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Alzheimer’s Disease (AD) is the most common neurodegenerative disease in elderly

people. Its development has been shown to be closely related to changes in the brain

connectivity network and in the brain activation patterns along with structural changes

caused by the neurodegenerative process. Methods to infer dependence between

brain regions are usually derived from the analysis of covariance between activation

levels in the different areas. However, these covariance-based methods are not able

to estimate conditional independence between variables to factor out the influence of

other regions. Conversely, models based on the inverse covariance, or precision matrix,

such as Sparse Gaussian Graphical Models allow revealing conditional independence

between regions by estimating the covariance between two variables given the rest

as constant. This paper uses Sparse Inverse Covariance Estimation (SICE) methods

to learn undirected graphs in order to derive functional and structural connectivity

patterns from Fludeoxyglucose (18F-FDG) Position Emission Tomography (PET) data

and segmented Magnetic Resonance images (MRI), drawn from the ADNI database, for

Control, MCI (Mild Cognitive Impairment Subjects), and AD subjects. Sparse computation

fits perfectly here as brain regions usually only interact with a few other areas. The models

clearly show different metabolic covariation patters between subject groups, revealing

the loss of strong connections in AD and MCI subjects when compared to Controls.

Similarly, the variance between GM (Gray Matter) densities of different regions reveals

different structural covariation patterns between the different groups. Thus, the different

connectivity patterns for controls and AD are used in this paper to select regions of

interest in PET and GM images with discriminative power for early AD diagnosis. Finally,

functional an structural models are combined to leverage the classification accuracy.

The results obtained in this work show the usefulness of the Sparse Gaussian Graphical

models to reveal functional and structural connectivity patterns. This information provided

by the sparse inverse covariance matrices is not only used in an exploratory way but we

also propose a method to use it in a discriminative way. Regression coefficients are used

to compute reconstruction errors for the different classes that are then introduced in a

SVM for classification. Classification experiments performed using 68 Controls, 70 AD,

and 111 MCI images and assessed by cross-validation show the effectiveness of the

proposed method.
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1. INTRODUCTION

Alzheimer’s Disease (AD) is the most common
neurodegenerative disease in elderly people, currently affecting
more than 40 million people, and its prevalence is expected
to be quadrupled by 2050. There is no yet a cure for AD, and
medicine has only managed to slow its progress. Early diagnosis
becomes, therefore, crucial to treat the disease effectively and
may help to develop new drugs. In addition, methods aiming
to figure out the neurodegenerative processes involved in the
development of AD can provide a better understanding of the
disease and the neurophysiological changes produced. Indeed,
these constitute an important tool to develop more effective
treatments dealing with the early onset and the development
of AD. Nevertheless, this still remains a challenge since only
mild cognitive symptoms are present in the early stages of the
disease and they are similar to those that appear due to the
aging process. AD development, however, has been related to
structural and functional changes (e.g., cortical thickness and
fiber connections) and the identification of both structural and
functional network abnormalities can help to understand how
functional brain activity deteriorates from anatomical structure
and vice-versa.

The improvement of non-invasive imaging systems and
their increasing resolution make possible to obtain in vivo
information about the subjects under study to complement
clinical evaluations. Moreover, image analysis along with
statistical processing and machine learning techniques allow to
exploit disease-related information contained in the images that
cannot be manually squeezed. Potentialities of brain imaging
for the diagnosis of AD have been explored using functional
neuroimaging (Moradi et al., 2015) and structural imaging
(Cuingnet et al., 2010; Westman et al., 2011; Chyzhyk et al.,
2012; Liu et al., 2012; Termenon and Graña, 2012). The former
is aimed at capturing information of biological functions of the
brain such as regional cerebral blood flow or glucose metabolism.
Radiotracers and tomography imaging techniques such as Single
Emission Computerized Tomography (SPECT) or Positron
Emission Tomography (PET), are usually employed. Specifically,
Fludeoxyglucose Positron Emission Tomography (18F-FDG-
PET) has been extensively used for the diagnosis of the AD.
The second group focuses on images with structural information
such as Magnetic Resonance Images (MRI), which provide
anatomical information of brain tissues. In both cases, computer
aided diagnosis systems try to identify patterns associated to
cerebral neurodegeneration. This way, methods which seek to
infer dependence between brain regions are usually based on the
analysis of covariance between activation levels in the different
areas. This, however, captures pairwise information and may
not be able to effectively characterize the interaction of two
brain regions working together factoring out the influence of
the rest of the regions. Thus, this paper explores the use of
partial correlations as mathematical tool applied to the AD study.
Partial correlations correspond to the off-diagonal entries of the
inverse covariance matrix and thus models based on the inverse
covariance, or precision matrix, allow revealing conditional
independence between regions by estimating the covariance

between two variables given the rest as constant (Pourahmadi,
2013). Additionally, the number of subjects (sample size) is
usually not substantially larger than the number of analyzed
regions and therefore the traditional maximum likelihood
estimation (MLE) method cannot be employed, and sparse
computation must be employed instead. Sparse computation
fits perfectly in this framework as brain regions usually only
interact with a few other areas; i.e., the brain network is naturally
sparse (Hilgetag et al., 2002). More specifically, this paper uses
Sparse Inverse covariance estimation (SICE), also known as
Graphical Models or graphical LASSO (least absolute shrinkage
and selection operator), which allows to reach reliable estimation
of the inverse covariance even when the sample size is close or
even less than the number of brain regions. Additionally, the
SICE methods allow to control the number of zero entries in the
matrix (i.e., the sparseness of the inverse covariance estimation)
by means of a regularization parameter. This regularization
parameter can be further seen as a measure for the strength of
correlations between two variables. According to the monotone
property of the inverse covariance demonstrated in Huang et al.
(2010), weak relationships will disappear earlier than stronger
relationships when sparseness increases. The key point is then
to observe that the sparsity of the precision matrix of a random
vector that follows a multivariate normal distribution, relates
to the notion of conditional independence of pairs of variables
given the rest. Such dependencies can be displayed by a graph
(Gaussian Graphical Model) with vertices corresponding to the
components and edges between two vertices are present if and
only if the components of these vertices are not conditionally
independent (i.e., there is no edge if and only if they are
conditionally independent Pourahmadi, 2013).

