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ABSTRACT. In this paper, we find the w-value of the generators of any numerical semigroup
with embedding dimension three. This allows us to determine all possible orderings of the
w-values of the generators. In addition, we relate the w-value of the numerical semigroup to
its catenary degree.

1. INTRODUCTION

The arithmetic of non-unique factorizations in rings and monoids has been a popular topic in
the recent mathematical literature. We focus on extending the results in [3], [4] and [8], where
the w-function, an arithmetic measure of how far an element is from being prime (cf. Section
2.3), is studied in numerical semigroups. In [3], the authors present an algorithm for computing
values of the omega function on any numerical semigroup, and focus on computing w-values
for the generators of an embedding dimension three semigroup. When S is a numerical
semigroup with minimal set of generators {ni,ng,ns}, with ny < ng < ng, there are 13
possible inequalities involving the w(n;) (for instance w(ni) < w(ng) < w(ns)). Examples of
eight of these orderings were given in [3], and two more were given in [8]. The authors in
[8] conjectured that the last three orderings are not possible. In this paper, we compute the
w-values of the generators in the embedding dimension three case (Theorems 4.6 and 4.9). As
a by-product, in Theorem we confirm the conjecture cited above in [8]. Additionally, we
relate, for embedding dimension three, the w-value of a numerical semigroup to its catenary
degree (cf. Section 2.2). We open in Section 2 with a brief review of definitions needed in the
paper’s remaining four sections. In Section 3 we consider the structure of the set of bullets (cf.
Section 2.3) for the generators. In Section 4, we produce the w-values for the generators in
the embedding dimension three case. Section 5 considers the relation between the w-function
and the catenary degree and Section 6 discusses the resolution of the conjecture mentioned
above from [§].

In addition to [3], [4], and [§] previously mentioned, we note that there has been much
recent work on the behavior of the w-function in several different settings. In [I] and [2] the
behavior of the w-function is studied on commutative rings and integral domains. The software
package [10] will compute values of the w-function in any affine semigroup (finitely generated
submonoids of N¥), and was used in [I1] to obtain some general and asymptotic results. We
note that the package [9] now deals also with affine semigroups, and has optimizations for full
affine semigroups; see Chapter 10 of the manual. We used [9] for making batteries of examples
that led us to many of the results presented in the current paper. It is shown recently in [20]
that the omega function on a numerical semigroup is eventually quasi-linear, and the same
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authors in [21] give a comprehensive survey of the results in [4, [I1], 20]. The current paper is
mostly self-contained. Undefined terminology or notation regarding numerical semigroups or
factorization theory can be found in [22] and [15], respectively.

2. PRELIMINARIES

A numerical semigroup S is a nonempty subset of the set of nonnegative integers N that is
closed under addition, contains 0 and has finite complement in N. The condition #(N\S) < oo
is equivalent to ged(S) = 1 (see for instance [22), Chapter 1]). The largest integer not belonging
to S is its Frobenius number F(S). Recall that S is symmetric if for every x € Z \ S,
F(S) —xz € S. In [22, Chapter 3] the reader can find more characterizations of the symmetric
property.

We say that the positive integers n1, ..., n, generate Sif S = {>°F_, x;n; | ; € N for each i}.
For such a generating set, we use the notation S = (ny,...,np). Using elementary number
theory, it is simple to show that every numerical semigroup has a finite generating set, and in
fact a unique one with minimal cardinality. The elements of this unique minimal generating
system are called minimal generators, and its cardinality is known as the embedding dimension
of S, denoted e(S).

Assume that A = {n,...,n,} is the minimal generating set of the numerical semigroup S.
Consider the monoid epimorphism

0 : NP = S plar,...,ap) =aing + -+ + apny,

known as the factorization morphism of S. The monoid S is isomorphic to NP/o, where
o={(a,b) e N’ x NP | p(a) = ¢(b)} is the kernel congruence of ¢.

A presentation of S is a system of generators of o, and accordingly, a minimal presentation
is a presentation such that none of its proper subsets generates o.

2.1. Numerical Semigroups of Embedding Dimension Three. Let S = (nj,ns,n3)
be a numerical semigroup with embedding dimension three. Define ¢; = min{t € N\ {0} |
tn; € (nj,nk),{i,75,k} = {1,2,3}}. Then, whenever {i,j,k} = {1,2,3}, there exists some
rij, Tik. € N such that

(1) CiNg = TN + TikpN.

Herzog in [I8] showed that the following are equivalent: (a) S is symmetric, (b) r;; = 0 for
some 4, j € {1,2,3}, and (c) S is a complete intersection (has a minimal presentation with two
elements; see [22, Chapter 8] for details). In embedding dimension three this is also equivalent
to S being free, which means that it has a minimal presentation with staircase shape for some
arrangement of the generators (see [22, Section 8.3] for the definition and characterizations of
free numerical semigroup).

