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Abstract: Letℕ be the set of nonnegative integers. A problem about how to transport profitably an organized
group of persons leads us to study the set T formed by the integers n such that the system of inequalities,
with nonnegative integer coefficients,

a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp

has at least one solution in ℕp. We will see that T ∪ {0} is a numerical semigroup. Moreover, we will show
that a numerical semigroup S can be obtained in this way if and only if {a + b − 1, a + b + 1} ⊆ S, for all
a, b ∈ S \ {0}. In addition, we will demonstrate that such numerical semigroups form a Frobenius variety
and we will study this variety. Finally, we show an algorithmic process in order to compute T.
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1 Introduction

Certain travel agency, which specializes in city tours for organized groups, uses small and large buses in its
services. The small bus seating capacity is 30 passengers and a large bus is for up to 50 passengers. Moreover,
the hire of each bus costs 310 euros, for the small ones, and 480 euros, for the large ones. Finally, the price
of the city tour is 10 euros per passenger, but free for the responsible leader of the group.

At above situation, we propose the following problem: if a group of n + 1 persons (including the leader)
wants to use its services, is the travel agency going to get profits?

It is clear that a tour is profitable if and only if there exist x, y ∈ ℕ (where ℕ is the set of nonnegative
integers) such that

n + 1 ≤ 30x + 50y,
10n > 310x + 480y.

} (1.1)

Simplifying the second inequality of (1.1), we have the equivalent system (of strict inequalities)

n < 30x + 50y,
n > 31x + 48y.

} (1.2)

And, thereby, {n ∈ ℕ | (1.2) has a solution inℕ2} is the set of nonnegative integers that give us an affirmative
answer to the proposed problem.
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The above problem can be generalized in the following way. Let us take the system of strict inequalities

n < b1x1 + ⋅ ⋅ ⋅ + bpxp ,
n > a1x1 + ⋅ ⋅ ⋅ + apxp ,

} with a1, . . . , ap , b1, . . . , bp ∈ ℕ. (1.3)

Our first aim is to study the structure of the set {n ∈ ℕ | (1.3) has solution inℕp}. In order to do it, we need
to introduce some concepts and notation.

Let M be a submonoid of (ℕ2, +) (that is, a subset ofℕ2 that is closed under addition and that contains
the zero element (0, 0)). We will say that a positive integer n is bounded by M if there exists (a, b) ∈ M such
that a < n < b. We will denote by A(M) = {n ∈ ℕ | n is bounded by M}.

A numerical semigroup is a submonoid S of (ℕ, +) such that gcd(S) = 1 (or, equivalently,ℕ \ S is finite).
It is clear that, ifM is a submonoid of (ℕ2, +) such that A(M) is not empty, then A(M) ∪ {0} is a numerical

semigroup. This fact allows us to give the following definition.

Definition 1.1. A numerical semigroup S is a numericalA-semigroup if there existsM, submonoid of (ℕ2, +),
such that S = A(M) ∪ {0}.

In Section 2 we will show that a numerical semigroup S is a numericalA-semigroup if and only if

{x + y − 1, x + y + 1} ⊆ S for all x, y ∈ S \ {0}.

From the proof of this result, we will state that, if a1, b1, . . . , ap , bp ∈ ℕ, then the set

{n ∈ ℕ | a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp has solution inℕp} ∪ {0}

is a numericalA-semigroup or the trivial set {0}. Moreover, wewill see that every numericalA-semigroup can
be obtained in this way.

Aswe said above, if S is a numerical semigroup, thenℕ \ S is finite. Thuswe candefineanotable invariant
of S. Namely, the Frobenius number of S, denoted by F(S), is the greatest integer that does not belong to S
(see [8]).

A Frobenius variety (see [11]) is a non-empty family V of numerical semigroups that fulfils the following
conditions:
(i) if S, T ∈ V, then S ∩ T ∈ V,
(ii) if S ∈ V and S ̸= ℕ, then S ∪ {F(S)} ∈ V.

Wewill denote byA = {S | S is a numericalA-semigroup}. In Section 3wewill show thatA is a Frobenius
variety. This fact, together with several results of [11], enables us to arrange the elements ofA in a tree G(A)
with rootℕ. It is clear that we can recursively build a tree from its root if we know the children of each vertex.
This observation will lead us to characterize the children of a numerical A-semigroup in G(A) and give an
algorithm for recursively buildingA.

In Section 4 we will see that, if X is a non-empty set of positive integers, then there exists the smallest
numericalA-semigroup,A(X), that contains X. We will show that

A = {A(X) | X is a non-empty finite set of positive integers}.

Moreover, we will give, in explicit form, the elements of A(X) and we will design an algorithm to compute
A(X) starting from X.

Let a = (a1, . . . , ap), b = (b1, . . . , bp) ∈ ℕp and let S(a, b) be the set

S(a, b) = {n ∈ ℕ | a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp for some x1, . . . , xp ∈ ℕp}.

Our main aim in Section 5 will be to give an algorithmic procedure that allows us to compute S(a, b) starting
from a and b. To achieve this goal, we will use the algorithm seen in Section 4.

The multiplicity of a numerical semigroup S, denoted by m(S), is the least positive integer that belongs
to S. In Section 6 we will study the set Am of all numerical A-semigroups with multiplicity m. We will see
that such a set is finite and has maximum and minimum with respect to the inclusion order. We will denote
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by ∆(m) and Θ(m) the maximum and the minimum, respectively, of Am. Moreover, we will see that Am can
be arranged in a tree G(Am)with root ∆(m) and, consequently, we will be able to show an algorithm in order
to buildAm.

If S is a numerical semigroup, then the genus of S, denoted by g(S), is the cardinality ofℕ \ S. Wewill give
formulas for the Frobenius number and the genus of ∆(m) and Θ(m) and, in addition, we will get a formula
for the height of the tree G(Am).

In order to justify further the study of numericalA-semigroups, we finish this introduction making refer-
ence to two papers that also lead us to this class of numerical semigroups.

On the one hand, using the nomenclature of [3], a numericalA-semigroup is a numerical semigroup that
admits simultaneously the non-homogeneous patterns x1 + x2 + 1 and x1 + x2 − 1. Indeed, as a consequence
of [3, Example 6.5], numericalA-semigroups can be characterized as those numerical semigroups such that
the maximum and minimum elements in each interval of non-gaps are minimal generators.

On the other hand, a (v, b, r, k)-configuration (see [4]) is a connected bipartite graph with v vertices on
one side, each of them of degree r, and b vertices on the other side, each of them of degree k, and with no
cycle of length 4. A (v, b, r, k)-configuration can also be seen as a combinatorial configuration (see [15]) with
v points, b lines, r lines through every point and k points on every line. It is said that the tuple (v, b, r, k)
is configurable if a (v, b, r, k)-configuration exists. In [4] was shown that, if (v, b, r, k) is configurable, then
vr = bk and, consequently, there exists d such that v = d k

gcd({r,k}) and b = d
r

gcd({r,k}) . The main result of [4]
states that, if k, r are integers greater than or equal to 2, then

S(r,k) = {d ∈ ℕ
!!!!!!!
(d k

gcd({r, k}) , d
r

gcd({r, k}) , r, k) is configurable}

is a numerical semigroup. Moreover, in [15] it was proved that, if a configuration is balanced (that is, r = k),
then {x + y − 1, x + y + 1} ⊆ S(r,r), for all x, y ∈ S(r,r) \ {0}. Therefore, S(r,r) is a numericalA-semigroup.

Remark 1.2. An alternative problemwould be to consider that all groupmembers (including the leader) have
to pay for the tour. If such is the case, the studied general system will become the next one.

n ≤ b1x1 + ⋅ ⋅ ⋅ + bpxp ,
n > a1x1 + ⋅ ⋅ ⋅ + apxp .

} (1.4)

IfBdenotes the family of numerical semigroupsassociated to this newproblem, then the elements ofB satisfy
the non-homogeneous pattern x1 + x2 − 1. This family has been studied in [12] at a different context. In fact,
in [12] we have analogous results to the obtained ones in Sections 2, 3, and 4 of the current manuscript.
Moreover, at the end of Sections 5 and 6, we include two observations (see Remarks 5.10 and 6.10) where we
suggest how to get the results of these sections for the familyB. Finally, observe that the numerical semigroup
S = ⟨2, 5⟩ ∈ B is not anA-semigroup. ThereforeA ⊊ B.

