well with iterative and
online processes [27]. In general, it is not intended for those programs
that continuously reads data and need to keep them in memory.

The MapReduce model offers two primitives –Map and Reduce–,
which correspond with two execution stages in the whole process.
Firstly, the master node retrieves the dataset (split into several chunks)
from the distributed file system so that each node reads those data
chunks allocated in its local disk. Each node then starts one or more
Map threads to process the raw chunks. The result is a set of key-value
pairs (intermediate pairs), which are also stored in disk. After all Map
tasks have ended, the master node starts the Reduce phase by
distributing those pairs with coincident keys to the same node. Each
Reduce task combines those matching pairs to yield the final output.
Fig. 1 depicts a simplified scheme of MapReduce and its two main
functions.

Related to the Hadoop Ecosystem, Apache Spark [28,22] has
emerged as a new revolutionary tool capable of outperforming
Hadoop for certain cases (100x faster). This is possible due to the in-
memory primitives available in Spark. This platform allows users to
persist data into memory and to read them rapidly, making it suitable
for iterative and online jobs.

3. Discretization: theoretical background

In this section, the problem of discretization, as well as some
optimizations are presented. Additionally, a brief description of EMD is
also given.

3.1. Definitions

Discretization is a data preprocessing technique that generates
disjoint intervals from continuous features. The resulting intervals are
associated to a set of discrete values to yield nominal data. A complete
description and taxonomy of discretization algorithms can be found in
[3,4].

Given a dataset D with n examples, a set of features F, the subset of
continuous features FC F⊂ , and o target classes, a discretization
process would divide a continuous feature c into kc disjoint and
discrete intervals, yielding the following discretization scheme:

D d d d d d d= {[ , ], ( , ],…, ( , ]}c k k0 1 1 2 −1c c (1)

where d0 and dkc are the minimum and maximum value, respectively.
Note that all values in Dc are sorted in ascending order. Likewise,

CP d d d= { , ,…, }c k1 2 −1c (2)

is defined as the set of cut points of feature c, andCP denotes the whole
set of cut points for all the continuous features in D.

Optimal discretization can be considered as a NP-hard problem
[29], where the search space is basically composed by all the different
values (for all features) in the training set. To alleviate the subsequent
complexity, it can be considered a reduced subset of points, formed by
the boundary points among classes.

Let c has its values sorted in ascending order, and valc be a function
that returns the value for c, given an example in D. Given two examples
a b D, ∈ with different classes, such that val a val b( ) < ( )c c . If there is no
sample c D∈ such that val a val c val b( ) < ( ) < ( )c c c , a boundary point
can be defined as the half-point value between val a( )c and val b( )c . The
set of boundary points for c is denoted as BPc, whereas the complete set
as BP.

Boundary points has shown to form the optimal intervals for most
of the evaluation measures [30], thanks to that the previous definition
always search the maximum separability between classes. Additionally,
a reduced subset of points offers significant savings in complexity, as
shown in [17]. This fact is specially relevant in Big Data, where the
performance is a determining factor.

3.2. Evolutionary multivariate discretizer

An important contribution to the discretization field is EMD [17],
an evolutionary-based discretizer that uses a wrapper fitness function
to evaluate binary solutions. This approach goes beyond deterministic
algorithms, and offers the possibility of improving the discretization
schemes generated by tuning several parameters. EMD follows a

Fig. 1. Scheme of the MapReduce paradigm.

1 For a complete review of this model and other distributed models, please check [9].
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multivariate approach to leverage the existing dependencies among
different features.

EMD utilizes the operators and mechanisms defined in CHC [31] to
tackle the cut points selection problem. CHC is a well-known evolu-
tionary algorithm specially designed for binary optimization, which
looks for a proper balance between exploration and exploitation. Our
algorithm includes several features from CHC in order to achieve this
balance, such as: incest prevention (via mating threshold) or chromo-
some reboot.

EMD consists of two steps that are constantly repeated in each
iteration. Firstly, pairs of chromosomes are fused using a crossover
operation. Intermediate population is then randomly paired to gen-
erate new offspring. Afterwards a survival competition decides what is
the best solution from the set of parent and offspring. The result is a
new population which will be mixed and selected in further steps.

Like CHC, EMD implements HUX, a heterogeneous crossover
operation to recombine chromosomes. HUX is specially designed to
generate maximally distant offspring from two parents by exchanging
half of the different points according to the Hamming distance.
Regarding the mutation operator, EMD replaces it by a rebooting
process which randomly changes 35% of the bits in the best chromo-
some in order to create new templates. This reseeding process will be
applied whenever the population gets stuck for a number of evalua-
tions.

This discretizer uses a binary chromosome representation to
annotate the selection (1) or not-selection (0) of all the boundary
points in BP. There is therefore an unique correspondence between
each gene and each boundary point. Finally, all points marked as
selected in the best chromosome will be included in S.

In order to evaluate the different binary solutions (chromosomes),
EMD defines a wrapper fitness function that aggregates two factors: the
classification error on training and the number of cut points selected.
This function has showed more promising accuracy results and simpler
solutions than those based on inconsistency measures [32]. The
objective of this EA is the minimization of this function, which is
defined as follows:

Fitness P α P
BP

α Δ( ′) = · | ′|
| |

+ (1 − )·
(3)

where P′ is the subset of selected points, Δ the error obtained after
classifying the discretized data, and α a weight factor for these two
factors.

In EMD, the classification error is computed as the average mean
error yielded by two classifiers: Naïve Bayes [33] and an unpruned
version of C4.5 [34].

EMD also introduces a reduction mechanism to speed up the
convergence of our method, which is based on the reduction of the
chromosome size. In our solution, this is done by maintaining those
points selected more than a determined number of evaluations (the
most relevant ones). In each reduction phase, several points are
removed according to a counter that indicates the number of selections
by point.

This reduction mechanism fixes the long delays associated to the
application of EAs when facing huge problems. As any optimization
problem, the cut points selection problem offers multiple valid solu-
tions (local optima). It is thus convenient to reach some local optima in
order to avoid long executions.

4. Distributed evolutionary multivariate discretizer

This section explains the design of our distributed discretization
solution for Big Data. Our algorithm splits both the set of cut points
and instances into partitions, and evaluates them through a cross-
evaluation system. With this distributed scheme we maximize the
resource usage throughout the entire process. If a point is selected by
one of the evaluation processes, it counts as a single vote. All these

votes are aggregated to obtain the final score per point. Finally, the final
discretization scheme is obtained through a voting scheme.

Section 4.1 starts discussing the main concerns that affect our
distributed approach: a large number of instances and cut points. In
Section 4.2, the main procedure in charge of partitioning the instances
are feature, and aggregating the partial solutions is presented. Section
4.3 illustrates the process of computing boundary points. Section 4.4
exposes how the chromosomes are evaluated in a distributed manner
by using EMD.

4.1. Discussion about the DEMD's distributed design

This section presents the main problems that our proposal needs to
overcome to produce discretization schemes efficiently. The two
problems to consider are: a high number of cut points to evaluate,
and therefore, long chromosomes to evaluate; and a huge amount of
instances to use in this evaluation phase.

The first problem is related to the high complexity derived from EA
problems. In the cut points selection problem, discretizers are mainly
affected by the number of boundary points to evaluate (long chromo-
somes). In particular, this problem is influenced by two factors: the
number of instances and features present in the problem. Another
hidden factor that influences the complexity is the number of distinct
points present in each feature. If this value is high, the algorithm will
have to process a high number of boundary points.

In order to keep the multivariate philosophy and to alleviate the
complexity derived from these two problems, our distributed proposal
has introduced some major changes with respect to the sequential
version. The first change we propose is to divide the complete set of
features into partitions so that the evaluation of points is performed in
a parallel way. This modification has also demonstrated to maintain the
effectiveness of the original method.

For the second problem (high number of instances), we propose to
partition the set of instances into a set of equal-sized partitions. Each
data partition will serve to evaluate different parts of the chromosome.
Once the partitions have been evaluated following the EMD scheme
(Section 3.2), the subsequent partial solutions are aggregated through a
voting scheme (complete description in Section 4.4). This modification
has showed to work well with large datasets, even when the generated
schemes are approximative.

Regarding the evaluation, Naïve Bayes has been elected to evaluate
the candidate solutions in the fitness function because of its simplicity
and efficiency in its close-form expression [35] (linear order).
Nevertheless, users can introduce another classifier/s to customize
the distributed approach.

To implement our method, some extra primitives from Spark's API
have been used. Spark primitives implement more complex operations
than those proposed by MapReduce. Some of them are: mapPartitions,
broadcast, sortByKey, Map and reduceByKey.2

DEMD includes several user-defined input parameters, which are
described in Table 1.

4.2. Main discretization procedure

Procedure 1 explains the main procedure of our discretization
algorithm. Hereafter we will use the term partition to describe the data
partitions, and the term chunk to describe the feature partitions. This
procedure is in charge of distributing the initial cut points (computed
in Section 4.3) among the set of chunks. The partitions already created
are associated with these chunks so that each chunk is evaluated on the
instances contained in one or more partitions. After the parallel
selection process is performed (in Section 4.4), this procedure creates

2 For a complete description of Spark's operations, please refer to Spark's API: https://
spark.apache.org/docs/latest/api/scala/index.html.
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the final matrix of selected cut points.
The first step computes the boundary points BF( ) in a distributed

way using the function getBoundary (line 1, Section 4.3). Each tuple in
BF consists of a feature ID fid( ) and a list of points. Based on this
variable, DEMD creates FI (feature information), and BP (boundary
points per feature). All this information will serve us to create the
chromosome chunks.

Procedure 1. Main discretization procedure.

Input: D dataset
Input: M Feature indexes to discretize
Input: uf Multivariate user factor
Input: alp Alpha parameter
Input: ne Number of evaluations
Input: sr Sampling rate
Input: vp Percentage of selected points
Output: Cut points by feature

1: BF getBoundary D M← ( , )
2: BP FI← (); ← ();
3: for all fid l BF< , > ∈ do
4: BP fid l( ) =
5: FI add Feature fid l size. ( ( , . ))
6: end for
7: FI broadcast sortBySize FI← ( ( ))
8: BP broadcast BP← ( )
9: nbp totalSize BP← ( )
10: ds nbp D npartitions← / .
11: ms max FI size ds← ( (0). , )
12: df max uf ms ds← ( , / )
13: ncp nbpoints df ds← /( * )
14: windows makeGroups FI ncp← ( , )
15: CH ← ()
16: for all w windows∈ do
17: p shuffle w← ( )
18: for i i p size= 0 → < . do
19: CH i add p i( ). ( ( ))
20: end for
21: end for
22: CH broadcast CH← ( )
23: SD stratifiedSampling D sr← ( , )
24: SP select SD CH uf alp sr vp← ( , , , , , )
25: TH ← ()
26: for chid lf SP< , > ∈ do
27: ind chunk CH chid← 0; ← ( )
28: for feat chunk∈ do
29: for i i feat size= 0 → < . do
30: if lf i ind true( + )== then
31: point BP feat id i ind← ( . )( + )
32: TH feat id add point( . ). ( )
33: end if
34: end for
35: ind ind feat size← + .
36: end for
37: end for
38: return TH( )

The procedure divides the evaluation of cut points using subsets of
features (called chunks) (lines 2–13). To do that DEMD first sorts all
features by the number of boundary points contained in each one
(ascending order). Then, DEMD computes the number of chunks ncp( )

in which the entire list of boundary points will be divided. ncp is
computed using several variables which are related according to Eq.
(4).

ncp np max uf ms ds ds= /( ( , / )· ) (4)

where np is the total number of boundary points, ds the current
proportion of points by data partition, uf the split factor specified by
the user, and ms the maximum between the largest feature size and ds.

Usually each feature is contained in a single chunk, but it may
change in case the user specifies a greater value, or the largest feature
surpasses the default size since points belonging to the same feature
can not be separated. In the latter case, a finer-grained division will be
performed, which means more chunks. This scenario normally entails a
quicker evaluation, but a loss in effectiveness.

The evaluation procedure starts to distribute points between the
chunks CH( ) (lines 14-21). In each iteration, a group of nc features is
collected and randomly distributed among the chunks. The loop ends
when there is no feature to collect. This mechanism will enable a fairly
distribution of boundary points, without points from the same feature
in different chunks, and with a similar number of features per chunk.

Once the distribution of points is completed, a stratified sampling
process (by class) is performed on D (line 23). The resulting sample SD
is used to evaluate the boundary points in a distributed manner.
According to the multivariate factor (max uf ms ds( , / )), each partition
randomly selects as many chunks as indicated by these factor (usually
only one). Then, each partition is responsible of evaluating the points
contained in their associated chunks (line 24). The selection phase is
described in detail in Section 4.4.

Each selection process returns its aggregated partial solution (the
best chromosome per chunk), and saves the tuples (chunk ID, best
solution) in SP. All these partial results are then summarized using a
voting scheme, considering the threshold (vp). Finally, the main
procedure processes the binary vectors to obtain the final matrix of
cut points (TH ) (line 26-38). This procedure fetches the features in each
chunk, and its correspondent points. If a given point has been selected,
it is added to the final matrix. If not, this is omitted.

An illustrative scheme of the entire process is detailed in Fig. 2. In
this example, there are four features with different amounts of
boundary points (8, 5, 4,10). Boundary points are then uniformly
distributed into three chunks where features may be mixed, like in
chunkC1. Afterwards chromosome chunks are grouped with seven data
partitions following a correspondence table that relates chunks and
partitions according to the multivariate factor. Once local evaluation
threads have ended, partial discretization results (binary vectors) for
the same chromosome part are aggregated by summing votes. Most-
voted points in each chunk according to vp (proportion of points to
select) are selected, and adapted to create the global selection matrix.

Table 1
DEMD's parameters. For each parameter, name, description and range are shown.

Parameter Description Range

D Input dataset (RDD) –

M Feature indexes to discretize f[0, ]
uf Ratio between the number of feature chunks and the

number of data partitions
[1, ∞)

alp Weight factor for the fitness function [0, 1]
ne Number of chromosome evaluations to be performed in

each process
[100, ∞)

sr Percentage of instances used in evaluation [0, 1]
vp Percentage of points selected in each aggregation

process
[0, 1]
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4.3. Computing the boundary points

Procedure 2. Function to generate the boundary points
(getBoundary).

Input: D dataset
Input: M Feature indexes to discretize
Output: The set of boundary points (feature index, point value).

1: CB←
2: map s D∈
3: v zeros c← (| |)
4: ci classIndex v← ( )
5: v ci( ) ← 1
6: for all A M∈
7: EMIT A A s v< ( , ( )), >
8: end for
9: end map
10: D reduce CB sumVectors← ( , )
11: S sortByKey D← ( )
12: FP firstByPart S← ( )
13: BP←
14: map partitions PT S∈
15: la lp lq next PT<( , ), > ← ( )
16: for all a p q PT<( , ), > ∈ do
17: if a la< > then
18: EMIT la lp< , >
19: else if isBoundary q lq( , ) then
20: EMIT la p lp< , ( + )/2>
21: end if
22: la lp a p< , > ← < , >
23: end for
24: index getIndex PT← ( )
25: if index npartitions S< ( ) then
26: a p q FP index<( , ), > ← ( + 1)
27: if a la< > then
28: EMIT la lp< , >
29: else
30: EMIT la p lp< , ( + )/2>
31: end if
32: else
33: EMIT la lp< , >
34: end if
35: end map
36: return BP groupByKey( . ())

Procedure 2 getBoundary( ) describes the function that computes
border points in data. This procedure consists of three steps. Firstly,
the distinct points (D) in the dataset are calculated by removing
duplicated elements. Secondly, the resulting points are sorted (S) and
distributed by feature index so that all the points from the same feature
will not be separated. Finally, the boundary points BP( ) in each feature
are evaluated sequentially.

The procedure starts by launching a parallel process on each partition
(taking advantage of data locality) with the aim of computing the distinct
points CB( ) (lines 1-9). Once the points are sorted (D) and the first point
by partition is distributed FP( ), DEMD evaluates whether each points
belong to any border as follows (lines 13–36): for each point, it checks
whether the feature index is distinct from the index of the previous point;
if it is so, DEMD generates a tuple with the feature index of the last point
as key, and its correspondent value as value. By doing so, the last point
from the current feature is always kept as the last threshold. If there are
more points in this feature, the procedure evaluates whether the current

point accomplishes the boundary condition with respect to the previous
point. If it is so, this generates a tuple with the feature index as key, and
the midpoint between these two points as value.

The last point in each partition is considered as an special case
(lines 25–34). These points are compared with the first point in the
following partition (broadcasted). If the feature indexes are different,
the procedure emits a tuple with the last point. If not and the point is
boundary, DEMD emits a tuple with the midpoint between these two
points. Finally, all the tuples generated in each partition are joined into
a RDD of boundary points, which is returned to the main procedure.

The previous process is depicted in Fig. 3. In this figure we can see
three partitions with six different points. The points are sorted by key
(feature index and point value) to perform the evaluation. The first
point for each partition is sent to the following partition to perform the
evaluation of the last points. As result, three boundary points are
generated, some are midpoints and some are the last points in features.

4.4. Distributed cut points selection

Procedure 3 explains the distributed operations used to aggregate
the solutions generated by each local evaluation process, and to decide
the final discretization scheme. Note that local evaluation of points is
performed by launching a single instance of EMD on each data
partition (Section 3.2). This process consists of two steps: the first
one starts a selection process (map) on each pair chunk-partition and
aggregates the subsequent solutions to produce the final number of
votes. The second step is aimed at selecting the most voted points by
chunk according to the threshold vp( ) defined by the user.

Fig. 2. A simplified representation of the DEMD process. F represent the features, C the
chromosome chunks, P the dataset partitions to evaluate, and Pt the boundary points.
The selected points have been highlighted in bold.
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Procedure 3. Function to perform the evolutionary selection process
(select).

Input: SM Sampled boundary points
Input: CH Feature chunks
Input: uf Multivariate user factor
Input: alpha Alpha parameter (evolutionary process)
Input: ne Number of evaluations (evolutionary process)
Input: sr Sampling rate
Input: vp Percentage of selected points
Output: Cut points by feature

1: PO shuffle seq CH size← ( (0, . ))
2: R←
3: map partitions index DT SM< , > ∈
4: chid PO index CH size← ( % . )
5: C CH chid← ( )
6: npoints totalSize chunk← ( )
7: CP FD← (); ← ()
8: for i i chunk size= 0 → < . do
9: FD i DT i( ) ← ( )
10: CP i C i( ) ← ( )
11: end for
12: BI EMD FD CP alpha ne← ( , , , )
13: CO ← ()
14: for i i BI size= 0 → < . do
15: if BI i( )== 1 then
16: CO i( ) = 1
17: else
18: CO i( ) = 0
19: end if
20: end for
21: EMIT chid CO< , ( , 1)>
22: end map
23: CO R reduceByKey sum← . ( ())
24: SL←
25: map chid AC c CO< , ( , ) > ∈
26: S sort AC← ( )
27: ps AC size vp← . *
28: BA take S ps← ( , )
29: EMIT chid BA< , >
30: end map
31: return SL( )

Firstly, each chunk is associated with one or more data partitions
using PO, which is a table formed by tuples (chunk ID, data partition).
For each tuple, a map operation is started (lines 3–22). This map
operation starts by creating a data matrix with the instances contained
on each partition and those features present in the chunk. Afterwards,
the procedure executes an evaluation thread on each submatrix FD( ) in
order to evaluate the corresponding boundary points CP( ). As result,
the best chromosome (a binary vector) in the population is returned
BI( ).

The binary vector will be transformed into a numeric vector to
annotate number of selections (CO) (lines 13–22). The final result
emitted by the partition is a tuple with the identifier of the chunk as
key, and the vector count –number of times each point has been
selected– and a chunk count –maximum number of partitions in which
has been evaluated– as value. This procedure will indicate the selection
ratio for each point. The partial values generated above are aggregated
by reducing the tuples by key.

Secondly, the procedure starts a map operation (lines 25–30) to
select the most voted points by chunk SL( ). The procedure orders all the
points by number of votes, and selects in order as much points as

specified by vp. The result is a tuple with chunk ID as key, and the
selection vector as value. Finally, previous results will eventually be
transformed to a matrix of points in the main procedure.

4.5. Computational and communication complexity analysis

In this section we analyze the computational and communication
complexity for all procedures presented. Big O notation is used to
specify the upper limit for the run-time and communication cost of
each procedure.

• Boundary points (line 1 – Algorithm 2): complexity here is
determined by the computation of distinct points: O ( )D M

nc
| |·| | for

run-time, and O D M(| |·| |) for communication. nc represents the total
number of cores used to distribute the complexity burden.

• Selection process (line 24 – Algorithm 3): a single evolutionary
selection process is executed on each partition. The overall compu-
tational complexity is linear: O ne( · )D BP df

nc
| |·| |· , and it is mainly

bounded by Naive Bayes's complexity O D BP( (| |·| |)). The procedure
communicates O BP(| |) integer data.

• Main algorithm (Algorithm 1): all sequential operations here are
linear O BP( (| |)), as well as the communication processes between the
nodes and the master node O BP( (| |)).

Notice that, in most of cases, the number of boundary points to be
processed and communicated is much lower than the number of
original points according to the Table 6 (#Pt.). This fact allows us to
say that our algorithm can perform efficiently in many large-scale
problems.

5. Experimental framework and results

This section describes the experimental framework carried out and
analyzes the results derived from these experiments. The aim of these
experiments is to prove the benefit derived from using our discretiza-
tion solution. DMDLP, an distributed discretizer based on entropy
minimization, is included in the experiments for comparison purposes.

5.1. Datasets and methods

In these experiments, we have used four large-scale classification
datasets as benchmarks. The largest dataset in our framework is
ECBDL14. This dataset was used as benchmark at the international
conference GECCO-2014, in an classification competition for Big Data.
This consists of 32 million instances with a high imbalance ratio: 98%
of negative instances. To equalize both classes, the MapReduce version
of the Random OverSampling (ROS) technique [36] was used to
replicate the minority class (henceforth called ECBDL14R). This
version has been used in the experiments instead of the original one.

From the LibSVM dataset repository [37], the dataset epsilon has
been used as example of artificially created (and noisy) dataset with
many features and boundary points. The rest of datasets (higgs and
susy) have been taken from the UCI Machine Learning Repository [38].
susy is also an imbalanced problem with a ratio of 34%. All datasets
presented in this section are two-class problems.

Table 2 gives a short description of these datasets. For each one, the
number of examples for training and test (#Train Ex., #Test Ex.), the
total number of attributes (#Atts.), and the number of classes (#Cl) are
shown. In order to reduce the number of candidate points, all data has
been rounded up to four decimal places. It affects to problems like
higgs or epsilon where the number of decimal places is large enough.

Naïve Bayes has been elected as the reference classifier to assess the
quality of solutions. Namely, the distributed version of Naïve Bayes in
MLlib [39] have been chosen for the experiments. In Table 3, the
recommended parameters (according to their authors' specification)
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for this algorithm3 is shown.
The distributed discretizer DMDLP [4] has been included in the

experiment for comparison purposes. The parameter values for both
discretizers are also defined in Table 3. For some special cases, some
modifications to these parameters have been introduced, as explained
in Section 5.4. For all experiments, five executions for each pair
method-dataset have been launched to assess the quality of the
solutions generated by our non-deterministic algorithm. The details
of all runs are reported in Appendix A.

As evaluation measures, three standard metrics have been used to
assess the performance of the discretizers and the quality of the
subsequent solutions. The classification accuracy and the Area Under
Curve Receiver Operating Characteristic (AUC-ROC) have been used
for quality evaluation of test set. The overall discretization time has also
been used to measure the quickness of discretizers.

A cluster of machines of twenty computing nodes and a master
node was used to accomplish the experiments. All nodes hold the
following features: 2 processors x Intel Xeon CPU E5-2620, 6 cores per
processor, 2.00 GHz, 15 MB cache, QDR InfiniBand Network
(40 Gbps), 2 TB HDD, 64 GB RAM. The software installed on these
machines was the following: Hadoop 2.5.0-cdh5.3.1 from Cloudera's
open-source Apache Hadoop distribution,4 Apache Spark and MLlib
1.5.0, 460 cores (23 cores/node), 960 RAM GB (48 GB/node). The

source code of DEMD, designed to be integrated in MLlib, can be
downloaded from the correspondent author’ GitHub account.5

5.2. Analysis of classification performance

In this section, the classification performance of our discretizer is
evaluated against two classifiers and several huge datasets. The
discretization schemes generated by our solution and another alter-
native are used as a preprocessing step before the classification phase.

In Table 4, the average classification results on test after applying
Naïve Bayes are shown. Before classifying, the datasets have been
discretized in a preprocessing stage using both discretizers. As can be
seen in this table, the accuracy results yielded by our method outper-
forms those yielded by DMDLP in 4 out of 5 cases. This is specially
remarkable for ECBDL14R (the biggest dataset), with a difference of
several tenths. Notice that a slight improvement in accuracy in these
large-scale problems could imply a high number of instances is
correctly classified (1300 instances for susy).

Likewise, we have measured the impact of discretization in
classifying two imbalanced datasets: ECBDL14R and susy. Table 5
shows the AUC results on the test set. No remarkable difference
between both methods can be seen in this table, but only a slight
advantage for DMDLP.