The exploratory use of partial correlations for the AD study
was already shown in Huang et al. (2010), where undirected
binary graphs were obtained in order to derive functional
connectivity patterns from FDG-PET (which we refer simply as
PET hereafter). In this paper, we extend this exploratory work
and prove that SICE can also be employed in a discriminative
way by means of the residuals in the sparse linear regression.
More specifically, the main contributions of this work can be
summarized as follows:

• Exploratory Gaussian graphical models are completed
introducing the strength of the connections between regions
computed from both, functional and structural data. In the
case of structural data, patterns are derived from the inter-
regional covariation of gray matter (GM) volumes in different
areas. Functional and structural models clearly show different
connectivity patterns between subject groups, revealing
changes in the connections in AD and MCI subjects when
compared to Controls. This undoubtedly opens a new way for
the study of the AD in the future. This paper also provides
some statistical features that support the impressions extracted
from the visual inspection of the graphs. These features are
chosen to take into account the concept of small-worldness
(compromise between segregation and integration), which is
assumed to characterize brain networks (Supekar et al., 2008;
Rubinov and Sporns, 2010).
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• Information provided by the SICE models is used in a
discriminative way to classify between classes. Reconstruction
errors for the different groups are computed and then used
as features that allow separating between classes by means of
a Support Vector Machine (SVM). Support Vector Classifiers
(SVC) have been used in previous works (e.g., Alvarez et al.,
2011 or Ortiz et al., 2013) to classify Alzheimer’s disease
patients, providing good generalization performance while
dealing with the curse of the dimensionality problem (Raudys
and Jain, 1991). Classification experiments performed using 68
Controls, 70 AD, and 111 MCI images and assessed by cross-
validation show the effectiveness of the proposed method.
This also serves to confirm that the extracted patterns retain
the discriminative information. Finally, regions of interest are
derived from the models, by means of the SVM weights used
for classification, delineating regions that match with regions
indicated in the medical literature.

The rest of the paper is organized as follows. Section 2 shows the
methods devised in this work to compute covariation patterns in
both, functional and structural data. Section 3 presents the results
obtained by applying the previously described methods with
the ADNI database. Moreover, this section presents the devised
cumulative method, the network graphs computed for each
group and eventually, the classification results obtained using
the discriminative features extracted from the inverse covariance
matrices. These results are compared to results obtained using
two baseline methods for extracting features, namely Voxels
as Features (VAF) and Principal Component Analysis (PCA).
Finally, Section 4 discusses the results presented in the previous
section highlighting the main findings along with the conclusions
of this work.

2. MATERIALS AND METHODS

In this section, the database and the method used in this work for
the exploratory analysis as well as the devised method to classify
new subjects by means of a supervised learning algorithm are
described.

2.1. Database
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost

of clinical trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and University of
California, San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI was
to recruit 800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2. To date these three protocols have recruited over
1500 adults, ages 55–90, to participate in the research, consisting
of cognitively normal older individuals, people with early or late
MCI, and people with early AD. The follow up duration of each
group is specified in the protocols for ADNI-1, ADNI-2, and
ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-
GO had the option to be followed in ADNI-2. For up-to-date
information, see www.adni-info.org.

Specifically, experiments conducted in this work use a subset
of FDG-PET and T1-weighted MRI images for 249 subjects,
consisting of 68 Normal/control, 111 MCI and 70 AD. It is worth
noting that these PET and MRI images are taken at the same
examination date and, as explained, only those patients for which
both MRI and PET data are available have been selected. In those
cases in which multiple examinations from the same patient were
available, the first one was selected. Demographic data of patients
in the database used in this work are summarized in Table 1. On
the other hand, stable MCI patients are used in our experiments,
which represent 68 out of 111 of the MCI subjects. Thus, from
this point on, the notation MCI refers to stable MCI patients.

2.2. Image Preprocessing
MRI and PET images from the ADNI database have been spatially
normalized according to the PET and VBM-T1 templates,
respectively, ensuring that each image voxel corresponds
to the same anatomical position. After image registration,
all the MRI images from ADNI database were resized to
121× 145× 121 voxels with voxel-sizes of 1.5mm (sagittal) ×
1.5mm (coronal)× 1.5mm (axial), and PET images were resized
to 79× 95× 68 voxels with voxel-size of 3mm (sagittal)× 3mm
(coronal)× 3mm (axial). Subsequently, MRI and PET images are
treated differently. MRI images are segmented into White Matter
(WM) and Gray Matter (GM) tissues using the VBM toolbox
for SPM (Ashburner, 2011; Structural Brain Mapping Group,
2014). This process, which provides information about GM and
WM tissue distributions, is guided by means of tissue probability
maps of GM, WM, and cerebro-spinal fluid (CSF). A non-
linear deformation field is estimated that best overlays the tissue
probability maps on the individual sujects’ images. The tissue
probability maps provided by the International Consortium for
Brain Mapping (ICBM) are derived from 452 T1-weighted scans,

TABLE 1 | Demographic data of patients in the multimodal PET/MRI

database.

Diagnosis Number Age Gender (M/F) MMSE

Normal (Control) 68 75.81± 4.93 43/25 29.06± 1.08

MCI 111 76.39± 6.96 76/35 26.68± 2.16

AD 70 75.33± 7.17 46/24 22.84± 2.91
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which were aligned with an atlas space, corrected for scan
inhomogeneities, and classified into GM, WM, and CSF. The
segmentation process produces values in the range [0, 1] which
denotes the membership probability to a specific tissue. However,
only GM images are used in this work.

On the other hand, PET images are also normalized in
intensity to compute comparable levels among the images.
Intensity normalization is performed by means of the mean
image, which is used as a normalization template. Specifically,
the normalization value applied to each image is calculated as
the mean of the 1% of the voxels with a higher activation level
in the template (Alvarez et al., 2011; Padilla et al., 2012). This
helps to homogenize the activation levels, using the same scale
and making them comparable.

2.3. Background on SICE and Sparse
Linear Regression
Different studies have tried to characterize the interactions
between brain regions (Huang et al., 2009, 2010; Chaves et al.,
2011, 2012). Correlation analysis captures pairwise information
but it does not factor out the contribution to the pairwise
correlation due to global or third-party effects. If this is the goal,
partial correlation should be adopted instead. Partial correlations
are usually estimated via the maximum likelihood estimation
(MLE) of the inverse covariance matrix since partial correlations
correspond to the off-diagonal entries of the inverse covariance
matrix. MLE, however, only provides reliable estimation if the
number of patients (sample size) is considerable higher than the
number of regions. Otherwise, it requires the use of methods
that use a regularization parameter such as SICE, also known
as Gaussian graphical model or graphical LASSO (Pourahmadi,
2013).

