
Castillo et al. BMC Bioinformatics  (2017) 18:506 
DOI 10.1186/s12859-017-1925-0

RESEARCH ARTICLE Open Access

Integration of RNA-Seq data with
heterogeneous microarray data for breast
cancer profiling
Daniel Castillo* , Juan Manuel Gálvez, Luis Javier Herrera, Belén San Román, Fernando Rojas
and Ignacio Rojas

Abstract

Background: Nowadays, many public repositories containing large microarray gene expression datasets are
available. However, the problem lies in the fact that microarray technology are less powerful and accurate than more
recent Next Generation Sequencing technologies, such as RNA-Seq. In any case, information from microarrays is
truthful and robust, thus it can be exploited through the integration of microarray data with RNA-Seq data.
Additionally, information extraction and acquisition of large number of samples in RNA-Seq still entails very high costs
in terms of time and computational resources.This paper proposes a new model to find the gene signature of breast
cancer cell lines through the integration of heterogeneous data from different breast cancer datasets, obtained from
microarray and RNA-Seq technologies. Consequently, data integration is expected to provide a more robust statistical
significance to the results obtained. Finally, a classification method is proposed in order to test the robustness of the
Differentially Expressed Genes when unseen data is presented for diagnosis.

Results: The proposed data integration allows analyzing gene expression samples coming from different
technologies. The most significant genes of the whole integrated data were obtained through the intersection of the
three gene sets, corresponding to the identified expressed genes within the microarray data itself, within the RNA-Seq
data itself, and within the integrated data from both technologies. This intersection reveals 98 possible
technology-independent biomarkers. Two different heterogeneous datasets were distinguished for the classification
tasks: a training dataset for gene expression identification and classifier validation, and a test dataset with unseen data
for testing the classifier. Both of them achieved great classification accuracies, therefore confirming the validity of the
obtained set of genes as possible biomarkers for breast cancer. Through a feature selection process, a final small
subset made up by six genes was considered for breast cancer diagnosis.

Conclusions: This work proposes a novel data integration stage in the traditional gene expression analysis pipeline
through the combination of heterogeneous data from microarrays and RNA-Seq technologies. Available samples
have been successfully classified using a subset of six genes obtained by a feature selection method. Consequently, a
new classification and diagnosis tool was built and its performance was validated using previously unseen samples.
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Background
Cancer is the second leading cause of death world-
wide, just behind cardiovascular disease. Specifically,
breast cancer is one of the five most dangerous can-
cers in the world, showing a high mortality rate accord-
ing to World Health Organization (WHO), and being
the cancer with the highest impact among the female
population [1]. Nowadays, many breast cancer diag-
noses are performed when a patient presents several
related symptoms, thus increasing the mortality risk. If
the cancer has spread, treatment becomes more diffi-
cult, and generally the chances of surviving are signif-
icantly lower. However, cancers that are diagnosed at
an early stage are more likely to be treated success-
fully. Therefore, it is primordial to find biomarkers that
allow an early diagnosis of breast cancer. Two sequenc-
ing technologies, microarray and RNA-Seq, have been
used for obtaining gene expression. They are briefly
described next.

Microarray technology
Microarray has been the main sequencing technology
used in the last two decades until the arrival of Next
Generation Sequencing techniques. The most extended
microarray platforms are Affymetrix [2] and Illumina [3],
leading the second one the RNA-Seq sequencing technol-
ogy market. Nevertheless, there are other very important
microarray manufacturers such as Agilent [4], Exiqon [5]
or Taqman [6]. A high simultaneous number of genes can
be measured at expression level from the use of microar-
rays. The expression values are achieved by means of
microscopic DNA spots attached to a solid surface which
have followed a hybridization process. Once this process is
completed, it is possible to read the expression values with
a laser, and consequently store the quantification levels in
a .CEL file [7].

RNA-Seq technology
As a natural evolutionary step in the treatment of bio-
logical information from DNA, RNA-Seq is gradually
replacing the widespread use of microarrays. Although its
application was originally intended for genomic transcrip-
tion study, it also allows achieving a mapping between
the levels of transcription and gene expression [8]. In this
sense, its combination with other functional genomics
methods allows enhancing the analysis of gene expres-
sion. This is achieved through the quantification of the
total number of reads that are mapped to each locus in
the transcriptome assembly step. RNA-Seq read counts
robustness has been validated against predecessor tech-
nologies such as microarrays or quantitative polymerase
chain reaction (qPCR) [9].

Comparison between both technologies
RNA-Seq offers an important number of advantages over
microarrays, although the cost of RNA-Seq experiments is
also higher than in microarray technology nowadays:

• RNA-Seq allows detecting the variation of a single
nucleotide.

• RNA-Seq does not require genomic sequence
knowledgement.

• RNA-Seq provides quantitative expression levels.
• RNA-Seq provides isoform-level expression

measurements.
• RNA-Seq offers a broader dynamic range than

microarrays.

In spite of these advantages, microarrays are still used
due to their lower costs. Besides, as microarrays have been
used for a longer period, there exist many robust statistical
and operational methods for their processing [10–15].
There are many significant microarray experiments

already available to the research community, and there is
also even a high number of microarray datasets that have
not been analyzed so far. These datasets might have infor-
mation that could reveal important facts and candidate
biomarkers. In any case, there is no doubt that RNA-Seq
is the present technology, but it can also take advan-
tage of the available data from microarray technology. As
Nookaew et al. explained [16], there is a high consistency
between RNA-Seq and microarray, which encourages to
continue using microarray as a versatile tool for gene
expression analysis.
The main objective of this work is to find possible

breast cancer biomarkers from patient and control sam-
ples acquired via NCBI GEO web platform [17]. To this
end, an exhaustive search has been done in order to obtain
statistically significant samples from both microarray and
RNA-Seq series. Two datasets have been considered in
this study, one for training and one for testing. The train-
ing dataset has been used to extract the Differentially
Expressed Genes (DEGs), and to design a classifier. The
test dataset has been considered for the assessment of the
DEGs selection and classification processes.
In the case of RNA-Seq samples, cqn package [18] has

been used to calculate the expression values from the
BAM/SAM file. Once the expression values were avail-
able, they were merged and normalized with the microar-
ray data. Gene expression was achieved through a joint
study of all series that allowed integration amongmicroar-
rays and RNA-Seq data.
Most of the previous studies in the selection of biomark-