Remark 1.3. Let us consider the inequalities

a1x1 + ⋅ ⋅ ⋅ + apxp ≤ n < b1x1 + ⋅ ⋅ ⋅ + bpxp . (1.5)

The non-homogeneous pattern associated to them is x1 + x2 + 1. In [9] we studied the family of PL-semi-
groups, which is the family of numerical semigroups fulfil such pattern. It is easy to check that S = ⟨3, 4⟩ is
a PL-semigroup but not a numericalA-semigroup. Therefore, the familyA is strictly contained in the family
ofPL-semigroups. At last, similar ideas to those seen in Remarks 5.10 and 6.10 allow us to solve the problem
corresponding to (1.5).

Remark 1.4. In order to show all the possibilities, let us consider the inequalities

a1x1 + ⋅ ⋅ ⋅ + apxp ≤ n ≤ b1x1 + ⋅ ⋅ ⋅ + bpxp . (1.6)

This case corresponds with the family of all numerical semigroups. Thus, we can consider that it is the trivial
case (see [14] for more details). Observe that to achieve the correct answer for the new problem, we only need
to take bi ≥ ai and intervals of the type [ai , bi] in Theorem 5.8. Therefore, Propositions 5.4 and 5.6 will be
omitted in this situation.
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2 NumericalA-semigroups

Let us recall that, if M is a submonoid of (ℕ2, +), then

A(M) = {n ∈ ℕ | a < n < b for some (a, b) ∈ M}.

Lemma 2.1. Let M be a submonoid of (ℕ2, +). If x, y ∈ A(M), then we have {x + y − 1, x + y, x + y + 1} ⊆ A(M).

Proof. If x, y ∈ A(M), then there exist (a, b), (c, d) ∈ M such that a < x < b and c < y < d. Since (a+c, b+d) =
(a, b) + (c, d) ∈ M and a + c < x + y − 1 < x + y < x + y + 1 < b + d, we conclude that

{x + y − 1, x + y, x + y + 1} ⊆ A(M).

The next result justifies Definition 1.1.

Proposition 2.2. Let M be a submonoid of (ℕ2, +). If A(M) is non-empty, then A(M) ∪ {0} is a numerical semi-
group.

Proof. From Lemma 2.1, we easily deduce that A(M) ∪ {0} is a submonoid of (ℕ, +). In order to finish the
proof, it is enough to show that gcd(A(M)) = 1. In fact, if x ∈ A(M), then we have that 2x + 1 ∈ A(M). Since
gcd({x, 2x + 1}) = 1, we can assert that gcd(A(M)) = 1.

From Definition 1.1, a numerical semigroup S is a numerical A-semigroup if there exists M, submonoid
of (ℕ2, +), such that S = A(M) ∪ {0}. Let us observe that there exist numerical semigroups that are not numer-
icalA-semigroups. In effect, by Lemma 2.1, we know that, if S is a numericalA-semigroup and x, y ∈ S \ {0},
then {x + y − 1, x + y + 1} ⊆ S. Thus, the numerical semigroup S = {0, 2, 4, 6,→} (where the symbol→means
that every integer greater than 6 belongs to S) is not a numericalA-semigroup because 2 + 4 − 1 ̸∈ S.

Let X be a non-empty subset of a commutative monoid (M, +). The monoid generated by X, denoted
by ⟨X⟩, is the smallest (with respect to the set inclusion) submonoid of (M, +) that contains X. Moreover,
(see [13]) we know that

⟨X⟩ = {λ1x1 + ⋅ ⋅ ⋅ + λnxn | n ∈ ℕ \ {0}, x1, . . . , xn ∈ X, λ1, . . . , λn ∈ ℕ}.

IfM = ⟨X⟩, then we say that X is a system of generators ofM or, equivalently, thatM is generated by X.
Let A, B be subsets of ℕ. As usual, we define A + B = {a + b | a ∈ A, b ∈ B}. Let x, y be nonnegative

integers such that x < y. We will denote by ]x, y[ the set {n ∈ ℕ | x < n < y}.

Lemma 2.3. Let S be the numerical semigroup generated by the set of positive integers {n1, . . . , np}. Let us
assume that {x + y − 1, x + y + 1} ⊆ S, for every x, y ∈ S \ {0}. If λ1, . . . , λp , x ∈ ℕ and

λ1(n1 − 1) + ⋅ ⋅ ⋅ + λp(np − 1) < x < λ1(n1 + 1) + ⋅ ⋅ ⋅ + λp(np + 1),

then x ∈ S.

Proof. We are going to use induction over Λ = λ1 + ⋅ ⋅ ⋅ + λp. If Λ = 0, then λ1 = ⋅ ⋅ ⋅ = λp = 0 and there does not
exist an integer x such that 0 < x < 0. If Λ = 1, then there exists i ∈ {1, . . . , p} such that λi = 1 and λj = 0 for
all j ∈ {1, . . . , p} \ {i}. Thus, ni − 1 < x < ni + 1 and, consequently, x = ni ∈ S.

Now, let us assume that Λ ≥ 2 and let i ∈ {1, . . . , p} such that λi ̸= 0. By hypothesis of induction, if x is
an integer such that

λ1(n1 − 1) + ⋅ ⋅ ⋅ + (λi − 1)(ni − 1) + ⋅ ⋅ ⋅ + λp(np − 1) < x < λ1(n1 + 1) + ⋅ ⋅ ⋅ + (λi − 1)(ni + 1) + ⋅ ⋅ ⋅ + λp(np + 1),

then x ∈ S. Therefore,

]
p
∑
k=1

λk(nk − 1) − (ni − 1),
p
∑
k=1

λk(nk + 1) − (ni + 1)[ + {ni} + {−1, 0, 1} ⊆ S,

and the conclusion is clear.

Brought to you by | Universidad de Granada
Authenticated | arobles@ugr.es author's copy

Download Date | 3/1/17 11:24 AM



A.M. Robles-Pérez and J. C. Rosales, Numerical semigroups | 333

We say that a commutative monoid (M, +) is finitely generated if there exists a finite set X such thatM = ⟨X⟩.
It is well known (see [14]) that the submonoids of (ℕ, +) (in particular, the numerical semigroups) are finitely
generated.

In the following result we give a characterization of numericalA-semigroups.

Theorem 2.4. Let S be a numerical semigroup. The following conditions are equivalent.
(1) S is a numericalA-semigroup.
(2) If x, y ∈ S \ {0}, then {x + y − 1, x + y + 1} ⊆ S.

Proof. (1)⇒ (2) It is an immediate consequence of Lemma 2.1.
(2)⇒ (1) Let us consider a set of positive integers, {n1, . . . , np}, such that S = ⟨{n1, . . . , np}⟩. Let M

be the submonoid of (ℕ2, +) that is generated by {(n1 − 1, n1 + 1), . . . , (np − 1, np + 1)}. It is clear that
{n1, . . . , np} ⊆ A(M) and, by applying Proposition 2.2, that S ⊆ A(M) ∪ {0}.

Let us see the other inclusion. If x ∈ A(M), then there exists (a, b) ∈ M such that a < x < b. Since
(a, b) ∈ M, there exist λ1, . . . , λp ∈ ℕ such that (a, b) = λ1(n1 −1, n1 +1) + ⋅ ⋅ ⋅ + λp(np −1, np +1). Therefore,
x is an integer such that λ1(n1 − 1) + ⋅ ⋅ ⋅ + λp(np − 1) < x < λ1(n1 + 1) + ⋅ ⋅ ⋅ + λp(np + 1). From Lemmas 2.1
and 2.3, we have that x ∈ S.

In [13, Chapter 1, Exercise 2] it is shown that there exist submonoids of (ℕ2, +) that are not finitely gener-
ated. The next result guarantees us that, in order to study numerical A-semigroups, we can focus in finitely
generated submonoids of (ℕ2, +).

Corollary 2.5. Let S be a numerical semigroup. The following conditions are equivalent.
(1) S is a numericalA-semigroup.
(2) S = A(M) ∪ {0} for some finitely generated submonoid M of (ℕ2, +).
(3) There exist a1, b1, . . . , ap , bp ∈ ℕ such that S is the set

{n ∈ ℕ | a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp for some x1, . . . , xp ∈ ℕ} ∪ {0}.