Let us assume that n samples measured at the p selected ROIs
on the PET and MRI images are given, and that these data
can be reasonably assumed to follow a multivariate Gaussian
distribution. That is: x1, x2, ..., xn ∼ N (µ,6), where xi, 1 ≤ i ≤
n, is a p-dimensional vector, µ ∈ R

p is the mean, and 6 ∈ R
p×p

is the covariance. Let 2 = 6−1 be the inverse covariance (or
precision) matrix. The empirical covariance is denoted as S:

S =
1

n

n∑

i=1

(xi − µ)(xi − µ)T (1)

It can be derived that the maximum log likelihood estimation
of 2 under a multivariate Gaussian model can be obtained as
follows:

2̂ = argmax
2≻0

(log(det2)− tr(S2)), (2)

where tr(S2) is the trace of (S2). If S was not singular, deriving
with regards to2 and setting it to zero, we would get, as expected,
that the maximum likelihood estimate of the inverse covariance
is 2̂ = S−1. If p > n, by contrast, the empirical estimate of S
becomes singular and a regularization must be applied so that a
shrunken estimate of 2 can be obtained through a maximization
of the penalized log likelihood function. In this paper we apply

the SICE method developed by Huang et al. (2009) that applies
the l1-norm regularization. Thus, SICE finds an estimate for the
inverse covariance matrix 2̂ of the brain regions by solving the
following optimization:

2̂ = argmax
2≻0

(log(det2)− tr(S2)− λ||2||1), (3)

where || · ||1 denotes the sum of absolute values of all the
entries in a matrix, and λ > 0 is a pre-selected regularization
parameter. When λ is small the constraint has little effect and
SICE becomes the usual MLE. Conversely, the larger the values of
λ, the more sparse are the estimates for2 provided by SICE. This
is an advantage when trying to extract connectivity models since
SICE reports directly on conditional independence between two
variables (given the other variables in the multivariate Gaussian
distribution). The monotone property proved in Huang et al.
(2010) also says that if two brain regions are not connected
(there is not a path between them) in the connectivity model at
a certain λ, they will never become connected as λ goes larger.
This monotone property can be used to derive structural and
functional connectivity models for different values of sparseness,
corresponding to models with different strength of connections,
and analyze their differences for the different groups.

Partial correlation computed with SICE can also be used for
classification by using the residual in the sparse linear regression.
Given the data x = {f1, f2, ..., fp} measured at the p selected
ROIs, the i-th feature can be estimated by the linear regression
as follows:

fi =
∑

j 6=i

βij fj + ǫi, for i = 1, ..., p (4)

where ǫi is uncorrelated with all variables except fi, and βij

measures the relationship between the i-th feature and the j-th
feature given all other features. More specifically,

βij = −
2ij

2ii
, (5)

with var(ǫi) = (1/2ii) and cov(ǫi, ǫj) = 2ij/(2ii2jj).
For the classification of data into two different classes A and

B, averaged coefficients βij for these classes can be estimated
independently from the values given by 2̂. These coefficients
define a matrix for each class: βA and βB ∈ R

p×p. Then, the
reconstruction errors ǫ ∈ R

p are computed for every element
x ∈ R

p of the dataset; that is, two error vectors, ǫA and ǫB, are
computed for every x. These reconstruction errors, computed by
using βA and βB, respectively, may be high since SICE is better
at discovering which entries in the inverse covariance matrix are
zero than estimating the exact magnitude of the non-zero entries,
but the key observation is that they will show values significantly
different depending on the class of x. These error vectors are then
used to classify using a SVM. For the computation of the matrices
β , a voxel selection is accomplished in order to select the most
discriminative voxels within each region. This is performed by
the Student’s two sample t-Test with pooled variance estimate.
The selected p-value is quite low, p < 0.01, so that only those
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voxels whose mean differences show clearly that they do not have
statistical relevance are disregarded.

2.4. Functional and Structural Connectivity
Models, Small Worldness
A goal of this paper is the characterization of networks composed
of brain regions connected by anatomical or functional
associations and the establishment of relationships between
networks across groups with the aim to reveal presumed
connectivity abnormalities. Anatomical connections typically
correspond to WM tracts between pairs of brain regions.
Although the presence of anatomical connections suggests the
potential for functional connections, such connections, may
occur between pairs of anatomically unconnected regions.
Structural networks are extracted from MRI data, while
functional networks are extracted from PET data. Note also
that although for clarity we will keep, inherited from Huang
et al. (2009), the term “functional” to refer to brain connectivity
networks extracted from PET data, these do not correspond
to correlation in activity but they, strictly speaking, measure
covariation in glucose uptake between different regions, which
can be further related to metabolic covariations. Similarly, we
use a measure of GM density as structural information, which
aims to capture GM inter-regional covariance. This is motivated
by the fact that inter-regional GM density covariation is related
to the presence of a fiber tract between regions (Segall et al.,
2012).

Anatomical and functional connections, to be meaningful,
must be defined on the same map of brain regions. We use here
the 116-regions Automated Anatomical Labeling Atlas (AAL)
to extract the features. Nevertheless, only 42 regions out of
116, distributed in the frontal, parietal, occipital, and temporal
lobes, have been selected here for brain connectivity modeling,
as they are considered to be potentially related to AD (Huang
et al., 2009). Table 2 lists the names of the used regions and

includes a number that will be used to index the node in the
connectivity models. These regions will be the nodes of our
brain networks while links or arcs will be used to denote the
presence or absence the connections between nodes. As explained
above, they can be seen as an interpretation of the sparse inverse
covariance. An arc between two regions represents a non-zero
partial correlation and reflects that these two regions are directly
connected. Furthermore, if two brain regions are not connected
by an arc, but there is a path between them, they can be
considered as connected indirectly. For the sake of simplicity, we
will adopt a matrix representation for these graphs, with 42 rows
and columns corresponding to the regions of interest and a black
cell (binarized) indicating the presence of an arc between the
corresponding region of interests of that row and column. Since
the connectivity graphs are undirected, the matrix is symmetric
and the total number of black cells is equal to twice the total
number of arcs. The degree of an individual node is equal to the
number of links connected to that node, and therefore it reflects
the importance of that node. Hub nodes are defined as those
with the highest degrees; i.e., with the highest number of edges.
A cluster is a group of nodes interconnected among them but
isolated from the rest.

“Functional segregation is the ability for specialized processing
to occur within densely interconnected groups of brain regions”
(Rubinov and Sporns, 2010). Hence, the presence of clusters
in anatomical networks suggests the potential for functional
segregation. On the contrary, functional integration is the
ability to combine specialized information from distributed brain
regions. Shorter paths imply stronger potential for integration.
The term small-world is thought to simultaneously reconcile
the opposing demands of functional integration and segregation.
A well-designed network should combine an optimal balance
of functional integration and segregation, that is, the presence
of segregated modules connected (integrated) through links.
In SICE analysis, values of the regularization parameter that

TABLE 2 | Names and the corresponding indexes of the regions for connectivity modeling Huang et al. (2010).