Beyond the improvement in accuracy, our solution has shown to
yield simpler discretization schemes, with far lower number of points.
These simpler solutions, apart from being much more understandable
for experts, also have a positive impact on the learning process (from

Table 2
Summary description of datasets. For each one, the number of examples in training and
test (#Train Ex., #Test Ex.), the total number of features (#Atts.), and the number of
continuous features (#Cont.) are shown.

Dataset #Train Ex. #Test Ex. #Atts. #Cont.

ECBDL14R 65,003,913 2,897,917 630 539
higgs 8,800,000 2,200,000 28 28
susy 4,000,000 1,000,000 18 18
epsilon 400,000 100,000 2000 2000

Fig. 3. Distributed computation of boundary points. P represents the partitions. The points broadcasted have been highlighted in bold.

Table 3
Parameters of the algorithms used.

Method Parameters

DEMD α = 0.5, sr = 1.0, vp = {0.25, 0.5, 1.0}, ne = 10, 000
Distributed MDLP Max cut points = 15, max by partition = 100,000

Naïve Bayes Lambda = 1.0

3 https://spark.apache.org/docs/latest/api/scala/index.html.
4 http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/

CDH5-homepage.html. 5 https://github.com/sramirez/.
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both time and accuracy points). This is essential in Big Data environ-
ments where efficiency and simplicity are a plus. Table 6 illustrates the
simplicity of these solutions. The results prove that the most accurate
solutions for DEMD are also those with a lower number of points,
except for susy.

5.3. Analysis of efficiency

Another aspect when evaluating discretizers is the efficiency in
generating the discretization schemes. This is specially important in
Big Data environments, where the quickness is an important factor.
This section presents a comparison between DEMD and DMDLP, in
terms of time used to obtain the discretization model.

Table 7 illustrates this comparison by presenting the average time
results for both algorithms. For all cases, DMDLP performs much
faster than our method due to its greedy iterative nature. Nevertheless,
our solution offers competitive results. All of them far below a limit of
one hour, which are quite reasonable in Big Data analytics.

5.4. Case study: explosive growth of chromosomes and use of
sampling

An overwhelming number of candidate points and instances to
evaluate are the two most important problems when dealing with large-

scale datasets and EAs. This section aims at showing how our approach
can be tuned to deal with these problems, quite common in some big
datasets.

The number of candidates points to be evaluated straightly
determines the chromosome size that has to be managed by the EA.
In classical learning problems, this size can range to 15,000, as we
verified in a our study [17] where a long list of UCI datasets was
analyzed. Big datasets though presents a complexity (number of points)
much higher than presented in small/medium datasets, as shown in
Table 8. Despite some preprocessing stage has been applied to these
datasets (as presented in 5.1), the chromosome size can go to several
millions of genes. This is the case of epsilon, in which the EA starts with
3,013,813 points to evaluate.

Table 8 shows the value of the factors and variables which are
implied in the data partitioning and the creation of point chunks. It is
specially remarkable the epsilon case where the number of chunks
corresponds with the number of data partitions (460). This case
represents the simplest case of voting so that all chunks will be
evaluated by a single data partition, which implies a clear degradation
on the overall performance of the discretizer. In the experiments, the
multivariate factor variable uf was changed for epsilon in order to cope
with this problem (marked with an asterisk in the table). uf was then
established to 30, a similar value to that present in susy (the closest
problem in number of points to epsilon).

EAs are also affected by the sample size. In our case, the wrapper
classifier used in our EA needs to evaluate each solution using the
complete set of instances. Even after partitioning the points into
chunks, the size of chromosomes remains quite complex for the fitness
evaluation. In order to make feasible this evaluation for big datasets
(like ECBDL14R), some simplification techniques could be applied to
alleviate this complexity. One of them is the stratified sampling of
instances. In our algorithm, this technique is applied just after
computing the candidate points so as to only use this sample to
evaluate solutions.

According to the previous idea, a stratified sampling was applied on
ECBDL14R, the biggest dataset in terms of number of instances. The

Table 4
Classification test accuracy by discretizer and dataset.

Method ECBDL14R higgs epsilon susy

DEMD - 0.25 Avg 0.6912 0.5960 0.6734 0.7133
Std-Dev 0.0127 0.0131 0.0106 0.0077

DEMD - 0.5 Avg 0.7215 0.5680 0.6752 0.7175
Std-Dev 0.0141 0.0256 0.0098 0.0102

DEMD - 1.0 Avg 0.7500 0.5630 0.6718 0.7406
Std-Dev 0.0107 0.0261 0.0185 0.0033

DMDLP Avg 0.7272 0.5933 0.7047 0.7393
Std-Dev 0.00 0.00 0.00 0.00

Table 5
Test AUC by discretizer and dataset.

Method ECBDL14R susy

DEMD - 0.25 Avg 0.5113 0.7006
Std-Dev 0.0007 0.0076

DEMD - 0.5 Avg 0.5128 0.7048
Std-Dev 0.0007 0.0060

DEMD - 1.0 Avg 0.5143 0.7157
Std-Dev 0.0006 0.0032

DMDLP Avg 0.5131 0.7126
Std-Dev 0.00 0.00

Table 6
Number of cut points generated by discretizer and dataset. The best solution for each
dataset according to Naïve Bayes is highlighted in bold, whereas the best one for DEMD
is highlighted in italic.

Method ECBDL14R higgs epsilon susy

DEMD - 0.25 210 248 240 247
DEMD - 0.5 462 496 495 494
DEMD - 1.0 959 1000 990 988

DMDLP 8624 410 1718 267

Table 7
Discretization time by discretizer and dataset (in seconds).

Method ECBDL14R higgs epsilon susy

DEMD - 0.25 Avg 1178.70 733.26 1850.80 268.84
Std-Dev 25.66 60.54 15.95 3.42

DEMD - 0.5 Avg 1181.42 771.75 1858.94 271.20
Std-Dev 18.23 74.46 13.21 7.23

DEMD - 1.0 Avg 1169.80 764.68 1861.83 271.22
Std-Dev 20.97 51.01 22.92 6.26

DMDLP Avg 975.80 36.01 117.44 23.45
Std-Dev 0.00 0.00 0.00 0.00

Table 8
Information derived from data and chromosome partitioning tasks. For each dataset, the
original chromosome size (#Pt.), the computed multivariate factor (Mvf.), the maximum
feature size (Mfs.), the final chunk size (Cs.), and the number chunks generated (#Ch.)
are shown.

Dataset #Pt. Mvf. Mfs. Cs. #Ch.

ECBDL14R 41,937 10.82 985 985 42
higgs 514,524 52,96 59,214 59,214 8
susy 573,792 33.71 42,046 42,046 13
epsilon 3,013,813 1.00 2555 2555 460

epsilon* 3,013,813 30.00 76,650 76,650 15

* Epsilon without uf multivariate factor set to 30.
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sampling rate sr was then established to 0.1 in order to equalize the
performance of our solutions for all datasets used (see Table 7).
Furthermore, the accuracy results confirms that even using a reduced
sample of instances, there is a considerable improvement in classifica-
tion results.

6. Conclusions

In this paper, we have presented DEMD, a distributed multivariate
discretization algorithm for Big Data based on evolutionary optimiza-
tion under Apache Spark. Our solution is aimed at optimizing the cut
points selection problem by selecting accurate and simple solutions. In
this version, a new system of cross-evaluation between partitions of
instances and points has been introduced. Despite its non-determinis-
tic nature, this kind of evaluation offers promising discretization
schemes.

The experimental results obtained on big datasets (up to O (10 )7

instances and O (10 )4 features) have shown the improvement on

accuracy and simplicity when using DEMD. Our approach also allows
to tune the simplicity/accuracy rate of the generated solutions using
several parameters.

Our future work will concentrate on showing that evolutionary
computation can also be useful in dealing with other Big Data
preprocessing tasks [12], such as feature or instance selection. We will
also envision that our approach can be adapted to the streaming
environment where discretization schemes evolve over time, and
concept drifts might affect them [40].
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Appendix A. Detailed classification results on test

In this section, we present the detailed results (by execution) derived from test classification. Tables A.9, A.10, A.11, and A.12 show the acurracy
results for all datasets, whereas Tables A.13 and A.14 show the results on AUC for the two imbalanced problems used in the experiments
(ECBDL14R and susy).

Table A.9
Test accuracy obtained for ECBDL14R.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0.6923 0.696 0.6832 0.6757 0.7089 0.6912 0.0127

DEMD - 0.5 0.7172 0.7262 0.7434 0.7068 0.7137 0.7215 0.0141
DEMD - 1.0 0.7456 0.7619 0.7483 0.7587 0.7353 0.7500 0.0107

DMDLP 0.7272 – – – – 0.7272 0.0000

Table A.10
Test accuracy obtained for higgs.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0.6172 0.587 0.5926 0.5844 0.5987 0.5960 0.0131

DEMD - 0.5 0.5741 0.5891 0.5614 0.5884 0.5271 0.5680 0.0256
DEMD - 1.0 0.5249 0.5507 0.5705 0.5927 0.5762 0.5630 0.0261

DMDLP 0.5933 – – – – 0.5933 0.0000

Table A.11
Test accuracy obtained for epsilon.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0.6599 0.6871 0.6668 0.6737 0.6797 0.6734 0.0106

DEMD - 0.5 0.6679 0.6646 0.6837 0.6728 0.6870 0.6752 0.0098
DEMD - 1.0 0.6403 0.6839 0.681 0.6838 0.6698 0.6718 0.0185

DMDLP 0.7047 – – – – 0.7047 0.0000
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• S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak and F. Herrera, A survey on data
preprocessing for data stream mining: Current status and future directions. Neurocomputing
239 (2017) 39–57, doi: 10.1016/j.neucom.2017.01.078.

– Status: Published.

– Impact Factor (JCR 2016): 3.317.

– Subject Category: Computer Science, Artificial Intelligence. Ranking 24 / 133 (Q1).



Neurocomputing 239 (2017) 39–57 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

A survey on data preprocessing for data stream mining: Current status 

and future directions 

Sergio Ramírez-Gallego 

a , ∗, Bartosz Krawczyk 

b , Salvador García 

a , Michał Wo ́zniak 

c , 
Francisco Herrera 

a , d 

a Department of Computer Science and Artificial Intelligence, CITIC-UGR, University of Granada, Granada 18071, Spain 
b Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA 
c Department of Systems and Computer Networks, Wrocław University of Science and Technology, Wyb. Wyspia ́nskiego 27, Wrocław 50-370, Poland 
d Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia 

a r t i c l e i n f o 

Article history: 

Received 28 December 2016 

Revised 31 January 2017 

Accepted 31 January 2017 

Available online 14 February 2017 

Communicated by Zidong Wang 

Keywords: 

Data mining 

Data stream 

Concept drift 

Data preprocessing 

Data reduction 

Feature selection 

Instance selection 

Data discretization 

Online learning 

a b s t r a c t 

Data preprocessing and reduction have become essential techniques in current knowledge discovery sce- 

narios, dominated by increasingly large datasets. These methods aim at reducing the complexity inherent 

to real-world datasets, so that they can be easily processed by current data mining solutions. Advan- 

tages of such approaches include, among others, a faster and more precise learning process, and more 

understandable structure of raw data. However, in the context of data preprocessing techniques for data 

streams have a long road ahead of them, despite online learning is growing in importance thanks to the 

development of Internet and technologies for massive data collection. Throughout this survey, we sum- 

marize, categorize and analyze those contributions on data preprocessing that cope with streaming data. 

This work also takes into account the existing relationships between the different families of methods 

(feature and instance selection, and discretization). To enrich our study, we conduct thorough experi- 

ments using the most relevant contributions and present an analysis of their predictive performance, 

reduction rates, computational time, and memory usage. Finally, we offer general advices about existing 

data stream preprocessing algorithms, as well as discuss emerging future challenges to be faced in the 

domain of data stream preprocessing. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Data preprocessing [1,2] is one of the major phases within the 

knowledge discovery process. Despite being less known than other 

steps like data mining, data preprocessing actually very often in- 

volves more effort and time within the entire data analysis pro- 

cess ( > 50% of total effort) [3] . Raw data usually comes with many 

imperfections such as inconsistencies, missing values, noise and/or 

redundancies. Performance of subsequent learning algorithms will 

thus be undermined if they are presented with low-quality data. 

Thus by conducting proper preprocessing steps we are able to sig- 

nificantly influence the quality and reliability of subsequent auto- 

matic discoveries and decisions. 

Data preparation, as part of preprocessing [1] , is aimed at trans- 

forming raw input into high-quality one that properly fits the min- 
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ing process to follow. Preparation is considered as a mandatory 

step and it includes techniques such as integration, normalization, 

cleaning and transformation. 

Presently, the amount generated data is growing exponentially 

following the emergence of Big Data phenomenon [4,5] . Con- 

temporary datasets grow in three dimensions –features, examples 

and cardinality– making complexity reduction a mandatory step if 

standard algorithms are to be used. Data reduction techniques per- 

form this simplification by selecting and deleting redundant and 

noisy features and/or instances, or by discretizing complex contin- 

uous feature spaces. This allows to maintain the original structure 

and meaning of the input, but at the same time obtaining a much 

more manageable size. Faster training and improved generalization 

capabilities of learning algorithms, as well as better understand- 

ability and interpretability of results, are among the many benefits 

of data reduction. 

With the advent of Big Data comes not only an increase in the 

volume of data, but also the notion of its velocity. In many emerg- 

ing real-world problems we cannot assume that we will deal with 

a static set of instances. Instead, they may arrive continuously, 

http://dx.doi.org/10.1016/j.neucom.2017.01.078 
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leading to a potentially unbounded and ever-growing dataset. It 

will expand itself over time and new instances will arrive continu- 

ously in batches or one by one. Such problems are known as data 

streams [6] and pose many new challenges to data mining meth- 

ods. One must be able to constantly update the learning algorithm 

with new data, to work within time-constraints connected with 

the speed of arrival of instances, and to deal with memory limi- 

tations. Additionally, data streams may be non-stationary, leading 

to occurrences of the phenomenon called concept drift , where the 

statistical characteristics of the incoming data may change over the 

time. Thus, learning algorithms should take this into consideration 

and have adaptation skills that allow for online learning from new 

instances, but also for quick changes of underlying decision mech- 

anisms [7] . 

Despite the importance of data reduction, not many proposals 

in this domain may be found in the literature for online learning 

from data streams [8] . Most of methods are just incremental algo- 

rithms, originally designed to manage finite datasets. Direct adap- 

tation of static reduction techniques is not straightforward since 

most of techniques assume the whole training set is available from 

the beginning and properties of data do not change over time: 

• Most of static instance selectors require multiple passes over 

data, at the same time being mainly based on time-consuming 

neighbor searches that makes them useless for handling high- 

speed data streams [1] . 

• On the contrary, feature selection techniques are easily adapt- 

able to online scenarios. Yet, they suffer from other problems 

such as concept evolution or dynamic [9] and drifting [10] fea- 

ture space. 

• Online supervised discretization methods also remain fairly un- 

explored. Most of standard solutions require several iterations 

of sharp adjustments before getting a fully operating solu- 

tion [11] . 

Therefore, further development of data pre-processing tech- 

niques for data stream environments is thus a major concern for 

practitioners and scientists in data mining areas. 

This survey aims at a thorough enumeration, classification, and 

analysis of existing contributions for data stream preprocessing. Al- 

though there exist previous studies that have performed a coarse- 

grained analysis on some tasks individually (e.g., feature selection 

or instance selection) [12,13] , this work is a first deep overview of 

advances in this filed, additionally outlining vital future challenges 

that need to be addressed to ensure meaningful progress and de- 

velopment of novel methods. 

In addition to discussing the literature in preprocessing meth- 

ods for mining data streams, we propose a thorough experimental 

study to further enrich this survey. We have analyzed predictive, 

reduction, time and memory performance of selected most rele- 

vant algorithms in this field. Additionally, nonparametric statisti- 

cal tests are used to give support to the final conclusions. The dis- 

cussed experimental framework involves a total of 20 datasets and 

10 reduction methods: three feature selectors, three discretizers, 

and four instance selectors. 

The structure of this work is as follows. First, we present related 

concepts such as: data streaming and concept drift ( Section 2 ), and 

data reduction ( Section 3 ). Then online reduction contributions are 

grouped by task, and described in Section 4 . To assess performance 

and usefulness of methods, a thorough experimental framework is 

proposed in Section 5 , also grouped by task. Section 6 summarizes 

the lessons learned from this survey and experimental study, and 

discusses open challenges in data preprocessing for data stream 

mining, while Section 7 concludes this work. 

2. Data streams and concept drift 

Data stream is a potentially unbounded and ordered sequence 

of instances that arrive over time [14] . Therefore, it imposes spe- 

cific constraints on the learning system that cannot be fulfilled by 

canonical algorithms from this domain. Let us list the main differ- 

ences between static and streaming scenarios: 

• instances are not given beforehand, but become available se- 

quentially (one by one) or in the form of data chunks (block by 

block) as the stream progresses; 

• instances may arrive rapidly and with various time intervals be- 

tween each other; 

• streams are of potentially infinite size, thus it is impossible to 

store all of incoming data in the memory; 

• each instance may be only accessed a limited number of times 

(in specific cases only once) and then discarded to limit the 

memory and storage space usage; 

• instances must be processed within a limited amount of time 

to offer real-time responsiveness and avoid data queuing; 

• access to true class labels is limited due to high cost of label 

query for each incoming instance; 

• access to the true labels may be delayed as well, in many cases 

they are available after a long period, i.e., for credit approval 

could be 2–3 years; 

• statistical characteristics of instances arriving from the stream 

may be subject to changes over time. 

Let us assume that our stream consists of a set of states S = 

{S 1 , S 2 , . . . , S n }, where S i is generated by a distribution D i . By a 

stationary data stream we will consider a sequence of instances 

characterized by a transition S j → S j+1 , where D j = D j+1 . However, 

in most modern real-life problems the nature of data may evolve 

over time due to various conditions. This phenomenon is known as 

concept drift [7,15] and may be defined as changes in distributions 

and definitions of learned concepts over time. Presence of drift can 

affect the underlying properties of classes that the learning system 

aims to discover, thus reducing the relevance of used classifier as 

the change progresses. At some point the deterioration of the qual- 

ity of used model may be too significant to further consider it as 

a meaningful component. Therefore, methods for handling drifts in 

data streams are of crucial importance to this area of research. 

Let us now present shortly a taxonomy of concept drift. There 

are two main aspects that must be taken under consideration 

when analyzing the nature of changes taking place in the current 

state of any data stream: 

• Influence on the learned classification boundaries - here we 

distinguish two types of concept drift. A real concept drift af- 

fects the decision boundaries (posterior probabilities) and may 

impact unconditional probability density function, thus poses 

a threat to the learning system. A virtual concept drift does 

not impact the decision boundaries (posterior probabilities), 

but affect the conditional probability density functions, thus 

not influencing the currently used learning models. However, 

it should still be detected. Visualization of these drift types is 

presented in Fig. 1 . 

• Types of change - here we may distinguish three main types 

of concept drift taking into consideration its rapidness. Sudden 

concept drift is characterized by S j being rapidly replaced by 

S j+1 , where D j � = D j+1 . Gradual concept drift can be considered 

as a transition phase where examples in S j+1 are generated by 

a mixture of D j and D j+1 with their varying proportions. Incre- 

mental concept drift has a much slower ratio of changes, where 

the difference between D j and D j+1 is not so significant, usually 

not statistically significant. 

• We may also face with so-called Recurring concept drift, 

what means that a concept from k th previous iteration may 
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Fig. 1. Two main types of concept drift with respect to their influence over decision boundaries. 

Fig. 2. Six types of drifts with respect to the ratio of changes. Graphs show transitions between the concepts along during the data stream progress. 

reappear D j+1 = D j−k and it may happen once or periodically. 

Blips , also known as outliers which should be ignored as the 

change it represents is random [16] . Noise , which represents 

insignificant fluctuations of the concept and should be filtered 

out [17] . Mixed concept drift is a hybrid phenomenon, where 

more than a single type of concept drift may appear during the 

stream mining process. One should note that in real-life sce- 

narios types of changes to appear are unknown beforehand and 

must be determined during the stream processing. Visualization 

of these types of drifts are presented in Fig. 2 . 

• Minku et al. [18] proposed severity criterion which allows to 

distinguish between local and global drift. The local drifts 

mean that changes affects only the small region of the feature 

space, while global drift affects the overall feature space, what 

cause that it is easier detected than the local one [19] . Addition- 

ally, we may also face with so-called ”feature drift” [10] , where 

the changes affect only selected attributes. 

• Unfortunately, in real classification tasks concept drift may ap- 

pear as a mixture of mentioned above changes. 

As mentioned before, managing concept drift is a crucial issue 

in learning from data streams. Here we may use on of three so- 

lutions: (a) retrain classification system from scratch every time a 

new instance or chunk becomes available; (b) detecting changes 

and retraining classifier only when the degree of changes has been 

considered as significant enough; and (c) using adaptive learning 

method that can follow the shifts and drifts in stream on its own. 

Obviously, the first approach is characterized by an unacceptable 

computational cost and therefore two remaining solutions are used 

in this field. 

Let us now discuss four main approaches to efficiently tackling 

drifting data streams: 

• Concept drift detectors are external tools used together with 

the classification module. They measure various properties of 

data stream, such as standard deviation [20] , predictive error 

[21] , instance distribution [22] , or stability [23] . Any changes 

in these properties are attributed to the potential presence of 

drift and thus allow to monitor the continuous progress of 

data stream. Most of drift detectors work in a two-stage set- 

ting. A warning signal is emitted when the changes start to oc- 

cur, being a single to the learning system that a new classifier 

should be trained on the most recent instances. A detection sig- 

nal informs the learning system that current degree of changes 

is severe and the old classifier should be replaced by a new 

one. This solution is also known as explicit drift handling. One 

should notice that ensembles of detectors start to attract the 
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attention of research community, although there is still much 

work needed to be done in this area [24,25] . 

• Sliding windows assume that we keep a buffer of fixed size 

containing most recent examples [26] . They are used for the 

classification purposes and then discarded when new instances 

become available. This allows us to keep a track on the progress 

of data stream by storing its current state in the memory [27] . 

This is realized either by cutting-off oldest instances or weight- 

ing them dynamically according to their relevance [28] . How- 

ever, the size of the window has a crucial impact on its per- 

formance. A small window will be able to adjust to small and 

rapid changes, but may lose the general context of the analyzed 

problem and be prone to overfitting. A large window can effi- 

ciently store more information, but may contain instances orig- 

inating from different concepts. To solve this issue recent stud- 

ies focus on dynamically adapting size [29] or using multiple 

windows at the same time [30] . One should notice that a prop- 

erly set sliding window will be able to adjust to changes in the 

stream. This is known as implicit drift handling. 

• Online learners are updated instance by instance, thus accom- 

modating changes in stream as soon as they occur. Such models 

must fulfill a set of requirements [31] : each object must be pro- 

cessed only once in the course of training, computational com- 

plexity of handling each instance must be as small as possible, 

and its accuracy should not be lower than that of a classifier 

trained on batch data collected up to the given time. One must 

notice that a set of standard classification algorithms may work 

in online mode, e.g., Neural Networks [32] or Naïve Bayes. How- 

ever, there exist a plethora of methods modified to provide ef- 

ficient online mode of operation [33,34] . These methods also 

offer im plicit drift handling. 

• Ensemble learners are a popular family of methods for data 

stream mining [35,36] . Due to their compound structure they 

can easily accommodate changes in the stream, offering gains 

in both flexibility and predictive power. Two main approaches 

here assume a changing line-up of the ensemble [37–39] or 

updating base classifiers [40,41] . In the former solution a new 

classifier is being trained on recently arrived data (usually col- 

lected in a form of chunk) and added to the ensemble. Prun- 

ing is used to control the size of the committee and remove 

irrelevant or oldest models. A weighting scheme allows to as- 

sign highest importance to newest ensemble components, al- 

though more sophisticated solutions allow to increase weights 

of classifiers that are recently best-performing. Here one can 

use static classifier, as the dynamic line-up keeps a track of 

stream progress. Latter solutions assume that a fixed-size en- 

semble is kept, but update each component when new data be- 

come available. Here managing the diversity of the ensemble is 

crucial for achieving good predictive power [42] . Additionally, 

ensembles must consist of classifiers working in incremental or 

online modes. There also exist hybrid approaches that combine 

both of these solutions within the ensemble structure [43,44] . 

Proper experiment design and evaluation of the examined al- 

gorithms is a key issue in machine learning domain. One need an 

unbiased, fair and repeatable way of comparing tested algorithms 

that will allow to shed lights on their strength and weaknesses, at 

the same time leading to valuable conclusions towards better un- 

derstanding of used methods. We may evaluate certain method to 

assess some of our hypothesis about it, or to check its usability for 

a particular real-life application. Before starting any computations 

one must reasonably state goals of the experiment to be under- 

taken, choose relevant datasets, select proper metrics that will re- 

flect the nature of examined data and establish a correct procedure 

for learning and comparing different models. This issue has been 

well-discussed in static scenarios and there exist a number of gen- 

erally accepted procedures to be undertaken [45] . In the context 

of data stream mining, especially in non-stationary environments, 

canonical metrics and procedures become no longer applicable. We 

deal with massive, continuously incoming and evolving data that 

requires updating the learning model and adjusting to shifts and 

drifts. New classes may appear, feature space change and decision 

rules loose relevance over time. Additionally, canonical metrics for 

measuring the quality of learning process are not sufficient to per- 

form a meaningful evaluation of models [46] . Let us discuss the 

correct metrics to be used for algorithms applied to data stream 

mining. One must understand that good algorithm must aim to 

strike a balance among all of these criteria. 

