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oportunidad de poder discutir mucha f́ısica con él durante mi estancia en Filadelfia.

Le agradezco además a Daniel y a Emilian Dudas que se hayan tomado la molestia de

leer esta tesis, como expertos para la mención internacional; y a Tim, Vijay, Johanna,
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Juanfri, Fran, Eva, José Carlos, Lety, Rafa y Migue. A Angelilla, por este último año.

Para terminar, dejo este párrafo para dedicárselo a (y disculparme de) muchos que
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Notations and Conventions

We could, of course, use any notation we want; do not laugh at notations; invent them, they

are powerful. In fact, mathematics is, to a large extent, invention of better notations.

Richard P. Feynman [1]

Coordinates and Indices

Lorentz indices are as usual written with the greek letters µ, ν, . . .. We use x, y, . . .

to represent d-dimensional space-time coordinates, which will be written sometimes as

a continuous index: gx ≡ g(x). Likewise, p, q, . . . represent d-dimensional covariant

momentum coordinates. We mostly work with an Euclidean metric δµν , and rescalings

of it. We define

(γz)µν = (γ1/z)µν =
1

z2
δµν . (1)

The modulus of the vectors x or p will be indicated writing as a subscript the metric

used to compute it:

xγ =
√
xµxνγµν ,

pγ =
√
pµpνγµν . (2)

If the metric is the canonical one γ = δ, we will also use |x| = xδ. Note that xγz = |x|/z,

while pγz = z|p| (due to its covariant character).

Latin letters a, b, . . . , i, j, . . . are used to represent discrete indices in general (flavour

xxi



xxii Notations and Conventions

indices, including Lorentz indices if necessary).2 We also use the DeWitt condensed no-

tation, with the index α, β, . . . , σ, . . . indicating a set of flavour and space-time indices;

for instance gα = gax = ga(x). The Einstein summation convention is used for both dis-

crete and continuous indices, with repeated space-time indices indicating an integration

in that variable. As an example,

kα1α2g
α1gα2 = ka1x1a2x2 g

a1x1ga2x2

=
∑
a1,a2

∫
ddx1d

dx2 ka1x1a2x2 g
a1(x1)ga2(x2). (3)

The usual parenthesis notation for the argument of functions will be only used for

continuous superindices, for the reasons we explain later. The Einstein convention only

applies when the involved arguments are written like indices. Thus, in the first line

of (3) the integral is implicit, but in the second one, it is not. Sometimes we will find

expressions in the second line more convenient, and therefore we will write integrals

explicitly.

In order to keep the formulas invariant under diffeomorphisms of the d-dimensional

space-time, the generalized tensors have to transform conveniently. If we choose gx =

g(x) to transform as a scalar field, the generalized tensor with n lower continuous indices

will transform as a density of weight n (or as a tensor density if it also has Lorentz

indices).

Indices inside a parenthesis label the entries of diagonal (generalized) matrices.

Therefore, there is no sum or integral in the equation

qα = λ(α)g
α, (4)

while

λ(α)kαg
α =

∑
a

∫
ddxλ(a)(x) kax g

a(x). (5)

The operator Sym acting over a tensor or a function symmetrizes over the indicated

2In particular, a will be used to label general operators, b will label double-trace operators, and i
and j single-trace operators or bulk fields. This will also be explained in the text.
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indices (including possible continuous indices):

Sym
{(ik,pk)}nk=1

Ai1...in(p1, . . . , pn) =
1

n!

∑
σ∈Sn

Aiσ(1)...iσ(n)
(pσ(1), . . . , pσ(n)). (6)

Sometimes, we also use the parenthesis notation to symmetrize,

A(i1...in) =
1

n!

∑
σ∈Sn

Aiσ(1)...iσ(n)
. (7)

Generalized metric

If the d-dimensional space-time parametrized by the continuous coordinates x has

a defined metric γ, we can construct a diffeomorphism-invariant generalized metric to

raise and lower continuous indices:

δx1x2 =
√
|γ| δ(x1 − x2), (8)

δx1x2 =
1√
|γ|
δ(x1 − x2). (9)

Therefore, gax =
√
|γ| gax =

√
|γ| ga(x), and (3) and (5) can be rewritten like

kα1α2g
α1gα2 =

∑
a1,a2

∫
ddx1d

dx2|γ| ka1a2(x1, x2) ga1(x1)ga2(x2), (10)

λ(α)kαg
α =

∑
a

∫
ddx
√
|γ|λ(a)(x) ka(x) ga(x). (11)

Here, γ is the metric in the d-dimensional spaces parametrized by x1 and x2, and we

have written the double d-form ka1x1a2x2 in terms of a tensor ka1a2(x1, x2) = kx1,x2
a1a2

. The

square root of |γ|, the determinant of the metric, is used to raise space-time indices.

Fourier transform

If our d-dimensional spacetime is flat, and thus, the metric γ is constant, we can

define the Fourier transform of a generalized tensor Ax1...xn
y1...ym

. It will be denoted by Â
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and defined as

Âq1...qmp1...pn
=

∫
ddx ddy exp

[
i

(
n∑
j=1

pjµx
µ
j −

m∑
k=1

qkµy
µ
k

)]
Ax1...xn
y1...ym

. (12)

In momentum space, B̂p =
√
|γ|B̂−p, with B̂(p) = B̂p. In many cases, we will work

with translation-invariant functions:

Ax1...xn
y1...ym

= A
x′1...x

′
n

y′1...y
′
m
, (13)

with x′µi = xµi + aµ and y′µi = yµi + aµ, and aµ ∈ Rd any vector. In this case, the

Fourier transform has an overall momentum-conserving delta function. To simplify

some formulas, when there is an overall delta function of momenta conservation, we

define

(2π)dδ
(

(p1 + . . . pn)− (q1 + . . .+ qm)
)
Ǎp1...pn
q1...qm

= Âp1...pn
q1...qm

. (14)



Chapter 1

Introduction

I must say that I am very dissatisfied with the situation, because this so-called ’good theory’

does involve neglecting infinities which appear in its equations, neglecting them in an arbitrary

way. This is just not sensible mathematics. Sensible mathematics involves neglecting a quan-

tity when it is small – not neglecting it just because it is infinitely great and you do not want

it!

Paul Dirac [2]

Just as Quantum Mechanics has a deep impact on any serious student of physics, its

application to the relativistic domain, that is, Quantum Field Theory (QFT), strikes

those who face its study for the first time. Most notably, the appearance of infinities

here and there has no parallel in classical physics or in Quantum Mechanics of discrete

systems (except in particular cases with singular sources and boundaries). The “shell

game” of renormalization, necessary to make sense of this situation, may look like the

last resort of desperate scientists. This feeling was actually shared not so long ago by

the early formulators of quantum electrodynamics.

However, a better understanding of renormalization in QFT emerged later. The

crucial insights were provided by the work of Kenneth G. Wilson and others on the

Renormalization Group (RG), which studies the different appearance of a QFT at dif-

ferent energy scales. In the Wilsonian formulation, this is done by regularizing the

theory with some cutoff and studying how the changes in this cutoff are exactly com-

pensated by changes in the action. The RG allows to give a clear and deep meaning

1



2 Chapter 1. Introduction

to the short-distance divergences of QFT, which essentially reflect sensitivity to higher

scales, and to the process of renormalization, in which the unknown ultraviolet details

are parametrized by a set of local operators with arbitrary parameters. The Wilsonian

RG provides a rigorous non-perturbative definition of continuous renormalizable QFT

as relevant deformations of conformal field theories. Ideas such as asymptotic safety

are based on this picture. Also effective field theories, a modern paradigm of physics,

are best understood from the Wilsonian point of view. And not only are the renormal-

ization process and the RG well-defined; they introduce new concepts and tools with

deep physical implications.

In this thesis, we study in detail some fundamental aspects of the Wilsonian RG,

including its precise relation with renormalization. These ideas are general and can in

principle be used in strongly-coupled theories. However, the limitations of calculability

are strong. In actual calculations one needs drastic approximations, such as truncations,

or to make use of some kind of perturbation theory. One possible perturbative expansion

that can be used in non-abelian gauge theories is the expansion in inverse powers of

N , the rank of the group [3]. The large-N theories take the form of a classical string

theory [4]. In some particular cases, explicit dual formulations in terms of the classical

degrees of freedom have been found. They are examples of the famous Gauge/Gravity

duality, also known as holography or AdS/CFT correspondence [5].

The discovery of Gauge/Gravity duality has possibly been to the most important

landmark in theoretical physics in the last twenty years. It has its origin in String

Theory (ST) and establishes an equivalence between certain QFT and Gravity theories.

Therefore, it provides consistent descriptions of certain models of Quantum Gravity.1

One basic property of this correspondence is that it relates strongly-coupled theories to

weakly-coupled ones, and vice versa. In particular, strongly-coupled large-N theories

can be described by their classical gravity duals. This makes Gauge/Gravity duality

one of the few tools (if not the only one) available to perform analytical quantitative

calculations in strongly-coupled regimes. For this reason, it has been applied to many

different problems in Particle and Condensed Matter Physics.

In the known examples of Gauge/Gravity duality, the gravity theory is formulated

1It is remarkable that, while defining a Quantum Gravity Theory as a QFT using traditional
methods seems hopeless, quantum gravity and space-time itself holographically emerge as effective
properties of certain quantum theories.
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in a higher-dimensional space with a geometry that is asymptotically Anti de-Sitter.

These spaces have a boundary, which plays a prime role in the correspondence. In the

explicit calculations, large-volume divergences appear, already at the classical level, in

the integrations close to the boundary. They are dual to the UV divergences in the

field theory. The most popular way to regularize them is to introduce an artificial

boundary that excludes the region close to the AdS boundary. Changing the position

of this cutoff surface can be compensated by changes in an action localized at the new

boundary. This is the holographic realization of Wilsonian RG invariance. Indeed, the

position along the extra-dimensional radial direction of the gravity theory is related

to the energy scale in the gauge theory. Moreover, it is possible to make sense of the

near-boundary divergences by a procedure of holographic renormalization. As we show

here, this procedure is intimately related to the holographic RG, just as in QFT.

In fact, the main purpose of this thesis is to offer a unified description, in both sides

of the duality, of renormalization, the Wilsonian RG and their precise connection. We

will refine some standard tools of QFT and show that they can be directly applied to

the gravity side of the correspondence. This will allow us to solve some existing puzzles,

to generalize some previous holographic methods or look at them from different per-

spectives, and to provide clear insights on the meaning of holographic renormalization.

The thesis is naturally organized in two distinct parts: the first one is dedicated to

purely field-theoretical developments, while the second one is devoted to their imple-

mentation in holography.

Part I comprises Chapters 2 and 3. The main results presented in this part have

been published in [6, 7]. In Chapter 2, a comprehensive presentation of the Wilson

RG is given. We introduce a novel geometric formulation of it.2 Even if motivated by

its later application to holography, we believe this formulation is very natural in QFT

and has a more general interest. We analyse the fixed points of the flow, associated

to scale-invariant theories, and their neighbourhood in the space of theories. We show

how the RG flows can be simplified through an appropriate choice of the coordinates

that parametrize the space of theories, which are called normal coordinates. These

coordinates can be used, in particular, to extract conformal anomalies or beta functions

in mass-independent schemes, even though the Wilson flows are intrinsically defined

2Other geometric formulations of the RG that share some elements with our formulation have been
previously given.
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with a mass cutoff. All these developments are illustrated with perturbative examples.

In one of them, we study the particular features of these techniques in large N theories.

Chapter 3 is devoted to the study of renormalization and its connection with the

formulation of RG presented in Chapter 2. We focus mainly on the renormalization

of correlation functions of composite operators at fixed points of the flow. We provide

explicit formulas that relate renormalized operators and counterterms with perturbative

expansions of the RG flows. We also prove that the normal coordinates introduced in

Chapter 2 are associated with a class of minimal subtraction renormalization schemes.

This formulation also allows to discern when logarithmic behaviours appear in the

renormalized operators or counterterms. Finally, the relevant deformations of fixed

points, which describe non-scale invariant theories, will be studied under the Wilsonian

optics. We will see how the continuum limit of renormalizable theories is formulated in

this general picture.

Part II comprises Chapters 4, 5, 6. The main results presented in this part have

been published in [6, 8]. We apply the very same techniques of Part I to the gravity

side of AdS/CFT. Actually, Chapters 5 and 6 have a structure parallel to the ones of

Part I. For completeness, we also include Chapter 4 as an introduction to the AdS/CFT

correspondence. There, we describe the main ideas behind the correspondence and its

basic features. We also review the standard holographic renormalization method, which

is slightly different from the one we follow in our work.

In Chapter 5 we formulate carefully the Wilsonian RG in holography. Most of the

elements introduced in Chapter 4 will appear again, in a new guise. We use exactly

the same geometric formulation as the one presented in Part I, and thereby show their

equivalence. We show that the holographic RG flows exhibit the especial large N

features emphasized in Chapter 2. In particular, both the large N and the classical

gravity flows “factorize”, in a sense to be explained in that chapter. Our holographic

developments are explicitly illustrated in a theory of scalar fields fluctuating in AdS

space. The backreaction of the metric is neglected. For this theory, we calculate fixed

points and RG flows in the neighbourhood of the interacting fixed point. This analysis

includes not only eigendeformations, but also non-linear contributions.

Just as Chapter 3 connects the Wilsonian RG with renormalization, in Chapter 6 we

apply the holographic RG to the holographic renormalization of correlation functions.
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We focus, as an example, on three-point functions between scalar operators of arbitrary

dimensions. We discuss different techniques that can be used to tackle the renormaliza-

tion of these correlation functions. The most obvious one, which has been widely used

in the past, imposes Dirichlet conditions on the cutoff boundary. However, we will note

that the correlators containing irrelevant operators cannot always be renormalized with

this method. Indeed, it turns out that multi-trace counterterms are required in the

renormalization of single-trace operators, already at the linear level. As we explain, the

reason behind this problem is the fact that the space of bare single-trace operators is

not stable under Wilsonian RG evolution. Our formulation based on general boundary

conditions provides a simple extension of holographic renormalization that solves the

problem in a natural way, consistent with the general field-theoretical methods. We

also pay special attention to the logarithmic behaviour that these systems can present,

depending on the relation of the mass dimension of the operators involved.

The main results of this thesis, our conclusions and a few possible future research

lines are presented in Chapter 7. Finally, we include Appendix A that contains a

technical discussion of the Poincaré-Dulac theorem, which plays a crucial role in the

developments made in Chapter 2.

During my Ph.D. time, I have also worked on the phenomenology of particle physics [9,

10], and on applications of the Gauge/Gravity duality to the study of Condensed Matter

systems [11, 12]. These works have contributed enormously to the development of my

vision of QFT and the Gauge/Gravity duality. However, because they are not directly

related to the topic of the thesis, they are not presented here.





Introducción

Aśı como la Mecánica Cuántica tiene un profundo impacto en cualquier estudiante serio

de f́ısica, su aplicación al dominio relativista, esto es, la Teoŕıa Cuántica de Campos,

impresiona a aquellos que afrontan su estudio por primera vez. La aparición de infinitos

aqúı y alĺı no tiene paralelismo en f́ısica clásica o Mecánica Cuántica de sistemas dis-

cretos (excepto en casos particulares con fuentes singulares y fronteras). El “juego” de

la renormalización, necesario para dar sentido a esta situación, puede parecer el último

recurso desesperado de los cient́ıficos. Este sentimiento fue de hecho compartido no

mucho tiempo atrás por los fundadores de la electrodinámica cuántica.

Sin embargo, una mejor comprensión de la renormalización en Teoŕıa Cuántica de

Campos apareció más tarde. Algunos avances cruciales fueron proporcionados por el

trabajo de Kenneth G. Wilson y otros en el grupo de renormalización, que estudia

la distinta apariencia de una teoŕıa cuántica de campos a diferentes escalas. En la

formulación Wilsoniana, esto se hace regularizando la teoŕıa con algún corte o “cut-

off” y estudiando como los cambios de este “cutoff” son exactamente compensados por

cambios en la acción. El grupo de renormalización permite dar un claro y profundo

significado a las divergencias ultravioletas de la Teoŕıa Cuántica de Campos, que esen-

cialmente reflejan la sensibilidad a escalas más altas, y al proceso de renormalización, en

el cual, los detalles desconocidos ultravioletas son parametrizados por un conjunto de

operadores locales con parámetros arbitrarios. El grupo de renormalización wilsoniano

proporciona una rigurosa definición no perturbativa de las teoŕıas cuánticas de campos

renormalizables como deformaciones relevantes de teoŕıas de campos conformes. Ideas

como la seguridad asintótica están basadas en esta imagen. Además, las teoŕıas de cam-

pos efectivas, un paradigma moderno en f́ısica, son mejor entendidas desde el punto de

vista wilsoniano. Y no solo el proceso de renormalización y el grupo de renormalización

7
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quedan bien definidos, además permiten introducir nuevos conceptos y herramientas

con profundas implicaciones f́ısicas.

En esta tesis, estudiamos en detalle algunos aspectos fundamentales del grupo de

renormalización wilsoniano, incluyendo su precisa relación con la renormalización. Estas

ideas son generales y pueden usarse en principio en teoŕıas fuertemente acopladas.

Sin embargo, las limitaciones en los cálculos son importantes. En cálculos reales, se

necesitan aproximaciones drásticas, tales como truncamientos, o el uso de algún tipo

de teoŕıa perturbativa. Un posible desarrollo perturbativo que puede usarse en teoŕıas

“gauge” no abelianas es las expansión en potencias inversas de N, el rango del grupo [3].

Las teoŕıas con N grande toman la forma de una teoŕıa de cuerdas clásica [4]. En algunos

casos particulares, se han encontrado formulaciones duales expĺıcitas en términos de

grados de libertad clásicos. Ellas son ejemplos de la famosa dualidad Gauge/Gravedad,

también conocida como holograf́ıa, o correspondencia AdS/CFT [5].

El descubrimiento de la dualidad Gauge/Gravedad posiblemente ha generado la

revolución más importante en f́ısica teórica de los últimos veinte años. Tiene su origen

en Teoŕıa de Cuerdas y establece una equivalencia entre ciertas teoŕıas de campos y

teoŕıas de gravedad. Por lo tanto, proporciona descripciones consistentes de ciertos

modelos de Gravedad Cuántica.3 Una propiedad básica de esta correspondencia es

que relaciona teoŕıas fuertemente acopladas con débilmente acopladas, y viceversa. En

particular, teoŕıas fuertemente acopladas con N grande pueden ser descritas por sus

duales gravitatorios clásicos. Esto convierte a la dualidad Gauge/Gravedad en una de

las pocas herramientas disponibles (si no la única) para hacer cálculos anaĺıticos en

reǵımenes fuertemente acoplados. Por esta razón, se ha aplicado a muchos problemas

diferentes en F́ısica de Part́ıculas y F́ısica de la Materia Condensada.

En los ejemplos conocidos de dualidad Gauge/Gravedad, la teoŕıa de gravedad es

formulada en espacios de dimensión más alta con una geometŕıa que asintóticamente es

Anti de-Sitter (AdS). Estos espacios tienen una frontera que juega un papel fundamental

en la correspondencia. En los cálculos expĺıcitos, divergencias de integrales asociadas

al volumen infinito cercano a la frontera aparecen ya al nivel clásico. Éstas son duales

a las divergencias ultravioletas de la teoŕıa de campos. La forma más popular de

3Es remarcable que, mientras definir una teoŕıa cuántica de gravedad como teoŕıa cuántica de
campos usando métodos tradicionales parece poco esperanzador, gravedad cuántica y el espaciotiempo
en śı mismo emerjan holográficamente como propiedades efectivas de ciertas teoŕıas cuánticas.
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regularizarlas es introduciendo una frontera artificial que excluye la región cercana a

la frontera del espacio AdS. Cambios de la posición de esta superficie de corte pueden

ser compensados por cambios en una acción localizada en la nueva frontera. Esta

es la realización holográfica de la invarianza del grupo de renormalización wilsoniano.

De hecho, la posición a lo largo de la dirección radial extra de la teoŕıa de gravedad

está relacionada con la escala de enerǵıa de la teoŕıa “gauge”. Más aún, es posible

dar sentido a las divergencias asociadas al volumen infinito por un procedimiento de

renormalización holográfica. Como veremos aqúı, este procedimiento está ı́ntimamente

relacionado con el grupo de renormalización holográfico, del mismo modo que en Teoŕıa

Cuántica de Campos.

El principal propósito de esta tesis es ofrecer una descripción unificada, en am-

bos lados de la dualidad, de la renormalización, del grupo de renormalización wilsoni-

ano y la conexión precisa de ambos. Refinaremos algunas herramientas estándares y

mostraremos que pueden aplicarse directamente al lado gravitatorio de la correspon-

dencia. Esto nos permitirá resolver algunos problemas existentes, generalizar algunos

métodos holográficos previos o estudiarlos desde diferentes perspectivas, y proporcionar

ideas claras sobre el significado de la renormalización holográfica.

La tesis está naturalmente organizada en dos partes distintas: la primera está dedi-

cada puramente a desarrollos en la Teoŕıa Cuántica de Campos, mientras que la segunda

está dedicada a su implementación en holograf́ıa.

La parte I comprende los caṕıtulos 2 y 3. Los principales resultados presentados

en esta parte han sido publicados en [6, 7]. En el caṕıtulo 2 se presenta de manera

extensa el grupo de renormalización wilsoniano. Introducimos una nueva formulación

geométrica.4 Aunque ésta ha sido motivada por su aplicación a holograf́ıa, creemos

que aplica de manera muy natural en Teoŕıa Cuántica de Campos, y tiene un interés

más general. Analizamos puntos fijos del flujo, asociados a teoŕıas con invarianza de

escala, y entornos de éstos en el espacio de teoŕıas. Mostramos como los flujos del grupo

de renormalización pueden ser simplificados a través de una elección apropiada de las

coordenadas que parametrizan el espacio de teoŕıas: las coordenadas normales. Estas

coordenadas pueden usarse, en particular, para extraer anomaĺıas conformes o funciones

beta en esquemas independientes de la masa, incluso aunque los flujos wilsonianos

4Otras formulaciones geométricas del grupo de renormalización que comparten algunos elementos
con la nuestra han sido dadas previamente.



10 Chapter 1. Introduction

estén intŕınsecamente definidos con un “cutoff” de masa. Todos estos desarrollos son

ilustrados con ejemplos perturbativos. En uno de ellos, estudiamos las caracteŕısticas

particulares de estas técnicas en teoŕıas con N grande.

El caṕıtulo 3 está dedicado al estudio de la renormalización y su conexión con la

formulación del grupo de renormalización presentada en el caṕıtulo 2. Nos centramos

principalmente en la renormalización de funciones de correlación de operadores com-

puestos en puntos fijos del flujo. Proporcionamos fórmulas expĺıcitas que relacionan op-

eradores renormalizados y contratérminos con las expansiones perturbativas de los flujos

del grupo de renormalización. Además probamos que las coordenadas normales intro-

ducidas en el caṕıtulo 2 están asociadas con una clase de esquemas de renormalización

de sustracción mı́nima. Esta formulación también permite discernir cuando apare-

cen comportamientos logaŕıtmicos en los operadores renormalizados o contratérminos.

Finalmente, se estudian deformaciones relevantes de los puntos fijos bajo el enfoque

wilsoniano. Éstas describen teoŕıas sin invarianza de escala. Veremos cómo el ĺımite

continuo de teoŕıas renormalizadas es formulado bajo esta imagen general.

La parte II comprende los caṕıtulos 4, 5 y 6. Los principales resultados presentados

en esta parte se encuentran en [6, 8]. Aplicamos las mismas técnicas de la parte I a

la parte de gravedad de AdS/CFT. De hecho, los caṕıtulos 5 y 6 tienen una estruc-

tura paralela a la de los caṕıtulos de la parte I. Por completitud, también incluimos

el caṕıtulo 4 como introducción a la correspondencia AdS/CFT. Alĺı describimos las

ideas principales detrás de la correspondencia y sus caracteŕısticas básicas. También

revisamos el método estándar de renormalización holográfica, el cual es ligeramente

distinto del que seguiremos en nuestro trabajo.

En el caṕıtulo 5 formulamos cuidadosamente el grupo de renormalización wilsoni-

ano en holograf́ıa. Muchos de los elementos introducidos en el caṕıtulo 4 aparecerán de

nuevo, con un enfoque diferente. Usamos exactamente la misma formulación geométrica

a la presentada en la parte I, y de aqúı, mostramos su equivalencia. Mostramos que los

flujos del grupo de renormalización holográfico exhiben las caracteŕısticas especiales del

ĺımite de N grande enfatizados en el caṕıtulo 2. En particular, tanto los flujos con N

grande, como los de gravedad clásica “factorizan” en un sentido que será explicado en

este caṕıtulo. Nuestros desarrollos holográficos son ilustrados expĺıcitamente con una

teoŕıa de campos escalares fluctuando en un espacio AdS. La reacción de la métrica
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es ignorada. Para esta teoŕıa, calculamos puntos fijos y flujos del grupo de renormal-

ización en el entorno de puntos fijos con interacciones. Este análisis incluye, no solo

autodeformaciones, sino también contribuciones no lineales.

Del mismo modos que el caṕıtulo 3 conecta el grupo de renormalización wilso-

niano con la renormalización, en el caṕıtulo 6 aplicamos el grupo de renormalización

holográfico a la renormalización holográfica de funciones de correlación. Nos centramos,

como ejemplo, en las funciones de tres puntos entre operadores escalares de dimensiones

arbitrarias. Discutimos técnicas diferentes que pueden usarse para abordar la renor-

malización de estas funciones de correlación. La más obvia, que ha sido ampliamente

usada en el pasado, impone condiciones tipo Dirichlet en la frontera de corte.

Sin embargo, notaremos que correladores con operadores irrelevantes no pueden ser

siempre renormalizados con este método. En efecto, resulta que, ya al nivel lineal, con-

tratérminos multi-traza son necesarios para la renormalización de operadores de traza

única. Como explicaremos, la razón detrás de este problema se debe a que el espa-

cio de operadores desnudos de traza única no es estable bajo la evolución del grupo

de renormalización wilsoniano. Nuestra formulación basada en condiciones de frontera

generales proporciona una extensión simple de la renormalización holográfica que re-

suelve el problema de una forma natural, consistente con los métodos propios de Teoŕıa

Cuántica de Campos. También prestamos atención al comportamiento logaŕıtmico que

pueden presentar estos sistemas dependiendo de la relación entre las dimensiones de los

operadores involucrados.

Los principales resultados de esta tesis, nuestras conclusiones y algunas ĺıneas fu-

turas de investigación son presentadas en el caṕıtulo 7. Finalmente, incluimos el

apéndice A que contiene una discusión técnica del teorema de Poincaré-Dulac, que

juega un papel crucial en los desarrollos hechos en el caṕıtulo 2.

Durante mi periodo como estudiante de doctorado también he trabajado en fenome-

noloǵıa de f́ısica de part́ıculas [9, 10], y en aplicaciones de la dualidad Gauge/ Gravedad

al estudio de sistemas de Materia Condensada [11, 12]. Estos trabajos han contribuido

enormemente al desarrollo de mi visión de la Teoŕıa Cuántica de Campos y la dualidad

Gauge/Gravedad. Sin embargo, debido a que no están directamente relacionados con

el tema de la tesis, estos trabajos no son presentados aqúı.
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Field Theory
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Chapter 2

Wilsonian Renormalization Group

We are part of this universe; we are in this universe, but perhaps more important than both

of those facts, is that the universe is in us.

Neil deGrasse Tyson

The Wilsonian RG probably provides one of the clearest pictures of QFT [13–15].

The underlying idea consists in studying how the relevant degrees of freedom that

describe a theory change with the scale we use to test it. Different implementations of

this idea have been largely explored and applied so far. For instance, in real-space RG

methods [16], the wave function of some state of the theory is projected to discard its

non-interesting short-distance behaviour. Improvements of this method are the density

matrix RG [17] or the Multiscale Entanglement Renormalization Ansatz (MERA) [18].1

However, in this thesis, we focus on the exact RG. This RG implementation takes as

fundamental object the regulated Euclidean partition function of a QFT, and studies

how the action changes when UV degrees of freedom are integrated out. It provides a

consistent definition of non-perturbative QFT and solves the problem of constructing

a QFT. This implementation was initiated by Wilson [14] and further developed by

others (see for instance [15, 22–25] and [26–32] for reviews).

In this chapter, we present the exact RG as developed in [7]. We borrow the language

1There is also a strong connection of Gauge/Gravity duality with this, and similar RG implemen-
tations. These developments fall outside the purpose of this thesis, but we recommend the following
references to delve into them [19–21].
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and tools of differential geometry to describe the space of theories where RG flows live.

In order to use this formalism to compute correlation functions, the theory space we

consider will have spacetime dependent couplings.2

The basic idea is to, somewhat loosely, treat the space of regulated theories as a

manifold. In this formulation, the spacetime dependent couplings are understood as

coordinates of theory space, the beta functions are vector fields, the operators are vec-

tors and the correlation functions are tensors.3 Special attention will be paid to the

active role of the cutoff in the parametrization of theory space. Writing the equa-

tions in a coordinate-invariant fashion will allow us to easily change coordinates to

find parametrizations that suit different purposes and put the exact RG flows in a

manageable form.

For instance, given a fixed point of the RG flows, we identify normal coordinates

around it, in which the beta functions and RG flows are particularly simple. At the

linear level, this reduces to identifying the deformations of the fixed point that are

eigenfunctions of the linearised RG evolution. These deformations are regularized ver-

sions of the primary operators at the fixed point, with eigenvalues simply related to

their scaling dimensions.4 The normal coordinates are an extension of this linear be-

haviour. When the dimensions take generic values, they are such that all the non-linear

terms in the flows vanish. For exceptional values of the dimensions, on the other hand,

non-linear terms are unavoidable but can be reduced to a minimal set. These terms

give rise to the usual Gell-Mann-Low beta functions of mass-independent schemes and

to conformal anomalies.

Our formulation is interesting since it allows us to address some fundamental issues

that had not yet been worked out in full detail. In particular, using what we introduce

in this chapter, we will establish in Chapter 3 the exact connection between Wilsonian

2This should be distinguished from the local RG [33], which goes one step further and studies
evolution under Weyl transformations. We will restrict our attention to the usual RG evolution under
global dilatations.

3This formulation is somehow similar to the one developed in [34] for renormalizable theories (see
also [35–40]). The main difference is that we incorporate the spacetime dependence of the couplings into
the geometry of theory space, which allows for general quasilocal changes of coordinates. Furthermore,
exact RG needs a dimensionful cutoff regularization, which is also included in the description of theory
space.

4We also allow for the possibility of non-diagonalizable linear terms, which give rise to logarithmic
CFT.
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RG and renormalization of correlation functions of composite operators.

The value of this formalism is also manifest in Chapters 5 and 6, in the context

of holographic renormalization. There, we will see how this formulation applies in a

natural way, and facilitates the solution of some puzzles.5

This chapter is organized as follows. Sections 2.1, 2.2 and 2.3 are devoted to the

introduction of the main formalism we will use along the thesis. We will define the

theory spaces we work with in Section 2.1, the Wilson flows in Section 2.2 and introduce

the normal coordinates in Section 2.3. All these developments are done in an abstract

way and under very general assumptions. In Section 2.4, we materialize in specific

examples the previous tools. In particular, we review the Polchinski equation, and

apply it to deformations of the Gaussian fixed point as example. Also, we study the

features of the Wilson flows in large N theories.

2.1 Theory Spaces

We start this chapter presenting different spaces we use to describe the exact RG.

Consider a generic local quantum field theory in d flat Euclidean dimensions, defined by

a classical Wilson action s, and the corresponding regulated partition function evaluated

with a UV cutoff. The Wilson action is a quasi-local functional of a set of quantum

fields ω,

s[ω] =

∫
ddxL (x;ω(x), ∂ω(x), . . .) . (2.1)

We have allowed for an explicit spacetime dependence, which will be useful for the

definition and calculation of correlation functions. The cutoff partition function is

obtained by functional integration over the fields ω,

ZΛ(s) =

∫
[Dω]Λ e−s[ω]. (2.2)

For the moment we do not need to know the nature of the regularization; we just

assume that it is characterized by the indicated cutoff scale Λ. Let I be the set of all

5In fact, we developed this formulation guided by holography.
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Wilson actions with field content ω and given symmetry restrictions. The theory space

we will work on is given by W = I × R+. As we said, we will treat these spaces as

infinite-dimensional smooth manifolds. A point in W , i.e. an action s and a scale Λ,6

specifies a particular theory described by Z(s,Λ) ≡ ZΛ(s). This definition is the first

example of the following general notation: given any map U : W → X, with X any

set, we define UΛ : I → X by UΛ(s) = U(s,Λ).

There are however some redundancies in this description of the space of theories.

In particular, a rescaling x = tx′ defines the new action

st[ω] = s[Dt−1ω], (2.3)

where Dt is a dilatation.7 Changing variables ω → Dtω in the path integral and

neglecting the trivial Jacobian we get

ZΛ(s) = ZtΛ(st). (2.4)

This defines the equivalence relation (st, tΛ) ∼ (st′ , t
′Λ). It is very convenient to in-

troduce the rescaled flat metric (γt)µν = t2δµν . The equivalence relation can then be

understood as (st, γ
t) ∼ (st′ , γ

t′), where the cutoff in the partition function is to be

measured in energy units associated to the metric γt in the second entry: ∂2/(t2Λ2) =

(γt)µν∂µ∂ν/Λ
2.8 For some purposes it is useful to work with the quotient space M =

W/∼. As in any quotient space, there is a projection [ ] into equivalence classes: given

(s,Λ) ∈ W , [(s,Λ)] ∈ M is the equivalence class it belongs to. Conversely, given a

positive number Λ, we define ρΛ : M → W by ρΛ(s) = (s,Λ) with [(s,Λ)] = s. In

particular, using ρ1 amounts to working with dimensionless spacetime coordinates, as

6The idea of including the value of the cutoff in the definition of the theory is analogous to working
on a theory space of extended actions that implement the cutoff regularization.

7Remember that ω represents a set of fields, which may be scalars, tensors or spinors. Under the
dilatation, which is a particular change of coordinates, each of these fields transforms in a definite way.

For a tensor with nu (nd) contravariant (covariant) indices, (Dtω)(x) = tn
d−nu

ω(tx).
8Expressed in this form, we see that this is a particular case of a larger redundancy in general

curved spacetime. Given a change of spacetime coordinates x = ξ(x′) and defining sξ[ω] = s[ω ◦ ξ−1],
we have (s, γ) ∼ (sξ, γ

ξ), with the cutoff evaluated with the indicated metrics and γξµν = ∂µξ
τ∂νξ

σγτσ.
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done in [6]. The partition function acting on equivalence classes is

Z(s) = Z ◦ ρΛ(s). (2.5)

We will also be interested in the tangent bundle TW . Any vector v in the tangent

space of a given point (s,Λ) ∈ W can be associated to an operator O|(s,Λ) built with

the quantum fields ω. Let Sω be the function on W given by

Sω(s,Λ) = s[ω]. (2.6)

Then,

O|(s,Λ) [ω] = v|(s,Λ) Sω. (2.7)

Note that only the vector components along the I directions enter in this equation.

The operator O|(s,Λ), which could be non-local, represents an infinitesimal deformation

of the action s. Conversely, given an operator O[ω], we can define a curve (s + tO,Λ)

(with the natural definition of the sum of functionals) and associate the vector tangent

to it at t = 0: given any function F in W ,

v|(s,Λ) F =
∂

∂t
F (s+ tO,Λ)

∣∣∣∣
0

. (2.8)

The relations (2.7) and (2.8) are inverse to each other if the vector v is restricted to be

orthogonal to the Λ direction. So, we can use the same name for an operator and the

vector along I identified with it, and will sometimes follow this convention. We define

in a similar way the expectation value of a functional or operator G at the point (s,Λ):

〈G〉(s,Λ) =
1

Z(s,Λ)

∂

∂t
Z(s− tG,Λ)

∣∣∣∣
0

= − 1

Z(s,Λ)
vG|(s,Λ) Z. (2.9)

In the second line we have used the vector vG, associated to G by (2.8).

To parametrize the spaces W and M, we use an infinite set C of smooth functions

ga : Rd → R, which can be regarded as background fields or spacetime dependent
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couplings. Most importantly for our purposes, they can act as sources to define and

calculate correlation functions. We define a class of parametrizations or coordinate

systems in the following way. We choose a quasilocal functional S of fields and couplings

such that, for each point (s,Λ) ∈ W ,

s[ω] = S[γΛ; g, ω]

=

∫
ddx
√
|γΛ|L

(
γΛ; g(x), ω(x), ∂ω(x), . . .

)
, (2.10)

for some unique g ∈ C. The dimensionful metric γΛ allows to work with couplings and

fields of mass dimension nd − nu, with nd (nu) the number of covariant (contravariant)

indices they have. This metric and its inverse are used to contract the Lorentz indices,

including those in derivatives. For instance, the standard linear parametrization is given

by

S[γ; g, ω] =

∫
ddx
√
|γ|ga(x)Oa[γ;ω](x). (2.11)

Here, {Oa} is a complete set of linearly-independent Lorentz-covariant local operators

made out of the relevant quantum fields ω and their derivatives, modulo total derivatives

(we do not include total derivatives of operators in this set because they can be absorbed

after integration by parts into the spacetime dependent couplings). Further symmetry

and consistency restrictions may apply. In this thesis we mostly concentrate on Lorentz

scalar operators, but we should keep in mind that this set is not stable under RG

evolution. Among these operators, we include the identity operator, which contributes

to the vacuum energy. We label this operator and its constant coupling with the index

a = 0.

(2.10) defines a (generalized) coordinate chart9 c : W → C × R+, c(s,Λ) = (g,Λ).

We will use indices α̃ to refer to either the label α in C or to the R+ component, which

we indicate with the symbol ∧. So, cαΛ(s) = cα(s,Λ) = gα and c∧(s,Λ) = Λ. For this

component, we will also write Λ̄ = c∧.

In order to simplify some formulas in the thesis, let us make a parenthesis to intro-

duce the following definitions. First, we introduce the canonical projection π : C×R+ →
9For simplicity, we assume the regions of the spaces we work with can be covered by a single chart

and neglect global issues throughout the thesis.
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C, π(g,Λ) = g and call cπ ≡ π ◦ c and cπΛ ≡ π ◦ cΛ. Second, we define the function

γ̄ :W → T 0
2

(
Rd
)
, (s,Λ) 7→ Λ2δµνdx

µ ⊗ dxν . In terms of it, 2γ̄ ∂
∂γ̄
F (s,Λ) = Λ∂ΛF (s,Λ)

for any F : W → R. Sometimes we will keep the coordinates c implicit. In particular,

we define

H α̃ = cα̃ ◦H (2.12)

for maps H : X →W with arbitrary X, and introduce the coordinate-dependent square

bracket notation

U [γ̄; cπ] = U, (2.13)

UΛ[cπ] = UΛ (2.14)

for any map U :W → X. Using these definitions, we can for instance write (2.10) as

s[ω] = Sω[γ̄; cπ]. (2.15)

Continuing with physics, a change of variables in the integral in (2.10) gives

S[γΛ; g, ω] = S[γtΛ;Dtg,Dtω]. (2.16)

Therefore, given an action functional S, the non-trivial component of its associated

chart c satisfies the relation

cπtΛ(st) = Dtc
π
Λ(s). (2.17)

A given chart c on W induces a set of scale-dependent charts on the quotient space,

cΛ :M→ C, defined by

(cΛ(s),Λ) = c ◦ ρΛ(s). (2.18)

and fulfilling the relation

ctΛ = DtcΛ. (2.19)
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We will often work in the coordinate basis {∂cα̃} in the tangent space of W . Given

any real function F in W ,

∂cα̃F =
δF ◦ c−1

δgα̃
. (2.20)

We can then write vector fields v in TW as

v|(s,Λ) = vα̃(s,Λ) ∂cα̃|(s,Λ)

= vαΛ(s) ∂cα|(s,Λ) + v∧Λ(s) ∂c∧|(s,Λ) . (2.21)

The components in this basis are given by, vα̃ = vcα̃. As explained above, a vector

O|(s0,Λ) = Oα(s0,Λ) ∂cα|(s0,Λ) is associated to an operator (a functional of the quantum

fields). In coordinates,

O|(s0,Λ) [ω] = Oα(s0,Λ)
δS[γΛ; g, ω]

δgα

∣∣∣∣
g0

, (2.22)

with g0 = cΛ(s0) and S the action functional associated to c. If the components Oα
(with upper indices and not to be confused with the operators themselves) are of the

form Oax =
∑m

n=0Oa(n)∂2n
x δ(x − y), for some spacetime point y, the operator will be

local. This is the case of the local operators associated to the basis vectors ∂cα|(s,Λ),

which, as can be seen in (2.22) with (Oα)α1 = δα1
α , depend on Λ only through the

metric,

∂cα|(s,Λ) Sω = Oα|(s,Λ) [ω]

= O(s)
α [γΛ;ω]. (2.23)

We will make extensive use of quasilocal changes of coordinates c → c′, given by

ζα[γ̄, cπ] = c′α. The induced changes of coordinates in the quotient space are ζΛ =

c′Λ ◦ c−1
Λ . The vector components in (2.21) transform in the usual way under a change

of coordinates:

v′ α̃ = vα̃1∂cα̃1
c′
α̃
. (2.24)
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The fact that this transformation mixes in general the C and R+ components of the

vectors, with

v′α = vα1∂cα1
c′
α

+ v∧∂c∧c
′α, (2.25)

will be relevant below.

2.2 Exact RG Flows

There exists at least a further and more interesting redundancy in the description of

regularized quantum field theories. Given a Wilson action s0 and a cutoff Λ0, consider

a new cutoff Λ < Λ0 and let the new action s be defined by integrating out the quantum

degrees of freedom between Λ and Λ0:

e−s[ω] =

∫
[Dω]Λ0

Λ e−s0[ω]. (2.26)

The notation in the measure indicates that the path integral is performed with a UV

cutoff Λ0 and an IR cutoff Λ, satisfying [Dω]Λ [Dω]Λ0

Λ = [Dω]Λ0 . Although we use the

same symbol ω on the LHS and RHS of (2.26), the action s depends only on the degrees

of freedom in ω that have not been integrated out. By construction, the actions s and

s0 satisfy

ZΛ(s) = ZΛ0(s0). (2.27)

We define the flow in theory space ft :W →W such that

(s,Λ) = fΛ/Λ0(s0,Λ0), (2.28)

with f1 = 1. In general, s 6= (s0)Λ/Λ0 , so (2.27) relates different points inM, as defined

in the previous section: if s = [(s,Λ)] and s0 = [(s0,Λ0)],

Z(s) = Z(s0), (2.29)
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The property of exact RG invariance is given by (2.27) and (2.29). The latter defines

the RG flow ft in M:

s = fΛ/Λ0(s0)

= [fΛ/Λ0(s0,Λ0)], (2.30)

with f1 = 1. This is a good definition, independent of the representative, since

ft(st′ ,Λt
′) = (ft(s,Λ))t′ , where (s,Λ)t ≡ (st,Λt). There is also an inverse relation,

ft(s,Λ) = ρtΛ ◦ ft([(s,Λ)]). (2.31)

These flows are generated by beta vector fields, which are tangent to the corresponding

curves. They act on any real function F on W and M as

βF = t∂tF ◦ ft|1 , (2.32)

βF = t∂tF ◦ ft|1 (2.33)

respectively. They can be used to write the Callan-Symanzik equations

βZ = 0, (2.34)

βZ = 0, (2.35)

which are the infinitesimal versions of (2.27) and (2.29), respectively. The usual de-

scription of RG flows follows once a coordinate system c is chosen in W ,

fαt,Λ[g] = fαt [γΛ; g]

= cα ◦ ft(s,Λ), (2.36)

with cπ(s) = g, which agrees with our bracket notation. In local quantum field theory

these flows are position-dependent quasilocal functionals of the couplings g, thanks to

the IR cutoff in (2.26). Similarly, the flows in M can be parametrized as

fαt = cα1 ◦ ft, (2.37)

fαt [cπ1 ] = fαt . (2.38)
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Their relation with the flows of couplings in (2.36) follows from (2.19):

fat,Λ = DtΛfat [DΛ−1cπ] . (2.39)

The beta vector fields can be written in the coordinate basis associated to c:

β|(s,Λ) = βα̃(s,Λ) ∂cα̃|(s,Λ)

= βα(s,Λ) ∂cα|(s,Λ) + Λ ∂c∧|(s,Λ) . (2.40)

Note that the components are given by

βα̃ = t∂tf
α̃
t

∣∣
1
. (2.41)

These beta functions are also quasilocal functionals of the couplings,

βαΛ[g] = βα[γΛ; g]. (2.42)

In coordinates, the Callan-Symanzik equation has the more familiar form[
Λ
∂

∂Λ
+ βα

′

Λ [g]
δ

δgα′
−
∫
ddx
√
|γΛ|A(x)

]
ZΛ[g] = 0, (2.43)

where we have separated the vacuum energy coupling from the rest: α′ = ax runs over

all couplings except the vacuum energy, a 6= 0, and A(x) = β0x. A(x) is the conformal

anomaly of the theory. Finally, the beta functions in M are given by the components

of β under the chart c1:

β = βα∂c1
α , (2.44)

and satisfy

βα ◦ c1 = βcα1 , (2.45)

βα = t∂tf
α
t |1 . (2.46)

Using (2.39), we find the relation

βaΛ = DΛβ
a[D−1

Λ cπΛ] +DcaΛ, (2.47)
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with D =
(
nd(a) − nu(a)

)
+ xµ∂µ. Remember that nu(a) and nd(a) are the number of

contravariant and covariant indices of ca respectively. Under a change of coordinates

c→ c′ = ζ[γ̄; cπ], the beta functions transform into

β′α = βα1 ∂cα1
c′α + 2γ̄

∂

∂γ̄
ζα [γ̄; cπ] . (2.48)

Notice the appearance of an inhomogeneous term, in agreement with (2.25).

The fixed points s∗ of the quotient-space RG flows, with βs = 0, describe scale-

invariant physics. In the space W , they correspond to points (sΛ
∗ ,Λ) = ρΛ(s∗) with

trivial RG evolution ft(s
Λ
∗ ,Λ) = ((sΛ

∗ )t,Λt). In our parametrizations, gΛα
∗ = cαπ(sΛ

∗ ,Λ),

this translates into the trivial running gΛα
∗ → gtΛα∗ = Dtg

Λα
∗ . We will only consider

the usual translationally invariant fixed points, with constant scalar couplings, which

are thus invariant under this rescaling, gΛα
∗ = gα∗ and have trivial beta functions,

βαΛ[g∗] = 0.10

2.3 Normal Coordinates

In this section we single out a special set of coordinates, valid in some region around

a given fixed point, in which the beta functions and RG flows take a remarkably simple

form. Later on we will see that these coordinates are closely related to the process of

renormalization.