Frontal lobe Parietal lobe Occipital lobe Temporal lobe

1 Frontal_Sup_L 13 Parietal_Sup_L 21 Occipital_Sup_L 27 Temporal_Sup_L

2 Frontal_Sup_R 14 Parietal_Sup_R 22 Occipital_Sup_R 28 Temporal_Sup_R

3 Frontal_Mid_L 15 Parietal_Inf_L 23 Occipital_Mid_L 29 Temporal_Pole_Sup_L

4 Frontal_Mid_R 16 Parietal_Inf_R 24 Occipital_Mid_R 30 Temporal_Pole_Sup_R

5 Frontal_Sup_Medial_L 17 Precuneus_L 25 Occipital_Inf_L 31 Temporal_Mid_L

6 Frontal_Sup_Medial_R 18 Precuneus_R 26 Occipital_Inf_R 32 Temporal_Mid_R

7 Frontal_Mid_Orb_L 19 Cingulum_Post_L 33 Temporal_Pole_Mid_L

8 Frontal_Mid_Orb_R 20 Cingulum_Post_R 34 Temporal_Pole_Mid_R

9 Rectus_L 35 Temporal_Inf_L 8301

10 Rectus_R 36 Temporal_Inf_R 8302

11 Cingulum_Ant_L 37 Fusiform_L

12 Cingulum_Ant_R 38 Fusiform_R

39 Hippocampus_L

40 Hippocampus_R

41 ParaHippocampal_L

42 ParaHippocampal_R
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maximize the number of clusters also likely maximize the small-
worldness.

2.5. Support Vector Machines (SVM)
Support Vector Machines (SVM) are a set of supervised learning
methods widely used for classification and regression (Vapnik,
1998; Sammut and Webb, 2010), designed to separate a set of
binary-labeled data by means of a hyperplane. Specifically, a
smart optimization method is used to compute the maximal
margin hyperplane so that the maximum separation between
classes is achieved. They use a decision function in the form
g :Rp −→ {±1}, corresponding to p-dimensional training vectors
xi and class labels yi with 1 ≤ i ≤ n:

(x1, y1), (x2, y2), ..., (xn, yn) ∈ R
p × {±1} (6)

in such a way that g is able to correctly classify new samples (x, y).
The parameter p is the dimensionality of the feature vectors.

Linear discriminative functions define decision hyperplanes in
a multidimensional feature space:

g(x) = ωTx+ υ0 (7)

where ω is the weight vector and υ0 is a bias (threshold). This
way, ωTx + υ0 ≥ 1 if class y = +1 and ωTx + υ0 ≤

1 if class y = −1, being the weight vector ω orthogonal
to the decision hyperplane. Finding the optimal separating
hyperplane is accomplished by the optimization task of finding
the unknown parameters ω and υ0 which define the decision
hyperplane that separates the two classes optimally. Alternatively,
weights assigned to each feature, assigned by the SVM during
the optimization process, can be used to rank the features, as
explained later on.

2.6. Exploratory and Classification
Methods
The SICE-based analysis presented in this paper comprises an
exploratory part, where structural and functional connectivity
models are inferred, and a discriminative part, where the
connectivity models estimated by SICE enable us to differentiate
between CN, MCI, and AD. Figure 1 shows the overall scheme
for this analysis: exploratory part (above) and classification
process (below). Note that although the procedure is illustrated
for functional data of CN and AD, it can be easily adapted for
structural data and other group combinations.

For the exploratory work, images are partitioned according to
the AAL atlas and the voxel preselection (p < 0.01) is performed.
SICE is then used to extract functional connectivity models for
AD and CN for different values of the regularization parameter.
A common strategy (Supekar et al., 2008; Huang et al., 2010) to
achieve that the comparison between the different subject groups
makes sense is to control the total number of arcs. A sweep
of λ is performed until a specific number of arcs is reached.
Connectivity models are then computed for a range of total
number of arcs.

For classification, once the inverse covariance matrices are
estimated for each group, we compute the corresponding

regression coefficient. Using these values, the reconstruction
error vectors for each image i are computed: ǫi−CN , ǫi−AD .
A support vector machine is then trained using these errors
as features. For the test image, the process is similar.
Voxels preselected during the training stage are used and the
reconstruction vector errors for both CN and AD are computed
using the inverse covariance matrix estimated for each group.
Such error vectors are then introduced in the trained SVM for
classification. When both MRI and PET data are available for
classification, error vectors for structural and functional data can
be combined in the same SVM. In order to prove that the system
is not over-fit and thus, has a good generalization performance,
feature selection, and classification processes have been assessed
by k-fold cross-validation (k = 10). Cross-validation method
consists in splitting the sample set into k subsets. Then, k − 1
subsets are used for training while the classification process is
carried out using the excluded subset. These subsets are different
and do not share any samples. This process was repeated for
the k-folds, ensuring test data is never used in the feature
selection or the classifier training. This is repeated k times,
for each fold being used as test sample, and the final result is
obtained by averaging. The main purpose of cross-validation is
to estimate the generalization error, ensuring that similar results
will be obtained on new data (that is, low generalization error).
This method estimates the prediction error and avoids double-
dipping, providing a lower generalization error variance estimate
(Hastie et al., 2003).

3. RESULTS

In this section, results obtained from the exploratory analysis
using functional (FDG-PET) and structural (MRI) data are
shown. These results are presented in two ways. First, by using
binarized inverse covariance matrices for different number of
arcs that reveal the connectivity between regions for CN, MCI,
and AD. And then, through a cluster analysis. This analysis takes
into account the strength of the connections and provides an
easier graphical way to represent the brain connectivity.

Finally, we demonstrate the capabilities of the partial
correlations obtained from SICE for image classification, by
computing reconstruction errors using multiple regression
analysis.

3.1. Functional Connectivity Analysis from
Binarized SICE
In Figure 2, red squares split the binarized 2̂ in different brain
areas, each including regions from the frontal, parietal, occipital,
and temporal lobes. Different connectivity patterns are obtained
for the same number of arcs in CN, MCI, and AD patients and
these also change differently when varying the number of arcs;
i.e., when varying the sparsity parameter λ. The first regards the
fact that 2̂ effectively captures connectivity differences between
the group. The latter refers to the strength of the connections;
as the number of arcs diminishes (higher λ-values), only the
strongest connections remain.