• Predictive power is an obvious criterion measured in all learn- 

ing systems. However, in data stream mining we must accom- 

modate the fact that the relevance of instances diminishes over 

time. Therefore, simply using any averaged measure does not 

reflect how the learning system was able to adapt and react 

to changes in the stream and constant increase in the number 

of processed instances. Therefore, one needs to use prequential 

metrics that are calculated only over the most recent examples 

with a forgetting mechanism embedded. Prequential accuracy 

[47] and prequential area under the Receiver Operating Charac- 

teristics curve (AUC) [48] are the two most widely used ones. 

• Memory consumption is a necessary criterion due to the hard- 

ware limitations during processing potentially unbounded data 

stream [49] . Not only the average memory usage should be 

taken under consideration, but also how it changes over time 

and with specific actions made by each algorithm. 

• Recovery time informs us how much time an algorithm needs 

to accommodate new instances and update its structure. This 

is a crucial measure that can be a bottleneck of many methods. 

Assuming that new instances arrive rapidly, a good stream min- 

ing algorithm should be able to process instances before new 

ones will arrive to avoid queuing [50] . 

• Decision time is another time-complexity measure used. Here 

we are interested how long certain algorithms need to make 

a prediction for each new instance. As recognition phase usu- 

ally precedes the update phase, it may be another bottleneck 

for the system. Additionally, in many applications we require a 

real-time response and cannot allow for a delay when speed is 

decision speed is vital [51] . 

• Requirement for true class labels can strongly limit the real- 

life applicability of many data stream mining algorithms. Many 

works on supervised learning in streaming scenarios assume 

that class labels become available soon after the instance was 

being classified by the system, or arrive with some delay. How- 

ever, the costs of labeling the entire data stream are far from 

realistic and thus we must deal with limited availability of true 

class labels. It is useful to examine the influence of available 

budget (number of labeled samples) on the effectiveness of 

algorithms. Active learning strategies allow to select only the 

most relevant samples for labeling [52,53] . Semi-supervised and 

unsupervised methods for both classification [54,55] and drift 

detection [56,57] are also of interest in order to cope with this 

issue. 

3. Data reduction 

Data reduction [2] is an important preprocessing step in data 

mining, as we aim at obtaining accurate, fast and adaptable model 

that at the same time is characterized by low computational 

complexity in order to quickly respond to incoming objects and 

changes. Therefore, dynamically reducing the complexity of the in- 

coming data is crucial to obtain such models. Additionally, due 

to the presence of concept drift the number and relevance of 
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instances and features may change over time. This must also be 

taken into consideration while maintaining and updating an online 

model. Let us now discuss the main areas in data preprocessing for 

reducing the complexity of data. 

• Dimensionality reduction : There exist a wide range of tech- 

niques in the literature that aim at reducing the number of 

features, among others: Feature Selection (FS), Feature Extrac- 

tion (FE) or locality preserving projection [58–60] . In this pa- 

per, we focus on FS and FE techniques. FS [61] eliminates irrel- 

evant or redundant features/columns, whereas Feature Extrac- 

tion (FE) generates a simpler feature space through transforma- 

tions of the original one. The aim here is to yield a minimum 

set of features so that the subsequent distribution probability of 

classes remains as unchanged as possible. As FS maintains the 

original features, it is more convenient for model interpretation. 

Depending on the relationship between the selector and the 

predictive algorithms, we can classify FS algorithms into three 

categories: filters, which act before the learning process, being 

independent from it; wrappers, which use the specified learn- 

ing algorithm to evaluate subgroups of features; and embedded, 

where the search is a part of the learning process itself. Wrap- 

pers methods tend to be more accurate than filters, but more 

complex. Embedded methods are less costly than wrappers, but 

require direct modifications of the learning procedure. 

• Instance reduction : Instance Selection (IS) or Instance Gener- 

ation (IG) [62] . IS is aimed at reducing the number of train- 

ing instances by selecting the most representative examples. IG 

methods can generate new instances to fill the gaps in concept 

definitions. IS differs from data sampling in that the former 

categorizes instances depending on the problem, whereas sam- 

pling is more stochastic. Based upon the kind of search imple- 

mented by the IS algorithms, they can be classified into three 

categories: condensation, which removes redundant points far 

from the borders; edition, which removes noisy points close to 

the class boundaries; or hybrid, which combines both noise and 

redundancy removal. 

• Feature space simplification : Normalization, Discretization, 

and etc. Discretization [63] summarizes a set of continuous 

values into a finite set of discrete intervals. This process re- 

turns nominal features that can be used by any mining pro- 

cess. Although most of mining algorithms work with continu- 

ous data, many of them can only cope with nominal features, 

specially those based on statistical and information measures 

(e.g.: Naïve Bayes (NB)) [64] . Other algorithms, like tree-based 

classifiers [65] , generate more accurate and compact results 

when using discrete values. Good discretizers try to achieve the 

best predictive performance derived from discrete data, while 

reducing the number intervals as much as possible [66,67] . We 

can distinguish two main categories, based upon how intervals 

are generated by discretizers: splitting methods, which split the 

most promising interval in each iteration into two partitions; 

and merging methods, which merge the best two adjacent in- 

tervals in each iteration. 

4. Data reduction on data streams 

In streaming scenarios reduction techniques are demanded to 

preferably process elements online or in batch-mode as quick as 

possible and without making any assumptions about data distri- 

bution in advance. In the next sections, we describe those re- 

duction proposals that were tailored for mining data streams. 

These methods are grouped by family/task: dimensionality reduc- 

tion ( Section 4.1 ), instance reduction ( Section 4.2 ), and feature 

space simplification ( Section 4.3 ). 

4.1. Dimensionality reduction 

Many FS algorithms for data streams have been proposed in 

the literature. Most of them are naturally incremental algorithms 

designed for offline processing [1] , whereas others are specifically 

thought to cope with flowing streams [12] . All FS methods can be 

divided into three groups: filters, wrappers, and hybrid; according 

to when selection is performed: before and independently to the 

learning step, or tightly coupled with it. 

Most of online selectors proposed in the literature are incre- 

mental adaptations of offline filters. As these filters rely on cumu- 

lative functions (mainly based on information or statistical mea- 

sures), these are easily adaptable to the online environment. De- 

spite being simple, online filters seems to adapt well to drifts, and 

do not need to ingest all data at once like their offline counter- 

parts. Furthermore, online methods usually face problems derived 

from streams that cannot be addressed by offline methods, like the 

arrival of new features or classes. 

Focusing on online FS, further distinctions can be made de- 

pending on the properties of streams. Some FS methods suppose 

that features arrive one-by-one ( streaming features ) while feature 

vectors are initially available [68,69] ; whereas others assume that 

the instances always arrive sequentially, and the feature set may be 

subject to potential changes [70] ( online FS ). New classes can also 

emerge from streams without previous knowledge (concept evolu- 

tion), requiring a complete redefinition of the used model. In data 

stream mining, feature space can also be affected by changes in 

data distribution. Feature drifts occur whenever the relevance of a 

given attribute changes over time when new instances arrive to the 

system [71] . As in other concept drifts, changes in relevance en- 

force algorithms to discard or adapt the model already learned by 

removing the most irrelevant features in the new scenario [72] , as 

well as including the most relevant ones ( dynamic FS ). As changes 

in relevance directly affect the decision boundaries, feature drift 

can be seen as a specific type of real concept drift. 

As the set of selected features evolves over time, it is likely that 

the feature space in test instances differs from the current selec- 

tion. Therefore, when a new instance is being classified, we need 

to perform a conversion between feature spaces for homogeniza- 

tion purposes [9] . The types of conversion to consider are the fol- 

lowing: 

• Lossy Fixed (Lossy-F): the same feature set is used for the 

whole stream. It is generated from the first batch. All the fol- 

lowing instances (training and test) will be mapped to this set, 

resulting in a clear loss in future information. 

• Lossy Local (Lossy-L): a different feature space is used for each 

new training batch. Test instances are thus mapped to the 

training space in each iteration. This conversion is also trou- 

blesome because relevant features in test may be omitted. 

• Lossless Homogenizing (Lossless): Lossless is similar to the pre- 

vious conversion, except that the feature space in the test set is 

being considered here. There exist a homogenization between 

spaces, for example, by unifying both spaces and padding with 

zeros any missing feature in the other set. This conversion re- 

sults in using all current and previous information, so it can be 

seen as the best option. 

In this paper, we will focus on online techniques that allow the 

arrival of new instances and features at the same time, because 

they represent a scenario present in real-world problems. Let us 

now present a list formed by the most relevant algorithms on this 

topic: 

• Katakis et al. [70] was among the first to introduce the prob- 

lem of dynamic feature space in data streams. They proposed a 

technique that includes a feature ranking (filter) method to se- 

lect relevant features. As the importance score of each feature 
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can be measured using many cumulative functions like Infor- 

mation Gain (IG), χ2 or mutual information, it can be seen as 

a versatile solution for online feature ranking. 

• Carvalho et al. [73] proposed Extremal Feature Selection (EFS), 

an online FS method that uses the weights computed by an on- 

line classifier (Modified Balanced Winnow) to measure the rel- 

evance of features. The score is computed as the absolute dif- 

ference between the positive and negative weights for each fea- 

ture. 

• Masud et al. [9] proposed a streaming classification technique 

(DXMiner), which uses the deviation weight measure to rank 

features during the classification phase. Furthermore, DXMiner 

naturally address the problem of novel classes (concept- 

evolution) by building a decision boundary around the train- 

ing data. In contrast to previous methods, DXMiner uses loss- 

less conversion, which is useful for novelty detection. To rank 

features in the test space, DXMiner uses a unsupervised tech- 

nique (e.g., the highest frequency in the batch) that selects fea- 

tures more representative for incoming concepts. Note that this 

requires a batch-mode setting to compute such statistics. 

• Nguyen et al. [72] designed an ensemble technique based on 

windowing to detect feature drifts. The algorithm is based on 

a ensemble of classifiers, where each classifier has its own fea- 

ture set. If a drift is detected, the ensemble is updated with a 

new classifier together with a new feature subset; otherwise, 

each classifier is updated accordingly. Fast Correlation-Based 

Filter (FCBF) based on Symmetrical Uncertainty is being used 

here. FCBF heuristically applies a backward technique with a 

sequential search strategy to remove irrelevant and redundant 

features. 

• In [74] , authors propose an algorithm to mine recurring con- 

cepts (called MReC-DFS). Here, they adopt the same selection 

solution proposed in [70] . Hover, instead of selecting a fixed 

number of features, they propose to use either a fixed thresh- 

old or an adaptive one based on percentiles. They also compare 

the effects of using different space conversions [9] (like Lossy-F, 

Lossy-L or Lossless). 

• Wu et al. [75] proposed two approaches for handling streams 

with growth of feature volumes over time, named Online 

Streaming Feature Selection (OSFS) and Fast Online Streaming 

Feature Selection (Fast-OSFS). They are based on a two-phase 

optimal subset discovery scheme: online analysis of relevance 

and then redundancy. Class-based relevance is used to select or 

discard a new feature. Then a new and extended feature set 

is analyzed to detect if there exist a subset of features that 

may make one of the used features and class variable condi- 

tionally independent. If yes, then such a feature is discarded. 

This allows to to control the expansion of the feature space. 

In Fast-OSFS the redundancy analysis is divided into two parts. 

Firstly a redundancy of new feature is being checked, in order 

to decide if this feature should be selected. Only if new feature 

was included, the redundancy of previous features is being ana- 

lyzed. This leads to a significant computational speed-up of this 

method. 

• Wang et al. [76,77] proposed a greedy online FS method (called 

OFS) based on a classical technique that makes a trade-off be- 

tween exploration and exploitation of features. The algorithm 

spends ε iterations on exploration by randomly choosing N at- 

tributes from the whole set of attributes, and the remaining 

steps on exploitation by choosing the N attributes for which 

the linear classifier has nonzero values. In this work, no feature 

drift is addressed explicitly, and no comparison with previous 

works is performed. 

• An online feature selection method based on group structure 

analysis was proposed in [78] . This work was based on assump- 

tion that features may arrive in specific groups, like textures, 

colors etc. Authors proposed Online Group Feature Selection 

(OFGS) algorithm that utilized intra-group and inter-group cri- 

teria. The former criterion used spectral analysis to select dis- 

criminative features in each group. The latter one applied linear 

regression model to chose an optimal subset of from all pre- 

selected features. It is worth noticing that a similar problem 

was discussed by Li et al. [79] . 

Table 1 details the type of selection and space conversion per- 

formed by each algorithm. Two remarkable selection strategies 

emerges from this summary: one based on information filtering 

and another based on the use of classifier weights (wrapper). 

Apart from the previously mentioned most relevant algorithms 

there exist a number of other online and streaming feature selec- 

tion proposals in the literature. Let us now discuss them shortly. 

Yan et al. [80] proposed simultaneous feature extraction and selec- 

tion using orthogonal centroid algorithm. Tadeuchi et al. [81] pro- 

posed a quick online feature selection that used filters to gen- 

erate several potential subsets and a wrapper to chose the best 

one from them. Authors speculated that this solution should be 

able to handle concept drift appearance. Cai et al. [82] proposed 

to use l 1-norm regularization for continuous variable selection. 

Similar approach was used by Ooi and Ninomiya, however they 

had employed a regularized regression for this task [83] . Fan and 

Bouguila [84,85] presented a combination of clustering based on 

a Dirichlet process mixture of generalized Dirichlet distributions 

and unsupervised feature selection in incremental learning sce- 

narios. Amayri and Bouguila [86] discussed similar combination of 

group discovery and feature reduction using finite mixtures of von 

Mises distributions, while Yao and Liu [87] combined online selec- 

tion with density estimation. A problem of online feature selection 

for multi-task learning was discussed in [88] . The issue of scalabil- 

ity of the discussed family of models for big data mining was ad- 

dressed in [89] . Roy [90] discussed how to use ensemble of Koho- 

nen neurons for choosing features from high-dimensional streams. 

Recently, Yang et al. [91] introduced a parallel method using lim- 

ited memory, while Hammoodi et al. [92] discussed a concept drift 

detection approach using only selected features. Extension of OSFS 

Table 1 

Summary description of streaming FS methods. Information about the type of selector (wrapper or filter), the feature conversion 

accomplished (if appropriate), and whether concept-evolution appears, is presented below. 

Method Selection type (measure) Streaming features (conversion) Concept-evolution 

Katakis’ method [70] Filter (IG, χ2 , etc.) no (Lossy-F) no 

EFS [73] Wrapper (online classifier’s weights) no (Lossy-F) no 

DXMiner [9] Filter (deviation weight) + unsupervised yes (Lossless) yes 

HEFT-Stream [72] Filter (SU) no (Lossy-F) no 

MReC-DFS [74] Filter (IG, χ2 , etc.) yes (all) no 

OSFS / Fast-OSF [75] Filter (relevance and redundancy) no (Lossy-F) no 

OFS [77] Wrapper (online classifier’s weights) no (Lossy-F) no 

OFGS [78] Filter (spectral clustering and regression) no (Lossy-F) no 
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method using rough set approach for data streams was analyzed 

in [93] , while a combination of online discretization with feature 

selection for neural networks was depicted in [94] . 

One may view a video sequence as a stream of images and 

in this domain online feature selection has also been explored in 

order to handle dynamic object detection. Yeh et al. [95] intro- 

duced an online Boosting-based feature selection, where new fea- 

tures were selected one at a time to compensate for changes in the 

background. Yang et al. [96] described an online Fisher discrimi- 

nation boosting feature selection mechanism for real-time visual 

tracking. 

Finally, it is worthwhile to mention work by Yu et al. [97] , 

where authors implemented several popular online feature selec- 

tion methods and created an open software package for Matlab. 

Besides FS, dimensionality reduction can be accomplished 

through an artificial mapping between the original space of fea- 

tures and a new space of fewer dimensions. Feature extraction 

techniques, although less popular than FS ones, have shown their 

ability in many predictive problems. One of the most important 

contributions here is Principal Component Analysis (PCA) [98] . 

In [99] , two online gradient-based versions of PCA are studied in 

depth. The aim of previous work is to obtain an online model with 

the lowest difference in cumulative losses with respect to the best 

offline alternative. A novel analysis of theorethical properties of 

Oja’s streaming PCA was discussed in [100] . Although optimal, on- 

line PCA is not able to update projections in less than O ( n 3 ) per 

iteration [101] . Thus more efficient techniques needs to be devel- 

oped in the future if we want a real streaming solution in fea- 

ture extraction. So far it is worth mentioning streaming versions 

of kernel PCA proposed by Joseph et al. [102] and by Ghashami 

et al. [103] . Additionally, PCA was successfully applied for concept 

drift detection in non-stationary data streams by Kuncheva and 

Faithfull [104] , as well as by Qahtan et al. [105] . One must no- 

tice that feature extraction from data streams is not only limited 

to PCA and other works, although few in numbers, exist. Allahyar 

and Yazdi [106] described Online Discriminative Component Anal- 

ysis for continuous computation of Linear Discriminant Analysis. 

Sheikholeslami et al. [107] proposed a kernel-based feature extrac- 

tion for mining streams with limited computational resources. Li 

et al. [108] introduced canonical correlation analysis with uncer- 

tainty suitable for multi-view classification of data streams. 

4.2. Instance reduction 

Lazy learning has been broadly used in predictive analyt- 

ics [109] . Yet, case-bases naturally deteriorate and grow in size 

over time. In data stream scenario, past preserved cases that be- 

long to a previous concept may degrade the performance of the 

learner if a new concept appears. Likewise, new instances that rep- 

resent a new concept may be classified as noise and removed by a 

misbehavior of the IS mechanism, because they disagree with past 

concepts [13] . 

Some enhancement ( edition ) and maintenance ( condensa- 

tion ) [1] should be thus performed on case-bases in form of so- 

phisticated IS processes, which select those cases that best repre- 

sent the current state of the data stream. However, most of cur- 

rent techniques are designed for stationary environments and ig- 

nore the concept drift phenomenon. Firstly, we present a subset of 

IS techniques that incrementally or in a batch way select instances 

from a case-base [110] : 

• Instance-Based learning Algorithm 3 (IB3) [111] is one of the 

first attempts to deal with non-stationary nature of data. It is 

based on accuracy and retrieval frequency measures. By means 

of a confidence interval test, IB3 decides whether a case should 

be added to the case-base or it needs to wait until its insertion 

is marked as appropriate. Removal of cases is performed when- 

ever the accuracy of a case is below (in a certain degree) its 

class frequency. Due to IB3 defers the inclusion of examples, it 

is only suitable for gradual concept drift. 

• The Locally Weighted Forgetting (LWF) algorithm [112] is an 

instance weighting technique based on k-nearest neighbors 

(kNN). In LWF, those cases with a weight below a threshold 

are removed. LWF algorithm has been criticized by its lower 

asymptotic classification in static environments and by its ten- 

dency to overfitting [113] . This method has shown good perfor- 

mance for both gradual and sudden concept drifts. 

• Salganicoff [114] designed the Prediction Error Context Switch- 

ing (PECS) algorithm, which is designed to work in both dy- 

namic and static environments. PECS algorithm is based on the 

same measures used by IB3, also adopting the same confidence 

test. In order to introduce time dimension in its decisions, PECS 

only consider the newest predictions in its computations. Fur- 

thermore PECS immediately add new cases to the base to expe- 

dite the slow adaptation process. PECS disables cases instead of 

permanently deleting them. Those cases can be re-introduced if 

their may once again contribute towards improved accuracy. It 

is argued in [115] that PECS holds high memory requirements 

and a slow removal process, as new instances are retained right 

after they arrive. 

• Iterative Case Filtering Algorithm (ICF) [116] is a redundancy re- 

moval technique that discards those instances with a coverage 

set size smaller than its reachability set. Authors included Re- 

peated Edited-NN [117] to remove the noise around the borders. 

Although there exist more complex proposals in the litera- 

ture [110] , the previous list includes those methods that have 

served as a keystone for further developments in IS for concept 

drift [13] . The next list deal with those techniques that explicitly 

address concept drift: 

• Delany et al. [118] proposed a drift control mechanism with 

two levels, called Competence-Based Editing (CBE). In the first 

level, an hybrid of two competence-based editing methods 1 : 

Blame Based Noise Removal (BBNR) and Conservative Redun- 

dancy Reduction (CRR), is launched. BBNR is aimed at deleting 

those cases whose removal do not imply coverage loss, whereas 

CRR selects misclassified cases with the smallest coverage. Note 

that both methods are designed for stationary environments, 

which can cause some problems like the removal of novel con- 

cepts when gradual drift appears, or forgetting of small groups 

of cases where examples covers each other but misclassifies all 

the surrounding neighbors. BBNR do not keep the competence 

model up-to-date, it only rebuild the model in the second level. 

An outdated competence model may yield inconsistencies dur- 

ing the evaluation phase as the model does not accurately re- 

flect the current concept. 

• Instance-Based Learning on Data Streams (IBL-DS) [115] , and 

IBLStreams [120] are presented as the first solutions that deem 

both time and space factors to control the shape and size of 

the case-base. In both algorithms, every neighbor in a test 

range is removed if the class of new instance is dominant 

in this range. IBL-DS also introduces an explicit drift detec- 

tion method developed by Gama [20] , which determines when 

to remove a fixed number of instances considering space and 

time. Number of removals is computed considering the min- 

imum error rate and the aggregated error of last predictions. 

Both algorithms control the size of the case-base by removing 

the oldest instances. However the time-based removal strategy 

1 Basic concepts about competence models can be reviewed in [119] 
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Table 2 

Summary description of streaming IS methods. Information about the selection measure, whether 

drift detection is used or not, and the type of selection is shown here. 

Method Selection type Drift detection Edition/Condensation 

IB3 [111] Case accuracy no yes/no 

LWF [112] Instance weighting no yes/no 

PECS [114] Case accuracy no yes/no 

ICF [116] Competence no yes/yes 

CBE [118] Competence no yes/yes 

IBL-DS [115] Time-space distance yes yes/yes 

FISH [121] Time-space distance no yes/yes 

AES [122] Bio-inspired yes no/yes 

COMPOSE [123] Geometry no no/yes 

SimC [124] Time-space distance/case accuracy no yes/yes 

NEFCS-SRR [13] Competence & case accuracy yes yes/yes 

implemented by them has been criticized because some old, yet 

still relevant instances may be eliminated in this process. 

• FISH algorithms [121] are also based on a combination of time 

and space, in this case, computed as distances. The idea behind 

these algorithms is to dynamically select the most relevant ex- 

amples, which will serve as training for next model. Three dif- 

ferent versions of FISH were proposed. In FISH1, the training 

size is fixed at the start. FISH2 selects the best training size 

according to the accuracy (through leave-one-out cross valida- 

tion). FISH3 also weights time and space by using a different 

loop of cross validation. FISH2 is considered as the leader of the 

family. FISH represents a time-consuming option since it stores 

all seen examples in order to compute space/time distances. 

• Zhao et al. [122] present a new nearest neighbor algorithm for 

data streaming, based on an artificial endocrine system; called 

AES. This system removes the necessity of a complete case- 

base as in previous models, replacing case-base by represen- 

tative cells. A condensation-based process is also a key feature 

in AES. The algorithm maintains only K boundary prototypes or 

cells. These prototypes keep moving during the whole process 

in order to adapt concept boundaries to incoming drifts. 

• COMPOSE [123] is a geometry-based framework for semi- 

supervised learning and active learning. The idea behind COM- 

POSE is to label incoming instances through a semi-supervised 

approach, and then to create and select those α-shapes that 

better model the current state. This selection is, in fact, a com- 

paction process that maintains only those shapes/prototypes 

more representatives for the current state. COMPOSE is mainly 

designed to address gradual drifts. 

• SimC [124] aims at creating groups of instances for each class 

so that each one represents a different region of the space. 

Noisy and old examples are removed by selecting and discard- 

ing the least relevant example in the oldest group. As concept 

drift appears, the algorithm creates new groups to allocate ex- 

amples that represents new concepts. Relevance in groups is 

measured by using space distances and their ages. For individ- 

ual instances, the precision using the nearest rule is employed. 

• Lu et al. [13] propose a case-base editing technique based on 

competence preservation and enhancement [119] . Their solu- 

tion consists of three stages: the first one compares the dis- 

tribution between two windows in order to detect if there is 

a drift or not. Apart from detecting the drift, this method also 

limits the area where the distribution changes most. After that 

the Noise-Enhanced Fast Context Switch (NEFCS) method is ap- 

plied. NEFCS examines all new cases and determines whether 

there is noise or not (enhancement). However only the noisy 

cases that lie outside the detected competence areas are re- 

moved, because they may be part of novel concepts. Stepwise 

Redundancy Removal (SRR) method is aimed at controlling the 

size of the case-base (preservation). SRR removes redundant ex- 

amples recursively until the case-bases’ coverage starts to dete- 

riorate. 

Table 2 lists the most relevant instance selectors for drifting 

streams. We can draw three major types of selection from this 

table: competence-based, weighting-based, and accuracy-based. 