Theorem 2.1. [22, Theorem 10.6] Let pi,pe € N\ {0,1} be relatively prime. Let a,b and
¢ be nonnegative integers with a > 2,b 4+ ¢ > 2 and ged(a,bpy + ¢p2) = 1. Then S =
(ap1, ap2,bp1 + cp2) is a symmetric numerical semigroup with embedding dimension three.
Moreover, every embedding dimension three symmetric numerical semigroup is of this form.

2.2. Catenary degree. Let S be minimally generated by {ni,...,n,}. The set of factoriza-
tions of an element n € S is

Z(n) = ¢ '(n) = {(a1,...,ay) ENP | agny + - + apn, = n}.
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The length of a factorization a = (ai,...,ap) € Z(n) is |a| = a1 +--- + ap. For z =
(21,05 2p), 2" = (21, -+, 2,) € NP write ged(z, 2') = (min{z1, 21}, ..., min{z, z,}) and set

d(Z, ZI) = max{]z - ng(Z7 ZI)’? ’Z/ - ng(Za Z/)‘}

to be the distance between z and 2. Given z € N? and Y C NP, we define d(z,Y) =
min{d(z,y) | y € Y} (which exists by Dickson’s Lemma,; see for instance [22, Lemma 8.6]).
The support of z € NP is defined as Supp(z) = {i € {1,...,p} | z; # 0}.

Given n € S, 2,2 € Z(n), and N € N, an N-chain of factorizations from z to 2’ is a
sequence z1,...,2, € Z(n) such that 2y = 2,2 = 2/ and d(z;,2;41) < N for all i. The
catenary degree of n, denoted c(n), is the minimal N € N U {oco} such that for any two
factorizations z,2’ € Z(n), there is an N-chain from z to 2’. The catenary degree of S,

denoted c(S), is defined by
c(S) = sup{c(n) | n € S}.

Given z,z € Z(n) with n € S, we say that z and 2’ are R-related if there exists a chain

Z1,..., 2 such that

® 21 =2z, 2, =2, and

e z;-zi11 # 0 (equivalently Supp(z;) NSupp(zi+1) is not empty) for alli € {1,...,k—1}.
The R-relation is an equivalence relation and the set of R-classes of Z(n) is the set of connected
components of the graph V,,, whose vertices are the factorizations of n and 2z’ is an edge if
z -7 # 0. This graph has the same connected components as the graph G,, whose vertices
are the minimal generators n; of S such that n —n; € S, and n;n; is an edge provided that
n — (n; +n;) € S. Since there are only finitely many elements n such that the graph G, is
disconnected (see [22], Chapter 7]), there are only finitely many n for which the relation R
yields more than one R-class.

An element s € S is said to be a Betti element if Z(s) has more than one R-class. The set of
Betti elements of S is denoted by Betti(S). Let n € S be a Betti element, and let RY,..., R}
be the distinct R-classes of Z(n). Set ju(n) = max{r?,...,r; }, wherer} = min{|z| | z € R}'}.
Define u(S) = max{u(n) | n € Betti(S)}. /

Theorem 2.2. [7, Theorem 3.1] Let S be a numerical semigroup. Then
c(S) = p(S).

From the proof of this result, it follows that the catenary degree of a numerical semigroup is
attained by one of its Betti elements. Several papers have recently appeared in the literature
that address problems involving the catenary degree on numerical semigroups (see [5], [6] and
[19)).

2.3. w-primality. An element in a numerical semigroup is irreducible if it cannot be writ-
ten as a sum of nonzero elements. Obviously, the only irreducible elements in a numerical
semigroup are its minimal generators.

Let S be a numerical semigroup minimally generated by {ni,...,n,}. The w-primality
function assigns to each element n € S the value w(S,n) = m if m is the smallest positive
integer with the property that whenever (3>°F_, a;n;) —n € S with |a| > m (a = (a1, ..., ap)),
there exists b = (b1, ...,bp) € NP with b < a (with the usual partial ordering on NP) such that
(3P bin;) —n € S and |b] < m. Note that w(S,n) < oo for each n in a numerical semigroup
(see [16]). When S is clear from the context, we simply write w(n). Furthermore, we set

w(S) =sup{w(S,n;) |ie{1,...,p}}.
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By definition, an element b € S is a prime element if and only if w(S,b) = 1, and S is factorial
if and only if w(S) = 1. Numerical semigroups other than N have no prime elements.

We say that a = (ai,...,ap) € NP is a bullet for n if (3°F_; a;n;) —n € S and, whenever
aj #0, (O°F_, ain;)—nj—n ¢ S. Bullets correspond to minimal elements with respect to < in
the set of all factorizations of elements of n+.S. The set of bullets for n € S is denoted B(n).
In numerical semigroups, the set of bullets for a fixed element n lies in a bounded subset of
NP,

Lemma 2.3. |21, Lemma 3.7] Fiz a numerical semigroup S minimally generated by {n1,...,n,}
andn € S.

(1) For every i with 1 < i < p, there exists b; > 0 such that b;e; is a bullet for n, where
e; is the ith row of the p X p identity matriz.
(2) B(n) C {a € NP | a <b}, where b= (b1,...,bp).