ers perform this process through statistical tools over
a given dataset and a given technology. However, this
work takes an innovative step forward by combining
different datasets and microarray technologies together
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with RNA-Seq data. Furthermore, this research also
builds an smart breast cancer classifier with the aim
of achieving early diagnosis when unlabeled samples
are presented. To this end, the minimum-Redundancy
Maximum-Relevance (mRMR) [19] feature selection algo-
rithm was applied in order to select the most rele-
vant genes to perform the classification. Also, three
different classification algorithms have been imple-
mented and their results compared. The first classi-
fier makes use of Support Vector Machines (SVM)
[20, 21]. Alternatively, Random Forest (RF) [22] and k-
Nearest Neighbor (k-NN) [23] classifiers have also been
designed.
This paper has been structured as follows. This section

has shown the introduction and state of the art of this
work. Next section explains the methodology followed in
this study. It begins by describing the available data series
that have been used for this research. Later, the pipeline
for processing and classifying the data is shown. An inno-
vative step for automatic sample classification is described
using machine learning techniques. The results and dis-
cussion section shows the integrated gene expression,
revealing those genes that remain unchanged regardless
of the technology used in the gene expression identifi-
cation process. Furthermore, this section underlines the
validity of the proposed approach and its utility in breast
cancer early diagnosis using the developed classification
tool. Finally, the conclusions section summarizes the most
important contributions of this study for breast cancer
diagnosis and genetic profiling.

Methods
Microarray and RNA-Seq series
The first issue that must be addressed concerns the defi-
nition of the kind of sample that is going to be used, along
with the determination of the tissue or cell that the sample
comes from. As a result, a wide search through the NCBI-
GEO platform has been done with the objective of finding
datasets belonging to both the selected cell lines and the
considered technologies. In this study, control samples
have been selected from the MCF10A cell line [24]. This
cell line is classified as a healthy non-tumorigenic epithe-
lial cell line. Various breast cancer cell lines were selected
as cancer samples (MCF7 and HS578T) [25, 26]. Besides,
not every sample from each of the series has been selected,
as there are samples that do not belong to the cell lines
required, or they have been treated with some kind of drug
that could produce some noise in the final results.
Once the requirements for selecting the desired sam-

ples were established, an exhaustive search of Affymetrix
and Illumina series was carried out for microarray data.
On the other hand, RNA-Seq data was selected from
Illumina HiSeq technology. Only datasets containing the

above-mentioned cell lines were selected. Table 1
summarizes the selected series for this study. As it can
be seen, the NCBI GEO database offers a larger availabil-
ity of microarray data when compared with the number
of RNA-Seq samples. Two separated supersets have been
created, one for training predictive models, and the other
for their testing, both containing microarray as well as
RNA-Seq samples. The training dataset is made up of
108 microarray samples: 65 samples from Affymetrix, 43
from Illumina, and 24 RNA-Seq samples. On the other
hand, the test set is made up of 120 samples of microar-
ray (108 of Illumina and 12 of Affymetrix) as well as
6 samples of RNA-Seq. These series are publicly avail-
able at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=S.NAME where S.NAME is the name of each series
at NCBI GEO.

Microarray pipeline
The first step in the methodology for microarray data is
to put together all the selected series, independently of
their technology (Affimetrix or Illumina). Consequently,
a quality analysis assessment was performed across the
series, in order to detect and consequently remove any
possible outlier. This outliers detection and removal was
performed through arrayQualityMetrics R package [27],
which computes the Kolmogorov-Smirnov statistic Ka
between the distribution of each array and the distri-
bution of the pooled data. Next, sample normalization
was performed using the limma R package normalizedBe-
tweenArrays function [10], in order to remove dynamic
expression variability between samples. Once the sam-
ples were normalized, the expressed gene values were
obtained. Figure 1 outlines the microarray data analysis
pipeline.

RNA-Seq pipeline
The pipeline proposed by Anders et al. [28] has been fol-
lowed for the extraction of RNA-Seq data as it is shown
in Fig. 2. Starting from the SRA original files, several
tools like sra-toolkit [29], tophat2 [30], bowtie2 [31], sam-
tools [32] and htseq [33] have been used to obtain the
read count for each gene. Once the read count files were
obtained, the expression values were calculated using the
cqn and the NOISeq R packages [34].

Integrated pipeline
A new data processing pipeline is proposed in this work
which extends the classical gene expression data analysis
pipeline in two ways. On one hand, this pipeline integrates
data from both microarray and RNA-Seq technologies.
Furthermore, once the integration has been carried out, a
gene selection process and an assessment through a classi-
fication process were performed, using separated training

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=S.NAME
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=S.NAME
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Table 1 Description of the training and test series considered with number of samples/outliers

TRAINING SERIES

Series Platform Technology Quality samples Excluded outliers Samples origin

GSE52712 Affymetrix Microarray 19 1 Manchester (UK)

GSE40987 Affymetrix Microarray 10 0 Boston (USA)

GSE52262 Affymetrix Microarray 16 0 Houston (USA)

GSE12790 Affymetrix Microarray 20 1 San Francisco (USA)

GSE46834 Illumina Microarray 8 0 New York (USA)

GSE68651 Illumina Microarray 35 1 Southampton (UK)

GSE74251 Illumina RNA-Seq 12 0 Philadelphia (USA)

GSE74377 Illumina RNA-Seq 12 0 Iowa (USA)

TOTAL Integrated 132 3

TEST SERIES

Series Platform Technology Quality samples Excluded outliers Samples origin

GSE78011 Illumina RNA-Seq 3 0 Louisville (USA)

GSE81593 Illumina RNA-Seq 3 0 New York (USA)

GSE75292 Illumina Microarray 6 1 Goyang (South Korea)

GSE29327 Affymetrix Microarray 6 0 South San Francisco (USA)

GSE30931 Illumina Microarray 12 0 Goettingen (Germany)

GSE48398 Illumina Microarray 36 0 Texas (USA)

GSE35928 Affymetrix Microarray 6 0 Piscataway (USA)

GSE57339 Illumina Microarray 12 0 New Haven (USA)

GSE45715 Illumina Microarray 42 0 Miami (USA)

TOTAL Integrated 126 1

and test datasets. The workflow of the entire pipeline is
shown in Fig. 3.
In a first step, sample integration of data from both

microarrays and RNA-Seq technologies has been car-
ried out using the merge function from base R package.

Once the gene expression values have been obtained
for each technology separately, a normalization of all
joint technologies was applied using the normalizedBe-
tweenArrays function cited before over all datasets avail-
able (see Table 1). These tasks are essential in order to

Fig. 1Microarray gene expression pipeline
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Fig. 2 RNA-Seq gene expression integration pipeline

have available a right normalization of the biological data
and its subsequent processing [35, 36]. We have to note
that each of the series in Table 1 were originally differ-
ently quantified depending on the respective technology
and manufacturer.
The next steps in the pipeline for gene expression levels

calculation and extraction of DEGs, were made only over
the training dataset, thus leaving the test dataset for later
assessment.
Gene extraction was performed at different levels using

the limma R package, both at individual levels (microarray
data and RNA-Seq data separately) and at integrated level
(joined microarray and RNA-Seq data).