Competence-based methods (like CBE or ICF) tend to be more ac- 

curate but time-consuming, because they require a constant up- 

date of the competence model. Distance-based selection strategies 

can require even more time than competence-based models, when 

the number of distances and/or the features involved are high. 

Accuracy-based methods have difficulties in identifying noisy ex- 

amples coming during drifts. Finally, feature weighting techniques 

tends to over-fit data and to perform worse than instance selectors 

according to [113] . 

Another relevant topic to be considered when electing instance 

selectors is whether enhancement and/or maintenance tasks are 

applied or not. Competence-based methods usually consists of two 

techniques, one for noise removal and another for redundancy. Re- 

dundancy is mainly ignored in accuracy-based techniques since 

most of them select instances according to the number incorrect 

predictions committed by each one. Distance-based algorithms im- 

plicitly removes redundancy through the space factor in the dis- 

tance formula. 

4.3. Feature space simplification 

Discretization algorithms for data stream scenarios must also 

be able to handle the appearance of concept drifts. Definition and 

number of discretization intervals may change over time, follow- 

ing shifts in data characteristics. Therefore, it is desirable that dis- 

cretization intervals are able to smoothly adapt to concept drift, 

without imposing increased computational cost when being recal- 

culated. 

Equal-frequency discretization (based on histograms) can be 

considered as one of the first techniques in dealing with incre- 

mental discretization. By using quantiles as cut points, the feature 

space can be partitioned in equal-frequency intervals. Estimation 

of quantiles in streams have been studied in depth in the litera- 

ture, in approximate [11,125] and exact [126,127] forms. One of the 

agilest and most effective discretization alternatives is Incremen- 

tal Discretization Algorithm (IDA) [11] . IDA approximates quantiles 

through the maintenance of a reservoir sample of the input stream. 

Intervals here are structured using interval heaps, an efficient data 

structure that allows to insert and delete elements in O ( log ( n )), and 

to retrieve the maximum and minimum (the interval boundaries) 

in constant time. As in most of cases it is not feasible to maintain 

a complete record of all data, approximative solutions have shown 

much more suitable for processing high-throughput streams than 

exact solutions. 
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Other techniques based on frequency has relied on establishing 

size thresholds assigned bins to cope with evolving discretization. 

Lu et al. [128] presented the Incremental Flexible Frequency Dis- 

cretization (IFFD) algorithm. IFFD defines a range instead of a strict 

number of quantiles. If the updated intervals’ frequency reaches 

the maximum and the resulting frequencies are not below the 

minimum (in order to prevent a high classification variance), IFFD 

splits the interval into two partitions. 

Equal-width discretizer is another unsupervised approach that 

only requires as input the range of features and the number of 

splitting intervals. However, the main drawback here is that both 

approaches require streamed records arriving in random order, 

which is impossible in many learning problems. 

Another important requirement to be considered is that some 

incremental algorithms require to maintain the same set of cut 

points (number, structure and meaning) over time [11] . That is 

the case of the most discriminative learning algorithms. Here us- 

age of either an equal-width or an equal-frequency discretizer is 

suggested, as both of them define the number of bins in advance. 

Other static algorithms (e.g.: NB) does not require the preservation 

of intervals during subsequent predictive phases, but only to save 

some statistics for the current discretization step. However, gen- 

eralization capabilities of such classifiers are still affected by such 

displacements in definitions, specially if they are sharp. 

According to [129] , one of the main problems of unsupervised 

discretizers is the necessity of defining the number of intervals in 

advance. Such decision can be assisted by some pre-defined rules 

(e.g., Sturges’ rule) or by an exploratory analysis process. How- 

ever, exploratory analysis is no longer possible in the present days 

where the number of instances is too large and pre-defined rules 

have shown to work only with small-sized datasets. However, un- 

supervised discretizers are naturally designed for streaming envi- 

ronments since the number of intervals remains invariant. 

Most of supervised approaches tend to perform several merges 

and splits before obtaining a functional final scheme. Abrupt 

changes in intervals’ definition may negatively influence the online 

learning process. Therefore, methods should strive for a smoother 

transitions. We present a short list of supervised discretization ap- 

proaches: 

• Gama et al. [129] presented the Partition Incremental Dis- 

cretization algorithm (PiD), consisting of two layers. The first 

one summarizes data and creates the preliminary intervals, 

which will be optimized in the next layer. An equal-width strat- 

egy can be used to initialize this step. Then the first layer is up- 

dated through a splitting process whenever the number of ele- 

ments in an interval is above a pre-defined threshold. The sec- 

ond layer performs a merging process over the previous phase 

in order to yield the final discretization scheme. Any discretizer 

can be used in the second layer, since the intervals generated 

in the previous phase are used as inputs. Minimum Descrip- 

tion Length Discretizer is used as reference in the original pa- 

per. However, there are three main reasons for criticism of PiD 

approach. Firstly, there is no exact correspondence between the 

first layer and the second one, which produces inaccuracies that 

will chain and increase over time. Secondly, if the distribution 

of data is highly skewed, the number of intervals generated will 

dramatically increase, due to frequency overflowing. Finally, the 

splitting process may become even more inaccurate if many 

repetitions of a single value appear. In this case such a cut point 

might be generated that divides instances with the same fea- 

ture values into two different bins, leading to inconsistencies. 

• In [130] an online version of ChiMerge (OC), which maintains 

the O( nlog ( n )) time complexity held by the original algorithm, 

is proposed. In order to guarantee equal discretization results, 

authors implement an online approach based on sliding win- 

Table 3 

Summary description of streaming discretization meth- 

ods. Information about the name and type of discretiza- 

tion strategy is shown here. 

Method Discretization strategy 

PiD [129] Binning & information (split & merge) 

OC [130] Statistical (merge) 

dows. Several data structures are being used to emulate the 

same behavior held by the original version. Despite of the great 

effectiveness claimed by the authors, a high increase in the 

memory usage derived from the set of data structures is dis- 

played by this online version. This fact may prevent from its us- 

age in some data stream scenarios with limited computational 

resources. 

A brief classification about streaming discretizers is given 

in Table 3 . Two alternatives representing different discretiza- 

tion types [1] are shown here. Classification is performed 

according to two factors: evaluation measures (statisti- 

cal/binning/information/others) and the type of interval generation 

(merging/splitting intervals). The most important lesson here 

is that there is no wrapper online discretization solution. An 

approach that generate intervals by means of an online classifier 

weights, as proposed before by some feature selectors, would be 

highly suitable for this task. A wrapper approach could even solve 

the problem of displacements in intervals’ definitions due to the 

closer relationship between the classifier and discretizer. 

5. Experiments 

In this section, we evaluate the usefulness and performance of 

the data preprocessing algorithms for mining data streams from 

different perspectives: 

• Effectiveness: measured as the number of correctly classified 

instances divided by the total number of instances in the train- 

ing set (accuracy). It can be considered as the most relevant 

factor in measuring usefulness of proposals. 

• Time and memory performance: measured as the total time 

spent by the algorithm in the reduction/discretization phase. 

Usually performed before the learning phase, although some- 

times it runs simultaneously to the prediction phase. Addition- 

ally, memory usage for the preprocessing step is being mea- 

sured to show the resource consumption displayed by each 

tested method. 

• Reduction rate: measured as the amount of reduction accom- 

plished with respect to the original set (in percentage). For se- 

lection methods, it is related to the number of rows/columns 

removed, whereas for discretization, it is related to the degree 

of simplification of the feature space. 

The experimental framework is defined in Section 5.1 . Here, the 

list of datasets and methods, and other considerations are pre- 

sented. The results and discussion of examined algorithms are pre- 

sented with respect to the type of task being performed. Each 

task requires different settings due to its specific characteristics, 

which will be explained in each section. The order is as follows: 

FS ( Section 4.1 ), IS ( Section 4.2 ), and discretization ( Section 4.3 ). 

5.1. Experimental framework: datasets, methods and parameters 

Table 4 shows the complete list of artificial and real datasets 

used in our experiments to evaluate the reduction techniques. Ar- 

tificial datasets have been generated using Massive Online Analysis 

(MOA) benchmark [131] , providing a wide range of drifting envi- 

ronments (blips, sudden and gradual, among others described in 
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Table 4 

Relevant information about classification datasets. For each row, the number of in- 

stances evaluated (#Inst.), the number of attributes (#Atts.) (which ones are numer- 

ical (#Num.) and which ones nominal (#Nom.)), the number of classes (#Cl), and 

whether the dataset is artificially generated or not (artificial) are shown. 

Data set #Inst. #Atts. #Num. #Nom. #Cl. Artificial 

blips 50 0,0 0 0 20 20 0 4 yes 

gradual_drift 50 0,0 0 0 3 3 0 2 yes 

gradual_recurring_drift 50 0,0 0 0 20 20 0 4 yes 

incremental_fast 50 0,0 0 0 10 10 0 4 yes 

incremental_slow 50 0,0 0 0 10 10 0 4 yes 

no_drift 50 0,0 0 0 24 0 24 10 yes 

sudden_drift 50 0,0 0 0 3 3 0 2 yes 

airlines 539,383 6 3 3 2 no 

covtypeNorm 581,011 54 10 44 7 no 

elecNormNew 45,311 8 7 1 2 no 

kddcup_10 494,020 41 39 2 2 no 

poker-lsn 829,201 10 5 5 10 no 

spambase 4601 57 57 0 2 no 

spam_nominal 9324 40,0 0 0 0 40,0 0 0 2 no 

usenet_recurrent 5931 659 0 659 2 no 

spam_data 9324 499 0 499 2 no 

usenet1 1500 100 0 100 2 no 

usenet2 1500 100 0 100 2 no 

usenet3 5997 27,893 0 27,893 2 no 

power_supply 29,928 2 2 0 24 no 

Section 2 ). Each artificial dataset has been created using different 

combinations of generators and different parameter values. For a 

complete description of datasets, and source code, please refer to 

our GitHub repository 2 . 

Real datasets come from different sources: 

• airlines, elecNormNew, poker-lsn , and covtypeNorm can be found 

in MOA’s streams repository. 

• spam_data, usenet1, usenet2 , and usenet3 are e-mail datasets 

affected by concept drift, collected by The Machine Learning 

and Knowledge Discovery (MLKD) group ( http://mlkd.csd.auth. 

gr/concept _ drift.html ). 

• spambase is a collection of e-mails classified as spam [132] . 

• kddcup_10, spam_nominal (SpamAssasin), and usenet_recurrent 

were collected by Dr. Gama and his research group KDUS ( http: 

//www.liaad.up.pt/kdus/products/datasets-for-concept-drift ). 

• Last dataset ( power_supply ) comes from Stream Data Mining 

Repository ( http://www.cse.fau.edu/ ∼xqzhu/stream.html ), and 

contains power supply registers collected hourly from an elec- 

tricity company. 

Not all datasets described above have been used for every ex- 

periment. Some algorithms are designed to deal with a particular 

data types. For instance, most of feature selectors require discrete 

features, especially if they utilize information-based measures. Be- 

cause MOA generators [131] only generate datasets with continu- 

ous attributes, these datasets will not be considered for FS. The 

final choice of datasets and any detail concerned to their features 

will be described in further sections. 

No previous fixed partitioning has been performed on datasets, 

instead an online evaluation approach has been elected to asses 

the quality of methods, known as interleaved test-then-train . This 

technique, proposed by Bifet et al. in [133] , defines a model in 

which each example/batch (arriving at time t ) is evaluated against 

t − 1 -model, and then it serves as input to update that model and 

forms the subsequent t -model. 

Reduction techniques used in experiments are listed and 

grouped by task in Table 5 . The default parameter values has been 

2 https://github.com/sramirez/MOAReduction 

Table 5 

Parameters of methods. Default values for each block of methods are detailed in 

first rows. Unless specified, these values are common to every method in block. 

Method Parameters 

Feature selection window size = 1 (default) 

NB –

IG [70] –

SU [72] –

OFS [77] η = 0.2, λ = 0.01 

Instance selection k = 3, window size = 100 (default) 

kNN window size = 1 

NEFCS-SRR [13] l = 10, pmax = 0.5, size limit = 10 0 0 

CBE [118] –

ICF [116] –

FISH [121] learner = kNN, distance proportion (time/space) = 0.5, 

window size = 1 

Discretization initial elements = 100, window size = 1 (default) 

NB –

OC [130] –

PiD [129] α = 0.75, initial bins = 500, instances to update layer 

#2 = 10,0 0 0, min/max = 0/1 

established according to the authors’ criteria. Common parameters, 

like window size or the number of initial elements to consider be- 

fore starting the reduction process, tends to have common values 

within the same group. A window size equal to one means that 

the algorithms work in an online manner, whereas a value higher 

than one implies a batch-based processing. For instance, FS and 

discretization methods are suitable for online scenarios, whereas 

most of instance selectors process elements in batches (except FISH 

and kNN). 

As most of feature selectors and discretizers are focused on NB, 

it has been elected as a base classifier for these groups. Likewise, 

kNN serves as reference for instance selectors. Training and testing 

processes are performed differently for each task. 

In FS contingency tables in NB are updated whenever an exam- 

ple arrives. During the classification phase NB only makes predic- 

tions by considering the most relevant features. 

Training in discretization is also accomplished following the 

previous scheme, with the particularity that the structure of con- 

tingency tables may change whenever new intervals are generated. 

A new discretization scheme means old model will be outdated 

and the amount of errors will sharply increase. 

As to IS, those methods with best results according to [13] have 

been selected for our experiments. Different update schemes have 

been adopted depending on the original design held by each selec- 

tor. For kNN and FISH, an instant-update scheme has been adopted. 

In this scheme new instances are immediately added to the case- 

base. Note that this approach gives kNN a clear advantage over the 

rest of methods since an ever-updated case-base tends to adapt 

well to changes. However, it also introduces a lot of redundancy 

which does not affect accuracy. 

FISH selects a different training set whenever a new example 

arrives, thus acting in an online way. In counterpart, NEFCS shows 

a batch-like behavior which requires two windows for drift de- 

tection. Here, the updating of the case-base is deferred until a 

complete batch of examples is available. For a fair comparison be- 

tween competence models (CBE, ICF, NEFCS-SRR), we have adopted 

a model based on batches for all these algorithms. New instances 

are immediately added to the case-base in CBE and ICF, but reduc- 

tion is only performed when the batch size condition is met. 

The whole experimental environment has been executed in a 

single standard machine, with the following features: 2 processors 

Intel Core i7 CPU 930 (4 cores/8 threads, 2.8 GHz, 8 MB cache), 

24 GB of DDR2 RAM, 1 TB SATA HDD (3 Gb/s), Ethernet network 

connection, CentOS 6.4 (Linux). Examined algorithms have been 
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Table 6 

Final test accuracy by method (FS). The best outcome for each dataset is highlighted in bold. The second row in header represents the number of feature 

selected. No selection is performed for NB. 

Naïve Bayes InfoGain SU OFS 

10 100 10 0 0 10 100 10 0 0 10 100 10 0 0 

spam_data 90.6692 89.2750 90.8516 90.6692 88 .9103 90 .4333 90 .6692 90 .0579 91 .7417 90 .6692 

spam_nominal 10 0.0 0 0 0 10 0.0 0 0 0 10 0.0 0 0 0 10 0.0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 

usenet1 63.3333 53.6667 63.3333 63.3333 53 .2667 63 .3333 63 .3333 58 .3333 63 .3333 63 .3333 

usenet2 72.1333 66.9333 72.1333 72.1333 66 .6667 72 .1333 72 .1333 68 .20 0 0 72 .1333 72 .1333 

usenet3 84.6038 68.8073 78.2319 82.9024 69 .0242 77 .8816 82 .8691 54 .0951 57 .4646 70 .5922 

usenet_recurrent 10 0.0 0 0 0 10 0.0 0 0 0 10 0.0 0 0 0 10 0.0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 

no_drift 51.4120 51.4240 51.4120 51.4120 51 .4240 51 .4120 51 .4120 32 .5830 51 .4120 51 .4120 

MEAN 80.3074 75.7295 79.4232 80.0643 75 .6131 79 .3134 80 .0596 71 .8956 76 .5836 78 .3057 

Fig. 3. Box-plot representation for selection time and reduction (FS). 

integrated in MOA software (16.04v) as an extension library 3 . MOA 

has also served as benchmark for our experiments. 

5.2. Feature selection 

Here, we evaluate how well selection of relevant features 

is performed by the streaming methods. As most of these ap- 

proaches assume features are discrete, we have only selected from 

Table 4 those benchmarks with no numerical attributes. Please 

note that all these datasets comes from the text mining field, in 

which each attribute represents the presence or the absence of 

a given word. These datasets fits well for FS as the corpus of 

words/features is normally quite large. 

Firstly, in Table 6 we measure the classification accuracy held 

by the three feature selectors considered in the experimental 

framework: IG, SU, and OFS; plus native NB using all features. From 

these results, we can conclude that: 

• NB yields better accuracy when all features are available dur- 

ing prediction. None of the selection schemes show better ef- 

fectiveness than NB. 

• However, IG and SU generate results pretty close to NB, with 

the advantage of generating much simpler solutions (as can be 

seen in Fig. 3 b). 

• Information-based methods are more accurate than OFS (based 

on feature weighting). Specially remarkable are the spam_data 

3 http://moa.cms.waikato.ac.nz/moa-extensions/ 

and usenet_recurrent cases, where even with only ten words the 

classifier is able to predict perfectly all examples. 

To assert that no method is better than NB, we convey an sta- 

tistical analysis on classification accuracy results through two non- 

parametric tests: Wilcoxon Signed-Ranks Test (one vs. one) and 

Friedman–Holm Test (one vs. all) [134,135] . Wilcoxon Test con- 

ducts pairwise comparisons between the reference method and the 

rest. A level of significance α = 0 . 05 has been chosen for this ex- 

periment. The first two columns in Table 7 show Wilcoxon’s re- 

sults for accuracy, where ‘+’ symbol indicates the number of meth- 

ods outperformed by each algorithm in row. Symbol ‘ ±’ represents 

the number of wins and ties yielded by each method. The best 

value by column is highlighted by a shaded background. The re- 

maining columns show the results for the Friedman test. The first 

one shows effectiveness ranking of methods, ordered from the best 

mark (top row) to the worst. Note that the best method is es- 

tablished as the control algorithm. The second column contains 

the adjusted p -values for each method according to the post hoc 

Holm’s test. The same level of significance ( α = 0 . 05 ) has been es- 

tablished for this test. 

According to the results shown in Table 7 , we can assert no 

method is significantly better than NB without discretization when 

using 10 features. As to 100 and 10 0 0 features, the new outper- 

forming method is SU although without showing statistically sig- 

nificance with respect to most of the alternatives. 

Fig. 3 depicts selection time spent by each algorithm, as well 

as the amount of reduction performed by each selection scheme, 

ranging from ten to one thousand features. No selection stands 
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Fig. 4. Plots of prequential accuracy (in %), CPU processing time (in seconds) and memory usage (in RAM-hours) over the data stream progress (processed instances) for 

feature selection methods on spam_data benchmark. 

Fig. 5. Plots of prequential accuracy (in %), CPU processing time (in seconds) and memory usage (in RAM-hours) over the data stream progress (processed instances) for 

feature selection methods on usenet3 benchmark. 

Table 7 

Wilcoxon test results and average rankings of fea- 

ture selectors (Friedman Procedure & Adjusted 

p -value with Holm’s Test) for accuracy. 

as the fastest alternative. Despite the complete set of feature is 

used for predictions, this alternative offers better results due to the 

avoidance of feature relevance computations. Among the selection 

alternatives, OFS performs faster than the information-based selec- 

tors. However, OFS has shown in Table 6 to obtain less accurate 

schemes than its competitors. 

Although a better reduction rate is achieved in 10-features 

scheme (close to 100% in mean), by selecting 10 0 0 features we can 

yield better accuracy, while the obtained reduction rate is still ac- 

ceptable ( > 25%). Please note that no selection is conducted on 4/7 

problems when we choose the 10 0 0-features scheme since there 

are not enough attributes to select. 

In conclusion, SU-10 0 0 can be elected as the best choice be- 

cause of its competitive accuracy results similar to those yielded 

by NB and displayed reduction rates. Time results do not show sig- 

nificant differences between examined methods. 

Detailed results on the entire data stream for spam_data and 

usenet3 benchmarks with respect to obtained prequential accura- 

cies, CPU usage and memory usage are depicted in Figs. 4 and 5 . 

5.3. Instance selection 

Here, we evaluate how IS methods perform in non-stationary 

environments. As opposed to Section 4.1 , in this experiment we 

have included datasets with both numerical and nominal at- 

tributes. In previous experiments [13] instance selectors were 

shown to be impractical when dealing with medium datasets. Be- 

cause of that we have discarded those problems with a number of 

instances > 10 0, 0 0 0. Additionally, we have created new artificial 

datasets with a lower number of examples (10,0 0 0 instances). 

Accuracy displayed by examined methods are given in Table 8 . 

Table 9 shows results on accuracy for the Wilcoxon and Friedman–

Holm test, following the same scheme presented in Section 4.1 . 

From these results, we can conclude that: 

• The best method on average is the updated kNN without selec- 

tion (80.49%). The closest competitor (CBE) is five units below 

kNN. Other online methods, like FISH or ICF, do not respond 

well to concept drifts. 

• No method is statistically better than updated kNN. Although 

kNN wins in each pairwise comparison in Wilcoxon tests, it 

only significantly overcomes ( α = 0 . 05 ) FISH and ICF according 

to Friedman–Holm tests. 
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Fig. 6. Box-plot representation for selection time and reduction (IS). 

Table 8 

Total test accuracy by method (IS). 

NEFCSSRR ICF CBE FISH kNN 

elecNormNew 67 .7652 43 .7882 73 .8105 60 .0455 84 .0815 

powersupply 11 .9400 4 .2502 12 .3800 5 .4435 15 .1296 

spambase 81 .6779 39 .3827 97 .5440 95 .9139 95 .1532 

spam_data 88 .8782 25 .6113 91 .1197 77 .3488 93 .9833 

spam_nominal 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 

usenet1 56 .6667 54 .5333 54 .0667 55 .20 0 0 56 .4667 

usenet2 61 .20 0 0 63 .4667 48 .40 0 0 69 .80 0 0 68 .20 0 0 

usenet_recurrent 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 

blips 90 .8900 34 .1300 94 .2300 31 .3200 97 .1800 

sudden_drift 76 .5300 61 .7300 74 .2300 60 .8700 82 .6600 

gradual_drift 68 .2700 52 .3600 74 .4500 52 .0200 81 .2700 

gradual_recurring_drift 87 .5800 28 .9400 92 .6500 28 .8400 96 .3300 

incremental_fast 65 .8900 51 .7700 68 .40 0 0 55 .8300 77 .2800 

incremental_slow 72 .4300 50 .9800 68 .70 0 0 56 .5800 79 .10 0 0 

MEAN 73 .5513 50 .7816 74 .9986 60 .6580 80 .4882 

Table 9 

Wilcoxon test results and average rankings of methods (Friedman 

Procedure & Adjusted p -value with Holm’s Test) for accuracy. 

• Selection methods make decisions about the relevance or dif- 

ficulty of a given instance without knowing the future state 

of the stream. It is normal that the no-selection option always 

performs better than others. It only depends on the amount of 

noise introduced by each problem and not by other factors like 

redundancy. 

Regarding reduction and time, Fig. 3 depicts the distribution for 

both variables. From these plots, we can claim that CBE can be 

considered as the most accurate solution, and it also offers the 

Table 10 

Classification test accuracy after discretization. 

PiD IDA OC Naïve Bayes 

airlines 63 .0057 64 .1563 65 .0723 64 .5504 

powersupply 2 .9237 13 .5793 11 .2938 16 .1087 

elecNormNew 71 .9522 76 .6905 74 .0731 73 .3625 

spambase 98 .0439 97 .8700 97 .6744 82 .8081 

kddcup_10 99 .1474 98 .4644 98 .1404 97 .1908 

poker-lsn 55 .0335 59 .4337 58 .5465 59 .5528 

covtypeNorm 66 .6306 62 .7235 64 .2254 60 .5208 

blips 74 .5680 66 .4494 64 .2148 60 .9060 

sudden_drift 65 .7736 81 .3168 77 .8808 83 .8144 

gradual_drift_med 60 .8404 82 .8908 80 .1032 84 .70 0 0 

gradual_recurring_drift 65 .1678 58 .5250 58 .5612 56 .7450 

incremental_fast 73 .9900 75 .6472 75 .6036 76 .3642 

incremental_slow 65 .6074 76 .9186 75 .4316 78 .0688 

MEAN 66 .3603 70 .3589 69 .2939 68 .8225 

highest reduction rates, at the cost of increased time complex- 

ity. NEFCSSRR also represents an interesting option as this method 

shows precise, and performs faster than CBE. The outstanding re- 

duction rate of FISH is explained because it normally selects the 

kNN for each new example. This fact also explains its poor out- 

come on accuracy. 

Detailed results on the entire data stream for sudden_drift and 

gradual_drift benchmarks with respect to obtained prequential ac- 

curacies, CPU usage and memory usage are depicted in Figs. 7 

and 8 . 