Proof. (1)⇒ (2) It is an immediate consequence of the proof of Theorem 2.4.
(2)⇒ (3) If {(a1, b1), . . . , (ap , bp)} is a system of generators of M, then

S = A(M) ∪ {0} = {n ∈ ℕ | a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp for some x1, . . . , xp ∈ ℕ} ∪ {0}.

(3)⇒ (1) Let M be the submonoid of (ℕ2, +) that is generated by the set {(a1, b1), . . . , (ap , bp)}. Then it
is obvious that S = A(M) ∪ {0}.

Remark 2.6. Let us observe that, from (3) of Corollary 2.5, numericalA-semigroups can be characterized as
sets that contain the integers n such that the system of inequalities

a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp

has at least one solution inℕp (where {a1, b1, . . . , ap , bp} ⊆ ℕ is a given set for each numerical semigroup).

Let (M, +)be a commutativemonoid and let X be a systemof generators ofM. IfM ̸= ⟨Y⟩ for all Y ⊊ X, thenwe
say that X is aminimal system of generators ofM. We will denote by msg(M) a minimal system of generators
ofM.

If M is a submonoid of (ℕ, +), then we write M∗ = M \ {0}. The following result is a consequence of
[14, Lemma 2.3, Corollary 2.8].

Lemma 2.7. If M is a submonoid of (ℕ, +), then msg(M) = M∗ \ (M∗ +M∗) is the unique minimal system of
generators of M. In addition,msg(M) is finite and contained in every system of generators of M.

Let S be a numerical semigroup and let {n1, . . . , np} ⊆ ℕ \ {0} be a system of generators of S. If s ∈ S, we
define the order of s (in S) by (see [5])

ord(s; S) = max{a1 + ⋅ ⋅ ⋅ + ap | a1n1 + ⋅ ⋅ ⋅ + apnp = s, with a1, . . . , ap ∈ ℕ}.

If no ambiguity is possible, then we write ord(s).
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Remark 2.8. Let us observe that, fromLemma2.7, the definition of ord(s; S) is independent of the considered
system of generators of S, that is, ord(s; S) only depends on s and S. Thereby, we can take msg(S) in order to
define ord(s; S).

The next result is easy to prove.

Lemma 2.9. Let S be a numerical semigroup with minimal system of generators given by {n1, . . . , np} and
let s ∈ S.
(1) If s − ni ∈ S, then ord(s − ni) ≤ ord(s) − 1.
(2) If s = a1n1 + ⋅ ⋅ ⋅ + apnp, with ord(s) = a1 + ⋅ ⋅ ⋅ + ap and ai ̸= 0, then ord(s − ni) = ord(s) − 1.

In the following proposition we show another characterization of numericalA-semigroups.

Proposition 2.10. Let S be a numerical semigroup with minimal system of generators given by {n1, . . . , np}.
The following conditions are equivalent.
(1) S is a numericalA-semigroup.
(2) If i, j ∈ {1, . . . , p}, then {ni + nj − 1, ni + nj + 1} ⊆ S.
(3) If s ∈ S \ {0, n1, . . . , np}, then {s − 1, s + 1} ⊆ S.
(4) If s ∈ S \ {0}, then s + z ∈ S for all z ∈ ℤ such that |z| < ord(s).

Proof. (1)⇒ (2) It is an immediate consequence of Theorem 2.4.
(2)⇒ (3) If s ∈ S \ {0, n1, . . . , np}, then it is clear that there exist i, j ∈ {1, . . . , p} and s� ∈ S such that

s = ni + nj + s�. Thus, {s} + {−1, 1} = {ni + nj} + {−1, 1} + {s�} ⊆ S.
(3)⇒ (4)We are going to reason by induction over ord(s). The result is trivially true if ord(s) = 1. Thereby,

let us assume that ord(s) ≥ 2 and that a1, . . . , ap are nonnegative integers such that s = a1n1 + ⋅ ⋅ ⋅ + apnp
and ord(s) = a1 + ⋅ ⋅ ⋅ + ap, with ai ̸= 0 for some i ∈ {1, . . . , p}. By Lemma2.9,wehave ord(s − ni) = ord(s) − 1
and, by hypothesis of induction, that {s − ni} + ]−(ord(s) − 1), ord(s) − 1[ ⊆ S. Since ord(s) ≥ 2, it follows that
ai ≥ 2 or ai = 1 and aj ̸= 0, for some j ∈ {1, . . . , p} \ {i}. Thus, we have that

s = 2ni + a1n1 + ⋅ ⋅ ⋅ + (ai − 2)n1 + ⋅ ⋅ ⋅ + apnp

or (assuming, without loss of generality, that i < j)

s = ni + nj + a1n1 + ⋅ ⋅ ⋅ + (ai − 1)ni + ⋅ ⋅ ⋅ + (aj − 1)nj + ⋅ ⋅ ⋅ + apnp .

Anyway, s − ni − (ord(s) − 2) > 0 and, consequently, we have that

{s − ni} + ]−(ord(s) − 1), ord(s) − 1[ + {ni} + {−1, 0, 1} ⊆ S.

Thereby, {s} + ]−ord(s), ord(s)[ ⊆ S.
(4)⇒ (1) If a, b ∈ S \ {0}, then it is clear that ord(a + b) ≥ 2. Thus,we get that {a + b} + {−1, 0, 1} ⊆ S and,

by applying Theorem 2.4, we can conclude that S is a numericalA-semigroup.

Remark 2.11. Let us observe that (2) of the above proposition allows us to decide, faster than with Theo-
rem 2.4, whether a numerical semigroup is a numericalA-semigroup.

Remark 2.12. As a consequence of (3) of Proposition 2.10, we have that the numericalA-semigroups can be
characterized as those numerical semigroups which satisfy that themaximum and theminimum elements in
each interval of non-gaps areminimal generators of the numerical semigroup or are equal to zero. (Remember
that the gaps of a numerical semigroup S are the elements of the set ℕ \ S.) As we commented on in the
introduction, this characterization can be also deduced from [3, Example 6.5].

Now we give two illustrative examples on the content of this section.

Example 2.13. Let us see that, if S is the numerical semigroup with minimal system of generators {3, 5, 7},
then S is a numerical A-semigroup. Indeed, by applying (2) of Proposition 2.10 (see Remark 2.11), since
{3 + 3} + {−1, 1}, {3 + 5} + {−1, 1}, {3 + 7} + {−1, 1}, {5 + 5} + {−1, 1}, {5 + 7} + {−1, 1}, and {7 + 7} + {−1, 1}
are subsets of S, then we can assert that S is a numericalA-semigroup.
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On the other hand, we have that S = {0, 3, 5, 6, 7,→} and, thereby, its intervals of non-gaps are {0}, {3}
and {5,→}. Inasmuch as themaximum and theminimumof such a sets are zero or aminimal generator, from
Remark 2.12, we have another way to state that S is a numericalA-semigroup.

Example 2.14. Let T be the numerical semigroup with minimal system of generators {5, 7, 9}. Then we have
T = {0, 5, 7, 9, 10, 12, 14,→} and its intervals of non-gaps are {0}, {5}, {7}, {9, 10}, {12}, and {14,→}. Since
max{9, 10} = 10 is different from zero and it is not a minimal generator of T, then we conclude that T is not
a numericalA-semigroup.

3 The Frobenius variety of the numericalA-semigroups

Let us recall that, following [11], a Frobenius variety is a non-empty family V of numerical semigroups that
fulfils the following conditions,
(i) if S, T ∈ V, then S ∩ T ∈ V,
(ii) if S ∈ V and S ̸= ℕ, then S ∪ {F(S)} ∈ V.

The next result is straightforward to prove and appears in [14].

Lemma 3.1. Let S, T be numerical semigroups.
(1) S ∩ T is a numerical semigroup.
(2) If S ̸= ℕ, then S ∪ {F(S)} is a numerical semigroup.

Remark 3.2. Let us denote byL = {S | S is a numerical semigroup}. By Lemma 3.1, we have thatL is a Frobe-
nius variety.

Having in mind thatA = {S | S is a numericalA-semigroup}, our first aim in this section will be to show that
A is a Frobenius variety.

Proposition 3.3. The setA is a Frobenius variety.