Classification
Once a set of possible target genes which can be con-
sidered as biomarkers for breast cancer were identified,

we proceeded to assess the results through three different
classification technologies: SVM, RF and k-NN. The main
objective of this stage is the validation of the behavior of
the selected genes at the arrival of new unseen samples.
The selected genes and the training dataset were used
for designing the classification models, which were later
evaluated over the test dataset.

• SVM: These models are supervised learning
algorithms which assign categories to new samples.
This algorithm is based on the idea of separating data
from different categories through a hyperplane. The
algorithm calculates the maximum-margin
hyperplane that maximizes the distance between
different classes. For overlapped data, this type of
models turn a reduced space into a higher
dimensional space using a kernel function, in order to

Fig. 3 Integrated pipeline followed for this study
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perform the classification in this new space.
Moreover, the algorithm tolerates making
classification errors, which are controlled by the γ

hyperparameter, in order to improve the
generalization capability of the model [20, 21].

• RF: This method grows many single classification
trees with the purpose of building a forest of
classification trees. For the classification, the
algorithm assigns the input vector to be classified to
each tree of the forest. Once that each individual tree
performs classification, the forest chooses the class
having the largest number of votes over all the trees.
After each tree is built, all of the data are run down
the tree, and proximities are computed for each pair
of cases. If two cases occupy the same terminal node,
their proximity is increased by one. At the end of the
run, the proximities are normalized by dividing by
the number of trees. Proximities are used with the
aim of replacing missing data, locating outliers and
producing illuminating low-dimensional views of the
data [22, 37].

• k-NN: This supervised method is based on assigning
to a new unseen sample, the class corresponding to
the predominant one in the k nearest neighbors (most
similar samples) from the known labeled data. It is a
well-known fast and easy-to-use technique which
however provides a comparable performance to other
well-known more complex techniques [23, 38].

Ten-fold cross-validation was used over the training
dataset to obtain the optimal hyperparameters for these
methodologies: σ (kernel width) and γ for SVMs, number
of trees for RF and k for k-NN.

Gene ranking: mRMR
Additionally, a feature selection process was performed
through the mRMR [19] algorithm over the candidate
biomarkers, with the objective of finding a reduced sub-
set of genes that gives similar classification accuracy than
the initial complete set of genes. In this way, the reduc-
tion of the number of genes allows the creation of a more
simple and interpretable classifier, as well as more com-
putationally efficient, while maintaining the robustness
of the method. This algorithm creates a ranking of fea-
tures, DEGs in our case. mRMR algorithm uses mutual
information as the criterion for variables relevance, com-
puting relevance and redundancy among variables (i.e.
genes), and sorting them so that they bring largest rele-
vance with respect to the class (cancer/no cancer) and, at
the same time, they have lowest redundancy among them-
selves. Therefore, this algorithm will rank in first position
the gene that contains the maximum relevance informa-
tion, but the following genes will provide also minimum
redundant information (apart from maximum relevance

as regards to the class) with respect to the already selected
genes, and so forth.

Results and discussion
This section will focus on presenting and discussing the
obtained results coming from the experimentation pro-
cess followed in this study. It is divided into two subsec-
tions: first subsection shows the results for the process of
obtaining the set of DEGs; while second subsection will
show the results of the classification process making use
of the former set of genes.

Integrated gene expression
This subsection describes the process and results of the
DEGs extraction. As it was previously stated in the meth-
ods section, series belonging to different technologies and
platforms have been integrated. The objective of this inte-
gration is twofold: first, to increase the number of samples
that will be used as input to our method, thus improv-
ing the robustness and stability of the results. Second, the
obtained results will be independent of a single technol-
ogy, as they proceed from different sources. The presence
of RNA-Seq samples increases the dynamical midrange of
the genes, making the results more accurate and robust.
Furthermore, the number of available samples is greatly
increased thanks to the availability of microarray data
stored in public repositories.
When working with heterogeneous data, normalization

is one of the most sensitive steps in the whole process, as
a mistake in this step could cause interpretation errors,
and could lead to a false set of expressed genes. Figure 4
shows the need of normalization for both training and
test datasets together due to the difference of the dynamic
range between samples. To this end, both training and
test datasets have been subjected to a joint normaliza-
tion using the normalizeBetweenArrays function from the
limma R package, thus achieving the same dynamic range
for all the samples. Figure 5 shows the results once the
joint normalization was applied. As it can be seen, the
dynamic range between samples has been corrected. In
the next step, only the training dataset will be used in the
process for identifying the DEGs.
We therefore proceeded to identify the DEGs both

for each technology separately (microarray & RNA-Seq)
and for the integrated dataset. Several restrictions were
imposed in order to determine the expressed genes: the
fold change in the expression values of the selected
genes was set to be greater or equal than 2 and the
p-value was set to be less or equal than 0.001. These
constraints ensure that the chosen expressed genes are
statistically significant, therefore showing different behav-
ior between patient and healthy samples. These restric-
tions were applied to the three microarray, RNA-Seq
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Fig. 4 Expression profile of training and test datasets before normalization

and integrated datasets, so that three sets with different
expressed genes were obtained. Finally, through the inter-
section of the three groups of expressed genes, a total
of common 98 DEGs were found. These genes comply
with the restrictions and they are differentially expressed
in all datasets as the intersection shows (Fig. 6). Conse-
quently, the obtained genes are differentially expressed
independently of the gene expression technology, exclud-
ing possible noisy genes.
A boxplot of the mean gene expression values of the 98

DEGs for the samples in the training dataset is shown in
Fig. 7. It shows a clear differentiation between the aver-
age value of the cancer cell lines samples and the average
value of the MCF10A non-cancer cell line samples. Fur-
thermore, the statistical information of the intersection
set of 98 DEGs is shown in Table 2.
Table 2 shows five statistics values computed by the li

mma package (logFC, t-statistic, p-value, adj.p.val. and B).