5.4. Discretization 

To evaluate the ability of supervised discretizers to reduce the 

continuous feature space, we propose a new study with three dis- 

cretization methods for data streams. NB and Incremental Dis- 

cretization Algorithm (IDA) [11] have been elected as benchmark 

to assess the quality of supervised discretization schemes. The 

first one employs a gaussian estimation method, whereas the sec- 

ond one employs an unsupervised scheme based on quantile- 

estimation. In this experiment, only datasets with at least one nu- 

merical attribute have been considered. Email-based dataset used 

in Section 4.1 are thus discarded. 
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Fig. 7. Plots of prequential accuracy (in %), CPU processing time (in s.) and memory usage (in RAM-hours) over the data stream progress (processed instances) for instance 

selection methods on sudden_drift benchmark. 

Fig. 8. Plots of prequential accuracy (in %), CPU processing time (in s.) and memory usage (in RAM-hours) over the data stream progress (processed instances) for instance 

selection methods on gradual_drift benchmark. 

Table 11 

Wilcoxon test results and average rankings of meth- 

ods (Friedman Procedure & Adjusted p-value with 

Holm’s Test) for accuracy. 

Tables 10 and 11 contain test accuracy results for NB classifi- 

cation with and without explicit discretization. From these results, 

we can conclude the following statements: 

• The most accurate method (in average) is IDA, an unsuper- 

vised method based on quantile-estimation and a sampling ap- 

proach. However, its results are pretty close to those obtained 

by OC and NB. OC also outperforms the base solution, but with 

smaller margin than presented by IDA. 

• According to the Wilcoxon test, we can statistically assert that 

IDA is only better than OC. Nevertheless this claim is rejected 

by Friedman’s procedure, with a p -value far from the standard 

acceptance thresholds: 0.9 or 0.95. Although some improve- 

ment can be achieved by using supervised discretization, it can 

be deemed as superfluous and likely suboptimal. 

• PiD represents the worst choice in this framework. Yet, it is 

specially remarkable that PiD is able to obtain the best accu- 

racy mark in 5/13 datasets, with an outstanding mark in the 

blip dataset. This fact can be explained by the high number 

of parameters to be tuned in PiD and the high dependency 

on their values. Among the list of parameters, a global mini- 

mum and the maximum value need to be defined for the whole 

set of features, which is unfeasible in streaming environments. 

This parameter is essential as determines the expansion rate for 

new intervals, thus it may be possible to tailor it specifically for 

some datasets. 

Apart from the previous deficiencies, Fig. 9 a shows a high time- 

complexity of OC, as a result of a high number of data structures 

(binary tree, several queues, etc.) to be managed. IDA holds a sim- 

ilar time performance to NB. 

Fig. 9 b illustrates the reduction performed by each method, rep- 

resented as number of intervals generated per method. In this case, 

OC obtains the simplest solutions thanks to the control performed 

by χ2 . IDA defines the number of intervals before launching any 

process and PiD’s inaccuracy is explained by a huge number of in- 

tervals generated initially ( ≈ 500 per feature), as well as during 

the splitting process. Please notice that the subsequent merging 

process launched by the second layer is just not able to efficiently 

reduce such many input intervals. 

As discussed before, evolving intervals sharply affect streaming 

classification since new and deleted intervals normally imply dra- 

matic changes in the learning process. New models and techniques 

with a better interaction between discretization and classification 

must be designed if we want to transform online discretization 

into a truly useful tool for data analytics. 

Detailed results on the entire data stream for sudden_drift and 

gradual_drift benchmarks with respect to obtained prequential ac- 

curacies, CPU usage and memory usage are depicted in Figs. 10 

and 11 . 

6. Data preprocessing for data stream mining: lessons learned 

and future directions 

In this section we will discuss observations made on the basis 

of the presented survey of existing preprocessing methods for data 

streams, as well as the accompanying experimental study. Then, 

we will outline open challenges and future directions in this field. 
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Fig. 9. Box-plot representation for discretization time and reduction (discretization). 

Fig. 10. Plots of prequential accuracy (in %), CPU processing time (in s.) and memory usage (in RAM-hours) over the data stream progress (processed instances) for dis- 

cretization methods on sudden_drift benchmark. 

Fig. 11. Plots of prequential accuracy (in %), CPU processing time (in s.) and memory usage (in RAM-hours) over the data stream progress (processed instances) for dis- 

cretization methods on gradual_drift benchmark. 

6.1. Lessons learned 

Some important outcomes and guidelines can be inferred from 

the study, which we enumerate below: 

• A wide range of phenomenons specific to data stream min- 

ing, ranging from concept-evolution to dynamic feature space, 

directly affects the features describing incoming instances. 

DXMiner is the only system that address all these problem 

through a combined strategy based on an information-based FS 

and an unsupervised selection method. 

• As expected FS does not improve accuracy results presented by 

the option with the full set of features. Nevertheless FS solu- 

tions are able to yield simpler solutions with similar predic- 

tive performance, which is of crucial importance to stream min- 

ing frameworks. SU, the selector included in DXMiner, can be 

elected as the best method for FS because of its outstanding 

results in accuracy and its low complexity. 
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• Competence-based methods for IS tend to maintain case-bases 

polished in the highest degree, free of noise and redundancy. 

However they are characterized by a very high computational 

complexity. In distance-based solutions, this overhead is even 

bigger, while not being balanced by any gains in overall ac- 

curacy. In general, all instance selectors have shown an unfa- 

vorable behavior with respect to time and memory require- 

ments, thus preventing their meaningful applications in high- 

speed data stream mining. 

• CBE can be elected as best option for IS in terms of precision 

and reduction. NEFCSSRR also presents itself as an interesting 

option, with similar results to CBE, however requiring more 

computational resources. 

• When selecting preprocessing methods for data stream mining 

we must consider not only the obtained accuracy, but also the 

computational costs that are associated with this method. As 

our study clearly showed some of the considered methods are 

characterized by bottlenecks in either CPU or memory usage, 

thus making them unsuitable for high-speed data streams. 

6.2. Challenges and future directions 

Here we outline the main challenges that should be addressed 

by the research community in order to obtain a meaningful 

progress in the area of preprocessing techniques for data stream 

problems: 

• A scarce number of online and supervised discretizers have 

been proposed in the literature so far. Most of current methods 

are unsupervised techniques based on quantiles, using an adap- 

tation strategy with smooth shifts in intervals’ definition and 

the previous definition of intervals. Adding class information to 

the discretization process would allow to accommodate for lo- 

cal drifts, where properties of only some class changes. Addi- 

tionally, we envision the potential of ensemble learning that 

will allow to use various discretization intervals to allow for 

training a diverse set of classifiers. 

• Current online discretizers have shown to perform poorly as 

their adjustments tend to be more abrupt than those yielded 

by quantile-based techniques (see Section 4.3 ). However, this 

problem has been compensated by the inclusion of class infor- 

mation in the discretization process. Abrupt tweaks and label- 

ings are two major concerns that must be addressed by fur- 

ther developments in this area. This shows that there is a need 

for combining discretization with active learning solutions. This 

would allow for selective labeling of only these samples that 

yield highest probability of influencing the intervals’ definitions. 

• No pure wrapper-based solutions have been proposed for on- 

line problems yet. Efficient implementations of these methods 

may be challenging die to their increased computational cost, 

but this may be compensated by the inherent discriminative 

ability of online learners and their adaptiveness to drifts. One 

potential solution would be to combine filter and wrapper ap- 

proaches in order to reduce the number of times the more 

costly method will be used and to allow for continuous clas- 

sification even during the wrapper computation. Another po- 

tential solution lies in using high-performance solutions based 

on GPU or distributed computing to reduce the computational 

load connected with this approach [136] . 

• There is a need for further research on feature and instance se- 

lection methods that can directly address the problem of con- 

cept drift. One way of approaching this would be to combine 

instance selection approaches with drift detection module that 

could directly influence the usability of prototypes. Whenever 

a strong drift is being detected, one may discard the previous 

prototypes and use only the incoming objects. After stream sta- 

bilizes, the instance selection can be repeated to adapt to the 

current concept. Another potential solution is to have weighted 

prototypes, where weight would reflect how long time ago they 

were created and how useful they are to mining current state 

of the stream. This would allow to smoothly forget outdated 

prototypes, while keeping in memory the ones still useful. Lo- 

cal drifts that occur only within a subset of classes should also 

be considered. In such a case only selected prototypes must 

be modified in the areas of drift presence. This would require 

class-based prototype pruning methods and a method to over- 

look the influence of these drifting prototypes on stationary 

classes. 

• There is a need for further developing preprocessing methods 

characterized by a low computational requirements that would 

allow for a real-time decision making when dealing with big 

and high-speed data streams [137] . In case of data stream min- 

ing one must always balance the obtained accuracy with the 

amount of time spent on the computations. Therefore, develop- 

ing approximate solutions with stopping criteria could be ben- 

eficial, especially in cases of sudden changes. 

• There exist no solutions that directly take into account the pos- 

sibility of recurrent concept drifts. Therefore, it seems promis- 

ing to develop preprocessing methods that could accommodate 

the fact that previously used set of features / instances / dis- 

crete bins may become useful once again in the future. Simplest 

way of approaching this would be to create a secondary buffer 

storing these items for a certain amount of time, allowing to 

reuse them when necessary. To avoid unacceptable memory re- 

quirements this buffer should be flushed after a certain period 

of time with no action. 

• There is a need to develop data preprocessing methods for 

more complex data stream types. Such techniques are crucial 

for imbalanced [138,139] , multi-label [140] and multi-instance 

[141] problems and should be extended into the streaming 

framework. 

7. Concluding remarks 

We have presented a thorough survey of data reduction meth- 

ods applied to data stream mining. Basic concepts, existing works, 

and present and future challenges have been analyzed in this work. 

Based on a number of relevant characteristics, we have proposed a 

simple, yet useful taxonomy of current developments in the online 

data preprocessing. 

Most relevant methods have also been analyzed empirically 

through a conscious experimental framework, which includes a 

long and diverse list of artificial and real datasets with different 

types of drift. A statistical analysis based on non-parametric tests 

have been conveyed to support the resulting conclusions. 

Concluding this work, we can claim that data preprocessing for 

data streams is still in its early days. New and more sophisticated 

methods that deal with previously unsolved challenges need to be 

designed in the years to follow. Great progress has been made in 

instance and feature selection, but other tasks like discretization 

remains yet to be properly addressed. 
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Nearest Neighbor Classification for High-Speed
Big Data Streams Using Spark

Sergio Ramírez-Gallego, Bartosz Krawczyk, Salvador García, Michał Woźniak, Senior Member, IEEE,
José Manuel Benítez, Member, IEEE, and Francisco Herrera, Senior Member, IEEE

Abstract—Mining massive and high-speed data streams among
the main contemporary challenges in machine learning. This calls
for methods displaying a high computational efficacy, with ability
to continuously update their structure and handle ever-arriving
big number of instances. In this paper, we present a new incre-
mental and distributed classifier based on the popular nearest
neighbor algorithm, adapted to such a demanding scenario. This
method, implemented in Apache Spark, includes a distributed
metric-space ordering to perform faster searches. Additionally,
we propose an efficient incremental instance selection method
for massive data streams that continuously update and remove
outdated examples from the case-base. This alleviates the high
computational requirements of the original classifier, thus mak-
ing it suitable for the considered problem. Experimental study
conducted on a set of real-life massive data streams proves the
usefulness of the proposed solution and shows that we are able to
provide the first efficient nearest neighbor solution for high-speed
big and streaming data.

Index Terms—Apache Spark, big data, data streams, dis-
tributed computing, instance reduction, machine learning, near-
est neighbor.

I. INTRODUCTION

THE massive volume of information gathered by contem-
porary systems became omnipresent, as many research

activities require collecting increasingly huge amounts of
data. For instance, Large Hadron Collider experiments1

generates 30 petabytes of information per year. Potential
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applications for massive data analysis techniques could be
found in each human activity domain. Enterprises would like
to discover interesting client behavior characteristics, e.g.,
on the basis of sensor or Internet data. Works on person-
alized medical treatment for individual patients based on
his/her clinical records, such as medical history, genomic,
cellular, and environmental data may serve as another
example.

We are surrounded by enormous volumes of data arriving
continuously from different sources. Therefore, one may say
that we are living in the big data era. Big data is usually
characterized by the so-called 5V’s (volume, velocity, variety,
veracity, and value), describing its massive volume, dynamic
nature, diverse forms, different qualities, and usefulness for
human beings [1].

In many cases we do not deal with static data collections, but
rather with dynamic ones. They arrive in a form of continuous
batches of data, known as data streams [2]. In such scenarios,
we need not only to manage the volume but also the velocity of
data, thus constantly updating and adapting our learning. To
add a further difficulty, many modern data sources generate
their outputs with very short intervals, thus creating the issue
of high-speed data streams [3].

Massive data must be explored efficiently and converted
into valuable knowledge which could be used by enter-
prises (among others) to build their competitive advantage [4].
However, there exist a considerable gap between contempo-
rary processing and storage capacities, which demonstrates
that our ability to capture and store data has far outpaced our
ability to process and utilize it. Moore’s law says that pro-
cessing capacity double every 18 months, while disk storage
capacity doubles every 9 months (storage law) [5]. This leads
to creation of the so-called data tombs, i.e., volume of data
which are stored but never analyzed. Therefore, we have to
develop dedicated tools and techniques which are able to mine
enormous volumes of incoming data, while additionally tak-
ing into consideration that each record may be analyzed only
once to reduce the overall computing costs [6]. MapReduce
was the first programming paradigm designed to deal with the
phenomenon of big data [7]. Recently, a new large-scale pro-
cessing framework, called Apache Spark [8], [9], is gaining
importance in the big data domain due to its good performance
in iterative and incremental procedures.

Lazy learning [10] (also called instance-based learning) is
considered as one of the simplest, yet most effective schemes
in supervised learning [11]. Here, generalization is deferred

2168-2216 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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until a query is made to the case-base. However, as distance
between every pair of cases must be computed (quadratic
complexity), these methods tends to have much slower clas-
sification phase than their counterparts. Furthermore, lazy
learners, as k-nearest neighbor (k-NN), tend to accumulate
instances from data streams, thus leading to using data related
to the outdated concepts may for the decision-making process.
As of these reasons lazy learning has not been widely used in
streaming environments in spite of its attractive properties.

Data reduction techniques may be applied to improve the
performance of lazy learners [12]. Concretely, instance selec-
tion techniques can be very effective as they reduce the total
number of samples stored in the case-base and therefore sim-
plify the underlying search space. Search speed may also
be improved by introducing an implicit metric-space order-
ing in the case-base [13] or through other techniques as
locality-sensitive hashing [14].

In this paper, we propose an efficient nearest neighbor solu-
tion to classify high-speed and massive data streams using
Apache Spark. Our algorithm consists of a distributed case-
base and an instance selection method that enhances its
performance and effectiveness. A distributed metric tree has
been designed to organize the case-base and consequently to
speed up the neighbor searches. This distributed tree consists
of a top-tree (in the master node) that routes the searches in
the first levels and several leaf nodes (in the slaves nodes) that
solve the searches in next levels through a completely paral-
lel scheme. Performance is further improved by a distributed
edition-based instance selection method, which only inserts
correct examples and removes the noisy ones. Up to the best
of our knowledge, this is the first lazy learning solution in
dealing with large-scale, high-speed, and streaming problems.

The main contributions of this paper are as follows.
1) Efficient and scalable incremental nearest neighbor clas-

sification scheme for massive and high-speed data
streams.

2) Smart partitioning of the incoming data streams to paral-
lelize the proposed algorithm using Spark environment.

3) Embedded instance selection method with quickly
updated hybrid trees.

4) Comprehensive experimental evaluation of the proposed
methods.

Experimental results performed using several datasets and
configurations show that our proposal outperforms the same
model without edition in terms of accuracy. Our method also
reduces the time spent in the prediction stage and the memory
consumption.

The structure of this paper is as follows. First, the related
works about big data analysis, data stream mining, nearest
neighbor and instance selection are presented in Section II.
Then the proposed solution for Spark architecture is discussed
in Section III. The next section (Section IV) includes results
of experimental investigations. Finally, Section V concludes
this paper.

II. RELATED WORK

This section will provide necessary background on recent
advances in mining massive (Section II-A) and streaming

datasets (Section II-B), with special focus put on nearest
neighbor-based classification approach (Section II-C).

A. Big Data Analytics

Google designed MapReduce [7] in 2003, which is consid-
ered as one of the first distributed frameworks for large-scale
data processing. MapReduce allows for automatically process-
ing data in an easy and transparent way through a cluster of
computers. The user only needs to implement two operators:
1) Map and 2) Reduce. In the Map phase, the system processes
key-value pairs read directly from a distributed file system and
transform them into another set of pairs (intermediate results).
Each node is in charge of reading and transforming a set of
pairs from one or more data partitions. In the Reduce phase,
the key coincident pairs are sent to the same node and merged
to yield the final result through an user-defined function. For
further information about MapReduce and others distributed
frameworks, please check [6].

Apache Hadoop [15], [16] is an open-source implementation
of MapReduce for reliable, scalable, and distributed comput-
ing. Despite its popularity and a number of implemented data
mining algorithms [17], [18], Hadoop is not suitable for many
scenarios, with emphasis on those where there is a need for
explicit data reusage. For instance, online, interactive, and/or
iterative computing [19] are affected by this problem.

Apache Spark [8], [9] is a distributed computing platform
that became one of the most powerful engines developed for
the big data scenario. According to its creators, this plat-
form was designed to overcome the limitations of Hadoop.
In fact, the Spark engine has shown to perform faster than
Hadoop in many cases (up to 100× in memory). Thanks
to its in-memory primitives, Spark is able to load data into
memory and query it repeatedly, making it suitable for iterative
processes (e.g., machine learning algorithms). In Spark, the
driver (the main program) controls multiple workers (slaves)
and collects results from them, whereas worker nodes read
data blocks (partitions) from a distributed file system, perform
some computations and save the result to disk.

Resilient distributed dataset (RDD) is the base structure
in Spark, on which the distributed operations are performed.
A wide variety of operations are offered by RDDs, such
as: filtering, mapping, and joining large data. These opera-
tions are designed to transform datasets by locally executing
tasks within the data partitions, thus maintaining the data
locality. Furthermore, RDDs are a versatile tool that allows
programmers to preserve intermediate results (in memory
and/or disk) in several formats for reusability purposes,
as well as customize the partitioning for data placement
optimization.

Spark also allows us to use the RDD’s API in streaming
environments through the transformation of data streams into
small batches. Spark Streaming’s design enables the same
batch code (formed by RDD transformations) to be used
in streaming analytics, without a requirement for significant
modifications.

For large-scale data mining, several common learning algo-
rithms and statistic utilities were created and packaged into
MLlib [20], [21], the machine learning library of Spark.
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This library gives support to a number of knowledge dis-
covery tasks such as: classification, optimization, regression,
collaborative filtering, clustering, and data preprocessing.

B. Data Stream Mining

Contemporary machine learning problems are often char-
acterized not only by a significant volume of data, but also
by its velocity. Instances may arrive continuously in a form
of a potentially unbounded data stream [22]. This poses new
challenges for learning algorithms, as they must offer adap-
tation mechanisms for ever-growing dataset, being able to
update their structure in accordance with the current state of
a stream [23]. Additionally, new constraints must be taken
into consideration that are not present or not so important
in static scenarios [24]. Learner must have low response and
update times, as new objects must be handled as soon as they
become available. Too long processing would cause a delay, as
stacking arriving objects would only increase with the stream
progress. Furthermore, streaming algorithms must assume lim-
ited storage space and memory requirements. One cannot store
all of objects from a stream, as data volume will continuously
expand [25]. Therefore, objects should be discarded after pro-
cessing and learner must not require an access to previously
seen instances.

Data streams are often characterized by a phenomenon
called concept drift [26], [27]. It can be defined as a change
of characteristic in incoming data over the course of stream
processing.

In streaming environments [2], the incoming objects arrive
sequentially, thus data streams can be processed in two
different operation modes.

1) Chunk (batch), where data arrive in a form of instance
blocks or we collect enough instances to form one.

2) Online, where instances arrive one by one and we must
process them as soon as they become available.

There are several possible approaches to learning from data
streams.

1) Rebuilding the classifier whenever new data becomes
available.

2) Using a sliding window approach.
3) Using an incremental or online learner.
The first of discussed approaches is far from being applica-

ble in a real stream mining environment. Training a new model
whenever a new set of instances arrive would impose pro-
hibitive computational costs and excessive need for a storage
space in order to accommodate the ever-growing size of the
training set. Additionally, during the training process the clas-
sifier would be unavailable for data processing, which would
lead to a significant time delay. These factors force us to design
specialized methods that do not suffer from the mentioned
limitations.

Sliding window-based classifiers were designed primarily
for drifting data streams, as they incorporate the forgetting
mechanism in order to discard irrelevant samples and adapt to
appearing changes [28]. Recent works in this area incorporate
dynamic window size adjustment [29] or usage of multiple
windows [30]. However, we focus on stationary data streams

for which proper and continuous model update is of greater
importance. Therefore, let us discuss in more details the third
group of methods.

Incremental [31] and online [32] learners are such classifiers
that are able to continuously update their structure or decision
boundaries according to incoming new data [33]. Such meth-
ods must meet several requirements, such as processing each
object only once during the course of training, having strictly
limited memory and time consumption, and their training may
be stopped at any time with obtained quality not lower than
the one from corresponding classifier trained with the same
data in a static mode [34]. Main advantages of such methods
lie in their fast and flexible adaptation to new data, as they are
not rebuilt from a scratch every time a new instances become
available. Additionally, once the object has been processed it
can be discarded as it will be of no future use for the clas-
sifier. This significantly reduce the requirements for memory
and storage space. It is worth noticing that some of popu-
lar classifiers can work in incremental or online modes, e.g.,
Naïve Bayes, neural networks, or nearest neighbor methods.
There is also a number of classifiers that have been specif-
ically modified to work with changing streams of instances,
like concept-adapting decision trees [35] or very fast decision
rules [36].

Nearest neighbor algorithms are highly popular in tradi-
tional machine learning, as they offer an easy implemen-
tation and a high efficiency. However, due to their lazy
learning nature and high computational cost they have not
gained significant attention in the domain of data stream
analysis [37], [38], especially, when instances arriving with
high speed are considered. Let us now review the most popular
approaches for speeding-up this classifier.

C. Speeding-Up Nearest Neighbor Searches

The k-NN [39] is an intuitive and effective nonparametric
model used in many machine learning problems and can be
considered as one of top-ten most influential algorithms in
data mining [40]. Nevertheless, k-NN is also a time-consuming
method that requires all the training instances to be stored
in memory, in order to compute the distance measurement
between every pair of instances (quadratic complexity). For
this reason, a linear search becomes impractical when large-
scale problems are faced and/or new examples are constantly
introduced to the case-base.

Many techniques have been proposed to alleviate the
k-NN search complexity. They range from metric trees
(M-trees) [13], which index data through a metric-space order-
ing; to locally sensitive hashing [14], which map (with high
probability) those elements near in the space to the same bins.

M-tree exploit properties such as the triangle inequality to
make searches much more efficient in average, skipping a great
amount of comparisons. M-tree [41] can be considered as one
of the most important and simplest data structure in the space-
indexing domain. Let n be a single node in the M-tree, while
n.lc and n.rc are, respectively, its left and right children. For
each iteration, the algorithm finds two representative points
(called pivots) n.lp and n.rp and the decision boundary L that
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Fig. 1. Partitioning scheme in an M-tree.

goes through the midpoint mp between the set of points to
partition. Next, every point to the left of mp is assigned to
n.lc, and every point to the right to n.rc (see Fig. 1). This type
of partitioning implies nodes are disjoints and no information
is shared between them.

When searching in an M-tree, the algorithm descends
through the structure by choosing the nearest node in each
level, discarding every node that are not within the searching
distance. M-tree may “backtrack” in case that some branches
of the tree have remained unpruned. It is done to assure the
correctness of the query.

The tedious backtracking process can be skipped if some
overlap is allowed between the nodes. Spill trees [41] allow
overlapping by introducing a new variable called overlap
buffer. This buffer represents the common area between two
overlapping nodes and allows two nodes to have repeated
examples. No backtrack is needed in these trees, however,
at the cost of introducing potential redundancy. The overlap
buffer is estimated by computing the distance (averaged over
every instance in the training set) between every example and
their nearest neighbors.

The search process in spill trees is thus much more natural,
allowing to use defeatist search with the aid of the buffer.
It uses a direct descend in the tree without backtracking.
In practice a combination of spill trees and M-trees can be
used making a distinction between overlap (nonbacktracked)
and nonoverlap (backtracked) nodes. An example of hybrid
structures are hybrid spill trees [41].

Most of M-trees are designed to be run sequentially in a
single machine and their adaptation to distributed platforms
poses a major difficulty. In [42], a distributed version of a
metric tree is presented. The authors propose to maintain one
top-tree in the master node that route the elements in the first
levels. Once the elements have been mapped to the leaves a
set of distributed subtrees performs searches in parallel. The
idea behind is that the top-tree and the subtrees act like a com-
plete metric tree, but in a fully distributed way. Tornado [43]
is another distributed stream processing system that focus on
spatio-textual queries. This framework eliminates redundant
textual data by using deduplication and fusion of information.
In their recent work Maillo et al. [44] proposed an efficient
k-NN classifier for massive datasets using Apache Spark archi-
tecture. The main difference between their proposal and one
described here is the nature of analyzed data. Their approach
is suitable for massive, yet static datasets and was optimized in
order to provide fast calculation of a high number of distances.
Our method is suitable for massive, yet streaming data, being

able to work in an online mode and with high-speed data
streams.