Proof. First of all, being asℕ ∈ A, we have thatA is a non-empty set.
Now, let S, T ∈ A and x, y ∈ (S ∩ T) \ {0}. By Lemma 3.1, S ∩ T is a numerical semigroup. Moreover, by

applying Theorem 2.4, we have that {x + y − 1, x + y + 1} ⊆ S ∩ T. Consequently, S ∩ T ∈ A.
Finally, let S ∈ A such that S ̸= ℕ and let x, y ∈ (S ∪ F(S)) \ {0}. From Lemma 3.1, it is clear that S ∪ F(S)

is a numerical semigroup. Now, on the one hand, if x, y ∈ S, then {x + y − 1, x + y + 1} ⊆ S ⊆ S ∪ F(S). On the
other hand, if F(S) ∈ {x, y}, then x + y −1 ≥ F(S) and, thereby, {x + y −1, x + y +1} ⊆ S ∪ F(S). By Theorem 2.4
again, we conclude that S ∪ F(S) ∈ A.

Let us recall that a graph G is a pair (V, E), where V is a non-empty set (of vertices) and E is a subset of
{(v, w) ∈ V × V | v ̸= w} (the edges of G). A path (of length n) connecting two vertices x, y is a sequence of
different edges (v0, v1), (v1, v2), . . . , (vn−1, vn) such that v0 = x and vn = y.

We say that a graph G is a tree if there exists a vertex v∗ (the root of G) such that, for every other
vertex x, there exists a unique path connecting x and v∗. Moreover, if (x, y) is an edge, then we say that x is
a child of y.

In our framework, we define the graph G(A) where A is the set of vertices and (S, S�) ∈ A ×A is an edge
if S� = S ∪ {F(S)}.

It is easy to show (see [14, Exercise 2.1]) that, if S is a numerical semigroup and x ∈ S, then S \ {x} is
a numerical semigroup if and only if x ∈ msg(S). Thus, as a consequence of [11, Proposition 24, Theorem27],
we have the following result.

Theorem 3.4. The graph G(A) is a tree with root equal toℕ. Moreover, the set of the children of a vertex S ∈ A
is the set

{S \ {x} | x ∈ msg(S), x > F(S), and S \ {x} ∈ A}.

In the next proposition, we will characterize the elements x ∈ msg(S) such that S \ {x} ∈ A.
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Proposition 3.5. Let S be a numericalA-semigroup such that S ̸= ℕ, and let x ∈ msg(S). Then S \ {x} is a nume-
ricalA-semigroup if and only if

{x − 1, x + 1} ⊆ {0} ∪ (ℕ \ S) ∪msg(S).

Proof. Necessity. By Lemma 2.7, if x + 1 ̸∈ {0} ∪ (ℕ \ S) ∪ (msg(S)), then we deduce that there exist two ele-
ments a, b ∈ S \ {0} such that a + b = x + 1. Let us observe that, since S ̸= ℕ, then 1 ̸∈ S. Consequently, we
have that a, b ∈ S \ {0, x} and a + b − 1 = x ̸∈ S \ {x}. By applying Theorem 2.4, we have that S \ {x} is not
a numericalA-semigroup.

For the case x − 1 ̸∈ {0} ∪ (ℕ \ S) ∪ (msg(S)), we can argue in a similar way.
Sufficiency. Let a, b ∈ S \ {x, 0}. Since S is a numericalA-semigroup, by Theorem 2.4, we get

{a + b − 1, a + b + 1} ⊆ S.

Being that {x − 1, x + 1} ⊆ {0} ∪ (ℕ \ S) ∪ (msg(S)), we have that x ̸∈ {a + b − 1, a + b + 1}. Thereby

{a + b − 1, a + b + 1} ⊆ S \ {x}.

By applying Theorem 2.4 again, we conclude that S \ {x} is a numericalA-semigroup.

As a consequence of the previous proposition, we have the following result.

Corollary 3.6. Let S be a numericalA-semigroup such that S ̸= ℕ, and let x be aminimal generator of S greater
than F(S). Then S \ {x} is a numericalA-semigroup if and only if {x − 1, x + 1} ⊆ msg(S) ∪ {F(S)}.

In the next examplewe show thatwe can get the children of a vertex of G(A)by applying Theorem3.4 together
with Corollary 3.6.

Example 3.7. Let S be the numerical semigroup with minimal system of generators given by {4, 6, 7, 9}.
Then S = {0, 4, 6,→} and, therefore, F(S) = 5. From Proposition 2.10, we deduce that S is a numerical
A-semigroup. By applying Theorem 3.4 and Corollary 3.6, we get that S has a unique child in G(A). Namely,
S \ {6} = ⟨4, 7, 9, 10⟩.

Let us observe that we can recursively build a tree, from the root, if we know the children of each vertex.
Therefore, we can build the tree G(A) such as it is shown in the following figure.

⟨1⟩ = ℕ

⟨2, 3⟩

⟨3, 4, 5⟩
���

HHH
⟨4, 5, 6, 7⟩ ⟨3, 5, 7⟩
���

HHH
⟨5, 6, 7, 8, 9⟩ ⟨4, 6, 7, 9⟩ ⟨4, 5, 7⟩




�
�
A
A
J
J

. . . . . . . . . . . . ⟨4, 7, 9, 10⟩

ByTheorem3.4, it is obvious that ⟨2, 3⟩ = ℕ \ {1} is the unique child ofℕ = ⟨1⟩. By applying Theorem3.4
and Corollary 3.6, we have that
∙ ⟨3, 4, 5⟩ = ⟨2, 3⟩ \ {2} is the unique child of ⟨2, 3⟩.
∙ ⟨4, 5, 6, 7⟩ = ⟨3, 4, 5⟩ \ {3} and ⟨3, 5, 7⟩ = ⟨3, 4, 5⟩ \ {4} are the two children of ⟨3, 4, 5⟩.
∙ ⟨3, 5, 7⟩ has no children.
∙ ⟨5, 6, 7, 8, 9⟩ = ⟨4, 5, 6, 7⟩ \ {4}, ⟨4, 6, 7, 9⟩ = ⟨4, 5, 6, 7⟩ \ {5}, and ⟨4, 5, 7⟩ = ⟨4, 5, 6, 7⟩ \ {6} are the

three children of ⟨4, 5, 6, 7⟩.
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∙ ⟨4, 5, 7⟩ has no children.
∙ ⟨4, 7, 9, 10⟩ = ⟨4, 6, 7, 9⟩ \ {6} is the unique child of ⟨4, 6, 7, 9⟩.
∙ ⟨5, 6, 7, 8, 9⟩ has four children.
∙ ⟨4, 7, 9, 10⟩ has no children.
∙ And so on.

Let us observe that, if S� is a child of S in G(A), then F(S�) > F(S) and g(S�) = g(S) + 1. Therefore, when
we go on along the branches of the tree G(A), we get numerical semigroups with greater Frobenius number
and genus. Thus, we can use this construction in order to obtain all the numericalA-semigroups with a given
Frobenius number or genus.

4 The smallest numericalA-semigroup that contains a given set of
positive integers

SinceA is a Frobenius variety, we have that the finite intersection of numericalA-semigroups is a numerical
A-semigroup. Now observe that, if n is a nonnegative integer, then {0, n,→} is a numericalA-semigroup, as
a consequence of Theorem 2.4. Thus, being that⋂n∈ℕ{0, n,→} = {0}, we get that the infinite intersection of
numericalA-semigroups is not always a numericalA-semigroup. On the other hand, it is clear that the (finite
or infinite) intersection of numerical semigroups is always a submonoid of (ℕ, +).

If M is a submonoid of (ℕ, +), then we will say that M is an A-monoid if it can be expressed like the
intersection of numericalA-semigroups.

The proof of the following result is straightforward.

Lemma 4.1. The intersection ofA-monoids is anA-monoid.

This lemma leads us to the next definition.

Definition 4.2. Let X be a subset ofℕ. TheA-monoid generated by X (denoted byA(X)) is the intersection of
allA-monoids containing X.

Let us observe that A(X) is the smallest A-monoid containing X. The proof of the following lemma is also
immediate.

Lemma 4.3. If X ⊆ ℕ, thenA(X) is the intersection of all numericalA-semigroups that contain X.