From the above lemma, for every ¢ € {1,...,p}, we define m;(n) = b; when n € S.
The following proposition, which is a particular instance of [4, Proposition 3.3|, is useful for
computing the w invariant.

Proposition 2.4. Let S be a numerical semigroup. For every s € S we have
w(s) = sup{la] | = € B(n)}.

3. BULLETS AND R-CLASSES
We begin with a general result on bullets.

Lemma 3.1. Let S be a numerical semigroup minimally generated by = {ni,...,np}. Let
n € Betti(S) with a,b € Z(n) in different R-classes. For every i € Supp(b) it follows that
a € B(n;).

Proof. Assume to the contrary that there exists ¢ € Z(n; +5) and x € N¥\ {0} such that
c+x = a. From ¢ < a, a-b =0, and i € Supp(b), we deduce that i € Supp(c). Asc € Z(n;+5),
there exists d € Z(n;+5) with i € Supp(d) and ¢(c) = ¢(d). Hence p(d+x) = p(ct+z) = ¢(a).

As 0 # z and c+x = a, we deduce (d+z)-(c+x) = (d+x)-a # 0. Also, i € Supp(b)NSupp(d),
and consequently (d + x) - b # 0. This leads to aRb, a contradiction. O

With this lemma and Proposition 2.4 we recover the well known equality c(S) < w(S)
for numerical semigroups (see [17]). Lemma has another direct consequence in embed-
ding dimension three. Let S = (ni,n2,n3) be a numerical semigroup with embedding di-
mension three. Let ¢; and r;; be as in (I). According to [22, Example 8.23], Betti(S) =
{cin1, cang, c3ns} (though it might be the case that ¢;n; = ¢;n; for some i # j).

Corollary 3.2. If S = (n1,n2,n3) is a numerical semigroup with embedding dimension three,
then for every i € {1,2,3} it follows that Z(c;n;) \ {cie;} € B(n;). Also, if ri; # 0 for some
i,j € {1,2,3} with i # j, then c;e; € B(n;).

Proof. If for all 4,4, riyj # 0, from [, Proposition 5.5] and [12, Corollary 5], Z(¢;in;) =
{ciei,rije; + rirer}. The assertion now follows from Lemma If to the contrary r;; = 0,

for some 1, j, then we use 2) in [14, Lemma 11] when # Betti(S) = 2, or [13| Proposition 1
b)] if # Betti(S) = 1. O

We now focus on the case where S is nonsymmetric with embedding dimension three. Let
ci, r;j be as in Section For such an S, it follows that r;; # 0 for all 4,5 € {1,2,3}. Also
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from [4, Proposition 5.5] and [12], Corollary 5] #Z(c;n;) = 2 and, more precisely,
Z(cini) = {ciei, rijej + riger}.

Proposition 3.3. Let S = (n1,na,n3) be a nonsymmetric numerical semigroup with embed-
ding dimension three. Whenever {i,7,k} = {1,2,3}, we have that

B(nl) = {ei, Cj€j, Ckek,Tij€j + rikek}.

Proof. The inclusion {e;, cje;, cyey, rije; + riger} € B(n;) is a consequence of Corollary
This also implies that no other element with support of cardinality one belongs to B(n;),
and that ¢ does not belong to the support of any bullet other than e;. Assume that there
exists xe; + ye, € B(n;), with ,y € N\ {0}. Then xn; + yn; € n; + 5, and consequently
there exist a,b,c € N with a # 0 such that xn; + yn; = an; + bn; + cny. The minimality of
xe; + ye; (this element is a bullet), forces b = ¢ = 0. Hence a > ¢;. Notice that a = ¢; implies
(z,y) = (1ij, i), since Z(cin;) = {ciei, rijej+river}. If a > ¢;, then (a—c;)ni+rinj+rigng =
xnj + yny, contradicting the minimality of xe; + ye;, because 7;; # 0 # 7. Hence we have
an equality. O

From Proposition we deduce this important corollary.

Corollary 3.4. Assume that S = (ni,ng,ng) is a nonsymmetric numerical semigroup with
embedding dimension three with n1 < na < ng. Then w(ni) < w(ns).

Proof. According to Propositions and w(ni) = max{ca,c3,712 + r13} and w(nz) =
max{cy, ca,r31 + r32}. Notice also that ¢; > ri2 + r13 and c3 < r31 + r32. The proof now
follows by considering the possible values of w(ng).

o If w(ns) = c1, then ¢; > ¢o and ¢ > 131 + r32 > c3. Also ¢1 > r19 + r13, and thus we
obtain ¢; > w(ny).

o If w(ng) = co, then cg > ¢ > 112 + 113 and cg > 731 + r39 > c3. Hence ca > w(ny).

o If w(ng) = r31 + 732, then ra; + 132 > ¢1 > 112 + 113, 131 + 732 > €2 and 731 + r32 > c3.
Thus, 731 + 732 > w(ny). ]

As an immediate consequence of the corollary we get the following nice result.