Apart from using special indexing methods, k-NN searches
can be speed-up through the application of data preprocessing
techniques [12]. These solutions are aimed at reducing the size
of datasets in both dimensions (instances and features), while
maintaining the original data structure.

Along with feature selection, instance selection is consid-
ered as one of the most efficient ways of data reduction.
They aim at finding such a reduced dataset that allows to
train a model without a performance loss. In many cases, the
model can even be more precise due to its simpler structure
(Occam’s razor principle). Nevertheless, the selection of rele-
vant instances is not a trivial task since a pairwise comparison
between each instance must be performed.

Depending on the type of search implemented, instance
selection methods could be classified into three categories:
1) condensation (aiming at only retaining boundary points
that are close to the borders); 2) edition (aiming at remov-
ing noisy boundary points); or 3) hybrid methods (combining
the two previous approaches by removing both internal and
border points).

Most of instance selection methods described in the lit-
erature explicitly or implicitly exploit the k-NN technique
to obtain the set of relevant instances [12]. Here, the set
of neighbors is being used to decide if the given instance
is relevant, redundant, or noisy according to a determined
criterion. Classical selection methods as reduced-NN, edited-
NN (ENN), or condensed-NN, make use of NN technique
to evaluate instances. However, there are many other selec-
tion algorithms that use other measures as accuracy, retrieval
frequency, or competence. For instance, the iterative case filter-
ing (ICF) method removes those instances whose reachability
(instances that are correctly solved by a given element) is less
than its coverage (instances that correctly solved a given ele-
ment). However, it is worth noticing that ICF launches ENN
to remove noisy instances at the beginning.

Relative neighborhood graph edition (RNGE) algo-
rithm [45] is considered as one of the most accurate methods
according to the experiments performed in [12]. In RNGE, the
neighbors of an instance are determined by a special proximity
graph called relative neighborhood graph. Two points are con-
sidered as neighbors in the graph if there exist a connecting
edge between them. The rule that determines this association
is defined as follows: there exist an edge between two given
points if there does not exist a third point that is closer to any
of them than they are to each other. After building a graph
the algorithm removes those instances misclassified by their
neighbors (majority voting). RNGE is characterized by a low
computational complexity, since the graph can be constructed
efficiently in O(n log(n)) time [46].

III. DS-RNGE: SPARK-BASED INSTANCE SELECTION

FRAMEWORK FOR NEAREST NEIGHBOR STREAM MINING

In this section, we present a lazy learning solution for mas-
sive and high-speed data streams. The proposed algorithm
(DS-RNGE) consists of a distributed case-base and an instance
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selection method that enhances its performance and effective-
ness. Our case-base is structured using a distributed metric
tree, which is entirely maintained in memory to expedite
further neighbor queries. Note that our complete scheme is
based in-memory primitives from Spark, not only the neigh-
bor queries. The source code of the complete project can be
found in: https://github.com/sramirez/spark-IS-streaming.

DS-RNGE proceeds in two phases for each newly arrived
batch of data.

1) An edition/update phase aimed at maintaining and
enhancing the case-base.

2) A prediction phase that classifies new unlabeled data.
Both phases require fast neighbor queries to accomplish

their aims. To deal with this problem, we propose a smart
partitioning of the input space in which each subtree queries
only a single space partition. This scheme will allow us to
parallelize the querying process across the cluster.

A single top-level tree is maintained in the master node to
route the elements in the first levels, where the partitioning is
still coarse-grained. For each instance, the nearest element in the
leaves of the top-tree is returned. The correspondence between
leaf nodes and subtrees determines the local tree where the
query will be performed (see Section II-C for further details).

As mentioned before, hybrid spill trees use backtracking
and redundancy to deal with classification in borders. This
implies a cost in time and memory that is far from acceptable
in streaming applications. Our idea is to allow classification
errors near borders in order to increase the computational effi-
ciency. When the number of elements is much greater than
the number of partitions, the number of instances with neigh-
bors in a different partition and the classification error derived
from this phenomenon become negligible. Defeatist search is
used as reference for our model because of its outstanding
performance.

Since an ever-growing and noisy case-base is unaccept-
able, our approach uses a custom-designed instance selection
method. A improved local version of RNGE has been applied
to control the insertion and removal of noisy instances. The
original method has been redesigned for incremental learn-
ing from data streams. For each incoming example, a relative
graph is built around the instance and a subset of its neigh-
bors. The local graphs are then used to edit the case-base by
deciding what instances should be inserted, removed or left
untouched. As every step in this process is performed locally,
the communication overhead is negligible.

DS-RNGE manages the following parameters.
1) nt: Number of subtrees and number of leaf nodes in the

top-tree.
2) ks: Number of neighbors used to build the local graphs

(instance selection phase).
3) kp: Number of neighbors used in the prediction phase.
4) ro: Indicates whether removal of examples should be

performed or not.
Although edition in our system is guided by a class

information, the resulting case-bases can be employed in
other learning processes with tangible benefits. For instance,
polished case-bases can work with semi-supervised or
clustering [47], [48] problems. In general, noise removal should

ease learning in other family of classifiers, like decision trees
or statistical-based learners. As future work, we will study the
effect of case-base edition on other classification methods.

In the following sections, we present the different
procedures involved in DS-RNGE. First, we describe
the first steps to initialize the distributed case-base
(Section III-A). Afterward, the editing/updating process is
presented (Section III-B). Here, we present details of insertion
and deletion of examples in the tree. Finally, in Section III-C
we describe the prediction phase.

A. Initial Partitioning Process

The first step in our system consists of building a distributed
metric tree formed by a top-tree (in the master machine) and a
set of local trees (in the slave machines). This distributed tree
will be queried and updated during next iterations with incom-
ing batches of data. From the first batch we take a sample of nt
instances to build the main tree. The sampled data should be
small enough to fit in a single machine and should maximize
the separability between examples to avoid overlapping in the
future subtrees. The nt parameter is normally set to a value
equal to the number of cores in the cluster. By doing so our
algorithm is able to fully exploit the maximum level of paral-
lelism in any stage. The routing tree is created following the
standard procedure presented in [41], where upper and lower
bounds are defined to control the size of nodes.

Once the top-tree is initialized, it is replicated to each
machine and one subtree per leaf node is created in the slave
machines (see line 7 of the pseudocode). Then, every element
in the first batch is inserted in the subtrees by following these
steps.

1) For each element, the algorithm searches the nearest leaf
node in the top-tree. According to the correspondence
between leaf nodes and subtrees we can determine to
which subtree each element will be sent. This process
is performed in a Map phase.

2) The elements are shuffled to the subtrees according to
their keys. Each subtree gets a list of elements to be
inserted.

3) For each subtree all received elements are inserted to
the tree in a local way. This process is performed in a
Reduce phase.

Note that the partitions/subtrees derived from this phase
will be maintained during the complete process for reusabil-
ity purposes, so that only the arriving instances will be moved
across the network in each iteration. Algorithm 1 explains this
procedure in detail using a MapReduce syntax.

B. Updating Process With Edition

When a new batch of data arrives, we need to start the
updating process with edition. This is aimed at inserting new
instances, as well as removing those that became redundant
over time. At first, the algorithm computes which subtree each
element falls into, following the same process described in the
previous section. Once all instances are shuffled to subtrees,
a local nearest neighbor search for each element is started in
corresponding subtrees.
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Algorithm 1 Initial Partitioning Process
1: INPUT: data, nt
2: // data is the input dataset
3: // nt Number of leaf trees to be distributed across the nodes
4: sample = smartSampling(data)
5: topTree = In the master machine, build the top M-tree

using sample and the standard partitioning procedure
explained in [41]. It will be replicated to every slave
machine.

6: For each leaf node in the topTree, one subtree is created in
a single slave machine. The resulting set of trees (stored as
an RDD) is partitioned and cached for further processing.

7: mapReduce e ∈ data
8: Find the nearest leaf node to e in topTree, and outputs

a tuple with the tree’s ID (key) and e (value). (MAP)
9: The tuple is sent to the correspondent partition and

attached to the subtree according to its key. (SHUFFLE)
10: Combine all the elements with the same key (tree ID)

by inserting them into the local tree. (REDUCE)
11: Return the updated tree.
12: end mapReduce

After obtaining neighbors the instance selector creates
groups, where each one is formed by a new element and
its neighbors. Then, local RNGE is applied on each group
(as explained in Algorithm 3). The idea behind that is to
build a local graph around each group and through this graph
to decide what kind of action to perform on each element
(insertion, removal, or none). New examples can be inserted
or not, whereas old examples (neighbors) can be removed or
maintained.

Since each graph has only a narrow view of the case-base,
the set of neighbors that can be removed has been limited to
those that share an edge with the new element. Removal of
old examples can be controlled through the binary parameter
ro. If activated, the removal may cause a drop in the overall
accuracy but the prediction process will run faster because
of the reduced size. Note that the insertion process is exact
in most of cases since the new elements are in the center
of the graph and a suitable number of neighbors (a default
value of 10) is enough to find their edges. The number of
neighbors for graph construction can be controlled through
the ks parameter. The greater the value of ks, the more precise
and the slower is the removal.

Once decisions for each element are taken we perform inser-
tions and removals locally in the subtrees in the same reduce
phase. Notice that by doing so the neighbor query and the
editing process are both performed in the same MapReduce
process, thus reducing the communication overhead. The
complete editing process is described in Algorithm 2.

Fig. 2 illustrates all the steps involved in DS-RNGE for one
training iteration (one batch). The first part shows how the top-
tree is built with two examples: e1 and e2. Once the main tree
is built one subtrees per element in the leaves is created in
the slave nodes. Every element is also inserted in its local
subtree. In the second phase a new element e3 arrives at the

Algorithm 2 Updating Process With Edition
1: INPUT: query, ks, ro
2: // query is the data to be queried
3: // ks represents the number of neighbors to use in the

instance selection phase.
4: // ro indicates whether to remove old noisy examples or

not.
5: mapReduce e ∈ data
6: Find the nearest leaf node to e in topTree and outputs

a tuple with the tree’s ID (key) and e (value). (MAP)
7: The tuple is sent to the correspondent subtree according

to its key. (SHUFFLE)
8: neighbors = the standard M-tree search process is

launched for each element in its local subtree in order to
retrieve the ks-neighbors of e. The output will consist of
a tuple with e (key) and a list of its ks-neighbors (value).
(REDUCE)

9: edited = apply the local RNGE algorithm (Algorithm 3)
to each tuple in neighbors. The output consist of the
insertion/removal decision for each element.

10: if ro == true then
11: Removed old noisy instances in edited from the tree.
12: end if
13: Add new correct instances in edited to the tree.
14: Return the updated tree.
15: end mapReduce

Algorithm 3 Local RNGE
1: INPUT: e, ne
2: // e incoming example
3: // ne set of neighbors for e
4: Compute the local RNGE graph using e and ne following

the procedure detailed in [46].
5: Mark e to be added iff most of its graph neighbors agree

with its class
6: for en ∈ ne do
7: if en is a graph neighbor of e and most of en’s graph

neighbors do not agree with its class then
8: Mark en to be removed
9: end if

10: end for

top-tree. The top-tree routes the search to the first partition,
where the element is sent to perform a neighbor search. This
search will allow to decide if the element should be inserted or
not. Let suppose that the edition method decides the insertion
is suitable according to its nearest neighbor (1-NN) (in this
case, e1). The insertion is then fully local, as the element has
been already sent to the correspondent node and partition. The
removal process performs the same operations but removing
those cases that do not agree with the edition results. In this
case, the decision for e1 is to remain unchanged.

Within the edition process, local construction of graphs and
subsequent filtering is depicted in Fig. 3. In this graphic a new
example from class A (dashed point) arrives to a given par-
tition (Algorithm 2). From the set of points in that partition,
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Fig. 2. Flowchart describing initialization, searching, and insertion processes in DS-RNGE.

Fig. 3. Local graph edition for each new example. Class A is colored in red
and class B in blue.

ks = 4-NN (thick circles) are selected from the pool to con-
struct the graph shown in step 2. Note that graphs are built
independently from other cases in the partition. Lastly, removal
decisions are made according to the connections between
neighbors. In our example, the dashed example is not inserted
in the case-base since most of its edge-neighbors do not agree
with its class. As there are no more agreements between nodes,
no additional removals are conducted.

C. Prediction Process

Classification process is an approximate function that is
started when new unlabeled data arrive at the system (see
Algorithm 4). For each element the algorithm searches for the
nearest leaf node in the master node and shuffles the elements
to the slave machines. Next, the standard M-tree search process
is used to retrieve the kp-neighbors of each new element. For
each group, formed by a new element and its neighbors, the
algorithm predicts the element’s class by applying the majority
voting scheme to its neighbors. Notice that the query and the
prediction are both performed in the same MapReduce phase
as in the edition process.

IV. EXPERIMENTAL STUDY

In order to evaluate the proposed methods, we have designed
a thorough experimental study with the following goals in
mind.

1) To evaluate the quality and performance of DS-RNGE
versus the base model without edition, as well as

Algorithm 4 Prediction Process
1: INPUT: query, kp
2: // query is the data to be queried
3: // kp represents the number of neighbors for predictions.
4: mapReduce e ∈ data
5: Find the nearest leaf node to e in topTree and outputs

a tuple with the tree’s ID (key) and e (value). (MAP)
6: The tuple is sent to the correspondent subtree according

to its key. (SHUFFLE)
7: neighbors = the standard M-tree search process is

launched for each element in its local subtree in order to
retrieve the ks-neighbors of e. The output will consist of
a tuple with e (key) and a list of its ks-neighbors (value).
(REDUCE)

8: For each tuple in neighbors return the most-voted class
from the list of neighbors. This value will be the class
predicted for the given element.

9: end mapReduce

to check the effect of the batch size on the models
(Section IV-B).

2) To check if defeatist search really affects the precision
and processing time in tree queries. To do that we per-
form a comparison between the edited models and the
base model without edition (Section IV-C).

3) To validate that our model scales-out correctly by
increasing the number of cores available in the cluster
(Section IV-D).

A. Experimental Framework

Six large-scale datasets have been used to evaluate the
performance and quality of DS-RNGE. Five of them are taken
from the UCI Machine Learning Database Repository [49]
(poker, susy, hhar,2 hepmass, and higgs), while another
big dataset ECBDL143 is a highly imbalanced problem

2From the Heterogeneity Human Activity Recognition experiment, only the
activity recognition dataset was used.

3http://cruncher.ncl.ac.uk/bdcomp/
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TABLE I
DATASETS USED IN THE EXPERIMENTS. FOR EACH SET, THE NUMBER

OF ORIGINAL EXAMPLES (# INST.), THE NUMBER OF UNIQUE

EXAMPLES (# UNIQUE), THE TOTAL NUMBER OF ATTRIBUTES

(#ATTS.), AND THE NUMBER CLASSES (#CL) ARE SHOWN

derived from the data mining competition held under the
International Conference GECCO-2014. A random sampling
without replacement (25% of the original size) was applied to
ECBDL14 and hhar datasets.

In order to transform these static datasets into streams,
we randomly partitioned them into equal-sized data batches
according to different batch sizes (50 000, 100 000, and
200 000). Before the start of executions, the batches are
enqueued. Only one batch per iteration (one second) serves
as an input to our system. To prevent the insertion of repeated
instances in the M-trees the unique examples from these
datasets were extracted and used as the former input for the
models. Table I presents the detailed description of the used
datasets.

Our evaluation process assumes that DS-RNGE is first
tested with the current batch in the queue and then updated
with it. This is known as interleaved test-then-train model [50]
and allows us to always test our model on unseen examples.

In our experiments three models have been tested. The first
one, called edited, follows the DS-RNGE scheme presented
in Section IV-A, but without allowing the removal of already
inserted examples. The second method, called edited-re, is
another version of DS-RNGE but with removal. And as bench-
mark method, the same distributed scheme is used but without
any type of edition. This scheme, called orig, directly inserts
elements in the distributed trees and apply the usual prediction
process (explained in Algorithm 4). Parameter configuration
for all models is described in Table II.

The experiments were performed on a cluster composed
of twenty standard nodes (hosting the Spark workers) and
one master (hosting the Spark Master) node. The comput-
ing nodes have the following features: two processors x Intel
Xeon CPU E5-2620 (6 cores/processor, 2.00 GHz, 15 MB
cache), 2 TB HDD, and 64 GB RAM. They are connected
through a QDR InfiniBand network (40 Gb/s). The following
software was used in the experiments: Hadoop 2.5.0-cdh5.3.1
from Cloudera’s open-source Apache Hadoop distribution,4

HDFS replication factor: 2, HDFS default block size: 128 MB,
Apache Spark Streaming 1.6, 460 cores (23 CPU cores/node),
and 960 RAM GB (48 GB/node). The datasets are hosted in
the distributed file system, but they are loaded from memory
and cached there before executions start.

4http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-
0/CDH5-homepage.html

TABLE II
PARAMETERS OF THE DISTRIBUTED MODELS

TABLE III
AVERAGE RESULTS BY METHOD AND BATCH SIZE (POKER)

TABLE IV
AVERAGE RESULTS BY METHOD AND BATCH SIZE (SUSY)

Let us now discuss in details the obtained results according
to several criteria: the different batch sizes and edition strate-
gies, the search strategy used in M-trees and the scalability of
our method.

B. General Comparison: Evaluation of Batch Sizes and
Edition Strategies

Detailed results for every dataset, model, and batch size
are given in Tables III–VIII. For each combination, several
information fields are shown: the batch size, the method
used, the average accuracy (Acc.), the average training time
(Tr. time), the average classification time (Cls. time), the
average number of instances and the percent of reduction in
brackets [# Inst. (%)], and the time (in seconds) spent in the
whole process. The best result for each column is highlighted
in bold.

From these experiments we can state the following con-
clusions: for every dataset, DS-RNGE without removal (edit)
is more precise than the other methods, which means that
DS-RNGE is useful in enhancing case-bases. DS-RNGE with
removal (edit-re) only obtains better results than the version
without edition (orig) in two datasets: 1) susy and 2) ecbdl14.
Competitive results in ecbdl14 can be explained by the fact
that reduction is negligible in this dataset, whereas for susy,
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Fig. 4. Accuracies obtained during data stream acquisition according to the number of batches processed. Batch size = 100 000. (a) poker. (b) susy. (c) hhar.
(d) ecbdl. (e) hepmass. (f) higgs.

TABLE V
AVERAGE RESULTS BY METHOD AND BATCH SIZE (HHAR)

it is not clear if it is due to hypo-reduction or other factors.
Note that both susy and hepmass benefits from the same level
of reduction, however, reduction is proven to be much more
negative in the last dataset. By other factors we mean: incom-
plete graphs for inserted examples, high dependency between
removed instances and their potential incoming neighbors, or
high noise presence in data.

The edit model is not only precise but also offers highly
satisfactory computational time, similar to the original version
(the fastest option). In most of the cases, edit is characterized
by better classification times than orig and similar results in
total time. When the amount of reduced elements is low, orig
is faster than edit (see Table VI). Nevertheless, when there
is a clear reduction (Table VII), edit compensates its time-
consuming training process with a quicker classification. On

TABLE VI
AVERAGE RESULTS BY METHOD AND BATCH SIZE (ECBDL14)

TABLE VII
AVERAGE RESULTS BY METHOD AND BATCH SIZE (HEPMASS)

the other hand, there is a clear advantage in terms of time on
using removal (method edit-re) but it fails on accuracy in 4/6
datasets.
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Fig. 5. Memory consumption per batch in megabytes. Batch size = 100 000. (a) poker. (b) susy. (c) hhar. (d) ecbdl. (e) hepmass. (f) higgs.

TABLE VIII
AVERAGE RESULTS BY BATCH SIZE (HIGGS)

Two hundred thousand elements per second seems to be the
best batch size for all datasets. According to the results, it can
be stated that the bigger the batch size, the lower the total
time and the higher the average time (both classification and
training). A bigger batch size implies that less network com-
munication and map/reduce phases are performed. However,
as more data is used for initialization with a bigger batch size
the average reduction gets lower and the average time results
higher.

To illustrate the progress of accuracy in the streaming pro-
cess, Fig. 4 depicts the individual accuracy values per batch
yielded by all models. In general, we can notice that the edit
model always improves its accuracy over the time. The orig
one also shows a positive trend, but in most of cases not
outperforming edit algorithm. This phenomenon is specially
remarkable in susy and ecbdl cases. The edit-re model shows

a different behavior depending on the amount of instances
reduced. For instance, for susy and ecbdl datasets edit-re
responds reasonably well, due to a lower reduction. This,
however, is not true for the rest of cases.

Fig. 5 depicts the evolution of memory consumption dur-
ing the course of stream processing. From all the plots we
can draw a similar conclusion: applying DS-RNGE is always
beneficial, as it leads to significantly reduced memory usage
in every case. Only in case of ecbdl dataset the reduction
can be viewed as a small one. This makes DS-RNGE highly
suitable for processing massive data streams, as it displays a
reasonable memory consumption allowing for a real-life and
real-time implementations. Therefore, we alleviate the pro-
hibitory requirements of standard nearest neighbor techniques,
allowing for a resource-efficient stream mining.

C. Distributed Neighbor Search Comparison: Approximate
Versus Accurate

In order to show that defeatist search (without backtracking
or buffer) in distributed M-trees can also offer competitive
results in terms of accuracy and efficiency, we have performed
some experiments comparing DS-RNGE with the distributed
model proposed in [42].

The same model proposed in Liu’s work has been imple-
mented, using a standard M-trees instead of hybrid spill trees
as originally proposed by Liu. This change has been intro-
duced to perform a fair comparison between Liu’s model and
ours, which is entirely based on M-trees. In the modified Liu’s
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Fig. 6. Distributed neighbor search comparison (approximate versus accurate)
in terms of average accuracy (%). Batch size: 200 000 instances/s.

model, a given node will be explored if the distance between
it and the nearest node to the query is in a range, which is
determined by the overlap buffer. Liu’s model (called accu-
rate) can explore more than one branch in its searches, whereas
DS-RNGE (called approximate) can only explore one.

In Fig. 6, each point compares approximate k-NN with the
accurate version on a single dataset in terms of the test accu-
racy. x-axis represents the accuracy values for approximate
k-NN, whereas y-axis for accurate k-NN. Points below y = x
line corresponds with datasets for which DS-RNGE performs
better. Surprisingly, the results show that DS-RNGE (approx-
imate) is better than the accurate solution for every dataset.
These results can be explained by the following fact: in those
cases where the neighbors of one element are shared between
nodes, it could happened that the “approximate” neighbors
better predicts the true class.

Fig. 7 illustrates the same comparison performed in the
previous figure, but in terms of efficiency (total time). Here,
points above y = x line corresponds with datasets for which
DS-RNGE is faster. In this case the results are expected,
approximate version always performs faster than the accurate
one. Exploring more than one branch is much less efficient
than exploring only a single one. In fact some extra map-
reduce phases need to be launched in the accurate version in
order to merge neighbors from different nodes to obtain the
final set of neighbors, which heavily hinders the searching pro-
cess. This especially affects the two biggest datasets: 1) higgs
and 2) hepmass.

D. Scalability Analysis: Increasing the Number of
Cores Available

Fig. 8 shows how the edited models scale-out when the
amount of resources available in the cluster is increased. In
this experiment the number of cores offered by Spark is grad-
ually increased by 50 in each step using the poker dataset
as a reference. A great reduction in time (until 200 cores)
can be observed in both versions. From 250 cores, the over-
head associated to the distributed scheme (network usage,
phase initialization, etc.) starts to equalize the gain obtained

Fig. 7. Distributed neighbor search comparison (approximate versus accurate)
in terms of total processing time (seconds). Logarithmic scale.

Fig. 8. Scalability study performed by increasing the number of cores avail-
able (x-axis). Total time spent by each method (in seconds) is displayed in
y-axis.

by adding additional cores. There is still a time reduction, but
the improvement tend to be more stable.

V. CONCLUSION

In this paper, we have presented DS-RNGE, a nearest
neighbor classification solution for processing massive and
high-speed data streams using Apache Spark. Up to our knowl-
edge, DS-RNGE is the first lazy learning solution designed for
large-scale, high-speed, and streaming problems. Our model
organizes the instances by using a distributed metric tree,
consisting of a top-level tree that routes the queries to the
leaf nodes and a set of distributed subtrees that performs the
searches in parallel. DS-RNGE includes an instance selec-
tion technique that constantly improves the performance and
effectiveness of the learner by only allowing the insertion of
correct examples and removing outdated ones. As all phases
in DS-RNGE perform the computations locally, our system is
able to quickly respond to the continuous stream of data.

The experimental analysis shows that DS-RNGE combines
high accuracy with significantly reduced processing time and
memory consumption. This allows for an resource-efficient
mining of massive dynamic data collections. DS-RNGE with-
out removal overcomes in terms of precision the base model
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without edition in any case. DS-RNGE yields better time
results in the prediction phase, whereas its competitor performs
faster in updating the case-base. In general, both algorithms
have similar performance, if we measure the total time spent
in both phases.