In the next result we show thatA(X) is a numericalA-semigroup (except if X is the empty set or X = {0}).

Proposition 4.4. If X is a non-empty subset ofℕ \ {0}, thenA(X) is a numericalA-semigroup.

Proof. Since A(X) is a submonoid of (ℕ, +), in order to show that A(X) is a numerical semigroup, it will be
enough to see that gcd(A(X)) = 1.

Let x ∈ X. If S is a numerical A-semigroup containing X, then (by Theorem 2.4) we have {x, 2x + 1} ⊆ S.
By applying Lemma 4.3, we get that {x, 2x + 1} ⊆ A(X). As gcd({x, 2x + 1}) = 1, it follows that gcd(A(X)) = 1.

Now, let us see that A(X) is a numerical A-semigroup. Let a, b ∈ A(X) \ {0}. If S is a numerical A-semi-
group containing X, from Lemma 4.3, we have that a, b ∈ S \ {0} and, from Theorem 2.4, we get that
{a + b − 1, a + b + 1} ⊆ S. By applying again Lemma 4.3, we have that {a + b − 1, a + b + 1} ⊆ A(X). There-
fore, by applying Theorem 2.4 once more, we conclude thatA(X) is a numericalA-semigroup.

Let us observe that Proposition 4.4 is not true for every Frobenius variety. In fact, let S be the set of all numeri-
cal semigroups. It is clear that S is a Frobenius variety. If we take X = {2}, then the intersection of all elements
of S containing X is equal to ⟨2⟩ which is not a numerical semigroup (observe that⋂k∈ℕ⟨2, 2k + 1⟩ = ⟨2⟩).

Let us also observe that, as a consequence of Proposition 4.4, we have thatM is anA-monoid if and only
if M is a numericalA-semigroup or M = {0}.

Theorem 4.5. The setA is equal to the set {A(X) | X is a non-empty finite subset ofℕ \ {0}}.
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Proof. By Proposition 4.4, we have that

{A(X) | X is a non-empty finite subset ofℕ \ {0}} ⊆ A.

Let us see the other inclusion. If S ∈ A, then S is a numerical semigroup and, by Lemma 2.7, we deduce that
there exists a non-empty finite subset X of ℕ \ {0} such that S = ⟨X⟩. Thereby, S is the smallest numerical
semigroup that contains X. In fact, S is the smallest numerical A-semigroup that contains X. Consequently,
S = A(X).

If M is an A-monoid and X is a subset of ℕ such that M = A(X), then we will say that X is an A-system
of generators of M. In addition, if M ̸= A(Y) for all Y ⊊ X, then we will say that X is a minimal A-system of
generators of M.

SinceA is a Frobenius variety, by applying [11, Corollary 19], we have the following result.

Proposition 4.6. EveryA-monoid has a unique minimalA-system of generators, which in addition is finite.

The next result follows from [11, Proposition 24].

Proposition 4.7. Let M be anA-monoid and let x ∈ M. Then M \ {x} is anA-monoid if and only if x belongs to
the minimalA-system of generators of M.

As an immediate consequence of this proposition we have the following result.

Corollary 4.8. Let X be a non-empty subset ofℕ \ {0}. Then

{x ∈ X | A(X) \ {x} is a numericalA-semigroup}

is the minimalA-system of generators ofA(X).

Let us illustrate the previous result with an example.

Example 4.9. Beginning in Example 3.7,we know that S = ⟨4, 6, 7, 9⟩ is a numericalA-semigroup. By apply-
ing Proposition 3.5, we easily deduce that

{x ∈ {4, 6, 7, 9} | S \ {x} is a numericalA-semigroup} = {4, 6}.

Therefore, S = A({4, 6}) and {4, 6} is its minimalA-system of generators.

Let x1, . . . , xt be positive integers. We will denote by S(x1, . . . , xt) the set

{a1x1 + ⋅ ⋅ ⋅ + atxt + z | a1, . . . , at ∈ ℕ, z ∈ ℤ, and |z| < a1 + ⋅ ⋅ ⋅ + at} ∪ {0}.

Our next purpose will be to show that S(x1, . . . , xt) is the smallest numerical A-semigroup containing
{x1, . . . , xt}, that is, S(x1, . . . , xt) = A({x1, . . . , xt}).

The next result has an easy proof, so it is omitted.

Lemma 4.10. Let S be a numerical semigroup, let s1, . . . , st ∈ S \ {0}, and let a1, . . . , at ∈ ℕ. Then

ord(a1s1 + ⋅ ⋅ ⋅ + atst) ≥ a1 + ⋅ ⋅ ⋅ + at .

Theorem 4.11. If x1, . . . , xt are positive integers, then S(x1, . . . , xt) is the smallest numerical A-semigroup
that contains the set {x1, . . . , xt}.

Proof. We divide the proof into four steps.
(i) Let us see that, if x, y ∈ S(x1, . . . , xt) \ {0}, then

{x + y − 1, x + y, x + y + 1} ⊆ S(x1, . . . , xt).

Let a1, b1, . . . , at , bt ∈ ℕ and let z, z� ∈ ℤ such that

x = a1x1 + ⋅ ⋅ ⋅ + atxt + z, |z| < a1 + ⋅ ⋅ ⋅ + at , y = b1x1 + ⋅ ⋅ ⋅ + btxt + z�, |z�| < b1 + ⋅ ⋅ ⋅ + bt .
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Then
x + y = (a1 + b1)x1 + ⋅ ⋅ ⋅ + (at + bt)xt + z + z�

with |z + z�| ≤ |z| + |z�| < |z| + |z�| + 1 < (a1 + b1) + ⋅ ⋅ ⋅ + (at + bt). Consequently, x + y ∈ S(x1, . . . , xt). More-
over,

x + y + 1 = (a1 + b1)x1 + ⋅ ⋅ ⋅ + (at + bt)xt + z + z� + 1
with |z + z� + 1| ≤ |z| + |z�| + 1. Thus, x + y + 1 ∈ S(x1, . . . , xt). In the same way, since

x + y − 1 = (a1 + b1)x1 + ⋅ ⋅ ⋅ + (at + bt)xt + z + z� − 1

with |z + z� − 1| ≤ |z| + |z�| + 1, we have that x + y − 1 ∈ S(x1, . . . , xt).
(ii) Let i ∈ {1, . . . , t}. Since xi = 0 ⋅ x1 + ⋅ ⋅ ⋅ + 1 ⋅ xi + ⋅ ⋅ ⋅ + 0 ⋅ xt + 0, we have that xi ∈ S(x1, . . . , xt).
(iii) From the previous steps and Theorem 2.4, we deduce that S(x1, . . . , xt) is a numericalA-semigroup

that contains {x1, . . . , xt}.
(iv) Let T be a numericalA-semigroup containing {x1, . . . , xt} and let x ∈ S(x1, . . . , xt) \ {0}. Then there

exist a1, . . . , at ∈ ℕ and z ∈ ℤ such that x = a1x1+⋅ ⋅ ⋅+atxt + zwith |z| < a1+⋅ ⋅ ⋅+at. Since {x1, . . . , xt} ⊆ T,
we get that a1x1 + ⋅ ⋅ ⋅ + atxt ∈ T. By applying Proposition 2.10 and Lemma 4.10, we can conclude that x ∈ T.

In this way, we have proved the statement.

As an immediate consequence of Theorem 4.11, we have the following result.

Corollary 4.12. If m is a positive integer, then

A({m}) = {km + z | k ∈ ℕ \ {0} and z ∈ {−(k − 1), . . . , k − 1}} ∪ {0}.

By applying the previous corollary, we can easily compute the smallest numericalA-semigroup that contains
a fixed positive integer, such as we show in the next example.

Example 4.13. Let us compute the smallest numerical A-semigroup containing {10}. By Corollary 4.12, we
have that such a numerical semigroup is

A({10}) = {k ⋅ 10 + z | k ∈ ℕ \ {0} and z ∈ {−(k − 1), . . . , k − 1}} ∪ {0}
= {0, 10, 19, 20, 21, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 46,→}
= ⟨10, 19, 21, 28, 32, 37, 43, 46, 54, 55⟩.

Let us observe that, in Theorem 4.11, are described the elements of the smallest numerical A-semigroup
which contains a given set of positive integers. However, in order to compute such a numericalA-semigroup,
we propose the following algorithm that is justified by Proposition 2.10.