In order to validate statistically the differences between the
patterns for the different groups, a distance measure between the
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FIGURE 1 | Scheme of the overall SICE-based process (Functional Data). (A) Exploratory and (B) Classification processes.

corresponding connectivity matrices has been computed. This
measure only accounts for those entries which are different (in
absolute value) between two matrices with a significance level
of 5%. This has been worked out by applying two-sample t-test
hypothesis testing on the matrix entries computed during k-fold
cross-validation (k = 10). It is worth noting that only the lower

triangular parts of the connectivity matrices (after discarding
diagonal elements) have been used to account for the number of
different entries as connectivity matrices are symmetric. Table 3
shows the percentage of different entries with p < 0.05 in
the functional connectivity matrices taken by pairs for CN/AD,
MCI/AD, and CN/MCI cases.
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FIGURE 2 | SICE matrix computed for (A,E,I) 25, (B,F,J) 50, (C,G,K) 75, and (D,H,L) 100 arcs using functional PET data. First row correspond to CN, second

row corresponds to MCI, and third row to AD subjects. Red squares in 2̂ (from top to bottom, left to right) indicate regions contained in frontal, parietal, occipital, and

temporal lobes.

TABLE 3 | Number of different entries in the functional connectivity

matrices with p < 0.05.

Connectivity matrices Percentage of different entries for

25 arcs 50 arcs 75 arcs 150 arcs

CN/AD 70 68 97 71

MCI/AD 62 73 92 68

CN/MCI 56 61 86 61

On the other hand, an analysis of the inter-lobe and intra-lobe
connections also allows to draw some conclusions. In general,
when the number of arcs increases, and weaker connections
are included, the percentages of inter-lobe and intra-lobe
connections between the different lobes tend asymptotically to
the uniform distribution. For example, occipital lobe represents
the 2% of the elements of the matrix. For 10 arcs, inter-lobe
connections in the occipital lobe are 20, 60, and 70% for CN,
AD, and MCI, respectively. For 225 arcs, these values are 5,
4.9, and 4.4%, approaching to the 2% value. Something similar
happens if inter-lobe and intra-lobe connections are analyzed

as a whole. Inter-lobe connections are 71% of the elements of
the matrix. Nevertheless, for 10 arcs, inter-lobe connections only
represent 0, 30, and 0% for CN, AD, and MCI, respectively.
For 225 arcs, by contrast, these percentages increase to 53,
57, and 58%. Two findings can be drawn from these results.
First, the differences in the number of inter-lobe and intra-
lobe connections of the different connectivity networks become
more relevant when the number of arcs decreases and only
the strongest connections are represented. And second, intra-
lobe connections are much stronger than inter-lobe connections.
The latter can also serve to determinate differences between the
different subject groups. It is particularly interesting to identify
differences involving MCI, since literature exists in studying the
brain connectivity differences between AD and CN but studies
on MCI are limited. For example, intra-lobe connections of the
temporal lobe remain almost constant in percentage for CN
(about 20%), while they increases from 0% (10 arcs) to about
20% (225 arcs) for AD and MCI. In other cases MCI networks
present behaviors similar to CN. For example, although it is
a bit higher for CN, the percentage of intra-lobe connections
of the frontal lobes shows similar evolution for MCI and CN
(decreasing from high values), while it is different for AD

Frontiers in Computational Neuroscience | www.frontiersin.org 8 November 2015 | Volume 9 | Article 132

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ortiz et al. Functional/structural connectivity in AD diagnosis

(increasing from low values). Something similar occurs with the
inter-lobe connections between the parietal and the occipital
lobes; they increase for MCI and CN and decrease for AD. These
results lead to think that intra-lobe connections of the temporal
lobe could be a good indicator of the neurodegenerative process
in MCI patients, while others, such as intra-lobe connections
in the frontal lobe, do not seem so affected yet at the MCI
state.

Matrices 2̂ can also be represented as graphs for a specific
number of arcs. This allows to visually extract information
about functional segregation (number of clusters) and integration
(hubs). That is, information about the small worldness (Supekar
et al., 2008; Rubinov and Sporns, 2010) of the brain connectivity
network for the different groups. Figure 3 shows the clusters
found in the 25-arc 2̂ computed for CN (a), MCI (b), and AD
(c). Different connectivity graphs are clearly identified for each
group. While the CN graph seems to exhibit a good balance
between integration and segregation, MCI and AD are less
segregated with weaker connections (some metrics to support
this are given later). The use of 25 arcs has been considered as
an optimal trade-off between accuracy and clarity. Thickness of
the arc represents the strength of the connections through the
normalized absolute values of 2̂, so that thicker lines correspond
to stronger connections. For this specific case, the strength values
in CN, MCI, and AD have been uniformly quantized in the range
[1, 10] for an easier comparison.

3.2. Cumulative SICE for the Analysis of the
Connectivity Strength
Matrices 2̂ are usually binarized. Thus, the strength of the
connections is neglected which could cause the loss of valuable

information. The monotone property demonstrated in Huang
et al. (2010) allows to relate the strength of a connection
in a binarized matrix with its resistance to disappear when
the sparseness increases; i.e., when λ increases or equivalently
the number of arcs decreases. Although strictly speaking this
property applies to connections between nodes and not to
arcs, both concepts are obviously related. Thus, we devise a
method that using as input the “traditional” binarized matrices
estimates values for the strength of the connections; i.e.,
an approximation to the partial correlation coefficients. The
obtained values provide consistent results to these obtained
directly through the SICE, which allows to gain confidence with
the use of these absolute values as measures of the connectivity
strength.

The estimated matrix, that we will call cumulative inverse
covariance, 2̂c, is computed by the weighted sum of the binarized
2̂ obtained for different number of arcs. That is:

2̂c =
∑

n∈narcs

10

n
bin[2̂n] narcs = {10, 25, 50, 75, 100} (8)

where bin[2̂n] represents the binarized 2̂ obtained for n arcs.
The threshold value used to binarize the matrices 2̂ has been 0
(i.e., all non-zero entries are considered as 1).

Figure 4 shows the clusters found on the 2̂c when the 25
strongest arcs are included. The strength is again indicated by
the thickness of the edges connecting each pair of regions.
The resulting graphs are very similar to those shown in the
previous section, proving that both methods represent effective
ways to obtain information about the relative strength of
the edges. With 2̂c, however, the connections have a lower

A B

C

FIGURE 3 | Clusters found on the brain network computed by functional 25-arc 2̂ for (A) Controls, (B) MCI, and (C) AD. Note that isolated nodes are not

shown in the graph. Edge thickness represents the normalized strength of the connections.
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A B

C

FIGURE 4 | Twenty-five-arc clusters found on functional 2̂c computed up to 100 arcs for (A) Controls, (B) MCI, and (C) AD. Note that isolated nodes are

not shown in the graph. Edge thickness represents the normalized strength of the connections.

resolution and it must also be noted that maximum values
for the graphs of the different groups of subjects will have
similar values as they are now related to the number of
occurrences.