The log-fold change (logFC) represents the difference
between breast cancer and control expressed values. If
| logFC |≥ 2 it means that there exists significant dif-
ferences between cancer and control values. The second
value in Table 2 is the moderated t-statistic, which is the
ratio between the log2-fold change value for each gene
and it respective standard error. The next value is the
p-value (p-val) which represents the probability of obtain-
ing a result equal or higher than what it was observed
when the null hypothesis is true. The adjusted p-value
indicates which proportion of comparisons within a fam-
ily of comparisons (hypothesis tests) are significantly dif-
ferent. The B-statistic (B) is the log-odds that a given gene
is differentially expressed.
Figure 8 depicts a hierarchical clustering using the list of

98 invariant expressed genes. As it can be seen, the cluster
is split into two group of samples, one belonging to con-
trol samples and the other to breast cancer samples. Thus

Fig. 5 Expression profile of training and test datasets after normalization
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Fig. 6 Intersection of expressed genes in RNA-Seq, microarray and the integrated dataset

verifying that the obtained genes are robust and clearly
differentiating.

Classification results
Once the DEGs were identified in the previous subsection,
this subsection assesses the performance of these genes
through a classification process when new samples are
presented. For that purpose, the classification algorithms
SVM, RF and k-NN have been implemented. The whole
training dataset formed by 132 samples has been used as
the input data for the classifier (Table 1). The 98 DEGs
values were normalized to range between [-1,1], and have
been chosen as classification features, ordered by amutual
information-based ranking provided by the mRMR algo-
rithm. Moreover, for a further assessment of the classifier

against new unseen samples, a test dataset made up of 126
samples has been equally normalized and used for testing
(Table 1).
Following the proposed integrated pipeline in this work

(see Fig. 3), once the samples were correctly integrated
and the 98 DEGs were found, a classification method
using these genes has been applied. Results for all the algo-
rithms in the validation stage using the 98 genes reached
an accuracy equal to 100%. Therefore, all samples belong-
ing to the training dataset were successfully classified.
When the classifier using 98 genes was applied to test
samples, an accuracy above 95% was reached by the three
algorithms, rising up to a 97% in the case of SVMs and RFs,
thus confirming the robustness of the proposed pipeline
approach (see Table 3).

Fig. 7 Gene expression values boxplot for the set of 98 expressed genes. Figure shows significant differences between expression values for MCF7
and HS578T cancer cell lines and MCF10A non-cancer cell line
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Table 2 List of 98 expressed genes obtained with limma as the intersection of microarray, RNA-Seq and integrated dataset

Genes names | logFC |≥ 2 t p-val adj.p.val B

KRT19 7.993 11.072 8.124E-21 2.449E-19 36.607

KRT6A -7.800 -13.558 3.347E-27 2.503E-25 51.214

NNMT -7.584 -11.544 4.951E-22 1.780E-20 39.384

VIM -7.261 -15.117 3.917E-31 5.046E-29 60.213

AKR1B1 -6.943 -11.437 9.357E-22 3.265E-20 38.753

SFRP1 -6.866 -18.820 4.925E-40 1.904E-37 80.570

TGFBI -6.701 -14.299 4.424E-29 4.174E-27 55.515

MT1E -6.650 -15.281 1.537E-31 2.079E-29 61.142

C3 -6.569 -15.928 3.857E-33 6.589E-31 64.805

BMP7 6.406 13.058 6.330E-26 3.910E-24 48.292

KRT5 -6.229 -9.125 7.460E-16 1.062E-14 25.273

CXCL1 -6.145 -13.526 4.030E-27 2.986E-25 51.030

S100A2 -6.016 -9.582 5.249E-17 9.014E-16 27.902

KRT7 -5.991 -11.975 3.850E-23 1.643E-21 41.922

TNS4 -5.866 -25.125 1.651E-53 3.829E-50 111.284

EEF1A2 5.764 8.956 1.979E-15 2.656E-14 24.307

CLMP -5.631 -11.238 3.037E-21 9.781E-20 37.583

IFI16 -5.543 -9.230 4.073E-16 6.036E-15 25.872

LAMC2 -5.426 -12.346 4.247E-24 2.015E-22 44.112

IGFBP4 5.412 13.779 9.173E-28 7.406E-26 52.501

FAM83A -5.328 -14.042 1.974E-28 1.741E-26 54.028

SYTL2 5.283 11.883 6.617E-23 2.725E-21 41.384

SNAI2 -5.169 -9.731 2.204E-17 4.010E-16 28.762

DNER -5.152 -11.859 7.620E-23 3.114E-21 41.244

PRKCDBP -5.105 -10.241 1.105E-18 2.434E-17 31.730

ALOX15B -5.088 -16.524 1.353E-34 2.896E-32 68.133

IGFBP5 5.085 8.165 1.755E-13 1.735E-12 19.871

BNC1 -5.072 -16.335 3.889E-34 7.697E-32 67.085

GFRA1 5.021 6.872 1.958E-10 1.223E-09 12.955

DSC3 -4.999 -17.145 4.296E-36 1.181E-33 71.561

PTGES -4.990 -17.489 6.479E-37 1.947E-34 73.440

TFF1 4.925 4.857 3.168E-06 1.023E-05 3.497

RAB25 4.864 8.521 2.368E-14 2.683E-13 21.851

KRT14 -4.863 -6.445 1.768E-09 9.652E-09 10.794

EFEMP1 -4.855 -10.020 4.059E-18 8.275E-17 30.440

SLPI -4.793 -10.194 1.455E-18 3.128E-17 31.457

SDPR -4.728 -12.002 3.264E-23 1.401E-21 42.086

FBP1 4.707 6.789 3.017E-10 1.848E-09 12.530

EPCAM 4.662 8.150 1.906E-13 1.878E-12 19.790

GNA15 -4.570 -15.676 1.614E-32 2.495E-30 63.382

HTRA1 -4.527 -10.906 2.178E-20 6.152E-19 35.627

RAC2 -4.524 -11.727 1.669E-22 6.433E-21 40.465

CLCA2 -4.411 -9.272 3.189E-16 4.828E-15 26.115

GPX1 -4.384 -6.773 3.281E-10 1.994E-09 12.448

EMP3 -4.383 -9.299 2.728E-16 4.176E-15 26.269

SERPINB5 -4.371 -8.314 7.600E-14 8.016E-13 20.698

TSPYL5 4.317 6.297 3.735E-09 1.943E-08 10.062
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Table 2 List of 98 expressed genes obtained with limma as the intersection of microarray, RNA-Seq and integrated dataset (Continued)