We start with an arbitrary chart c with the fixed point of interest located at

cπ(sΛ
∗ ,Λ) = g∗ = 0. Close to this fixed point, the beta functions can be expanded

as

βα = βαα1
(γ̄)cα1 +

∑
n≥2

βαα1...αn
(γ̄)cα1 ... cαn . (2.50)

Both sides of this equation are maps on W . In a local QFT the beta functions are

10One can also write non-vanishing tensor couplings in these fixed points using the metric and
additional scalar couplings. In this case, we would have

βαΛ
[
gΛ
∗
]

=
(
nd(α) − nu(α)

)
gΛα
∗ . (2.49)
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local or quasilocal, in the sense that they can be written as a finite or infinite sum of

products of Dirac delta functions, their derivatives, and (inverse) metrics, with possible

contractions. Consider first the linearised approximation and let λ(a) be eigenvalues of

βα1
α2

, which we assume to be real numbers. The linear part of the beta function can be

maximally aligned with the couplings by a linear reparametrization

c̄α = ζαα1
(γ̄)cα1 , (2.51)

with quasilocal ζαα1
(γ), which puts the linear part of the beta function in a generalized

Jordan form,

β̄α = −λαα1
(γ̄)c̄α1 +O(c̄2), (2.52)

where the quasilocal matrix λαα1
has, neglecting metrics, a diagonal block structure,

with each block having a unique real eigenvalue λ(a). Non-vanishing terms with n∂

derivatives in off-block positions (a, a1) are only allowed when

[
λ(a) − nu(a) + nd(a)

]
−
[
λ(a1) − nu(a1) + nd(a1)

]
= n∂, (2.53)

where we have allowed the directions a, a1 may have tensor character. The number of

derivatives and tensor indices enters this condition through the non-homogenous term

in (2.48). Notice that, by covariance, there is a relation between nu(ai), n
d
(ai)

, n∂ and the

number of metrics n(γ) and inverse metrics n(γ−1) appearing in λαα1
:

2n(γ−1) − 2n(γ) = nu(a) − nd(a) − nu(a1) + nd(a1) + n∂. (2.54)

The eigenvalues λ(a) give the (quantum) scaling dimensions ∆(a) of the eigendeforma-

tions of the fixed-point theory: ∆(a) = d−λ(a) +nu(a)−nd(a). By definition these dimen-

sions are less than, equal to and greater than d for relevant, marginal and irrelevant

deformations, respectively. Usually, the number of relevant eigenvalues is finite [26].

In a unitary CFT, the eigendeformations span the complete space I and λ can be

written in completely diagonal form. Nevertheless, thinking of the possible application

to logarithmic CFT, we shall proceed in the general case without the assumption of

diagonalizability.
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In going beyond the linear approximation, it is important to distinguish certain

exceptional cases. The eigenvalue λ(a) is said to be resonant if

m∑
i=1

[
λ(ai) − nu(ai) + nd(ai)

]
+ n∂ = λ(a) − nu(a) + nd(a) (2.55)

for some (possibly repeated) eigendirections a1, . . . , am, with ar 6= 0, n∂ a non-negative

integer and m ≥ 2. The eigenvalues λ(a1), . . . , λ(am) are said to form a resonance. Scalar

marginal directions, i.e. λ(ai) = 0 for some ai, imply an infinite number of resonances

and that all eigenvalues are resonant. Note that the condition for non-negative off-

diagonal terms in the linear part has the same form as (2.55), with m = 1. We will

say that the eigenvalues, or the associated dimensions, are exceptional when the rela-

tions (2.55) occur for some m ≥ 1. Non-exceptional eigenvalues or dimensions will be

called generic. For non-resonant eigenvalues, by the Poincaré linearisation theorem (see

the Appendix A) we know that, at least as a formal series, we can find a coordinate

transformation such that in the new coordinates the beta function is linear:

β̄α = −λαα1
(γ̄)c̄α1 (non-resonant). (2.56)

In this case, the integration of this vector field is trivial and the RG flows are given by

f̄αt = P exp

{
−
∫ t

1

dt′

t′
λ
(
t′2γ̄
)}α

α1

c̄α1 , (2.57)

where P exp is the path-ordered exponential. The flows can also be written in a more

useful manner:

f̄αt = t−λ(α) [Mt(γ̄)]αα1
c̄α1 , (2.58)

where Mt(γ) is the identity matrix in a fully diagonalizable case and depends loga-

rithmically on t otherwise. In all cases, M1 = 1. It satisfies the same requirements

as λ(γ): it is diagonalized in subspaces with the same eigenvalue λ(α) and can have

non-vanishing terms with n∂ derivatives in off-block positions (a, a1) only when (2.53)

is satisfied. To prove (2.58), let us introduce it in the linear differential flow equation:

t
∂

∂t
f̄αt =t−λ(α)

{
−λ(α) [Mt(γ̄)]αα2

+ t
∂

∂t
[Mt(γ̄)]αα2

}
c̄α2



2.3. Normal Coordinates 29

=− λαα1

(
t2γ̄
)
t−λ(α1) [Mt(γ̄)]α1

α2
c̄α2

=− t−λ(α)λαα1
(γ̄) [Mt(γ̄)]α1

α2
c̄α2 . (2.59)

In the second line we have used the linear form of the beta function (2.52) and in the

third one we have commuted the first two matrices, which is allowed by the specific

form of the matrix λ(γ). Then, combining the first and third lines, we obtain

t
∂

∂t
[Mt(γ)]αα1

= −
[
λαα2

(γ)− λ(α)δ
α
α2

]
[Mt(γ)]α2

α1
. (2.60)

This is a linear and autonomous differential equation. The solution is found to be

[Mt(γ)]αα1
= exp

{
−
[
λαα1

(γ)− λ(α)δ
α
α1

]
log t

}
. (2.61)

The matrix
[
λαα2

(γ)− λ(α)δ
α
α2

]
has only vanishing eigenvalues, i.e. it is idempotent.

Therefore, the Taylor expansion of the exponential above has only a finite number of

logarithmic terms in t.

When the set of eigenvalues is resonant, complete linearisation is not possible in

general. However, the Poincaré-Dulac theorem (see the appendix A) implies, at least

in the sense of formal power series, that we can choose coordinates in which the beta

functions take the normal form11

β̄α = −λ(α)c̄
α +

∑
n≥1

β̄αα1...αn
(γ̄)c̄α1 ... c̄αn , (2.62)

where we have defined β̄αα1
= λ(α)δ

α
α1
−λαα1

. The coefficients β̄axa1x1...amxm
have support at

x1 = . . . = xm and are non-vanishing only when condition (2.55) is met for n∂ equal to

the number of derivatives in them. Again, further simplifications are admitted, but the

form (2.62) will be sufficient for our purposes. Obviously, (2.62) reduces to (2.56) for

non-resonant eigenvalues. Analogously to (2.54), by covariance, the number of metrics

11Actually, we are generalising the Poincaré-Dulac theorem to the case of quasilocal vector fields
in a space of functions. To prove this generalization, at least at a finite order in the coupling and
derivative expansions, we can simply choose a spacetime point and treat the n-derivatives of couplings
at that point as independent couplings.
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n(γ) and inverse metrics n(γ−1) of β̄αα1...αn
(γ) is constrained by

2n(γ−1) − 2n(γ) = nu(a) − nd(a) −
n∑
i=1

(
nu(ai) − nd(ai)

)
+ n∂. (2.63)

The coordinates in which the beta functions take the form (2.62) will be called normal

coordinates. They are not unique. In normal coordinates, the RG flows have the

perturbative form

f̄αt =t−λ(α)

c̄α +
∞∑
m=1

pmax
α1···αm∑
p=1

logp t [Bp]
α
α1...αm

(γ̄)

 c̄α1 · · · c̄αm


=t−λ(α) c̄α +
∞∑
m=1

pmax
α1···αm∑
p=1

logp t [Bp]
α
α1...αm

(
t2γ̄
) [t−λ(α1) c̄α1

]
· · ·
[
t−λ(αm) c̄αm

]
,

(2.64)

where [B1]αα1...αm
= β̄αα1...αm

. The functions [Bp]
ax
a1x1...amxm

with p > 1 have also support

at x1 = . . . = xm = x. They can be computed (up to combinatorial coefficients) by

summing all the products of p functions β̄αα1...αr
, r ≥ 1, with upper indices contracted

with lower indices in such a way that the only free upper and lower indices are ax and

a1x1 . . . amxm respectively. For instance,

[B3]αα1α2α3α4α5α6
(γ) = · · ·+ 1

ST
βα7
α1α2α3

(γ)βα8
α4α5

(γ)βαα7α8α6
(γ) + . . . (2.65)

where ST is a combinatorial coefficient (see Appendix A). Each contribution of this type

can be seen as a tree T , whose elements are the coefficients βαα′...α′′(γ) of the product, and

the tree structure is given by the contraction of the indices. For example, the contribu-

tion written explicitly in (2.65) is the tree T given by the set
{
βα7
α1α2α3

, βα8
α4α5

, βαα7α8α6

}
and represented in Fig. 2.1. Each [Bp]

α
α1...αn

is a sum of the contributions of all the

possible trees with p dots that connect α (on top) with α1 . . . αn (at bottom).

Terms in [Bp]
α
α1...αm

with n∂ derivatives are non-vanishing only when the resonant

condition (2.55) is satisfied for the set of the eigenvalues {α1 . . . αm} and α. The con-

straint of (2.63) also holds. Moreover, for a given order in the number of couplings,

α1 . . . αm, the sum in p is finite and stops at some finite pmax
α1···αm , depending on the or-
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α1 α2 α3 α4 α5 α6

α7 α8

α

Figure 2.1: Diagrammatic representation of the contribution to [Bp]
α
α1α2α3α4α5α6

written
in (2.65): βα7

α1α2α3
βα8
α4α5

βαα7α8α6
. Each dot represents a coefficient β of the product. The

index next to a dot is the upper index of the associated coefficient β, while the indices to
which the dot is linked to, downwards, are the lower indices of the associated coefficient
β.

der. This is because β̄αα1
is nilpotent and thus the number of possible trees to construct

[Bp]
α
α1...αm

is finite. Logarithmic differentiation of (2.64) with respect to t gives the beta

function (2.62) order by order in c̄. For generic dimensions, (2.64) reduces to (2.58).

Note that, non-trivially, f̄t is the inverse of f̄t−1 , as it should. Observe also that, up to

possible log terms and factors of the metric, the components f̄αt scale homogeneously

as a power of t. This simple feature is no longer apparent when we write the flows in

other coordinates.

2.4 Explicit Examples

In this section, we illustrate how the previous formalism is used in practice. We use

the Polchinski implementation of the cutoff [15], which allows to derive an evolution

equation for the Wilson action. In Section 2.4.1 we write it using our geometric formal-

ism, and use it to work out a simple illustrative example. In Section 2.4.2 we consider

the theory space of a single real scalar field ω and define at the perturbative level the

normal coordinates around the free-field fixed point. Finally, in Section 2.4.3 we study

the Wilson flows and its properties in other class of theories particularly relevant for

the development of the following chapters: large N theories.
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2.4.1 Polchinski’s Equation

Following [15], we implement the cutoff procedure through a modified free propa-

gator (of the dimensionless field),

P xy
Λ = 〈ω(x)ω(y)〉(0,Λ)

= P (γΛ;x− y), (2.66)

where

P (γ;x) =
1

2d−2π
d
2 Γ
(
d
2
− 1
)D (−∂2

γ

) 1

xd−2
γ

, (2.67)

with ∂2
γ = γµν∂µ∂ν , xγ = (γµνx

µxν)
1
2 , and D(u) a function with D(0)=1, decreasing

sufficiently fast as u → ∞. We also assume that D(u) is analytic at u = 0, which is

required to keep the regularized actions quasilocal in fields and couplings.

In a canonical linear parametrization, the general Wilson action reads

S[γΛ; g, ω] =

∫
ddx
√
|γΛ|

[
g0(x) + g1(x)ω(x) + g2(x)ω(x)2 + g2,2γ

Λµν∂µω(x)∂νω(x)

+ g3(x)ω(x)3 + . . .
]
, (2.68)

with the dots referring to the sum of couplings times other possible monomials in ω

and its derivatives of arbitrary order, up to total derivatives. The partition function is

given by

ZΛ(s) =

∫
Dω exp

{
−
∫
ddx
√
|γΛ|1

2
γΛµν∂µω(x)D−1(−∂2/Λ2)∂νω(x)− s[ω]

}
∫
Dω exp

{
−
∫
ddx
√
|γΛ|1

2
γΛµν∂µω(x)D−1(−∂2/Λ2)∂νω(x)

} . (2.69)

This equation can be understood as a specific implementation of (2.2). The normaliza-

tion allows us to keep track of vacuum energy terms. Since we know the form of the

cutoff, the Callan-Symanzik equation (2.43) can be made more explicit. Differentiation

with respect to Λ leads to Polchinski’s equation [15], which in position space and using
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our geometric language reads

βSω − ωx
δSω
δωx

=
1

2
Ṗ xy(γ̄)

δ2Sω
δωxδωy

− 1

2
Ṗ xy(γ̄)

δSω
δωx

δSω
δωy

, (2.70)

where

Ṗ (γ)xy = Ṗ (γ;x− y)

= −
(
d− 2 + 2γ

∂

∂γ

)
P (γ;x− y)

=
2√
|γ|
D′
(
−∂2

γ

)
δ(x− y). (2.71)

Both sides of (2.70) are functions on W . This equation is satisfied also by the field-

independent terms in the action, neglected in [15], when the cutoff dependence of the

denominator in (2.69) is taken into account. Given a chart c, the first term of (2.70) is

written in components as

βSω = βα∂cαSω + 2γ̄
∂

∂γ̄
Sω. (2.72)

2.4.2 Gaussian Fixed Point

The point s = 0 is trivially a fixed point. It corresponds to the free massless theory,

since the kinetic term is included in the cutoff procedure.12 In the following we study

the theory space of one real scalar field in a neighbourhood of this Gaussian fixed point.

To find the normal coordinates around the Gaussian fixed point and the correspond-

ing beta functions, we could write (2.70) explicitly in an arbitrary parametrization c,

solve for the components βα and finally find the change of coordinates that puts the

betas in normal form. We will follow instead a more direct procedure in which we

impose the normal form to (2.70) (written in coordinates) from the very beginning and

extract the normal beta functions and normal coordinates simultaneously. To do this,

we first expand a general action close to the fixed point s = 0 in normal coordinates:

Sω = Sα[γ̄;ω] c̄α + Sα1α2 [γ̄;ω] c̄α1 c̄α2 +O(c̄ 3). (2.73)

12There are strong indications that this is the only fixed point for the scalar field theory in four
dimensions [41, 42].
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Unlike Sω and cα, which are non-trivial functions onW , the coefficients Sα1...αn [γ̄;ω] are

functionals of ω that do not depend on the first component of the point inW , but only

on the scale (as explicitly indicated by the γ̄ argument). The chart c̄ is perturbatively

defined by these coefficients. Next, we plug (2.73) and (2.40) (with c = c̄) in (2.70)),

impose the normal condition (2.62) and solve order by order in c̄ for the coefficients

λαα1
, β̄αα1...αn

and Sα1...αn [γ̄;ω].

For definiteness, all the following calculations of this subsection will be done in

dimension d = 4.

Eigendirections

We start with the linear order, assuming a diagonal13 matrix λαα1
= λ(α)δ

α
α1

and

λ(ax) = λ(a) = d−∆(a) + nu(a)− nd(a), with ∆(a) the conformal dimension of the operator

and nu(a) (nd(a)) the number of contravariant (covariant) indices of the coupling. At this

order, (2.70) reduces to the following eigenvalue problem[
ωx

δ

δωx
+

1

2
Ṗ xy(γ)

δ2

δωxδωy
− 2γ

∂

∂γ

]
Sza[γ;ω] =

(
∆(a) − nu(a) + nd(a)

)
Sza[γ;ω]. (2.74)

Recall that, in our covariant notation, Sax[γ;ω] =
√
|γ|Sxa [γ;ω], with Sxa [γ;ω] a scalar.

This calculation of eigenoperators of the Polchinski equation in a scalar theory has been

performed before in [32]. A trivial solution is given by the identity operator,

Sx0 [γ;ω] = 1, (2.75)

with dimension ∆(0) = 0.14 To find the non-trivial solutions, we make an Ansatz

consistent with our requirement of a quasilocal Wilson action:

Sxa [γ;ω] = Qx
a,x1...xma

(γ)S〈x1...xma 〉[γ;ω], (2.76)

where ma is a positive integer associated to a and Qx
a,x1...xn

(γ) is a product of Dirac

deltas and their derivatives with support at x = x1 = ... = xn, while S〈x1...xn〉[γ;ω] are

13The fact that λ is diagonalizable is an assumption that will be justified a posteriori.
14Note that the unitarity bound ∆ ≥ 1 does not apply to this field-independent operator.
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functions of x1, ..., xn and of ω(x1), ..., ω(xn), with the requirement that they and their

derivatives of any order are well defined at coincident points. Inserting this form of

the eigenfunctions into (2.74), we find that the S〈x1...xma 〉[γ;ω] must be solutions of the

equation[
∆(a) − n(a)

∂ + 2γ
∂

∂γ
− ωx δ

δωx
− 1

2
Ṗ xy(γ)

δ2

δωxδωy

]
S〈x1...xma 〉[γ;ω] = 0, (2.77)

with n
(a)
∂ the number of derivatives in the corresponding Q. The existence of a solution

S〈x1...xma 〉[γ;ω] to this equation requires ∆(a) = n
(a)
∂ +ma, which gives rise to the discrete

spectrum ∆(a) ∈ N (besides ∆(0) = 0 for the identity). The first four explicit solutions

are

S〈x〉[γ;ω] = ωx1 ,

S〈x1x2〉[γ;ω] = ωx1ωx2 − P x1x2(γ),

S〈x1x2x3〉[γ;ω] = ωx1ωx2ωx3 − [ωx3P x1x2(γ) + ωx2P x1x3(γ) + ωx1P x2x3(γ)] ,

S〈x1x2x3x4〉[γ;ω] = ωx1ωx2ωx3ωx4 − [ωx1ωx2P x3x4(γ) + 5 inequivalent permutations]

+ [P x1x2(γ)P x3x4(γ) + P x1x3(γ)P x2x4(γ) + P x1x4(γ)P x2x3(γ)] . (2.78)

These functionals have a remarkable property: their expectation value vanishes in the

free theory,

〈
S〈x1...xn〉[γΛ, ω]

〉
(0,Λ)

= 0, (2.79)

for n ≥ 1. For odd n this statement is trivial, while for even n it can be checked

contracting the fields wx in (2.78) with Wick’s theorem.

The local eigenoperators Sxa [γ;ω] can be constructed from these solutions using (2.76).

For instance,

Sx1 [γ;ω] = ω(x),

Sx2 [γ;ω] = (ω(x))2 − P (γ; 0),

Sx22
[γ;ω] = ω(x)∂2

γω(x)− ∂2
γP (γ; 0),

Sx3 [γ;ω] = (ω(x))3 − 3P (γ; 0)ω(x), (2.80)
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where 1, 2, 22, 3, . . . label the eigendirections. Their eigendimensions are, respectively,

∆ = 1, 2, 4, 3, in agreement with the conformal dimensions of a free theory. Note that

P (γ; 0) and ∂nγP (γ; 0) for any n are dimensionless constants. It is thus clear that any

linear product of fields and their derivatives at x can be written as a linear combination

of the operators Sxa [γ;ω] constructed in this way, together with the identity Sx0 [γ;ω].

Therefore, these operators form a complete set and the linear part of the beta function

is indeed diagonalizable. In the following we call P0 = P (γ; 0).

Higher Orders

The higher orders can be obtained using (2.70) iteratively. The quadratic term

Sa1x1 a2x2 [γ;ω] = |γ|Sx1x2
a1a2

[γ;ω] is given by[
2d− λ(a1) − λ(a2) + 2γ

∂

∂γ
− ωx δ

δωx
− 1

2
Ṗ xy(γ)

δ2

δωxδωy

]
Sz1z2a1a2

[γ;ω]

+
1

|γ| β̄
α
a1z1 a2z2

Sα[γ;ω] = −1

2
Ṗ xy δS

z1
a1

[γ;ω]

δωx
δSz2a2

[γ;ω]

δωy
. (2.81)

The quadratic beta coefficients on the LHS of the equation (second line) is required to

be resonant. They are necessary to cancel possible non-localities. As an example, let us

solve the equation for the action coefficient Sx1x2
33 [γ;ω], where the eigendirection a = 3

is defined in (2.80) and has λ(3) = 1. Choosing a1 = a2 = 3, (2.81) reads[
6 + 2γ

∂

∂γ
− ωx δ

δωx
− 1

2
Ṗ xy(γ)

δ2

δωxδωy

]
Sz1z233 [γ;ω]

+
1

|γ|
[
β̄2z

3z13z2
S2z[γ;ω] + β̄0z

3z13z2
S0z[γ;ω]

]
= −9

2
Ṗ (γ, z1 − z2)

[
S〈z1z1z2z2〉[γ;ω] + 4P z1z2(γ)S〈z1z2〉[γ;ω] + 2P z1z2(γ)2

]
. (2.82)

We have included the only possible resonant beta terms:

β̄2z
3z13z2

(γ) = b2
33δ(z − z1)δ(z − z2), (2.83)

β̄0z
3z13z2

(γ) =
b0

33

2

[
δ(z − z1)∂2

γδ(z − z2) + ∂2
γδ(z − z1)δ(z − z2)

]
. (2.84)
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The values of the coefficients b0,2
33 will be determined below. To solve (2.82), let us make

the ansatz

Sxy33 [γ;ω] = A(γ;x− y)S〈xxyy〉[γ;ω] +B(γ;x− y)S〈xy〉[γ;ω] + E(γ;x− y). (2.85)

Using (2.77), we find that the functions A, B and E must satisfy[
2 + 2γµν

∂

∂γµν

]
A(γ;x) =− 9

2
Ṗ (γ;x), (2.86)[

4 + 2γµν
∂

∂γµν

]
B(γ;x) =− 18Ṗ (γ;x)P (γ;x)− b2

33

δ(x)√
|γ|
, (2.87)[

6 + 2γµν
∂

∂γµν

]
E(γ;x) =− 9Ṗ (γ;x)P (γ;x)2 − b0

33

∂2
γδ(x)√
|γ|

. (2.88)

The most general solutions of these three equations are

A(γ;x) =
9

2
P (γ;x)− ξ1

4π2x2
γ

, (2.89)

B(γ;x) =9P (γ;x)2 +
b2

33

8π2
∂̇2
γ

[
log x2

γ

x2
γ

]
+ ξ2

δ(x)√
|γ|
, (2.90)

E(γ;x) =3P (γ;x)3 +
b0

33

8π2
∂̇4
γ

[
log x2

γ

x2
γ

]
+ ξ3

∂2
γδ(x)√
|γ|

, (2.91)

where the arbitrary parameters ξ1, ξ2 and ξ3 are associated to solutions to the homoge-

neous part of (2.86), (2.87) and (2.88). The dot on the derivatives ∂̇2 and ∂̇4 indicates

that they are defined in the sense of distributions, acting by parts on test functions and

discarding (singular) surface terms. Then, A(γ;x), B(γ;x) and E(γ;x) are well-defined

distributions.15 Their asymptotic behaviour when x→∞ is given by

15Acting instead with the derivatives on the functions inside the brackets results in

∂2
γ

[
log x2

γ

x2
γ

]
= − 4

x4
γ

, (2.92)

∂4
γ

[
log x2

γ

x2
γ

]
= − 32

x6
γ

, (2.93)

which are too singular at x = 0 to admit a Fourier transform. The expressions with the dotted
derivatives correspond to the renormalized values of these functions in differential renormalization [43].
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A(γ;x) ∼
(

9

2
− ξ1

)
1

4π2x2
γ

, (2.94)

B(γ;x) ∼
(
9− 8π2b2

33

) 1

(4π2)2 x4
γ

, (2.95)

E(γ;x) ∼
(
3− 256π4b0

33

) 1

(4π2)3 x6
γ

. (2.96)

This shows that these functions are in general non-local, with Fourier transforms that

behave like p−2, log p2 and p2 log p2 as p → 0 and are thus non-analytic at p = 0.

To ensure that Sz1z233 [γ;ω] is quasilocal we need to fix ξ1 = 9/2, b2
33 = 9/(8π2) and

b0
33 = 3/(256π4). Therefore, the beta functions take the values

β̄2z
3x,3y(γ) =

9

8π2
δ(z − x)δ(z − y), (2.97)

β̄0z
3x,3y(γ) =

3

512π4

[
δ(z − x)∂2

γδ(z − y) + ∂2
γδ(z − x)δ(z − y)

]
. (2.98)

We stress that they do not depend on the particular regulator P . The beta func-

tion β̄0z
3x,3y is associated to the identity operator and represents a contribution to the

conformal anomaly in the presence of local couplings, see (2.43):

A(x) =
3

256π4
c̄3(x)∂2

γ c̄
3(x) + . . . (2.99)

As long as the regulating function D(u) is analytic at u = 0, as assumed, the functions

A, B and E with the selected values of ξ1, b2
33 and b0

33 can be expanded as a series of

local distributions,

A(γ;x− y) =
1√
|γ|
[
A0 δ(x− y) + A2 ∂

2
γδ(x− y) + A4 ∂

4
γδ(x− y) + ...

]
, (2.100)

B(γ;x− y) =
1√
|γ|
[
B0 δ(x− y) +B2 ∂

2
γδ(x− y) +B4 ∂

4
γδ(x− y) + ...

]
, (2.101)

E(γ;x− y) =
1√
|γ|
[
E0 δ(x− y) + E2 ∂

2
γδ(x− y) + E4 ∂

4
γδ(x− y) + ...

]
, (2.102)
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with coefficients An, Bn and En depending on the chosen function D. Only B0 and E2

remain arbitrary, since they depend on the parameters ξ2 and ξ3. Using these functions

in (2.76) we find Sxy33 [γ;ω], which gives a quasilocal contribution to s in (2.73).

2.4.3 Large N Theories

The large N limit (or planar limit) of theories with fields in a representation of

some internal group G has been largely studied since it was introduced by ’t Hooft [3]

(see [44] for a review). It consists in taking the rank of G and the dimensionality of the

representation to infinity in the proper way. In this limit, the theory simplifies in several

ways, but still it exhibits an interacting and quantum behaviour. One remarkable

property is that only Feynman diagrams with a planar topology survive in this limit.

Therefore, it is very useful to understand better the dynamics of strongly coupled

theories (in fact, ’t Hooft introduced this limit to study QCD).

In this section we analyse some simplifications of the exact RG in this limit (the

ones relevant for the purposes of this thesis). Some related work on the large N exact

RG can be found in [45] and the references therein. For definiteness, we will restrict

ourselves to matrix theories.16 This is, theories whose elementary degrees of freedom

ω = ωu1u2 are N × N matrices, with some possible matrix condition (real matrices,

hermitian matrices, traceless matrices, etc...). The labels ur indicate the two indices

of the matrix. Additional possible flavour indices will be kept implicit. The fields ω

can be rotated ω → gω g−1, with some group of matrices G 3 g, which depends on the

matrix condition: G = O(N), U(N), SU(N), . . . .

Primary single-trace operators are defined as the trace of any matrix product of ω

and derivatives of ω:

Os[ω] =
1

N
Tr[ω(x) . . . ∂ω(x) . . . ω(x)], (2.103)

that cannot be written as a total derivative. They are invariant under the action of G.

We will use the letters i and j to label all the possible primary single-trace operators,

this is, all the inequivalent products that can be built. To label a pair of a primary

16Other realizations of the large N limit are possible. For instance, theories with fields in a vector
representation of O(N) have been deeply studied in this context [45].
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single-trace index and a continuous index we will use the Greek letter σ = ix.

We restrict W to theories symmetric under G, i.e., the set of actions that can be

written as function of primary single-trace operators. Therefore, for some (s,Λ) ∈ W ,

we will have that

s[ω] = S[γΛ; g, ω]

=

∫
ddx
√
|γΛ| L(γΛ; g(x),Os[ω], ∂Os[ω], . . . ). (2.104)

Given a configuration of the primary single-trace operators Os, this space restriction

allows to define the function SOs :W → R that satisfies SOs(s,Λ) = s[ω], with ω such

that Os[ω] = Os.

Using this definition, the partition function of (2.69) can be written as follows

Z =

∫
Dω exp

{
−N

∫
ddx
√
|γ̄|1

2
Tr
[
γ̄µν∂µω

xD−1(−∂2
γ̄)∂νω

x
]

+N2SOs[ω]

}
∫
Dω exp

{
−N

∫
ddx
√
|γ̄|1

2
Tr
[
γ̄µν∂µωxD−1(−∂2

γ̄)∂νωx
]} . (2.105)

The factors associated with N in (2.103) and (2.105) are necessary to obtain finite

correlation functions when one takes the limit N →∞ [46]. As we will see below, this

normalization makes the Polchinski equation balanced in the 1/N orders. This can also

be seen as a justification of this normalization choice.

Exact RG Flow Equation

For matrix theories, the Polchinski equation (2.70) becomes

β Sω − ωxu1u2

δSω
δωxu1u2

=
1

2
Ṗ xy(γ̄)Tu1u2u3u4

[
1

N

δ2Sω
δωxu1u2

δωyu3u4

−N δSω
δωxu1u2

δSω
δωyu3u4

]
, (2.106)

where the tensor Tu1u2u3u4 depends on the matrix condition. It is given by the matrix-

index structure of the two point function in s = 0 (see (2.67)),

〈ωxu1u2
ωyu3u4

〉(0,Λ) =
1

N
Tu1u2u3u4P (γΛ, x− y). (2.107)
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and has necessarily the form

Tu1u2u3u4 = a δu1u3δu2u4 + b δu1u4δu2u3 +O

(
1

N

)
. (2.108)

for two coefficients a and b not depending on N . We are interested in writing an RG

flow equation (2.106) for SOs . For this, we first define the quasilocal coefficients R(σ),

Rσ1σ2
σ , R̃σ

σ1σ2
and Rσ

σ1
, fixed by the following equations:

ωxu1u2

δOσ
δωxu1u2

=R(σ)Oσ, (2.109)

1

2
Ṗ xy(γ)Tu1u2u3u4

δ2Oσ
δωxu1u2

δωyu3u4

=NR̃σ
σ1σ2

(γ)Oσ1Oσ2 +O(N0), (2.110)

1

2
Ṗ xy(γ)Tu1u2u3u4

δOσ1

δωxu1u2

δOσ2

δωyu3u4

=
1

N

[
Rσ1σ2
σ (γ)Oσ +Rσ1σ2

σ3σ4
(γ)Oσ3Oσ4

]
+O

(
1

N2

)
.

(2.111)

All of them are order O(N0). Rσ1σ2
σ , R̃σ

σ1σ2
and Rσ1σ2

σ3σ4
are the leading contributions in the

1/N expansion of the LHS of (2.111) and (2.110), keeping Os finite. The structure of

the RHS of these equations can be checked using the definition of primary single-trace

operator (2.103) and (2.108).

With these definitions, the leading contribution in the 1/N expansion of (2.106) is

β SOs =
δSOs

δOσ
[
R(σ)Oσ + R̃σ

σ1σ2
(γ̄)Oσ1Oσ2

]
− δSOs

δOσ1

δSOs

δOσ2

[
Rσ1σ2
σ (γ̄)Oσ +Rσ1σ2

σ3σ4
(γ)Oσ3Oσ4

]
+O

(
1

N

)
. (2.112)

This equation has a number of properties that simplifies the calculation of normal

coordinates. For instance, unlike (2.106), (2.112) does not have second derivative terms,

but only first derivative ones. In fact, we point out the following property:

Large N property 1. The RG flow equation has the form

β SOs = F

[
γ̄;Os, δSOs

δOs
]
. (2.113)
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The functional F [γ̄;Os, πs] can be read from (2.112).

Fixed Points and Eigendirections

Let us consider a fixed point of the flow, s∗. We define S∗[γ
Λ,Os] = SOs(s∗,Λ). It

satisfies

2γ
∂

∂γ
S∗[γ;Os] = F

[
γ̄;Os, δS∗[γ;Os]

δOs
]
, (2.114)

and we will assume it can be expanded like

S∗[γ;Os] =
∑
n≥0

S∗;σ1...σn(γ)Oσ1 . . .Oσn . (2.115)

As explained in Section 2.4.2, s∗ = 0 gives the Gaussian fixed point. In this section

however, we will not restrict ourselves to this point, and consider other possible fixed

points.17

The function SOs can be expanded around the fixed point in normal coordinates:

SOs = S∗[γ̄;Os] + Sα[γ̄;Os]c̄α + Sα1α2 [γ̄;Os]c̄α1 c̄α2 +O(c̄3). (2.116)

To find the coefficients of this expansion we proceed as in Section 2.4.2. We assume a

normal form for the beta function and solve it order by order.

The linear order is{
δF

δπσ

[
γ̄;Os, δS∗[γ̄;Os]

δOs
]

δ

δOσ − 2γ
∂

∂γ

}
Sxa [γ;Os] =

(
∆(a) − nu(a) + nd(a)

)
Sxa [γ;Os]

+ β̄xαa Sα[γ;Os]. (2.117)

The second line is only necessary for non-diagonalizable fixed points. A direct con-

sequence of the form of this equation (and therefore a consequence of the Large N

property 1) is the following factorization property. Given two eigendirections a1, a2,

17Other fixed points could require the inclusion of an anomalous dimension of the quantum field
ω. It can be trivially done redefining R(σ) without changing the conclusions of this section. See for
instance [32].
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with coefficients Sxa1
[γ;Os] and Sxa2

[γ;Os], and dimensions ∆(a1) and ∆(a2), the product

Sxa [γ;Os] = Sxa1
[γ;Os]Sxa2

[γ;Os], (2.118)

gives a new eigendirection a with dimension ∆(a) = ∆(a1) + ∆(a2).

A trivial solution is again given by the identity operator Sx0 [γ;Os] = 1, with ∆(0) = 0.

Non-trivial solutions can be found inserting the following expansion,

Sα[γ;Os] =
∑
n≥1

Sα;σ1...σn(γ)Oσ1 . . .Oσn . (2.119)

In fact, the specific form of F [γ;Os, πs] endows (2.117) with the following property:

Large N property 2. The equation for non-trivial eigendirections a is triangular in

the following sense. The equation for the n-th order coefficient, Sax;σ1...σn , only

involves m-th order coefficients, with m ≤ n.

Based on this property, we will classify the eigenperturbations as follows:

(1) Single-trace eigendirections are those solutions of (2.117) such that Sxa1;σ(γ) 6= 0

(for some σ). They are determined by non-trivial solutions of the equation for

Sxa1;σ,{
δσσ′R

(σ) − 2S∗;σ1(γ)Rσ1σ
σ′ (γ)− 2γ

∂

∂γ

}
Sxa1;σ(γ)

=
(

∆(a1) − nu(a1) + nd(a1)

)
Sxa1;σ′(γ) + β̄xαa Sα,σ′(γ). (2.120)

Once the equation is solved and the eigenvalues found, (2.117) can be used to

iteratively determinate higher orders.

(2) Higher-trace eigendirections are given by those solutions of (2.117) that, given

some n > 1, San;σ1...σm(γ) = 0 for m < n, but Sxan;σ1...σm
(γ) 6= 0 for m ≥ n. In

particular, this would be an n-trace eigendirection. We will label them with an,

or αn = anx.

A subgroup of the single-trace eigendirections is given by the primary single-trace
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eigendirections. They are those ones whose coefficient can be expanded like

Sxa1 [γ;Os] = Ma1 iOix +O(∂Os) +O
(
(Os)2

)
, (2.121)

for some matrix Ma1 i. A convenient rotation in the space of primary single-trace op-

erators Oix → O′ ix = N i
jOjx would allow to, given some primary single-trace direction

a1, make Ma1 i = 0 for all i except one.18 Therefore, after this rotation, we can use

the same letters (i, j and σ) to label primary single-trace directions and operators, and

write

Sxi [γ;Os] = δij Ojx +O(∂Os) +O
(
(Os)2

)
. (2.122)

In the Gaussian fixed point, we directly find (2.122) without the necessity of any rota-

tion. Descendant single-trace eigendirections are the spacetime derivatives of primary

ones.19

Primary single-trace eigendirections are specially important, since, taking spacetime

derivatives and using the factorization property (see (2.118)), we can construct the

coefficient Sa[γ;O] of any other eigendirection a.

For instance, given a set of single-trace eigendirections i1, . . . in, the n-trace eigendi-

rection an = 〈iµ1 i2µ . . . in〉 will be the one associated to

Sxan [γ;Os] = γµν∂µS
x
i1

[γ;Os]∂νSxi2 [γ;Os] . . . Sxin [γ;Os]. (2.123)

It has dimension

∆(an) =
n∑
r=1

∆(ir) + 2n(γ−1) − 2n(γ), (2.124)

with n(γ) and n(γ−1) the number of metrics and inverse metrics respectively (in this case,

n(γ) = 0, n(γ−1) = 1). We will say that the directions i1, . . . in compose the multi-trace

direction an.

An alternative way to write multi-trace eigenperturbations is

Syan [γ;Os] = Qy
anσ1...σn(γ)S〈σ1...σn〉[γ;Os], (2.125)

18We will assume that this diagonalization is possible.
19The spacetime derivative of any eigendirection a is also an eigendirection with the same eigenvalue

λ(a). This property is always true independently of the large N limit.
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where

S〈σ1...σn〉[γ;Os] = Sσ1 [γ;Os] . . . Sσn [γ;Os] (2.126)

is a multilocal function constructed with Sσ[γ;Os] ≡ Six[γ;Os] = δijSxj [γ;Os]. Qy
anσ1...σn(γ)

is a distribution given by a combination of delta functions and their derivatives with

support only in x = y1 = · · · = yn. In momentum space, it has the form

Q̂ p1...pn
an;q i1...in

(γ) = (2π)dδ

(
q −

n∑
i=1

pi

)
Qan;i1...in(γ; p1, . . . , pn), (2.127)

with Qan;i1...in(γ; p1, . . . , pn) an analytic and homogeneous function of p1, . . . , pn. For

example, for the eigendirection (2.123),

Qan;j1...jn(γ; p1, . . . , pn) = −δj1i1 . . . δjnin γµν p1µ p2ν . . . (2.128)

The locality of Syan [γ;Os] is recovered in (2.125) by contraction with the Q distributions.

Notice that, from (2.122),

S〈i1x1...inxn〉[γ;Os] =
n∏
r=1

Oir(xr) + higher orders. (2.129)

Higher Orders

Once the set of eigendirections has been found, higher orders of the expansion can

be found taking derivatives in (2.113) with respect to normal charts and evaluating

them at the fixed point:20

{
n∑
r=1

λ(αr) − 2γ
∂

∂γ
+
δF

δπσ

[
γ;Os, δS

[γ;Os]
∗

δOs

]
δ

δOσ

}
S[γ;Os]
α1...αn

=−
∑
p∈Πn

|p1|! . . . |p|p||!
n!

δ|p|F

δπσ1 . . . δπσ|p|

[
γ;Os, δS

[γ;Os]
∗

δOs

]
δS

[γ;Os]
αp1

δOσ1
. . .

δS
[γ;Os]
αp|p|

δOσ|p|

20To make this equation more compact, we have written the argument [γ;Os] of some functions as
a superindex.
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+
n∑
r=1

(n− r + 1)β̄α(α1...αr
(γ)S

[γ;Os]
ααr+1...αn). (2.130)

Here Πn is the set of partitions of {1, 2, . . . , n}, pr is the r-th element of the partition

p, αpr is a collective index given by

αpr = αpr1 . . . αpr|pr | , (2.131)

with pri the i-th element of the set pr, and for any set A, |A| is its cardinality.

In (2.130), only beta coefficients β̄αα1...αr
satisfying the resonance condition (2.55)

can be non-vanishing. In fact, as we saw for (2.81), they are required to find quasilocal

coefficients Sα1...αn [γ;Os]. This provides a direct method to compute simultaneously

from the flow equation both the beta functions in normal coordinates and the coefficients

Sα1...αn [γ,Os], which perturbatively define the coordinates themselves: working order

by order, the beta function coefficients are determined by requiring the existence of a

quasilocal solution, which is then readily obtained. The solution will be unique up to

different choices of the normal coordinates.

Factorization Normal Coordinates

We have already seen how in the large N limit, the eigendirections and eigendeforma-

tions of the Wilson action factorize (multi-trace deformations are written like products

of single-trace ones). In this section we show how, beyond the linear level, it is possible

to select normal charts such that SOs also exhibits similar properties.

Let αn = anx be a multi-trace eigendirection defined by

Sαn [γ;Os] = Q σ1...σn
αn (γ)Sσ1 [γ;Os] . . . Sσn [γ;Os]. (2.132)

We define factorization normal coordinates as those ones that satisfy

∂ c̄αnSOs = Q σ1...σn
αn (γ̄)∂ c̄σ1

SOs . . . ∂
c̄
σnSOs . (2.133)

This equation has to be understood as an equality between functions defined on W .

The evaluation of this equation at the fixed point gives exactly (2.132) and therefore
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is obviously true. What we stress here is that it is possible to find a subclass of

normal coordinates that makes this equality also true for all points of W (or at least,

perturbatively true for points in a neighbourhood of the fixed point).

The defining property of factorization normal coordinates (2.133) can be expressed

as a relation between the coefficients that expand SOs . Taking n−1 derivatives of (2.133)

with respect to normal coordinates, and evaluating them at the fixed point, we find that

S
[γ,Os]
αnα1...αm = Q σ1...σn

αn (γ)
∑
p∈Pnm

(|p1|+ 1)! . . . (|pn|+ 1)!

(m+ 1)!
S[γ,Os]
σ1αp1

. . . S[γ,Os]
σnαpn

. (2.134)

Here, Pnm is the set of all possible n-tuples of subsets of {1, 2, . . . ,m}, p = (p1, . . . , pn),

such that pr1
⋂
pr2 = ∅ for r1 6= r2, and

⋃n
r=1 pr = {1, 2, . . . ,m}.21 |A| is the cardinality

of the set A and αpr is the collective index as in (2.131). Applying repeatedly (2.134) to

all multi-trace indices, we can express all coefficients Sα1...αn(γ) as function of coefficients

with only single-trace indices.

To prove the existence of factorization normal coordinates, let us first take the

derivative of (2.113) with respect to the normal coordinate α,{
λ(α) − β̄α

′
∂ c̄α′ − 2γ̄

∂

∂γ̄
+
δF

δπσ

[
γ̄;Os, δSOs

δOs
]

δ

δOσ

}
∂ c̄αSOs = ∂ c̄αβ̄

α′

E ∂ c̄α′SOs . (2.136)

β̄αE is the exceptional part of the beta function:

β̄α = −λ(α)c̄
α + β̄αE

= −λ(α)c̄
α +

n∑
r=1

β̄αα1...αr
(γ̄)c̄α1 . . . c̄αr , (2.137)

and r = 1 is included in the sum of the second line to also consider non-diagonalizable

fixed points.

(2.136) is a differential equation on W that ∂ c̄αSOs has to satisfy. Its expansion

21For instance,

P2
2 =

{(
{1, 2}, ∅

)
,
(
∅, {1, 2}

)
,
(
{1}, {2}

)
,
(
{2}, {1}

)}
. (2.135)
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in normal coordinates around the fixed point is equivalent to (2.130), and therefore,

(2.136) can also be seen as a defining equation for ∂ c̄αSOs . Possible ambiguities of the

solutions are associated to different choices of the normal coordinates. Thus, what we

want to prove is that there are non-trivial solutions of (2.136) satisfying (2.133).

Using that ∂σrS
c̄
Os satisfies (2.136), the RHS of (2.133) fulfils the following equation,{

β̄α
′
∂ c̄α′ + 2γ̄

∂

∂γ̄
− δF

δπσ

[
γ̄;Os, δSOs

δOs
]

δ

δOσ

}(
Q σ1...σn
αn (γ̄)∂ c̄σ1

SOs . . . ∂
c̄
σnSOs

)
=

[
d−

n∑
r=1

∆(σr) − 2n(γ̄−1) + 2n(γ̄)

]
Q σ1...σn
αn (γ̄)∂ c̄σ1

SOs . . . ∂
c̄
σnSOs

−Q σ1...σn
αn (γ̄)

n∑
r=1

∂ c̄σr β̄
α′

E ∂ c̄σ1
SOs . . . ∂

c̄
α′SOs︸ ︷︷ ︸

position r

. . . ∂ c̄σnSOs . (2.138)

Due to the factorization of the dimensions (2.124), for the RHS of (2.133) to sat-

isfy (2.136) with α = αn (providing a non-trivial solution), it is necessary that

∂ c̄αn β̄
α′

E ∂ c̄α′SOs = Q σ1...σn
αn (γ̄)

n∑
r=1

∂ c̄σr β̄
α′

E ∂ c̄σ1
SOs . . . ∂

c̄
α′SOs︸ ︷︷ ︸

position r

. . . ∂ c̄σnSOs . (2.139)

For generic dimensions, both sides of this equation vanish and therefore, the existence

of factorization normal coordinates is automatically proved. For exceptional dimen-

sions, (2.139) imposes a constraint on the beta function which has to be consistent

with the normal form of the beta coefficients (2.62). Indeed, using (2.133), (2.139) is

equivalent to

β̄ax
′

α1...ix...αm
= β̄

〈a... 〉x′
α1...〈i... 〉x...αm , (2.140)

for all beta coefficients and eigendirections. The eigendirections 〈i . . . 〉 and 〈a . . . 〉
depict the multi-trace directions that result from the composition of i or a with some

set of eigendirections (both with the same set). The factorization of dimensions (2.124)

implies that the resonance condition (2.55) is satisfied by the LHS of (2.140) if and

only if it is satisfied by the RHS. Therefore, (2.140) is consistent with the resonance

condition and it can be imposed for the calculation of factorization normal coordinates.

In fact, (2.140) provides the form of the beta coefficients with multi-trace lower
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indices once all the beta coefficients with single-trace lower indices are known.

Reconstruction of SOs

To finish this chapter, we would like to show how, due to the large N properties, if

SOs is only known on a specific submanifold of W , it is possible to reconstruct it on

the full W (at least perturbatively).

Let T1 be the submanifold of single-trace deformations of a fixed point. This is,

given some factorization normal chart c̄, T1 ⊂ W is the submanifold defined by

(s,Λ) ∈ T1 ⇔ c̄α
n

(s,Λ) = 0, ∀n 6= 1, (2.141)

where αn depicts n-trace eigendirections and α0 ≡ 0 is the vacuum energy eigendirec-

tion.

Note that, applying repeatedly (2.133), we can express any higher order derivative

with respect to multi-trace normal coordinates of the Wilson action as a function of only

single-trace derivatives. This allows to reconstruct perturbatively SOs in the complete

W once it is known in T1. In fact, it is possible to give a closed expression to extend

SOs if this is only defined on T1. Let

SLOs [γ̄ε; ζ] = c̄σζσ − SOs , ζσ = ∂ c̄σSOs|T1 , (2.142)

be the Legendre transform of the Wilson action restricted to T1 with respect to the

single-trace coordinates c̄σ. Also, given some ζ, let Gζ :W → R be the function

Gζ = c̄0 + c̄σζσ +
∑
n≥2

c̄α
n

Qσ1...σn
αn (γ̄)ζσ1 . . . ζσn . (2.143)

Then, given Os, we can define the function on W ,

S̃Os = Gζ − SLOs [γ̄; ζ], (2.144)

δGζ

δζ
=
δSLOs

δζ
[γ̄; ζ], (2.145)

where the second equality fixes the value of ζ. With this definition, S̃Os satisfies:
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(1) Its restriction to T1 is equal to the Wilson action, S̃Os
∣∣∣
T1

= SOs . For points in

T1, (2.144) reduces to the usual Legendre transformation of SLOs , and by (2.142),

we recover the Wilson action SOs .

(2) It satisfies (2.133) for all points inW . This can be directly checked inserting (2.143)

in (2.144) and using (2.145).

Both properties guarantee that, at least for points perturbatively close to T1, S̃Os = SOs .



Chapter 3

Connection with Renormalization

The infinite! No other question has ever moved so profoundly the spirit of man; no other

idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of

clarification than that of the infinite.