Corollary 3.5. Let S = (ni,ng,n3) be a numerical semigroup with embedding dimension
three with n1 < na < ng. If w(ni) > w(ng), then S is symmetric.

4. THE SYMMETRIC CASE

Now, we wish to compute the w-values of the generators in any symmetric numerical semi-
group of embedding dimension three. To do so, we will divide the claim into two cases
based on the values of b and ¢ in (ap1,ap2,bp1 + cp2) as illustrated in Theorem In
particular ny = api, no = ap2, n3 = bpy + cp2, with a,b,c € N, a > 2, b > 2 and
ng(p17p2> = ng(aan?)) =1

It is easy to see that ¢; = p2, co = p1, c3 = a, and that minimal presentation for S is given
by {((p2,0,0), (0,p1,0)), ((b,¢,0),(0,0,a))} (this is because S = a(p1 + p2) + (bp1 + cp2)N is a
gluing of (p1,p2) and N; see the proof of [22] Theorem 10.6]) . As a consequence of Corollary
we obtain poe; € B(apz) and p1es € B(api). Thus we obtain the following result.

Corollary 4.1. Let S = (n1,n2,n3) be an embedding dimension three symmetric numerical
semigroup. Then mj(ap;) = p; for {i,j} = {1,2}.
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4.1. The case when S is representable as (api,apa,bp; + cp2) with bec # 0. In this
setting, we can again use Corollary to obtain aesz € B(n1) N B(ng). Hence, we obtain the
following consequence.

Corollary 4.2. Suppose that S = (nj,ng,ng) is a symmetric numerical semigroup that is
representable as (api,apa,bp1 + cp2) with be # 0. Then mg(ap1) = ms(apz) = a.

Lemma 4.3. Suppose that S = (ny,ng,n3) is a symmetric numerical semigroup that is rep-
resentable as (ap1, apa, bp1 + cp2) with be # 0.

)
(a) B(ap1) ={(1,0,0),(0,p1,0),(0,0,a)}.
(b) B(ap2) = {(p2,0,0),(0,1,0),(0,0,a)}.

Proof. We already know that {(1,0,0), (0,p1,0),(0,0,a)} C B(ap1). Assume that (0,z,y) €
B(ap1)\ {(1,0,0),(0,p1,0),(0,0,a)}. Hence zap; + y(bp1 + cp2) = uapy + vaps + w(bp1 + cp2)
for some u, v, w € N, with u # 0. As in the proof of Corollary the minimality of (0, z,y)
implies that v = w = 0, and yap; = zap1 + y(bp1 + ¢p2). In particular, a | y(bp1 + cp2), and
as ged(a,ng) = 1, it follows that a | y. This forces a <y, whence (0,0,a) < (0,z,y) which is
a contradiction.

The proof of B(apz2) = {(p2,0,0),(0,1,0),(0,0,a)} follows in the same way. O

Now, we wish to prove similar results for bp; + cpo.

Lemma 4.4. Suppose that S = (ny,ng,ng) is a symmetric numerical semigroup that is rep-
resentable as (ap1,ap2, bp1 + cpa) with be # 0. If

b

max{x € N\ {0} | bp1 + cp2 = xp1 + yp2, for some y € N\ {0}},

and

¢ =max{y € N\ {0} | bp1 + cp2 = xp1 + yp2, for some x € N\ {0}},
then
(a) mi(bpr + cp2) = p2 +b and
(b) ma(bp1 + cp2) = p1 + .
(
(

Proof. (a) Note that the set {z € N\ {0} | bp1 + cp2 = xp1 +ypa, for some y € N\ {0}} is not
empty (and finite) since b and ¢ are both nonzero. Let ¢ € N such that bp; + cpa = bpy + ' po.
Then

(p2 + b)(ap1) — (bpr + cp2) = ap1pz + a(bp1) — (bpr + cp2)

= ap1p2 + a(bpy + cpa — 'p2) — (bp1 + cp2)
= (a — 1)(bp1 + cp2) + (p1 — &) (ap2).

Note that if ¢ > py, then

bp1 + cp2 = bp1 + 'pa = bp1 + (¢ — p1)p2 + pip2 = (b+ p2)p1 + (¢ — p1)p,
contradicting the maximality of b. Therefore, (p2 +b)(ap1) — (bp1 +cp2) = (a—1)(bpy +cp2) +
(p1 — c)(ap2) € S since p1 > ¢
Now, note that if
(2 +b—1)(ap1) — (bp1 + cp2) = (p2 — L)ap1 + a(bp1) — bp1 — cp2

= (p2 — 1)ap1 + a(bp1 + cp2 — 'p2) — bp1 — cp2
= (a —1)(bp1 + cp2) + a(pip2 — ¢'p2 — p1)
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is in S, then (a—1)(bp1+cp2) +a(prp2—p1—p2) = (p2+b—1)(ap1) — (bp1+cp2)+ ('~ 1)p2 € 5.