Algorithm 4.14. ∙ INPUT: A finite set X of positive integers.
∙ OUTPUT: The minimal system of generators ofA(X).

(1) Y = msg(⟨X⟩).
(2) Z = Y ∪ (⋃a,b∈Y {a + b − 1, a + b + 1}).
(3) If msg(⟨Z⟩) = Y, then return Y.
(4) Set Y = msg(⟨Z⟩) and go to (2).

Example 4.15. We are going to computeA({5, 7}) applying Algorithm 4.14.
∙ Y = {5, 7}.
∙ Z = {5, 7, 9, 11, 13, 15}.
∙ msg(⟨Z⟩) = {5, 7, 9, 11, 13}.
∙ Y = {5, 7, 9, 11, 13}.
∙ Z = {5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27}.
∙ msg(⟨Z⟩) = {5, 7, 9, 11, 13}.
∙ A({5, 7}) = ⟨5, 7, 9, 11, 13⟩.

Observe that the most complex process in Algorithm 4.14 is the computation of msg(⟨Z⟩), that is, compute
theminimal system of generators of a numerical semigroup S starting from any system of generators of it. For
this purpose, we can use the GAP package numericalsgps (see [6]).
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5 The computation of S(a, b)
Let a = (a1, . . . , ap), b = (b1, . . . , bp) ∈ ℕp and let S(a, b) be the set

S(a, b) = {n ∈ ℕ | a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp for some x1, . . . , xp ∈ ℕp}.

Our main aim in this section will be to describe an algorithmic procedure that allows us to compute S(a, b)
starting from a and b. In order to do that we need to introduce several concepts and results.

Let z = (z1, . . . , zp) ∈ ℤp and

A(z) = {(x1, . . . , xp) ∈ ℕp | z1x1 + ⋅ ⋅ ⋅ + zpxp ≥ 0}.

It is well known that A(z) is a finitely generated submonoid of (ℕp , +) and, moreover, in [1] it is shown an
algorithm to compute a finite system of generators for A(z). Since we want a self-contained paper and to
describe exampleswithoutmake references to [1], we are going to describe an algorithmic process to compute
a finite system of generators for A(z).

Let
B(z) = {(x1, . . . , xp , xp+1) ∈ ℕp+1 | z1x1 + ⋅ ⋅ ⋅ + zpxp − xp+1 = 0}.

It is well known (see [13]) that B(z) is a finitely generated submonoid of (ℕp+1, +) and its minimal gen-
erators are precisely the minimal elements (with the usual order in ℕp+1) of the set B(z) \ {(0, . . . , 0)}.
In addition, we have (see [7]) that, if (x1, . . . , xp , xp+1) is a minimal element of B(z) \ {(0, . . . , 0)}, then
x1+⋅ ⋅ ⋅+xp+1 ≤ |z1|+⋅ ⋅ ⋅+|zp|+2. Finally, it is easy to see that, if {b1, . . . , bq} is aminimal systemof generators
of B(z), then {π(b1), . . . , π(bq)} is a system of generators for A(z) (where π(x1, . . . , xp , xp+1) = (x1, . . . , xp)).
Therefore, from the comments in this paragraph, it is clear that we have an algorithmic procedure in order to
compute the finite system of generators for A(z). Let us see an example which illustrates such a process.

Example 5.1. We are going to compute a system of generators for A = {(x, y) ∈ ℕ2 | x − y ≥ 0}. For that, we
begin computing the minimal elements of B \ {(0, 0, 0)}, where B = {(x, y, z) ∈ ℕ3 | x − y − z = 0}. By apply-
ing that, if (x, y, z) is a minimal element of B \ {(0, 0, 0)}, then x + y + z ≤ 4, we easily deduce that the set of
minimal elements of B \ {(0, 0, 0)} is {(1, 1, 0), (1, 0, 1)}. Thereby, {π(1, 1, 0), π(1, 0, 1)} = {(1, 1), (1, 0)} is
a system of generators for A.

The idea of the algorithmic procedure, which we want to show in this section, is to make a series of transfor-
mation on (a, b) in order to simplify the computation of S(a, b) in each step.

Let {m1, . . . ,mq} be the minimal system of generators of

A(b − a) = {(x1, . . . , xp) ∈ ℕp | (b1 − a1)x1 + ⋅ ⋅ ⋅ + (bp − ap)xp ≥ 0},

where mi = (mi1, . . . ,mip) for all i ∈ {1, . . . , q}. Moreover, let α = (α1, . . . , αq) and β = (β1, . . . , βq), where
αi = a1mi1 + ⋅ ⋅ ⋅ + apmip and βi = b1mi1 + ⋅ ⋅ ⋅ + bpmip for all i ∈ {1, . . . , q}. (Let us observe that αi ≤ βi for all
i ∈ {1, . . . , q}.)

Proposition 5.2. Under the stated notation, S(a, b) = S(α, β).

Proof. If n ∈ S(a, b), then there exists (x1, . . . , xp) ∈ ℕp such that

a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp .

Therefore, (x1, . . . , xp) ∈ A(b − a) and, consequently, there exist λ1, . . . , λq ∈ ℕ such that

(x1, . . . , xp) = λ1m1 + ⋅ ⋅ ⋅ + λqmq .

Thus,

a1(λ1m11 + ⋅ ⋅ ⋅ + λqmq1) + ⋅ ⋅ ⋅ + ap(λ1m1p + ⋅ ⋅ ⋅ + λqmqp)

< n < b1(λ1m11 + ⋅ ⋅ ⋅ + λqmq1) + ⋅ ⋅ ⋅ + bp(λ1m1p + ⋅ ⋅ ⋅ + λqmqp).
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Now, by rearranging the terms in each one of these inequalities, we get that

α1λ1 + ⋅ ⋅ ⋅ + αqλq < n < β1λ1 + ⋅ ⋅ ⋅ + βqλq ,

and, accordingly, n ∈ S(α, β).
Conversely, if n ∈ S(α, β), then there exists (x1, . . . , xq) ∈ ℕq such that

α1x1 + ⋅ ⋅ ⋅ + αqxq < n < β1x1 + ⋅ ⋅ ⋅ + βqxq .

Therefore,

(a1m11 + ⋅ ⋅ ⋅ + apm1p)x1 + ⋅ ⋅ ⋅ + (a1mq1 + ⋅ ⋅ ⋅ + apmqp)xq
< n < (b1m11 + ⋅ ⋅ ⋅ + bpm1p)x1 + ⋅ ⋅ ⋅ + (b1mq1 + ⋅ ⋅ ⋅ + bpmqp)xq ,

and

a1(m11x1 + ⋅ ⋅ ⋅ + mq1xq) + ⋅ ⋅ ⋅ + ap(m1px1 + ⋅ ⋅ ⋅ + mqpxq)
< n < b1(m11x1 + ⋅ ⋅ ⋅ + mq1xq) + ⋅ ⋅ ⋅ + bp(m1px1 + ⋅ ⋅ ⋅ + mqpxq).

Thus, we conclude that n ∈ S(a, b).

Let us observe that, as a consequence of the previous proposition, in the followingwe can assume that ai ≤ bi
for all i ∈ {1, . . . , p}. We illustrate this fact with the next example.

Example 5.3. Let S = {n ∈ ℕ | 2x + 3y < n < 3x + 2y for some (x, y) ∈ ℕ2}. From Example 5.1, we know that
{(1, 0), (1, 1)} is a system of generators of A = {(x, y) ∈ ℕ2 | x − y ≥ 0}. Then α1 = 2, β1 = 3, α2 = 5, and
β2 = 5. Thus, by applying Proposition 5.2, we have S = {n ∈ ℕ | 2x + 5y < n < 3x + 5y for some (x, y) ∈ ℕ2}.

Proposition 5.4. If {1, . . . , r} = {i ∈ {1, . . . , p} | ai = bi}, then S(a, b) = S� + ⟨a1 . . . , ar⟩, where

S� = {n ∈ ℕ | ar+1xr+1 + ⋅ ⋅ ⋅ + apxp < n < br+1xr+1 + ⋅ ⋅ ⋅ + bpxp for some (xr+1, . . . , xp) ∈ ℕp−r}.