David Hilbert [47]

In the previous chapter, we have described geometrically the space of theories and

the Wilson flows. Also, we have singled out a special set of coordinates which simplify as

much as possible the form of the beta functions and allow to compute contributions to

the conformal anomaly. In this chapter we will make contact with usual renormalization

methods used in QFT. In a first part, we will study the renormalization of correlation

functions of composite operators at fixed points of the flow. In a second part, we

will describe how scale non-invariant renormalizable theories are constructed in the

Wilsonian approach.

A systematic functional formalism to renormalize general correlators of composite

operators was developed by Shore in [48] (see also [49, 50] for previous developments).

Let us summarize this approach. First, a source is introduced for each of the (infinitely-

many) independent local operators in the theory [51]. Renormalization then proceeds

quite standardly by writing the bare (spacetime dependent) couplings as convenient

functions of renormalized (spacetime dependent) couplings. At the linear level, this

is equivalent to the usual multiplicative renormalization of the operators, including

51



52 Chapter 3. Connection with Renormalization

mixing. Further counterterms are required to make finite the correlators of two or

more composite operators. The main point of [48] is that all these counterterms can

be generated by a non-linear dependence of the bare couplings on the renormalized

ones. In general, the bare couplings at a point x depend not only on the values of the

renormalized couplings at x but also on its derivatives at this point. Because we want

to compare with the exact RG, we will use a dimensionful regulator. Then, mixing of

operators of different dimension is expected already at the linear level.

This renormalization procedure has a nice geometric interpretation, which in fact

provides new perspectives on it. As we will see in detail, the RG flows can be used

to define spacetime dependent bare couplings that renormalize the theory. Both the

linear and the non-linear terms in the renormalized couplings follow automatically. This

relation had been found before in [40], but only at the linear level and without taking

into account the effect of derivatives in the evolution, which turns out to be crucial.

Our analysis does not have any restrictions in this sense.

We study the correlation functions at fixed points of the RG flows. The fixed

points correspond to scale invariant theories, and thus, trivially describe the continuum

limit. However, the correlators involve not only the fixed point but also infinitesimal

deformations for which the continuum limit is non-trivial. Finite deformations are

considered later, in Section 3.2.

Scale invariant theories, if unitary, are also expected to be conformally invariant [52–

54]. A lot is known about correlation functions in conformal field theories (CFT). In

particular, there has been recent progress in the bootstrap program, which aims to

determine the correlation functions from minimal input and consistency conditions [55–

59] (see also [60] for references to more recent work). These methods refer only to the

fixed-point itself, whereas in this thesis we are investigating the relation with finite

deformations in the presence of a cutoff. Of course, after renormalization the results for

infinitesimal deformations must agree, so the CFT consistency conditions will impose

non-trivial constraints on the behaviour of the RG flows near the fixed point.

When the fixed point of interest is Gaussian, the renormalization procedure takes its

simplest form when formulated as a limit of deformations of the fixed point. Then the

connection with the RG is most transparent. However, for interacting CFT it may be

more convenient to consider deformations of another separate point in theory space, if



53

they are described by simpler actions. This point must belong to the basin of attraction

of the fixed point, i.e. to the so-called critical manifold. In this chapter we consider

this possibility. It will be crucial for the application of these methods to holographic

renormalization in Gauge/Gravity duality in the Part II.

As a consequence of the intimate connection with the exact RG, the counterterms

can be found from the RG flows. Furthermore, the renormalized correlators turn out to

be equal to specific bare correlators evaluated at a finite cutoff. Of course, the determi-

nation of counterterms and renormalized correlators from RG flows cannot be unique,

since there is some freedom in the renormalization process. Different choices give rise to

different renormalization schemes and some scheme dependence survives the continuum

limit and leaks into the renormalized correlators. We will pay special attention to these

ambiguities and show that when they are fixed by a minimal subtraction condition, the

resulting renormalized correlators are equal to bare correlators defined by functional

differentiation with respect to couplings in normal coordinates, at a finite cutoff that is

identified with the renormalization scale.

In the final part of this chapter, we approach the construction of scale non-invariant

theories in the Wilsonian picture, as renormalized trajectories flowing away from an

ultraviolet fixed point. We will see how they can be defined with a renormalization

procedure using some bare manifold, than can be chosen with a lot of freedom (the only

requirement is that it has to intersect the critical manifold of the UV fixed point). In

fact, this is what allows to construct them in traditional approaches without any explicit

knowledge of the Wilsonian RG flows. We will also discuss different renormalization

schemes in this context.

Most of the results of this chapter about the connection between Wilsonian RG

flows and renormalization are published in [6, 7].

The chapter is organized as follows. In Section 3.1 we apply the methods of the

previous chapter to the calculation of correlation functions of composite operators at

fixed points of the flows. We show the exact connection between their renormalization

and Wilson RG flows. The ideas will be applied to two examples. The first one, the

Gaussian fixed point, work as an illustration of the general method. In the second one

we study the impact of the large N limit on the correlation functions. Section 3.2 is

dedicated to the description of general renormalizable theories in this approach.
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3.1 Correlation Functions

3.1.1 Renormalization

A central quantity of interest in QFT is the continuum limit of correlation functions,

evaluated at cutoff-independent spacetime points. Given a chart c and a point (s,Λ) ∈
W , we define the bare (or cutoff) n-point connected correlation functions as

G(s,Λ)
α1...αn

= ∂cα1
. . . ∂cαn

∣∣
(s,Λ)

W

=
δnWΛ[g]

δgα1 . . . δgαn

∣∣∣∣
c(s,Λ)

, (3.1)

where the generator W is given

Z = eW . (3.2)

The symbol ∂cα1
. . . ∂cαn|(s,Λ) on the RHS of the first line of (3.1) refers to the sequen-

tial action of the vector fields ∂αi associated to the coordinates c on the function W ,

eventually evaluated at (s,Λ). These vector fields commute among themselves, so the

correlators do not depend on the order of the operators. The corresponding basis vec-

tors at (s,Λ) are identified with the local operators Oαi(s,Λ) as given in (2.23). The

definition (3.1) is a convenient generalization of the standard definition with linear

sources. In this thesis we will be ultimately interested in correlation functions at a

fixed point s∗. Obviously, this definition of the correlation function is coordinate de-

pendent, even if are not indicating the chart explicitly. It is important to note that for

n ≥ 2 the correlators (3.1) transform nonlinearly under changes of coordinates in W .

For instance, the same 2-point correlation function written in the basis associated with

a different coordinate system c′ would read

G(s,Λ)
α1α2

= (∂cα1
c′
α3)(∂cα2

c′
α4)∂c

′

α3
∂c
′

α4

∣∣∣
(s,Λ)

W

+ (∂cα1
c′
α3)(∂cα3

∂cα2
c′
α4)∂c

′

α4

∣∣∣
(s,Λ)

W. (3.3)
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The continuum limit Λ → ∞ of these correlators is divergent in non-trivial theories.

Therefore, renormalization is necessary. Let us introduce a family of renormalization

charts rt : W → C × R+, with t ∈ R+, of the form rt(s,Λ) = (rπt,Λ(s),Λ/t). We fix the

origin of these special coordinates such that, for all t,

rπt (sΛ
c ,Λ) = 0 (3.4)

where the “critical point” sc = [(sΛ
c ,Λ)] is an arbitrary point such that in the IR is

attracted by the fixed point s∗ (i.e. limt→0 ft(sc) = s∗). The set of points in M that

satisfy this condition is known as the critical manifold Ẽ . Let ht = r−1
t be the inverse of

the renormalization chart. The maps cα ◦ ht[gR, µ] play the role of bare couplings that

depend on the cutoff tµ. In a local QFT, the bare couplings can be chosen to be local

functionals of the renormalized couplings gaR. We write the basis vectors associated to

the renormalization charts as ∂rtα . They can be related to local renormalized operators

[Otα] by

∂rtα |(s,Λ) Sω = [Otα]
∣∣
(s,Λ)

[ω]

= [Otα](s)[γΛ;ω]. (3.5)

We are now ready to define the renormalized correlation functions as the continuum

limit of the correlators of renormalized operators:

GR
α1...αn

= lim
t→∞

∂rtα1
. . . ∂rtαn

∣∣
(stµc ,tµ)

W

= lim
Λ→∞

δnW [hΛ/µ[gR, µ]]

δgα1
R . . . δgαnR

∣∣∣∣
gR=0

, (3.6)

with rt chosen in such a way that the limit is well defined (and non-trivial). There is

a large degree of freedom in the choice of renormalization scheme, i.e. in the choice of

the particular renormalization charts that do the job. The renormalized correlators are

scheme dependent, even if many details fade in the continuum limit. In particular, they

depend on the renormalization scale µ in a way that is determined by the RG.

In actual calculations, (3.6) needs to be written in some specified coordinate system

c. This involves in particular writing the vector fields ∂rtα in the coordinate basis {∂cα}.
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As illustrated in (3.3), non-linear terms will appear under the change of coordinates

rt → c. To keep track of those terms and to preserve covariance, let us introduce a

covariant derivative ∇t acting on tensor fields, which is characterized by being trivial

(with vanishing Christoffel symbols) in the rt coordinates:

∇t
∂
rt
α1
∂rtα2

= 0. (3.7)

Here, ∇t
v is the covariant derivative along the vector v. In other words, by definition

the covariant derivative is just an ordinary derivative in the renormalization coordi-

nates. Consequently, the corresponding connection is symmetric and flat. In arbitrary

coordinates c, the Christoffel symbols are given by

Γt α̃1
α̃2α̃3

= (∂rtα̃4
cα̃1)(∂cα̃2

∂cα̃3
rα̃4
t ). (3.8)

The symbol Γt α1
α2α3

is quasilocal in its three spacetime indices. In this language, the

renormalized correlators read

GR
α1...αn

= lim
t→∞

∇t
∂
rt
α1
. . .∇t

∂
rt
αn
W
∣∣∣
(stµc ,tµ)

= lim
t→∞

[Otα1
]αn+1 . . . [Otαn ]α2n∇t

∂cαn+1
. . .∇t

∂cα2n
W
∣∣∣
(stµc ,tµ)

. (3.9)

The precise meaning of these two equations deserves a short explanation. On the RHS of

the first line, ∇t
∂
rt
α1

. . .∇t
∂
rt
αn
W can be understood as the components of the (0, n) tensor

field ∇t . . .∇tW in the rt coordinate basis. In the second line, the covariant derivatives

are taken along the coordinate basis vectors associated to an arbitrary coordinate system

c and ∇t
∂cα1

. . .∇t
∂cαn

W are to be understood as the components of the same tensor

field ∇t . . .∇tW in this later basis. The coefficients in front arise from the tensor

transformation law. They are given by

[Otα1
]α2 = ∂rtα1

cα2 (3.10)

and are just the components of the renormalized operators in the c basis. For local bare

couplings, [Oa1x1 ]a2x2 is a sum of terms proportional to δ(x1− x2) and derivatives of it.

At this point, we can extend in a natural way the definition of renormalized correlation
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functions to arbitrary operators:

GR
O1...On = lim

t→∞
[Ot1]αn+1 . . . [Otn]α2n∇t

∂αn+1
. . .∇t

∂α2n
W
∣∣∣
(stµc ,tµ)

. (3.11)

However, in this thesis we only consider the particular renormalized correlators in (3.9).

The Christoffel symbols provide the non-linear counterterms that are necessary in

generic coordinates. For example, the renormalized two-point functions read

GR
α1α2

= lim
t→∞

[Otα1
]α3 [Otα2

]α4∇t
∂cα3
∇t
∂cα4
W
∣∣∣
(stµc ,tµ)

= lim
t→∞

{
[Otα1

]α3 [Otα2
]α4∂cα3

∂cα4
W
∣∣
(stµc ,tµ)

− [Otα1
]α3 [Otα2

]α4Γt α5
α3α4

∂cα5
W
∣∣
(stµc ,tµ)

}
.

(3.12)

We have taken into account the fact that Γt ∧α1α2
= 0. The first term in the last line takes

care of the non-local divergences, while the second term cancels the local divergences

that appear when the spacetime points in [Otα1
]α3 and [Otα2

]α4 coincide. From (3.8),

[Otα1
]α3 [Otα2

]α4Γt α5
α3α4

= −Ct α3
α1α2

[Otα3
]α5 , (3.13)

with the counterterms

Ct α
α1α2

=
(
∂rtα1

∂rtα2
cα3
) (
∂cα3

rαt
)

(3.14)

quasilocal in the spacetime part of their indices. Because the derivatives come with

inverse metrics that decrease the degree of divergence, we can truncate the derivative

expansion of the expression above and get local counterterms. (3.13) used in (3.12) has

the form of an OPE: in fact, in order to give finite continuum correlators, the singular

parts in the counterterms Ct ax
a1x1a2x2

must cancel the singularities for coincident points

x1 ∼ x2 of the [Otax] term in the OPE of [Ota1x1
] and [Ota2x2

].

The higher-point renormalized functions involve derivatives of the Christoffel sym-

bols. They can also be written in terms of counterterms

Ct α
α1α2...αm

=
(
∂rtα1

∂rtα2
. . . ∂rtαmc

α′
)

(∂cα′r
α
t ) (3.15)
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as

GR
α1α2...αn

= lim
t→∞

∑
p∈Πn

 |p|∏
r=1

Ct α′r
αpr

[Otα′1]α′′1 · · · [Otα′|p|]α′′|p| ∂cα′′1 . . . ∂cα′′|p|W
∣∣∣∣∣∣
(stµc ,tµ)

, (3.16)

where Πn is the set of partitions of {1, 2, . . . , n}, pr is the r-th element of the partition

p, αpr is a collective index given by

αpr = αpr1 . . . αpr|pr | , (3.17)

with pri the i-th element of the set pr, and for any set A, |A| is its cardinality. Further-

more, we have defined Ct α1
α2

= δα1
α2

. The counterterms in (3.16) cancel not only local

but also semilocal divergences when only a subset of points coincide [6, 61, 62].

3.1.2 Connection with RG

Let us next connect the renormalization process with the exact RG flows. Using

RG invariance, as given by (2.27), we rewrite (3.6) as

GR
α1...αn

= lim
t→∞
∇t
∂
rt
α1
. . .∇t

∂
rt
αn
W ◦ f1/t

∣∣∣
(stµc ,tµ)

= lim
Λ→∞

δnW (fµ/Λ ◦ hΛ/µ[gR, µ])

δgα1
R . . . δgαnR

∣∣∣∣
gR=0

, (3.18)

for any scale µ. SinceW (s, µ) is finite for finite s, it is clear that the limit in (3.18) will be

well defined as long as fµ/Λ◦hΛ/µ(gR, µ) stays finite when Λ approaches infinity, at least

for gR in some neighbourhood of 0. In this manner, we have rephrased the problem of

removing divergences as the Wilsonian problem of finding curves r−1
Λ/µ(g, µ) that, when

composed with the RG evolution, have a well defined limit. The condition (3.4) ensures

that limΛ→∞ fµ/Λ,Λ ◦ hΛ/µ(0, µ) = sµ∗ . To get non-trivial correlators we need that the

combined limit, besides being finite, reaches points different from sµ∗ when gR 6= 0.

More precisely, the limit will be finite and non-singular if

lim
t→∞

rt ◦ ft = c (3.19)
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is a well-defined chart in the neighbourhood of the fixed point.

Let us recast these statements in infinitesimal form. Because the correlation func-

tions are given by (covariant) derivatives, for a finite set of correlators it is sufficient

that the corresponding derivatives be well defined in the continuum limit. For a fixed

and finite t > 0, the RG flow ft defines a diffeomorphism which takes points in a region

A ⊂ W onto points in a region At ⊂ W . This map can be used to transport any

differential structure between A and At. Recall that a vector field v is transported with

the differential f ∗t : TA → TAt,

(f ∗t v)F = v F ◦ ft (3.20)

for any function F in At, while the pullback of a one-form field φ in T ∗At is given by

((ft)∗φ)(v) = φ(f ∗t v) (3.21)

for any vector field v in TA. A tensor field T of an arbitrary type (n,m) can be

transported from the space of tensor fields in A to the one in At using the pullback of

ft, (ft)∗ and the differential of its inverse, f ∗1/t:

(f ∗t T )(φ1, . . . , φn; v1, . . . vn) = T ((ft)∗φ1, . . . , (ft)∗φn; f ∗1/tv1, . . . , f
∗
1/tvn), (3.22)

where φi and vi are, respectively, dual vector and vector fields in At. Similarly, any

connection ∇ in A can be transported into another connection ∇′ = f ∗t∇ in At:

∇′vT = f ∗t

[
∇f∗

1/t
v(f
∗
1/tT )

]
, (3.23)

for v and T arbitrary vector and tensor fields in At. Using all this, we can write (3.18)

as

GR
α1...αn

= lim
t→∞

f ∗1/t∇t
∂
rt
α1
. . . f ∗1/t∇t

∂
rt
αn
W
∣∣∣
f1/t(s

tµ
c ,tµ)

. (3.24)

The point at which the transported covariant derivatives are evaluated approaches

as t → ∞ the fixed point representative (sµ∗ , µ). Therefore, the renormalization of

correlation functions can be achieved by tuning the renormalized operators and the
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renormalization connection in a neighbourhood of the critical point in such a way that

their transportation with f ∗t stays finite in the limit t→∞. That is, the renormalization

chart must be chosen such that the limits

∂r∗α = lim
t→∞

f ∗1/t∂
rt
α , (3.25)

∇∗ = lim
t→∞

f ∗1/t∇t (3.26)

are non-singular in a neighbourhood of the fixed point. Then, we get

GR
α1...αn

= ∇∗∂r∗α1
. . .∇∗∂r∗αnW

∣∣∣
(sµ∗ ,µ)

. (3.27)

Let us stress this simple but important result:

The renormalized correlators are exactly equal to the bare correlators of

the finite operators associated to ∂r∗αi , evaluated at the fixed point.

In arbitrary coordinates c, the components of the transported renormalized opera-

tors approach

[O∗α]α1|(sµ∗ ,µ) = lim
t→∞

Mα1
t α2

[Otα]α2
∣∣
(stµc ,tµ)

, (3.28)

where

Mα1
t α2

= ∂cα2

∣∣
(stµc ,tµ)

fα1

1/t

=
δfα1

1/t[γ
tµ; g]

δgα2

∣∣∣∣∣
gtµc

(3.29)

is the Jacobian matrix of the coordinate transformation. Here, gΛ
c = cπΛ(sΛ

c ).1 The com-

ponents of the renormalized operators must be defined such that the limit in (3.28) is

finite and non-singular. This linear (or multiplicative, in the matrix sense) renormaliza-

tion can be found in the standard way, without knowledge of the RG flows, by requiring

the cancellation of the non-local divergences in the correlation functions. But (3.28)

1Note that gΛ
c and gΛ′

c are related by a dilation, so gΛ
c will be independent of Λ in the usual case

of a homogeneous critical point.
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shows that a solution to this problem always exists:

[Otα]α1
∣∣
(stµc ,tµ)

=
(
M−1

t

)α
α1

∣∣∣
local

, (3.30)

where “local” indicates a truncation of the derivative expansion that does not modify

the limit in (3.28). This truncation is always possible since the derivatives come along

with negative powers of t, which decrease the degree of divergence. With the choice

in (3.30), the trivial limit [O∗α]α1 = δα1
α is obtained. Likewise, the transported Christoffel

symbols approach

Γ∗α1
α2α3

∣∣
(sµ∗ ,µ)

= lim
t→∞

(
M−1

t

)α5

α2

(
M−1

t

)α6

α3

Mα1
t α4

Γt α4
α5α6

∣∣
(stµc ,tµ)

−
δ2fα1

1/t[γ
tµ; g]

δgα1δgα2

∣∣∣∣∣
gtµc

 (3.31)

in the limit. Observe that the transportation is non-linear, so a non-vanishing Γt is

necessary in general. An exception occurs for generic dimensions in normal coordi-

nates, for which the second derivatives of the flows vanish. The renormalization of the

Christoffel symbols that keep Γ∗ finite can be obtained without knowledge of the RG

flows by requiring the cancellation of local and semi-local divergences in the correlation

functions. (3.31) shows that, again, at least one solution exists:

Γt α1
α2α3

∣∣
(stµc ,tµ)

=
(
M−1

t

)α1

α4
∂α2∂α3f

α4

1/t

∣∣∣
(stµc ,tµ)

∣∣∣∣
local

. (3.32)

With this particular choice, Γ∗α1
α2α3

∣∣
(sµc ,µ)

= 0. More generally, we can always choose

coordinates for which ∂r∗α is a tangent vector at the fixed point. Furthermore, because

the transportation preserves the flatness of the connection, it is possible to find, simul-

taneously, coordinates in which the Christoffel symbols vanish. In such coordinates c̃,

the renormalized functions simply read

GR
α1...αn

= ∂ c̃α1
. . . ∂ c̃αnW

∣∣
(sµ∗ ,µ)

. (3.33)

If c(sµ∗ , µ) = 0, the coordinates c̃ are given, perturbatively, by

cαµ = [O∗α1
]α
∣∣
(sµ∗ ,µ)

c̃α1
µ −

1

2
Γ∗αα3α4

[O∗α1
]α3 [O∗α2

]α4
∣∣
(sµ∗ ,µ)

c̃α1
µ c̃

α2
µ +O

(
c̃3
µ

)
. (3.34)
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In the renormalization scheme given by (3.30) and (3.32), we directly have c̃ = c.

In fact, the particular renormalized operators and Christoffel symbols in (3.30)

and (3.32) result, after trunctation, from the following choice of renormalization coor-

dinates (with the same c as in those equations):

rαt (s,Λ) = cα ◦ f1/t(s,Λ)− cα ◦ f1/t(s
Λ
c ,Λ). (3.35)

The second term is included to ensure rαt (sΛ
c ,Λ) = 0. This choice obviously gives

finite correlation functions, as it fulfils (3.19), with the very same c used in the def-

inition (3.35). The result (3.33) with c̃ = c can then be understood as a direct con-

sequence of this fact. Conversely, the renormalized operators and connection given

by (3.30) and (3.32) are the transportation with f ∗t of the coordinate vectors ∂cα and of

the connection with vanishing Cristoffel symbols in c coordinates.

In particular, we can work in the renormalization scheme where rt is given by (3.35)

taking as c a normal chart, c = c̄. Such a renormalization scheme will be called a

exact UV scheme in the following. Exact UV schemes have the virtue of making the

renormalization operators and connection as simple as possible, when expressed in

normal coordinates. In particular, when sc = s∗, (3.35) can be inverted using f−1
1/t = ft:

c̄α = fαt [t−2γ̄; rπt ]. (3.36)

Then, from (3.15) and (2.64) it follows that

[Ot
α′ ]

αCt α′

α1...αn

∣∣∣
(sΛ∗ ,Λ)

= n! t−[λ(α1)+...+λ(αn)]
pmax
α1···αn∑
p=1

logp t [Bp]
α
α1...αn

(
γΛ
)
. (3.37)

Therefore, the counterterms can be built in terms of beta coefficients, as illustrated in

Figure 2.1. This structure agrees with Zimmermann’s forest formula in perturbative

coordinate-space renormalization [63, 64]. Each forest for a given diagram is associated

to a tree in (2.65). Note in particular that in each forest only nested or disjoint (i.e.

not overlapping) subtractions appear, which is an obvious property of (2.65) (see Fig-

ure 2.1). Moreover, the number of logs in a term corresponding to a given tree/forest

is equal to the number of beta coefficients in the tree.
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3.1.3 Minimal Subtraction

Working in an exact UV scheme seems to require knowledge of the exact RG flows

and their maximal diagonalization. However, in the remaining of this section we show

that exact UV schemes are actually equivalent to certain minimal-subtraction schemes,

defined in arbitrary coordinates without any explicit reference to RG flows or normal

coordinates. Our definition of minimal subtraction is given by the following restriction

on the renormalization chart:

rαt = tλ̃(α)Rα
t [γ̄; cπ] , (3.38)

where c is any chart, λ̃(ax) = λ̃(a) are real numbers and Rα
t is a quasilocal functional

of g = cπ(s,Λ) that depends at most logarithmically on t. If this condition is met for

a chart c, then it will also hold (with a different Rt) when c is replaced by any other

chart, in particular by a normal chart c̄. Therefore, (3.19) can be written as

cα = lim
t→∞

(
rαt ◦ c̄−1

)
◦ (c̄ ◦ ft)

= lim
t→∞

tλ̃(α)R̄α
t

[
t2γ̄; c̄π ◦ ft

]
. (3.39)

In the last line, the second entry in Rα
t is the RG flow in normal coordinates. As

explained in Subsection 2.3, (2.64), the latter has coordinates of the form

c̄α ◦ ft = f̄αt = t−λ(α)Fα
t [γ̄; c̄π] = Fα

t

[
t2γ̄; t−λc̄π

]
, (3.40)

where
(
t−λc̄π

)α
= t−λ(α) c̄α and Fα

t is a quasilocal functional of gα = cα(s,Λ) which can

be expanded in a series of resonant monomials, with coefficients that depend at most

logarithmically in t. Expanding the RHS of (3.39) to linear order, we have

cα = lim
t→∞

(
Aαα1

c̄α1tλ̃(α)−λ(α1)(1 + logs) +O(c̄2)
)
. (3.41)

But for the LHS of (3.39) to be a non-singular invertible change of coordinates, the linear

term in its c̄ expansion must be given by a finite, non-singular matrix multiplying the

vector c̄. This forces the matrix A above to be non-singular and upper-triangular (if
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the directions are ordered with decreasing eigenvalues), and λ̃(α) = λ(α). At the non-

linear level, the terms with Πr
i=1c̄αi , n(γ) metrics and n(γ−1) inverse metrics will scale

like tλ(α)−
∑r
i=1 λ(αi)

+2n(γ)−2n(γ−1) , up to logarithms. So, a finite continuum limit requires

that each monomial either vanishes in the limit or is resonant (see (2.55) and (2.63)).

Therefore, we learn that in minimal subtraction c is a normal chart, just as in an exact

UV scheme. The set of renormalization schemes with this property (i.e. c in (3.19) is

a normal chart) are called UV schemes.2

The restriction of minimal subtraction does not fix the renormalization scheme com-

pletely. Indeed, if rt is a valid renormalization chart in minimal subtraction, so is

r̃αt = rαt + tλ(α)−λ(α1)aαtα1
(γ̄) rα1

t + tλ(α)−λ(α1)−λ(α2)aαtα1α2
(γ̄) rα1

t r
α2
t + ... (3.42)

if the coefficients aαtα1...αn
(γ) depend at most logarithmically on t and vanish when∑

i λ(αi) + 2n(γ−1) − 2n(γ) ≤ λ(α), being n(γ) and n(γ−1) the number of metrics and

inverse metrics respectively which aαtα1...αn
(γ) depends on. This ambiguity can be used

to simplify rt and make it local.

In terms of renormalized operators and connections, minimal subtraction is charac-

terized by the following two conditions:

(i) The operator components [Otα1
]α2 are required to be proportional to t−λ̃α1 , up to

logarithms, with the same non-negative number λ̃α1 for all α2.

(ii) The Christoffel symbols Γt αα1α2
are required to be t independent in the neighbour-

hood where they are defined, up to logarithms.

The second condition can also be formulated in term of the counterterms Ct α
α1...αn

: they

are required to be proportional to tλ̃α−λ̃α1−...−λ̃αn , up to logarithms, with the same λ̃α,

λ̃α1 , ..., λ̃αn as in condition (i).

Again, there is some remaining freedom, which can be used to make the renormalized

operators and counterterms local and to simplify them. For instance, let us consider

fixed points such that, for any real r ∈ R, the number of eigendirections with dimension

∆ < r is finite. Then, given any parametrization, the renormalization charts can be

redefined order by order using (3.42) in such a way that

2Minimal subtraction schemes are a subclass of UV schemes. At the same time, exact UV schemes
are a subclass of minimal subtraction schemes.



3.1. Correlation Functions 65

(i) All renormalized operators are local and have only a finite number of non-vanishing

components [Otα1
]α2 .

(ii) All counterterms Ct α
α1...αn

are local and vanish if

n∑
s=1

(
λ(αs) − nu(αs) + nd(αs)

)
> λ(α) − nu(αs) + nd(αs). (3.43)

With this convention, only a finite number of local renormalized operator components

and counterterms appear in the renormalization of a given correlation function. This

is the usual statement of renormalizability.

3.1.4 Exceptional Cases

In the previous example we have seen how some bare couplings can depend logarith-

mically on the cutoff. This is a feature of fixed points with resonances and exceptional

dimensions, and thus, it is intimate related with the appearance of non-trivial beta

functions.

To see explicitly this connection, let us find the relation between renormalization

charts as defined in (3.35) (with normal charts), and other family of charts that do not

depend on t (the normal charts themselves). We assume an homogeneous critical point

gc = gΛ
c = c̄πΛ(sΛ

c ), and define δc̄α = c̄α − gαc . Using (2.64),

rαt = tλ(α)

{
δc̄α +

∞∑
m=1

m

pmax
α1···αm∑
p=1

(−1)p logp t [Bp]
α
α1...αm

(γ̄)

 δc̄α1gα2
c · · · gαmc

+
∞∑
m=2

m(m− 1)

2

pmax
α1···αm∑
p=1

(−1)p logp t [Bp]
α
α1...αm

(γ̄)

 δc̄α1δc̄α2gα3
c · · · gαmc

+O(c3)

}
. (3.44)



66 Chapter 3. Connection with Renormalization

It can be inverted using that f−1
t = f1/t,

δc̄α = t−λ(α)

{
rαt +

∞∑
m=1

m

pmax
α1···αm∑
p=1

logp t [Bp]
α
α1...αm

(
t−2γ̄

) rα1
t f̄

α2

1/t [γ̄; gc] · · ·f̄αm1/t [γ̄; gc]

+
∞∑
m=2

m(m− 1)

2

pmax
α1···αm∑
p=1

logp t [Bp]
α
α1...αm

(
t−2γ̄

) rα1
t r

α2
t f̄

α3

1/t [γ̄; gc] · · ·f̄αm1/t [γ̄; gc]

+O(r3
t )

}
. (3.45)

f̄α1/t [γ̄; gc] can only be non-vanishing for scalar irrelevant and marginally irrelevant

directions. We will say that an eigendirection a is excited by the critical point if

f̄ax1/t [γ̄; gc] 6= 0.

Therefore, in the normal parametrization, (3.45) shows that renormalized operators

(see (3.10)) have their simplest form for generic eigenvalues,

[Otα1
]α2 = t−λ(α)δα2

α1
. (3.46)

Exceptional eigenvalues can add logarithms of t to [Otα]. This is the case if: i) the

linear flows around the fixed point are not fully diagonalizable and α is not an actual

eigendirection, or, ii) the eigenvalue λ(α) and some eigenvalues of directions excited by

the critical point form a resonance and the associated [Bp] does not vanish.

Likewise, the counterterm Ct α
α1...αn

(see (3.15)) will depend logarithmically on t if

λ(α) is resonant, and formed by λ(α1), . . . , λ(αn) and possibly, some other eigenvalues

of directions excited by the critical point. Additionally, the associated [Bp] has to be

non-vanishing.

A redefinition of the renormalization charts using (3.42) order by order allows to

remove some logarithms. In fact, in a fully diagonalizable fixed point and if there are

no marginal directions excited by the critical point, the renormalized operators can be

defined without any logarithmic behaviour. Therefore, they will have the form of (3.46).

Also, those logarithmic counterterms Cα
α1...αn

that appear because λ(α1), . . . , λ(αn) and

irrelevant eigenvalues excited by the critical point form a resonance can be removed.

So far, we have described renormalized operator components and counterterms in
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a very specific class of charts (the normal ones), that requires the knowledge of the

exact RG flows. However, since changes of coordinates do not depend on t, we can still

extract some consequences if we work in a general parametrization (and in minimal

subtraction).

(i) The renormalized operator [Otα] must have a logarithmic behaviour in t if the linear

flows around the fixed point are not fully diagonalizable and α is not an actual

eigendirection.

(ii) If the linear flows are fully diagonalizable, some renormalized operators may still

require logarithms if the critical point excites marginal directions.

(iii) The counterterms Ct α
α1...αn

can require logarithms if a subset of the eigenvalues

λ(α1), . . . , λ(αn) form a resonance, or the critical point excites marginal directions.

3.1.5 Example I: the Gaussian Fixed Point

In this section we work out a simple example to illustrate the method and the

general results found in the previous section. We consider the theory space of a single

real scalar field ω in d = 4 and examine the RG evolution close to the Gaussian fixed

point. We compare with the renormalization of composite operators in the free-field

theory.

The Wilsonian information of this example was studied in Section 2.4.2. There we

found beta functions and normal coordinates. It allows us to calculate renormalized cor-

relation functions with the methods of Section 3.1. These calculations can be performed

in two related ways. The most direct one is to take advantage of (3.33) to compute

the renormalized correlators directly as bare correlators at the fixed point with a finite

cutoff. This calculation is very simple when the fixed point is well-characterized—as

for the free theory—since no counterterms are required and the continuum limit is not

explicitly taken. Alternatively, we can use the RG flows to compute the corresponding

renormalized operators and counterterms and then use (3.12) to obtain the renormalized

correlator. We will consider both approaches in turn.
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K1 K2

K3 K4 K5

Figure 3.1: Calculation of
〈(
Sγ

µ

ω

)
3x

(
Sγ

µ

ω

)
3y

〉
(0,µ)

. Lines indicate propagators P (γµ;x−
y), dots represent vertices

√
|γµ|ω(x)3, and crosses, insertions of −3

√
|γµ|P0 ω(x).

Normal Correlators

The bare correlation functions in normal coordinates are defined by functional

derivatives of the generator W with respect to normal couplings. We are interested in

functional derivatives at the fixed point. Let us calculate (see discussion around (2.80))

GR
3x3y = ∂ c̄3x∂

c̄
3yW

∣∣
(0,µ)

. (3.47)

The notation GR already anticipates that, as shown in (3.33), this correlator computed

at a finite cutoff µ is equal to the corresponding renormalized correlator, in the UV

scheme given by (3.35) with c = c̄. From (2.73), using (2.79),

∂ c̄3x∂
c̄
3yW

∣∣
(0,µ)

=
〈(
Sγ

µ

ω

)
3x

(
Sγ

µ

ω

)
3y

〉
(0,µ)
− 2

〈(
Sγ

µ

ω

)
3x3y

〉
(0,µ)

. (3.48)

Using Wick’s theorem and the explicit form in (2.80), we find that the first term on

the LHS has contributions given by the diagrams K1–K5 in Figure 3.1 in the free-field

theory. Taking combinatorial factors into account, it is easy to check that
∑5

i=2K = 0.

Therefore, 〈(
Sγ

µ

ω

)
3x

(
Sγ

µ

ω

)
3y

〉
(0,µ)

= 6|γµ|P (γµ;x− y)3. (3.49)
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For the second term, using the explicit form (2.85) and the property (2.79), we get〈(
Sγ

µ

ω

)
3x3y

〉
(0,µ)

= |γµ|E(γµ;x− y). (3.50)

Combining both results and inserting the solution (2.91), we finally obtain

∂ c̄3x∂
c̄
3yW

∣∣
(0,µ)

= − 3µ4

210π6
∂̇4

[
log(x− y)2

γµ

(x− y)2
γµ

]
− 2ξ3µ

2∂2δ(x− y). (3.51)

Note that the P 3 terms have cancelled out. The arbitrary parameter ξ3 multiplies a

scheme-dependent local term. It can be absorbed into a redefinition of the scale µ.

Renormalization

The standard calculation of the renormalized correlators involves a renormalization

procedure: first finding universal cutoff-dependent renormalized operators and coun-

terterms and then taking the continuum limit for the correlators of interest. Such a

renormalization can be carried out in arbitrary coordinates. Usually, the renormalized

operators and counterterms are determined by requiring the corresponding contribu-

tions to cancel the continuum-limit divergences of the bare correlators. Here we show

how to obtain them from the exact RG flows near the fixed point, using the results in

3.1. We concentrate on the renormalized operators and counterterms that contribute

to GR
33.

We choose a renormalization chart given by (3.35) with normal coordinates c = c̄,

i.e. we choose a UV scheme. Since our fixed point is Gaussian, the simplest choice for

the critical point is clearly the fixed point itself, sc = s∗ = 0.3 Using (2.64) in (3.35)

(with c = c̄) we find an explicit relation between c̄ and rt. Inverting this relation

perturbatively, we can write (2.73) in terms of renormalization coordinates:

Sω = rαt t
−λ(α) (S γ̄ω)α + rα1

t r
α2
t t−λ(α1)−λ(α2)

[
log t βαα1α2

(γ̄) (S γ̄ω)α + (S γ̄ω)α1α2

]
+O

(
r3
t

)
.

(3.52)

3The relation with the calculation in the previous section is quite straightforward in this case, for
the renormalization chart simply counteracts the action of the RG flow. Indeed, (3.35) with sc = s∗
and c = c̄ amounts to the choice r−1

t = ft ◦ c̄−1 for the bare couplings, which used in (3.18) directly
gives normal correlators.
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In the UV scheme, the renormalized operator associated to the eigendirection 3 is given

by

∂rt3x|(0,tµ) = f ∗1/t ∂
c̄
3x|(0,µ) . (3.53)

Since the renormalization procedure is done around the critical point, all functions,

vector and tensor fields on W in the formulas below are understood to be evaluated

at the point (0, tµ), unless otherwise indicated. We can directly read the renormalized

operator from (3.52):

[
Ot3x

]
= ∂rt3x Sω

= t−1
(
Sγ

tµ

ω

)
3x

= t−1
√
|γtµ|

[
ω(x)3 − P0 ω(x)

]
. (3.54)

In order to compare with standard perturbative calculations, we present the calcula-

tion in terms of canonical linear coordinates which are called c hereafter. Using this

parametrization we can write (3.54) as

∂rt3x = t−1 [∂c3x − P0∂
c
1x] . (3.55)

So, in this basis the non-trivial components of ∂rt3x|(0,tµ) are

[
Ot3x

]3y
= t−1δ(x− y), (3.56)[

Ot3x
]1y

= −t−1P0 δ(x− y). (3.57)

We will also need below

[
Ot0x

]
= ∂rt0x Sω

= t−4
√
|γtµ|

= µ4, (3.58)

which can be read from (3.52) as well. In the canonical linear basis, its only non-
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vanishing component is

[
Ot0x

]0y
= t−4δ(x− y). (3.59)

We see that the vacuum energy operator, having the lowest dimension, does not mix

with other operators.

The nonlinear counterterms are defined by the transported connection f ∗t∇ in nor-

mal coordinates. They can be obtained from the non-linear part of (3.52), as we now

show. We make use of the relation

Ct α
α1α2

∂rtα Sω = ∂rtα1
∂rtα2

Sω (linear c), (3.60)

which is valid for any linear parametrization c and follows from (3.14) and the fact

that in linear coordinates ∂cα1
∂cα2

Sω = 0. Choosing α1 = 3x, α2 = 3y and taking (3.54)

and (3.52) into account, we get the equation

Ct α
3x3y t

−λ(α)(Sγ
tµ

ω )α = 2t−2
[
log t βα3x3y(γ

tµ) (Sγ
tµ

ω )α + (Sγ
tµ

ω )3x3y

]
. (3.61)

To solve it for Ct α
3x3y, we use (2.85) and (2.102) to expand the last term inside the

brackets in the basis of eigenoperators,

(Sγω)3x3y = (τ γ)α3x3y (Sγω)α. (3.62)

Note that this expansion includes not only scalar but also tensorial eigenoperators (Sγω)α

in which the collective index α contains Lorentz indices (contracted with the ones in

the coefficients). For our purposes we can cut the series and keep only the terms that

will eventually contribute in the t → ∞ limit, which in this case involve only scalar

operators. This is equivalent to using (3.42) to redefine the renormalization scheme,

with no impact in the final renormalized correlators. We find

(Sγω)3x3y =E0

√
|γ|δ(x− y) + E2

√
|γ|∂2

γδ(x− y) +B0δ(x− y) (Sγω)2x

+ irrelevant terms. (3.63)

Matching in (3.61) the coefficients of the identity and (Sγω)x2 and using the values (2.97)
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and (2.98) for the beta functions, we identify the counterterms

Ct 2z
3x3y =

[
9

4π2
log t+ 2B0

]
δ(z − x)δ(z − y), (3.64)

Ct 0z
3x3y =

[
3

256π4
log t+ E2

] [
δ(z − x)∂2

γµδ(z − y) + δ(z − y)∂2
γµδ(z − x)

]
+ 2t2E0δ(z − x)δ(z − y). (3.65)

Equipped with the renormalized operators and counterterms in linear coordinates,

we are ready to compute the renormalized correlator GR
3x3y using (3.12) and (3.13):

GR
3x3y = lim

t→∞

{
[Ot3x]α1 [Ot3y]α2∂cα1

∂cα2
W + Ct α1

3x3y[Otα1
]α2∂cα2

W
}
. (3.66)

This limit is well-defined for any valid cutoff propagator P , but to make the cancellation

of divergences manifest let us choose the following simple cutoff propagator:

P (γ;x) =
1

4π2

1

x2
γ + 1

. (3.67)

This corresponds to the function

D(u) =
√
uK1(

√
u)

= 1 +
1

4

(
2γE − 1 + log

u

2

)
u+ o(u). (3.68)

Note that it does not satisfy the requirement of analiticity at u = 0. Even if this results

in a non-quasilocal Wilson action, the non-local pieces are irrelevant for the continuum

limit and we find the same renormalized propagator that could be obtained with an

analytic (but more complicated) regularization.4

Using (3.56) and (3.57) and Wick’s theorem, the first term on the RHS of (3.66) is

4With the propagator (3.67) the expansion of the functions A,B,E needs to be modified to include
non-local terms. In Fourier space,

Â(γ; p) =
1√
|γ|

9

2

[
2γE − 1

4
+

1

4
log

p2
γ

4
+ o

(
p0
γ

)]
,

B̂(γ; p) =
1√
|γ|

[
B0 +

9 p2
γ

8π2

(
−γE +

1− γE
4

− log p2
γ

4

)
+ o

(
p2
γ

)]
,
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found to be given precisely by the diagrams in Figure 3.1, up to a global t−2 factor and

with µ changed by tµ. Therefore,

[Ot3x]α1 [Ot3y]α2∂cα1
∂cα2

W = 6t−2|γtµ|P
(
γtµ;x− y

)3

=
6µ2

(4π2)3

1

(x2 + (tµ)−2)3

=
6µ2

(4π2)3

[
− 1

32
∂̇4 log

[
(x− y)2 µ2

]
(x− y)2 +

π2

8
(1 + 2 log t) ∂2δ(x− y)

+
π2

2
t2µ2δ(x− y)

]
+ o

(
t0
)
. (3.70)

The second term on the RHS of (3.66) can be written as

Ct α1
3x3y[Otα1

]α2∂cα2
W = −Ct α

3x3y〈[Otα]〉
= −Ct 0z

3x3y〈[Ot0z]〉

= −
[

3

128π4
(log t) + 2E2

]
µ2∂2δ(x− y)− 2µ4t2E0δ(x− y), (3.71)

where in the second equality we have used (2.79) to discard all the directions α 6= 0 in

the sum, whereas in the third one we have used (3.59) and (3.65). Finally, taking the

limit t→∞ we obtain

GR
3x3y = − 3µ2

210π6
∂̇4 log

[
(x− y)2 µ2

]
(x− y)2 + µ2

(
3

28π4
− 2E2

)
∂2δ(x− y). (3.72)

The terms with log t have cancelled out and the result precisely agrees with (3.51) for

E2 = ξ3 + 3/(512π4), as appropriate for the cutoff propagator we are using.

The two calculations of GR
3x3y that we have presented are based on the Wilsonian

analysis of subsection 2.4.2. In the last one, the exact RG flows have been used to

find renormalized operators and counterterms that render the correlator finite. These

Ê(γ; p) =
1√
|γ|

[
3

128π4
− p2

γ E2 +
3p4
γ

212π4

(
4γE − 5

2
+ log

p2
γ

4

)
+ o

(
p4
γ

)]
. (3.69)

Only the first terms, which are local, contribute in the t→∞ limit and we obtain the same countert-
erms as above, with E0 = 3

128π4 .
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objects can also be obtained without explicit Wilsonian information in the traditional

way, just requiring that the UV divergences are cancelled in the correlation functions.

Let us sketch the standard calculation to connect it with the one in this subsection.

The starting point is the bare correlator

∂c3x∂
c
3y

∣∣
(0,Λ)

W =
∣∣γΛ
∣∣ 〈ω(x)3ω(y)3〉(0,Λ), (3.73)

which is given by the free-field diagrams K1 and K2 in Figure 3.1, with µ → Λ = tµ.

These diagrams are singular when Λ → ∞. Both of them contain non-local diver-

gences for separate points, x 6= y. The one in diagram K1 can be compensated by a

multiplicative renormalization of the operator ω3, while the ones in diagram K1 can

be cancelled by adding to the action a counterterm proportional to ω, which gives the

contributions K3,4,5 in Figure 3.1. This linear renormalization can be interpreted as the

matrix renormalization of the operator ω3 given by (3.57) and (3.56). After it, only a

local divergence for coincident points x ∼ y remains. The counterterm that cancels it is

a local contribution to the vacuum energy, which can be identified with the non-linear

contribution in (3.71).

Of course, there is some freedom in the choice of counterterms that do the job. How-

ever, imposing the minimal subtraction conditions written at the end of Section 3.1 we

arrive at the same renormalized operators and counterterms given above. Therefore, we

also obtain the same renormalized function GR
3x3y in (3.72) and (3.51). This illustrates

the general result, proven in Section 3.1, that minimal subtraction leads to renormalized

correlators that coincide with cutoff correlators in normal coordinates. In other words:

in minimal subtraction schemes, the renormalized couplings can be understood as the

couplings in a normal parametrization of the action. We also stress that the renor-

malized correlator GR
3x3y itself retains Wilsonian information about normal coordinates

through the renormalization scale. Indeed, because the renormalized correlators are

equal to bare correlators at scale µ in normal coordinates, we know that they must

obey Callan-Symanzik equations. A double functional differentiation of (2.43) with

Λ = µ leads to

µ
∂

∂µ
GR

3x3y = 2λ(3)G
R
3x3y − 2β0z

3x3y(γ
µ)GR

0z. (3.74)
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Using (3.72) in the LHS of (3.74) we get

µ
∂

∂µ
GR

3x3y = 2GR
3x3y +

3µ2

128π4
∂̇2δ(x− y). (3.75)

Taking into account the obvious result for the renormalized vacuum energy, GR
0z = −µ4,

and comparing non-local and local pieces in (3.74), we find λ(3) = 1 (that is, ∆(3) = 3)

and β0z
3x3y(γ

µ) as in (2.98). We emphasize that this also holds for any regulator and in

any renormalization scheme consistent with minimal subtraction. This is particularly

simple in mass-independent methods. For instance, we could simply compute the di-

agrams with the original unregularized propagator and use dimensional regularization

to make sense of the resulting expressions. Then, diagram K2 of Figure 3.1 vanishes

identically, while diagram K2 directly gives (3.51) plus a pole in 1/(d − 4), which is

cancelled by a local counterterm, see [65, 66]. The same result can be found even

more directly, without explicit regularization, in differential renormalization [43]. It

is remarkable that these mass-independent renormalization schemes produce renormal-

ized correlators associated to normal coordinates, which carry all the local information

near the fixed point about the exact RG flows in these coordinates. The exact beta

functions are equal to their Gell-Mann-Low counterparts, up to residual scheme depen-

dence within minimal subtraction. The fact that only resonant terms appear can be

understood by dimensional analysis in the absence of dimensionful parameters in the

regularization and renormalization conditions.