However [22, Remark 10.7] states that F(S) = (a — 1)(bp1 + cp2) + a(pip2 — p1 — p2), a

contradiction. Therefore, (pa + b — 1)(ap1) — (bp1 + cp2) & S, so m1(bpy + cp2) = p2 + b.
The proof of (b) is similar. O

Finally, we will find B(bp; + cp2). Recall that, in our setting, a minimal presentation for
S is {((p2,0,0),(0,p1,0)), ((b,¢c,0),(0,0,a))}, and as bc # 0, the number of Betti elements of
S is two. It is easy to deduce (see for instance [14, Lemma 11]) that the set of R-classes of
Z(a(bp1+cp2)) is {{(0,0,a)}, Z(a(bp1 +cp2)) \ {(0,0,a)}}. The second class equals {(z,y,0) €
N* | a(bpy + cp2) = wapy + yap2} = {(z,y,0) € N* | bp1 + cp2 = xp1 + yp2}-
Lemma 4.5. Suppose that S = (ny,ng,ng) is a symmetric numerical semigroup that is rep-
resentable as (ap1,aps2, bp1 + cp2) with be # 0. Then

B(bpl + Cp2) :{(ml(bpl + Cp2)7 07 0)7 (07 mQ(bpl + cp?)a 0)7 (07 07 1)}
U {(z,y,0) € N | bp1 + cp2 = zp1 + yp2, zy # 0}.

Proof. (2) : This inclusion is a direct consequence of Lemma and the definition of m;.

(C) : Now, suppose that (z,y,z) € B(bp1 + cp2). If z # 0, x = 0 or y = 0, then we
are done. Therefore, we may now assume that (x,y,0) € B(bp1 + ¢p2) with x # 0 and
y # 0. Then x(ap1) + y(ap2) — (bp1 + cp2) € S, but (z — 1)(ap1) + y(ap2) — (bp1 + cp2) ¢
S and z(ap1) + (y — 1)(ap2) — (bp1 + cp2) ¢ S. Therefore, there exists d € N such that
z(ap1)+y(ap2) — (bp1+cp2) = d(bp1+cpz). Since ged(a, bpr+cpz) = Land a | (d+1)(bp1+cp2),
a | d+ 1. Hence, there exists dy € N such that d + 1 = ady and so xpy + yps = do(bp1 + cp2).
Note that if dg > 2, then

(x — 1)(ap1) + y(ap2) — (bp1 + cp2) = d(bp1 + cp2) — ap:
= (ady — 1)(bp1 + cp2) —ang = (a — 1)(bp1 + cp2) + (do — 1)a(bp1 + cp2) — ap1
= (a —1)(bp1 + cp2) + (bdy — b — 1) (ap1) + (cdp — ¢)(ap2) € S

since bdyp—b—1 > 2b—b—1 = b—1 > 0. This contradicts (z—1)(ap1)+y(ap2)—(bp1+cp2) € S.
Then dy = 1, and consequently xp; + yps = bp1 + cps. O

Theorem 4.6. Suppose that S = (ni,ng,ng) is a symmetric numerical semigroup that is
representable as {api,apa,bpi + cpe) with be # 0. Let

b =max{x € N\ {0} | bp1 + cp2 = xp1 + ypa, for some y € N\ {0}},

and
¢ =max{y € N\ {0} | bp1 + cp2 = zp1 + yp2, for some x € N\ {0}},
then
(a) w(ap1) = max(a, p1),
(b) w(apz) = max(a,p2), and

(¢) w(bp1 + cp2) = max(b+ pa, ¢+ p1).

Proof. The assertions (a) and (b) follow directly from Proposition and Lemma For
(c), we will divide the claim into two cases.

First suppose that p; < ps. Let ¢ € N such that bp; +c'pa = bp; +cp2 and let (2,y,0) € N3
with bpy + cp2 = xp1 + yp2. Then (b — z)p1 = (y — ¢)p2, and the maximality of b implies
b—2>0. As ged(p1,p2) = 1, p2 | (b— ). This means that x = b — dpy for some d € Ny.

Therefore y = cd + dpy, since (y — ps = (b — x)p1 = dpapi. As a result, we see that
r+y=>b—dpy+ +dpp <b+, since p1 < ps. However, in the proof of Lemma we
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noted that ¢ < p;. Consequently, z+y < b-+c < b+p; < b+p2. By Proposition Lemma
4.4 and Lemma the result follows.
The proof for p; > py is analogous. 0

Observe that we have not given a closed formula for (¢) in the last theorem in terms of
a, b, ¢, p1 and py. As p; and py are coprime, (p1,p2) is a numerical semigroup. Its minimal
presentation is {((p2,0), (0,p1))}. Then whenever k£ € N is such that ¢ — kp; € N, the element
(b + kpa)p1 + (¢ — kp1)p2 € Z(bp1 + ¢p2). The same holds if b — kps € N, which yields
(b—kp2)p1 + (c+ kp1)p2 € Z(bp1 + cp2). The largest k such that ¢ — kp; € N\ {0} is ¢/p; — 1
if p; divides ¢, and LP%J otherwise. A similar argument applies for the largest k fulfilling
b — kpy € N\ {0}. From this we deduce that