Proof. Let us see that S(a, b) ⊆ S� + ⟨a1 . . . , ar⟩. Indeed, if n ∈ S(a, b), then there exists (x1, . . . , xp) ∈ ℕp

such that
a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp .

Therefore,
ar+1xr+1 + ⋅ ⋅ ⋅ + apxp < n − (a1x1 + ⋅ ⋅ ⋅ + arxr) < br+1xr+1 + ⋅ ⋅ ⋅ + bpxp .

Accordingly, n − (a1x1 + ⋅ ⋅ ⋅ + arxr) ∈ S� and, consequently, n ∈ S� + ⟨a1 . . . , ar⟩.
Now, let us see that S� + ⟨a1 . . . , ar⟩ ⊆ S(a, b). In effect, if n ∈ S� and m ∈ ⟨a1 . . . , ar⟩, then there exists

(x1, . . . , xr , xr+1, . . . , xp) ∈ ℕp such that

ar+1xr+1 + ⋅ ⋅ ⋅ + apxp < n < br+1xr+1 + ⋅ ⋅ ⋅ + bpxp

and m = a1x1 + ⋅ ⋅ ⋅ + arxr = b1x1 + ⋅ ⋅ ⋅ + brxr. Therefore,

a1x1 + ⋅ ⋅ ⋅ + apxp < n + m < b1x1 + ⋅ ⋅ ⋅ + bpxp

and, in consequence, n + m ∈ S(a, b).

Let us observe that, as a consequence of Propositions 5.2 and 5.4, in the followingwe can assume that ai < bi
for all i ∈ {1, . . . , p}. We illustrate this fact with the next example.

Example 5.5. Let S = {n ∈ ℕ | 2x + 3y < n < 3x + 2y for some (x, y) ∈ ℕ2}. From Example 5.3,

S = {n ∈ ℕ | 2x + 5y < n < 3x + 5y for some (x, y) ∈ ℕ2}.

Now, by Proposition 5.4, we have that S = S� + ⟨5⟩, where S� = {n ∈ ℕ | 2x < n < 3x for some x ∈ ℕ}. In this
way, if we can compute S�, then we can compute S.
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We will denote by X
k the set {n ∈ ℕ | kn ∈ X}, where X is a subset ofℕ and k is a positive integer.

Proposition 5.6. Under the stated notation, S(a, b) = S(2a,2b)
2 .

Proof. If n ∈ S(a, b), then there exists (x1, . . . , xp) ∈ ℕp such that

a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp .

Therefore,
2a1x1 + ⋅ ⋅ ⋅ + 2apxp < 2n < 2b1x1 + ⋅ ⋅ ⋅ + 2bpxp ,

and, consequently, 2n ∈ S(2a, 2b). In this way, we conclude that n ∈ S(2a,2b)
2 .

Conversely, if n ∈ S(2a,2b)
2 , then 2n ∈ S(2a, 2b) and, therefore, there exists (x1, . . . , xp) ∈ ℕp such that

2a1x1 + ⋅ ⋅ ⋅ + 2apxp < 2n < 2b1x1 + ⋅ ⋅ ⋅ + 2bpxp .

Then
a1x1 + ⋅ ⋅ ⋅ + apxp < n < b1x1 + ⋅ ⋅ ⋅ + bpxp ,

and, thereby, n ∈ S(a, b).

From this moment, as a consequence of Propositions 5.2, 5.4, 5.6, we can assume that bi ≥ ai + 2 for all
i ∈ {1, . . . , p}. Let us illustrate this fact with an example.

Example 5.7. Let S = {n ∈ ℕ | 2x + 3y < n < 3x + 2y for some (x, y) ∈ ℕ2}. From Example 5.5, we know that
S = S� + ⟨5⟩, where S� = {n ∈ ℕ | 2x < n < 3x for some x ∈ ℕ}. By applying Proposition 5.6, we have that
S� = S��2 , where S

�� = {n ∈ ℕ | 4x < n < 6x for some x ∈ ℕ}. Therefore, if we can compute S��, then we can
compute S� and, consequently, S. By the way, observe that S� = { n2 | n ∈ S�� and n is even}.

Theorem 5.8. Under the stated notation, if bi ≥ ai + 2 for all i ∈ {1, . . . , p}, then S(a, b) ∪ {0} is the smallest
numericalA-semigroup containing⋃p

i=1 ]ai , bi[, that is,

S(a, b) = A(
p
⋃
i=1

]ai , bi[) \ {0}.

Proof. Let us observe that
(i) A(b − a) = {(x1, . . . , xp) ∈ ℕp | (b1 − a1)x1 + ⋅ ⋅ ⋅ + (bp − ap)xp ≥ 0} = ℕp and, therefore,

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1)}

is a system of generators of A(b − a),
(ii) S(a, b) = ⋃(x1 ,...,xp)∈A(b−a)\{(0,...,0)} ]a1x1 + ⋅ ⋅ ⋅ + apxp , b1x1 + ⋅ ⋅ ⋅ + bpxp[,
(iii) if (x1, . . . , xp) ∈ A(b − a) \ {(0, . . . , 0)}, then b1x1 + ⋅ ⋅ ⋅ + bpxp ≥ a1x1 + ⋅ ⋅ ⋅ + apxp + 2 and, therefore,

]a1x1 + ⋅ ⋅ ⋅ + apxp , b1x1 + ⋅ ⋅ ⋅ + bpxp[ is a non-empty set.
It is clear that S(a, b) ∪ {0} is a numerical A-semigroup containing ⋃p

i=1]ai , b[. Therefore, in order to
prove the theorem, it is enough to see that, if T is a numerical A-semigroup containing ⋃p

i=1]ai , bi[, then
S(a, b) ⊆ T. For that, we will show by induction on x1 + ⋅ ⋅ ⋅ + xp that, if (x1, . . . , xp) ∈ A(b − a) \ {(0, . . . , 0)},
then ]a1x1 + ⋅ ⋅ ⋅ + apxp , b1x1 + ⋅ ⋅ ⋅ + bpxp[ ⊆ T.

If x1 + ⋅ ⋅ ⋅ + xp = 1, then it is clear that there exists i ∈ {1, . . . , p} such that

]a1x1 + ⋅ ⋅ ⋅ + apxp , b1x1 + ⋅ ⋅ ⋅ + bpxp[ = ]ai , bi[ ⊆ T .

If x1 + ⋅ ⋅ ⋅ + xp ≥ 2, then (x1, . . . , xp) is not a minimal generator of A(b − a) and, therefore, there exist
(y1, . . . , yp), (z1, . . . , zp) ∈ A(b − a) \ {(0, . . . , 0)} such that (x1, . . . , xp) = (y1, . . . , yp) + (z1, . . . , zp). By
the hypothesis of induction, we know that

]a1y1 + ⋅ ⋅ ⋅ + apyp , b1y1 + ⋅ ⋅ ⋅ + bpyp[ and ]a1z1 + ⋅ ⋅ ⋅ + apzp , b1z1 + ⋅ ⋅ ⋅ + bpzp[

are subsets of T. That is,

{a1y1 + ⋅ ⋅ ⋅ + apyp + 1, . . . , b1y1 + ⋅ ⋅ ⋅ + bpyp − 1} and {a1z1 + ⋅ ⋅ ⋅ + apzp + 1, . . . , b1z1 + ⋅ ⋅ ⋅ + bpzp − 1}
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are subsets of T. Now, by applying that T is a numerical semigroup, we have that

{a1x1 + ⋅ ⋅ ⋅ + apxp + 2, . . . , b1x1 + ⋅ ⋅ ⋅ + bpxp − 2}
= {a1y1 + ⋅ ⋅ ⋅ + apyp + 1, . . . , b1y1 + ⋅ ⋅ ⋅ + bpyp − 1} + {a1z1 + ⋅ ⋅ ⋅ + apzp + 1, . . . , b1z1 + ⋅ ⋅ ⋅ + bpzp − 1}
⊆ T.

Finally, by applying that T is a numericalA-semigroup, we get that

a1x1 + ⋅ ⋅ ⋅ + apxp + 1 = (a1y1 + ⋅ ⋅ ⋅ + apyp + 1) + (a1z1 + ⋅ ⋅ ⋅ + apzp + 1) − 1 ∈ T

and
b1x1 + ⋅ ⋅ ⋅ + bpxp − 1 = (b1y1 + ⋅ ⋅ ⋅ + bpyp − 1) + (b1z1 + ⋅ ⋅ ⋅ + bpzp − 1) + 1 ∈ T.