3.1.6 Example II: Large N Limit

The large N limit is interesting since, as we have seen in Section (2.4.3), several

simplifications occur once it is taken. One remarkable property is that the leading

contribution in 1/N of correlation functions involving multi-trace operators factorize

to single-trace operators correlation functions when we work in a factorization normal

scheme. Thus, a correlation function with multi-trace and single-trace operators can

be written as the sum of products of single-trace correlators. In every product, all the

single-trace operators forming a multi-trace operator are split in the different correlators

of the product. The sum runs over all the possible splittings avoiding loops. By loops

in this context we mean products where the correlators connect in more than one way
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single-trace operators coming from the same multi-trace operator. Some examples are

GR
〈ij〉x iy1 jy2

=− 2GR
ix iy1

GR
jx jy2

+O(1/N2) (3.76)

GR
〈ij〉x1 〈ij〉x2 iy1 iy2

= 4GR
ix1 ix2

[
GR
jx1 jy1

GR
jx2 jy2

+GR
jx2 jy1

GR
jx1 jy2

]
+O(1/N2) (3.77)

GR
〈ij〉x1 〈ij〉x2

=O(1/N2). (3.78)

The last line correspond to one case where the only split that can be done is at the

loop level.

This factorization can be understood as a consequence of (2.144) (where we recon-

structed SOs from its restriction to the submanifold T1 ⊂ W). The generator

W =
1

N2
log

∫
[Dω]Λ e−N

2SOs[ω] (3.79)

has a similar property (see (2.105) for a specific implementation of (3.79)). Using (2.142) –

(2.145) in (3.79):

eN
2W =

∫
[Dω]Λ e−N

2SOs[ω]

∼
N→∞

∫
[Dω]Λ Dζ Dḡs exp

{
−N2

[
SOs[ω][γ̄; ḡs, 0] +Gζ − ḡσζσ

]}
=

∫
Dζ Dḡs exp

{
−N2

[
SOs[ω][γ̄; ḡs, 0] +Gζ − ḡσζσ

]}
∼

N→∞
exp

{
N2 [W [γ̄; ḡs, 0]−Gζ + ḡσζσ]

}
,

with ḡσ =
δGζ

δζσ
, ζσ = −δW

δḡσ
[γ̄; ḡs, 0] . (3.80)

In the second line we have used a saddle point approximation to introduce the Legendre

transform of (2.142). Therefore, working in a factorization UV scheme, the generator

W can be written as a single-trace generator with a modified source, δGζ/δζσ, and an

additional term, −Gζ + δGζ/δζσζ. Taking derivatives with respect to the coordinates,

one can easily find the factorization properties of correlation functions.
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Factorization Renormalization Charts

In the same way that normal coordinates can be chosen to satisfy the factorization

condition (2.133), it would be interesting to select a family of renormalization charts

rt that reproduce the correlation functions in a factorization UV scheme. If we choose

the renormalization charts in minimal subtraction and such that

∂rtαnSOs = Q σ1...σn
αn (t2γ̄)∂rtσ1

SOs . . . ∂
rt
σnSOs , (3.81)

the limit (see (3.19))

lim
t→∞

rt ◦ ft = c (3.82)

in large N theories gives a factorization normal chart c = c̄.

Conversely, given a factorization normal chart c̄, and a critical point, its associated

exact UV scheme given by (3.35) also satisfies (3.81).

Both statements are consequence of (2.136): if a chart c satisfies

∂cαnSOs = Q σ1...σn
αn (t′2γ̄)∂cσ1

SOs . . . ∂
c
σnSOs , (3.83)

then, the chart c̃α = cα ◦ ft must satisfy

∂ c̃αnSOs = Q σ1...σn
αn (t−2t′2γ̄)∂ c̃σ1

SOs . . . ∂
c̃
σnSOs . (3.84)

The proof consists in taking a derivative with respect to t in (3.83), and using (2.136),

checking that both sides agree for all t.

3.2 Renormalizable Theories

Let us briefly summarize what we have achieved so far. We have described the space

of regularized theories and the flows that they follow when UV degrees of freedom

are integrated out. In particular, we have studied in detail the flows close to fixed

points. We have shown how the flows select a set of special coordinates (known as

normal coordinates) in a neighbourhood of the given fixed point. Additionally, we have
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analysed the renormalization of correlation functions at fixed points from a Wilsonian

RG perspective. In this analysis, we have found that normal coordinates are in intimate

connection with a class of minimal subtraction renormalization schemes.

All these developments take place in a space of theories that are regularized. The

only theories with a continuum limit we have studied are the fixed points. In this

section, we will extend some of our tools to other scale non-invariant renormalizable

theories.

General renormalizable theories can be constructed from relevant or marginally

relevant deformations of a particular fixed point. These trigger flows that approach

the fixed point in the UV.5 These deformations, modulo total derivative terms,6 span

a vector space of dimension NR. In these cases Wilsonian actions exist no matter how

large Λ is taken, and thus describe the continuum limit. The set of points of M that

can be reached from these perturbed theories under RG evolution towards the IR form

the renormalized manifold R̃ of the given fixed point.7 Each integral curve of β with

image in R̃ defines a particular renormalizable theory, with definite physical predictions

that do not depend on any cutoff. We can lift R̃ to W and define

R = {(s,Λ) ∈ W such that [(s,Λ)] ∈ R̃}. (3.85)

Likewise, the set of points ofM that flow into the fixed point under direct RG evolution

(towards the IR) is called the critical manifold, and is denoted by Ẽ . A lift to define E
in W can be done analogously to (3.85).

5In fact, all known unitary theories consistent at all scales are of this form. However, one could
imagine a theory which in the UV approaches a limit cycle or an ergodic behaviour. These examples
are widely believed not to be allowed. Although there is not a complete proof yet, there are strong
indications for that (see [67]).

6In other words, considering two deformations equivalent if they differ by a total derivative, it is
the quotient space that has dimension NR.

7We mean the “renormalized trajectories” but we will again loosely regard the space R̃ as a
manifold of dimension NR, keeping in mind that singular behaviours such as boundaries are quite
possible far from the fixed point or at the fixed point itself.
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3.2.1 Renormalization

In practice, however, instead of constructing the renormalized trajectories using

exact RG flows, it is often easier to follow a renormalization procedure based on coun-

terterms or, equivalently, bare couplings. For this, we choose some bare action at scale

Λ0 that depends on NB tunable parameters. There is a great deal of freedom in the

form of the bare action, equivalently in the dependence of g on these parameters (this is

a statement of universality). Its description in our geometric language is similar to the

one used in subsection 3.1.1, but restricting the domain of the renormalization charts.

We choose a submanifold B̃ ⊂ M of finite dimension NB, in the same sense as

above, that cuts the critical manifold at a point sc. Its lift to W is denoted by B. The

RG curves of points close to sc will approach s∗ and, before they reach it, leave the

critical manifold along the relevant directions, approximately, and stay (at least for a

while) close to R̃. To parametrize B, it is convenient to define CB as the set formed by

all NB-tuples of smooth functions gă : Rd → R. The indices running over such space

will be denoted with the mark ˘, as in ᾰ or ă.

Let rt : B̃ → CB × R+, (s, tµ) 7→ (gR, µ), be a family of renormalization charts

that are defined only in B̃. Then, ht(gR, µ) = r−1
t (gR, µ) are curves in B parametrized

by (gR, µ). Let us impose that the equivalence classes [ht(gR, µ)] describe curves in B̃
that, a t→∞, approach sc at a rate characterized by gR, with the condition that (see

figure 3.2)

lim
t→∞

f1/t ◦ ht(gR, µ) ∈ R. (3.86)

This defines a renormalized theory:

ZR
µ [gR] = lim

Λ0→∞
Z
(
hΛ0/µ(gR, µ)

)
= Z

(
lim

Λ0→∞
fΛ/Λ0(hΛ0/µ(gR, µ))

)
, (3.87)

and induces a family of charts over the renormalized manifold (or a submanifold A of
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Figure 3.2: Points lying in the critical manifold are shown in blue. The bare manifold
B̃ cuts the critical manifold at a single point sc. The dashed grey curve illustrates the
action of combined RG evolution and renormalization as in (3.86), finishing at a finite
point in R̃.

it), cR : A ⊂ R → CB × R+:

c−1
R = lim

t→∞
ft ◦ r−1

t . (3.88)

The use of B allows to work with a finite set of couplings. This makes the renormalized

trajectories especial: they can be described by a finite set of parameters and it is not

necessary to know the infinite number of Wilson couplings that define a generic theory.

The introduction of the renormalization scale µ in ht (or equivalently in rt) is re-

quired for dimensional reasons. A change µ → µ′ can be compensated by a change

gR → g′R such that the same renormalized theory is obtained:

lim
t→∞

f1/t ◦ ht (gR, µ) = lim
t→∞

f1/t ◦ htµ/µ′ (g′R, µ′)

= lim
t→∞

fµ/tµ′ ◦ ht (g′R, µ
′)

=fµ/µ′
(

lim
t→∞

f1/t ◦ ht (g′R, µ
′)
)
. (3.89)

Therefore, the flows associated to changes of the renormalization scale are described by
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the Wilson flows of the renormalized theories:

c−1
R (gR, µ) = fµ/µ′ ◦ c−1

R (g′R, µ
′), (3.90)

and the functions cπR ◦ ft play the role of running constants of the renormalized theory.

The corresponding vector fields

βᾰµ [gR] =
∂

∂t
f ᾰt ◦ c−1

R (gR, µ)

∣∣∣∣
t=1

, (3.91)

are the local versions of the Gell-Mann-Low beta functions of the renormalized theory.

They coincide with the Wilson vector fields β restricted to R, that by definition, are

contained in TR:

βᾰ = βα∂cαc
ᾰ
R + 2γ̄

∂

∂γ̄
cᾰR. (3.92)

The Wilsonian Callan-Symanzik equation (2.43) continues applying when it is restricted

to the renormalized manifold, giving the Callan-Symanzik equation for the renormalized

theory, [
µ
∂

∂µ
+ βᾰµ [gR]

δ

δgᾰR

]
ZR
µ [gR] = 0. (3.93)

Of course, there is a large degree of freedom in the choice of the renormalization charts,

i.e. in the renormalization scheme. Different renormalization schemes lead to different

parametrizations of the renormalized manifold using (3.88). We will use the term

“renormalization scheme” to refer both the choice of renormalization charts and the

parametrization of R̃.

3.2.2 Minimal Subtraction Schemes

A very natural set of schemes are the minimal subtraction schemes, as defined

in (3.38), where c has to be understood as a chart of B.

Given any chart in B, cB : B → CB, it can be written in terms of the minimal

subtraction charts rt inverting (3.38). Assuming a homogeneous critical point gc =
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gΛ
c = c̄πΛ(sΛ

c ), we obtain

cᾰB − gᾰc = t−λ(ᾰ1)Aᾰt ᾰ1
(γ̄)rᾰ1

t + t−λ(ᾰ1)−λ(ᾰ2)Aᾰt ᾰ1ᾰ2
(γ̄)rᾰ1

t r
ᾰ2
t +O(r3

t ), (3.94)

with Aᾰt ᾰ1...ᾰn
depending at most logarithmically on t. This equation can be used to

examine the curves that ht describes in B. Consider first the generic case in which all

the eigenvalues of relevant directions fulfil the condition λ(a1) + λ(a2) > λ(a). We can

then perform a linear transformation of the chart cB → c̃B, and write

c̃ᾰ ◦ hΛ/µ(gR, µ) =
(µ

Λ

)λ(ᾰ)

gᾰR as Λ→∞. (3.95)

Therefore, we could conclude that the leading order of the bare couplings when Λ→∞
is dictated by the eigenvalues λ(a). However, when we withdraw the condition on

the relevant eigenvalues, the second and possibly higher-order terms in gR can give

contributions that are more important than the RHS of (3.95). Also, logarithmic terms

will appear for exceptional dimensions.

UV Schemes

The parametrization of the renormalized manifold, c̄R, that minimal subtraction

schemes generate using (3.88), is necessarily a normal parametrization (since minimal

subtraction schemes are a subclass of UV schemes).

These type of schemes are purely Wilsonian, as they can be defined in a neigh-

bourhood of the fixed point without integrating out the IR degrees of freedom. Let us

notice that, in general, the variation of all relevant normal couplings, fixing to zero all

irrelevant and marginal ones, covers just a submanifold of the full renormalized man-

ifold. This relevant submanifold, WR ⊂ R, is also invariant under the Wilson flow,

just as (2.64) proves: if initially, only relevant couplings are non-vanishing, the reso-

nant condition of [Bp]
α
α1...αm

guarantees that this condition will be maintained along the

flow.8 In any case, the full parametrization of R can require the inclusion of suitable

marginal coordinates: the marginally relevant coordinates.

Normal coordinates characterize the flows along the renormalized manifold by their

8In fact, WR has better properties than R. For instance, it cannot develop boundaries at the fixed
point itself.
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linearised rates as they leave the fixed point. This follows immediately from (2.64), but

it is also true for any choice of the renormalized scheme (i.e. the charts that parametrize

the renormalized manifold, cR). Assuming a fully diagonalizable fixed point,

f ᾰΛ/µ,Λ = cᾰR(sΛ
∗ ,Λ) + (Λ/µ)

−λ(ᾰ′)
(
∂ c̄ᾰ′c

ᾰ
R

)∣∣
(sΛ∗ ,Λ)

c̄ᾰ
′
+O

(
c̄2
)
, as Λ/µ→∞. (3.96)

If the eigenvalues satisfy λ(a1) + λ(a2) ≤ λ(a3), for some a1, a2, a3, then generically as

Λ/µ → ∞, there are higher order terms that are as important or more important

than the linearised terms shown in (3.96). In particular this is always true if a1 or a2

corresponds to a non-vanishing marginally relevant coupling. Also, in a logarithmic

conformal field theory, (3.96) has to be corrected with logarithmic contributions of

Λ/µ.9

3.2.3 Other Renormalization Schemes

Physical Schemes

The usual mass-dependent schemes used in QFT are defined in terms of correlation

functions of the elementary fields. They require the integration of all the quantum

fluctuations. In this thesis we are interested in the gravity duals of gauge theories,

which are manifestly gauge-invariant, so the correlation functions of elementary fields

do not have a gravity counterpart. However, we can define a similar renormalization

scheme in terms of other observables, like Wilson loops or correlation functions of gauge-

invariant operators. This requires the intermediate usage of another renormalization

scheme, such as the UV scheme above, in order to calculate them. For example we can

choose to define the Yang-Mills coupling gYM through the expectation of a Wilson loop

〈W (C)〉 in general, by setting it equal to the exact formula for N = 4 Yang-Mills at

large ’t Hooft coupling Ng2
YM [5] even when the theory no longer corresponds exactly

to N = 4 Yang-Mills in this limit. At least for small perturbations away from such a

theory, we can expect this definition of gYM to remain sensible. An interesting property

9In [6], the UV scheme is in fact defined in base of these rates. However, this definition presents
some difficulties that are particularly important in resonant cases. Normal coordinates avoid such
difficulties and allow to define the UV scheme with complete generality.
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of such physical schemes is that the beta functions are sensitive to IR details, such as

mass thresholds or the choice of vacuum state, if degenerate.

Projection Scheme

A natural scheme for defining renormalized couplings in Wilsonian flows is by pro-

jection, by which we mean that they are defined through the coefficient of the natural

operator in the Wilsonian effective action. Thus we pick a subset of the coordinates in

a linear parametrization of S[γ;ω] as defined in (2.11) to play the role of the renormal-

ized couplings. An example should make this clearer. In Yang-Mills theory a natural

way to define gYM directly from the Wilsonian action is to define the coefficient of the

field-strength squared term in the Wilsonian action to be F 2/4g2
YM(Λ). This defines

a coupling that runs with Λ under (2.36). It can be considered to be renormalized

if it is chosen to be finite when the integrating out is continued down to values of Λ

corresponding to finite energies. Once we are on R, all the couplings gα then become

functions of these renormalized couplings. In this example we would have gα ≡ gα(gYM).

Clearly, this scheme breaks down when the projection is not injective. The evolution of

renormalized couplings in projection schemes is sensitive to the dynamics of the theory

at the probed scales. However, unlike the physical schemes, they are of Wilsonian na-

ture and the value of the renormalized couplings at a given finite renormalization scale

does not depend on lower scales.
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Chapter 4

AdS/CFT Correspondence

Don’t you hear my call though you’re many years away

Don’t you hear me calling you

Write your letters in the sand

For the day I take your hand

In the land that our grandchildren knew.

From ’39, Queen

In chapter 2 we have introduced the Wilsonian renormalization group, which essen-

tially consists in rewriting a theory using more suitable degrees of freedom in the path

integral formulation according to the tested energy scale. More generally, by virtue of

the equivalence theorem [68, 69], any redefinition of the Lagrangian (or microscopic)

degrees of freedom leaves unchanged the quantum theory.1 The existence of different

microscopic descriptions of the same theory2 is highly interesting. It allows to use one

description or the other depending on the regime of the theory we are interested in.

This is why the existence of dualities relating different quantum theories is one of the

most remarkable facts in theoretical physics. We say that there is a duality between two

microscopic descriptions apparently different if they describe the same theory. For in-

stance, the 1+1 dimensional theories known as the sine-Gordon model and the Thirring

1In fact, the renormalization group can be understood precisely as a continuum redefinition of the
quantum fields [70].

2Here, by theory we mean a Hilbert space with a corresponding algebra of observables.
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model:

SSG =

∫
dx2

[
1

2
∂µφ∂

µφ+
α

β2
(cos βφ− 1)

]
,

ST =

∫
dx2

(
ψiγµ∂

µψ +mψ̄ψ − g

2
ψ̄γµψψ̄γµψ

)
, (4.1)

with φ and ψ scalar and fermionic fields respectively seem to describe completely dif-

ferent physics. However, thanks to the phenomenon of bosonization [71, 72], we know

they are two descriptions of the same theory with the identification

β

4π
=

1

1 + g/π
. (4.2)

Notice also how this duality relates the weak coupling regime of one with the strong

coupling regime of the other.3 This is a weak-strong coupling duality. This kind of

dualities allows to make calculations in a strong-coupling regime of a theory, otherwise

hardly treatable.

Other examples of weak-strong coupling dualities in quantum field theory are elec-

tromagnetic dualities in supersymmetric theories like S-duality and Seiberg duality

[73–76].

There are also a lot of dualities in ST (like T and S-dualities). Some of them,

relate weak and strong coupling regimes of different perturbative string theories [77].

It was the discovery of these dualities in the nineties what gave room to the second

superstring revolution [78]. But maybe, the duality which has shaken more deeply

theoretical physics has been the Gauge/Gravity duality (also referred to AdS/CFT

correspondence). It is a duality between string theories (and thus, gravity) in d + 1

dimensions and quantum field theories in d dimensions. This particular relation between

the dimensions motivates to use the name of holography for this kind of dualities. In

fact, the holographic character of gravity had been proposed time before the discover

of the duality by ’tHooft [79] and further developed by Susskind [80]. Their ideas were

based on the physics of black holes and their thermodynamic properties [81]. They

proposed the holographic principle, which says that, in a quantum theory of gravity,

3The elementary fermionic degrees of freedom of the Thirring model are mapped into solitons of
the sine-Gordon model and the elementary bosonic degrees of freedom of the sine-Gordon model into
fermion anti-fermion bound states of the Thirring model.
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the degrees of freedom of a given volume are encoded on its boundary.

It was in 1997 when Mandalcena conjectured the first example of Gauge/Gravity

duality [5]. He found that the SU(N) gauge theory in 3+1 dimensions with 4 su-

persymmetric charges4 (commonly known as N = 4 SYM theory), which is conformal

invariant, was dual to type IIB superST on AdS5×S5 space with a specific background

RR field. This explains the name of the correspondence, AdS from the gravity side,

and CFT from the field theory side. In fact, this is not the only realization of the corre-

spondence, many of less supersymmetric Gauge/Gravity dualities have been found (see

for instance [5, 82–87]). Since it is a weak-strong coupling duality, it opens a new door

to make calculations in strongly coupled QFT through their weakly coupled gravity du-

als. It has applications in particle physics (quantum chromodynamics [88, 89], physics

beyond standard model [90, 91]) and condensed matter physics (superconductivity [92],

topological states [11, 93, 94], disordered systems [12, 95]). But not only is it used to

describe strongly coupled systems, it has allowed to make important progress in the

understanding of quantum gravity [96–102].

There is a large amount of reviews and books about the Gauge/Gravity duality. We

recommend, for instance, [103–106].

This chapter does not contain original work. It is a basic review of Gauge/Gravity

duality with emphasis in the main points relevant for this thesis. It is structured as

follows. Section 4.1 is devoted to review the Maldacena conjecture [5]. In section 4.2

we motivate and analyse different crucial aspects of the Correspondence. Along this

section, several entries of the holographic dictionary are discussed. In section 4.3 we

review the holographic renormalization program in its standard form. Many aspects of

AdS/CFT are carefully developed in this section.

4.1 The Maldacena Conjecture

In order to understand the Maldacena’s argument of [5], notions of supersymmetry

(SUSY), supergravity (SUGRA) and string theory (ST) are necessary. However, since

we do not need of these topics in the rest of this thesis, we will not give a detailed

4Given the gauge group, the big amount of symmetries define uniquely the theory. In 3+1 dimen-
sions it is the most supersymmetric quantum field theory one can build.
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introduction to them.5 In any case, in this section we sketch the argument and explain

the main points of it.

We need to consider type IIB ST. It consists of a 10 dimensional supersymmetric

theory of closed strings projected in a specific way.6 The dimensionality of the spacetime

is necessary to cancel the Weyl anomaly of the worldsheet. The low energy limit is given

by type IIB SUGRA, which has the following spectum. The bosonic part is divided

in the NSNS-sector, formed by the metric (graviton), the dilaton and a two-form;

and the RR-sector, with the axion, another two-form and a four-form (all these fields

are real).7 The fermionic part completes the spectrum with two gravitinos and two

dilatinos. These are precisely the massless states of the type IIB string. The mass of

the next massive states is controlled by the Regge slope α′, related with the tension of

the string τ = (2πα′)−1.

Strings propagating in some background of these massless fields are perturbative ex-

citations of the theory around this background, which can be thought of some coherent

state of strings. In fact, the expectation value of the dilaton φ determines the strength

of the coupling between strings gs = eφ.

String theory requires also the introduction of a new kind of non-perturbative ob-

jects, the Dp-branes [111]. They are objects extended in (p + 1) dimensions where

strings can end. Thus, they allow the existence of open strings in type IIB ST (as long

as their extremes are attached to the Dp-brane). They are also sources of the RR forms

introduced before. In particular, a Dp-brane can be source of a (p+ 1)-form (in which

case we say the brane is electrically charged under the form) or of a (d − p − 3)-form

(the brane is magnetically charged under the form). Thus, type IIB ST can only have

Dp-branes with p odd.

The Madacena’s argument starts considering a stack of N coincident D3-branes.

They are charged under the four-form RR-field. Depending on the strength of the

string coupling gs, there are two pictures for this system:

5We recommend [107, 108] as references for SUSY and SUGRA, and [77, 109] for String Theory.
6When one consider the spectrum of a quantized closed string, tachyonic states appear in it. To

get rid of these states, one needs to project out part of the theory. This projection is also chosen to
leave the same number of bosonic and fermionic states, and thus obtain a supersymmetric theory. This
is the known GSO projection [110].

7These names come from the boundary condition imposed for the two modes of the closed string,
namely, the Neveu-Schwarz condition (NS) and the Ramond condition (R).
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• In the limit of weak string coupling, gsN << 1, a stack of coincident branes will

not perturb the spacetime, which will stay as 10-d Minkowski. Excitations of

the branes are given by open strings attached to them, that can interact with

closed strings in the flat spacetime (excitations of the background). Open strings

can start and end in different branes, and so, they are labeled by two indexes,

i, j = 1, . . . , N . In fact, the massless excitations of the open string sector can be

seen as fields living in the world-volume in the adjoint representation of SU(N).

This configuration of branes breaks one half of the original 32 supersymmetries

of type IIB, and thus, massless excitations have to be described by the N = 4

SU(N) supermultiplet, which has the same number of supersymmetries. This is

the open string perspective.

• If gsN >> 1, the previous picture is no-longer valid. However, there are solitonic

solutions in SUGRA known as black branes, that source the same RR-fields (the

four form C(4)) and preserve the same symmetries. Thus, they are assumed to

describe the background produced by a stack of branes in this limit. The geometry

and RR-field in the background are given by

ds2 = H(r)−1/2ηµνdx
µdxν +H(r)1/2(r)δmndx

mdxn,

µ, ν = 0, . . . , 3, m, n = 4, . . . , 9,

H(r) = 1 +
L4

r4
, L4 = 4πgsNα

′ 2, r2 = δmndx
mdxn,

C(4) =
(
1−H(r)−1

)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 + . . . (4.3)

were the ellipsis represent additional terms necessary to make the field strength

F(5) = dC(4) self-dual. We obtain a picture of closed strings propagating in a

background given by (4.3). This is the closed string perspective.

The argument follows considering the leading contribution of both perspectives in the

α′ → 0 limit. In the open string perspective, closed strings and open strings decouple.

Not only that, the dynamics of the open string sector is given by N = 4 SYM theory

with the SU(N) gauge group and gauge coupling g2
YM = 2πgs. Furthermore, the α′ → 0

limit for the closed string sector is type IIB SUGRA on Minkowski space.

The closed string perspective is also described by two decoupling sectors. On the
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one hand, we have closed strings propagating in the r >> L region, which is a 10-d

Minkowski space with no RR-field. When α′ → 0, L → 0, and the absorption cross

section goes to zero. Thus, its limit is given also by type IIB SUGRA on Minkowski

space. On the other hand, closed strings propagating with r ≈ 0 keep trapped in the

throat. To describe them, one introduces a new coordinate z = L2/r. In the α′ → 0

limit, the spacetime and RR-field become

ds2 =
L2

z2

(
ηµνdx

µdxν + dz2
)

+ L2ds2
S5 ,

C(4) =
L4

z4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 + . . . (4.4)

The geometry is the expected AdS5 × S5 space.

Summarizing, one obtains that in both cases, the leading contribution when α′ → 0

is given by two decoupled theories: type IIB SUGRA in Minkowski space and another

theory depending on the perspective:

• N = 4 SYM in four dimensions with a SU(N) gauge group and a gauge coupling

g2
YM = 2πgs (4.5)

when gsN << 1.

• Type IIB ST on AdS5 × S5, with radius of curvature L given by

L4/α′2 = 2g2
YMN (4.6)

and a background RR four-form given by (4.4) when gsN >> 1.

Thus, it is natural to conjecture that both theories are two descriptions of the same

theory (each one accurate in its respective limit).

4.2 Basics of AdS/CFT

Let us review (4.5) and (4.6) the relation between the couplings in both theories.

When we take the number of colors N large in the quantum field theory, and keep
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λ = g2
YMN fixed (this is the ’t Hooft or planar limit [3]), the string coupling gs goes

to zero, making the ST classical. Also, the strong coupling limit λ → ∞ in the field

theory, is dual to the α′ → 0 limit in the ST, or what is the same, the SUGRA limit.8

Other Gauge/Gravity realizations have been found that share this relation: the

large N limit of a field theory in d dimensions is mapped to the classical limit of the

dual gravity description with d+1 extended dimensions. These other realizations of the

correspondence are found using different configuration of branes in ST [5, 82, 83, 85], but

also in other non-supersymmetric contexts, like the higher spin/vector model duality

[86, 87].

There are also diagrammatic arguments in favor of the correspondence: the Feynman

diagrams in the large N limit are arranged in a similar way as the stringy diagrams in

the genus expansion [103]. It is also possible to justify the holographic extra dimension

as the Liouville field necessary to avoid the Weyl anomaly problem of the ST in a

non-critical dimension [112, 113].

In light of these facts, it seems quite sensible to assume there is a general duality

between gravity theories with AdSd+1 vacua and d-dimensional conformal field theories

with large N expansion, relating the classical limit of one theory with the large N limit

of the other. If so, a general dictionary translating objects of one theory to the other

should exist. This is the known holographic dictionary. Along this subsection, we will

try to motivate those entries relevant for this thesis.

4.2.1 AdS Space

Global symmetries of both descriptions have to agree, since they are properties of

the common theory.9 To start with, we analyse the AdS space and the symmetries that

it possesses.

The (d + 1) Anti-de Sitter space (AdSd+1) is the maximally symmetric Lorentzian

manifold with constant negative curvature. It can be defined as the submanifold of the

8In fact, the complete equivalence of the theories at any value of the couplings is known as the
strongest form of the correspondence. If one only trusts in one of these limits, we speak about the
strong and weak form of the correspondence respectively.

9This is not what one expect of gauge symmetries, since they are a redundancy of the description
more than an actual symmetry of the theory. However, we will see later that there is an entry of the
dictionary involving gauge symmetries.
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flat space Rd+2 =
{

(X0, . . . , Xd+1)
}

with metric η̃ = diag(+,−,−, . . . ,−,+) satisfying

η̃MNX
MXN = L2, where L is the radius. This construction makes explicit that the

connected isometry group is SO(d, 2). The coordinates (z ∈ R+, xµ ∈ R), with µ =

1, . . . , d, can parametrize this submanifold in the following way:

X0 =
z

2

(
1− ηµνx

µxν − L2

z2

)
, X i =

xi

z
L,

Xd =
z

2

(
1− ηµνx

µxν + L2

z2

)
, Xd+1 =

xd

z
L. (4.7)

with a inherited metric

ds2 =
L2

z2

(
dz2 + ηµνdx

µdxν
)
. (4.8)

Notice that these are the coordinates used in (4.4), and are the Poincaré patch coordi-

nates. They only parametrize one half of the total AdSd+1, known as Poincaré patch:

if XN is in the covered piece, −XN , which trivially also belong to the AdSd+1, is not.

Other set of coordinates that do cover the complete AdSd+1 are the global coordinates:

X0 = L cosh ρ cos τ,

Xd+1 = L cosh ρ sin τ,

X i = LΩi sinh ρ, i = 1, . . . , d, (4.9)

where
∑d

i=1 Ω2
i = 1, −π < τ ≤ π and ρ > 0. The metric is written as

ds2 = L2
(
cosh2 ρ dτ 2 − dρ2 − sinh2 ρ dΩ2

d−1

)
, (4.10)

where dΩ2
d−1 is the volume element of the Sd−1 sphere. Under a Weyl rescaling of the

metric

ds̃2 = ds2/
(
L2 cosh2 ρ

)
, (4.11)

and a redefinition of the coordinate dρ̃ = dρ/ cosh ρ, we see how the AdSd+1 space is

conformally equivalent to a warped solid (d+ 1)-cylinder of height 2π and radius π/2:

ds̃2 = dτ 2 − dρ̃2 − sin2 ρ̃ dΩ2
d−1. (4.12)
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Figure 4.1: (d + 1)-Lorentzian anti-de Sitter space. At every point there is a (d −
2)-sphere. On the green vertical plane, the spheres collapse to a point. Also, we
have to identify every point of the spheres with its antipode in the sphere which is
located symmetrically under the green plane. The two grey oblique planes delimit the
Poincaré patch. Its conformal boundary can be understood as the Penrose diagram of
the Minkowski space.

It is represented in Figure 4.1. We have only drawn a S1 component of the full Sd−1

to make the cylinder representable.10 Let ψ ∈ ]−π, π] be the polar angle of the cylinder

with origin in the blue dashed line. Every point in the picture represents a (d − 2)-

sphere of radius sin2 ρ̃ sinψ (over the green vertical plane, they collapse to a point).

Additionally, we have to identify every point of the spheres with its antipode in the

sphere located symmetrically under the green plane.

Notice also that due to the periodicity of τ , the upper and lower faces are connected

with periodic boundary conditions.11

10A description of the Sd−1 of radius R can be done in the following way. We start with a S1 of
radius R, parametrized with the angle ψ ∈ ]−π, π], times a (d− 2)-sphere. Then, we make the radius
of the (d − 2)-sphere to be R sinψ. Notice that at ψ = 0 and ψ = π, the Sd−2 shrinks to a point. If
we identify the points (ψ, v) ∼ (−ψ,−v), being −v the antipode of v ∈ Sd−2, we obtain the Sd−1.

11The AdSd+1 is not simply connected and has closed timelike curves. One can also work with the
universal covering space, which removes closed timelike curves and is obtained decompactifying τ . It
is thus given by a cylinder with infinite height.
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The AdSd+1 space does not have any geometric boundary. However, the Weyl

rescaling of (4.11) shows it does have a conformal boundary Sd−1×S1. In this boundary,

the AdS metric induces a specific conformal class we analyse below.12 Furthermore, an

isometry in AdSd+1 induces a conformal transformation in the boundary.

The Poincaré patch described by (4.7) is the open set comprised between the two

grey oblique planes of Figure 4.1. The conformal boundary of such region is a (d− 2)-

sphere times the half square given by ρ = π/2, 0 < ψ < π, and |τ | < π − ψ (see

Figure 4.1). The coordinates (τ, ψ) can be replaced by

r =
sin(ψ)

cos(τ) + cos(ψ)
, t =

sin(τ)

cos(τ) + cos(ψ)
, (4.13)

with r ≥ 0 and t ∈ R. The inherited metric from (4.12) is then

ds̃2
∣∣
boundary

=
4

[1 + (t− r)2] [1 + (t+ r)2]

(
dt2 − dr2 − r2dΩ2

d−2

)
. (4.14)

Therefore, we obtain the conformal class of the d-dimensional Minkowski space.

In the Poincaré patch coordinates, the conformal boundary is reached when z → 0.

From (4.8), it is manifest that it inherits the conformal structure of the Minkowski

space.

The set of conformal transformations of the d-dimensional Minkowski has the struc-

ture of SO(d, 2), exactly as the connected component of the isometry group of AdSd+1.

This shows the fundamental relation between conformallity of d-dimensional Minkowski

space and geometry of AdSd+1. The first entry of the holographic dictionary is thus that

isometries in the AdSd+1 are in one-to-one correspondence with conformal transforma-

tions in the field theory. It suggests that the field theory can be thought as living in

the AdSd+1 boundary. Also, we will refer to the gravity theory as living in the “bulk”.

We thus find the holographic principle in all its glory.

In this thesis we will mainly work in Euclidean time, after a Wick rotation. The

Euclidean version of AdSd+1 is given by the hyperbolic space Hd+1 (in the rest of the

thesis, we will call it AdSd+1 too). To define it, we can perform a Wick rotation in the

12In general, any submanifold of a given pseudo-Riemannian manifold inherits a metric. In this case,
since we first have to “bring the boundary from infinity” with a Weyl transformation, the inherited
metric will be only defined up to Weyl transformations.
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d+ 2 flat space where AdSd+1 can be embedded, Xd+1 → iXd+1. The metric becomes

η̃ = diag(+,−,−, . . . ,−,−), and thus, the space η̃MNX
MXN = L2 is Riemannian. The

connected component of the group of isometries in this case is thus SO(d + 1, 1). A

possible parametrization is given by (yA ∈ R), with A = 1, . . . , d+1 with the restriction∑
A

(
yA
)2
< 1 :

X0 = L
1 +

∑
A

(
yA
)2

1−∑A (yA)2 , XA =
2L

1−∑A (yA)2 . (4.15)

The Euclidean metric in these coordinates results:

ds2 =
4L2[

1−∑A (yA)2]2 δABdyAdyB. (4.16)

The hyperbolic space Hd+1 is thus not only topologically equivalent to a d + 1 solid

ball (without boundaries) but also conformally equivalent. The conformal boundary of

Hd+1 is then Sd, which is also conformally equivalent to the compactification of the flat

space Rd.

One can also use the Poincaré patch coordinates for Hd+1. Using the parametriza-

tion of (4.7) changing ηµν → −δµν , one obtains the Euclidean metric

dz2 =
L2

z2

(
dz2 + δµνdx

µdxν
)
. (4.17)

In contrast with the Lorentzian case, in this case, the Poncaré patch coordinates do

cover the complete space.13 The conformal boundary is again located at z → 0. It is

clear it inherits the conformal structure of the flat space Rd. The extra point necessary

to compactify it to Sd is reached in the z → ∞ limit. As for the Lorentzian case, the

conformal group of the flat Rd, SO(d+ 1, 1), agrees with the isometry group of Hd.

13One should not be surprised of this fact. For instance, in d-Minkowski space, the Rindler coordi-
nates cover only the Rindler wedge (a non-dense subset of the full Minkowski space). However their
euclidean version (polar coordinates) do cover a dense part of the full flat space Rd.
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4.2.2 Field/Operator Correspondence

Let us now consider scalar field theories living in AdS spaces. They can be seen as

truncations of UV-finite theories with conformal duals. As in the rest of the thesis, we

work in the Poincaré patch coordinates. The action is given by

S =

∫
dd+1xA

√
g
[
∇AΦi∇AΦi + U

(
Φi
)]

+ Sother fields, (4.18)

with A = 0, 1, . . . , d, xA = (z, xµ), gAB the metric of AdSd+1 and the potential,

U = u0 +
u(i)

2
ΦiΦi +

uijk
3!

ΦiΦjΦk +O(Φ4), (4.19)

with u(i) = M2
(i) the diagonalized mass of the fields. In [114, 115], the quantization of a

scalar field in AdS spaces was studied. The authors found that although the mass of the

fields can be negative, only fields with M2 > −d2/4L2 are stable and can be quantized

preserving the AdS symmetries. This is the known Breitenlohner-Freedman bound.

Even more, they proved that when −d2/4 < L2M2 < −d2/4+1 two different boundary

conditions in the conformal boundary can be used, giving different quantizations for

the same field theory living in the bulk. For M2L2 ≥ −d2/4 + 1, only one boundary

condition can be used. What they did was to search for the boundary conditions which

allow to construct Hilbert spaces for the free case with the scalar product

〈Φ1,Φ2〉 = i

∫
Σ

ddx
√
|g|gdd (Φ∗1∂dΦ2 − ∂dΦ∗1Φ2) , (4.20)

and that keep the energy finite. In (4.20), Σ is a spacelike slice.

The equation of motion is

zd+1 ∂

∂z

[
z−d+1 ∂

∂z
Φi

]
+
(
gµνkµkν −m2

(i)

)
Φi =

∂

∂Φi
Uint

(
Φi
)
, (4.21)

with kµ = i∂µ, m2
(i) = L2M2

(i) and Uint the cubic and higher orders of the potential. Let

us restrict to the non-interacting case. The asymptotic form of the solution close to the
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boundary is

Φi = z∆−
(i)

{
Φi

(0)(x) + z2Φi
(2)(x) + · · ·+ z2ν(i)

[
Φ̃i

(2ν)(x) + z2Φ̃i
(2ν+2)(x) + . . .

+2 log z
(
Φi

(2ν)(x) + z2Φi
(2ν+2)(x) + . . .

) ]}
, (4.22)

where

ν(i) =

√
d2

4
+m2

(i), ∆±(i) =
d

2
± ν(i), (4.23)

and the ellipsis are generically an infinite tower of higher order terms following the same

pattern. The logarithmic terms appear only if ν(i) ∈ N0. In that case, every Φi
(2ν+2n)(x),

with n ∈ N0, will be accompanied by log z. If ν = 0, there are no terms Φi
(n) without

log z.

The function Φi
(0)(x), with the equations of motion determine all the remaining

Φi
(n) functions. The boundary condition valid for all the range m2

(i) > −d2/4 and

preserving the AdS symmetries consists in fixing Φi
(0)(x) = 0. Then, the whole tower of

functions that depend on it vanish. The remaining modes are normalizable under (4.20).

This is the standard boundary condition. The boundary condition that only applies

if −d2/4 < m2
(i) < −d2/4 + 1 fixes Φ̃i

(2ν)(x) = 0 (it fixes also the tower of Φ̃i
(n)(x) to

zero). In this case, the remaining modes are also normalizable under (4.20). This is

the alternate boundary condition.14 As it is emphasized in [116], when a scalar has a

mass in the −d2/4 < m2
(i) < −d2/4 + 1 range, two different quantizations are possible,

and thus, two different dual conformal field theories exist, but typically, only one is

supersymmetric.

In the following, we restrict ourselves to the standard quantization case, and post-

pone for later this discussion for the alternate quantization. One can wonder what is

the dual (if it exists) of a bulk theory with different boundary conditions. This is, if one

can fix the non-normalizable modes to some non-vanishing value in the boundary, and

obtain something physical in the dual quantum field theory. Taking into account that

such a boundary condition would break the AdS symmetries (and thus, the conformal

symmetry of the quantum field theory), and that the field theory can be thought as

14See [116] for a different argument with the same conclusion.
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living in the conformal boundary, [117, 118] proposed to interpret the non-normalizable

modes as sources of operators of the conformal theory. This is, a theory in the AdS-

space with a boundary condition fixing the non-normalizable mode to be some function

J(x) would be dual to the conformal theory deformed with a source J(x) coupled to

some operator Oi(x) whose form we will specify below.15

For the standard case, the central formula capturing this relation is

〈e−N2
∫
ddxJi(x)Oi(x)〉CFT =

∫
Φi

(0)
=Ji
DΦ e−κ

−2SG[Φ], (4.24)

where Φ stands for all the fields living in the gravity side and κ is related to the Newton

constant and gs, κ
2 ∼ GN ∼ g−2

s . In the κ → ∞ limit, the path integral of the right

hand side of (4.24) is dominated by the classical solution, and can be approximated

by the exponential of the on shell action. From (4.5) and (4.6), this limit corresponds

to the large N limit of the conformal theory and thus it can be used to compute the

generating functional of the dual field theory.

This gives us other entry of the dictionary: there is a correspondence between fields

in the gravity side and operators of the conformal dual. Since gauge symmetries are

redundancies of the description, physical operators of the conformal theory have to be

neutral under gauge charges. We will assume that the conformal theory is described

by a matrix theory, i.e. a theory with all the fields in adjoint representations of the

gauge group.16 In Sections 2.4.3 and 3.1.6 we have reviewed many properties of these

theories from the Wilsonian point of view. In section 4.3 we will see how to introduce

insertions of multi-trace operators generalizing the boundary conditions. Insertions of

descendant operators can be achieved by means of derivatives of the sources. Therefore,

only primary single-trace operators are in one-to-one correspondence with bulk fields.

The conformal dimension of the operator is related to the mass of the dual field.

Dilatations are part of the conformal group: xµ → λxµ. In Poincaré patch coordinates,

15Actually, in [117, 118], they only work in the Euclidean version of the correspondence and with
the standard quantization. The correct understanding of the division between modes and the different
forms of quantization was developed in [116, 119].

16This is the case of N = 4 SYM . There are however other examples of the duality with vector
representations [86, 87]. The large N normalization done here can be easily generalized to other cases.
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the associated isometry is particularly simple:

z → λz, xµ → λxµ. (4.25)

Given the behaviour of the source of an operator Oi(x) with the z coordinate in (4.22),

the actuation of a infinitesimal dilatation D will be then

[D,Oi(0)] = −i∆+
(i)Oi(0), (4.26)

Thus, the conformal dimension of a scalar single-trace operator dual to the field Φi is

∆+
(i) (see (4.23)).

4.2.3 Vector Fields and Backreaction

Of course, not only scalar fields are dual to operators. Every field of any spin has a

corresponding dual operator. For example, a vector gauge field in the bulk will be dual

to a conserved current in the boundary. As every conserved current, it will generate

a global symmetry of the boundary theory. This global symmetry corresponds to the

large gauge transformations associated with the original gauge symmetry, that are

actual symmetries of the bulk theory. In any case, we have found another entry of the

dictionary: global symmetries in the boundary are associated with gauge symmetries

in the bulk. See [120] for a precise discussion of the normalizable and non-normalizable

modes of vector fields in AdS spaces.

Also, the metric field in the bulk, which is a dynamical field, has a dual operator:

the energy-momentum tensor of the dual theory Tµν . Any complete description has to

take into account back-reaction of the metric described by the Einstein-Hilbert action.

This of course deforms the AdS-space. However, if the only activated sources are those

associated with fields going fast enough to zero at the boundary (for example, negative

mass scalar fields), the space will stay asymptotically AdS (AAdS). An AAdS-space can

be defined as any space with the same conformal boundary as the AdS space, both in

the Lorentzian and Euclidean versions [103]. Its metric can be expanded as [121, 122]:

ds2

L2
=
dz2

z2
+ γµν(x, z)dx

µdxν , (4.27)
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with

γµν(x, z) =
1

z2

[
γ(0)
µν (x) + z2γ(2)

µν (x) + · · ·+ zd log zγ(d)
µν (x) + zdγ̃(d)

µν (x) +O(zd+1)
]
.

(4.28)

The logarithmic term only appear when the d dimension is even. Notice how the

field γ
(0)
µν (x) is the metric of the conformal dual theory: a conformal transformation

converts the conformal boundary into a geometric boundary with γ
(0)
µν (x) as inherited

metric. This is the source of the energy-momentum tensor of the dual conformal the-

ory. Analogously to the scalar case, fixing γ
(0)
µν (x) and using the equation of motion

(Einstein equations), one can obtain all the coefficient γ
(2)
µν (x), γ

(4)
µν (x), . . . up to γ

(d)
µν (x).

They depend locally on γ
(0)
µν (x). In this case, part of γ̃

(d)
µν (x) is also fixed: the trace

γ(0)µν(x)γ̃
(d)
µν (x) and the divergence ∇µ

(0)γ̃
(d)
µν (where ∇(0) is the Levi-Civita connection

of γ(0)) are determined by γ(0). The other components are not fixed by the near bound-

ary analysis, and they can only be fixed after solving the full equation of motions in

the whole space. If the dimension d is odd,

γ(0)µν(x)γ̃(d)
µν (x) = 0,

∇µ
(0)γ̃

(d)
µν = 0. (4.29)

See [123] for a detailed near boundary analysis.

4.3 Holographic Renormalization

There is something important that remains to be said. If one tries to use (4.24) just

like it is to make actual calculations, one will run into problems soon. In fact, both

the left hand side and the right hand side of (4.24) are ill-defined. The left hand side

contains UV divergences characteristic of any continuum quantum field theory (as we

discussed in section 2). The right hand side has divergences coming from the infinite

volume integration of the AdS-space close to the boundary. Both divergences are in

fact related [124]. Thus, we will call UV zone the near boundary region of the AdS (i.e.

the zone where z approaches zero).

It is known what to do in the quantum field theory side: first, the theory has to
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be regularized with a cutoff in a consistent way, and then, the cutoff has to be taken

to the infinity with a well-defined renormalization procedure. The gravity side requires

the same treatment.

There are different ways to treat these divergences carefully.17 For instance, in [125],

this was done regulating the AdS and removing the region z < ε for some ε > 0 in the

Poincaré patch coordinates.18 Then, one can perform computations in a manifold with

a geometric boundary (and not a conformal boundary) at z = ε. Boundary conditions

are therefore imposed at this geometric boundary. After all computations are done, one

can take the ε → 0 limit removing local divergences if necessary, to isolate the finite

and physical answers.

Another method is the one used in the largely-studied holographic renormalization

program [126]. In this section, we will introduce and summarize the main ideas and

concepts related to it that are necessary for the understanding of the present thesis.

The essential idea is the following one. One keeps the boundary conditions of (4.31)

in the far UV, but also performs bulk integrations only in the region z > ε. The limit

ε → 0 is of course divergent, but one can add suitable local counterterms at z = ε to

achieve a finite limit. The counterterm action

Sct(ε;ϕ, . . . ) =

∫
ddxSct(ε;ϕi(x), ∂ϕi(x), . . . ), (4.30)

is chosen to cancel all the infinities. It can depend on ε and is covariant and local in its

arguments, which are the bulk fields localized at z = ε. We represent them generically

by ϕ. Locality in this context means Sct depends only on the fields and a finite number

of their derivatives evaluated on the point x.