Genes names | logFC |≥ 2 t P.Value adj.P.Val B

GSTP1 -4.242 -5.846 3.433E-08 1.523E-07 7.892

SLC2A10 4.216 11.411 1.088E-21 3.782E-20 38.602

LDHB -4.182 -5.892 2.745E-08 1.238E-07 8.111

VSTM2L -4.146 -11.277 2.409E-21 7.852E-20 37.813

BIRC3 -4.079 -13.064 6.110E-26 3.799E-24 48.327

ABLIM3 -4.000 -12.337 4.481E-24 2.113E-22 44.059

TFCP2L1 -3.874 -11.847 8.202E-23 3.344E-21 41.171

DSG3 -3.820 -8.387 5.035E-14 5.469E-13 21.105

SLC26A2 -3.798 -13.491 4.947E-27 3.632E-25 50.826

C3orf14 3.763 7.772 1.558E-12 1.358E-11 17.715

IL20RB -3.667 -8.868 3.262E-15 4.229E-14 23.812

FXYD5 -3.623 -5.585 1.191E-07 4.882E-07 6.679

GSTM3 3.590 9.622 4.161E-17 7.268E-16 28.133

ADRB2 -3.572 -9.968 5.512E-18 1.099E-16 30.136

EMP1 -3.535 -7.622 3.543E-12 2.907E-11 16.905

IGFBP7 -3.530 -4.676 6.866E-06 2.104E-05 2.751

GJB5 -3.517 -12.456 2.225E-24 1.097E-22 44.755

HENMT1 3.514 7.953 5.732E-13 5.316E-12 18.702

ZBED2 -3.507 -6.452 1.705E-09 9.338E-09 10.830

MSLN -3.504 -8.558 1.917E-14 2.217E-13 22.061

IL18 -3.415 -9.270 3.223E-16 4.864E-15 26.104

TRIM29 -3.395 -9.588 5.081E-17 8.735E-16 27.934

OSR2 3.346 8.380 5.238E-14 5.671E-13 21.066

LAMB1 -3.346 -6.972 1.162E-10 7.510E-10 13.468

UCP2 3.332 5.788 4.539E-08 1.979E-07 7.620

CPVL -3.331 -7.870 9.043E-13 8.152E-12 18.253

KRT81 -3.320 -5.133 9.424E-07 3.334E-06 4.670

S100A8 -3.292 -5.698 6.982E-08 2.957E-07 7.200

TP53I3 -3.242 -11.149 5.160E-21 1.589E-19 37.057

FOXA1 3.226 5.576 1.241E-07 5.069E-07 6.640

SLC24A3 3.211 6.190 6.356E-09 3.184E-08 9.541

PNLIPRP3 -3.200 -7.998 4.470E-13 4.207E-12 18.948

INHBB 3.180 7.756 1.698E-12 1.468E-11 17.630

RAB38 -3.129 -9.539 6.781E-17 1.137E-15 27.649

ZBTB16 -3.112 -8.869 3.251E-15 4.217E-14 23.816

PLD5 -3.070 -11.039 9.925E-21 2.960E-19 36.408

DFNA5 -3.047 -7.565 4.835E-12 3.890E-11 16.599

FKBP5 -2.988 -10.435 3.528E-19 8.458E-18 32.863

CD109 -2.986 -7.196 3.541E-11 2.475E-10 14.637

CASP1 -2.955 -6.388 2.367E-09 1.267E-08 10.509

SULT1E1 -2.903 -7.749 1.763E-12 1.513E-11 17.594

FAM174B 2.779 5.557 1.353E-07 5.493E-07 6.555

PDZK1IP1 -2.752 -7.028 8.611E-11 5.667E-10 13.743

TNNI2 -2.750 -7.896 7.842E-13 7.133E-12 18.393

CAV1 -2.727 -5.028 1.503E-06 5.131E-06 4.217

IRX4 -2.714 -7.628 3.433E-12 2.825E-11 16.936

KRT80 2.706 5.268 5.131E-07 1.895E-06 5.259

FOXO1 -2.649 -8.921 2.408E-15 3.188E-14 24.113

SNCA -2.635 -8.533 2.211E-14 2.526E-13 21.919

TBL1X 2.565 9.676 3.043E-17 5.434E-16 28.442
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Fig. 8 Hierarchical cluster using the 98 invariant expressed genes

Afterwards, a feature selection process has been applied
in order to reduce the cardinality of the 98 DEGs. As
a result, the mRMR algorithm returned a gene ranking
based on mutual information. Figure 9 shows the vali-
dation (10-CV over the training dataset) and test results
using the three algorithms: SVMs, RFs and k-NN. These
validation results are above 98% using only the first gene
of the ranking for classification for the three algorithms,
and above 99.2% using a reduced set of the first six genes
in the ranking. Moreover, classification results when using
the new 126 unseen samples of the test set and the three
methods, rose up to coherent results with an accuracy of
96.8% using SVMs, 94.1% using k-NN, nevertheless lower
for RFs with a 87.4%. Therefore, the classifier performs in
a similar way to the behavior observed in the validation

Table 3 Training and test classification accuracies for SVMs, RFs
and k-NN algorithms

1 Gene 6 Genes 98 Genes

Training accuracy

Support vector machines 98.5% 100% 100%

Random forest 97.8% 99.2% 100%

k-Nearest neighbor 98.5% 99.2% 100%

Test accuracy

Support vector machines 86.5% 96.8% 97.6%

Random forest 82.3% 87.4% 97.4%

k-Nearest neighbor 84.4% 94.1% 94.9%

results for two of the classifiers. Consequently, the main
set of 98 DEGs was reduced to the later six genes set,
which allow discerning if new samples are cancerous or
not, with an expected error around a 3.2% when using a
SVM classifier.
These differences in performance among classification

techniques are usual in this type of problems, and a
number of papers comparing classification techniques for
biological data can be found in the literature [37, 39–41].
In the results above-mentioned, using only 6 genes, SVMs
attains an optimal performance near that attained using
the complete set of 98 genes. This behavior is also seen in
the k-NN technique, although with a lower performance.
RF on the other hand obtains similar results than SVMs
when the complete set of 98 genes are used, but fails to
design a simpler classifier with a low number of genes with
optimal performance [39, 40]. Thus, these results sup-
port the design of an optimal classifier based on SVMs
with only six genes attaining the excellent aforementioned
results.
Finally, once the potential biomarker genes were identi-

fied as the reduced subset of six genes, a literature review
and biological study was done in order to reveal the rela-
tion between those genes and their involvement in breast
cancer (Table 4). The first five of these six genes have
been formerly reported as genes involved in breast cancer,
whilst the sixth gene is present in breast cancerous tis-
sue, although with no evidence of a direct implication with
breast cancer development. This means that the results
attained by the proposed integrated pipeline are coherent,
as the reduced subset of six genes is formed by genes
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Fig. 9 Validation and test classification results with SVM, RF and k-NN using the most relevant genes obtained by mRMR

related with breast cancer. Furthermore, these genes can
be used for classification and diagnosis purposes over new
unseen samples. They can be designated as a new breast
cancer biomarker signature when these types of cell lines
data are present.
Figure 10 shows a hierarchical cluster built with the

small six genes subset. Two distinct groups are clearly
identified, as it also happened in Fig. 8: one matching con-
trol samples and the other matching breast cancer sam-
ples. Therefore, this indicates that the expression profiles
of these genes constitute a possible diagnosis criteria for
breast cancer.