- b+<£—1)p2 if ¢ mod p; =0, B c+(i—1)p1 if b mod py = 0,
b= p1 ¢ = p2

{b + [ £ |p2 otherwise, L py otherwise.
4.2. The case when S is not representable as (ap1, apz, bp1 + cp2) with be # 0. Recall
from Theorem [2.1] that b+ ¢ > 2. Thus the hypothesis that bc = 0 implies that exactly one
of b or ¢ is zero. Without loss of generality, suppose that ¢ = 0. Then S = (ap1, apa, bp1).
If b > po, then bp; = (b — p2)n1 + (p1)n2, contradicting the fact that S is not representable
in the form above with b # 0 and ¢ # 0. Therefore, b < ps. Note that ged(a,b) = 1 and
ged(a,p1) = 1 since ged(a,bpy) = 1. As a result, we see that S = (p1a, p1b, p2a) is of the form
in Theorem since ged(pr,pea) = 1 and ged(a,b) = 1. Note that pe < b since otherwise,
p2a = (p2 —b)a+ ab, contradicting the fact that S is not representable in the above form with
b # 0 and ¢ # 0. Therefore, b = pa, so S = (ap1, apa, p1p2), where a, p1, and py are pairwise
relatively prime.

Throughout the rest of the section, let S = (ab, ac, bc), where a, b, ¢ are pairwise relatively
prime integers greater than one. We write ny = ab, no = ac and ns = bc.

If we find the w-values of the generators of S, then by our discussion at the beginning of
this section, this will complete our characterization of the w-values of the generators for any
symmetric numerical semigroup of embedding dimension three. Moreover, Theorem will
also cover the case when S is nonsymmetric.

According to [13, Theorem 12|, Betti(S) = {abc}, and by [13 Proposition 1], each R-class
in Z(abc) is a singleton. Thus, we deduce that the three R-classes of Z(abc) are {(c,0,0)},
{(0,6,0)} and {(0,0,a)}. As a direct consequence of Lemma we get that (0,0,a) €
B(ni1)NB(ng), (0,b,0) € B(n1) NB(ng) and (¢,0,0) € B(nz) NB(ns). In particular, we obtain
the following consequence.

Corollary 4.7. If S = (ab, ac,bc), with a, b, ¢ pairwise relatively prime integers greater than
one, then we have the following.

(a) my(ac) = my(bc) = c.

(b) ma(ab) = ma(bc) = b.

(c) mz(ab) = mz(ac) = a.

Lemma 4.8. Let S = (ab,ac, bc), with a, b, ¢ pairwise relatively prime integers greater than
one.

Q

o oo
Soo
—

\—/\%/\/
A e e
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Proof. From Corollary we already know that the inclusion {(1,0,0),(0,b,0),(0,0,a)} C
B(ab) holds. Assume that (0,z,y) € B(ab)\{(0,b,0),(0,0,a)}. Then zac+ ybc = uab+vac+
wbe for some u,v,w € N with v # 0. The minimality of (0,z,y) forces v = w = 0. Hence
uab = xac + ybe. Thus b | xac and a | ybe. Since a, b and ¢ are pairwise prime, this means
that b | x and a | y. If x # 0, then b < z, and (0,b,0) < (0, x,y), contradicting the minimality
of (0,z,y). The same if y # 0. In both cases we get a contradiction.

The proofs of (b) and (c) are similar to that of (a). O

We now state a theorem that gives the w-values of the generators of the numerical semigroup
S = (ab,ac,bc). The proof follows immediately from Proposition [2.4] and Lemma

Theorem 4.9. Let S = (ab, ac, bc), with a, b, ¢ pairwise relatively prime integers greater than
one.

(a) w(ab) = max(a,b).

(b) w(ac) = max(a,c).

(¢) w(bc) = max(b,c).

S|

Together, Theorems [4.6| and give the w-values of the generators for any symmetric
numerical semigroup with embedding dimension three.

5. COMPARING THE w-PRIMALITY WITH THE CATENARY DEGREE

Let S = (n1,n2,n3) with n; < ng < ng be a numerical semigroup with embedding dimen-
sion three. Recall that if we set ¢; = min{t € N\ {0} | tn; € (nj,n;}, {i,7,k} = {1,2,3}, then
Betti(S) = {cin1, cana, csns}, and that if S is not symmetric some of these Betti elements
coincide. We also know that c(5) < w(S).

We say that S is uniquely presented if for every two minimal presentations 7 and 7/ and
every (a,b) € 7, either (a,b) € 7’/ or (b,a) € 7’ (that is, the minimal presentation is unique up
to rearranging the pairs in the presentation). We will make use of this concept in the proof
of the following theorem. It is well known that if S is not symmetric, then it is uniquely
presented.