Thus, the renormalized version of (4.24) is

〈eN2
∫
ddxJiOi〉renCFT = lim

ε→0

∫
Φi

(0)
=Ji
DΦ exp

{
−κ−2

[∫
z>ε

dz ddxLG +

∫
ddxSct(ε; Φ(ε, x))

]}
,

(4.31)

17In fact, one of the purposes of this thesis is to study different treatments in light of the Wilsonian
RG.

18Notice this breaks the isometries of the bulk associated with the dilatation in the boundary
(and also special conformal transformations), but keep conserved those associated with the Poincaré
transformation in the boundary.
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where Φi not only represent the scalar fields, but all kind of fields (vector fields, metric,

etc. . . ). The main aim of the holographic renormalization program is thus to find the

required counterterm action.

4.3.1 Standard Quantization

The holographic renormalization method for the standard quantization was system-

atically defined in [123]. Before that, it had been already used in [126] to compute the

Weyl anomaly in gravity duals. It is also used in [127, 128] to systematically compute

the correlation functions for domain wall holographic solutions. See also [129] for a

pedagogical introduction.

The spirit of the holographic renormalization program is to find the counterterm

action using the asymptotic behaviour of fields and equation of motion. In fact, this

asymptotic behaviour is enough to calculate the required counterterms, and there is no

necessity of solving the full system, which would make the problem intractable.

For now, we will restrict to relevant and marginal operators, i.e., operators with

dimension ∆ ≤ d. For scalar fields, this condition is translated to considering only

fields with negative or vanishing mass.

From the equation of motion, we already noticed that the asymptotic form of a free

scalar field is of the form of (4.22). In general, for any field, from the equations of

motion, one can find the asymptotic behaviour depending locally on two fields which

we will call Φ(0)(x) and Φ̃(2ν)(x) in analogy to the scalar field case. One can then

find the divergent terms of the on shell action as ε goes to zero without knowledge of

the IR region as function of Φi
(0)(x) and Φ̃i

(2ν)(x). This will be Sdiv[ε; Φi
(0)(x), Φ̃i

(2ν)(x)].

Inverting (4.22), one can write Sdiv as function of ϕi(ε, x). In principle, it should

depend also on Φ̃i
(2ν)(x), but it contributes only to finite terms, so its dependence can

be discarded. One finally arrives to the covariant couterterms:

Sct(ε;ϕ
i(x)) = −Sdiv[ε;ϕi(x)]. (4.32)

With this procedure, one can easily find that for a free massive scalar without back-
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reaction, with ν /∈ N0, the required counterterms are

Sct[γ, ϕ] = −1

2

∫
ddq

(2π)d
√
γ ϕ(−q)

[
d

2
+ qγ

I ′−ν(qγ)

I−ν(qγ)

]
local

ϕ(q)

= −1

2

∫
ddq

(2π)d
√
γ ϕ(−q)

[
∆− +

q2
γ

2− 2ν
+ . . .

]
ϕ(q), (4.33)

where qγ =
√
γµνqµqν , and the subscript “local” indicates a truncation of irrelevant

terms that go to zero in the limit, and thus, they can be discarded to make the expression

local. In this case, irrelevant terms are those order O(qnγ ) with n > 2ν(i). Notice how

in this case Sct does not depend explicitly on ε. For ν ∈ N+ the expression is

Sct[ε; γ, ϕ] = −1

2

∫
ddq

(2π)d
√
γ ϕ(−q)

[
d

2
+ qγ

K ′ν(qγ)

Kν(qγ)

∣∣∣∣
local

+ aν q
2ν
γ log

ε

µ

]
ϕ(q)

= −1

2

∫
ddq

(2π)d
√
γ ϕ(−q)

[
∆− +

q2
γ

2− 2ν
+ · · ·+ aν q

2ν
γ log

ε

µ

]
ϕ(q), (4.34)

where

aν =
(−1)ν

22ν−2Γ(ν)2
. (4.35)

In this case, “local” stands for the terms with lower powers in qγ: q
n
γ with n < 2ν. In

fact, starting in q2ν
γ , divergent terms containing log qγ appear too, but are discarded.

4.3.2 Hamiltonian Renormalization

Although the method explained above is well-defined and can be used systemati-

cally, it becomes quickly tedious as soon as one increases a bit the complexity of the

system. The inversion of the asymptotic series can be highly non-trivial. An alterna-

tive method, known as Hamiltonian renormalization, has been developed giving same

results [130, 131]. Let Sreg(ε; Φ) be the on shell action integrated until z = ε with

boundary conditions on ε given by Φ(x). Making variations with respect to the bound-

ary condition one finds

δSreg =

∫
ddxΠΦ δΦ, (4.36)
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where ΠΦ is the canonical radial momentum associated with the field Φ. If we want

just to solve the regulated problem without changing ε, a Dirichlet condition imposed

on Φ is a well defined boundary condition δΦ = 0. However, as remarked in [132], the

integrand in this equation does not have a well defined transformation under shifts in

the radial coordinate z. Since we want to send ε to zero, the naive Dirichlet condition

on Φ gives an ill-defined and divergent result.

To modify (4.36) in a covariant way without changing the bulk dynamics, one needs

to introduce the counter-term action:

Sren = Sreg + Sct. (4.37)

To split the regulated action between the renormalized action Sren and the counter-term

action, it is useful to introduce the dilatation operator δD. It acts over any functional

of Φ(x) as

δD =

∫
ddx2γµν

δ

δγµν
−
∫
ddx∆−(i)Φ

i δ

δΦi
, (4.38)

where we have assumed that the only fields are scalars and the metric. For the sake of

simplicity, we restrict the analysis to the scalar sector. The treatment with the metric

is similar. Using the asymptotic expansion of the fields of (4.22) and (4.28) one can

expand ΠΦ(ε; Φ) in eigenstates of δD. The point of doing so is that each eigenstate does

have a well-defined behaviour under shifts in the radial coordinate z. Then,

ΠΦ =
√
γ
(

Π
(∆−)
Φ + Π

(∆−+2)
Φ + · · ·+ 2 log εΠ

(∆+)
Φ + Π̃

(∆+)
Φ + . . .

)
, (4.39)

where

δDΠ
(∆−)
Φ = −∆−Π

(∆−)
Φ , δDΠ

(∆−+2)
Φ = −(∆− + 2)Π

(∆−+2)
Φ , . . .

δDΠ
(∆+)
Φ = −∆+Π

(∆+)
Φ , δDΠ̃

(∆+)
Φ = −∆+Π̃

(∆+)
Φ − 2Π

(∆+)
Φ . (4.40)

The logarithmic term only appears if (∆+ − ∆−)/2 = ν ∈ N0. Also, functionals Π
(n)
Φ

with n ≤ ∆+ are local in Φ, and can be found without requiring regularity in the deep

interior of the bulk. Π̃
(∆+)
Φ is the first term with non-trivial dependence on the bulk
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interior dynamics. It is thus natural to require

δ(Sreg + Sct) =

∫
ddx
√
γ ΠR

Φ δΦ =

∫
ddx
√
γ
[
Π̃

(∆+)
Φ + . . .

]
δΦ, (4.41)

where ΠR
Φ is the called renormalized momentum, and the ellipsis represents vanishing

terms in the ε→ 0 limit. This is achieved imposing

− δSct =

∫
ddx
√
γ

[ ∑
n<∆+

Π
(n)
Φ + 2 log εΠ

(∆+)
Φ

]
δΦ. (4.42)

Alternatively, we can expand Sreg in eigenstates of δD:

Sreg = S(n)
reg + S(n+2)

reg + · · ·+ 2 log ε S(0)
reg + S̃(0)

reg + . . .

δDS
(n)
reg = −nS(n)

reg, . . . , δDS
(0)
reg = 0, δDS̃

(0)
reg = −2S(0)

reg. (4.43)

The value of n depends on the field content. Thus, from (4.36), a scalar field Φ with

dimension ∆+ = ν + d/2 gives contributions n = −2ν,−2ν + 2, . . . Also, if we are

considering dynamical gravity in the bulk, there will be a contributions with n =

−d,−d + 2 . . . As for the momentum expansion, terms S
(n)
reg with n ≤ 0 are local in

their dependence on Φ and can be computed from the asymptotic expansion of the

fields. From (4.42), they give precisely the counterterm action:

Sct = −
(∑
n<0

S(n)
reg + 2 log ε S(0)

reg

)
. (4.44)

Also, the renormalized action in the ε→ 0 limit is simply S̃
(0)
reg.

4.3.3 Expectation Values

Until now, we have identified the leading term in the asymptotic behaviour Φi
(0)(x)

as the source J i(x) of primary single trace operators of the dual theory Oi(x). In

the asymptotic expansion of the fields of (4.22) the source determines all terms but

Φ̃i
(2ν)(x) and its tower of terms. To fix this function we need to solve the problem in
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the whole space requiring regularity in the interior of the AdS.19 In [133] it was shown

it is intimately related with the expectation value of the associated operator 〈Oi(x)〉.
The expectation value of an operator dual to the field Φi is given by

〈Oi(x)〉 = lim
ε→0

1√
|γ(ε, x)|

δ

δΦi
(0)(x)

[∫
z>ε

dz ddxLG +

∫
ddxSct(ε; Φ(ε, x))

]
. (4.45)

Due to (4.41) and the asymptotic behaviour of the fields in (4.22), the functional

Π̂
(∆+)
i =

 lim
z→0

z−d/2 (log z)−1 Π̃
(d/2)

Φi
if if ν(i) = 0,

lim
z→0

z−∆+
(i)Π̃

(∆+)

Φi
if if ν(i) > 0

(4.46)

is the expectation value 〈Oi(x)〉 after taking the ε→ 0 limit.

As noticed in [132],

Π̂
(∆+)
i (x) = −2ν(i)Φ̃

i
(2ν)(x) + C[Φi

(0)](x), (4.47)

where C is a local functional. If ν(i) < 1, it exactly vanishes and the expectation value

is given by the normalizable mode Φ̃i
(2ν)(x). In general however, Φ̃i

(2ν)(x) only gives the

〈Oi(x)〉 up to a local functional of the source, and Π̂
(∆+)
i (x) is the actual expectation

value.

4.3.4 Alternate Quantization

In the subsection 4.2.2 we reviewed how two possible quantizations are possible for

scalar fields in a AdS when −d2/4 < m2
(i) < −d2/4 + 1. However, we have only shown

how to deform the theory and make computable calculations for the standard quanti-

zation. It is also possible to change the boundary conditions of the alternate theory

to achieve deformations. This was first introduced in [116]. However, the complete

formulation including holographic renormalization is given in [132].

If in the standard case Φ(0) and Π̂Φ are sources and expectation values respectively,

the alternate quantization exchanges the roles: Π̂j will be sources and Φj
(0) expectation

19In a Lorentzian AdS, one also have to specify additional boundary conditions associated with the
correct choice of the state [119].
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values. To achieve this, one has to add a suitable term SJ to the action, function of

the asymptotic modes of the fields, Φj
(0) and Π̂j, such that

lim
ε→0

δ(Sreg + Sct + SJ) =

∫
ddx
√
|γ(0)(x)|Φj

(0)(x) δΠ̂j(x). (4.48)

Using (4.41), one finds

SJ =

∫
ddx

√
|γ(0)(x)|Φj

(0)(x) Π̂j(x). (4.49)

Then, when some fields are quantized in the alternate way, (4.31) becomes

〈e−N2
∫
ddx(JiOi+J−j O

j
−)〉renCFT = lim

ε→0

∫
Φi0=Ji

Π̂j=J
−
j

DΦ exp

{
− κ−2

[
Sreg(ε; Φ(ε, x))

+Sct(ε; Φ(ε, x)) +

∫
ddx
√
|γ(0)(x)|Φj

(0)(x) Π̂j(x)

]}
, (4.50)

where the label i runs over fields quantized in the standard way and j over fields

quantized in the alternate way. Due to the asymptotic behaviour of Π̂i, the dimension

of the dual operator in the alternate quantization is ∆−(i). Notice how the allowed values

for the mass −d2/4 < m2
(i) < −d2/4 + 1 of this quantization implies ∆−(i) > d/2 − 1.

This is exactly the unitary bound for the dimension of operators in a unitary theory.

Comparing (4.50) and (4.31) one finds easily that the relation between both quan-

tizations in the large N limit is a Legendre transform:

〈e−N2
∫
ddxJ−j O

j
−〉renCFT =

∫
DJ e−κ−2

∫
ddxJi(x)J−i (x)〈e−N2

∫
ddxJiOi〉renCFT . (4.51)

4.3.5 Multi-trace Deformations

In Section 3.1.6, we have found how (3.80) gives a natural generalization of (4.31)

and (4.50) for general deformations including multi-trace operators given by G[O].

The single-trace generating functional with the modified source can be achieved in the
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gravity dual with a mixed boundary condition:

αi(x) =
δG[β]

δβi(x)
, (4.52)

where now αi(x) is the source of the operator Oi(x): Φi
(0)(x) (Π̂i(x)) for the standard

(alternate) quantization and βi(x) the expectation value of 〈Oi(x)〉: Π̂i(x) (Φi
(0)(x)) for

the standard (alternate) quantization. The use of mixed boundary conditions to add

multi-trace deformations to the theory was proposed in [46].20

The additional term which appears in (3.80) can be motivated from the gravity side:

in order to compute correctly the generating functional, one has to add a suitable SJ .

As we did for the alternate quantization, it is necessary to get

lim
ε→0

δ(Sreg + Sct + SJ) =

∫
ddx
√
|γ(0)(x)|B(Φ(0), Π̂Φ) δ

[
αi(x)− δG[β]

δβi(x)

]
, (4.53)

being B some local functional of Φi
(0) and Π̂i. This is achieved with

SJ =

∫
ddx
√
|γ(0)(x)|

{
G(βi)− βi(x)

δG[β]

δβi(x)

}
, (4.54)

where as before, βi(x) is Π̂i(x) (Φi
(0)(x)) for the standard (alternate) quantization.

4.3.6 The Callan-Symanzik Equation and Conformal Anoma-

lies

The Callan-Symanzik equation for a standard renormalized theory (analogous to (3.93))

can be extracted analysing the limit

lim
ε→0

d

dε
(Sreg + Sct) = 0. (4.55)

This equality is trivial since the limit of the parenthesis must be finite. Notice that,

when the counterterm action Sct depends explicitly on ε there will appear an indepen-

20Actually, the argument in [46] uses Φ̃i(2ν) instead of Π̂i. However, a well defined renormalization

prescription requires to use Π̂i [132].
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dent term. This happens in exceptional cases through logarithms (see (4.34)). This

term has to be interpreted as a contribution to the conformal anomaly. Therefore, the

coefficient of the logarithms appearing in the counterterm action gives the conformal

anomaly of the theory.

4.3.7 Irrelevant Operators

Irrelevant operators deserve special mention. Fields with positive mass can only

be quantized in the standard way (if d ≥ 2), and are dual to operators with ∆ > d.

This implies that they are dual to irrelevant operators. Since they blow up in the

UV region, solutions where they are activated change radically the geometry near the

boundary. From the field theory point of view, the activation of irrelevant operators

changes dramatically the UV theory. However, they can always be treated perturba-

tively, assuming they are only coupled to infinitesimal sources (for example to compute

correlation functions).

In [134, 135], it was noticed how when irrelevant operators are present, the prescrip-

tion given above can fail. In particular, terms in (4.44) can be non-local in Φ(ε), which

seems to destroy fundamental requirements for a quantum field theory to be local. It

was proposed then to rewrite the counterterms action as a local functional, not only of

Φ(ε), but also of ΠR
Φ(ε). Now, Sct is written like

Sct = Sstct [Φ(ε)] + Smtct [Φ(ε),ΠR(ε)], (4.56)

where Smtct depends at least quadratically in ΠR(ε) and

ΠR
Φ(ε) =

1√
|γ(ε)|

δ(Sreg + Sstct )

δΦ(ε)
. (4.57)

Then, the non-local dependence of Sct with Φ(ε) would be hidden in the non-local

dependence of ΠR
Φ(ε) with Φ(ε). This additional dependence was interpreted as non-

local counterterms due to multitrace operators.

This observation is supported by power counting arguments as were presented at

the end of subsection 3.1.3. One example considered in [134] is a classical scalar field

with positive squared mass m2 in a fixed AdS background. This is dual to a theory
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with an operator O with dimension ∆ > d and eigenvalue λ = d − ∆ < 0, and a

tower of multitrace operators with dimension n∆ + m, with n ∈ N, n ≥ 2, counting

the times that O appears and m ∈ N0 the number of derivatives. In the calculation

of correlation functions with the operator O, when p points approach each other, we

require non-linear (or semilocal) counterterms made of operators with an eigenvalue

lower or equal than pλ. This is, we require a multitrace counterterm if

p(d−∆) ≤ d− (n∆ +m)⇒ ∆(p− n) ≥ d(p− 1) +m, (4.58)

for some n and m. This condition can only be satisfied if ∆ > d. Also, it implies than

the On counterterm will appear when the number p of operators O approaching the

same point satisfies

p ≥ n∆− d
∆− d , (4.59)

which is exactly what the holographic calculations in [134] shows.

All the analyzed examples in [134] give rise to contributions to Sct with quadratic or

higher powers in ΠR
Φ(ε) terms, but never with linear terms in ΠR

Φ(ε). While non-linear

terms can be explained as multitrace counterterms, the linear ones do not. Thus, it was

suggested that this would be the case for any renormalizable theory. In chapter 6 we

apply a different renormalization procedure to renormalize correlation functions. In it,

we also find similar features in the renormalization of irrelevant operators. With this

perspective, these features have a clear and transparent interpretation as multi-trace

counterterms.



Chapter 5

Holographic Wilsonian

Renormalization

Things that seem incredibly different can really be manifestations of the same underlying

phenomena.

Nima Arkani-Hamed

One of the most basic and interesting features of Gauge/Gravity dualities explained

in Chapter 4 is the holographic RG, which relates the radial flow of classical gravity so-

lutions in asymptotically anti-de Sitter spaces and the RG evolution of their field-theory

duals in the large-N approximation [124, 136–138]. As we have seen in Section 4.3, the

regions near the boundary of the space on which the gravity theory is defined corre-

spond to the UV (ultraviolet) of the field theory, while the deep interior of that space

is related to its IR (infrared). As we have emphasized in Chapter 2, on the field theory

side the deepest understanding of renormalization and the RG comes from a Wilsonian

perspective. Therefore one might hope to understand holography itself at a deeper level

through this framework (in the line, for instance, of [20, 99, 139–142]). A number of

attempts have been made to formulate the holographic RG in Wilsonian terms, but

making this map precise has proved challenging.

A first proposal of a holographic Wilsonian RG was made in [143], with the Wilson

action given by the gravity action with an IR boundary cutoff, evaluated on solutions

113
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to the bulk equations. The solutions are determined by specific boundary conditions

at the UV and IR ends of the space. As nicely explained in [144], this is not yet

a truly Wilsonian approach, as this Wilson action depends on physics below the IR

cutoff. In [61], it was proposed to use as an effective action the cutoff gravity action

evaluated on solutions with given UV conditions and Dirichlet conditions on the IR

boundary. This object, which we call boundary action in this thesis, is a functional of

the restrictions of the bulk fields to the IR boundary. It only depends on UV data and

can be used to calculate observables at large N by integration of the remaining degrees

of freedom. The boundary action is the gravity counterpart of the Wilson action in

field theory. The RG evolution of the sliding boundary action was studied in [145].

Major progress has been made in [146] and [147]. These works put together and

correctly interpreted the previous advancements from the field theory side. Addition-

ally, they showed that the holographic boundary obeys a Hamilton-Jacobi equation

that describe its dependence on the position of a sliding cutoff surface. Beyond large

N, they obey a Schrödinger equation. This is a holographic formulation of the genuine

Wilsonian RG. However, as emphasized in [146], the nature of the boundary cutoff

on the field-theory side remains unknown. [146] also conjectures an exact connection

between the boundary action and the Wilson action: in the large N limit, the Wilson

action reduces to a Legendre transform of the boundary action, and therefore, follows

a dual Hamilton-Jacobi equation.

This chapter follows a structure parallel to Chapter 2, and we apply what we learnt

there to holographic theories. We explore in greater detail the precise relation be-

tween the Wilsonian RG in both sides of the holographic correspondence, in the strong

’t Hooft coupling and large N limits. Using the geometric language we have developed

in Chapter 2, we will not need to use the proposed relation between Wilsonian and

boundary actions of [146]. We find fixed points of the RG/Hamilton-Jacobi evolution

for a model of scalar fields living in AdS. Also, we study small deformations of them

and single out normal coordinates of the flow, as we did for the Gaussian fixed point

in 2.4. Many concepts introduced in Chapter 4 are reviewed in the Wilson approach.

The results of this chapter are given in [6, 8].

This chapter is organized as follows. In Section 5.1, the holographic theory space, in

analogy toW of Section 2.1 is presented. Section 5.2 is devoted to the study of the flows,
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in a similar way to the description of Section 2.2. In Section 5.3.1 the different fixed

points of the flow are analysed and classified (standard and alternate quantizations).

Normal coordinates around these fixed points are studied in Section 5.3.2. Finally, in

Section 5.4, we make some comments on the connection between the formalism of this

chapter and Chapter 4.

5.1 Holographic Theory Space

First of all, we will fix some notation of this chapter. As we mainly did in Chapter 4,

we will continue using the Poincaré patch coordinates to describe d + 1-dimensional

Euclidean AdS (reescaling the metric to be measured in units of AdS radius):

ds2 =
dz2

z2
+ hµν(z)dxµdxν . (5.1)

where hµν(z) = (γz)µν = δµν/z
2. We will neglect the metric backreaction in this thesis.

Also, φ depicts all the fields living in the AdS. They will be labelled by the flavour

indices i and j, or σ = ix when we include the continuous d-dimensional position (the

radial coordinate z is treated independently in this notation).

In holographic duals, energy scales in the gauge theory are related to the position in

the radial direction of the higher-dimensional gravity dual [124]. In particular, the UV

divergences of the field theory manifest in the dual gravity theory as IR divergences in

the integration of an infinite volume in the neighbourhood of the AdS boundary.

One possible regularization method (but not the only one) consists in cutting off the

region of spacetime near the boundary, i.e. restricting the domain of all fields to values

z ≥ ε > 0 [125]. In the holographic renormalization method explained in Section 4.3

of the previous chapter, boundary conditions are imposed in the far UV. However, in

this chapter, we put the boundary conditions at z = ε. General consistent boundary

conditions can be imposed dynamically by adding a boundary action s, which is a

quasilocal functional of the fields restricted to the cutoff surface at z = ε,

s[ϕ] =

∫
ddxS(x, ϕ(x), ∂ϕ(x), ...). (5.2)
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Therefore, the complete dynamic of the system is described by

STot[φ] = N2
[
s[φ(ε)] + SG[φ]

]
, (5.3)

where SG is the classical action of the gravity theory,

SG =

∫
dz

z

∫
ddxLG, (5.4)

and φ is rescaled in order to write LG canonically normalized. Extremizing the action,

one obtains the equations of motion of the system. In z = ε, they give the boundary

condition generated by s:

BCε :=

{
Πi(ε, x) =

1√
|γε|

δs[ϕ]

δϕi(x)

∣∣∣∣
ϕ=φ(ε)

}
, (5.5)

with Πi the canonical momentum in the radial direction (4.36),

Πi(z, x) =
1√
|γz|

∂LG
∂(z∂zφi(z, x))

. (5.6)

The set of possible boundary actions s will be called IG. For a given gravity theory

dual to a class of quantum field theories, we define the holographic theory space, WG,

as the set of all pairs (s, ε) of boundary actions and radial cutoffs. For convenience, we

work here directly with a length cutoff; the definition of theory-space points of the type

defined in Chapter 2 is recovered changing ε→ 1/ε.

Similar objects to the ones defined in Chapter 2 can be used now. For instance,

we define the holographic quotient space MG = WG/ ∼, with (s, ε) ∼ (sBt , ε/t), being

sBt [ϕ] = sB[Dt−1ϕ]. In analogy to (2.6), the function SBϕ :WG → R is

SBϕ (s, ε) = s[ϕ]. (5.7)

Also, for any map U : WG → X (being X any set), we define Uε : IG → X by

Uε(s) = U(s, ε).
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The partition function is a function in WG defined by

Z(s, ε) =

∫
[Dφ]εe

−N2{s[φ(ε)]+SG[φ]}, (5.8)

where [Dφ]ε indicates functional integration in the corresponding fields φ, with support

restricted to z ≥ ε. The spacetime integrals inside the functional integrals are under-

stood to be restricted to the support of the fields. If Gauge/Gravity duality holds at the

regularized level, then Z in (5.8) represents the partition function of the gauge theory,

with s playing the role of a Wilson action and 1/ε giving the scale of the UV cutoff.

This statement calls for the following qualifications:

(i) The corresponding cutoff procedure in the gauge theory is unknown, and it is not

even clear that it can be formulated in a closed form in terms of the field-theory

degrees of freedom.

(ii) The action s is a functional of the gravity degrees of freedom ϕ = φ(ε), which are

associated to single-trace gauge-invariant operators. It is not, however, the same

functional that appears in the field-theoretical path-integral. It has been argued

in [146], that both Wilson actions are related by an specific integral transform

that reduces to a Legendre transform in the classical limit. For our purposes, we

only need to assume the existence of a one-to-one map between the gravity and

gauge Wilson actions and cutoffs, such thatWG represents the theory space of the

gauge theory. Actually, even though our field-theoretical analysis and language

are motivated by Gauge/Gravity duality, most of the developments in part II of

the thesis would apply to the gravity theory independently of the very existence

of a holographic dual.

To parametrizeWG, we use again an infinite set C of smooth functions ga : Rd → R,

which can be understood as local couplings. A specific parametrization or coordinate

system is given by a quasilocal functional SB of local couplings g(x) ∈ C and boundary

fields ϕ(x), which defines a chart c in WG by

SBϕ ◦ c−1(g, ε) = SBϕ [γε; g]

=

∫
ddx
√
|γε|SB(γε; g(x), ϕ(x), ∂ϕ(x), . . .). (5.9)
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This equation defines the coordinate chart c : WG → C × R+, c(s, ε) = (g, ε). Similar

expressions and definitions between (2.11) and (2.14) applies. Additionally, we define

ε̄ :WG → R+, ε̄(s, ε) = ε, and γ̄ :W → T 0
2

(
Rd
)
, (s, ε) 7→ ε−2δµνdx

µ ⊗ dxν . In terms of

it, 2γ̄ ∂
∂γ̄

= −ε̄∂ε̄.
It can be checked that the charts (5.9) fulfil a similar scaling relation to (2.17):

cπε/t(st) = Dtc
π
ε (s). (5.10)

5.2 Exact Holographic RG Flows

In Chapter 2 we integrated out high energy modes to obtain exact RG flows. In this

section we will do the same for holographic theories. As discussed above, the energy

cutoff is associated to the radial direction of AdS, and therefore, we will integrate out

fluctuations of fields “close” to the boundary.1

In this section, we adapt the objects introduced in Section 2.2 of Chapter 2 to the

holographic framework.

5.2.1 Hamilton-Jacobi Equation

Given a point (s0, ε0) ∈ WG, we can integrate out the fluctuations of the fields

between z = ε0 and z = ε > ε0 to find

e−N
2s〈ε〉[ϕ] =

∫
[Dφ]ε,ϕε0 e

−N2{s0[φ(ε0)]+SG[φ]}, (5.11)

Here, [Dφ]ε,ϕ
′

ε0,ϕ
indicates functional integration for fields φ with support in ε0 < z < ε,

and Dirichlet boundary conditions φ(ε0) = ϕ and φ(ε) = ϕ′. If ϕ (ϕ′) is not explicitly

written, we understand that the path integration include the fields φ(ε0) (φ(ε)), and

therefore, the boundary condition is dynamically generated. (5.11) fulfils

Z(s〈ε〉, ε) = Z(s0, ε0). (5.12)

1AdS is an homogeneous space and so, it makes no sense the notion of closeness to the bound-
ary. Here, we are referring to the distance in terms of the radial coordinate of some Poincaré patch
coordinate system.
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The RG flows ft :WG →WG, are defined by

(s〈ε/t〉, ε/t) = ft(s〈ε〉, ε), t > 0. (5.13)

In terms of them, the holographic RG invariance reads

Z ◦ ft = Z. (5.14)

The RG flows are generated by beta vector fields, tangent to the corresponding curves.

They can be defined by their action on an arbitrary real function F in WG:

βF = t∂tF ◦ ft|1 . (5.15)

We will use the same definitions to simplify the notation that the ones used in Chapter 2.

Thus, given a chart c, we will write the coordinates of the flows as a functional of the

local couplings:

fαt [γε; g] = cα ◦ ft ◦ c−1(g, ε). (5.16)

Likewise,the beta vector fields in the corresponding coordinate basis read

β = βα̃∂cα̃

= βα∂cα + 2γ̄
∂

∂γ̄
, (5.17)

where the components βα are functions in WG. We also have

βα[γε; g] = βα ◦ c−1(g, ε), (5.18)

which are quasilocal functionals of the local couplings g.

The infinitesimal version of (5.14) is the Callan-Symanzik equation

βZ = 0. (5.19)

Using the path integral (5.11), the beta function can be extracted from a Schrödinger
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equation:

β e−N
2SBϕ = −N2H

[
γ̄;ϕ,−iN−2 δ

δϕ

]
e−N

2SBϕ . (5.20)

Here, H is the Hamiltonian that generates motion in the radial direction:

H [γz;φ,Π] =

∫
ddx

[
z∂zφ

i(z, x) Πi(z, x)− LG(γz, φ(z, x), ∂zφ(z, x))
]
. (5.21)

In the large N limit, (5.20) takes the form of a Hamilton-Jacobi equation for the bound-

ary action. This can also be seen evaluating the path integral (5.11) at large N , i.e. in

a saddle point approximation and using (5.15) [146, 147]:

βSBϕ = H

[
γ̄;ϕ,

δSBϕ
δϕ

]
. (5.22)

(5.20) and (5.22) are equations between functions in WG. This is the holographic

analogue of the field-theory equations (2.70) or (2.112).

5.2.2 Legendre Transformed Actions

The form of the Hamilton equations of any dynamical system is symmetric under

the exchange of coordinates and momenta,

φi → Πi,

Πi → −φi. (5.23)

Indeed, this is a canonical transformation. This fact suggests an approach equivalent

to the one developed above, but with Π playing the role of φ and vice versa. This can

be achieved defining a new boundary action, function of the canonical momenta. Given

a configuration of the canonical momenta of the fields at ε, π = Π(ε), Sπ :WG → R is

given by the integral transformation,

eN
2Sπ =

∫
Dϕ eN2[ϕσπσ−SBϕ ]. (5.24)

Note that SBϕ should be bounded from below for this definition to make sense.
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In the large-N/classical-gravity limit, (5.24) reduces to a Legendre-Fenchel trans-

form. For this reason, Sπ will be called Legendre action. One general property of the

Legendre action defined in this manner is that it is convex as a functional of π. The

Legendre-Fenchel transform is not invertible in general, but only when SBϕ is convex in

ϕ. To be more explicit, when using this transform we will assume that SBϕ is convex.2

In this case, the Legendre and boundary actions are related by the invertible Legendre

transform

Sπ = πσϕ
σ − SBϕ , πσ =

δSBϕ
δϕσ

. (5.25)

Therefore, Sπ defines a point s ∈ IG, and it can be used as fundamental object, instead

of SBϕ . For instance, the partition function can be defined in terms of Sπ like

Z =

∫
[Dφ]ε̄Dπ e−N

2{πσϕσ−Sπ+SG[φ]}. (5.26)

We will also consider cases with S[π] linear in the variables π, for which (5.25) is

singular. In fact, (5.24) gives the linear Legendre action Sπ = cσπσ when exp{−SBϕ } =

δ(ϕ−cσ), which can be considered as a singular boundary action that imposes a Dirichlet

boundary condition.

All the equations above involving SB can be equivalently formulated in terms of the

Legendre action. Using Legendre conjugates, the boundary condition (5.5) reads

BCε :=

{
φi(ε, x) =

1√
|γε|

δSπ
δπi(x)

∣∣∣∣
π(x)=Π(ε,x)

}
. (5.27)

Also, the flowing Legendre action Sπ ◦ ft obeys a dual Schrödinger equation in general,

β eN
2Sπ = −N2H

[
γ̄;−iN−2 δ

δπ
, π

]
eN

2Sπ . (5.28)

2It is of course perfectly possible that these properties hold only in some regions of theory space
and/or only when the possible values of ϕ and π are restricted. A careful study of these basic issues
would be interesting, but we will not pursue this course here. We simply note in this regard that our
restriction to quasilocal Legendre actions and (5.24) require SB(g) to be strictly convex at ϕ0, the ϕ
value dual to π = 0, which is an extremum of SB .
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which reduces to a dual Hamilton-Jacobi equation in the large N limit,

βSπ = −H
[
γ̄;
δSπ
δπ

, π

]
. (5.29)

In this chapter, we will mostly work with the boundary action SB. However, the

Legendre action will be useful in Chapter 6.

In [146], the Legendre action was proposed to be exactly the Wilson action as func-

tion of single-trace operators (SOs of Section 2.4.3). An inconvenient of such proposal

is that typical Hamiltonians of gravity theories do not reproduce naively the flow equa-

tion (2.112). This problem seems to be overcome in O(N) vector models using different

cutoff procedures to the one used in Chapters 2 and 3, [148].

Other attempts to deduce the holographic form of these equations starting from their

field-theoretical version have been performed so far [142, 149, 150]. This is a highly non-

trivial problem which is deeply related with the emergence of the dynamical spacetime

in holography. In this thesis we will not explore this interesting direction. What we do

here is to develop a common framework based on the formal equivalence between both

equations, and use it to shed light on some features of holographic renormalization.

Finally, notice that both (5.22) and (5.29) satisfy the Large N property 1 of Sec-

tion (2.4.3). Of course, this is a feature of any Hamilton-Jacobi equation that the

Schrödinger equations (5.20) and (5.29), before taking the classical limit, do not sat-

isfy.

5.3 Scalar Fields in AdS

We will study a theory holographically described by a set of scalar fields living in

AdS neglecting backreaction. It is described by the Lagrangian,

LG =
√
|γz|

[
1

2
(z∂zφi)

2 +
1

2
(γz)

µν δij∂µφ
i∂νφ

j + V (φ)

]
, (5.30)
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where δij is a metric in the space of flavour i, that is assumed to be diagonalized, and

a bulk potential

V (φ) = v0 +
m2

(i)

2
φiφ

i +
∑
n≥3

1

n!
vi1...inφ

i1 . . . φin . (5.31)

The term v0 is related to the radius of the AdS, v0 = d(d − 1)/L2. The Hamiltonian

density of the system is

H =
√
|γz|

[
1

2
δij ΠiΠj −

1

2
(γz)

µν δij∂µφ
i∂νφ

j − V (φ)

]
. (5.32)

5.3.1 Fixed Points

The fixed points of the RG flows in the quotient space WG/ ∼ describe scale-

invariant physics. In the parent space WG, they correspond to the set of equivalent

points (sBε∗ , ε) with trivial RG evolution ft(s
Bε
∗ , ε) = ((sBε∗ )t, ε/t). In our parametriza-

tion, this translates into the trivial running g → Dtg. We will concentrate on transla-

tionally and Lorentz invariant fixed points with constant scalar couplings g∗, which are

thus invariant under this rescaling. They are characterized by βα(sBε∗ , ε) = 0.

We will work with boundary actions SBϕ instead of using Legendre actions Sπ. Equa-

tions are simpler this way. All results can be written using Sπ by means of the Legendre

transform.

Using (5.22) and (5.17) we see that the fixed points obey the following equation

H

[
γ;ϕ,

δ

δϕ
S∗[γ;ϕ]

]
− 2γ

∂

∂γ
S∗[γ;ϕ] = 0, (5.33)

with S∗[γε;ϕ] = SBϕ (sε∗, ε).

(5.33) was first studied in this theory in [146, 147] and a complete (recursive) solution

was found in [6].
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Potential Approximation

As a warm up, we start with the potential approximation (ignoring derivatives),

which was also studied in [146]. In this approximation,

S∗[γ;ϕ] =

∫
ddx
√
|γ| S∗(ϕ(x), ∂ϕ(x), . . . )

=

∫
ddx
√
|γ| S(0)

∗ (ϕ(x)) +O(∂ϕ). (5.34)

(5.33) gives

0 =
1

2
∂ϕi S(0)

∗ (ϕ)∂ϕiS(0)
∗ (ϕ)− dS(0)

∗ (ϕ)− V (ϕ), (5.35)

where ∂ϕi = ∂/∂ϕi. This equation can be written as

∣∣∂ϕi S(0)
∗ (ϕ)

∣∣ =

√
2
[
V (ϕ) + dS(0)

∗ (ϕ)
]
. (5.36)

Real solutions require

S(0)
∗ (ϕ) ≥ −1

d
V (ϕ). (5.37)

At the points where this inequality is strict, the solutions will be analytic. On the other

hand, even if the solutions are generically non-analytic at points where the inequality

is saturated, we will see that analytic solutions exist about certain points. These are

actually the solutions that lead to physically meaningful renormalizable theories.

Let us look for analytic solutions of (5.35) about the equilibrium point ϕ = 0 and

work in perturbation theory. We expand V and S(0)
∗ in powers of ϕi,

V (ϕ) = v0 +
m2

(i)

2
ϕiϕi +

∑
n≥3

1

n!
vi1...inϕ

i1 ...ϕin , (5.38)

S(0)
∗ (ϕ) = wi1...inϕ

i1 ...ϕin , (5.39)

and insert these expansions in (5.35). Then we get the algebraic equations

wiw
i = 2(v0 + dw0) (5.40)
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and (using vij = δijm
2
(i))

(n+ 1)wj1...jniw
i

=
1

n!
vj1...jn + dwj1...jn −

1

2

n−1∑
k=1

(k + 1)(n− k + 1)wi(j1...jkwjk+1...jn)i, n ≥ 1. (5.41)

If the inequality (5.37) is strictly satisfied at ϕ0, (5.40) has a set of solutions wi 6= 0,

and for each of them the tower of equations (5.41) can be iteratively solved. At each

order, the new integration constants are needed. This is related to the fact that we are

solving a non-linear partial differential equation, so the solution is not determined in

general by a finite set of integration constants. These solutions however, can not be

associated to physical fixed points, since the boundary conditions that generate (5.5)

do not admit the solution φ(z, x) = 0.3

In fact, we are interested in power expansions at critical points of the boundary

action with wi = 0. Both (5.36) and (5.40) show that wi = 0 if and only if the

inequality (5.37) is saturated at ϕ = 0, which implies w0 = −v0/d. The situation is

pretty different in this case. (5.41) gives

2wi(j1wj2)i − dwj1j2 =
1

2
δj1j2m

2
(j1) (n = 2), (5.42)

which can be easily solved. If there are M fields, we have 2M solutions (a sign ± is to

be chosen for every field):

wij =
∆±(i)

2
δij, (5.43)

∆±(i) =
d

2
± ν(i) =

d

2
±
√
d2

4
+m2

(i). (5.44)

As we will see in the next section, the sign + (−) is associated to the standard (alternate)

3Since we are neglecting backreaction of the metric, all this analysis only makes sense for pertur-
bative deformations of this solution.
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Figure 5.1: Different numerical solutions of the one-dimensional (5.36). The lowest blue
curve corresponds to −V (ϕ)/d, which gives a lower bound to the solutions. The other
two solid curves are the only analytic solutions around the point where their derivative
vanishes. From top to bottom, they are associated to the standard (black) and alternate
(red) quantization. The dashed curves are other generic non-analytic solutions where
their derivative vanishes. From left to right, they correspond to a solution with an
asymptotically behaviour S(0)

∗ ∼ (ϕ−ϕ0)3/2 (brown curve), and S(0)
∗ ∼ ∆−

2
ϕ2 +wϕd/∆

−

(orange curve), both around the point where their derivative vanishes.

quantization of the field ϕi. The remaining equations can then be written as,(
n∑
i=1

∆(i) − d
)
wj1...jn = −1

2

n−2∑
k=2

(k+ 1)(n−k+ 1)wi(j1...jkwjk+1...jn)i+
1

n!
vj1...jn n ≥ 3,

(5.45)

that can be solved iteratively. In Figure 5.1 we plot the different kinds of solutions

to (5.36), obtained numerically, in the case of only one active scalar field. The standard

and alternate solutions are the only ones with the property of being analytic at the

point where their derivative vanishes.
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Standard and Alternate Quantizations

We have found that there are exactly 2M analytic solutions about the critical point

of the potential (ϕ = 0), characterized by the quadratic coefficient of each field:

S∗ = −v0

d
+

1

2
∆±(i)ϕ

i 2 +O(ϕ3) + derivatives. (5.46)

At the quadratic level, (5.46) imposes the boundary condition

∆±(i)φ
i(z, x) = z

∂

∂z
φi(z, x), (5.47)

when pγz � 1 (here p is the d-dimensional dimensionful momentum of φ). For ν /∈ N0,

the solutions close to the boundary have the general form (4.22),

φi(z, x) = zd−∆±
(i)
[
φi(0)(x) +O(z2)

]
+ z∆±

(i)

[
φ̃i(0)(x) +O(z2)

]
. (5.48)

The boundary condition requires φi(0)(x) = 0 and thus selects the solutions φi(z, x) that

go like

φi(z, x) ∼ z∆±
(i) when z → 0. (5.49)

Because the field solutions then approach zero in the limit z → 0,4 the non-linear cor-

rections are suppressed and the same conclusion holds for the complete SB∗ . In fact,

since SB∗ is a fixed point of the Hamilton-Jacobi equation, its boundary condition (5.5)

produce the same solutions independently of the cutoff ε. Therefore, they are equiv-

alent to the condition (5.49) in the far UV. This is, if we include all orders of the

expansion (5.46), the boundary condition at finite ε also implies exactly ϕ(0) = 0.

This justifies the association of the sign + (−) to the standard (alternate) quanti-

zation.

4For the alternate quantization, this is true if we apply the unitary bound, ν(i) < 1.
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Complete Expansion

Now, let us proceed and study (5.33) taking into account the (unavoidable) deriva-

tive terms. We expand the fixed point boundary action as

S∗[γ;ϕ] =S∗;0(γ) +
∑
m≥2

S∗;σ1...σm(γ)ϕσ1 . . . ϕσm . (5.50)

As we did in the potential approximation, we have imposed δS∗[γ;ϕ]/δϕ|ϕ=0 = 0.

Working in momentum space, the coefficients, which are densities, are written using

the scalar functions

Ŝ pq
∗;i j (γ) =(2π)d

√
|γ|δ(p+ q)δij T∗;(j)(γ; p),

Š q1...qm
∗; i1...im (γ) =

√
|γ| T∗; i1... im(γ; q1, . . . , qm). (5.51)

Inserting this expansion in (5.33), we find for the quadratic order

2T∗;(i)(γ; q)2 −
m2

(i)

2
− q2

2
−
(
d+ 2γ

∂

∂γ

)
T∗;(i)(γ; q) = 0. (5.52)

If ν(i) /∈ N0, there are two possible analytic solutions around p = 0,

T+
∗;(i)(γ; q) =

d

4
+ qγ

I ′ν(i)
(qγ)

2Iν(i)
(qγ)

=
∆+

(i)

2
+

q2
γ

4 + 4ν(i)

+O(q4
γ), (5.53)

T−∗;(i)(γ; q) =
d

4
+ qγ

I ′−ν(i)
(qγ)

2I−ν(i)
(qγ)

=
∆−(i)

2
+

q2
γ

4− 4ν(i)

+O(q4
γ), (5.54)

where the sign + (−) stands for the standard (alternate) quantization. Iν(·) is the

modified Bessel function of first kind.

From the unitary bound discussed in Section 4.3.4, to obtain an unitary theory,

fields in the alternate quantization have to be restricted to 0 < ν(i) < 1. This Wilsonian

analysis seems to be blind to this bound, and at least perturbatively, a solution exists.

Nevertheless, it should be noticed that in these cases and when the integer part of ν(i)

is odd, T−(i)(q) diverges at finite values of q. If ν(i) ∈ N0, the only analytic solution

is (5.53) (the standard one).
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Higher orders are given by[
n∑
k=1

2T∗;(ik)(γ; qk)− 2γ
∂

∂γ
− d
]
T∗;i1...in(γ; q1, . . . , qn)

=
1

n!
vi1...in −

1

2

n−2∑
k=2

(k + 1)(n− k + 1)

× Sym
{(ik,qk)}nk=1

T∗;i i1...ik(γ;−∑k
s=1 qs, q1, . . . , qk)T

i
∗;ik+1...in

(γ; q1, . . . , qk,−∑k
s=1 qs), n ≥ 3.

(5.55)

This set of equations allows to find recursively all the orders in the expansion. Because

it is a first order differential equation in T∗;i1...in , there are infinitely many solutions,

but only one of them is analytic in momenta at qi = 0 (in their components). This can

be shown expanding in powers of momenta and noticing than the whole expansion is

then determined.

For instance, the first correction is given by[
3∑

k=1

2T∗;(ik)(γ; qk)− 2γ
∂

∂γ
− d
]
T∗;i1i2i3(γ; q1, q2, q3) =

1

3!
vi1i2i3 . (5.56)

The only analytic solution of this equation can be written in the integral representation,

T∗;i1i2i3(γl; q1, q2, q3) =
vi1i2i3

3!

∫ l

0

dz

z

(z
l

) d
2 I±ν(i1)

(q1γz)I±ν(i2)
(q2γz)I±ν(i3)

(q3γz)

I±ν(i1)
(q1γl)I±ν(i2)

(q2γl)I±ν(i3)
(q3γl)

=
vi1i2i3

3!

[
1

d/2± ν(i1) ± ν(i2) ± ν(i3)

+O(q2
γl

)

]
. (5.57)

The insertion of (5.57) in (5.56) proves it is solution. We have however found this

solution by a holographic renormalization method we will explain in Chapter 6.

5.3.2 Normal Coordinates

Let us consider one of these fixed points. As shown in general in Chapter 2, the

form of the RG flows around any given fixed point can be greatly simplified by choosing

certain coordinates c̄, called normal, in that region. In these coordinates, the beta
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functions depend linearly on the couplings, up to a minimal set of nonlinear terms that

are only present in exceptional cases. Normal coordinates are specially interesting for

our purposes because they are related to minimal subtraction renormalization schemes.

To find them perturbatively, we expand the beta and SBϕ functions in powers of c̄,

β̄α = −λ(α)(γ̄)c̄α + β̄αα1
(γ̄)c̄α1 + β̄αα1α2

(γ̄)c̄α1 c̄α2 , (5.58)

SBϕ = S∗[γ̄;ϕ] + Sα[γ̄;ϕ] c̄α + Sα1α2 [γ̄;ϕ]c̄α1 c̄α2 + . . . , (5.59)

where β̄axa1x1...anxn
(γ) and Sa1x1...anxn [γ;ϕ] are functions of x1, ..., xn with support in x1 =

x2 = ... = xn, which can be expanded as series of products of Dirac deltas and their

derivatives, with Lorentz indices contracted with γ. The second term of the RHS

of (5.58) stands to take into account possible logarithmic CFTs.