Our future work will concentrate on adding a condensa-
tion technique in order to control the ever-growing size of
the case-base over time. By removing redundancy, the time
cost derived from edition will be alleviated, while at the same
time maintaining the original effectiveness. Additionally, we
plan extend our approach to drifting data streams and propose
time and memory efficient solutions for rebuilding the model
as soon as the change occurs. We plan to tackle this chal-
lenge by extending our model with drift detection module, as
well as by using instance weighting with forgetting to allow
for smooth adaptation to changes. Additionally, we envision
modifications of our algorithm that will make it suitable for
mining massive and imbalanced data streams [51].
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• S. Ramı́rez-Gallego, S. Garćıa, and F. Herrera, Online Entropy-Based Discretization for Data
Streaming Classification. Future Generation Computer Systems.

– Status: Submitted.



Manuscript Details

Manuscript number FGCS_2017_2088

Title Online Entropy-Based Discretization for Data Streaming Classification

Article type Full Length Article

Abstract

Data quality is deemed as determinant in the knowledge extraction process. Low-quality data normally imply low-
quality models and decisions. Discretization, as part of data preprocessing, is considered one of the most relevant
techniques for improving data quality. In static discretization, output intervals are generated at once, and maintained
along the whole process. However, many contemporary problems demands rapid approaches capable of self-adapting
their discretization schemes to an ever-changing nature. Other major issues for stream-based discretization such as
interval definition, labeling or how is implemented the interaction between learning and discretization components are
also discussed in this paper. In order to address all the aforementioned problems, we propose a novel, online and self-
adaptive discretization solution for streaming classification which aims at reducing the negative impact of fluctuations
in evolving intervals. Experiments with a long list of standard streaming datasets and discretizers have demonstrated
that our proposal performs significantly more accurately than the other alternatives. In addition, our scheme is able to
leverage from class information without incurring in an overweight cost, being ranked as one of the most rapid
supervised options.

Keywords Data stream; Concept drift; Data preprocessing; Data reduction; Discretization;
Online learning

Corresponding Author Sergio Ramírez Gallego

Corresponding Author's
Institution

Department of Computer Science and Artificial Intelligence, University of
Granada

Order of Authors Sergio Ramírez Gallego, Salvador Garcia, Francisco Herrera

Suggested reviewers Leandro Minku, Bartosz Krawczyk

Submission Files Included in this PDF

File Name [File Type]

highligs_FCGS.docx [Highlights]

2017-sramirez-online-v3.pdf [Manuscript File]

biographies_authors.doc [Author Biography]

Submission Files Not Included in this PDF

File Name [File Type]

authors_photos.zip [Author Photo]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.



- We propose LOFD, an online, self-adaptive and locally-applied discretization algorithm for streaming 
classification.
- A key feature of the model is that it smoothly and efficiently adapts its limits minimizing the the 
negative impact of fluctuations.
- Interval labeling and interaction problems in data streaming are analyzed.
- Close interaction between discretizers and learners is addressed by providing two exhaustive 
solutions.
- The model is compared to the start-of-the art algorithms from different perspectives, such as real-
world problems to different simulated drift scenarios.
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aDepartment of Computer Science and Artificial Intelligence, CITIC-UGR, University of
Granada, 18071 Granada, Spain.

bFaculty of Computing and Information Technology, King Abdulaziz University, Jeddah,
Saudi Arabia.

Abstract

Data quality is deemed as determinant in the knowledge extraction process.
Low-quality data normally imply low-quality models and decisions. Discretiza-
tion, as part of data preprocessing, is considered one of the most relevant tech-
niques for improving data quality.

In static discretization, output intervals are generated at once, and main-
tained along the whole process. However, many contemporary problems de-
mands rapid approaches capable of self-adapting their discretization schemes
to an ever-changing nature. Other major issues for stream-based discretiza-
tion such as interval definition, labeling or how is implemented the interaction
between learning and discretization components are also discussed in this paper.

In order to address all the aforementioned problems, we propose a novel, on-
line and self-adaptive discretization solution for streaming classification which
aims at reducing the negative impact of fluctuations in evolving intervals. Ex-
periments with a long list of standard streaming datasets and discretizers have
demonstrated that our proposal performs significantly more accurately than the
other alternatives. In addition, our scheme is able to leverage from class infor-
mation without incurring in an overweight cost, being ranked as one of the most
rapid supervised options.

Keywords: Data stream, Concept drift, Data preprocessing, Data reduction,
Discretization, Online learning

1. Introduction

Learning models and subsequent results are highly dependent on the quality
of input data. Incorrect decisions can be taken if raw data are not properly
cleaned and structured. The data preprocessing task [1, 2] is an essential step
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in data mining, which aims at transforming raw data extracted from databases5

to polished datasets. This goal is achieved by removing negative factors inherent
in data, such as: noise, missing values, meaningless or redundant data. Data
reduction is a family of preprocessing techniques that focuses on obtaining a
reduced representation of data, at the same maintaining its original structure.
This can be done, for example, by selecting the most informative features or10

instances, or by simplifying the feature space.
Data discretization follows a reduction strategy which converts complex con-

tinuous attributes into a finite set of discrete intervals. Discretization has re-
cently become very popular in the data science community [3, 1, 4], mainly due
to the need of many learning algorithms for discrete values. For instance, stan-15

dard implementations of decision rules [5] or Näıve Bayes [6][7] (NB) only admit
categorical data in their processes. Even though other methods do not explic-
itly require discrete values, many of them benefit from simplified spaces [8]. In
general, discrete data usually convey faster learning processes and more precise
models, thus following the Occam’s razor principle.20

Standard discretization algorithms require the entire dataset to be in mem-
ory as a preliminary requirement. However, an increasing number of current
problems in industry (sensors, logs, etc.) output continuous data in form of
batches or individual instances (online) [9]. These unbounded and dynamic
data [10] (data streams) demand novel learning schemes that not only adapt25

well, but also that constantly revise their time and memory requirements [11,
12]. The ideal scenario is that in which instances are processed once, and then
discarded. Another requirement to face is the likely non-stationary of incoming
data (concept drift) [13]. Sudden or abrupt changes in data distribution [14]
require outstanding adaptation abilities to follow drifting movements in decision30

borders.
Online discretization [15] also suffers from concept drift as data distribution

is strongly connected with evolving intervals. Ideally, discrete intervals should
adapt as smooth as possible to drifts in order to avoid significant drops in
accuracy. Also adjustments should not imply complex rebuilding processes, but35

they should be solved rapidly. Up to date, few supervised approaches for online
discretization have been presented in the literature. Despite relevant, these
proposals tend to accomplish abrupt and imprecise splits [15], or they are too
costly for streaming systems.

How interval labels are defined and labeled by online discretizers, or what40

type of discrete information is passed to online learners are other open problems
that have received even less attention in the literature. Any minor alteration
in the meaning and/or the definition of discrete intervals means a certain sub-
sequent drop in learning accuracy. As shown in [15], the standard labeling
technique inherited from the static environment is unable to cope with these45

questions, and it shows a deficient behavior in this new paradigm. Hence novel
and improved schemes that explicitly address the interval labeling and interac-
tion problems are required in the streaming field.

The aim of this work is to tackle the previous problems by developing a new
solution that smoothly and efficiently adapts to incoming drifts. Our method,50
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henceforth called Local Online Fusion Discretizer (LOFD), mainly relies on
highly-informative class statistics to generate accurate intervals at every step.
Furthermore, local nature of operations implemented in LOFD offers low re-
sponse times, thereby making it suitable for high-speed streaming systems.
Finally, we detail two alternatives that can be used by online discretizers to55

effectively improve interaction between the discretization and learning phases.
The first approach naturally provides reliable histogram information to some
learners, whereas the second one is a renovated version of the standard scheme
which is valid for all learners. The improvements introduced here aim at min-
imizing the drawbacks associated to the dynamic relabeling and interaction60

phenomenons, described in Section 2.3.
Our approach will be evaluated using a thorough experimental framework,

which includes a list of 12 streaming datasets, two online learning algorithms,
and the state-of-the-art for online discretization presented in [15]. A thorough
analysis based on non-parametric and Bayesian statistical tests is performed to65

assess quality in the results. Additionally, a study concerning the impact of the
novel relabeling approaches, and a case study are also included for illustrative
purposes.

The remaining paper is structured as follows. Section 2 introduces the dis-
cretization topic from two different perspectives: its formal definition and its70

adaptation to the online environment. Section 3 describes throughly the so-
lution proposed, highlighting the main contributions introduced to solve the
problem. Section 4 presents the results obtained and the subsequent analysis.
Finally, some relevant conclusions are provided in Section 5.

2. Background75

In this section we detail the discretization problem and some related concepts
such as the use of border points as an optimization. Then the problem of
discretizing streaming data is presented, as well as a list of related methods
presented in the literature. Lastly, the issue of interval definition in the online
environment is thoroughly analyzed.80

2.1. Discretization: related concepts and ideas

Discretization is a data reduction technique that aims at projecting a set of
continuous values into a discrete and finite space [3, 16]. Let D refer to a labeled
dataset formed by a set of instances N , a set of attributes M , and a set of classes
C. All training instances are labeled with a label from C. A discretization85

algorithm would generate a set of disjoint intervals for all continuous attribute
A ∈ M . The discretization scheme generated IA consists of a set of cutpoints
which define the limits for each interval:

IA = {∀gi ∈ Dom(A) : g1 < g2 < . . . < gk}, (1)

where IA is the discretization scheme for A, and g1 and gk, are the inferior and
superior limit for A, respectively. Notice that the original scheme considers all90

distinct points in A at the start, where k ≤ |N |.

3



As a preliminary approach to interval labeling, we can associate each interval
with the same index as gi−1 forming the interval set I = {IA1, IA2, . . . , IAk},
|I| = k − 1. Labeling process (also called indexing) will determine how inter-
vals are retrieved in the subsequent learning process. Following the previous95

description, we can move to define the membership of continuous points to a
given interval IAj as follows:

∀p ∈ Dom(A), {∃j = {1, 2, . . . , k} | p ∈ IAj ⇐⇒ gj−1 < p ≤ gj}. (2)

For simplification purposes, gj−1 value for each attribute can be removed so
that intervals are uniquely defined by their gj . The attribute is upperly bounded
by gk.100

Supervised discretization problem (as described above) is a NP-complete [17]
optimization problem whose search space consists of all candidate cut points for
each A ∈ M , namely, all distinct points in the input dataset considering each
attribute independently. This initial space can be simplified by only considering
those points on the borders, which are known to be optimal according to several105

measures in the literature [18]. This improvement will let us to achieve better
class separability, as well as significant savings in complexity. For a deeper
analysis of border points, please refer to [19]. Formally, a boundary point
can be defined as any point y ∈ A between two elements v, z ∈ A with different
classes, such that v < y < z, and @w ∈ A | v < w < z.110

Among the wide set of evaluation measures that benefit from the inclusion of
boundaries, those based on entropy are distinguished by its outleading results
in discretization. For instance, FUSINTER [20], which integrates quadratic
entropy in its evaluations, has proven to be one of the most flexible and com-
petitive discretizers according to [16]. In each iteration, FUSINTER fuses those115

adjacent intervals whose merging would most improve the aggregated criterion
value, defined for each interval as follows:

µ(IAβ) =

|C|∑

j=1

α
c+j
|N |

( |C|∑

i=1

ci + λ

c+j + |C|λ
(

1− ci + λ

c+j + |C|λ
))

+ (1− α)
|C|λ
c+j

, (3)

where ci represents the number of elements in IAβ for a given class, c+j the
total amount of elements contained in IAβ , and α and λ are two control factors.

2.2. Online discretization for data streams120

Data streaming describes the scenario in which instances arrive sequentially
in form of unbounded instances or batches [21]. Standard algorithms are not
originally designed to cope with unbounded data since they typically assume
that the entire training set is available beforehand. New algorithms, capable
of constantly updating their structure, are then required [22] in this streaming125

scenario.
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Among the full set of features and problems to be considered in data stream-
ing, we highlight here those more relevant for discretization. Firstly, unbounded
streams impose a restricted limit to memory storage. Given that we do not have
prior knowledge about the length of streams, it is not possible to just save all130

incoming objects as the stream might be infinite. Ideally, algorithms should be
constrained to a single access to each instance. Afterwards, accessed instances
should be removed to meet the memory requirement. Additionally, novel in-
stances must be processed as soon as possible to avoid delays in the prediction
and update phases.135

Dynamic systems can also be affected by the changes in data distribution
introduced by new data [23]. This phenomenon, called concept drift, is well-
categorized and described in the literature [14]. Depending on the severity of
these modifications, drifts can be classified as: sudden (rapid changes), grad-
ual (smooth changes), incremental (uptrend), recurring (repetitive changes), or140

blips (sudden peaks).
Several learning strategies have been captured in the literature to overcome

the concept drift problem. Explicitly, algorithms can leverage from an external
drift detector [24] to detect and rebuild the model whenever a drift appears.
On the other hand, learners can hold a self-adaptive strategy based on sliding145

windows, ensembles [22], or online learners [25] –build the model incrementally
with each novel instance–.

The emergence of drifts in dynamic environments poses a major challenge
for online discretizers [15], which must adjust their intervals properly over time.
Interval adaptation should be as smooth as possible, at the same time reducing150

as well its time consumption.
Early proposals on online discretization usually follow an unsupervised ap-

proach, which defines a preset number of intervals in advance. Some proposals
compute quantile points (equal-frequency) in an approximate or exact manner.
The quantiles then serve to delimit further intervals. One of the most relevant155

proposals in quantile-based discretization is the Incremental Discretization Al-
gorithm (IDA) [26] algorithm. IDA employs a reservoir sample to track data
distribution and quantiles. Generated intervals are grouped in interval heaps,
an efficient data structure to retrieve min-max information in constant time.
Equal-width discretization is another alternative that uniquely demands the160

number of bins the attribute will be split.
In contrast to unsupervised discretizers, class-guided algorithms do not im-

pose a constant number of intervals, but they alternate splits and merges to
generate more informative cutpoints [19].Few proposals in the literature ad-
dress online discretization from a supervised perspective. PiD [27] was the first165

proposal to leverage from class information in its model based on two layers.
The former one produces preliminary cutpoints by summarizing data, whereas
the latter one performs class-guided merges on the previous splits. Recurrent
updates in the first layer are performed whenever a primal interval is above
its size. In counterpart, the second layer uses a parametric approach to merge170

candidates. PiD has been criticized [26] by several reasons: firstly, the corre-
spondence between layers dilute as time passes (see Section 3); secondly, high
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skewness in data might provoke a dramatic increment in intervals; and finally,
repetitive values might also undermine the performance due to the generation
of different intervals with common points.175

In [28], the authors developed an online version of ChiMerge (OC) that of-
fers identical results to those claimed by the original proposal. OC relies on a
sliding window technique as well as several complex structures to emulate orig-
inal ChiMerge. Nevertheless, the complexity of the data structures introduced
conveys a barely acceptable cost in time and memory requirements.180

2.3. Interval definition, labeling and interaction in the streaming scenario.

Evolving nature of discretization in streaming contexts poses a major chal-
lenge for the close interaction existing between supervised discretizers and learn-
ers. One-step definition in static discretization plainly ignores this problem by
assuming no further modifications in the set of cutpoints. However, one-step185

definition is constantly threatened by the never-ceasing arrival of unseen data
in this context. This unpleasant situation not only hinders the discretizer’s abil-
ity to partition the continuous space, but also the subsequent interaction with
the learning operator. As an illustrative example, suppose a logistic regression
algorithm relying entirely on literal labels [26] to learn patterns, which obtain190

deteriorated and imprecise information after each discretization step. At a given
cost, the algorithm is forced to discard some already learned patterns, whereas
others should be incorporated in order to maintain the algorithm’s performance.
This section aims at addressing all the aforementioned problems.

In the literature, we can find two alike strategies for interval labeling195

originally designed for static discretization: one based on directly assuming cut-
points as labels (i.e.: values lower than point 2.5), and another one based on
literal human-readable terms, usually set by experts (i.e.: < 2.5 is replaced by
“low” income). Interval definition is usually composed by the set of cut points
for each feature. Cut-point based intervals represent a quite versatile option as200

it do not require expert labeling. However, this strategy can be considered as
less appropriate for dynamic learning because cut-points constantly move across
the feature space. The previous scheme might be replaced by explicit labels that
would allow points vary freely. Nevertheless, learners that rely in literal labels
are known to suffer from a natural drop in accuracy because many learners205

directly rely on them to generalize. Additionally, new labels appear, and some
old ones disappear as a consequence of natural discretization evolution.

Although explicit labeling suffer from definition drift, the cut-points based
strategy –as defined by [18]– can be directly stated as outdated in streaming con-
texts. This is mainly due to intervals maintain class consistency by constantly210

shifting their limits (and hence their labels). To illustrate this problematic,
suppose an scenario where all cut points in an scheme IA in time t are slightly
displaced in time t+1, for example when a new element is inserted in the lowest
bin in IDA. In this case the online discretizer is forced to update the label of
each equidistant bins, therefore, a completely new scheme is generated. This215

abrupt change will cause that some previous information is lost, and the current
model remains outdated. The previous issue justifies the adoption of explicit
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labels to track intervals, and relegates cut points to a secondary role (exclusively
for definition).

It is important to distinguish between how the interval definition and la-220

beling tasks are accomplished, and how information is transferred between the
discretizer phase and the subsequent learning one (interval interaction). Most
of times labels also act as bridge between phases beyond as a explicit denomi-
nation for intervals. However, there exist some special situations where labeling
and interaction differ. For instance, the algorithm in [29] relies on cut-points to225

define its boundaries but provides updated class histograms as interaction unit.
From these discrete statistics, it is possible to derive the conditional likelihood
that an attribute-value belongs to an interval given its belonging to a class:
P (IAj|Class). This scheme is called statistic-based discretization, and does not
require labels explicitly. In this scenario, labeling loses its importance as long230

as appropriate counts are provided to the classifier. However, this scheme is
barely applicable to other algorithms beyond bayesian learners.

Explicit labeling also entails a range of major issues in online learning, such
as: abrupt changes in the original definition (label swap, label creation), or con-
stant transfer of instances between bins (instance relabeling). All of them deeply235

affect the underlying interaction between discrete values and the learning phase,
and imply a negative impact on the model performance as shown in [15]. This
is specially remarkable in algorithms that uniquely rely on labels, such as linear
gradient-based, or rule-based algorithms. Furthermore, not only the meaning
is susceptible to alteration, but also the number of intervals is altered. Linear240

classifiers, for instance, require the number of intervals and their meaning to
remain invariant over time [26]. In this paper we propose further improvements
to the explicit labeling scheme (Section 3) which enables the application of this
approach in streaming contexts. The aim here is to reduce as much as possible
the number of intervals and instances affected by relabeling.245

In order to illustrate the previous problem, we propose an example where
a given interval (numeric label i) is split into two new intervals. This causes
the amount of original intervals and labels to augment, and a new scheme to
be generated. If the right resulting interval is deemed as the new interval, the
new definition forces to interval i to borrow the label from the old interval i+1.250

This process is repeated sequentially from i+ 1 interval till the last one, which
is labeled as |I| = 4.

Figure 1 depicts a toy example on how the labeling of intervals evolves over
time after a split occurs under the standard scheme. The topmost row represents
the shape of intervals in time t. After a new cut point appears, interval I2 is split255

into two new intervals. It causes that intervals I2 and I3 need to re-adapt their
labels. In the middle row, the right partition (I3) will borrow the label from
next interval, and the rightmost one will receive a new label I4. Our alternative
(smooth shift) is represented by the bottommost row in which only the right
split changes. In this case, only one interval (I4) is affected, whereas the other260

intervals remains invariant. This scheme will be further explained in Section 3.
Despite current discretizers have solved properly the problem of dynamically

discerning between irrelevant and useful intervals in the online context, the
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Figure 1: Evolution of intervals before and after a split: a comparison of labeling techniques.
Number in squares corresponds with interval labels, black boxes with the intervals affected
by the split, and numbers on vertical lines with the threshold values delimiting the intervals.
The second row represents the standard labeling approach inherited from static discretizers,
whereas the third row depicts the smooth labeling scheme.

interval labeling and interaction problems have received little attention in the
literature. Only PiD [27] explicitly addresses them by providing a solution that265

offers free accurate histograms to the attached classifier (NB), similar to that
in [29]. As accounting is directly performed by PiD, interval labels do not play
a key role anymore, and they can be deemed as disposable. Criticisms to PiD
are focused on the fact that the previous scheme does not represent a general
solution for standard classifiers, being only valid for those based on histogram-270

based information.
Other methods in the literature, such as IDA or OC, do not explicitly address

the interval definition problem, but they directly assume the standard scheme
based on interval labels inherited from static discretization. This scheme nor-
mally consists of a set of ordinal discrete values (positive integers), characters,275

or even cut points. As explained before, this scheme is outdated and entails
many drawbacks.

3. LOFD: An Online Entropy-Based Discretizer

In this section we present LOFD, an online, local, supervised, bottom-up
discretizer [16] which smoothly adapts its online discretization scheme through a280

set of accurate histograms. LOFD is a entirely local and self-adaptive that apply
local merges and splits whenever a new boundary point appears. By default
LOFD relies on the smooth strategy (Section 2.3) to tackle the labeling problem,
however, it can be configured to provide likelihood information if required. As
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evaluation measure, quadratic entropy (Equation 3) is used to evaluate the285

fitness quality of potential merges.
Firstly, Section 3.1 provides two alike perspectives to address the interval

labeling and interaction problems; both included in LOFD. Section 3.2 explains
the other features included in LOFD, as well as description about split and
merge operations.290

3.1. Interval labeling in LOFD: smooth shifting
As mentioned before, online discretizers tend to adopt the standard dis-

cretization scheme by default. In this scheme any change in the shape or num-
ber of intervals is solved by creating a new scheme whose relationship with the
previous one will determine how the prediction model will perform in further295

steps. The most common idea is to label intervals by attaching an ordinal list
of integers to the interval set defined by points. However, plenty of label move-
ments between intervals arise as the training progresses. Our idea is to break
the requirement of using ordinal labels, and to replace them by unrelated la-
bels which minimize the number of intervals. In this new scheme, henceforth300

called smooth shift, the splits will be solved by attaching a new label to the
minority partition (see Figure 1). In case of merges, the interval will adopt the
label from the larger partition in terms of number of instances. In both cases,
the remaining intervals do not vary which considerably reduces the impact of
evolving discretization.305

Beyond providing smoother transitions, “smooth shifting” is completely valid
for any classifier that admits categorical variables. Some algorithms (random
forest) natively works with categorical variables, whereas others (logistic regres-
sion) assumes an implicit order in values that in the case of categorical terms is
erroneously imposed. This problem can be easily solved by introducing a binary310

encoding (one-hot) that equally separates labels in the feature space.
For those learners that can leverage from statistics, LOFD also offers an

scheme similar to that presented in PiD (statistic-based labeling). Through-
out the maintenance of augmented histograms, LOFD provides free likelihood
information to NB. In this scenario, intervals are defined and ordered by cut315

points, and labels are directly ignored. For each incoming test value, the inter-
val bounding the point will be retrieved, and the required information provided.
This direct interaction avoids revisiting and swapping interval labels, which
makes both the discretization and learning processes more lightweight.

3.2. The LOFD algorithm320

In this section we present the strategy implemented by LOFD to adapt its
scheme over time, as well as other relevant features and improvements intro-
duced and outlined below:

• Highly-informative splits: in online environments, it is complex and
costly to track real distribution of points given that algorithms are con-325

strained to certain memory bound. However, most of discretization de-
cisions heavily depend on statistical measures that require accurate in-
formation. For example, those based on entropy or mutual information.
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Thus, we can assert that the more accurately intervals track distributions,
the wiser decisions will be applied.330

In LOFD, and for each interval, we build an independent memory-
constrained histogram that accurately tracks distributions. This model
differs from PiD in that the latter one suffers from a weak correspon-
dence between layers which makes the histograms imprecise in most cases.
LOFD histograms are only limited by memory requirements though. By335

imposing size limits, we can adjust the trade-off between performance and
accuracy according to our requirements.

• Bi-directional discretization: LOFD proposes to consider both splits
and merges since both insertions and removals of points are considered and
relevant for the streaming scenario. Natural fluctuations in our scheme will340

be addressed by considering both actions, thus increasing the competitive-
ness of output solutions. Whereas merges are naturally applied, splits are
much more complex since they demand accurately conserved distributions.

• Extended merges: local changes in intervals may cause a previous ad-
jacent merge becomes positive. In order to improve the performance of345

merges, we propose to evaluate all potential combinations among the novel
interval and their adjacent intervals (see Algorithm 1). For splits far from
the extremes, four intervals must be considered: the two splits and their
neighbors.

3.2.1. Main process: instance-level350

The main procedure in LOFD is explained here. Firstly, discrete intervals
are initialized following the static process defined in FUSINTER [20] (line 6).
Discretization is performed on the first batch of elements, formed by iniTh
instances. From this point, LOFD updates the scheme of intervals in each
iteration, and for each single attribute att.355

For each new single point val, LOFD retrieves its bounding interval (ceiling)
from IA (line 10), which is internally implemented as a red-black tree1. If the
point is over the upper feature limit (lines 19-23), LOFD will generate a new
interval at this point, being val the new maximum for attribute att. A merge
between the old last interval and the new one is also evaluated by computing360

the quadratic entropy value for the potential merge. If merged entropy is lower
than the sum of parts, the change will be accepted.