Theorem 5.1. Let S = (ni,n2,n3) with ny < ng < nz be a numerical semigroup with
embedding dimension three. For {i,j, k} = {1,2,3}, set ¢; = min{t € N\ {0} | tn; € (n;,n;)}.
(a) If # Betti(S) = 3, then w(S) = c(S).

(b) If ciny = cang # cans, then c(S) < w(S).

(c) If ciny = can3 # cang, then c(S) < w(S).

(d) If ciny # cang = c3ng and cang | cing, then c(S) = w(S).

(e) If ciny = cang = cans, then c(S) = w(S).

Proof. We will use b and ¢ as defined in Theorem
b =max{z € N\ {0} | bp1 + cpa = xp1 + ypa, for some y € N\ {0}},

¢ =max{y € N\ {0} | bp1 + cp2 = xp1 + yp2, for some x € N\ {0}}.

(a) This is a consequence of [4, Corollary 5.8].

(b) In this setting, n; = ap1, ne = apy and ng = bp; + cpy, with p1, p2, a, b and ¢ as in
Theorem As we previously mentioned in the second paragraph of Section [4] it easily
follows that ¢; = p9, co = p1 and ¢3 = a. Notice also that ¢; > ¢s. Let R be the R-class
of Z(esng) not containing (0,0, ¢3). From Theorem [2.2) we know that the catenary degree
of S'is ¢(S) = max{cy, min{r +s | (r,s,0) € R}} = max{ps, min{b+c | bp1 + cp2 = n3z}}.
We also know that the w-primality of S is w(S) = max{a,ps + b, p1 + ¢} (Theorem [4.6)).
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Observe that if S is uniquely presented we easily derive that b < py and € < p;. From
¢ < p; we obtain ¢ < p; < p2 and thus min{b + ¢ | bp; + cp2 = n3} =b+c<b+py We
have c(S) = max{p2,b+¢} < b+ pa < w(S).

If S is not uniquely presented, let ¢’ be such that (b,c’,0) € Z(an3) fulfills max{b + c |
bpr + cpa = n3} = b+ . From min{b + c | bpy + cpa = n3} < max{b+c | bp; + cp2 =
n3} = b+, and pa < pa + b, we obtain c(S) < w(9).

(c) As in the preceding case, we obtain n; = api, ng = aps and ng = bpy + cp2, and ¢; = po,
ca = a and ¢3 = p;. Let R be the R-class of Z(cang) not containing (0, cz,0). From
Theorem we know that the catenary degree of S is c(S) = max{ci, co, min{r + s |
r,0,s) € R}} = max{pa,a,min{b+ c | bp; + cpa = na}}. As a consequence of Theorem
w(S) = max{a, p2 + b,p1 +7¢}.

Observe that if S is uniquely presented we obtain ¢ < p; < po and then b+¢ < b + po.
Furthermore ny = ap; < ng = bp; +¢p2 < bpy +p1p2 = (b+p2)p1, so c(S) = max{ps,a, b+
¢} <b+p2 <w(S).

If S is not uniquely presented, from min{b + ¢ | bp1 + cp2 = n2} < max{b + ¢ |
bp1 + cp2 = na} = b+ ¢, with ¢ such that (b,0,c) € Z(ans). From the proof of Lemma
we know that ¢ < pp, which is smaller than py. Also pa < pa + b. Moreover, as
in the preceding paragraph, n1 = ap; < (b + p2)p1 and then a < b+ py. Furthermore,
if &' is such that (b',0,¢) € Z(nz), we have ' +¢ < b+ ¢ < b+ ps. Thus we obtain
c(S) = max{pz, a,b’ +¢} < b+ py < w(9).

(d) This is a consequence of the main result in [I4].
(e) Follows from [13, Theorem 19]. O

Remark 5.2. In the case c1n1 # cang = c3ng, we have ¢; = a,co3 = pa,c3 = p1. We now
consider several examples to illustrate that the statement of Theorem is best possible.

We know from Theorem that c(S) = max{ci,co} = max{a,p2}. Observe, we have
(b+ ¢)p1 < bp1 + cp2 < ap; and then b+ ¢ < a. In light of Theorem w(S) = max{a, b +
p2,¢+ p1}. So we can say that if a > max{b + pa,¢+ p1}, then c(S) = w(S) = a, while if
a < max{b+ p2,¢+ p1}, then c(S) < w(9).