The functionals of (5.59) can be also expanded in number of fields ϕ as

Sα1...αn [γ;ϕ] =Sα1...αn;0(γ) +
∑
m≥1

Sα1...αn;σ1...σm(γ)ϕσ1 . . . ϕσm , (5.60)

with

Šp1...pn; q1...qm
a1...an ; i1... im

(γ) =
√
|γ| T a1...an; i1... im(γ; p1, . . . , pn; q1, . . . , qm). (5.61)

Eigendirections

We start with the calculation of eigendirections. Let ∆(a) = d−λ(a)+n
u
(a)−nd(a) be the

conformal dimension of the eigendirection a, and nu(a) (nd(a)) the number of contravariant

(covariant) indices of the associated coupling. If we insert (5.59) in (5.22) we find at

linear order in c̄ the eigenvalue problem,{
δS∗[γ;ϕ]

δϕσ

δ

δϕσ
− 2γ

∂

∂γ

}
Sxa [γ;ϕ] =

(
∆(a) − nu(a) + nd(a)

)
Sxa [γ;ϕ] + β̄xαa Sα[γ;ϕ].

(5.62)

The last term will be assumed to be zero unless it is necessary to find quasilocal solu-

tions. The eigenfunctions Sxa [γ;ϕ] will be called hereafter eigendeformations or eigen-

operators.
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The fact that the physical fixed points relevant for our analysis have the form (5.46)

is crucial. In particular, the lack of linear terms in ϕ in (5.46) makes the eigendirection

equation (5.62) triangular in the sense of the Large N property 2 of Section 2.4.3. Also,

as we have stressed above, Hamilton-Jacobi equations automatically satisfy the Large

N property 1. Since all the results achieved in Section 2.4.3 only rely on this two

properties, we can make use of them.

Then, eigendirections can be divided into:

(1) The trivial solution Sx0 [γ;ϕ] = 1, with eigenvalue λ(0) = d, associated to the

identity operator, whose coupling is the vacuum energy term.

(2) Primary single-trace eigendirections:

Sxi [γ;ϕ] = δijϕ
jx +O(∂ϕ) +O

(
ϕ2
)
. (5.63)

The form of the fixed point boundary action (5.46) in (5.62) implies that the

expansion in fields appears directly diagonalized. This is a direct consequence

of having chosen a basis of bulk fields that diagonalize the d + 1-masses. Other

normalizations are possible, but we will work with the one in (5.63).

(3) Descendant and multi-trace eigendirections, constructed from primary single-trace

ones:

Sxa [γ;ϕ] = Qx
a;σ1...σn

(γ)ϕσ1 . . . ϕσn . (5.64)

Since the calculations get simplified with the use of factorization normal coordinates,

we will work with them. Using the factorization property (2.134), all the coefficients of

the normal expansions of SBϕ or Sπ can be expressed as function of coefficients with only

single-trace indices. Therefore, we only need to compute these single-trace coefficients.

Inserting the expansion in the number of fields (5.60) and (5.61) in (5.62), one finds

scalar primary single-trace eigendirections with a first order given by

T±i;j(γ; q, q′) = δijT
±
(i)(γ; q)

=
q
±ν(i)
γ

Γ(1± ν(i))2
ν(i)I±ν(i)

(qγ)
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= 1− q2
γ

4± 4ν(i)

+O(q4
γ). (5.65)

Or in position space,

S±xi [γ;ϕ] = δij

[
1 +

∂2
γ

4± 4ν(i)

+O(∂4
γ)

]
ϕjx +O(ϕ2). (5.66)

The mass dimension is fixed to ∆(i) = ∆±(i) = d/2±ν(i), and the eigenvalue to λ(i) = ∆∓(i).

Here, the upper (lower) sign is taken when the fixed point involves standard (alternate)

quantization of the field ϕi. Higher orders satisfy the iterative equations[(
n∑
r=1

2T±∗;(ir)(γ; qr)− 2γ
∂

∂γ
−∆±(i)

)
δai −Ba

i

(
γ;

n∑
r=1
qr

)]
Ta;i1...in(γ; q; q1, ..., qn)

= −
n∑

m=2

[
(m+ 1)(n−m+ 1) Sym

{(ik,qk)}nk=1

T j
∗; i1...im

(
γ;− m∑

r=1
qr, q1, ..., qm

)
×Ta;jim+1...in

(
γ; q;

m∑
r=1
qr, qm+1, ..., qn

)]
. (5.67)

Here Ba
i appear due to possible resonant off-diagonal terms i 6= a,

ˆ̄βaqip = (2π)dδ(p− q)δai λ(i) − λ̂aqip = (2π)dδ(p− q)Ba
i (γ; p). (5.68)

By the resonance condition, Ba
i (γ; p) must be analytic in momenta, with a number of

metrics n(γ) and inverse metrics n(γ−1) such that

2
(
λ(a) − λ(i)

)
= n(γ−1) − n(γ). (5.69)

The quadratic correction O(ϕ2) to the single-trace eigendirection satisfies[(
2∑
r=1

2T±∗;(ir)(γ; qr)− 2γ
∂

∂γ
−∆±(i)

)
δai −Ba

i (γ; q1 + q2)

]
Ta;i1i2(γ; q, q1, q2)

= −3T i
∗; i1i2 (γ;−q1 − q2, q1, q2)T(i) (γ; q1 + q2) . (5.70)

An expansion in momenta of this equation, shows that it has a unique quasilocal solution
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with the B-term fixed to zero if

∆(i1) + ∆(i2) −∆(i) /∈ −2N+
0 . (5.71)

It is possible to check that

Ti;i1i2(γl; q, q1, q2) =− vi i1i2
2

T(i1)(γl; q1)T(i2)(γl; q2)T(i)(γl; q)

×
∫

dz

z

(z
l

)±ν(i1)±ν(i2) Ψ±ν(i)
(l, z, q)

T(i1)(γz; q1)T(i2)(γz; q2)

∣∣∣∣
z=l

, (5.72)

indeed satisfies (5.70) with vanishing B-terms.5 Ψν(l, z, p) is an analytic function in p

that is defined by

Ψν(ε, z, p) =
(z
ε

) d
2

[Iν(pz)Kν(pε)−Kν(pz)Iν(pε)]

=
(z
ε

) d
2 π

2 sin(πν)
[Iν(pz)I−ν(pε)− I−ν(pz)Iν(pε)] , (5.73)

where the second equality only applies if ν /∈ N0, and Kν(·) is the modified Bessel

function of second kind. The indefinite integrals above and hereafter are defined as

the primitive with vanishing constant term in the z power expansion at z = 0. This

definition could be ambiguous if the integrand has 1/z terms. However, condition (5.71)

avoids such possibility.

Before studying the case in which (5.71) is not satisfied, let us review the mul-

titrace eigendirections. We use the same notation as in Section 2.4.3. The opera-

tor products Sx〈ij〉[γ;ϕ] = Sxi [γ;ϕ]Sxj [γ;ϕ], possibly including derivatives Sx〈iµjν〉[γ;ϕ] =

∂µS
x
i [γ;ϕ]∂νS

x
j [γ;ϕ] or Sx〈iµjµ〉[γ;ϕ] = γµν∂µS

x
i [γ;ϕ]∂νS

x
j [γ;ϕ] are also eigendeforma-

tions, with dimension ∆ = ∆(i) + ∆(j) + n∂, with n∂ the total number of derivatives.

We also use the notation 〈i(n1)j(n2)〉, where n1 and n2 are the number of spacetime

derivatives without indicating explicitly if and how they are contracted. They repre-

sent scalar double-trace operators.

We can construct general scalar multi-trace eigenoperators of dimension ∆(an) =

5The solution has been found using techniques that will be explained in Chapter 6.
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∑n
i=1 ∆(i) + n∂, as in (5.64):

Syan [γ;ϕ] = Qy
anσ1...σn(γ)S〈σ1...σn〉[γ;ϕ], (5.74)

where

S〈σ1...σn〉[γ;ϕ] = Sσ1 [γ;ϕ] . . . Sσn [γ;ϕ] (5.75)

is a multilocal operator constructed with Sσ[γ;ϕ] ≡ Six[γ;ϕ] = δijSxj [γ;ϕ]. We remind

the reader that we are using the labels i, j and σ to refer to single-trace eigendeforma-

tions whereas an and αn indicate n-trace eigendeformations. For double-trace defor-

mations, we reserve the indices b, and β = bx. The locality of Syan [γ;ϕ] is recovered

in (5.74) by contraction with the Q distributions. From (5.63),

S〈i1x1...inxn〉[γ;ϕ] =
n∏
r=1

ϕir(xr) + higher orders. (5.76)

Non-diagonalizable Linear Perturbations

If (5.71) is not satisfied, i.e.

∆(i1) + ∆(i2) + n = ∆(i), (5.77)

with n ∈ 2N0, the B-terms of (5.70) are necessary. Notice that in this case, the

eigenvalue of double-trace directions b = 〈i(n1)
1 i

(n2)
2 〉 is given by λ(b) = λ(i) +n−n1−n2.

Non-diagonal beta terms βbi or Bb
i are therefore allowed (see (2.53)). (5.70) becomes(

2∑
r=1

2T±∗;(ir)(γ; qr)− 2γ
∂

∂γ
−∆±(i)

)
Ti;i1i2(γ; q, q1, q2)−Bb

i (γ; q1 + q2) Q i1i2
b (γ; q1, q2)

×T(i1) (γ; q1)T(i2) (γ; q2) = −3T i
∗; i1i2 (γ;−q1 − q2, q1, q2)T(i) (γ; q1 + q2) .

(5.78)

As first example, let us consider n = 0,

∆(i1) + ∆(i2) = ∆(i). (5.79)
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If all fields are in the standard quantization, this case is called extremal. In the di-

mensional reduction of type IIB SUGRA in AdS5 × S5, the fields that satisfy this

relation have only derivative couplings, and therefore they do not fit in this analy-

sis [61, 151, 152]. In this case, b = 〈i1i2〉, and B
〈i1i2〉
i does not depend on p. If we

expand in momenta,

Ti;i1i2(γ; q, q1, q2) = T
(0)
i;i1i2

+ T
(2)
i;i1i2

(γ; q1, q2) + . . . , (5.80)

where

2γ
∂

∂γ
T

(n)
i;i1i2

(γ; q1, q2) =− nT (n)
i;i1i2

(γ; q1, q2), (5.81)

(5.78) for the first coefficient becomes

(
∆(i1) + ∆(i2) −∆(i)

)
T

(0)
i;i1i2
−B〈j1j2〉i δj1i1δj2i2 = −vii1i2

2

1

∆(i1) + ∆(i2) + ∆(i) − d
. (5.82)

If the relation (5.79) is satisfied, the first term vanishes and fixes

B
〈i1i2〉
i =

v i1i2
i

2

1

2∆(i) − d
, (5.83)

leaving undetermined T
(0)
i;i1i2

(this is a consequence of the normal charts ambiguity in

exceptional cases). Consequently, the linear order of the beta function for the eigendi-

rections i and 〈i1i2〉 will have a Jordan form and will not be diagonalizable. This is a

logarithmic CFT.

In the case with n ∈ 2N0, a general solution can also be given as follows. To find

general expressions valid for any value of ν (including integers), we restrict ourselves to

the standard fixed point. The generalization to include fields in the alternate quantiza-

tion is straightforward. The integrand of (5.72) has 1/z terms in its power expansion

if (5.77) is satisfied. Therefore, its primitive as described above has logarithms in l that

should not appear by covariance (Ti;i1i2 only depends on l through γ):

Ti;i1i2(γl;−p1 − p2, p1, p2)→ · · ·+ T(i)(γl; p1)T(i)(γl; p2)Li;i1i2(γl; p1, p2) log(µl) + . . .

(5.84)



136 Chapter 5. Holographic Wilsonian Renormalization

where in general

Li;i1i2(γl; p1, p2) =
vii1i2

2

Γ(1 + ν(i1))Γ(1 + ν(i2))

2ν(i)−ν(i1)−ν(i2)Γ(1 + ν(i))

× l∆
+
(i)
−∆+

(i1)
−∆+

(i2)C0

[
z
d
2

Iν(i1)
(z|p1|)Iν(i2)

(z|p2|)Kν(i)
(z|p1 + p2|)

|p1|ν(i1)|p2|ν(i2)|p1 + p2|−ν(i)

]
.

(5.85)

Here Cn[f(z)] gives the zn coefficient of the power expansion of f(z) around z = 0, and

as usual, the + (−) sign stands for the standard (alternate) quantization. Let T̄i;i1i2 be

equal to the RHS of (5.84), but substituting the argument of the logarithm as follows,

T̄i;i1i2(γl;−q1 − q2, q1, q2, ξ) = · · ·+ T(i1)(γl; q1)T(i2)(γl; q2)Li;i1i2(γl; q1, q2) log(ξ) + . . .

(5.86)

This function is a solution of (5.78) with

Bb
i (γ; q1 + q2) Q i1i2

b (γ; q1, q2) = −Li;i1i2(γl; q1, q2). (5.87)

This proves that

Ti;i1i2(γl;−q1 − q2, q1, q2; ξ) = T̄i;i1i2(γl;−q1 − q2, q1, q2, ξ), (5.88)

where ξ parametrizes the normal coordinates ambiguity. (5.87) gives the value of the

linear beta terms. An expansion in momenta proves their uniqueness.

Higher Orders

Let us next consider the non-linear terms in the c̄ expansion of the Hamilton-Jacobi

equation (5.22). Since we are working with factorization normal coordinates, we will

only consider coefficients with single-trace lower indices. Once they are known, the

coefficients with higher order indices can be constructed with (2.134). The n-th order

equation reads{
n∑
i=1

λ(σi) − 2γ
∂

∂γ
+
δS∗[γ;ϕ]

δϕσ

δ

δϕσ

}
Sσ1...σn [γ;ϕ]



5.3. Scalar Fields in AdS 137

= −1

2

n−1∑
r=1

δS(σ1...σr [γ;ϕ]

δϕσ
δSσr+1...σn)[γ;ϕ]

δϕσ

−
n∑
r=1

(n− r + 1)β̄α(σ1...σr
(γ)Sασr+1...σn)[γ;ϕ]. (5.89)

By definition, the normal coordinates are chosen in such a way that only a minimal

number of non-linear coefficients β̄ασ1...σr
are non-vanishing. To see which are these

coefficients, we need to single out exceptional cases. For generic (i.e. non-resonant)

eigenvalues, all the functions β̄ασ1...σn
(γ) vanish. In this case the beta functions are linear

functions of the normal couplings and all the terms in the third line of (5.89) vanish. A

solution to (5.89) at a given order n can then be obtained recursively. Therefore, each

eigendeformation determines a complete perturbative solution of the Hamilton-Jacobi

equation around the fixed point.

In the presence of resonances, on the other hand, the beta functions cannot be

linearised in general by a change of coordinates. However, it is possible to find coor-

dinates in which only the coefficients β̄ασ1...σm
that fulfil the resonance condition (2.55)

are non-vanishing. This requirement defines the class of normal coordinates, although

it does not determine the coordinates completely. All this is reflected in the structure

of (5.89). Indeed, expanding this equation in powers of ϕσ, it can be seen that the

leading power on the LHS vanishes when a resonance occurs. Then, for a solution to

exist, resonant beta terms must be included on the RHS to cancel the non-vanishing

contribution of the product of lower-order terms in the second line of (5.89) . The equa-

tion at leading order in the ϕ expansion becomes trivial and does not fix its coefficient

in Sσ1...σn [γ;ϕ], which accounts for the residual ambiguity in the definition of normal

coordinates. These observations provide a direct method to compute simultaneously

from the Hamilton-Jacobi equation both the beta functions in normal coordinates and

the coefficients Sσ1...σn [γ;ϕ], which perturbatively define the coordinates themselves:

working order by order, the beta function coefficients are determined by requiring the

existence of a solution, which is then readily obtained.6 Inserting the expansion (5.61)

in (5.89), a set of recursive equations for the functions T is found.

6As proved in Section 3.1, the beta functions in normal coordinates are associated to Gell-Mann-
Low beta functions and conformal anomalies in minimal-substraction mass-independent schemes, which
can thus be calculated in a purely Wilsonian fashion as described.
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Finally, using the factorization properties of this scheme, beta coefficients with lower

multi-trace indices are determined by (2.140).

Let us study and solve the first orders of these expansions around a fixed point

of the flow. For definiteness, we will restrict to the fixed point with all fields in the

standard quantization. Many of the results we find can be easily generalized to other

fixed points.

Calculation of the Quadratic Order Sσ1σ2 [γ;ϕ]

Using (5.60) and (5.61), this coefficient has an expansion

Ŝpqij [γ;ϕ] =
√
|γ|(2π)dδ(p+q)T ij;0(γ, p)+Tij;j′(γ; p, q;−p−q)ϕ̂j′(p+q)+O(ϕ2). (5.90)

The general equation (5.89) particularized for Tij;0(γ; p) is[
ν(i) + ν(j) + 2γ

∂

∂γ

]
Tij;0(γ; p) =δijT(i)(γ; p)T(i)(γ;−p)

=
δij
2

[
q
ν(i)
γ

Γ(1 + ν(i))2
ν(i)Iν(i)

(pγ)

]2

. (5.91)

If ν(i) /∈ N0, the only analytic solution is

Tij;0(γ; p) =δijT(i);0(γ; p)

=δij
π p

2ν(i)
γ

22ν(i)+2 sin(πν(i))Γ(ν(i) + 1)2

I−ν(i)
(pγ)

Iν(i)
(pγ)

=δij

[
1

4ν(i)

+
p2
γ

8− 8ν2
(i)

+O(p4
γ)

]
. (5.92)

If ν(i) ∈ N0, (5.91) does not have analytic solutions in p = 0. However, in this case, the

resonance condition 2λ(i) + 2ν(i) = λ(0) = d is satisfied and (5.91) has to be modified to

include the beta term

β0
ixjy(γ) = δijB

0
(i)∂

2ν(i)
γ δ(x− y)

⇒ β̌0 pq
ij (γ) = (−1)ν(i)(pγ)

2ν(i)

√
|γ| δijB0

(i). (5.93)
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We obtain the equation[
2ν(i) + 2γ

∂

∂γ

]
T(i);0(γ; p) =T(i)(γ; p)2 − (−1)ν(i)(pγ)

2ν(i)B0
(i). (5.94)

To get an analytic solution around p = 0, we need to fix B0
(i) = 1/22ν(i)+1(ν(i)!)

2.

Therefore,

T(i);0(γ; p) =
(pγ)

2ν(i)

22ν(i)+1ν(i)!2
Kν(i)

(pγ) + (−1)ν(i) log (ξpγ) Iν(i)
(pγ)

Iν(i)
(pγ)

, (5.95)

where ξ is an arbitrary parameter associated to a solution to the homogeneous part

of (5.94). It parametrizes the freedom in the exact choice of the normal chart. We thus

find a contribution to β0 or, what is the same, to the conformal anomaly,7

A(x) =
1

22ν(i)+1ν(i)!2
c̄i(x) ∂

2ν(i)
γ c̄i(x) + . . . (5.96)

The next coefficient in the expansion of Sσ1σ2 is Ti1i2;i(γ; p1, p2; p). It satisfies the

equation[
ν(i1) + ν(i2) + 2γ

∂

∂γ
− T∗;(i)(γ; q)

]
Ti1i2;i(γ; p1, p2, p) = T(i1)(γ; p1)Ti2;i1i(γ; p2, p1, p)

+ T(i2)(γ; p2)Ti1;i2i(γ; p1, p2, p).

(5.97)

The expansion in momenta shows that this equation has analytic solution if

∆−(i) −∆−(i1) −∆−(i2) /∈ 2N0. (5.98)

In this case, the solution is given by

T i1 i2 ;i(γl; p1, p2, p) =− vi i1i2
2

T(i)(γl; p)T(i1)(γl; p1)T(i2)(γl; p2)

7This result differs in a factor 4ν2
(i) from the one found with different methods in (5.14) of [123].

This factor is due to the normalization we choose. In our formalism, we have chosen Sσ[γ;ϕ] = ϕσ+. . . .
As we will discuss in Section 5.4 and in Chapter 6, other approaches (like the one of [123]) are equivalent
to choosing Sσ[γ;ϕ] = −2ν(σ)ϕ

σ + . . . .
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×
∫

dz

z

(
l

z

)∆−
(i) Ψν(i1)

(l, z, p1)Ψν(i2)
(l, z, p2)

T(i)(γz; p)

∣∣∣∣∣
z=l

. (5.99)

(5.98) guarantees that the integrand of (5.99) will not have 1/z terms. On the other

hand, if (5.98) is not satisfied and

∆−(i) −∆−(i1) −∆−(i2) = n ∈ 2N0, (5.100)

the resonant beta term, βii1i2 , may be necessary to find quasilocal solutions. In mo-

mentum space it takes the form

ˆ̄βi p1p2

p i1i2
= (2π)dδ(p− p1 − p2)Bi

i1i2
(γ̄; p1, p2), (5.101)

and (5.97) becomes[
ν(i1) + ν(i2) + 2γ

∂

∂γ
− T∗;(i)(γ; p)

]
Ti1i2;i(γ; p1, p2, p) = −Bi

i1i2
(γ; p1, p2)T(i)(γ; p)

+T(i1)(γ; p1)Ti2;i1i(γ; p2, p1, p) + T(i2)(γ; p2)Ti1;i2i(γ; p1, p2, p).

(5.102)

To obtain a general solution, we follow a similar method to the one used for Ti ;i1i2

(see (5.84) – (5.88)). Logarithmic terms log(µl) will appear in (5.99) when (5.100) is

satisfied,

Ti1i2;i(γl; p1, p2,−p1 − p2)→ · · ·+ T(i)(γl; p2)Li1i2;i(γl; p1, p2) log(µl) + . . . (5.103)

with

Li1i2;i(γl; p1, p2) =− vii1i2
2

2ν(i)−ν(i1)−ν(i2)Γ(1 + ν(i))

Γ(1 + ν(i1))Γ(1 + ν(i2))

× l∆
−
(i)
−∆−

(i1)
−∆−

(i2)C0

[
z
d
2

Kν(i1)
(z|p1|)Kν(i2)

(z|p2|)Iν(i)
(z|p1 + p2|)

|p1|−ν(i1) |p2|−ν(i2)|p1 + p2|ν(i)

]
.

(5.104)
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If we substitute log(µl)→ log ξ:

Ti1i2;i(γl; q1, q2,−q1 − q2; ξ) = · · ·+ T(i)(γl; q2)Li1i2;i(γl; q1, q2) log(ξ) + . . . (5.105)

results in a good candidate for the coefficient. Indeed, inserting the new Ti1i2;i in (5.102),

the beta term is obtained:

Bi
i1i2

(γ; p1, p2) = −δijLi1i2;j(γl; p1, p2), (5.106)

and the equation is satisfied.

Calculation of the Cubic Order Sσ1σ2σ3 [γ;ϕ]

Let us next calculate the first order in the expansion in number of fields of the cubic

order coefficient,

Ŝp1p2p3

i1 i2 i3
[γ;ϕ] =

√
|γ|(2π)dδ(p1 + p2 + p3)T i1i2i3;0(γ; p1, p2, p3) +O(ϕ). (5.107)

Inserting this expansion in (5.89), we obtain[
ν(i1) + ν(i2) + ν(i3) −

d

2
+ 2γ

∂

∂γ

]
Ti1i2i3;0(γ; p1, p2, p3)

=
1

2
Sym

{(ir,pr)}3r=1

Ti1i2;i3(γ; p1, p2, p3)T(i3)(γ;−p3). (5.108)

The expansion in momenta shows that the equation has quasilocal solution if

∆−(i1) + ∆−(i2) + ∆−(i3) − d /∈ −2N0. (5.109)

In this case, its solution is given by the integral,

T i1 i2 i3;0(γl; p1, p2, p3) =− vi i1i2
3!

T(i1)(γl, p1)T(i2)(γl, p2)T(i3)(γl, p3)

×
∫

dz

z

(
l

z

)d
Ψν(i1)

(l, z, p1)Ψν(i2)
(l, z, p2)Ψν(i3)

(l, z, p3)

∣∣∣∣∣
z=l

.

(5.110)
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The exceptional case,

d−∆−(i1) −∆−(i2) −∆−(i3) = n ∈ 2N0, (5.111)

requires the introduction of a new contribution to the conformal anomaly β0
i1i2i3

. We

proceed as in previous sections. The integral expression for the coefficient Ti1i2i3;0 in

(5.108) has log(µl) terms:

Ti1i2i3;0(γl; p1, p2, p3)→ · · ·+ Li1i2i3(γl; p1, p2, p3) log(µl) + . . . (5.112)

with

Li1i2i3(γl; p1, p2, p3) =
vi1i2i3

3!

2−ν(i)−ν(i1)−ν(i2)

Γ(1 + ν(i1))Γ(1 + ν(i2))Γ(1 + ν(i3))

× ld−∆−
(i1)
−∆−

(i1)
−∆−

(i2)C0

[
z
d
2

Kν(i1)
(z|p1|)Kν(i2)

(z|p2|)Kν(i3)
(z|p3|)

|p1|−ν(i1)|p2|−ν(i2) |p3|−ν(i3)

]
.

(5.113)

Substituting log(µl)→ log ξ,

Ti1i2;i(γl; q1, q2,−q1 − q2; ξ) = · · ·+ Li1i2i3(γl; p1, p2, p3) log(ξ) + . . . (5.114)

gives the correct ξ-dependent coefficient. The necessary beta coefficient is then

β̂0 p1p2p3

i1 i2 i3
(γ) = −(2π)dδ(p1 + p2 + p3)Li1i2i3(γ; p1, p2, p3). (5.115)

Coefficients with Multi-trace Directions

The calculation of other coefficients of the expansion of SBϕ in normal coordinates

with multi-trace indices is now automatic. Based on the factorization properties of

large N flows (see Section 2.4.3), a consistent factorization normal chart can be chosen.

In this chart, these coefficients factorize as indicated in (2.134) and can be expressed

as products of the coefficients already calculated.

The method used to calculate the previous coefficients also provides the expansion

of the beta function. In particular, the equations are sensitive to the beta coefficients
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with the same lower indices as the action coefficients (or a subset of them). Thus,

studying equations that only involve action coefficients with single-trace indices, one

can only extract the beta coefficients with single-trace lower indices. Then, the use of

factorization normal coordinates allows to calculate any beta coefficient using (2.140).

In particular, note that in the case of a field φi in the standard quantization with

ν(i) ∈ N0, the conformal anomaly of (5.96) implies the non-vanishing beta coefficients:

0 6= β̄0y
ix1ix2

= β̄jy〈ij〉x1 ix2
= β̄

〈jj′〉y
〈ij〉x1 〈ij′〉x2

, ∀j, j′. (5.116)

This is, these exceptional cases not only have a conformal anomaly, but also they

develop a mixing between single and multi-trace eigendirections.

5.4 Connection Between Formalisms

Before finishing this this chapter, we would like to say a few words about the con-

nection of our methods with the standard one reviewed in Chapter 4. In the standard

approach to holographic renormalization, the deformations of the theory correspond to

boundary conditions on the modes of the asymptotic expansion of the fields close to

the conformal boundary.

However, the Wilsonian description introduced in this chapter is slightly different:

we have described the space of boundary actions at a geometric boundary of a regulated

AdS. They evolve under a Hamilton-Jacobi equation under the change of the cutoff.

Then, we have identified the physically relevant fixed points of the flows and studied

their neighbourhood. The Hamilton-Jacobi evolution selects diagonal perturbations of

the fixed point that can be used to deform the theory.

Let us explain how both formalism are connected.

As explained in Chapter 3, renormalizable theories can be intrinsically described

in terms of the renormalized space formed by the actions that can be reached, under

RG evolution, from relevant or marginally relevant deformations of a given fixed-point

action. Each particular renormalized theory is given by an integral curve of the beta

functions along the renormalized manifold R ⊂ WG, which in the gravity picture cor-

responds to a solution to the Hamilton-Jacobi equation that approaches the fixed point
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towards the UV. The renormalization schemes define parametrizations of this manifold.

For instance, relevant (and marginally relevant) normal coordinates c̄ constitute a good

parametrization: the UV renormalization scheme.

The “perfect” boundary actions (s, ε) ∈ R, or its integral curves ft ◦ (s, ε) ∈ R,

impose a boundary conditions on the bulk fields given by (5.5). The integral curve for

relevant single-trace deformations takes the form,

SBϕ ◦ fl/ε =
1

2
∆(σ) ϕ

σϕσ + constant term in ϕ+O(ϕ3)

+
(ε
l

)λ(σ)

c̄σ
[
ϕσ +O(ϕ2)

]
+O(c̄2) + derivatives, (5.117)

where we have assumed generic dimensions. The asymptotic form of the bulk fields is,

φi(z, x) = zd−∆(i)
[
φi(0)(x) +O(z2)

]
+ z∆(i)

[
φ̃i(0)(x) +O(z2)

]
+ . . . , (5.118)

where ellipsis depicts other possible contributions due to bulk interactions. Neglecting

higher orders, and using (5.118), the boundary condition imposed by (5.117) fixes the

coefficient of the asymptotic term zd−∆(i) to be proportional to the renormalized UV

coupling:

φσ(0) + · · · = l−λ(σ)
c̄σ

d− 2∆(σ)

+O(c̄2), (5.119)

where the ellipsis represents quadratic and higher orders in the modes φ(0) and φ̃(0).

This works both for standard and alternate quantization, with the corresponding values

∆(σ) = ∆±(σ).

To see the implications at finite ε, let us assume first the following relation between

dimensions. Any trio of bulk fields σ, σ1, σ2, must satisfy

λ(σ1) + λ(σ2) > λ(σ). (5.120)

In this case, in (5.119), O(c̄2) ∼ ελ(σ1)+λ(σ2)−λ(σ) , and therefore, these orders vanish in

the ε → 0 limit. Because in this limit, the renormalized trajectories flow to the fixed

point, and therefore, the field solutions approach zero, the non-linear corrections of the

fields are also suppressed. We find that (5.119) is then exact in the ε→ 0 limit.

However, since the boundary actions SBϕ ◦fl/ε satisfy the Hamilton-Jacobi equation,
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their boundary conditions must produce the same solutions independently of the cutoff

ε. This is, if we include all orders of the expansion (5.117), the boundary condition at

finite ε must imply exactly

φσ(0) = l−λ(σ)
c̄σ

d− 2∆(σ)

. (5.121)

If (5.120) is not satisfied, some contributions O(c̄2) in (5.119) can be divergent in the

ε → 0 limit. However, in this case, higher orders represented with ellipsis in the LHS

of (5.119), produced by bulk interactions, also give divergent terms. Since by definition,

SB ◦ ft must generate finite and consistent boundary conditions, both divergent terms

must cancel between them. Then, (5.121) is exact again.

Finally, we note that the factors 1/(d−2∆(i)) in these relations explain the normal-

ization factors we have found in (5.96).





Chapter 6

Application to Correlation

Functions

The career of a young theoretical physicist consists of treating the harmonic oscillator in

ever-increasing levels of abstraction.

Sidney R. Coleman

In the previous chapter, we have shown how the holographic space of theories has a

description which is completely equivalent to the Wilsonian description of the space of

theories in QFT of Chapter 2. Since Chapter 3 only relies on this structure, it is clear

that all the tools and procedures explained there also apply in holography.

In this chapter we apply this formalism to the renormalization of correlation func-

tions in AdS/CFT. In particular, we will study two and three point functions of oper-

ators with arbitrary scaling dimensions. They constitute a non-trivial example that is

worth analysing under our formalism, with many subtleties that our approach helps to

understand.

As we have seen in Chapters 4 and 5, the most standard regularization in (asymptot-

ically) AdS spaces consists in introducing an artificial geometric boundary that restricts

space-time to radial coordinates z ≥ ε > 0. Boundary conditions on the fields can be

imposed either at the true AdS boundary, as in Chapter 4, or at the new boundary

at z = ε, as in Chapter 5. In this chapter we follow the second approach: it has a

147
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closer connection with our renormalization formalism. The divergences are then seen

explicitly as singularities in the ε → 0 limit. We calculate the renormalized correla-

tion function following standard renormalization techniques, and using the language of

Chapter 3. As we have stressed there, although the extracted information is intimately

related to the Wilson flows in a neighbourhood of the fixed point, this procedure does

not require of any previous knowledge of these flows or normal coordinates. We will

pay special attention to the presence of irrelevant operators, and to its consequences

for renormalization.

We also wish to explicitly see in this system the connection between renormalization

and Wilsonian RG developed in Part I of this thesis. Therefore, in a second part of this

chapter, we will employ the results of Chapter 5 to understand the specific features we

have found in the renormalization of holographic correlation functions.

The main results of this chapter are presented in [8]. It is organized as follows. In

Section 6.1 we calculate the two and three point functions following the renormalization

procedure described in Chapter 3. We first try to use exclusively Dirichlet conditions

on the cutoff surface. However, irrelevant operators need more general boundary con-

ditions. We discuss this extension. In Section 6.2, we connect the previous calculation

with the Wilsonian RG. In order to do this, we compute perturbatively the renormal-

ization charts in a exact UV scheme, and compare with the results found in the previous

section. Section 6.3 is devoted to the computation of the correlation function as normal

derivatives in the fixed point. This is connected to the equivalence between the GKPW

dictionary and the BDHM dictionary in holography [153]. In Section 6.4 the resonant

cases that can appear in this system are analysed. Finally, in Section 6.5, we make

a brief discussion about differences and similarities between the methods explained in

this section and the more standard methods reviewed in Chapter 4.

6.1 Minimal Subtraction Renormalization

Among all the possible boundary conditions to impose at ε, Dirichlet boundary

conditions seem to be the most direct implementation of the Witten prescription (4.24).

In fact, they have been often used before (see for instance [61, 125]).

Let D ⊂ WG the submanifold of Dirichlet boundary conditions. We define the
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Dirichlet chart c : D ⊂ WG → C×R+ as the chart in D that associates the coordinates

(g0x, gix, ε) to the boundary condition φi(ε, x) = gix and the vacuum energy coupling

g0x. The CFT generating function is then

Z =

∫
[Dφ]ε̄,c e

−N2
{
SG[φ]+

∫
ddx
√
|γ̄|[ v0d +c0(x)]

}
. (6.1)

where, as in the previous chapter, [Dφ]ε,g indicates functional integration in the corre-

sponding fields φ, with support restricted to z > ε, and boundary condition φσ(ε) = gσ.

The spacetime integrals inside the functional integrals are understood to be restricted

to the support of the fields. We have also added a vacuum energy term, v0/d + c0(x).

We choose to shift the origin of g0x this way to have Z[γ; 0] = 1.

The bare correlation functions are functional derivatives of the connected generating

function W = N−2 logZ, with respect to the Dirichlet boundary conditions of the fields:

G(sεc,ε)
σ1...σn

=
δnW [γε; g]

δgσ1 . . . δgσn

∣∣∣∣
0

= ∂cσ1
. . . ∂cσn

∣∣
(sεc,ε)

W. (6.2)

The point where we evaluate the derivatives is gix = 0 (i.e. the minimum of V (φ)) and

g0x
c = 0: (sεc, ε) = c−1(0, ε) ∈ W . This point of WG will be called the critical point

(name that will be justified in the next section).

For computing bare correlation functions in a mixed position/momentum represen-

tation (doing only the Fourier transform to the Minkowski coordinates) we need the

boundary-to-bulk propagator P(i)
ε (z, p) for the field i. It is given by the solution to the

equation of motion with the boundary condition P(i)
ε (ε, p) = 1 and that is regular in

the interior of the bulk:

P(i)
ε (z, p) =

(z
ε

) d
2 Kν(i)

(pγz)

Kν(i)
(pγε)

. (6.3)
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6.1.1 Two-Point Function

The bare two-point functions can be easily calculated, as integration by parts reduces

the on-shell action to a boundary contribution:

Ĝ
(sεc,ε)
ij (p1, p2) = (2π)dδ(p1 + p2)δij z

−d+1∂zP(i)
ε (z, p1)

∣∣
z=ε

= (2π)dδ(p1 + p2)δij ε
−dG(i)(γε; p1), (6.4)

where

G(i)(γ; q) =
d

2
+ q

K ′ν(i)
(qγ)

Kν(i)
(qγ)

. (6.5)

This function can be split into a local and a non-local part:

G(i)(γ; q) = GL
(i)(γ; q; t) +GNL

(i) (γ; q; t). (6.6)

For non-integer ν(i),

GL
(i)(γ; q; t) =

d

2
+ q

I ′−ν(i)
(qγ)

I−ν(i)
(qγ)

= ∆−(i) +
q2
γ

2− 2ν(i)

− q4
γ

8[(1− ν(i))2(2− ν(i))]
+O(q6

γ) (6.7)

and

GNL
(i) (γ; q; t) = − 1

I−ν(i)
(qγ)Kν(i)

(qγ)

= −21−2ν(i)
Γ
(
1− ν(i)

)
Γ
(
ν(i)

) q
2ν(i)
γ + o

(
q

2ν(i)
γ

)
. (6.8)

Actually, these functions do not depend on t (if we work exclusively in this case, we

need not write explicitly the t argument). Note that GNL is purely non-local for generic

νi. If ν ∈ N+, the splitting is ambiguous and it is convenient to define instead

GL
(i)(γ; q; t) =

d

2
+ qγ

R′ν(i)
(γ; q; t)

Rν(i)
(γ; q; t)

. (6.9)
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and

GNL
(i) (γ; q; t) = (−1)ν

Iν(i)
(qγ)Kν(i)

(qγ) + log(qγt)

Kν(i)
(qγ)Rν(i)

(qγ; t)
, (6.10)

with

Rν(γ; q; t) = Kν(qγ) + (−1)νIν(qγ) log(qγt). (6.11)

In all cases with ν(i) 6= 0, GL is analytic at q = 0. The case ν(i) = 0 is quite special and

its discussion will be postponed to Section 6.4.

If one tries to take the cutoff ε to 0, one finds that both contributions are diver-

gent. A renormalization procedure is necessary to extract the renormalized two point

function. As explained in Chapter 2, to find the renormalized quantity, we have to

promote (6.2) to the generalized covariant equation

GR
α1...αn

= lim
t→∞

∇t
[Otα1

] . . .∇t
[Otαn ]W

∣∣∣(
s
1/tµ
c ,1/tµ

)
= lim

t→∞
[Otα1

]αn+1 . . . [Otαn ]α2n∇t
αn+1

. . .∇t
α2n
W
∣∣(
s
1/tµ
c ,1/tµ

) . (6.12)

where ∇t is a family of t-dependent flat connections in a neighborhood of the critical

point and [Otα]α
′

a set of t-depending local vectors (labelled by α), known as renor-

malized operators, and defined at TWG
∣∣
(sεc,ε)

(the tangent vector space of the critical

point). Their behaviour in t must be tuned in such a way that the limit (6.12) is finite.

The renormalized operators will rescale and absorb non-local divergences of the bare

correlators, and the Christoffel symbols will absorb local and semi-local divergences

appearing when two or more operators coincide.

Both families of objects are defined by the renormalization charts, rt :WG → C×R+,

(s, ε) 7→ (gR, ε/t).

Coming back to the two-point function, we have that

∇t

[Ot p1i1 ]
∇t

[Ot p2i2 ]
W = [Ot p1

i1
]σ1 [Ot p2

i2
]σ2
(
∂σ1∂σ2W − Γσσ1σ2

∂σW
)
. (6.13)

Therefore, the renormalized operators components will make finite the non-local part

of the bare correlators, and the Christoffel symbols will cancel the local and semilocal

divergences. The renormalized operators associated to single-trace fields should be
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chosen as follows

∂rtσ = t−∆−
(σ)∂cσ. (6.14)

Then, GL gives a divergent contribution, but it can be absorbed with a non-vanishing

Christoffel symbol, Γt 0
σ1σ2

:

Γ̂t 0
j1j2

(q1, q2) = −
√
|γ̄|(2π)dδ(q1 + q2)δj1j2 G

L
(j1)(γ̄, q; t)

∣∣
local

. (6.15)

Then, we obtain for ν /∈ N0

ĜRp1p2

i j = −µdδij(2π)dδ(p1 + p2)21−2ν(i)
π csc(πν(i))

Γ
(
ν(i)

)2 p
2ν(i)

1γµ . (6.16)

6.1.2 Three-Point Function

For the tree-point calculation, it will be useful to notice that the boundary-to-bulk

propagator can be expressed as

P(i)
ε (z, p) = Ῡν(i)

(ε, z, p) + Ψν(i)
(ε, z, p)G(i)(γε; p), (6.17)

where Ῡν(i)
(ε, z, p) and Ψν(i)

(ε, z, p) (already introduced in (5.73)) are analytic functions

of p:

Ψν(ε, z, p) =
(z
ε

) d
2

[Iν(pz)Kν(pε)−Kν(pz)Iν(pε)]

=
(z
ε

) d
2 π

2 sin(πν)
[Iν(pz)I−ν(pε)− I−ν(pz)Iν(pε)] , (6.18)

where the second equality only applies if ν /∈ N0 and

Ῡν(ε, z, p) =
(z
ε

) d
2

{[
d

2
+ pε

I ′ν(i)
(pε)

Iν(i)
(pε)

]
[Kν(pz)Iν(pε)− Iν(pz)Kν(pε)] +

Iν(pz)

Iν(pε)

}
.

(6.19)
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Figure 6.1: Diagrammatic representation of equality (6.17). The squared cross represent
the analytic function Ῡν(i)

(ε, z, p). Likewise, the square depicts Ψν(i)
(ε, z, p).

This equality is diagrammatically represented in Figure 6.1. We can also separate the

local and divergent parts of G(i)(γε; p) in (6.17) to write

P(i)
ε (z, p) = Υν(i)

(ε, z, p) + Ψν(i)
(ε, z, p)GNL

(i) (γε; p; t). (6.20)

If ν(i) /∈ N0,

Υν(ε, z, p) =
(z
ε

) d
2 I−ν(pz)

I−ν(pε)
. (6.21)

If ν(i) ∈ N0, the function Υν(i)
(ε, z, p) will depend additionally on t.

The bare three-point function is given by the Witten diagram of Figure 6.2, and in

momentum space it reads,

Ǧ
(sεc,ε)
i1i2i3

(p1, p2, p3) =− vi1i2i3
∫ ∞
ε

dz

zd+1
P(i1)
ε (z, p1)P(i2)

ε (z, p2)P(i3)
ε (z, p3)

=− vi1i2i3ε−d
∫ ∞
ε

dz

z

(z
ε

) d
2 Kν(i1)

(p1γz)Kν(i2)
(p2γz)Kν(i3)

(p3γz)

Kν(i1)
(p1γε)Kν(i2)

(p2γε)Kν(i3)
(p3γε)

. (6.22)

This integral is divergent in the ε → 0 limit (below we analyse its divergences). Fol-

lowing (6.12), the renormalized correlator is

GR
σ1σ2σ3

= lim
t→∞

[Otσ1
]α1 [Otσ2

]α2 [Otσ3
]α3

(
∂α1∂α2∂α3

−Γt αα1α2
∂α∂α3 − Γt αα2α3

∂α∂α1 − Γt αα3α1
∂α∂α2 + Γt αα1α2α3

∂α

)
W

∣∣∣∣(
s
1/tµ
c ,1/tµ

) . (6.23)
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Figure 6.2: Witten diagram for the three point function.

Γαα1α2α3
is the contribution coming from terms quadratic in the Christoffel symbols and

terms with derivatives of them.1 In terms of rt, it is given by

Γt αα1α2α3
=
(
∂cα1

r
α′1
t

)(
∂cα2

r
α′2
t

)(
∂cα3

r
α′3
t

)(
∂rtα′1

∂rtα′2
∂rtα′3

cα
)
. (6.25)

From the two-point analysis, we know the form of the [Oσ]σ
′

components of the renor-

malized operators (6.14).

Using them, we analyse the t = 1/εµ → ∞ limit of the first line of (6.25), to find

which further Christoffel symbols or operator components we need. Notice that, since

∂α∂0xW = 0, the Christoffel symbol found above, Γ0
σ1σ2

, cannot give any contribution

to this correlator.

We will analyse first the generic case in which

d

2
± ν(i1) ± ν(i2) ± ν(i3) /∈ −2N0. (6.26)

Therefore, the integrand of (6.22) can be expressed as a power expansion around z =

0 (admitting real exponents) without z−1 terms. Its primitive is therefore defined

unambiguously as that one with vanishing constant term in this expansion. Using the

1 It only make sense to define such quantity in flat space, where the covariant derivatives commute.
Specifically,

Γαα1α2α3
=

2

3

(
Γαα′α1

Γα
′

α2α3
+ Γαα′α3

Γα
′

α1α2
+ Γαα′α2

Γα
′

α3α1

)
− 1

3

(
∂α1

Γαα2α3
+ ∂α3

Γαα1α2
+ ∂α2

Γαα3α1

)
.

(6.24)
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renormalized operators found in the two-point calculation, we obtain that

[Ot p1

i1
]σ1 [Ot p2

i2
]σ2 [Ot p3

i3
]σ3 ∂σ1∂σ2∂σ3W |(s1/tµc ,1/tµ

) = µd(2π)dδ(p1 + p2 + p3)

×
{
Ri1i2i3(γµ; p1, p2, p3) + t

d−∆−
(i1)
−∆−

(i2)
−∆−

(i3)

[
Zi1i2i3(γtµ; p1, p2, p3)

+Yi1i2i3(γtµ; p1, p2, p3) + Yi2i3i1(γtµ; p2, p3, p1) + Yi3i1i2(γtµ; p3, p1, p2)

+Xi1i2i3(γtµ; p1, p2, p3) + Xi2i3i1(γtµ; p2, p3, p1) + Xi3i1i2(γtµ; p3, p1, p2)
]

+ ...
}
, (6.27)

where the ellipsis represents terms of order O
(
t−ν(i1)−ν(i2)−ν(i3)− d2 , t−ν(i1) , t−ν(i2) , t−ν(i3)

)
in the t→∞ limit (and therefore vanishing).

Ri1i2i3(γµ; p1, p2, p3) =− vi1i2i3
23−ν(i1)−ν(i2)−ν(i3)

Γ(ν(i1))Γ(ν(i2))Γ(ν(i3))
p
ν(i1)

1γµ p
ν(i2)

2γµ p
ν(i3)

3γµ

×
∫

dz

z
(µz)

d
2 Kν(i1)

(p1γz)Kν(i2)
(p2γz)Kν(i3)

(p3γz)

∣∣∣∣
z=∞

(6.28)

gives the leading contribution of the primitive evaluated in z = ∞. It is finite, and

agrees with the expected 3-point function of a CFT in momentum space [62, 154].

The leading contributions coming from the evaluation in z = ε have been separated

in the following pieces using (6.20):

Zi1i2i3(γε, p1, p2, p3) =vi1i2i3

∫
dz

zd+1
Υν(i1)

(ε, z, p1)Υν(i2)
(ε, z, p2)Υν(i3)

(ε, z, p3)

∣∣∣∣
z=ε

= O(ε0),

(6.29)

Yi1i2i3(γε, p1, p2, p3) =vi1i2i3 G
NL
(k)(γε; p3)

∫
dz

zd+1
Υν(i1)

(ε, z, p1)Υν(i2)
(ε, z, p2)Ψν(i3)

(ε, z, p3)

∣∣∣∣
z=ε

=O(ε2ν(i1)), (6.30)

Xi1i2i3(γε, p1, p2, p3) =vi1i2i3

∫
dz

zd+1
Υν(i1)

(ε, z, p1)Ψν(i2)
(ε, z, p2)Ψν(i3)

(ε, z, p3)

∣∣∣∣
z=ε

×GNL
(i2)(γε; p2)GNL

(i3)(γε; p3) = O(ε2ν(i2)+2ν(i3)). (6.31)
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All of them are potentially divergent.

If (6.26) is not satisfied, the power expansion around z = 0 of some of these functions

will have z−1 terms, which makes our prescription to define the primitive ill-defined.

However, they can also be described by the same equations if we define a prescription

for the primitive: we choose the one that, when expanding in series of z around z = 0,

has no independent term if the logarithms are written with the scale µ, log µz. After

the evaluation of the primitive at z = ε, these logarithmic terms produce a t dependence

of these functions.