Figure 11 shows a boxplot for each of the six genes rep-
resenting the average expression value for the cancerous
samples (red), and control samples (green). As it can be
seen, average expression values between cancerous and
control samples are clearly differentiated, thus reaffirming
their potential as breast cancer biomarkers.

Conclusions
This work has presented the possibility of integrating data
from different gene expression analysis technologies. On
the one hand, microarrays, which have been widely used
in the last two decades and, on the other hand, RNA-Seq

Table 4 Relationship of the top 6 expressed genes with breast cancer

Gene symbol Gene name Relationship between protein and breast cancer

SFRP1 Secreted frizzled-related protein 1 Inhibition of SFRP1 increases the proliferation, migration and invasion
of breast cancer cells. SFRP1 exerted this function by activating Wnt/β-
catenin signaling pathway in breast carcinogenesis [42, 43].

GSTM3 Glutathione S-transferase mu 3 GSTM3 is suggested as an important modifier that impacts on individual
susceptibility to develop breast cancer among premenopausal women
[44]. High expression of GSTM3 is related to protective genotypes
against breast cancer

SULT1E1 Gulfotransferase family 1E member 1 SULT1E1 is an enzyme that catalyzes the sulfation of active 17β-estradiol
into inactive form. SULT1E1 is highly expressed in normal mammary
epithelial cells and rarely expressed in breast cancer cells. However, its
over-expression in breast carcinomas is considered to retard tumor cell
growth by arresting cell cycles and inducing apoptosis and may thus
improve the prognosis of breast cancer [45, 46].

MB Myoglobin MB plays a functional role in breast cancer progression by promoting
the growth of fully oxygenated cells through the control of fatty acid
homeostasis and lipogenesis [47, 48]. MB is dose-dependent downreg-
ulated by 17β-estradiol in breast cancer cells [49].

TRIM29 Tripartite motif containing 29 TRIM29 is considered a breast cancer tumor suppressor. Low TRIM29
expression in breast cancer is associated with more aggressive tumor
features. Suppression of the oncogenic transcription factor TWIST1
expression is one mechanism suggested by which TRIM29 functions as
a suppressor of breast cancer development [50].

VSTM2L V-set and transmembrane domain
containing 2 like

Although VSTM2L is detected in breast cancer tissues, to date there are
no relation between its expression and breast cancer development in
the current literature.
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Fig. 10 Hierarchical cluster over healthy and breast cancer samples using the top 6 genes

that is the technology meant to replace microarrays
definitely.
An exhaustive search from the NCBI-GEO public

repository has been performed in order to collect breast
cancer samples from both technologies. The intersec-
tion of DEGs in microarray, RNA-Seq, and the inte-
grated dataset, has allowed identifying a set of candidates
biomarkers for diagnosis of this disease.

Thereafter, feature selection through mRMR was
applied in order to select the most relevant biomark-
ers subset. Three different classification models (SVMs,
RFs, and k-NN) were designed from the training dataset
and the selected DEGs and compared. These classifier
were validated with the test dataset achieving outstanding
results for the three algorithms when the complete set of
98 DEGs were used.

Fig. 11 Average expression value boxplots of the six most relevant genes obtained in this study
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In conclusion, results show that the expressed genes
can be designated as robust biomarkers for breast cancer
diagnosis when specific cell lines samples are used. Fur-
thermore, even with a small subset of six of those genes, a
great validation accuracy was reached (99%). Also, classi-
fication results over new unseen data show great accuracy,
specially over SVM classification (96.8%). Five of these top
six genes have been formerly reported as genes that show
biological relation with breast cancer, which reinforce the
designation of the expression profiles of these genes for
breast cancer diagnosis.

Abbreviations
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Minimum-redundancy maximum-relevance; RF: Random forest; SVM: Support
vector machines

Acknowledgements
Not applicable.

Funding
This work was supported by Project TIN2015-71873-R (Spanish Ministry of
Economy and Competitiveness -MINECO- and the European Regional
Development Fund -ERDF). The funding body didn’t play any role in the
design or conclusion of this study.

Availability of data andmaterials
All data generated or analyzed during this study are included in this published
article and its supplementary information files.

Authors’ contributions
DCS is the main author of this research and the manuscript. JMGG and DCS
analyzed the data. BSRA did the study about the 6 top genes. LJHM, FRR and
IRR conducted the experiments. All authors have read and approved the final
manuscript.

Ethics and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 20 March 2017 Accepted: 6 November 2017

References
1. OMS. Women’s health. 2013. http://www.who.int/mediacentre/

factsheets/fs334/en/.
2. Gohlmann H, Talloen W. Gene Expression Studies Using Affymetrix

Microarrays: CRC Press.
3. Illumina. Illumina Genes Expression arrays. 2009. http://www.exiqon.com/

microrna-microarray-analysis.
4. Zahurak M, Parmigiani G, Yu W, Scharpf RB, Berman D, Schaeffer E,

Shabbeer S, Cope L. Pre-processing agilent microarray data. BMC
Bioinformatics. 2007;8(1):142.

5. Exiqon. Exiqon Genes Expression arrays. 2009. http://www.illumina.com/
techniques/microarrays/gene-expression-arrays.html.

6. Taqman. Taqman Genes Expression arrays. 2009. https://www.
thermofisher.com/es/es/home/life-science/pcr/real-time-pcr/real-time-
pcr-assays.html.

7. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of
gene expression patterns with a complementary dna microarray. Science.
1995;270(5235):467.

8. Wang Z, Gerstein M, Snyder M. Rna-seq: a revolutionary tool for
transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

9. Peirson SN, Butler JN. Quantitative polymerase chain reaction. Methods
Mol Biol. 2007;362:349–362. doi:10.1385/1-59745-257-2:349. https://www.
scopus.com/inward/record.uri?eid=2-s2.0-34248577601&doi=10.1385
%2f1-59745-257-2%3a349&partnerID=40&md5=
127a06c5adeda02845b8e941e789c085.

10. Smyth GK. Limma: linear models for microarray data. In: Bioinformatics
and computational biology solutions using R and Bioconductor. Statistics
for Biology and Health. New York: Springer. p. 397-420.

11. Kerr MK, Churchill GA. Statistical design and the analysis of gene
expression microarray data. Genet Res. 2001;77(2):123–8.

12. Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of
microarray data. Bioinformatics. 2002;18(1):207–8.

13. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J.
Rankprod: a bioconductor package for detecting differentially expressed
genes in meta-analysis. Bioinformatics. 2006;22(22):2825–7.

14. Parmigiani G, Garrett ES, Irizarry RA, Zeger SL. The analysis of gene
expression data: an overview of methods and software. In: The analysis of
gene expression data. New York: Springer; 2003. p. 1–45.

15. Durinck S, Moreau Y, Kasprzyk A, Davis S, DeMoor B, Brazma A, Huber W.
Biomart and bioconductor: a powerful link between biological databases
and microarray data analysis. Bioinformatics. 2005;21(16):3439–40.

16. Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L,
Uhlén M, Nielsen J. A comprehensive comparison of RNA-Seq-based
transcriptome analysis from reads to differential gene expression and
cross-comparison with microarrays: A case study in Saccharomyces
cerevisiae. Nucleic Acids Res. 2012;40(20):10084–10097.
doi:10.1093/nar/gks804. https://www.scopus.com/inward/record.uri?
eid=2-s2.0-84869014474&doi=10.1093%2fnar%2fgks804&partnerID=40&
md5=13854e63e2c2a8e763e978ea58827f86.

17. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C,
Kim IF, Soboleva A, Tomashevsky M, Edgar R. Ncbi geo: mining tens of
millions of expression profiles—database and tools update. Nucleic Acids
Res. 2007;35(suppl 1):760–5.

18. Hansen KD, Irizarry RA, Zhijin W. Removing technical variability in rna-seq
data using conditional quantile normalization. Biostatistics. 2012;13(2):
204–16.

19. Ding C, Peng H. Minimum redundancy feature selection from microarray
gene expression data. Proceedings of the 2003 IEEE Bioinformatics
Conference, CSB 2003. 2003523–528. doi:10.1109/CSB.2003.1227396.

20. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):
273–97.

21. Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:
1565–7.

22. Ho TK. Random decision forests. In: Document Analysis and Recognition,
1995., Proceedings of the Third International Conference On. vol. 1. IEEE;
1995. p. 278–282.

23. Parry R, Jones W, Stokes T, Phan J, Moffitt R, Fang H, Shi L, Oberthuer A,
Fischer M, Tong W, et al. k-nearest neighbor models for microarray gene
expression analysis and clinical outcome prediction. Pharmacogenomics J.
2010;10(4):292.

24. Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R,
McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks S. Isolation and
characterization of a spontaneously immortalized human breast
epithelial cell line, mcf-10. Cancer Res. 1990;50(18):6075–86.

25. Soule H, Vazquez J, Long A, Albert S, Brennan M. A human cell line from
a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst.
1973;51(5):1409–16.

26. Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson-Rees WA, Riggs JL,
Gardner MB. Two syngeneic cell lines from human breast tissue: the
aneuploid mammary epithelial (hs578t) and the diploid myoepithelial
(hs578bst) cell lines. J Natl Cancer Inst. 1977;58(6):1795–806.

27. Kauffmann A, Gentleman R, Huber W. arrayqualitymetrics - a
bioconductor package for quality assessment of microarray data.
Bioinformatics. 2009;25(3):415–6.

28. Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W,
Robinson MD. Count-based differential expression analysis of rna
sequencing data using r and bioconductor. Nat Protoc. 2013;8(9):1765–86.

http://www.who.int/mediacentre/factsheets/fs334/en/
http://www.who.int/mediacentre/factsheets/fs334/en/
http://www.exiqon.com/microrna-microarray-analysis
http://www.exiqon.com/microrna-microarray-analysis
http://www.illumina.com/techniques/microarrays/gene-expression-arrays.html
http://www.illumina.com/techniques/microarrays/gene-expression-arrays.html
https://www.thermofisher.com/es/es/home/life-science/pcr/real-time-pcr/real-time-pcr-assays.html
https://www.thermofisher.com/es/es/home/life-science/pcr/real-time-pcr/real-time-pcr-assays.html
https://www.thermofisher.com/es/es/home/life-science/pcr/real-time-pcr/real-time-pcr-assays.html
http://dx.doi.org/10.1385/1-59745-257-2:349
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34248577601&doi=10.1385%2f1-59745-257-2%3a349&partnerID=40&md5=127a06c5adeda02845b8e941e789c085
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34248577601&doi=10.1385%2f1-59745-257-2%3a349&partnerID=40&md5=127a06c5adeda02845b8e941e789c085
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34248577601&doi=10.1385%2f1-59745-257-2%3a349&partnerID=40&md5=127a06c5adeda02845b8e941e789c085
https://www.scopus.com/inward/record.uri?eid=2-s2.0-34248577601&doi=10.1385%2f1-59745-257-2%3a349&partnerID=40&md5=127a06c5adeda02845b8e941e789c085
http://dx.doi.org/10.1093/nar/gks804
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869014474&doi=10.1093%2fnar%2fgks804&partnerID=40&md5=13854e63e2c2a8e763e978ea58827f86
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869014474&doi=10.1093%2fnar%2fgks804&partnerID=40&md5=13854e63e2c2a8e763e978ea58827f86
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84869014474&doi=10.1093%2fnar%2fgks804&partnerID=40&md5=13854e63e2c2a8e763e978ea58827f86
http://dx.doi.org/10.1109/CSB.2003.1227396


Castillo et al. BMC Bioinformatics  (2017) 18:506 Page 15 of 15

29. Leinonen R, Sugawara H, Shumway M. The sequence read archive.
Nucleic Acids Res. 2011;39(SUPPL. 1):D19–D21. doi:10.1093/nar/gkq1019.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651301328&
doi=10.1093%2fnar%2fgkq1019&partnerID=40&md5=
11c8aac914655fbbbe87091438ce5715.

30. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. Tophat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol. 2013;14(4):36.

31. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2.
Nat Methods. 2012;9(4):357–9.

32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, et al. The sequence alignment/map format and
samtools. Bioinformatics. 2009;25(16):2078–9.

33. Anders S, Pyl PT, Huber W. HTSeq–A Python framework to work with
high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169.
doi:10.1093/bioinformatics/btu638. https://www.scopus.com/inward/
record.uri?eid=2-s2.0-84928987900&doi=10.1093%2fbioinformatics
%2fbtu638&partnerID=40&md5=0b6e8db70a97b8bcfceff9b9c62b869c.

34. Tarazona S, García F, Ferrer A, Dopazo J, Conesa A. Noiseq: a rna-seq
differential expression method robust for sequencing depth biases.
EMBnet J. 2012;17(B):18.