If any € (na), w(S) = max{a, p1 +¢,b}, then for a > max{b,c+p1} we get c(S) = w(S) = a
and otherwise c(S) < w(S). If any € (n3), w(S) = max{a, p» + b} and then, for a > py + b,
c(S) = w(S) = a, while ¢(S) < w(S) otherwise. We have examples of the two situations,
in both cases uniquely and nonuniquely presented. The examples have been obtained by
using the idea of gluing and the package [9]. For instance, if we want to produce an example
S = (n1,n9,n3) with ny < by < ng and ¢i1ny # cong = csng, then we do the following. We
start with the semigroup generated by T' = (p1,p2) with p; < pe and ged(p1,p2) = 1. We
know that a minimal presentation for T" is {((p2,0), (p1,0))} and Betti(T') = {pip2}. Next
we take a,b,c € N\ {0} such that ap; > bp1 + cp2 (and thus bp; + cp2 < ap1 < apz), and
ged(a, bpy + ¢p2) = 1. Define ny = bpy + bpa, n2 = ap1 and n3 = bpe. If follows that S is
the gluing of 7" and N (see [22, Chapter 8] for the definition of gluing), and that a minimal
presentation for S is given by {((a,0,0), (0,b,¢)), ((0,p2,0),(0,0,p1))} ([22, Theorem 9.2]).

(Ex 1) S = (19,350,490) is uniquely presented and cjny # cong = cgns. We have c(S) =
w(S) =70. Here S = (5+2x )N+ 70(5,7); p1 =5, p2=7,a=70,b=1and c = 2.

(Ex 2) S = (17,40, 56) is uniquely presented and cinj # cang = cgns. We have c(S) = 8 <
w(S) =09.

(Ex 3) S = (75,130,234) is not uniquely presented and cin; # cong = cznz. We have
c(S) =w(S) = 26.
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(Ex 4) S = (62,63,147) is not uniquely presented and cin; # cang = cgn3. We have ¢(5) =
21 < w(S) = 23.

A particular case of the situation in which a > max{5+ p2, ¢+ p1} is when cong divides ¢yny.
Notice that a > {5 + p2,¢+ p1} is a necessary condition for cang | cing but not sufficient, as
we can see in (Ex 1). Indeed in that case a = 70 > max{8,7} but cang = 7 - 350 does not
divide ¢inp = 70 - 19 = 1330.

6. THE INEQUALITIES INVOLVING THE w-VALUES OF THE GENERATORS

As in the preceding section, let S be minimally generated by {n1, ne,n3} with n; < ng < ns.
As we mentioned in the Introduction, there are 13 possible inequalities involving the w(n;).

Theorem 6.1. Let S = (ny,na,n3) be a numerical semigroup with embedding dimension three
with ny < ng < ng. When {i,7,k} = {1,2,3}, set ¢; = min{t € N\ {0} | tn; € (nj,n;)}.

(a) If # Betti(S) = 3, then w(ni) < w(ng).

(b) If ciny = cang # cans, then w(ng) < w(ng) < w(ng).

(c¢) If ciny = cgn3 # cang, then w(ng) < w(nz) < w(ng).

(d) If ciny = cang = c3ng, then w(ng) < w(ng) = w(ns).

Proof. (a) This is just Corollary |3

(b) From Theorem [4.6] we get that w(n1) = max{a, p1}, w(ne) = max{a,pa2}, and w(nz) =
max{b + p2,¢ + p1}. Obviously, b+ pa > ps and € + p; > p1, so it is sufficient to show that

w(ng) > a. Notice that aps = ng < ng = b'p1 +cpa < (V) +¢)pa, so a <V +¢ < w(ns).

(¢) From Theorem [4.6] we get that w(ni) = max{a, p1}, w(ns) = max{a,p2}, and w(ng) =
max{b + p2, ¢ + p1}. Obviously, b+ pa > ps and ¢ + p; > p1, so it is sufficient to show that

w(ng) > a. Notice that ap; = ny < ng = bp1 + 'p2 < bp1 + p1p2, 50 a < b+ pa < w(ng).

(d) By Theorem w(ny) = max{a,b} = b, w(nz) = max{a,c} = ¢, and w(ng) =
max{b, c} = ¢, so we are done. O

6.1. Orderings when w(n;) > w(ng). Suppose that w(n;) > w(nz). Then by Corollary
-, S is symmetric. Therefore, by Theorem we must have c1ny1 # cong = cgng which
implies, by Theorem 4 . that w(ny) = max{b —|—p2,E + p1}, w(n2) = max{a,p1} and w(ng) =
max{a,p2}. Since ap; = ny < nz = apo, this means that w(ns) < w(ng). Note that b+ps > po
and ¢+ p; > p1, and thus
(1) if a < pg, then w(ng) < w(ng) < w(ny),
(2) if pa < a < w(ny), then w(ng) = w(ng) < w(ny),
(3) if @ > w(n1), then w(ny) < w(ng) = w(ng).

Hence, we have verified the following conjecture from [§].

Theorem 6.2. Let S = (n1,n2,n3) be a numerical semigroup with embedding dimension three.
The sequence w(ny), w(ne), and w(ns) does not satisfy any of the following three orderings:
e w(ny) > w(ng) > w(ns);
o w(ni) =w(ng) > w(ng);
e w(ny) <w(ng), w(ng) > wnsz), wnz) <w(ng).

The interested reader is directed to the tables in both [§] and [3] for examples illustrating
each of the remaining 10 possible sets of inequalities.
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