The first function, Zi1i2i3 , is purely local (analytic in momenta) and so, appears when

the tree points coincide. Terms with derivatives make the degree of divergence decrease.

Therefore, only terms with a number of derivatives n∂ < −d/2 + ν(i1) + ν(i2) + ν(i3) are

divergent (the saturation of the inequality is discarded by (6.26)). The divergence can

be removed with

Γ̌0
i1i2i3

(p1, p2, p3)
∣∣
(sεc,ε)

= −ε−d Zi1i2i3(γε; p1, p2, p3)|local . (6.32)

The second function, Yi1i2i3 is semilocal (non-analytic in one of the two free momenta),

and so, it appears when two operators (i2 and i3) coincide. It is divergent when ∆−(i1) >

∆−(i2) + ∆−(i3), and the terms with a number of derivatives n∂ > ∆−(i1) − ∆−(i2) − ∆−(i3)

vanish in the limit. From (6.30), we see that, up to an analytic function, it has the

form of a (subtracted) two point function. If we define

Γ̌i3i1i2(p3, p1, p2)
∣∣
(sεc,ε)

= ε−dvi1i2i3

∫
dz

zd+1
Υν(i1)

(ε, z, p1)Υν(i2)
(ε, z, p2)Ψν(i3)

(ε, z, p3)

∣∣∣∣
z=ε,local

,

(6.33)

Christoffel-symbol terms of (6.23) are

−[Ot p1

i1
]σ1 [Ot p2

i2
]σ2 [Ot p3

i3
]σ3Γt σσ1σ2

∂σ∂σ3W |(s1/tµc ,1/tµ
) = −(2π)dδ(p1 + p2 + p3)

×td−∆−
(i1)
−∆−

(i2)
−∆−

(i3)µd Yp3p1p2

i3 i1 i2
(γtµ), (6.34)

and therefore, cancel the semilocal divergences Yεi1i2i3 but produce new local ones. These
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Figure 6.3: Witten diagrams contributing to the renormalization of the tree-point func-
tion in the subextremal case. Crosses indicate insertions of [Otσ]σ

′
∂cσ′ , the shaded cir-

cles, insertions of −[Otσ1
]σ
′
1 [Otσ2

]σ
′
2Γσσ′1σ′2

∂cσ, and the dotted shaded circles, insertions of

[Otσ1
]σ
′
1 [Otσ2

]σ
′
2 [Otσ3

]σ
′
3Γσσ′1σ′2σ′3

∂cσ.

can be cancelled redefining (6.32),

Γ̌0
i1i2i3

(p1, p2, p3)
∣∣
(sεc,ε)

= −ε−dZi1i2i3(γε; p1, p2, p3) +
[
Γi3i1i2(p3, p1, p2)GL

(i3)(γ̄; p3)

+(1→ 2→ 3) + (1→ 3→ 2)
]∣∣∣

(sεc,ε),local
.

(6.35)

If ∆+
(i1) < ∆+

(i2) + ∆+
(i3) for any choice of i1, i2, i3, no further divergences appear (in this

case, Xi1i2i3 vanishes in the limit), and therefore we have cancelled all the divergences.

This is the subextremal case. It is represented diagrammatically in Figure 6.3. Note

that, if all operators are relevant, this condition is automatically satisfied for any three

operators. Nevertheless, if we consider irrelevant operators, and the relation above

between dimensions is not satisfied, new non-local divergences given by X ε
i1i2i3

appear.

They are a consequence of the integration of z in a neighborhood of the point where

the operator i1 is inserted, and are present even when the three operators are separated

in position space. Terms with a number of derivatives n∂ > ∆+
(i1)−∆+

(i2)−∆+
(i3) vanish

in the limit. Due to its non-locality, the divergence cannot be cancelled by non-linear
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Figure 6.4: Required diagram to subtract Xi1i2i3 divergences.

counterterms. It indicates that our renormalized operators are not the correct ones,

and somehow they have to be improved. From (6.31), we see that these divergences

have the same structure as the diagram shown in Figure 6.4. However, no Dirichlet

boundary conditions can generate such diagram. We need to extend the Dirichlet chart

c beyond D.

6.1.3 Extension of the Dirichlet Boundary Conditions

The extension of the Dirichlet boundary conditions is not obvious. The Dirichlet

condition corresponds to a singular boundary action. A way to treat them with a

regular functional is using the Legendre transformed actions of Section 5.2.2,

Sπ = πσ ϕ
σ − SBϕ , πi(x) =

1√
|γε|

δSBϕ
δϕi(x)

. (6.36)

Since the Legendre transform is invertible, it can be used to define a chart on WG:

Sπ ◦ c−1(g, ε) = Sπ[γε; g] =

∫
ddx
√
|γε| S(γε, g, ∂g, . . . , π, ∂π, . . . ). (6.37)

In particular, we will use the following canonical linear parametrization c:

Sπ =

∫
ddx
√
|γ̄|
[
− v0

d
−c0x+ci(x)πi(x)+c〈ij〉(x)πi(x)πj(x)+c〈i

µ
µj〉∂2

γ̄πi(x)πj(x)+ . . .

]
.

(6.38)
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Quadratic and higher orders will be associated with bare multitrace deformations. An

n-th order multitrace deformation, labelled by an or αn, is given by

∆Sπ =

∫
ddx

√
|γ̄| ca(x)Qx

a;σ1...σn
(γ̄)πσ1 . . . πσn . (6.39)

where Qx
a;σ1...σn

(γ̄) is a local distribution with support at y = x1 = ... = xn (see (2.127)).

We reserve the letters b and β for double-trace deformations a2 and α2.

A Dirichlet condition corresponds to the linear functional

Sπ = cσ πσ. (6.40)

The inverse Legendre transform of (6.40) is singular, as expected. However, perturbing

Sπ with quadratic or higher orders terms in πσ gives a well defined SBϕ which generates

mixed boundary conditions. Therefore, the chart defined by (6.38) constitutes an ex-

tension of the Dirichlet chart. We will refer to the extension of the Dirichlet charts as

Legendre charts (because of its connection with the Legendre action).

The critical point we are using is given by Sπ(sεc, ε) =
∫
ddx
√
|γε| v0/d. Derivatives

with respect to bare multitrace deformations of the partition function in the critical

point are

∂cα1

N2

∂cα2

N2
. . . Z|(sεc,ε)

=Qα1;σ1
1 ...σ

1
n1

(γε)Qα2;σ2
1 ...σ

2
n2

(γε)· · ·
∫

[Dφ]εDπ πσ
1
1 · · · πσ1

n1 πσ
2
1 · · · πσ2

n2 · · ·

× expN2

{∫
ddx
√
|γε|
[v0

d
+ φi(ε, x)πi(x)

]
− SG[φ]

}
=Qσ1

1 ...σ
1
n

α1
(γε)Q

σ1
1 ...σ

1
n

α2
(γε) · · ·

∂c
σ1

1

N2
. . .

∂cσ1
n1

N2

∂c
σ2

1

N2
. . .

∂cσ2
n2

N2
. . . Z

∣∣∣∣∣
(sεc,ε)

. (6.41)

The right-hand side is given by standard Witten diagrams (including disconnected

ones) with subsets of boundary points contracted with Q. To translate this into an

identity for connected correlators, one must be careful to include disconnected Witten

diagrams that are connected on the boundary by the contractions. Moreover, the

contraction mixes different orders in the loop (dual to 1/N) expansion, so some Witten
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D1 D2 D3

Figure 6.5: Witten diagrams for G
(sεc,ε)
〈σ1σ2〉σ3σ4

= D1, and G
(sεc,ε)
σ1σ2σ3σ4 = D2 + D3 at the

tree-level.

D1 D2

Figure 6.6: Witten diagrams for G
(sεc,ε)
〈σ1σ2〉σ3

= D1, and G
(sεc,ε)
σ1σ2σ3 = D2. The first non-

trivial contribution for D1 is at the one-loop level, unlike D2, which has non-trivial
contribution at the tree level.

diagrams give subleading contributions upon contraction and need not be considered.

To take these two issues into account, we define the correlators G
(sεc,ε)

〈σ1
1 ...σ

1
n1
〉...〈σm1 ...σmnm 〉

as

those given by all (connected or disconnected) single-trace tree-level Witten diagrams

of n1 + · · ·+nm external legs that, upon contraction of the space-time points inside the

same angle-bracket, are connected and contain no loops. In the representation of the

corresponding Witten diagrams we will put together the boundary points in the same

angle-bracket. We illustrate all this with the examples in Figures 6.5 and 6.6. We can

write the bare connected correlators of multi-trace operators in terms of these objects:

G(sεc,ε)
α1...αm

= Qσ1
1 ...σ

1
n

α1
(γε) · · ·Qσm1 ...σ

m
n

αm (γε)G
(sεc,ε)

〈σ1
1 ...σ

1
n1
〉...〈σm1 ...σmnm 〉

. (6.42)
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Notice that the diagram

G
(sεc,ε)
〈σ1σ2〉σ3σ4

= G(sεc,ε)
σ1σ3

G(sεc,ε)
σ2σ4

+G(sεc,ε)
σ1σ4

G(sεc,ε)
σ2σ3

(6.43)

has exactly the form we need to cancel the non-local divergence Xi1i2i3 . This suggests

that this divergence has to be removed adding a bare double-trace component to the

single-trace renormalized operator:

∂̂rti (p)→ ∂̂rti (p) =t−∆−
(i)

[
∂̂ci (p) + ρ̃bi(γ̄; p)∂̂cb(p)

]
, (6.44)

where ρ̃bi(γ̄; p) will be determined shortly. This component gives an additional contri-

bution in the triple-derivative term of (6.12):

[Ot p1

i1
]σ1 [Ot p2

i2
]σ2 [Ot p3

i3
]β ∂σ1∂σ2∂βW |(s1/tµc ,1/tµ

) = (2π)dδ(p1 + p2 + p3)µd t
d−∆−

(i1)
−∆−

(i2)
−∆−

(i3)

× 2
[
Q i1i2
b (γ; p1, p2) ρ̃bi1(γ;−p1 − p2)G(i1)(γ̄; p1)G(i2)(γ̄; p2)

]∣∣(
s
1/tµ
c ,1/tµ

) .
(6.45)

Apart from permutations in the labels (1, 2, 3), since G
(sεc,ε)
σβ1β2

= 0 and G
(sεc,ε)
β1β2β3

= 0,

(there no diagrams at the tree level) the bare double-trace component does not give

more contributions in the triple-derivative term of (6.12). Using (6.6), in order to cancel

the non-local terms Xi1i2i3 , the functions ρ̃bi(γ̄; p) must satisfy

Q i1i2
b (γ; p1, p2) ρ̃bi(γ;−p1 − p2) =− vi i1i2

2

∫
dz

zd+1
Υν(i)

(ε, z,−p1 − p2)

×Ψν(i1)
(ε, z, p1)Ψν(i2)

(ε, z, p2)

∣∣∣∣
z=ε,local

. (6.46)

Once a basis for the double-trace deformation is specified (modulo total derivatives),

this equation fixes ρ̃bi for all b expanding the right hand side in momenta. A possible

basis is b = 〈ij〉, 〈i(2)j〉, 〈ij(2)〉, . . . ∀i, j. For instance, b = 〈i(n)j〉,

Q i1j1
〈i(n)j〉 (γ; p1, p2) = −pn1γδi1i δj1j , (6.47)
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would give the following contribution to Sπ:

∆Sπ =

∫
ddx
√
|γ̄|c〈i(n)j〉(x)∂nγπi(x)πj(x). (6.48)

All quasilocal double-trace contributions to Sπ in (6.38) can be expressed as combina-

tion, with possible derivatives, of cb, with b running in the indices written above.

(6.46) cancels non-local divergences, but brings in new semilocal and local ones

(see (6.6)). We have to introduce then new Christoffel symbols,

Γ̌t i1i2b(p1, p2, p3) =2
√
|γ̄| GL

(i2)(γ̄, p2)
∣∣
local

Q i1i2
b (γ̄; p1, p2), (6.49)

Γ̌t 0
i1i2b

(p1, p2, p3) =2
√
|γ̄| GL

(i1)(γ̄; p1)GL
(i2)(γ̄; p2)

∣∣
local

Q i1i2
b (γ̄; p1, p2). (6.50)

They give the following contribution in (6.46),

[Ot p1

i1
]σ1 [Ot p2

i2
]σ2 [Ot p3

i3
]β
(
−Γt σσ2β

∂σ∂σ1 − Γt σβσ1
∂σ∂σ2 + Γt 0

σ1σ2β
∂0

)
W

∣∣∣∣(
s
1/tµ
c ,1/tµ

)
+(1→ 2→ 3) + (1→ 3→ 2), (6.51)

which cancels the new semilocal divergence (first two terms between parenthesis) and

the local one (third term between parenthesis). Figure 6.7 shows the diagramatic rep-

resentation of the cancelation of the non-local terms. The renormalized result is

ĜR
i1i2i3

(p1, p2, p3) = µd(2π)dδ(p1 + p2 + p3)Ri1i2i3(γµ; p1, p2, p3). (6.52)

6.2 Exact UV Renormalization

This section is devoted to making contact between the previous section and Chap-

ter 5, following the line developed in Chapter 3. In the previous section we have

reviewed the renormalization process applied to correlation functions. There, we essen-

tially tuned some “counterterms” to extract the finite part of the correlation functions.

The renormalization procedure has been performed around a specific critical point
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Figure 6.7: Witten diagrams involved in the cancelation of the non-local terms. Crosses
indicate insertions of [Otσ]σ

′
∂cσ′ , the circled crosses, insertions of [Otσ]β∂cβ, shaded cir-

cles, insertions of −[Otσ1
]σ
′
[Otσ2

]βΓσσ′β∂
c
σ, and the dotted shaded circles, insertions of

[Otσ1
]σ
′
1 [Otσ2

]σ
′
2 [Otσ3

]βΓ0
σ′1σ
′
2β
∂c0.

(the Dirichlet critical point). We will see that indeed, this point belongs to the critical

manifold of the standard-quantization fixed point.

Normal coordinates are in intimate connection with the minimal subtraction class of

schemes we used in Section 6.1. As proved in Chapter 2, the renormalized correlators in

such schemes are equal to successive derivatives in normal coordinates of the generator

W at the regulated fixed point

GR
α1...αn

= ∂ c̄α1
. . . ∂ c̄αnW

∣∣(
s
1/µ
∗ ,µ

). (6.53)

In this section we will find perturbatively the exact UV renormalization charts:

rt(s, ε) = c̄ ◦ f1/t(s, ε)− c̄ ◦ f1/t(s
ε
c, ε). (6.54)

using the Dirichlet critical point. After that, we will compare results with the charts

found in Section 6.1. This will be done studying the asymptotic behaviour of Witten

diagrams in a slice of the AdS space. For these computations, we will restrict ourselves

to a system with generic dimensions without any resonance or exceptional case.

The UV exact renormalization charts, rt, will be written perturbatively as functions

of the Dirichlet chart c:

rαt = rαt α1
(γ̄)cα1 + rαt α1α2

(γ̄)cα1cα2 + rαt α1α2α3
(γ̄)cα1cα2cα3 +O

(
c4
)
. (6.55)
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The coefficients are expanded as

r̂a
′

t a1...an
(γ; p, q1, . . . , qn) =tλ(a′)(2π)d

√
|γ|δ(p+ q1 + · · ·+ qn)ρa

′

a1...an
(γ; q1, . . . , qn).

(6.56)

Using our notation, the on shell action in a slice of the AdS space can be written as

SBϕ ◦ f1/t = − 1

N2
log

∫
Dπ [Dφ]tε̄,ϕε̄ eN

2[Sπ+πσφσ(ε̄)−SG]. (6.57)

Derivatives of it at (sεc, ε) and ϕ = 0 can be calculated using Witten diagrams. In

particular,

Dε,l
α1...αn;σ′1...σ

′
m

= − δm

δϕσ
′
1 . . . δϕσ′m

∣∣∣∣
ϕ=0

∂cα1
. . . ∂cαn

∣∣
(sεc,ε)

(
SBϕ ◦ fε/l

)
(6.58)

will be Witten diagrams in a slice of the AdS space between ε and l with n legs on ε

and m legs on l. Diagrams with multitrace deformations on the left surface (ε) are

Dε,l
α1α2...;σ′1...σ

′
r

= Q
σ1

1 ...σ
1
n1

α1 (γε)Q
σ2

1 ...σ
2
n2

α2 (γε) · · ·Dε,l

〈σ1
1 ...σ

1
n1
〉〈σ2

1 ... σ
2
n2
〉...;σ′1...σ′r

. (6.59)

As in Section 6.1.3, Dε,l

〈σ1
1 ...σ

1
n1
〉〈σ2

1 ... σ
2
n2
〉...;σ′1...σ′r

, are those diagrams given by all (connected

or disconnected) single-trace tree-level Witten diagrams of n1 +n2 + · · · legs on the UV

surface and r legs on the IR surface that, upon contraction of the space-time points

inside the same angle-bracket, are connected and contain no loops. In the representation

of the corresponding Witten diagrams we will put together the boundary points in the

same angle-bracket.

To compute these Witten diagrams, it is convenient to define P(j)
ε,l (z, q) (K(j)

ε,l (z, q))

as the ε(l)-boundary-to-bulk propagator. They are given by

K(i)
ε,l (z, p) =

(z
l

) d
2 Kν(i)

(pε)Iν(i)
(pz)−Kν(i)

(pz)Iν(i)
(pε)

Kν(i)
(pε)Iν(i)

(pl)−Kν(i)
(pl)Iν(i)

(pε)
,

=
Ψν(i)

(ε, z, p)

Ψν(i)
(ε, l, p)

, (6.60)

P(i)
ε,l (z, p) =

(z
ε

) d
2 Kν(i)

(pz)Iν(i)
(pl)−Kν(i)

(pl)Iν(i)
(pz)

Kν(i)
(pε)Iν(i)

(pl)−Kν(i)
(pl)Iν(i)

(pε)
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=
Ψν(i)

(l, z, p)

Ψν(i)
(l, ε, p)

. (6.61)

6.2.1 Dirichlet Manifold and the Critical Point

The set of Dirichlet boundary conditions at ε is seen in our approach as a submani-

fold of the holographic space of theories, D ⊂ W . Following Section 3.2, D can be used

as bare manifold. Renormalized trajectories emanating from the standard-quantization

fixed point through relevant and marginally relevant single-trace deformations can be

reached with a renormalization procedure [6]. In fact, the bare couplings as functions

of the cutoff, ht = r−1
t , can be chosen to be a solution of the equation of motion of

the gravity fields (plus a vacuum energy coupling to be determinate). This method

has the advantage of providing directly the counterterms associated to semi-local di-

vergences [6].

All this implies that the renormalization of the correlation functions of relevant

operators can be done restricting the renormalization charts (or the bare couplings) to

D. However, as we have explicitly seen, renormalized irrelevant operators may require

new directions that expand the Dirichlet manifold.

To show that the critical manifold cuts the Dirichlet manifold at least at one point

(the critical point), let us prove that, in the quotient space M, it flows under RG

evolution towards the standard-quantization fixed point s∗. The boundary action after

a finite RG evolution is given, in path integral notation, by

exp
[
−N2SBϕ ◦ ft(sl/tc , 1/lt)

]
=

∫
[Dφ]l,ϕl/t,0 e

N2[
∫
ddx
√
|γl/t|

v0
d
−SG[φ]]. (6.62)

SB ◦ ft(sl/tc , 1/lt) is thus obtained from solutions of the SG equations of motion that

vanish at l/t. If we now take the limit t → ∞, this condition forces the solutions to

approach zero as fast as possible when z → 0. The quadratic approximation to SG is

then valid in the near-boundary region and we can use (5.118). The t→∞ boundary

condition requires that the coefficient of the leading term z∆−
(i) vanishes. This agrees

with the boundary condition imposed by the standard-quantization fixed boundary

action.

To study some properties of this critical point, let us compute (6.62) explicitly
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z = ǫ z = l

D
ǫ,l
−;σ1σ2

z = ǫ z = l

D
ǫ,l
−;σ1σ2σ3

Figure 6.8: Witten diagrams Dε,l
−;σ1σ2

and Dε,l
−;σ1σ2σ3

.

(Dε,l
−;σ1...σn) for the first orders (n ≤ 3), (see Figure 6.8):

Ďε,l
−;ij(p,−p) =− δij l−d+1 ∂zK(i)

ε,l (z, p)
∣∣∣
z=l

, (6.63)

Ďε,l
−;ijk(p1, p2, p3) =− vi1i2i3

∫ l

ε

dz

zd+1
K(i1)
ε,l (z, p1)K(i2)

ε,l (z, p2)K(i3)
ε,l (z, p3). (6.64)

We will say that some normal direction, a, is excited by the critical point if c̄a◦ft(sεc, ε) 6=
0 for some normal chart c̄ and some 0 < t < 1. Notice that, since there are no diagrams

with a single leg on the right, Sϕ ◦ ft(sεc, ε) = Sα[γ̄;ϕ] c̄α ◦ ft(sεc, ε) cannot have linear

terms in ϕ. Since only single-trace eigenperturbations Sσ can give such linear terms,

we conclude that only multi-trace directions are excited by the Dirichlet critical point.

From the ε→ 0 limit of (6.63) and (6.63), the form of the boundary action for the

fixed point can be calculated. In fact, (5.57) has been found following this method.

6.2.2 Exact Renormalized Operators

Let us study now diagrams with only one deformation on the left (which could be

single or multitrace):

∂cα|(sεc,ε)
(
SBϕ ◦ f1/t

)
=
(
f ∗1/t∂

c
α

)
SBϕ
∣∣
f1/t(s

ε
c,ε)

=
(
f ∗1/t∂

c
αc̄
α1
) (
∂ c̄α1

SBϕ
)∣∣
f1/t(s

ε
c,ε)

= (∂cαr
α1
t )|(sεc,ε) ∂

c̄
α1
SBϕ
∣∣
f1/t(s

ε
c,ε)

. (6.65)
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In the first line we have made use of the definition of pull-back, in the second, we have

applied the chain rule and in the third one, we have used the definition of pull-back

again and (6.54). Using (5.59), we have

∂ c̄αS
B
ϕ

∣∣
f1/t(s

ε
c,ε)

= Sα[γl, ϕ] + 2 c̄α1
(
f1/t(s

ε
c, ε)
)
Sαα1 [γl, ϕ]

+ 3 c̄α1
(
f1/t(s

ε
c, ε)
)
c̄α2
(
f1/t(s

ε
c, ε)
)
Sαα1α2 [γl, ϕ] + . . . (6.66)

If we knew the expansion of SBϕ in normal coordinates, we would be able to extract

the linear relation between the charts rt and c, and thus, the renormalized operators.

Actually, in the non-resonant case, the knowledge of the eigenvalues is enough to split

the different contributions (resonances will be studied in Section 6.4). Therefore, rα1
t α

and Sα1 [γ;ϕ] can be extracted analysing the behaviour of (6.65), fixing l = tε and

taking ε→ 0:

∂̂c pa

∣∣∣
(sεc,ε)

(
SBϕ ◦ fl/ε

)
= r α

l/ε a(γε; p) Sα[γl;ϕ] + remaining orders in ε

=

(
l

ε

)λ(a′)

ρa
′

a (γε; p)Ŝ
p
a′ [γl;ϕ] + remaining orders in ε. (6.67)

The first term of the last member side carries orders ε
−λ(α1)+n

u
(α1)
−nd

(α1)
+n∂ , with nd(α),

(nu(α)) the number of covariant (contravariant) indices of the chart cα and n∂ ∈ N0.

The remaining orders will be of the form ε
−
∑
i

[
λ(αi)

−nu
(αi)

+nd
(αi)

]
+n∂ and thus, if there are

no resonances, the knowledge of the spectra of eigenvalues is enough to discard the

remaining contributions.

Expanding (6.67) also in the number of fields, we have

Ďε,l
a;j1...jn

(p; p1, . . . , pn) =− n! l−d
(
l

ε

)λ(a′)

ρa
′

a (γε; p)Ta′;i1...in(γl; p; p1, . . . , pn)

+ remaining orders in ε. (6.68)

Remember that San [γ, ϕ], with an a n-trace deformation, has only terms of the form∏m
i ϕi, with m ≥ n. This is, Tan;i1...im = 0 if m < n. Therefore, in (6.68), Dα;σ1...σn

receives only contributions from a′ running from singletrace to n-trace deformations.

Also, to find all linear contributions to some n-trace renormalized chart rα
n

t , it is neces-
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sary the analysis of all diagrams of the form Dα;σ1...σn . For this reason, we organize the

following analysis studying the diagrams in increasing order of number of right legs.

Vacuum Renormalized Coupling

Let us start with the diagrams of the form Dε,l
α;−. At tree level, the only one giving

a contribution is (see (6.57) and (6.67)):

Dε,l
0x;− =− td

√
|γl|. (6.69)

No further diagrams can contribute. The only eigenperturbation Sα[γ;ϕ] giving a

contribution to terms O ((ϕi)
0) is the vacuum energy, which is also the only one with

λ(0) = d. We can conclude that

r0
t (x) =td c0(x) +O

(
c2
)
,

S0x[γ;ϕ] =
√
|γ|. (6.70)

Single-Trace Renormalized Coupling

The left diagram of Figure 6.9 is the only non-vanishing diagram with one insertion

on the left and one leg on the right: Dε,l
σ;σ′ . This gives the single-trace renormalized

charts rσt at the linear level (in the Dirichlet charts). It can be expanded as

Ďε,l
i;j(p,−p) =

δij
2

[
z−d+1∂zK(i)

ε,l (z, p)
∣∣∣
z=ε
− z−d+1∂zP(i)

ε,l (z, p)
∣∣∣
z=l

]
= δij

2 ε−d/2 l−d/2

Ψν(i)
(ε, l, p)

= δij l
−d

{(
l

ε

)∆−
(i)

[
2ν(i)+1ν(i) p

−ν(i)
ε

Γ(1− ν(i))I−ν(i)
(pε)

][
p
ν(i)

l

Γ(1 + ν(i))2
ν(i)Iν(i)

(pl)

]

+

(
l

ε

)∆−
(i)
−2ν(i)

a′(i)(pε)b
′
(i)(pl) +

(
l

ε

)∆−
(i)
−4ν(i)

a′′(i)(pε)b
′′
(i)(pl) + . . .

}
. (6.71)

This diagram is only sensitive to single-trace deformations, whose eigenvalue is ∆−(i).

Therefore, the first line of the last equality of (6.71) necessarily contributes to the first



6.2. Exact UV Renormalization 169

z = ǫ z = l

D
ǫ,l
σ;σ′

z = ǫ z = l

D
ǫ,l
σ;σ′1σ′2

z = ǫ z = l

D
ǫ,l
〈σ1σ2〉;σ′1σ′2

Figure 6.9: Possible Witten diagrams with one insertion on the left (including possible
multitrace ones) and up to two legs on the right.

line of (6.68). Since Sσ[γ;ϕ] must be a quasilocal function, the splitting between the

two terms of (6.68) is unique up to a normalization. Choosing the normalization of

Sσ[γl, ϕ] to be the one of (5.63), we obtain

ρji (γ; p) = δji

[
− 2ν(i)+1ν(i) p

−ν(i)
γ

Γ(1− ν(i))I−ν(i)
(pγ)

]

= δji

[
−2ν(i) −

2ν(i)

4ν(i) − 4
p2
γ +O(p4

γ)

]
. (6.72)

Functions a′···(i) and b′···(i) of the remaining terms of (6.71) are analytic. Then, these

terms carry orders O(ε−∆−
(i)
−2nν(i)−2n∂ ), with n ∈ N+ and n∂ ∈ N0, that cannot be

identified with any eigenvalue (in the generic case). They must correspond to the

remaining orders of (6.68).

Since no further diagrams with one insertion on the left and one leg on the right

can be built, ρian(γ; p) = 0 for higher trace deformations (n > 1), and

r̂ipt = ρ(i)(γ̄; p)ĉip +O(c2). (6.73)

Double-Trace Renormalized Coupling

The rest of diagrams of Figure 6.9 have one insertion on the left and two legs on

the right. They give us the double-trace renormalized charts at the linear level (in the
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Dirichlet charts). Starting with Dε,l
σ;σ1σ2

:

Ďε,l
i;j1j2

(p, p1, p2) =− vij1j2
∫ l

ε

dz

zd+1
P(i)
ε,l (z, p)K

(j1)
ε,l (z, p1)K(j2)

ε,l (z, p2)

=− 2l−d

{(
l

ε

)λ(b)

ρbi(γε; p)Tb;j1j2(γl; p; p1, p2)

+

(
l

ε

)∆−
(j)

ρji (γε; p)Tj;j1j2(γl; p; p1, p2) + . . .

}
. (6.74)

The integral in z is hard to calculate analytically, but can be easily expanded in powers

of momenta and computed order by order. We can fix the primitive to be the one with a

vanishing constant term in its power expansion around z = 0. This way, its evaluation

on ε and l is O(εν(j1)+ν(j2)), and O(ε−∆−
(i)) respectively. They must correspond to the

first and second line of the last member of (6.74). Thereby, we obtain

Q j1j2
b (γ; p1, p2) ρbi(γ;−p1 − p2) = ρ(j1)(γ; p1)ρ(j2)(γ; p2) ρ̃

〈j1j2〉
i (γ; p1, p2), (6.75)

where

ρ̃
〈j1j2〉
i (γε; q1, q2) =− vi j1j2

2

∫
dz

z

( ε
z

)d
Υν(i)

(ε, z,−q1 − q2)Ψν(j1)
(ε, z, q1)Ψν(j2)

(ε, z, q2)

∣∣∣∣
z=ε

.

(6.76)

Expanding (6.75) in momenta, we obtain ρbi(p) for all double-trace deformation b. Let

us remark also that (5.72) gives the quadratic contribution in ϕ to the single-trace

renormalized eigenperturbation. It is indeed the solution of (5.67).

Lastly, the right-hand diagram of Figure 6.9,

Dε,l
〈σ1σ2〉;σ′1σ′2

= Dε,l
σ1;σ′1

Dε,l
σ2;σ′2

+Dε,l
σ1;σ′2

Dε,l
σ2;σ′1

, (6.77)

is the only one with one double-trace insertion on the left and two legs on the right:

Ďε,l
b;j1j2

(p; p1, p2) =
2√
|γε|

Q i1i2
b (γε; p1, p2) Ďε,l

i1;j1
(−p1, p1)Ďε,l

i2;j2
(−p2, p2)
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= 2 l−d

{(
l

ε

)−ν(1)−ν(2)

ρ(j1)(γε, p1)ρ(j2)(γε, p2)

×Q j1j2
b (γε; p1, p2)T(j1)(γl; p1)T(j2)(γl; p2) + . . .

}
, (6.78)

where the ellipsis stand for terms whose order in ε is not an eigenvalue.

Comparing with (6.68), we obtain

Q j1j2
b′ (γ; p1, p2) ρb

′

b (γ; p1 + p2) = −Q j1j2
b (γ; p1, p2) ρ(j1)(γ; p1)ρ(j2)(γ; p2), (6.79)

equation that, from an expansion in momenta, can be used to extract ρb
′

b (γ; p1 +

p2) ∀ b, b′. Since no more diagrams have to be considered at this order, we can write,

Q j1j2
b (γ; p1, p2) r̂bt (p1 + p2) =t−ν(j1)−ν(j2)ρ(j1)(γ̄; p1)ρ(j2)(γ̄; p2)

[
ρ̃
〈j1j2〉
i (γ̄; p1, p2) ĉi(p1 + p2)

−Q j1j2
b (γ; p1, p2) ĉb(p1 + p2)

]
+O(c2). (6.80)

In this manner, we could continue calculating triple and higher-trace renormalized

operators. However, single and double-trace renormalization charts are enough for the

three point functions.

Once we know the renormalized charts at the linear level, we can invert the equations

to find the single and double-trace renormalized operators at the critical point:

∂̂rti (p) =
t−∆−

(i)

ρ(i)(γ̄; p)

[
∂̂ci (p) + ρ̃bi(γ̄; p)∂̂cb(p) +O

(
∂̂ca3

)]
, (6.81)

∂̂rtb (p) =t−λ(b)

[
− ρ̃b′b (γ̄; p)∂̂cb′(p) +O

(
∂̂ca3

)]
, (6.82)

with

Q i1i2
b (γ; p1, p2) ρ̃bi(γ;−p1 − p2) = ρ̃

〈i1i2〉
i (γ; p1, p2),

Q i1i2
b′ (γ; p1, p2) ρ̃b

′

b (γ;−p1 − p2) =
Q i1i2
b (γ; p1, p2)

ρ(i1)(γ; p1)ρ(i2)(γ; p2)
. (6.83)

To conclude this section, notice that, as we have seen in the cases analysed so far,
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Dαn;σ1...σm = 0 if ∀m < n. This implies that

ρa
m

an (γ; p) = 0 and [Otαn ]α
m

= 0, ∀m < n. (6.84)

6.2.3 Higher Orders

To compute counterterms and find higher orders of the normal expansion of the

boundary action, we will study diagrams with more than one deformation on the left.

Performing successive derivatives of (6.65) one obtains

∂cα1
∂cα2

∣∣
(sεc,ε)

(
SBϕ ◦ fε/l

)
=
(
∂cα1

∂cα2
rα
′

l/ε

)∣∣∣
(sεc,ε)

∂ c̄α′S
B
ϕ

∣∣
fε/l(s

ε
c,ε)

+
(
∂cα1

r
α′1
l/ε

)(
∂cα2

r
α′2
l/ε

)∣∣∣
(sεc,ε)

∂ c̄α′1∂
c̄
α′2
SBϕ

∣∣∣
fε/l(s

ε
c,ε)

, (6.85)

∂cα1
∂cα2

∂cα3

∣∣
(sεc,ε)

(
SBϕ ◦ fε/l

)
=
(
∂cα1

∂cα2
∂cα3

rα
′

l/ε

)∣∣∣
(sεc,ε)

∂ c̄α′S
B
ϕ

∣∣
fε/l(s

ε
c,ε)

+ 3
(
∂c(α1

∂cα2
r
α′1
l/ε

)(
∂cα3)r

α′2
l/ε

)∣∣∣
(sεc,ε)

∂ c̄α′1∂
c̄
α′2
SBϕ

∣∣∣
fε/l(s

ε
c,ε)

+
(
∂cα1

r
α′1
l/ε

)(
∂cα2

r
α′2
l/ε

)(
∂cα3

r
α′3
l/ε

)∣∣∣
(sεc,ε)

∂ c̄α′1∂
c̄
α′2
∂cα′3S

B
ϕ

∣∣∣
fε/l(s

ε
c,ε)

,

. . . (6.86)

Using (6.54), (6.56) and (5.61), we can extract

Ďε,l
a1...an;i1...im

(p1, . . . ; q1, . . . ) =− n!m! l−d
(
l

ε

)λ(a)

ρaa1...an
(γ; p1, . . . )Ta;i1...im(γ; p; q1, . . . )

+ remaining orders in ε. (6.87)

where the remaining orders are of the form ε−
∑
i λ(ai)

+n∂ . Therefore, the identification

of the orders of the form ε−λ(a)+n∂ allows to calculate ρaa1...an
(γ; p1, . . . , pn).

In this section we extract the quadratic contribution to the single-trace and vacuum

renormalization charts and the cubic contribution of the vacuum renormalization chart.

As we will see, this is enough to compute the counterterms that the renormalization of

the three point function requires. As in the previous subsection, we will organize this

calculation depending on the number of right legs of the diagrams.
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z = ǫ z = l

D
ǫ,l
σ1σ2;0

z = l

D
ǫ,l
σ1σ2σ3;0

z = ǫ z = l

D
ǫ,l
〈σ1σ2〉σ3σ4;0

z = ǫ

Figure 6.10: Witten diagrams with up to three insertions on the left and no legs on the
right.

Vacuum Renormalized Coupling

Figure 6.10 shows all diagrams with no legs on the right and up to three insertions

on the left (we will not compute terms with quartic and higher orders). We expand

now in ε, and write only terms that go as ε−d+n∂ ,

Ďε,l
i1i2;−(p,−p) =ε−dδi1i2G

L
(i1)(γε; p) + . . . (6.88)

Ďε,l
i1i2i3;−(p1, p2, p3) =− ε−dvi1i2i3Zi1i2i3(γε; p1, p2, p3) + . . . (6.89)

Ďε,l
i1i2b;−(p1, p2, p3) =2ε−dQ i1i2

b (γε; p1, p2)GL
(i1)(γε; p1)GL

(i2)(γε; p2) + . . . (6.90)

Comparing with (6.87) we obtain ρ0
a1,...,an

(γ; p1, . . . ), with n ≤ 3, and therefore, we can

write

r0
t = td

[
c0 − 1

2

∫
ddp

(2π)d
GL

(i)(γ̄p)√
|γ̄|

ĉipĉi−p

− 1

3

∫
ddp1d

dp2

(2π)2d|γ̄|Q
i1i2
b (γ̄; p1, p2)GL

(i1)(γ̄; p1)GL
(i2)(γ̄; p2)ci1(p1)ci2(p2)cb(−p1 − p2)

+
1

6

∫
ddp1d

dp2d
dp3

(2π)2d|γ̄| δ(p1 + p2 + p3)Zi1i2i3(γ̄; p1, p2, p3)ci1p1ci2p2ci3p3 +O
(
c4
) ]
. (6.91)
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z = ǫ z = l

D
ǫ,l
σ〈σ1σ2〉;σ′

z = ǫ z = l

D
ǫ,l
σ1σ2;σ′

Figure 6.11: Witten diagrams with up to three insertions on the left and one leg on the
right.

Single-Trace Renormalized Coupling

Figure 6.11 shows all diagrams with one leg on the right and up to two insertions

on the left (for single-trace renormalization chart, we only need to compute quadratic

terms). Expanding in ε and writing only orders ε−∆−
(i)

+n∂ :

Ďε,l
ib;j(p1, p2; p) =2 l−d

(
l

ε

)∆−
(i)

Q ij
b (γε; p1,−p)GL

(i)(γε; p1)ρ(j)(γε; p)T(j)(γl; p) + . . .

(6.92)

Ďε,l
i1i2;i(p1, p2; p) = l−d

(
l

ε

)∆−
(i)

ρ(i)(γε, p)ρ̃
i
i1i2

(γε; p1, p2)T(i)(γl; p) + . . . (6.93)

with

ρ̃i i1i2(γε; p1, p2) = vii1i2

∫
dz

z

( ε
z

)d
Υν(i1)

(ε, z, p1)Υν(i2)
(ε, z, p2)Ψν(i)

(ε, z, p1 + p2)

∣∣∣∣
z=ε

.

(6.94)

Comparing with (6.87), these diagrams give us the quadratic terms of the single-trace

renormalization charts. Adding these new terms to (6.73), we obtain

r̂it(p) =t∆
−
(i)

[
ρ(i)(γ̄; p)ĉi(p)
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−
∫
ddp1d

dp2

(2π)d|γ̄| δ(p+ p1 + p2)Q ji
b (γ̄; p1,−p)GL

(j)(γ̄; p1)ρ(i)(γ̄; p)ĉj(p1)ĉb(p2)

−
∫
ddp1d

dp2

(2π)d|γ̄| δ(p+ p1 + p2)ρ(i)(p)ρ̃
i
i1i2

(γ̄; p1, p2)ĉi1(p1)ĉi2(p2) +O(c3)

]
.

(6.95)

6.2.4 Christoffel Symbols

We have found the first orders of the expansion of the exact relation between exact

UV renormalization charts and Dirichlet charts. Thus, we can extract the following

Christoffel symbols and counterterms at the critical point. All formulas of this subsec-

tion are understood to be evaluated at the critical point (sεc, ε).

At the quadratic level we obtain

Γ̂t 0
j1j2

(q1, q2) =
(
∂rt0 c

0
) (
∂̂c q1j1

∂̂c q2j2
r0
t

)
=−

√
|γ̄|(2π)dδ(q1 + q2)δj1j2G

L
(j1)(γ̄, q), (6.96)

Γ̂t ij1j2(p, q1, q2) =
(
∂rtσ ĉ

ip
) (
∂̂c q1j1

∂̂c q2j2
rσt

)
=
√
|γ̄|(2π)dδ(p+ q1 + q2)ρ̃ij1j2(γ̄; q1, q2), (6.97)

Γ̂t ijb(p, q1, q2) =
(
∂rtσ ĉ

ip
) (
∂̂c q1j ∂̂c q2b rσt

)
=2
√
|γ̄|(2π)dδ(p+ q1 + q2)GL

(j)(γ̄, q1)Q ji
b (γ̄; q1, p). (6.98)

In the first line of the equations above, we have only written the contributions that are

non-vanishing. The remaining Christoffel symbols with the vacuum or a single-trace

component as upper index are exactly zero. Finally, we calculate the exact counterterm

Γt0σ1σ2σ3
. Inverting (6.25),

Γ̂t 0 p1p2p3

i1 i2 i3
=
[
−
(
∂p1

i1
∂p2

i2
∂p3

i3
r0
t

) (
∂rt0 c

0
)

+
(
Γt 0 p1

σ i1
Γσp2p3

i2 i3
+ Γt 0 p2

σ i2
Γσp3p1

i3 i1
+ Γt 0 p3

σ i3
Γσp1p2

i1 i2

)]
=
√
|γ̄| (2π)dδ

(
3∑
r=1
pr

){
−Zi1i2i3(γ̄; p1, p2, p3) +

[
GL

(i3)(γ̄; p3) ρ̃i3i1i2(γ̄; p1, p2)

+ (1→ 2→ 3) + (1→ 3→ 2)
]}
.

(6.99)



176 Chapter 6. Application to Correlation Functions

The found renormalized operators and counterterms make finite the limit and give the

same renormalized correlation function (6.52).

6.2.5 Comparison with Minimal Subtraction

In the previous subsection we have found the renormalized operators and countert-

erms of associated to an exact UV scheme. However, they can be simplified using (3.42)

preserving minimal subtraction. For instance, through a linear change in rt we can re-

define the renormalized operators as

∂rtα → ∂ r̃tα = ∂rtα + tλ(α′)−λ(α) ãα
′

α (γ̄)∂rtα′ , (6.100)

where ãα
′
α is only non-vanishing if λ(α) + 2n(γ−1) − 2n(γ) > λ(α′). This always allows to

rewrite (6.81) as

∂̂ r̃ti

∣∣∣
(sc,ε)

= −t
−∆−

(i)

2ν(i)

[
∂̂cip

∣∣∣
(sc,ε)

+ ρ b
i (γε; p) ∂̂

c
b p

∣∣∣
(sc,ε)

+O
(
∂̂can
)]

, (6.101)

which is the renormalized operator found by minimal subtraction up to a normalization

factor −2ν.

When λ(b) < λ(i), the double-trace deformation b can also be removed. This is

always the case if all operators are relevant. That is why for relevant operators it is

enough to consider

∂̂ r̃ti

∣∣∣
(sc,ε)

= −t
−∆−

(i)

2ν(i)

∂̂cip

∣∣∣
(sc,ε)

, (6.102)

or, using a different normalization, simply

∂̂ r̃ti

∣∣∣
(sc,ε)

= t−∆−
(i) ∂̂cip

∣∣∣
(sc,ε)

. (6.103)

However, if ∆+
(i) > ∆+

(j1) +∆+
(j2) for some j1, j2, and vij1j2 6= 0, the renormalized operator

[Oix] will necessary include the contribution of the bare double trace operators.

The Christoffel symbols and higher order counterterms we found in this section

essentially agree with the ones found in Section 6.1. This is so because linear changes

of the renormalization charts rt do not affect to the Christoffel symbols. The only
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difference is that there, we truncated them to make them local, and here, we have

found the whole tower of derivatives. (3.42) with quadratic and cubic contributions can

be used to make our operator components and Christoffel symbols local.

6.3 Normal Correlators

As we have anticipated in (6.53), the correlation functions in minimal subtraction

schemes are given by functional derivatives of the generator W at the fixed point. In

this section we will check this identity with the two and three-point function that we

have already computed with a renormalization process:

∂ c̄σ1
∂ c̄σ2

W
∣∣
(sε∗,ε)

=
〈
Sσ1 [γε;ϕ]Sσ2 [γε;ϕ]

〉c

(sε∗,ε)
− 2
〈
Sσ1σ2 [γε;ϕ]

〉c

(sε∗,ε)
, (6.104)

∂ c̄σ1
∂ c̄σ2

∂ c̄σ3
W
∣∣
(sε∗,ε)

=−
〈
Sσ1 [γε;ϕ]Sσ2 [γε;ϕ]Sσ3 [γε;ϕ]

〉c

(sε∗,ε)
+ 2
〈
Sσ1σ2 [γε;ϕ]Sσ3 [γε;ϕ]

〉c

(sε∗,ε)

+ 2
〈
Sσ2σ3 [γε;ϕ]Sσ1 [γε;ϕ]

〉c

(sε∗,ε)
+ 2
〈
Sσ3σ1 [γε;ϕ]Sσ2 [γε;ϕ]

〉c

(sε∗,ε)

− 6
〈
Sσ1σ2σ3 [γε;ϕ]

〉c

(sε∗,ε)
. (6.105)

In this expressions, the brackets around any functional, F [ϕ], represent the connected

contribution to its expectation value,

〈
F [ϕ]

〉c
(sε∗,ε)

=

∫
[Dφ]εF [φ(ε)]e−N

2[SB∗ [γε,φ(ε)]+SG[φ]]∫
[Dφ]ε e

−N2[SB∗ [γε,φ(ε)]+SG[φ]]
− disconnected diagrams.

(6.106)

Using (6.62), the fixed point boundary action can be written as a UV path integral,

e−N
2SB∗ [γε;ϕ] = lim

ε0→0

∫
[Dφ]ε,ϕε0,0 e

−N2[SG[φ]−
∫
ddx
√
|γε0 | v0/d]

=

∫
φ(0)=0

[Dφ]ε,ϕ0 e
−N2

[
SG[φ]+

∫
ddx
√
|γ0| v0/d

]
. (6.107)

In the first line we have fixed the value of the field to 0 in ε0, to later take the limit

ε→ 0. This is equivalent to the second line: we have integrated starting in z = 0, and



178 Chapter 6. Application to Correlation Functions

fixed to zero the leading mode of φ when z → 0, φ(0) = 0. Therefore, (6.106) becomes

〈
F [ϕ]

〉c
(sε∗,ε)

=

∫
φ(0)=0

[Dφ]F [φ(ε)]e−N
2SG[φ]∫

φ(0)=0
[Dφ] e−N2SG[φ]

− disconnected diagrams

≡
〈
F [φ(ε)]

〉c
+
. (6.108)

The last equation is a definition of 〈·〉c+. We obtain that derivatives of W evaluated

at the fixed point can be calculated like correlation functions of fields in the bulk.

This argument is similar to the one used in [153] to prove the equivalence between the

GKPW dictionary [117, 118] and the BDHM dictionary [105, 155, 156].2 In the GKPW

dictionary (the most used one), the CFT sources correspond to the asymptotic boundary

condition of the fields in the gravity theory. However, in the BDHM dictionary, the

CFT correlators are extracted from bulk correlators. This last dictionary is understood

in our approach as a renormalization procedure using the fixed point as critical point.

Thus, bare correlators are identified with bulk correlators of fields located at z = ε, and

renormalized correlators are extracted when ε→ 0 (finding renormalized operators and

counterterms).

Here, we are doing something different. We are calculating the renormalized cor-

relators directly without taking ε → 0, and including the whole tower of irrelevant

contributions. Therefore, the eigenperturbations Sα[γ, ϕ] can be understood as the

CFT renormalized operators constructed in terms of local bulk fields.