If ceiling exists, val is inserted in the histogram in ceiling (also a red-black
tree). Using the previous histogram, we check if val is a boundary point or
not (Section 2.1). If affirmative (lines 14-17), ceiling is split into two parts365

with val as midpoint. Afterwards, different merge combinations are evaluated
between the resulting intervals, and their neighbors (as will be explained in
Section 3.2.2). The resulting set will be inserted in IA.

1https://en.wikipedia.org/wiki/Red-black_tree
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Finally, each point is added to the timestamped queue to ensure further
removals in case of histograms overflow (histogram size ≥ maxHist). This370

condition is checked on the entire set of intervals in lines 26-30. If needed,
LOFD retrieves points from the queue in ascending order (by age), and removes
these points from histograms until enough space for further points is available
in interval int. This mechanism is mainly used to avoid heavy searches in
overpopulated histograms. Further memory control can be programmed by375

adding a parameter that limit the growth of the timestamped queue. This would
help us to avoid memory overflow in scenarios where splits occur continuously.

Algorithm 1 LOFD algorithm

1: INPUT: D, initTh, maxHist
2: // D is the input dataset.
3: // initTh Number of instances before initializing intervals
4: // maxHist Maximum number of elements in interval histograms
5: I = On the first batch (i = 1 . . . initTh), apply the static discretization

process explained in [20].
6: for i = initTh+ 1→ N do
7: for A ∈M do
8: ceil = retrieve the ceiling interval that contains DiA

9: if ceil 6= null then
10: isBound = check if DiA is boundary
11: Insert DiA into ceil and update its criterion
12: if isBound == true then
13: (ceil, new) = split ceil into two intervals with DiA as cutpoint
14: Evaluate local merges between ceil, new, and the surrounding in-

tervals until no improvement is achieved.
15: Insert the resulting set into IA
16: end if
17: else
18: last = Create a new interval on the right side with DiA as upper

limit
19: Insert last into IA
20: Evaluate merge with the old maximum interval
21: end if
22: end for
23: add Di to the timestamped queue
24: for int ∈ IA do
25: if |histogram(int)| > maxHist then
26: Remove old points from the timestamped queue, and subsequently,

from the local histograms until |histogram(int)| <= maxHist. Re-
move empty intervals.

27: end if
28: end for
29: end for

11



Complexity is mainly determined by boundary evaluationO(|M |·log(maxHist)),
and the split/merge process O(|M | ·maxHist) which requires to fetch the whole
inner histogram2. In either case, the trade-off between performance and effec-380

tiveness can ultimately be controlled through maxHist. Hence, shorter his-
tograms will imply less accurate decisions, but more agile evaluations.

3.2.2. Merge and splits: interval-level

Figure 2 depicts a simplified scheme of the split process, which occurs when-
ever a new boundary point is processed. The new boundary point (2.2) intro-385

duced causes interval I2 to be separated into two intervals. Interval I2 now
contains those points from the histogram lower or equal than 2.2, and preserves
the same label because it contains more elements than the new interval I4.
Larger intervals keep their original label in order to reduce as much as possible
the effect of relabeling in inner points. The new interval receives label I4 (the390

next integer unseen), and those points higher than the cutpoint (2.2).

Figure 2: Flowchart describing a split in LOFD (smooth labeling) with three original inter-
vals (first row) and their histograms. A new point (2.2) is introduced, generating a split
and a new interval I4. In LOFD, splits are performed whenever a new boundary point is
processed. Number in squares corresponds with interval labels, number in brackets class dis-
tribution, and vertical lines with the cut points considered.

Whenever a new split/interval is generated, the merge process is launched
on the divided intervals and their neighbor intervals. Merge process can be
deemed as the opposite of split since it basically consists of the fusion of class
counters and inner histograms. From the set of potential combinations, that395

merge action, which more strongly reduces entropy (according Equation 3), will
be applied. The previous process will be repeated recursively until no more
merges are available or convenient. Note that a merge will be performed iff the

2The logarithmic contribution of interval searches has been removed from this formula
since |IA| tends to be negligible (see Section 4).
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quadratic entropy of the resulting interval is lower than the sum of both parts.
Notice also that merge is responsible of mixed histograms formed by boundary400

points from different classes in intervals I1 and I3.
This procedure avoids recomputing values for intact intervals (the vast ma-

jority), so that only one interval will require to re-evaluate its entropy and
potential merges in each iteration.

4. Experiments and case study405

This section provides a comparative analysis between our proposal and the
other state-of-the-art discretizers. As LOFD offers two alternatives for interval
labeling, two independent sections are issued here. In Section 4.2, LOFD adopts
smooth shifting whereas the rest of discretizers assume standard labeling to
interact with NB. In Section 4.3 LOFD and PiD directly interact with NB410

through histograms. Finally, a case study is included to illustrate the effect of
concept drift on evolving discretization intervals.

4.1. Experimental framework

Here we outline all the details related to our experiments, such as: datasets
processed, parameters involved and their values, validation scheme, etc. Evalu-415

ation has been performed in terms of prediction ability (accuracy), evaluation
time (spent on discretizing and prediction), and reduction ability on continuous
features (# discrete intervals).

Table 1 shows some basic information about data. Half of the datasets were
artificially created by the Massive Online Analysis (MOA) tool [30], ranging420

from sudden drift to different types of gradual drifts. For more details about
the parameter setting accomplished to generate these datasets, please refer to
our code repository3. The remaining datasets were collected from the official
MOA’s webpage, except for kddcup 10 that was processed and generated by Dr.
Gama4.425

In order to evaluate the performance of LOFD several state-of-the-art dis-
cretizers have been included in this framework for comparison purposes. They
range from supervised (OC and PiD) to unsupervised schemes (IDA - window-
based version). All described methods have been thoroughly analyzed and cat-
egorized in [15]. Gaussian Näıve Bayes (GB) has been elected as the reference430

classifier for our tests, because of the reasons exposed in Section 2. For the
remaining methods, Gaussian estimation is replaced by the discrete intervals
generated. Alternatively, Hoeffding Tree (HT) [31] is incorporated to test the
discretization effect of our solution on other learning models. Table 2 shows the
parameters involved in the experiments, as well as the values set according to435

the authors’ criteria.

3https://github.com/sramirez/MOAReduction
4http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
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Table 1: Basic information concerning datasets. For each row, # total instances (#Inst.), total
number of attributes (#Atts.) (the number of numerical (#Num.) and nominal (#Nom.)),
and the number of output labels (#Cl), are depicted.

Data Set #Inst. #Atts. #Num. #Nom. #Cl.

airlines 539,383 6 3 3 2

elecNormNew 45,311 8 7 1 2

kddcup 10 494,020 41 39 2 2

poker-lsn 829,201 10 5 5 10

covtypeNorm 581,011 54 10 44 7

blips 500,000 20 20 0 4

sudden drift 500,000 3 3 0 2

gradual drift 500,000 3 3 0 2

gradual recurring drift 500,000 20 20 0 4

incremental fast 500,000 10 10 0 4

incremental slow 500,000 10 10 0 4

Table 2: Description of parameters. Default values (in bold) are shown in the first row. Unless
specified, these values are common to all methods.

Method Parameters

Discretization initial elements = 100, window size = 1 (default)

Gaussian Bayes, w/o disc. (GB) –

Gaussian Hoeffding Tree Bayes (10 splits), w/o disc. (HT) –

Online ChiMerge (OC) [28] –

Proportional Incremental Disc. (PiD) [27] α = 0.75, initial bins = 500, update layer #2 = 10,000, min/max = 0/1

Local Online Fusion Disc. (LOFD) max. size by histogram = 10,000, initial elements = 5,000

The evaluation is performed following an standard evaluation technique for
online learning, called interleaved test-then-train [32]. In this scheme, in-
coming examples are first evaluated by the current model. Afterwards, the
examples are incorporated to the model in the training phase. Note that this440

technique is more appropriate for streaming environments than hold-out evalu-
ation.

All experiments has been executed in a single commodity machine with the
following characteristics: 2 processors Intel Core i7 CPU 930 (4 cores / 8 threads,
2.8 GHz, 8 MB cache), 24 GB DDR2 RAM, 1 TB HDD (3 Gb/s), Ethernet445

network, CentOS 6.4 (Linux). All algorithms, included our new approach, have
been packaged in an extension library for MOA (16.04v)5. All the experiments
have been launched in MOA.

4.2. Analytical comparative: smooth shift vs. static labeling

This section focuses on studying the effect of LOFD discretizer with smooth450

labeling in online learning, as well as comparing our solution with other alter-
natives which utilizes standard labeling.

5http://moa.cms.waikato.ac.nz/moa-extensions/
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Table 3: Classification test accuracy on discretized data (Näıve Bayes)

PiD IDA OC GB LOFD
airlines 63.0057 64.1563 65.0723 64.5504 65.0868
elecNormNew 71.9522 76.6905 74.0731 73.3625 77.1517
kddcup 10 99.1474 98.4644 98.1404 97.1908 99.2901
poker-lsn 55.0335 59.4337 58.5465 59.5528 69.3981
covtypeNorm 66.6306 62.7235 64.2254 60.5208 69.2387
blips 74.5680 66.4494 64.2148 60.9060 76.3668
sudden drift 65.7736 81.3168 77.8808 83.8144 83.5752
gradual drift med 60.8404 82.8908 80.1032 84.7000 84.2794
gradual recurring drift 65.1678 58.5250 58.5612 56.7450 67.9446
incremental fast 73.9900 75.6472 75.6036 76.3642 80.7308
incremental slow 65.6074 76.9186 75.4316 78.0688 81.6210

MEAN 69.2470 73.0197 71.9866 72.3432 77.6985

4.2.1. Accuracy results (predictive ability)

Table 3 contains average accuracy results as a summary of the entire learning
process performed by Naive Bayes. From these outcomes we can outline the455

following conclusions:

• There exists a clear advantage on using LOFD against other alternatives.
LOFD is on average 5% more precise than its closest competitor (IDA),
which means 2.5× 103 more instances correctly classified6.

• Up to now, supervised alternatives have generated worse solutions than460

those presented by unsupervised approaches, despite the former ones lever-
age from class information. On the contrary, LOFD utilizes this knowledge
to overcome the previous problem and thus generates better schemes.

• LOFD overcomes its competitors in 9/11 datasets, with similar results in
the other datasets. This fact proves the superiority of LOFD, and its great465

versatility for both real and artificial datasets, as well as for different type
of trends and drifts.

To reaffirm the positive results obtained by LOFD a thorough statisti-
cal analysis is performed on accuracy results throughout two non-parametric
tests [33]. Table 4 reports the results for Wilcoxon Signed-Ranks Test (1vs1)470

and Friedman-Holm test (1vsN) with a significance level α = 0.05. Both tests
assert LOFD clearly outperforms the other options, and no method is close in
performance to it (no ties in row). Additionally, p-values derived from Holm’s
test show to be highly significant (< 0.01).

We also include a Bayesian sign and signed-rank study [34] based on pairwise475

comparison between methods (in accuracy results). In these tests, a Dirichlet
process is assumed over likelihood distributions such that marginals on finite

6Considering 5× 105 instances by dataset on average
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Table 4: Wilcoxon pairwise test on accuracy, and ranking of methods generated by Fried-
man’s procedure + adjusted p-value by Holm’s Test. First two columns represents Wilcoxon
comparisons, where ’+’ indicates the number of wins achieved by each algorithm, and ’±’ the
number of wins/ties. The best achievement is highlighted in grease. Third column shows the
ranking of methods according to Friedman’s test, starting from the control method (topmost).
Last column details the adjusted p-values generated by the post hoc Holm’s test.

Algorithms Accuracy Ranking pHolm

+ ±

LOFD 4 4 9.8182 –

IDA 1 3 29.0909 0.004784

GB 0 3 31.0909 0.003691

OC 0 2 33.4545 0.001620

PiD 0 3 36.5455 0.000365

partitions are Dirichlet distributed. In Bayesian tests, it is assumed two classi-
fiers are practically equivalent if their mean difference of accuracies is within the
interval [−0.01, 0.01]. This interval defines what is called as region of practical480

equivalence (rope). Column rope in Table 5 defines the probability of two meth-
ods are equal, and corresponds with the area of the posterior within the rope.
Column left defines the probability of method A is practically superior to B,
whereas column right defines the probability of method B is practically superior
to A. Both values corresponds with the area to the left and the right of the rope,485

respectively. Signed-rank test differs from signed test in that the closed form
used to compute the distribution can be replaced by a Monte Carlo sampling of
weights, and the latter one does not require a symmetric distribution.

Table 5: Bayesian sign and signed-rank test between LOFD and its competitors. In each
cell, the first number represents the signed probability, and the second one the signed-rank
probability.

Algorithms (LOFD vs. ?) left (<<) rope (=) right (>>)

PiD 1.0—1.0 0.0—0.0 0.0—0.0

IDA 1.0—1.0 0.0—0.0 0.0—0.0

OC 1.0—1.0 0.0—0.0 0.0—0.0

GB 0.8181—0.9973 0.0—0.0 0.1818—0.0002

Table 5 shows that the posterior probability that LOFD is practically supe-
rior to the other alternatives. It is close to one for NB, and exactly one for all490

the discretizers.
Another classifier (HT) is included in the experiments in order to show that

LOFD is a versatile, non-exclusive solution for Näıve Bayes. With the inclusion
of HT, we have also proven all online classifier susceptible of discretization pro-
vided by the MOA platform. Table 6 shows the mean accuracy results following495

the previous learning procedure but using HT instead of NB. In this scenario,
the baseline model (HT with gaussian approximation, 10 splits) stands out as
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Table 6: Classification test accuracy on discretized data. Hoeffding tree used as learner.

PiD IDA OC HT LOFD
airlines 64.3951 64.5158 65.3619 65.0784 65.0008
elecNormNew 79.8442 79.8354 70.2132 79.1954 80.7645
kddcup 10 99.8389 99.7929 99.8368 99.7413 99.5120
poker-lsn 57.9820 69.8381 55.4892 76.0685 76.1936
covtypeNorm 77.6671 75.8652 70.1681 80.3119 81.8190
blips 73.6652 86.0112 35.7974 90.9808 79.3036
sudden drift 69.5128 82.9856 61.3936 84.8418 86.7238
gradual drift med 64.6858 84.1394 51.1838 85.5088 86.5246
gradual recurring drift 68.2206 83.7164 35.6192 88.3368 77.8664
incremental fast 71.1508 78.6526 50.6528 82.7748 77.0852
incremental slow 66.3744 76.7644 50.5308 83.1052 70.9906
MEAN 72.1215 80.1924 58.7497 83.2676 80.1622

the best method on average. Nevertheless, LOFD represents an interesting op-
tion for real data, outperforming its competitors in 3/5 cases. In general, LOFD
is advantageous in the whole spectrum of problems (5/11). Finally our solution500

stands among with IDA as the best discretization alternative on average.
In summary, LOFD has shown to be compatible with other online algorithms

beyond NB. Despite HT can be considered as less susceptible to discretization
than NB, our solutions also stands as a positive alternative in some problems.

4.2.2. Time results (runtime performance)505

It is well-known that supervised approaches tend to be more time-consuming
than unsupervised ones, in return they are able to leverage from class informa-
tion. In streaming environments, it is crucial to control the rapidness of algo-
rithms. Table 7 compares methods in terms of evaluation time (discretization
+ learning). Unsupervised methods run faster on average than supervised ones,510

as previously discussed. IDA discretizer is 2 times faster than the closest su-
pervised option (PiD), whereas LOFD (522.42) is ranked as one of the fastest
supervised options, behind PiD (508.58). If the throughput rate (time by in-
stance) is computed, we can observe LOFD is able to process each example
in approximately 1 millisecond7, which seems suitable for most of streaming515

systems.

4.2.3. Number of intervals (model complexity)

Although sometimes irrelevant, the third component to consider here is the
number of intervals generated by discretizers. A reduced set of intervals usually
imply simpler learning processes, and subsequently, simpler models [16]. How-520

ever, a reduced number of intervals is typically associated with poor learning
capabilities inasmuch as class separability is not fully accomplished. Table 8
depicts information about the simplicity of discretization schemes in terms of
number of intervals generated. OC is elected as the best alternative since its

7Considering again that the benchmark dataset has 5× 105 instances.
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Table 7: Global time in seconds (discretization + classification)

PiD IDA OC GB LOFD
airlines 114.62 160.16 595.29 14.04 261.48
elecNormNew 28.25 9.17 12.57 0.67 16.49
kddcup 10 526.50 158.69 3,850.95 18.59 341.49
poker-lsn 129.11 104.30 1,769.26 11.72 390.99
covtypeNorm 408.86 275.40 1,694.97 28.28 690.43
blips 1,610.87 487.77 1,013.60 12.02 780.17
sudden drift 91.56 74.39 183.15 2.49 490.70
gradual drift med 210.77 94.08 172.43 3.63 672.94
gradual recurring drift 1,152.51 429.20 1,038.21 12.52 741.98
incremental fast 986.21 274.86 518.33 5.68 853.27
incremental slow 335.08 246.33 615.29 6.06 506.64

MEAN 508.58 210.40 1,042.19 10.52 522.42

Table 8: Number of intervals generated by discretizer. Best value (lowest) by row is highlighted
in bold.

PiD IDA OC LOFD
airlines 17 48 29 39
elecNormNew 81 54 33 50
kddcup 10 300 138 158 153
poker-lsn 51 55 43 42
covtypeNorm 344 330 96 82
blips 1,924 126 120 552
sudden drift 22 24 18 28
gradual drift med 17 24 18 30
gradual recurring drift 1,829 126 120 504
incremental fast 1,085 66 60 55
incremental slow 313 66 60 75

MEAN 543.91 96.09 68.64 146.36

schemes typically consists of few intervals. Nevertheless, in this scenario, simple525

solutions do not correspond with accurate solutions (see OC results in Table 4).
Although LOFD solutions can be deemed as much more complex (more inter-
vals), they lead the accuracy ranking in return.

4.2.4. Case study: drift effect on discretization

Figures 3 (blips) and 4 (poker-lsn) aim at depicting the effect of drifts on530

discretizers’ performance. In Figure 3, some abrupt peaks can be observed, as
well as the LOFD’s ability to recover from them properly. This ability allows
LOFD outperforms other methods from early stages. Also notice that LOFD is
the only algorithm capable of sustaining the accuracy rate after the drift in the
midway of the series.535

No remarkable drift can be distinguished from Figure 4, however, we can
notice that LOFD’s accuracy rate is much more competitive and less fluctuating
than presented by other methods. Regarding the time plots, LOFD shows an
efficiency order close to linear for both problems.
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Figure 3: Detailed plots of prequential accuracy, and CPU time over the data stream progress
(# instances processed) on blips.
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Figure 4: Detailed plots of prequential accuracy, and CPU time over the data stream progress
(# instances processed) on poker-lsn.

4.3. Analytical comparative: statistic-based labeling540

Beyond standard labeling, augmented histograms provide enough informa-
tion for a correct NB-based learning. Labels are not required anymore in this
context. This section presents an analysis about how valuable could be the adop-
tion of this scheme in online discretization, and whether the previous scheme
is more advantageous for PiD or LOFD. It is noteworthy to remark that the545

histogram scheme is the default strategy presented in [27], and the only one
tested in that work.

Table 9 provides evidence of the negative effect of histogram version on PiD
(from 69.25% to 60.52% in accuracy), and its bad results compared to LOFD.
Specially remarkable is the case of poker-lsn where almost all instances are in-550

correctly predicted. If we focus on this dataset, we can notice several deficiencies
in PiD. First of all, if new values are laid out of the range defined by parameters
min/max, there will be required several iterations to create the required inter-
vals. Likewise, as no interval is defined for the new overflowed point, PiD will
not provide histogram nor likelihoods to NB. Therefore, subsequent predictions555

will be almost misguided. In poker-lsn, the effect is much more astonishing, sim-
ply because NB has more options (classes) to choose from. All these evidences,
plus those presented in Section 2.2, show that combination “histogram + PiD”

19



Table 9: Classification test accuracy (%) + total time on discrete data (histogram scheme)

Time (s) Accuracy

Datasets PiD LOFD PiD LOFD

airlines 108.08 221.01 53.4763 64.6136

elecNormNew 21.18 13.81 74.1989 75.1324

kddcup 10 514.84 140.38 97.9902 99.2079

poker-lsn 108.71 55.26 0.1117 61.0778

covtypeNorm 407.16 217.69 63.1194 62.9710

blips 1,243.54 315.70 70.9794 72.7270

sudden drift 89.53 479.93 38.6880 83.3610

gradual drift med 180.98 480.45 51.1544 84.4526

gradual recurring drift 1,201.22 351.77 62.9858 64.0668

incremental fast 868.54 500.65 75.6676 75.9816

incremental slow 278.62 267.95 77.3006 77.2844

MEAN 456.58 276.78 60.5157 74.6251

does not work properly.
LOFD outperforms PiD in 8/11 datasets, and its mean accuracy (74.63%)560

across all datasets is even superior to that of each method in Table 3. It shows
that standard/smooth labeling seems to perform better than the histogram
alternative in terms of accuracy rate.

Regarding total time (discretization + prediction), there is a clear advantage
on relieving NB from its competence of histogram counting. Transition between565

discretization and prediction is more direct, and that improvement is reflected
in LOFD’ time results (almost half time than in Table 7). Time improvement
in PiD is less noticeable, but still competitive and relevant.

In summary, standard/smooth labeling contributes to obtain much more pre-
cise models, and this is a more versatile strategy that can work with any online570

classifier as mentioned in Section 3.1. Nevertheless, free information provided
by histogram-based discretizers allow classifiers to perform faster predictions.

4.4. Case study: sudden drift scenario

This section illustrates the different discretization solutions offered by the
discretizers studied, as well as how they adapt their solutions after the appear-575

ance of concept drifts. Figure 5 depicts the solutions generated for the sudden
drift dataset, before and after (+1× 104 instances later) a drift appears in at-
tribute #2. The drift concretely appears after iteration 3.75× 105

Among with the cut points limiting intervals (vertical lines), a simplified
class histogram of the last 1× 103 points is included in the figure. Left subplots580

show the density of points before the drift, where most of points are blue, and
skewed to the right. After the drift (right subplots) more red points appear on
the left side, thus removing practically the skewness. The expected output here
is that more intervals appear in the leftmost part of the histogram in order to
follow the trend and thus better separate classes.585
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As observed in Figure 5, only LOFD generates more cut points to the left
of the midpoint after the drift, whereas the rest look practically identical to its
previous value. In fact, we can observe the other supervised schemes look quite
misguided given that intervals are quite concentrated, thus showing a high level
of overlapping (specially those of PiD). Concerning IDA, its discretization so-590

lutions fits perfectly an equal-frequency approach as expected. LOFD intervals
also look well-distributed, but at the same time they respect and follow the class
borders.

5. Concluding Remarks

In this paper we have studied several major issues to be faced by contem-595

porary online discretizers. How discretizers should adapt the intervals or how
intervals are labeled and interact with learners are two of the main axes on
which further developments should revolved. As a potential solution for the
interval labeling and interaction problems, we have proposed and analyzed two
opposing strategies. The first one is a renovated solution valid for every online600

learning system, whereas the other one relies on histograms to provide direct
information to bayesian learners, for example. Both alternatives have shown
in the experiments their positive effect on the transition between consecutive
discretization states.

To solve the adaptation problem we have implemented all the labeling schemes605

in a novel online discretization algorithm, called LOFD. This discretizer pro-
duces self-adaptive and highly-informative discretization schemes, in which pre-
cise intervals are supported by updated class statistics. LOFD also presents
a high level of responsiveness thanks to the fully local strategy implemented,
mainly based on fast interval fusions and splits.610

The complex experimental framework performed, with 12 datasets and 3
algorithms, has proven that LOFD is by far the most competitive solution in
terms of predictive accuracy. It has also been confirmed by the statistical analy-
sis carried out with a significance level α ≤ 0.01. LOFD is also ranked as one of
the most rapid supervised discretizers. Compared with the other alternatives,615

which either barely cover the search space or generate too many meaningless
intervals, LOFD is able to achieve an excellent trade-off between simple and
precise solutions.
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[11] M.-A. Aufaure, R. Chiky, O. Curé, H. Khrouf, G. Kepeklian, From busi-655

ness intelligence to semantic data stream management, Future Generation
Computer Systems 63 (Supplement C) (2016) 100 – 107, modeling and
Management for Big Data Analytics and Visualization.

22



[12] S. Ramı́rez-Gallego, A. Fernández, S. Garćıa, M. Chen, F. Herrera, Big
data: Tutorial and guidelines on information and process fusion for ana-660

lytics algorithms with mapreduce, Information Fusion 42 (Supplement C)
(2018) 51 – 61.

[13] R. Pears, S. Sakthithasan, Y. S. Koh, Detecting concept change in dynamic
data streams, Machine Learning 97 (3) (2014) 259–293.

[14] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey665

on concept drift adaptation, ACM Computing Surveys 46 (4) (2014) 44:1–
44:37.

[15] S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woniak, F. Herrera, A
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Figure 5: Density plots before and after a concept drift in attribute #2 (sudden drift dataset).
Each row represents a different discretizer, each column the distribution of data before and
after the drift, and each vertical line the intervals generated.25
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