3.3. Structural Connectivity
In this section, the analysis of the structural network is
performed. Information obtained from structural and functional
networks is different as they are derived from different sources.
In this work, a structural parameter has been derived in order to
obtain statistical information for each brain region based on GM
density measurements:

ρi =
#VGM

i

#Vi
(9)

where #VGM
i is the number of GM voxels in region i, and #Vi is

the total number of voxels in region i.
Figure 5 shows the binarized 2̂ computed using the GM

density values ρi. In this case, 2̂ represents inter-regional
covariation of GM density, or regions whose GM density level
is conditionally independent. This aims to discover structural
alterations that could reflect differences in the functionality.
The general analysis of inter-lobe and intra-lobes connections
shows a similar behavior to that in the functional case. Intra-lobe
connections are 71% of the elements of the matrix, but when the
number of arcs is reduced they only represent a much smaller
percentage; in particular, for 25 arcs, inter-lobe connections

represent 7, 16, and 20% for CN, MCI, and AD, respectively.
Again, this can be interpreted as a higher strength for the intra-
lobe connections than for the inter-lobe connections. Differences
can also be observed when comparing different groups; for
example, the number of intra-lobe connections between parietal
and temporal lobes seems to be higher for CN (0, 2, 4, 8% for
25, 50, 75, and 100 arcs) than for MCI (0, 0, 0, 0%) and AD
(0, 0, 0, 1%).

As before, these results can also be represented as graphs
to extract information in a visual fashion. Figure 6 depicts the
graphs for 25 arcs; arcs link co-varying regions, while edge widths
represent the relative covariance values. Region 33 (Left middle
temporal pole) is a hub for the three groups, indicating that
its GM density covariation is strongly related to the density
covariation of other regions. For 25 arcs, the three graphs, for
the three groups, are quite similar and the differences between
the graphs lie essentially in the strength of the connections. As
we will show in classification, these structural differences between
CN and MCI allow a good classification between these groups.

3.4. Systematic Network Analysis
To finish with the exploratory analysis of the networks, a more
systematic analysis is carried out by using some of the metrics
of graph theory. In particular, the average clustering coefficient
and the average number of connections per hub have been chosen
for their relationship with the concept of small-worldness, which
is supposed to characterize brain networks (Supekar et al., 2008;
Rubinov and Sporns, 2010).
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FIGURE 5 | 2̂ matrix computed for (A,E,I) 25, (B,F,J) 50, (C,G,K) 75, and (D,H,L) 100 arcs using structural MRI GM information. First row correspond to

Controls, second row corresponds to MCI and third row to AD subjects. Red squares in 2̂ (from top to bottom, left to right) indicates regions contained in frontal,

parietal, occipital, and temporal lobes.

1. Average clustering coefficient. This measures the fraction
of the node’s neighbors that are also neighbors of each
other (Watts and Strogatz, 1998). It provides an estimation
of network segregation which is related to the number of
clusters present in the network and the number of edges
interconnecting the nodes in each cluster of the functional
network (Rubinov and Sporns, 2010). For functional data,
it provides a measure of the network organization that
figures out the interconnection of functionally specialized
clusters. When computed on the structural 2̂, it estimates
the distribution of regions whose GM density variations are
conditionally dependent. The definition of this measure for
binary and undirected networks is as follows:

C =
1

n

∑

i∈N

Ci =
1

n

∑

i∈N

2ti
ki(ki − 1)

, (10)

where n is the number of nodes, N is the set of all nodes in
the network, and ki, Ci, and ti are the degree, the clustering
coefficient (Ci = 0 for ki < 2) and the number of triangles
around the node i, respectively. ti is further computed as:

ti =
1

2

∑

j,h∈N

aijaihajh, (11)

where aij is the connection status between i and j: aij = 1
when there exists a link between these nodes; aij = 0 otherwise
(aii = 0 for all i).

2. Average number of connections per hub. The number of hub
nodes is a measure of functionality distribution. In structural
networks, it is a measure of the number of regions whose
GM density variation is related to others. The definition
of this measure for binary and undirected networks is as
follows:

E =
1

n

∑

i∈N

Ei =
1

n

∑

i∈N

(∑
j∈N

aijkj

)
(12)

Figures 7A,B show the average clustering coefficient and
the average number of connections per hub, respectively,
computed for the functional graphs (see Figure 3). These
figures provide a clearer view of the variation profile of
network performances when the 2̂ is computed for a different
number of arcs (i.e., different λ-values). The lower clustering

Frontiers in Computational Neuroscience | www.frontiersin.org 11 November 2015 | Volume 9 | Article 132

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ortiz et al. Functional/structural connectivity in AD diagnosis

A B

C

FIGURE 6 | Small worldness analysis. Clusters found on the structural brain network computed by 25-arc 2̂ for (A) Controls, (B) MCI, and (C) AD subjects. Note

that isolated nodes are not shown in the graph. Edge thickness represent the normalized strength of the connections (namely covariation).

coefficient found in CN indicates the trend of CN functional
networks to remain more segregated. This is also reflected
in the smaller number of connections per hub shown in
Figure 7B.

Network performances (Figure 8) obtained from the clusters
for GM structural data also reveal differences between the groups.
However, these differences are no longer as relevant as they were
for functional data. However, as we will see for classification,
when the strength of the connections is taken into account,
structural data provide an important discriminative power for the
CN/MCI case.

3.5. Classification
Different classification experiments have been considered. Firstly,
classification tests using only PET data or only GM data
are carried out. This allows to compare the discriminative
capability of the relationships revealed by the SICE in functional
and structural network, respectively. Then, functional and
structural features are used jointly by concatenating both error
vectors to be used as input to the SVM. As explained in
Section 2.6, the results provided here represent the average
of the values obtained during the cross-validation process.

These results show that, even though partial correlations
estimated by SICE may not be very accurate, they can be
effectively used for classification by computing linear regression
coefficients.

Figure 9A shows the classification accuracy obtained for
CN/AD, resulting in a maximal accuracy of 0.92. Figure 9B
depicts the ROC curve which shows an AUC of 0.96. Functional
and structural features are not redundant but complementary,
as the inclusion of structural features outperforms the results
obtained using only functional data. These results also improve
the Voxels as Features (VAF) (Stoeckel and Fung, 2005)
method used as baseline, which consist in using raw VAF for
classification.