35. Dobbin KK, Simon RM. Optimally splitting cases for training and testing
high dimensional classifiers. BMC Med Genet. 2011;4(1):31.

36. Önskog J, Freyhult E, Landfors M, Rydén P, Hvidsten TR. Classification of
microarrays; synergistic effects between normalization, gene selection
and machine learning. BMC Bioinformatics. 2011;12(1):390.

37. Díaz-Uriarte R, De Andres SA. Gene selection and classification of
microarray data using random forest. BMC Bioinformatics. 2006;7(1):3.

38. Wu W, Xing EP, Myers C, Mian IS, Bissell MJ. Evaluation of normalization
methods for cdna microarray data by k-nn classification. BMC
Bioinformatics. 2005;6(1):191.

39. Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of
random forests and support vector machines for microarray-based
cancer classification. BMC Bioinformatics. 2008;9(1):319.

40. Statnikov A, Aliferis CF. Are random forests better than support vector
machines for microarray-based cancer classification? In: AMIA annual
symposium proceedings, vol. 2007. Chicago: American Medical
Informatics Association; 2007. p. 686.

41. Cho S-B, Won H-H. Machine learning in DNA microarray analysis for
cancer classification. In: Proceedings of the First Asia-Pacific
Bioinformatics Conference on Bioinformatics 2003-Volume 19. Australia:
Australian Computer Society, Inc.; 2003. p. 189–98.

42. Kim TH, Chang JS, Park KS, Park J, Kim N, Lee JI, Kong ID. Effects of
exercise training on circulating levels of dickkpof-1 and secreted
frizzled-related protein-1 in breast cancer survivors: A pilot single-blind
randomized controlled trial. PLoS One. 2017;12(2):0171771.
doi:10.1371/journal.pone.0171771.

43. Kong LY, Xue M, Zhang QC, Su CF. In vivo and in vitro effects of
microrna-27a on proliferation, migration and invasion of breast cancer
cells through targeting of sfrp1 gene via wnt/beta-catenin signaling
pathway. Oncotarget. 2017. doi:10.18632/oncotarget.14662.

44. Mitrunen K, Jourenkova N, Kataja V, Eskelinen M, Kosma VM, Benhamou
S, Vainio H, Uusitupa M, Hirvonen A. Glutathione s-transferase m1, m3,
p1, and t1 genetic polymorphisms and susceptibility to breast cancer.
Cancer Epidemiol Biomarkers Prev. 2001;10(3):229–36.

45. Choi JY, Lee KM, Park SK, Noh DY, Ahn SH, Chung HW, Han W, Kim JS,
Shin SG, Jang IJ, Yoo KY, Hirvonen A, Kang D. Genetic polymorphisms of
sult1a1 and sult1e1 and the risk and survival of breast cancer. Cancer
Epidemiol Biomarkers Prev. 2005;14(5):1090–5.
doi:10.1158/1055-9965.EPI-04-0688.

46. Xu Y, Liu X, Guo F, Ning Y, Zhi X, Wang X, Chen S, Yin L, Li X. Effect of
estrogen sulfation by sult1e1 and papss on the development of
estrogen-dependent cancers. Cancer Sci. 2012;103(6):1000–9.
doi:10.1111/j.1349-7006.2012.02258.x.

47. Flonta SE, Arena S, Pisacane A, Michieli P, Bardelli A. Expression and
functional regulation of myoglobin in epithelial cancers. Am J Pathol.
2009;175(1):201–6. doi:10.2353/ajpath.2009.081124.

48. Kristiansen G, Hu J, Wichmann D, Stiehl DP, Rose M, Gerhardt J,
Bohnert A, ten Haaf A, Moch H, Raleigh J, Varia MA, Subarsky P,
Scandurra FM, Gnaiger E, Gleixner E, Bicker A, Gassmann M, Hankeln T,
Dahl E, Gorr TA. Endogenous myoglobin in breast cancer is

hypoxia-inducible by alternative transcription and functions to impair
mitochondrial activity: a role in tumor suppression? J Biol Chem.
2011;286(50):43417–28. doi:10.1074/jbc.M111.227553.

49. Bicker A, Brahmer AM, Meller S, Kristiansen G, Gorr TA, Hankeln T. The
distinct gene regulatory network of myoglobin in prostate and breast
cancer. PLoS One. 2015;10(11):0142662.
doi:10.1371/journal.pone.0142662.

50. Ai L, Kim WJ, Alpay M, Tang M, Pardo CE, Hatakeyama S, May WS,
Kladde MP, Heldermon CD, Siegel EM, Brown KD. Trim29 suppresses
twist1 and invasive breast cancer behavior. Cancer Res. 2014;74(17):
4875–87. doi:10.1158/0008-5472.CAN-13-3579.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1093/nar/gkq1019
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651301328&doi=10.1093%2fnar%2fgkq1019&partnerID=40&md5=11c8aac914655fbbbe87091438ce5715
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651301328&doi=10.1093%2fnar%2fgkq1019&partnerID=40&md5=11c8aac914655fbbbe87091438ce5715
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78651301328&doi=10.1093%2fnar%2fgkq1019&partnerID=40&md5=11c8aac914655fbbbe87091438ce5715
http://dx.doi.org/10.1093/bioinformatics/btu638
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928987900&doi=10.1093%2fbioinformatics%2fbtu638&partnerID=40&md5=0b6e8db70a97b8bcfceff9b9c62b869c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928987900&doi=10.1093%2fbioinformatics%2fbtu638&partnerID=40&md5=0b6e8db70a97b8bcfceff9b9c62b869c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928987900&doi=10.1093%2fbioinformatics%2fbtu638&partnerID=40&md5=0b6e8db70a97b8bcfceff9b9c62b869c
http://dx.doi.org/10.1371/journal.pone.0171771
http://dx.doi.org/10.18632/oncotarget.14662
http://dx.doi.org/10.1158/1055-9965.EPI-04-0688
http://dx.doi.org/10.1111/j.1349-7006.2012.02258.x
http://dx.doi.org/10.2353/ajpath.2009.081124
http://dx.doi.org/10.1074/jbc.M111.227553
http://dx.doi.org/10.1371/journal.pone.0142662
http://dx.doi.org/10.1158/0008-5472.CAN-13-3579

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Microarray technology
	RNA-Seq technology
	Comparison between both technologies

	Methods
	Microarray and RNA-Seq series
	Microarray pipeline
	RNA-Seq pipeline
	Integrated pipeline
	Classification
	Gene ranking: mRMR

	Results and discussion
	Integrated gene expression
	Classification results


	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