Thus, we conclude that ]a1x1 + ⋅ ⋅ ⋅ + apxp , b1x1 + ⋅ ⋅ ⋅ + bpxp[ ⊆ T.

In the next example we show how the previous theorem works.

Example 5.9. We are going to compute

S = {n ∈ ℕ | 2x + 3y < n < 3x + 2y for some (x, y) ∈ ℕ2}.

From Example 5.7, we know that S = T2 + ⟨5⟩, where T = {n ∈ ℕ | 4x < n < 6x for some x ∈ ℕ}. By applying
Theorem 5.8, we have that T ∪ {0} is the smallest numerical A-semigroup containing ]4, 6[ = {5}. Now, by
applying Algorithm 4.14, we easily deduce that T = {5, 9, 10, 11, 13,→} and, consequently, T2 = {5, 7,→}.
Therefore, we conclude that S = T2 + ⟨5⟩ = {5, 7,→}.

Remark 5.10. In order to solve the problem stated in Remark 1.2, observe that we only need to make minors
changes in Propositions 5.2 and 5.4. Moreover, in Theorem 5.8 we have to take bi ≥ ai + 1 and intervals of
the type ]ai , bi]. Consequently, Proposition 5.6 is not necessary to get the answer to the problem.

6 NumericalA-semigroups with fixed multiplicity

Let m be a positive integer. On the one hand, from Corollary 4.12, we have that

Θ(m) = {km + z | k ∈ ℕ \ {0}, z ∈ ℤ, and |z| < k} ∪ {0}

is the smallest (with respect to the inclusion order) numericalA-semigroup with multiplicitym. On the other
hand, it is clear that ∆(m) = {0,m,→} is the greatest (with respect to the inclusion order) numericalA-semi-
group with multiplicity m. Therefore, if we denote by Am the set of all numerical A-semigroups with multi-
plicity m, then we have that Θ(m) = minAm and ∆(m) = maxAm.

Remark 6.1. Let m be a positive integer. The numerical semigroup {0,m,→} is usually called the ordinary
semigroup with multiplicity m.

As an application of the above comment, we have the next result.

Proposition 6.2. Let m be a positive integer. Then the setAm is finite.

Proof. If S ∈ Am, then Θ(m) ⊆ S ⊆ ∆(m). Since ∆(m) and Θ(m) are numerical semigroups, we have that
∆(m) \ Θ(m) is finite. Consequently,Am is also finite.

Now, let us consider the graph G(Am), where Am is the set of vertices and (S, S�) ∈ Am ×Am is an edge if
S� = S ∪ {F(S)}. The next result is analogous to Theorem 3.4.

Theorem 6.3. The graph G(Am) is a tree with root equal to ∆(m). Moreover, the set of children of a vertex S
(of such a tree) is

{S \ {x} | x ∈ msg(S), x ̸= m, x > F(S) and S \ {x} ∈ A}.

By applying Theorem 6.3 and Corollary 3.6, we can get easily G(Am) such as we show in the following
example.
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Example 6.4. We are going to depict G(A5), that is, the tree of the numericalA-semigroups with multiplicity
equal to 5.

⟨5, 6, 7, 8, 9⟩ = ∆(5)
        

PPPPP
⟨5, 7, 8, 9, 11⟩ ⟨5, 6, 8, 9⟩ ⟨5, 6, 7, 9⟩
�
�

@
@

⟨5, 8, 9, 11, 12⟩ ⟨5, 7, 9, 11, 13⟩ ⟨5, 6, 9, 13⟩

⟨5, 9, 11, 12, 13⟩

⟨5, 9, 11, 13, 17⟩ = Θ(5)

Remark 6.5. In [10] it was introduced the concept of Frobenius pseudo-variety, which generalizes the idea
of Frobenius variety and the notion of m-variety (see [3]). Following Section 3, we can show that Am is
a Frobenius pseudo-variety. Thus, we have another way to get the tree associated to G(Am).

It is obvious that F(∆(m)) = g(∆(m)) = m − 1. Nowwe are interested in computing the Frobenius number and
the genus of Θ(m). For that, several concepts and results are introduced.

If S is a numerical semigroup and n ∈ S \ {0}, then we define the Apéry set of n in S (see [2]) as the set
Ap(S, n) = {s ∈ S | s − n ̸∈ S}. It is clear (see [14, Lemma 2.4]) that Ap(S, n) = {ω(0) = 0, ω(1), . . . , ω(n − 1)},
where ω(i) is, for each i ∈ {0, . . . , n − 1}, the least element of S that is congruent with i modulo n. The next
result is [14, Proposition 2.12].

Lemma 6.6. Let S be a numerical semigroup and let m ∈ S \ {0}. Then:
(1) F(S) = max(Ap(S,m)) − m,
(2) g(S) = 1

m (∑w∈Ap(S,m) w) − m−12 .

It is clear that Θ(1) = ℕ and, therefore, Ap(Θ(1), 1) = {0}. In the following result we determine the Apéry
sets Ap(Θ(m),m), for all m ≥ 2.

Proposition 6.7. Let m be an integer greater than or equal to two.
(1) Ap(Θ(m),m) = {(k + 1)m ± k | k ∈ {1, . . . , m−12 }} ∪ {0} if m is odd.
(2) Ap(Θ(m),m) = {(k + 1)m ± k | k ∈ {1, . . . , m−22 }} ∪ {(m2 + 1)m −

m
2 } ∪ {0} if m is even.

Proof. (1) It is obvious that {(k + 1)m ± k | k ∈ {1, . . . , m−12 }} ∪ {0} is a subset of Θ(m) with cardinality equal
to m. Therefore, if we show that {(k + 1)m − k − m, (k + 1)m + k − m} ∩ Θ(m) = {km − k, km + k} ∩ Θ(m) = 0
for each k ∈ {1, . . . , m−12 }, then we will finish the proof.

Indeed, from Corollary 4.12, if km+k ∈ Θ(m), then im−(i−1) ≤ km+k ≤ im+(i−1) for some i ∈ ℕ \ {0}.
Thus, from the right inequality, we have 1 ≤ (i−k)(m+1) and, therefore, 1 ≤ i−k. But, from the left inequality,
we get that (i − k)m−12 +

1
2 ≤ k. Then we conclude that k >

m−1
2 , in contradiction with the hypothesis.

For km − k we can argue in the same way, simply by changing the role of inequalities.
(2) First of all, observe that, if m = 2, then we assume that {1, . . . , 2−22 } = {1, . . . , 0} = 0. Thus,

Ap(Θ(2), 2) = {(22 + 1)2 −
2
2} ∪ {0} = {0, 3},

which is trivially true.
Now, if m is even and greater than two, then the reasoning is similar to the case in which m is odd.

If m is even, then we have that (m2 + 1)m −
m
2 > (

m−2
2 + 1)m +

m−2
2 . From this inequality, Lemma 6.6 and

Proposition 6.7, we have the next result.

Corollary 6.8. Let m be an integer greater than or equal to two.
(1) If m is odd, then F(Θ(m)) = (m−1)(m+1)

2 and g(Θ(m)) = (m−1)(m+3)
4 .

(2) If m is even, then F(Θ(m)) = (m−1)m
2 and g(Θ(m)) = (m−2)m

4 + m − 1.
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Observe that the previous corollary is not true for m = 1 because Θ(1) = ℕ and F(ℕ) = −1.
Recalling that the height of a tree T is the maximum of the lengths of the paths that connect each vertex

with the root, we have that the height of G(A5) is 4 (see Example 6.4). In general, it is clear that the height
of the tree G(Am) is equal to g(Θ(m)) − g(∆(m)). Thus, having in mind that g(∆(m)) = m − 1, by applying
Corollary 6.8, we get the following result.

Corollary 6.9. Let m be a positive.
(1) If m is odd, then G(Am) is a tree with height equal to (m−1)2

4 .
(2) If m is even, then G(Am) is a tree with height equal to (m−2)m

4 .

Remark 6.10. Taking Θ(m) = {km − z | k ∈ ℕ \ {0}, z ∈ ℕ, and z < k} ∪ {0}, we obtain analogous results for
the familyB shown in Remark 1.2.
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