These classification experiments have been repeated with
MCI/AD and CN/MCI patients. The latter is the most difficult
case and the most relevant for early AD diagnosis. For MCI/AD
classification, the combination of functional and structural data
offers again the best results but, in this case, structural data
slightly outperform functional data. For CN/MCI, structural data
offer the best results (Figure 10); i.e., they are better than when
functional and structural data are used together. This is also
shown in the ROC curve (Figure 10B).
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A B

FIGURE 7 | Average clustering coefficient (A) and average number of connections per hub (B) computed from the clusters in 2̂ obtained from

functional data.

A B

FIGURE 8 | Average clustering coefficient (A) and average number of connections per hub (B) computed from the clusters in 2̂ obtained from

structural data.
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FIGURE 9 | Accuracy (A) and ROC curve (B) for CN/AD classification considering a different number of arcs in the SICE.

Table 4 collects all the classification results. To determine the
best performing method the accuracy, sensitivity, specificity, and
the Area Under ROC curve (AUC) are provided, along with
their standard deviations. AUC takes into account sensitivity and

specificity, and it is considered a good metric for classification
performance. Additionally, the results have been also assessed
by means of ANOVA analysis (Navidi, 2010) using the accuracy
values. This analysis, whose results are shown in Table 5,
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allows to state (in terms of accuracy) whether the methods
are providing different accuracy values or not. In this analysis,
the null hypothesis (H0) argues for equal means at 0.05% of
significance level. When significant differences were found in
the classification accuracy provided by the different methods,
a multiple comparison test is performed to reveal the best
method. Specifically, the p-values obtained for MCI/AD and
CN/MCI classification are below 0.05, and therefore, the null
hypothesis is rejected at 5% of significance level in both
cases. Thus, the average accuracy value provided by our
proposal is higher than the ones provided by the VAF or
PCA alternatives. For the CN/AD classification, conversely,
the p-value is above 0.05, and therefore we cannot reject the
null hypothesis at five percent level, and thus, the average
accuracy values provided by the different methods compared

in Table 4 must be considered equal. It is likely, however,
according to the AUC values provided by ROC analysis, that SICE
methods using PET or PET+GM data perform better than other
methods.

Finally, Figure 11 presents the classification results collected
in Table 4 using boxplot graphs. This aims to display differences

TABLE 5 | ANOVA analysis results with 5% of significance level.

Classification p-value F-statistic H0 (Equal means)

CN/AD > 0.05 0.56 Not rejected

MCI/AD (SICE-SVM, GM+PET) 0.0016 5.2 Rejected

CN/MCI (SICE-SVM, GM) 0.0013 5.3 Rejected

A B

FIGURE 10 | Accuracy (A) and ROC curve (B) for CN/MCI classification considering a different number of arcs in the SICE.

TABLE 4 | Classification results.

Method Accuracy Sensitivity Specificity AUC

CN/AD CLASSIFICATION

VAF PET+GM 0.86 ± 0.11 0.85 ± 0.13 0.87 ± 0.16 0.88

PCA PET+GM 0.87 ± 0.10 0.85 ± 0.15 0.90 ± 0.10 0.79

PET SICE regression + SVM 0.90 ± 0.10 0.88 ± 0.14 0.88 ± 0.12 0.96

MRI-GM SICE regression + SVM 0.87 ± 0.09 0.90 ± 0.15 0.84 ± 0.18 0.92

SICE regression + SVM (PET+GM) 0.92 ±±± 0.05 0.96 ±±± 0.09 0.86 ±±± 0.13 0.96

MCI/AD CLASSIFICATION

VAF PET+GM 0.66 ± 0.11 0.64 ± 0.19 0.69 ± 0.13 0.66

PCA PET+GM 0.70 ± 0.09 0.72 ± 0.11 0.69 ± 0.15 0.77

PET SICE regression + SVM 0.74 ± 0.09 0.72 ± 0.14 0.77 ± 0.17 0.81

MRI-GM SICE regression + SVM 0.80 ± 0.10 0.82 ± 0.13 0.78 ± 0.12 0.86

SICE regression + SVM (PET+GM) 0.84 ±±± 0.09 0.87 ±±± 0.10 0.81 ±±± 0.12 0.88

CN/MCI CLASSIFICATION

VAF PET+GM 0.62 ± 0.17 0.60 ± 0.27 0.63 ± 0.22 0.59

PCA PET+GM 0.67 ± 0.10 0.66 ± 0.16 0.69 ± 0.11 0.74

PET SICE regression + SVM 0.73 ± 0.15 0.70 ± 0.25 0.77 ± 0.14 0.74

MRI-GM SICE regression + SVM 0.86 ±±± 0.10 0.90 ±±± 0.10 0.82 ±±± 0.18 0.91

SICE regression + SVM (PET+GM) 0.81 ± 0.12 0.83 ± 0.15 0.80 ± 0.18 0.88

Mean values across the cross-validation iterations are shown along with the standard deviations. Positive class used to compute the statistics is indicated in boldface.
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A B C

FIGURE 11 | Accuracy (A) CN/AD, (B) MCI/AD, (C) CN/MCI classification considering the method indicated in bold in Table 4.

between groups without making any assumptions about the
underlying statistical distribution.

3.5.1. Ranking Regions of Interest (ROI)
As explained in Section 2.6, a SVM is used to classify the
subjects based on the residuals obtained for each region by
regressing them using both CN or AD models (or MCI in
the cases of CN/MCI and MCI/AD classification). Thus, the
most discriminative regions can be found according to their
reconstruction errors. The core idea is to select those regions
whose reconstruction error is different when reconstructed with
2CN or 2AD (or 2MCI). In other words, regions not affected by
AD should present similar reconstruction errors when regressed
with 2CN or 2AD. Thus, detecting the most discriminative ROIs
can be carried out by ranking the residuals using the weights that
the SVM assigns to each feature. In fact, let Ns be the number
of support vectors within the margin chosen during the training
phase, the following vector can be computed:

W =

Ns∑

j=1

yjλjxj (13)

where yj are the labels, λj are the corresponding Lagrangian
parameters, which are also optimized during the training phase,
and xj are the training samples. The coordinate i of the vectorW,
Wi with 1 ≤ i ≤ p, informs us about the relevance of the i-th
dimension of the feature vectors (Hidalgo-Muñoz et al., 2014).
More precisely, the higher the |Wi|, the more the relevance of
the i-th dimension in the feature vectors. By contrast, |Wi| = 0
indicates that the i-th feature does not have any influence in the
classification process.

Since SVMs are trained with the residuals computed for both
CN and AD models (or MCI when applied), the feature space
is composed of 42 × 2 = 84 features in such a way that feature
1 and 43 correspond to the residuals obtained when regressing
the mean activation level of region 1 using CN and AD models,
respectively. Hence, the weight corresponding to the region i is
computed by summing up the SVMweights for region 1 obtained
with CN and AD models: W1 = WCN

1 + WAD
1 . Finally, the

weight W is rescaled to the range [1, 42] to rank the regions.
The results are shown, using a colorbar, in Figures 12, 13 for

PET and MRI-GM structural SICEs, respectively. In particular,
Figure 12 shows discriminative regions in the frontal-temporal
lobe for PET data, indicating differences in the connectivity of
these regions between CN and AD subjects, matching with ROIs
found in the medical literature (Minoshima et al., 1997; Ng
et al., 2004) and also with regions found by connectivity analysis
(Huang et al., 2010). On the other hand, ROIs computed from
GM structural data, Figure 13, show the most discriminative
regions in the temporal lobe, specially in the entorhinal area
(Brodmann area 28) affecting the hippocampus. These regions
appear to be linked to AD in the medical literature (Nestor et al.,
2004) when brain structures are analyzed using MRI.

4. DISCUSSION

In this work, Gaussian graphical models have been used to work
out an exploratory view of the brain network using the Sparse
Inverse Covariance Matrix (computed with SICE). This allows us
to build a graphical view of the brain connectivity, by modeling
the inter-regional brain network.

The method presented here provides two complementary
views of the brain network by means of Gaussian graphical
models. The first uses the SICE method to build a functional
connectivity model from FDG-PET data, which aims to reveal
connectivity patters associated to Controls, MCI, and AD
subjects. The second uses the SICE method on GM density data
to discover inter-regional covariation of GM density. These two
perspectives allow to find patterns in brain functionality and
structure of CN, MCI, and AD subjects. To gain insight into
these patterns, the strength of their connections is also analyzed.
To reinforce the confidence in these strength data, direct values
of the estimated inverse covariance matrix are compared with
those provided by a devised method based on the weighted sum
of the binarized inverse covariance matrices. This approach also
revealed additional patterns in both, functional and structural
networks. In fact, one of the main findings of this work is the
variation of the connection strengths between CN, MCI, and AD
subjects.

On the other hand, partial correlation coefficients obtained
from the Sparse Inverse Covariance Matrix for CN and AD
(or MCI) are used to build two multiple linear regression
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FIGURE 12 | CN/AD ROIs computed using the reconstruction error weighting for PET data. Colors indicate the discriminative power of each ROI, which has

been rescaled to the [1, 42] range. Axial (A) and coronal (B) planes are shown.

FIGURE 13 | CN/AD ROIs computed using the reconstruction error weighting for GM data. Colors indicate the discriminative power of each ROI, which has

been rescaled to the [1, 42] range. Axial (A) and coronal (B) planes are shown.

models, and subsequently, to compute the reconstruction error
associated to each brain region. These reconstruction errors
are used to train a SVM. Thus, applying the multiple linear
regression models to new images and using the computed
residuals as inputs for the trained SVM, new subjects can be
classified. Indeed, the classification method proposed in this
work provides classification accuracies of 92, 84, and 86%, along

with AUCs of of 0.98, 0.88, and 0.91 for CN/AD, MCI/AD,
and CN/MCI, respectively. The classification method also makes
possible to compute regions of interest associated to AD by
means of the SVM residuals, figuring out brain regions that
match with regions that appear in the medical literature obtained
from the analysis of FDG-PET and structural MRI image
analysis.
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The main findings of the paper are discussed next. We pay
special attention to MCI since, while abundant literature exists in
studying the differences between AD and CN, studies onMCI are
limited.

• Different patterns for CN, MCI, and AD are statistically
confirmed from inverse covariance matrices computed using
the SICE method and functional data. When the number of
arcs increases the comparisons become less relevant because
weaker connections are included. Having this into account,
if inter-lobe and intra-lobe connections are analyzed, we find
that intra-lobe connections of the temporal lobe could be an
indicator of the neurodegenerative process in MCI patients.
While others, although relevant for AD, such as intra-lobe
connections in the frontal lobe, do not seem so affected yet in
MCI patients. When represented as graphs, CN connectivity
network exhibits a good balance between integration and
segregation, while MCI and AD networks are less segregated,
confirming their drift away from the ideal small-worldness.
The results obtained regarding to the relationship between
AD-related regions match with previous results obtained with
both SPECT and PET data Chaves et al. (2011, 2012).

• Although information obtained from structural data is
different from that obtained for functional data, covariance
inverse matrices from structural data also reveal a stronger
intra-lobe covariation of GM density than inter-lobe
covariation.

• Absolute values computed from SICE can be directly used
as a measure of the strength of the connections. Arguing
that SICE is better at detecting zero entries than giving exact
values, previous works (Huang et al., 2009, 2010) only used
binarized matrices. However, we prove here that computed
absolute values lead to consistent results to those obtained
when binarized matrices and the monotone property are
combined.

• The strength of the connections reveals important information
that cannot be disregarded. The importance of taking into
account the strength of the connections becomes particularly
clear when the graphs from structural data are analyzed.
Graph metrics (clustering coefficient and average number
of connections) do not show significant differences between
the three groups. This is also checked from the visual
inspection of the graph for 25 arcs: nodes are edges are
basically the same for the three groups and the strength of
the connections represents the main difference between the
groups. These differences in the connection strengths are
relevant when used for classification. SICE regression from
structural data provides good results for the early diagnosis
(CN/MCI classification).

• Classification experiments prove the discriminative
capabilities of the features extracted from the inverse
covariance.

• The results show covariation patterns in AD-related
regions. Furthermore, high sensitivity values achieved in
the classification task figure out that CN condition is easier
to characterize than AD due to possible variability present in
fewer atypical AD subjects. This variability is more noticeable

in the MCI group. Moreover, clinical labels assigned to each
patient (i.e., patients are labeled in the ADNI database using
the MMSE score) have low specificity, which means low
capacity to differentiate AD from other dementias such as
Lewy dementia or fronto-temporal dementia.

The tool presented in this research could also have future clinical
relevance to study other brain alterations and provides reliable
results with small sample sizes, which is usual in clinical trials.
That is, the proposed modeling and analysis procedure on AD,
MCI, and CN groups can be applied to groups given a certain
drug to infer differences in the connectivity models. These
can also be used for longitudinal analysis, where connectivity
models can be extracted for the same subject at different times.
This would allow to check the evolution of the connectivity
networks. It is important to note that biomarker based studies
focus on individual brain regions, and therefore they can be
complemented by analysis that characterize the interactions
between brain regions. Finally, the classification method could
also be used for the early diagnosis of AD since it has proved
good performances in the first experiments with CN and MCI
subjects.
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