To carry out the computation of (6.105), we need to know G̃(i)(x1,x2), the bulk-

to-bulk correlator in the whole AdS for the field i, with vanishing leading mode as

z → 0. Bold letters represent (d + 1)-coordinates xA = (z, xµ). It is defined as the

Green function:

[
−gAB(x1)∇x1

A ∇x1
B +m2

(i)

]
G̃(i)(x1,x2) =

δ (x1 − x2)√
|g(x2)|

, (6.109)

where g and ∇ are the euclidean AdS metric and connection. In a mixed posi-

tion/momentum representation,

ˇ̃G(i)
pq (z1, z2) =G(i)(z1, z2, p)

2We use the same names as [153] to refer to both dictionaries.
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D̂1 D̂2

Figure 6.12: Calculation of the two point function by means of derivatives with re-
spect of normal coordinates. The diagrams are considered in the full AdS space
(with standard boundary conditions), and all insertions are at the radial coordinate
z = ε. Crosses indicate insertions of ε−dT(i)(γε, p)φ̂

i(ε, p) and dotted circles, insertions
of ε−dTi1i2;0(γε; p1, p2).

=(z1z2)
d
2 Iν(i)

(pγz1 )Kν(i)
(pγz2 ), z1 ≤ z2. (6.110)

6.3.1 Two-Point Function

The two point function is then (6.104). Figure 6.12 shows diagrammatically the

calculation. Diagram D̂1 gives the first term and diagram D̂2 the second one:〈
Spi [γε;ϕ]Sqj [γε;ϕ]

〉c
(sε∗,ε)

= ε−2d(2π)dδ(p+ q)δijT(i)(γε; p)T(i)(γε; p)G(i)(ε, ε, p)

= ε−d(2π)dδ(p+ q)δij
(pγ)

2ν(i)

22ν(i)Γ2
(
1 + ν(i)

)Kν(i)
(pγε)

Iν(i)
(pγε)

, (6.111)

〈
Spqi j [γε;ϕ]

〉c
(sε∗,ε)

=ε−d(2π)dδ(p+ q)δijT(i);0(γε; p)

=ε−d(2π)dδ(p+ q)δij
(pγ)

2ν(i)

22ν(i)+1Γ(ν(i) + 1)2

Kν(i)
(pγ) + aν(i)

Iν(i)
(pγ)

Iν(i)
(pγ)

,

(6.112)

with

aν(i)
=

π
2

csc(ν(i)π) if ν(i) /∈ N0

(−1)ν(i) log(ξpγ) if ν(i) ∈ N0.
(6.113)
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D̂3 D̂4 D̂5 D̂6

Figure 6.13: Calculation of the three-point function by means of derivatives with
respect of normal coordinates. The diagrams are considered in the full AdS space
(with standard boundary conditions), and all insertions are at the radial coordinate
z = ε. Crosses indicate insertions of ε−dT(i)(γε, p)φ̂

i(ε, p) and circled crosses, insertions

of ε−dTi;j1j2(γε; q, p1, p2)φ̂j1(ε, p1)φ̂j2(ε, p2).

Combining both results, we obtain

∂ c̄σ1
∂ c̄σ2

W
∣∣
(sε∗,ε)

= −ε−d(2π)dδ(p+ q)δij
(pγε)

2ν(i)

22ν(i)+1Γ(ν(i) + 1)2
aν(i)

, (6.114)

which agrees with (6.16) (in the general case), changing ε→ 1/µ, up to the factor 4ν2
(i)

associated to the normalization of the eigenperturbations (6.102).

6.3.2 Three-Point Function

The three-point function is given in (6.105). Figure 6.13 shows diagrammatically

the calculation of the first term,〈
Sp1

i1
[γε;ϕ]Sp2

i2
[γε;ϕ]Sp3

i3
[γε;ϕ]

〉c
(sε∗,ε)

= D̂3 + D̂4 + D̂5 + D̂6. (6.115)

The first diagram, D̂3, is

D̂3 =ε−3dT(i1)(γε; p1)T(i2)(γε; p2)T(i3)(γε; p3)
〈
φ̂i1(ε, p1)φ̂i2(ε, p2)φ̂i3(ε, p3)

〉c
+

=− ε−3d(2π)dδ(p1 + p2 + p3)vi1i2i3T(i1)(γε; p1)T(i2)(γε; p2)T(i3)(γε; p3)

×
∫ ∞

0

dz

zd+1
G(i1)(ε, z, p1)G(i2)(ε, z, p2)G(i3)(ε, z, p3). (6.116)
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Using (6.110) and rearranging the equation, we find

Ď3 = ε−d
Ri1i2i3(γε; p1, p2, p3)

8ν(i1)ν(i2)ν(i3)

− ε−dvi1i2i3T(i1)(γε; p1)T(i2)(γε; p2)T(i3)(γε; p3)

×
∫ (z

ε

) d
2
[
Iν(i1)

(p1γz)Iν(i2)
(p2γz)Iν(i3)

(p3γz)Kν(i1)
(p1γε)Kν(i2)

(p2γε)Kν(i3)
(p3γε)

−(z ↔ ε)
]∣∣∣∣∣
z=ε

.

(6.117)

The remaining diagrams D̂4, D̂5, D̂6, appear due to the quadratic contribution in the

fields of one of the eigendirections, and the linear contribution of the other two:

Ď4 =2ε−dTi1;i2i3(γε; p1, p2, p3)T(i2)(γε; p2)T(i3)(γε; p3)G(i2)(ε, ε, p2)G(i3)(ε, ε, p3)

=− vi1i2i3T(i1)(γε; p1)T(i2)(γε; p2)T(i3)(γε; p3)

×
∫
dz

z
Iν(i2)

(p2γz)Iν(i3)
(p3γz)Kν(i2)

(p2γε)Kν(i3)
(p3γε)Ψ(ε, z, p1)

∣∣∣∣∣
z=ε

. (6.118)

Figure 6.14 shows the remaining terms. The first three are associated to the two point

contributions in (6.105):

D̂7 + D̂8 + D̂9 =
〈
Sp1

i1
[γε;ϕ]Sp2p3

i2i3
[γε;ϕ]

〉c
(sε∗,ε)

+
〈
Sp2

i2
[γε;ϕ]Sp3p1

i3i1
[γε;ϕ]

〉c
(sε∗,ε)

+
〈
Sp3

i3
[γε;ϕ]Sp1p2

i1i2
[γε;ϕ]

〉c
(sε∗,ε)

, (6.119)

The calculation of these diagrams give

Ď7 =ε−dT(i2)(γε; p2)T(i3)(γε; p3)Ti2i3;i1(γε; p2, p3, p1)G(i1)(ε, ε, p1)

=− vi1i2i3
2

T(i1)(γε; p1)T(i2)(γε; p2)T(i3)(γε; p3)

×
∫
dz

z

(
l

z

) d
2

Iν(i1)
(p1γz)Kν(i1)

(p1γε)Ψ(ε, z, p2)Ψ(ε, z, p3)

∣∣∣∣∣
z=ε

. (6.120)
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D̂7 D̂8 D̂9 D̂10

Figure 6.14: Calculation of the three-point function by means of derivatives with
respect of normal coordinates. The diagrams are considered in the full AdS space
(with standard boundary conditions), and all insertions are at the radial coordinate
z = ε. Crosses indicate insertions of ε−dT(i)(γε, p)φ̂

i(ε, p), shaded circles, insertions of

ε−dTi1i2;j(γε; p1, p2; q)φ̂j(ε, q), and dotted circles insertions of ε−dTi1i2i3;0(γε; p1, p2, p3).

Finally, the last diagram represents the one-point function of (6.105), whose only non-

vanishing contribution comes from the vacuum energy term,

D̂10 =
〈
Sp1p2p3

i1 i2 i3
[γε;ϕ]

〉c
(sε∗,ε)

= ε−dTi1i2i3;0(γε; p1, p2, p3). (6.121)

Summing all the contributions of (6.105), all contributions cancel out, except the first

term of D̂3,

∂ c̄ p1

i1
∂ c̄ p2

i2
∂ c̄ p3

i3
W
∣∣
(sε∗,ε)

=− (D̂3 + D̂4 + D̂5 + D̂6) + 2(D̂7 + D̂8 + D̂9)− 6D̂10

=− ε−d(2π)dδ(p1 + p2 + p3)
Ri1i2i3(γε; p1, p2, p3)

8ν(i1)ν(i2)ν(i3)

, (6.122)

which agrees with the calculation of (6.52), changing ε → 1/µ, up to the factor

−8ν(i1)ν(i2)ν(i3) associated to the normalization of the eigenperturbations (6.102).

6.4 Exceptional Cases

The appearance of logarithms of the cutoff (or t in our analysis) in the renormalized

operators or counterterms is a signal of exceptional and resonant behaviours of the
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Wilson flows close to the fixed point, and the existence of normal beta terms beyond

the diagonal ones. This was discussed from the Wilson perspective in Section 3.1.4.

In this chapter, we have seen several situations with these behaviours. In particular,

they appear in the following situations:

(1) At the level of the two-point function:

(a) If there is a field φi with ν(i) = 0 (i.e. saturating the Breitenlohner-Freedman

bound).

(b) If there is a field φi with ν(i) ∈ N+.

(2) At the level of the three-point function, logarithms appear if there are three fields

φi1 , φi2 , φi3 such that

d

2
± ν(i1) ± ν(i2) ± ν(i3) ∈ −2N0. (6.123)

for some choice of the signs. Each particular choice is associated with a different

case:

(a) If we choose all signs to be minus, the local divergence Z depends logarith-

mically on t.

(b) If we choose two signs to be minus and one to be plus, the semi-local diver-

gence Y depends logarithmically on t.

(c) If we choose two signs to be plus and one to be minus, the non-local divergence

X depends logarithmically on t.

(d) The all-plus condition cannot be satisfied for any choice of ν (which are

always non-negative).

In this section, we analyse all of them, and find the connection with the Wilsonian

analysis of the flows performed in Chapter 5.
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6.4.1 Logarithms in Two-Point Functions

Case (a): ν(i) = 0

Due to its exceptional properties, this case was in fact avoided in the two-point

function analysis of Section 6.1.1. Therefore, we will redo the calculation for this field.

All the following formulas referred to functions overWG are understood to be evaluated

at the Dirichlet critical point (sεc, ε), and ε = 1/tµ.

The bare two-point function (6.4) is

∂c pi ∂
c p′

i W =ε−dδ(p+ p′)

[
d

2
+ pγ

K1(pγ)

K0(pγ)

]
=ε−dδ(p+ p′)

[
d

2
+

1

γE + log (ε|p|/2)
+O(p2

γ)

]
=ε−dδ(p+ p′)

[
d

2
− 1

log t

[
1 +

γE + log(pγµ/2)

log t
+O

(
(log t)−2

)]
+O(p2

γ)

]
.

(6.124)

Due to the logarithmic divergence in ε→ 0, the multiplicative renormalization coming

from the renormalized operators must have a logarithmic behaviour. We must define

∂rtix = t−
d
2 log t ∂cix, (6.125)

to make finite the leading non-local contribution. The renormalized two point function

becomes

[Ot pi ]σ1 [Ot p′i ]σ1∂cσ2
∂cσ2

W = (2π)dµdδ(p+ p′)

[
− log(pγµ) + γE − log 2

+
d

2
log t2 − log t+ . . .

]
, (6.126)

where the dots stand for terms that go to zero in the t → 0 limit. A local divergence

remains, which has to be cancelled by the Christoffel symbol

Γ̂t 0 p p′

i i = (2π)dε−dδ(p+ p′)

(
d

2
log t2 − log t+ C

)
, (6.127)
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where C is arbitrary and selects the renormalization scheme.

As we discussed in Section 3.1.4, the logarithmic behaviours in renormalized opera-

tors are unavoidable if the theory is a logarithmic CFT (it has non-diagonalizable linear

perturbations), or the critical point excites a marginal direction. This case corresponds

to the second possibility. Indeed, if ∆+
(i), the double-trace direction 〈ii〉 is marginal,

λ〈ii〉 = 0. As we have seen in Section 6.2.1, the Dirichlet critical point precisely excites

double-trace deformations of the form 〈i(n1)i(n2)〉 (besides higher-trace ones). Addition-

ally, as we have discussed below (3.45), the renormalized operators that get logarithmic

corrections are those ones whose associated eigendirection α forms a resonance with

the excited directions of the critical point; and βα
′

α1...αnα
6= 0, where α1, . . . , αn are di-

rections excited by the critical point. This is precisely the case for [Oix] if ν(i) = 0. As

we have discussed at the end of Section 5.3.2, in (5.116), the existence of the conformal

anomaly (5.96) in this case, and the factorization properties of the large N limit imply

βiy〈ii〉x1 ix2
6= 0. (6.128)

On the other hand, as discussed in Section 3.1.4, a counterterm or a Christoffel symbol

may require a logarithmic dependence on t if there are resonances and/or marginal

directions excited by the critical point. Both situations appear in this case, which

explains the double logarithm of the Christoffel symbol (6.127).

Case (b): ν(i) ∈ N+

This case also presents logarithmic corrections already in the two-point function.

As it is shown in (6.9) and (6.10), the local part of the bare propagator depends loga-

rithmically on t. This is also consequence of the conformal anomaly (5.96) (in fact, in

usual approaches, the conformal anomaly is deduced from the logarithmic dependence

of the counterterms). This case shares some similarities with the previous one. In

particular, due to the conformal anomaly (5.116) and factorization properties (5.116),

the eigendirections excited by the critical point also form resonances with the eigendi-

rection i. (6.128) still is valid. However, 〈ii〉 (which is excited by the critical point) is

not marginal in this case but completely irrelevant, and therefore it can be disregarded:

the renormalized operator in the exact UV scheme will have a logarithmic dependence,
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but it can be removed using a redefinition of the renormalized operators with (3.42).

6.4.2 Logarithms in Three-Point Functions

In Section 6.1, we have isolated the divergences of the three-point function in three

functions: Z, Y and X . The renormalized operators and counterterms are derived from

them. If the relation between the dimensions of the operators is such that (6.123) is not

satisfied, Z, Y and X do not depend explicitly on t,3 and therefore, the renormalized

operators or counterterms do not have logarithmic dependence on t.

We analyse in the following the three possible cases. Cases (a) and (b) appear

generically in the study of tree-point functions in CFT since they are consequence

of quite general properties of the flows (non-vanishing anomalies and beta functions).

In fact, in [62], they are studied from the field theory perspective (some holographic

calculations are also done). Case (c) however does not appear in these studies.

Case (a): d/2− ν(i1) − ν(i2) − ν(i3) ∈ −2N0

Following the definition of the local divergence Z of (6.29), this particular relation

between the dimensions produces a logarithmic behaviour on t of Z, and therefore, of

the cubic counterterm. It is equivalent to

∆−(i1) + ∆−(i2) + ∆−(i3) + n = d, n ∈ 2N0. (6.129)

This is the resonance condition to have a contribution to the conformal anomaly due to

the beta term β0
i1x1 i2x2 i3x3

6= 0. Indeed we have observed the existence of such anomaly

in (5.115).

Case (b): d/2− ν(i1) − ν(i2) + ν(i3) ∈ −2N0

In this case, the semilocal divergence Y , as defined in (6.30) has logarithms. It

implies that the quadratic counterterms (or Christoffel symbols) will depend logarith-

3However, they always depend on t through the point of W where they are evaluated, (scε, ε), with
ε = 1/tµ.
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mically on t. Again, the condition can be rewritten as

∆−(i1) + ∆−(i2) + n = ∆−(i3), n ∈ 2N0. (6.130)

This is the resonance condition to obtain non-trivial beta functions between the single-

trace operators i1, i2 and i3, βi3x3
i1x1 i2x2

6= 0. (5.106) shows this beta term is in fact

non-vanishing.

Case (c): d/2 + ν(i1) + ν(i2) − ν(i3) ∈ −2N0

This condition implies a logarithmic term in X . Unlike the previous cases, X con-

tributes to the double-trace component of the renormalized single-trace operator, and

not to the counterterms or Christoffel symbols. As discussed in the case (1a), this

behaviour only occurs for non-diagonalizable CFTs, or for critical points that excite

marginal directions. If no field saturates the Breitenlohner-Freedman bound, the second

possibility is excluded. This behaviour must be consequence of the non-diagonalizability

of the perturbations at the linear level. Indeed, we have observed such behaviour: this

relation between the dimensions is equivalent to

∆−(i3) = λ(〈i(n1)
1 i

(n1)
2 〉

). (6.131)

Therefore, the single-trace direction i3, and the double-trace direction 〈i(n1)
1 i

(n1)
2 〉 can

mix at the linear level giving a non-diagonalizable eigenvalue matrix. In (5.87), we have

explicitly seen this is the case. Of course, this is not an actual CFT, but a logarithmic

CFT and this behaviour will never appear in authentic CFTs.

6.5 Comments on Different Formalisms

In this chapter we have applied the renormalization procedure explained in Chap-

ter 3 to holography. It essentially consists in finding a family of renormalization charts

rt. In holography, this is equivalent to imposing a t-dependent boundary condition at

the cutoff surface ε = l/t which will be associated to the boundary action SB◦r−1
t (gR, l).
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This holographic renormalization procedure is then, by construction, completely equiv-

alent to renormalization in QFT.

There are some differences with the standard procedure introduced in Chapter 4.

Maybe the main difference is that, here, the boundary condition is imposed at z = ε,

and derived dynamically from a boundary action that depends on the renormalized

couplings. On the other hand, in Chapter 4 the boundary condition is imposed on

the modes of the fields as they approach z → 0. Also, a counterterm action Sct is

added on the cutoff surface at ε. This counterterm action is a local functional of the

bulk fields in ε, but not of the renormalized couplings themselves (this distinction is

particularly important for irrelevant operators [134]). Of course, bulk fields depend

on the asymptotic boundary conditions, and therefore, on the renormalized couplings,

but also on the AdS IR boundary conditions (typically, regularity in the interior of the

bulk). Thus, the possible interpretation of the counterterm action as our counterterm

to the vacuum energy could be misleading in general.

In any case, both methods work, so our formulation has to provide somehow a way

to calculate the counterterm action Sct. This connection could be very interesting,

since it would allow to formulate a “holographic” version of renormalization for large N

theories, or possibly, for any QFT, independently of the existence of gravity duals (this

could be related with the ideas of [141, 157, 158]). We leave the study for future work.
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Conclusions

Fry: What do you say? Wanna go around again?

Leela: I do.

From the last episode of Futurama

The AdS/CFT correspondence is an outstanding and powerful tool in Theoretical

Physics. It is especially useful to describe strongly coupled systems and also gives

unique insights on the nature of gravity, at the classical and quantum levels. In this

thesis, we have studied some fundamental aspects of renormalization and the RG in

this context. We have provided a unified Wilsonian renormalization formalism that

works equally well in both sides of the correspondence. Not only can this formalism be

applied to actual calculations, but it also furnishes a clear picture of the structure of

theory space in holography. This picture throws light on different peculiar features of

gauge/gravity duals, which appear more natural than when studied in isolation.

All the developments of the thesis have been formulated in a geometric fashion.

We believe that the concepts and methods associated to the RG are most naturally

understood in terms of differential geometry. In fact, a geometric language is often used

in qualitative discussions of RG flows. Here, we have gone one step further and have

given a precise geometric description of theory space, the exact RG and renormalization,

which can be used in quantitative calculations. Just as in General Relativity, the

equations built with intrinsic objects highlight the invariant physics without distractions

189
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from arbitrary choices. Even more importantly, the geometric formulation has given us

the flexibility of choosing, in a consistent way, different non-linearly related coordinate

systems, which serve different purposes.

Part I of the thesis has been devoted to general quantum field theories, without

reference to their possible duals. However, this part has actually been motivated by

its application to holography. For instance, the fact that the fields in the gravity side

of the duality depend on the spacetime coordinates has lead us to consider a theory

space with spacetime-dependent couplings and to introduce a metric that keeps track

of the scales associated to derivatives. The local couplings prove to be handy, since

they serve as sources to calculate correlation functions. Each point in theory space is

characterized by a Wilson action and a cutoff scale. The latter plays a non-trivial role

in the presence of local couplings. In the study of the exact RG we have singled out

normal coordinates, in which the RG flows take their simplest form. They generalize

the concept of eigendeformations of fixed points beyond the linear level. A logarithmic

dependence on the cutoff unavoidably appears in the RG evolution for exceptional

values of the scaling dimensions of the allowed operators.

The renormalization process has been defined by means of cutoff-dependent renor-

malization coordinates. When studied locally, they lead to a covariant definition of

renormalized correlation functions of composite operators, which incorporates renor-

malized operators (vectors) and counterterms (from a connection). We have studied

these correlation functions at fixed points of the RG evolution, which usually (if not

in all physically-admissible cases) describe conformal field theories. One of our main

results is the precise connection of the renormalization process with the RG flows. This

connection has some important consequences, which we have described in detail:

1. The renormalization can be performed at any point of the critical surface, not

only at the fixed point. This is very useful when the fixed point is non-trivial and

strongly-coupled.

2. The renormalized operators and counterterms to be used at the critical point are

determined, up to scheme dependence, by the perturbative expansion of the flows

close to the corresponding fixed point. The converse statement also holds.

3. Minimal substraction schemes are related to normal coordinates. The correlation
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functions in these schemes, obtained after renormalization and the continuum

limit, are identical to bare correlation functions defined at a finite cutoff in nor-

mal coordinates. The exact beta functions in normal coordinates are identified

with Gell-Mann-Low beta functions and conformal anomalies in mass-independent

schemes.

Our findings provide a precise relation between the exact RG near a fixed point and

intrinsic properties of the conformal field theory at the fixed point. Indeed, the sin-

gularities of a conformal field theory determine the scaling of renormalized operators

(given by conformal dimensions) and, to a large extent, the counterterms, which as we

have just emphasized contain all the local information of the RG flows. The structure of

these singularities is in turn fixed by basic properties of the theory, such as the Wilson

coefficients of the OPE. It would be interesting to explore along these lines how the

consistency conditions of the conformal field theory used in the bootstrap program are

implemented in the exact RG.

We have also moved far away from the fixed point to define general scale non-

invariant theories with a well-defined continuum limit. They are given by the renor-

malized trajectories that flow away from an ultraviolet fixed point. We have shown how

they can be described using a bare manifold that intersects with the critical manifold.

The renormalization of correlators of composite operators in scale non-invariant theo-

ries, on the other hand, has not been discussed in this thesis. In principle, this can be

naturally achieved in our framework by a generalization of the bare manifold to cover

all the directions around the critical point. We leave for future work the analysis of this

interesting problem. More generally, our formulation of the exact RG provides some

new tools that might be useful to extract valuable quantitative information in specific

strongly-coupled theories.

One limitation of our formulation is that it only considers theories defined in flat

space. It would be highly interesting to generalize the formalism to curved spaces.

In this case, the metric should be treated as a coupling, so the space-time geometry

would be expected to evolve under the exact RG evolution. Such a generalization could

be useful, for example, to calculate with Wilsonian methods the contributions of the

energy-momentum tensor to the conformal anomaly of strongly-interacting conformal

theories. A Wilsonian version of the local RG, which studies not only changes un-
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der dilatations but under general Weyl transformations [33, 54], looks feasible in this

context.

In Part II, the very same formalism has been applied to holography. The fact that

renormalization and the RG have the very same structure and share the same features in

both sides of the AdS/CFT correspondence is possibly our most remarkable conclusion.

Of course, if the duality is to hold, this conclusion is unavoidable. But the translation

of field-theoretical methods to the problem of field theories in an AdS boundary could

have been much more obscure. Maybe the reason behind the success of this unified

treatment is the fact that the RG methods and concepts can be used to describe a very

general class of dynamical systems. Indeed, all the developments in the thesis apply

to gravity theories independently of the existence of a holographic dual. In particular,

classical gravity theories with boundary are holographically renormalizable when there

exist fixed points in the Hamilton-Jacobi flows of the boundary action.

Some specific features of holographic RG flows in the classical limit have been rec-

ognized as general properties of the exact RG flows of matrix quantum field theories

in the large N limit. Most significantly, the second-derivative terms in the Polchinski

equation do not contribute in the large N limit. This agrees with the fact that the

Hamilton-Jacobi equation, which controls the evolution of the boundary action in the

classical limit of the gravity duals, is a first-order equation. Moreover, in both cases the

use of factorization normal coordinates, a special kind of normal coordinates, further

simplifies the calculation of the flows close to the fixed point, beyond the linear order.

This is the manifestation in our formalism of the usual factorization properties of large

N theories.

These theoretical developments have been applied to a theory of fluctuating scalar

fields of arbitrary masses in an AdS space, neglecting the metric backreaction. We

have explicitly found the physically-relevant fixed points of the boundary action, which

are associated to both standard and alternate quantizations / boundary conditions.

We have also extracted some properties of the exact RG flows in the neighbourhood of

these fixed points. These properties include an analysis of beta functions and conformal

anomalies depending on the mass relation of the bulk fields. Then we have studied the

renormalization of correlation functions of scalar operators with arbitrary dimensions.

We have exhibited the limitations of the widely-used renormalization method based
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on Dirichlet boundary conditions by examining three-point functions with one or more

irrelevant operators. In the so-called extremal and super-extremal cases, non-local

divergences remain that cannot be substracted away. We have explained that this

problem is due to a too restrictive choice of the allowed bare couplings. The problem

arises because the subset of Dirichlet boundary conditions is not stable under the RG

evolution and renormalized single-trace operators may mix with higher-trace ones. For

relevant operators, the contribution of this mixing is irrelevant, and can be neglected,

while in the presence of irrelevant operators, it must be taken into account. However,

in our formalism the theory space contains general boundary actions, which implement

general boundary conditions and are dual to general Legendre actions with multi-trace

operators. So, we have all the necessary ingredients to renormalize any correlation

function and indeed we have shown that all the non-local divergences in the three-

point functions are taken care of by the renormalized operators when an off-diagonal

single-double trace contribution is included in them.

The holographic renormalization method we have used in these calculations works

in the neighbourhood of the point in theory space with vanishing Dirichlet boundary

conditions. This is not any of the fixed points of the RG, which have a much more

complicated form. However, it is attracted by the fixed point with standard quantization

in all directions, i.e. it belongs to the critical manifold of that fixed point. Therefore, the

renormalized correlation functions calculated in this manner are equal to bare normal

correlation functions at the standard-quantization fixed point. Working away from the

fixed point also brings about extra logarithmic behaviours in some exceptional cases. It

is the case of a field with a mass that saturates the Breitenlohner-Freedman bound: the

renormalized operator contains logarithms because the critical point flows into the fixed

point along a marginally-irrelevant direction. We have also explained that the BDHM

renormalization formalism corresponds to a holographic renormalization performed in

the fixed point.

In our particular examples we have considered scalar operators and scalar fields.

We have not needed to include effects of higher spins. However, arbitrary tensor fields

are incorporated in our formalism. In fact, they are necessary in general for self-

consistency, as they are generated at some order by the RG evolution. In particular,

a complete treatment of RG flows should include the backreaction on the geometry,
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i.e. it should treat the metric as a dynamical field. Except in trivial examples, this is

unavoidable to study the evolution far away from the ultraviolet fixed points. Indeed,

the size of relevant deformations increases towards the infrared and their impact on

the geometry cannot be neglected at arbitrarily low energies. Most of the work on

non-Wilsonian holographic RG flows is actually based on complete solutions of the

gravity-scalar coupled equations [84, 127, 159–161]. A holographic Wilsonian formalism

that incorporates dynamical gravity has been sketched by Heemskerk and Polchinski

in [146]. A key point of the proposal is that the boundary action should not satisfy

the Hamiltonian constraint (or other gauge constraints in general). In this Wilsonian

formulation, the treatment of the gauge-fixed metric (or any gauge field) is similar to

the one of matter fields. Therefore, we expect that our formalism will qualitatively

apply as well to an exact Wilsonian description with dynamical gravity without radical

changes. Of course, many details, such as the form of the Hamilton-Jacobi equation

and the actual fixed-points and eigenperturbations will have to be modified. Such an

extension of our methods will be necessarily connected with the generalization to curved

spaces of the field-theory version of our formalism we have mentioned above, and with

the local RG. Studying all these issues associated to dynamical gravity forms a project

that naturally continues the work in this thesis.



Conclusiones

La correspondencia AdS/CFT es una destacable y potente herramienta en F́ısica Teórica.

Es especialmente útil para describir sistemas fuertemente acoplados. Además, propor-

ciona avances únicos sobre la naturaleza de la gravedad, a niveles clásicos y cuánticos.

En esta tesis, hemos estudiado algunos aspectos fundamentales de la renormalización

y del grupo de renormalización en este contexto. Hemos proporcionado un formalismo

unificado para la renormalización wilsoniana que funciona igualmente bien en ambos

lados de la correspondencia. Este formalismo no solo puede ser aplicado a cálculos

reales, sino que también ofrece una imagen clara de la estructura del espacio de teoŕıas

en holograf́ıa. Esta imagen arroja luz sobre diferentes peculiaridades de la dualidad

Gauge/Gravedad, las cuales aparecen de forma más natural que cuando se estudian

por separado a ambos lados de la correspondencia.

Todos los desarrollos de esta tesis han sido formulados de un modo geométrico.

Creemos que los conceptos y métodos asociados al grupo de renormalización se entien-

den de forma más natural en términos de geometŕıa diferencial. De hecho, el lenguaje

geométrico es a menudo usado en discusiones cualitativas de los flujos del grupo de

renormalización. Aqúı, hemos ido un paso más allá y hemos dado una descripción

geométrica precisa del espacio de teoŕıas, del grupo de renormalización exacto y de

la renormalización, que puede usarse en cálculos cuantitativos. Del mismo modo que

en Relatividad General, las ecuaciones construidas con objetos intŕınsecos destacan la

f́ısica invariante sin distracciones de elecciones arbitrarias. De forma más importante,

la formulación geométrica nos da la flexibilidad de elegir consistentemente diferentes

sistemas de coordenadas que no están relacionados linealmente y sirven para diferentes

propósitos.

La parte I de la tesis ha sido dedicada a teoŕıas cuánticas de campos generales, sin

195
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referencia a sus posibles duales gravitatorios. Sin embargo, esta parte ha sido motivada

por sus aplicaciones a holograf́ıa. Por ejemplo, el hecho de que los campos en el lado

de gravedad dependan de las coordenadas espaciotemporales nos ha llevado a conside-

rar espacios de teoŕıas con acoplamientos dependientes del espaciotiempo y a introducir

una métrica que define la escala asociada a las derivadas. Los acoplamientos locales son

además útiles ya que sirven como fuentes para calcular funciones de correlación. Cada

punto en el espacio de teoŕıas es caracterizado por una acción de Wilson y una escala de

corte o “cutoff”. La última juega un papel no trivial en la presencia de acoplamientos

locales. En el estudio del grupo de renormalización exacto hemos distinguido las coor-

denadas normales, en las cuales los flujos del grupo de renormalización toman su forma

más simple. Ellas generalizan el concepto autodeformaciones de puntos fijos mas allá

del orden lineal. Dependencias logaŕıtmicas con el “cutoff” aparecen inevitablemente

en la evolución del grupo de renormalización para ciertos valores excepcionales de las

dimensiones de masa de los operadores involucrados.

El proceso de renormalización ha sido definido por medio de coordenadas de renor-

malización dependientes del “cutoff”. Cuando son estudiadas localmente, dan lugar

a definiciones covariantes para las funciones de correlación renormalizadas de oper-

adores compuestos, que incorporan los operadores renormalizados (vectores) y los con-

tratérminos (asociados a una conexión). Hemos estudiado estas funciones de correlación

en puntos fijos de la evolución del grupo de renormalización, que usualmente (si no en

todos los casos admisibles f́ısicamente) describen teoŕıas de campos conformes. Uno de

nuestros resultados principales es la conexión precisa entre el proceso de renormalización

y los flujos del grupo de renormalización. Esta conexión tiene algunas consecuencias

importantes, que a continuación describimos en detalle:

1. La renormalización puede ser realizada desde cualquier punto de la superficie

cŕıtica, no solo desde los puntos fijos. Esto es muy útil cuando el punto fijo es no

trivial y fuertemente acoplado.

2. Los operadores renormalizados y contratérminos que se usan en el punto cŕıtico

están determinados, salvo dependencia del esquema, por las expansión perturba-

tiva de los flujos cerca del correspondiente punto fijo. La afirmación rećıproca es

también cierta.
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3. Esquemas de sustracción mı́nima están relacionados con coordenadas normales.

Las funciones de correlación en estos esquemas obtenidas tras renormalizar en el

ĺımite continuo son idénticas a funciones de correlación desnudas definidas con

un “cutoff” finito usando coordenadas normales. Las funciones beta exactas en

coordenadas normales se identifican con las funciones beta de Gell-Mann-Low y

anomaĺıas conformes en esquemas independientes de la masa.

Nuestros descubrimientos proporcionan una relación precisa entre el grupo de renor-

malización exacto cerca del punto fijo y propiedades intŕınsecas de la teoŕıa de campos

conforme en el punto fijo. En efecto, las singularidades de la teoŕıa de campos conforme

determinan las propiedades de escalado de los operadores renormalizados (dadas por

la dimensión conforme), y los contratérminos, los cuales contienen toda la información

local de los flujos del grupo de renormalización. Esta estructura de las singularidades

está fijada por propiedades básicas de la teoŕıa, tales como los coeficientes de Wilson y

los OPE. Seŕıa interesante explorar en esta ĺınea cómo las condiciones de consistencia de

teoŕıas de campos conformes usadas en el programa de “bootstrap” son implementadas

en el grupo de renormalización exacto.

Además, nos hemos movido del punto fijo para definir teoŕıas sin invarianza de

escala generales con un buen ĺımite continuo. Ellas están dadas por trayectorias renor-

malizadas que fluyen desde un punto fijo ultravioleta. Hemos mostrados cómo pueden

ser descritas usando una variedad desnuda que intersecta con la variedad cŕıtica. La

renormalización de correladores de operadores compuestos en teoŕıas sin invarianza de

escala, por otro lado, no ha sido discutida en esta tesis. En principio, ésta se puede

conseguir en nuestra imagen generalizando la variedad desnuda para que cubra todas

las direcciones en torno al punto cŕıtico. Dejamos para el futuro el análisis de este

interesante problema. Más generalmente, nuestra formulación del grupo de renorma-

lización exacto proporciona algunas nuevas herramientas que podŕıan ser útiles para

extraer información valiosa en espećıficas teoŕıas fuertemente acopladas.

Una de las limitaciones de nuestro formulación es que solo considera teoŕıas definidas

en espacio plano. Seŕıa altamente interesante generalizar este formalismo a espacios

curvos. En este caso, la métrica debeŕıa ser tratada como un acoplamiento, de modo

que la geometŕıa espaciotemporal evolucionaŕıa bajo la evolución del grupo de renor-

malización exacto. Tal generalización podŕıa ser útil, por ejemplo, para calcular con
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métodos wilsonianos la contribución del tensor de enerǵıa-momento a la anomaĺıa con-

forme en teoŕıas conformes fuertemente acopladas. Una versión wilsoniana del grupo

de renormalización local, que estudia no solo cambios bajo dilataciones, sino también

bajo transformaciones generales de Weyl [33, 54], parece factible en este contexto.

En la parte II, el mismo formalismo se ha aplicado en holograf́ıa. El hecho de que

la renormalización y el grupo de renormalización tengan la misma estructura y com-

partan las mismas caracteŕısticas a ambos lados de la correspondencia AdS/CFT es

posiblemente nuestra conclusión más remarcable. Por supuesto, si se satisface la du-

alidad, esta conclusión es inevitable. Pero la traducción de los métodos de la Teoŕıa

Cuántica de Campos a teoŕıas definidas en la frontera de espacios AdS podŕıa haber

sido mucho más oscura. Quizás, la razón detrás del éxito de este tratamiento unificado

es el hecho de que los métodos y conceptos del grupo de renormalización pueden ser

usados para describir una clase muy general de sistemas dinámicos. En efecto, todos

los desarrollos en esta tesis aplican a teoŕıas gravitatorias independientemente de la

existencia de un dual holográfico. En particular, teoŕıas de gravedad clásicas con fron-

tera son holográficamente renormalizables cuando existen puntos fijos en los flujos de

Hamilton-Jacobi de la acción de frontera.

Algunas caracteŕısticas espećıficas de los flujos del grupo de renormalización holográ-

fico en el ĺımite clásico han sido reconocidos como propiedades generales de los flujos de

teoŕıas cuánticas de campos de matrices en el ĺımite de N grande. Más concretamente,

los términos con segundas derivadas en la ecuación de Polchinski no contribuyen en este

ĺımite. Esto está de acuerdo con el hecho de que la ecuación de Hamilton-Jacobi, que

controla la evolución de la acción de frontera en el ĺımite clásico de duales gravitatorios,

es una ecuación de primer orden. Mas aún, en ambos casos, el uso de coordenadas nor-

males de factorización, un tipo especial de coordenadas normales, simplifica el cálculo

de los flujos cerca del punto fijo, más allá de el orden lineal. Esta es la manifestación

en nuestro formalismo de las propiedades de factorización de las teoŕıas con N grande.

Estos desarrollos teóricos han sido aplicados a una teoŕıa de campos escalares fluc-

tuantes de masa arbitraria en un espacio AdS, ignorando la reacción de la métrica.

Hemos encontrado expĺıcitamente los puntos fijos f́ısicamente relevantes de la acción de

frontera, asociados con la cuantización estándar y alternativa de los campos. Hemos ex-

tráıdo además algunas propiedades de los flujos del grupo de renormalización exacto en
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un entorno de estos puntos fijos. Estas propiedades incluyen un análisis de las funciones

beta y anomaĺıas conformes dependiendo de la relación entre las masas de los campos.

Luego, hemos estudiado la renormalización de funciones de correlación de operadores

escalares de dimensión arbitraria. Hemos mostrado las limitaciones del método de

renormalización ampliamente usado basado en condiciones de frontera Dirichlet exami-

nando funciones de tres puntos con uno o más operadores irrelevantes. En los llamados

casos extremal y super-extremal, divergencias no locales persisten y no pueden ser

sustráıdas. Hemos explicado que este problema es debido a una elección demasiado

restrictiva de los acoplamientos desnudos permitidos. El problema aparece porque el

subespacio de condiciones de frontera Dirichlet no es estable bajo la evolución del grupo

de renormalización y los operadores renormalizados de traza única pueden mezclarse

con operadores de traza más alta. Para operadores relevantes, la contribución de la

mezcla es irrelevante y puede despreciarse, mientras que en presencia de operadores

irrelevantes, debe ser considerada. Sin embargo, en nuestro formalismo el espacio de

teoŕıas contiene acciones de frontera generales, que implementan condiciones de fron-

tera generales y son duales a acciones de Legendre con operadores multi-traza. De este

modo, tenemos todos los ingredientes necesarios para renormalizar cualquier función

de correlación, y en efecto, hemos mostrado que todas las divergencias no locales en

las funciones de tres puntos son correctamente tratadas cuando una contribución de

doble-traza no diagonal es incluida en la definición de los operadores renormalizados de

traza única.

El método de renormalización holográfico que hemos usado en estos cálculos fun-

ciona en un entorno del punto del espacio de teoŕıas con condiciones de contorno de

Dirichlet nulas. Éste no es ninguno de los puntos fijos del grupo de renormalización,

que tienen una forma más complicada. Sin embargo, es atráıdo por el punto fijo con

cuantización estándar para todos los campos, i.e. pertenece a la variedad cŕıtica de

este punto fijo. Por lo tanto, las funciones de correlación renormalizadas calculadas de

esta manera son iguales a las funciones de correlación desnudas normales en el punto

fijo estándar. Usar como punto cŕıtico un punto distinto del punto fijo también trae

comportamientos logaŕıtmicos extras en algunos casos excepcionales. Es el caso de un

campo con una masa que satura la cota de Breitenlohner-Freedman: el operador renor-

malizado asociado contiene logaritmos porque el punto cŕıtico fluye hacia el punto fijo
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a lo largo de direcciones marginalmente irrelevantes. Además, hemos explicado que el

formalismo BDHM corresponde a una renormalización holográfica realizada en el punto

fijo.

En nuestros ejemplos particulares hemos considerado operadores y campos escalares.

No hemos necesitado incluir efectos de campos con espines más altos. Sin embargo, nue-

stro formalismo incorpora campos tensoriales arbitrarios. De hecho, ellos son necesarios

en general por autoconsistencia, ya que son generados a algún orden por la evolución

del grupo de renormalización. En particular, un tratamiento completo de los flujos del

grupo de renormalización debeŕıa incluir la reacción en la geometŕıa, i.e. debeŕıa tratar

la métrica como un campo dinámico. Excepto en ejemplos triviales, esto es inevitable

para estudiar la evolución lejos de puntos fijos ultravioletas. En efecto, el peso de las de-

formaciones relevantes se incrementa hacia el infrarojo, y su impacto en la geometŕıa no

puede ser ignorado en enerǵıas arbitrariamente bajas. Mucho del trabajo en flujos del

grupo de renormalización holográfico no wilsoniano está de hecho basado en soluciones

completas de ecuaciones acopladas de gravedad con escalares [84, 127, 159–161]. Un

formalismo wilsoniano holográfico que incorpora gravedad dinámica ha sido introducido

por Heemskerk y Polchinski en [146]. La clave de la propuesta reside en que la acción de

frontera no satisfaga la ligadura Hamiltoniana (y otras ligaduras “gauge” en general).

En esta formulación wilsoniana, el tratamiento de la métrica en un “gauge” fijado (o

cualquier otro campo “gauge”) es similar al de los campos de materia. Por lo tanto,

esperamos que nuestro formalismo aplique cualitativamente también en una descripción

wilsoniana exacta con gravedad dinámica sin cambios radicales. Por supuesto, muchos

detalles tales como la forma de la ecuación de Hamilton-Jacobi y los puntos fijos y au-

toperturbaciones necesariamente se verán modificadas. Tales extensiones de nuestros

métodos estarán necesariamente conectadas con la generalización a espacios curvos de

la versión en teoŕıa de campos de nuestro formalismo que hemos mencionado anterior-

mente, y con el grupo de renormalización local. El estudio de todos estas cuestiones

asociadas a gravedad dinámica forma un proyecto que de manera natural continúa el

trabajo de esta tesis.



Appendix A

Non-Linear Flows

Let us consider an autonomous nonlinear system of real differential equations

t
d

dt
xi(t) = βi(x1(t), ..., xn(t)), 1 ≤ i ≤ N, (A.1)

such that β(0, ..., 0) = 0, i.e. it has a fixed point at xi = 0. We will assume βi has a

formal power expansion. Let us separate the linear part of the system and the higher

orders:

t
d

dt
xi(t) = −λij xj(t) + β̃i(x1(t), ..., xN(t)), (A.2)

where β̃i(x1, ..., xN) = O(x2).

A.1 Linear Order

With a linear rotation of coordinates, λij can be diagonalized in blocks in the fol-

lowing way. The eigenvalues of λij are those numbers λ ∈ C such that

Mn
λ = Ker

(
λij − λ δij

)n 6= 0 (A.3)
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for n ≥ 1. Given any matrix λij ∈MN×N(R), its canonical Jordan form allows to write1

CN =
⊕
λ

Mnλ
λ , (A.4)

being

nλ = min
{
n : dim

[
Ker

(
λij − λ δij

)n]
is maximal

}
. (A.5)

The subspaces Mλ = Mnλ
λ are the generalized eigenspaces. Using a basis whose elements

belong to some Mλ diagonalizes λij in blocks, where each block is label by the eigenvalue

λ. If λij is completely diagonalizable, nλ = 1 for all λ, and Mλ will be the standard

eigenspaces.

Neglecting higher orders and considering only the linear part (i.e. working infinites-

imally close to the fixed point), eq. (A.2) has as solution

xi(t) = exp
[
−λij log t

]
xj0. (A.6)

Working with the matrix diagonalized in blocks as above, the exponentiation of a block

with eigenvalue λ is

exp
[
λij|Mλ

log t
]

= tλ
nλ−1∑
m=0

(−1)m

m!

(
λij|Mλ

− λ δij
)m

(log t)m . (A.7)

Due to eqs. (A.3) and (A.5) the sum stops at a finite m = nλ − 1. Because of this,

in the t → 0 limit the power term dominates with respect to the logarithmic ones. If

Re(λ) < 0 (Re(λ) > 0), x(t) ∈Mλ approaches the fixed point (get away from the fixed

point). This motivates dividing RN in three subspaces invariant under the evolution of

the linear equation:

RN =ER ⊕ EI ⊕ EM , with ER =

 ⊕
Re(λ)>0

Mλ

 ⋂
RN ,

1Although βi(x), and thus λij , are real, it is necessary to complexify the vector space and work in

CN .
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EI =

 ⊕
Re(λ)<0

Mλ

 ⋂
RN , EM =

 ⊕
Re(λ)=0

Mλ

 ⋂
RN . (A.8)

They are the relevant (ER), irrelevant (EI) and marginal (EM) subspaces.2

A.2 Some Invariant Manifolds

The previous analysis is useful to characterize the behavior of the system very

close to the fixed point. However, as soon as one moves a bit away from the fixed

point, quadratic and higher orders take relevance. In any case, the relevant, irrelevant

and marginal subspace structure is conserved with a slightly modification: instead of

subspaces, they will be manifolds. Thus, given the set of equations of (A.2), there

are always three submanifolds in a neighborhood of the fixed point, the relevant, WR,

irrelevant WI , and marginal WM manifolds, whose tangent spaces in the fixed point are

ER, EI , and EM respectively, that are invariant under the evolution of eq. (A.2) [162].3

Points in the irrelevant (relevant) manifold flow to the fixed point (get away from the

fixed point) in the t → 0 limit. The behavior of flows that belong to the marginal

manifold requires however a deeper analysis.

In this thesis we make use also of two more invariant sets under the evolution, the

renormalized (R) and critical manifolds (E):

R = {x ∈ RN : lim
t→∞

f it (x) = 0},

E = {x ∈ RN : lim
t→0

f it (x) = 0}. (A.9)

Where we define ft : RN → RN as the integral of the vector field β: ft=1(x) = x and

t d
dt
f it (x) = βi(ft(x)). Notice how WR ⊆ R and WI ⊆ E . Also, the intersection of both

sets with the marginal manifold can be either vanishing or non-vanishing. In contrast

with WR, WI and WM , we have used loosely the term “manifold” for these sets. Even

2In the standard terminology of the study of dynamical systems, they are called unstable, stable
and center subspaces respectively [162].

3The relevant and irrelevant manifolds are uniquely defined. However, the marginal manifold is not
unique. Nevertheless, all marginal manifolds differ in exponentially suppressed terms, and its Taylor
expansion is in fact unique [162].
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in a neighborhood of the fixed point, they can preset boundaries and borders.4

A.3 Normal Coordinates

In subsection A.1, the linear order of the eq. (A.2) was simplified through a linear

redefinition of the coordinates. One could wonder if allowing general transformations

of coordinates (invertible and formally expansible in power series), higher orders in

eq. (A.2) can be simplified or even removed. This is the question that the Poincaré-

Dulac theorem [163–165] addresses.

Imagine the system

t
dxi

dt
= −λijxj + βij1...jnx

j1 ...xjn , (A.10)

where λij is already diagonalized in blocks of same eigenvalue. Let us try to remove the

non-linear term by defining

yi = xi + ξij1...jnx
j1 ...xjn , (A.11)

with ξij1...jn some tensor we have to choose. Taking the derivative of eq. (A.11) and

using eq. (A.10) one finds

t
dyi

dt
= −λijyj +

[
ξlk1...kn

Li k1...kn
l j1...jn

+ βij1...jn
]
yj1 ...yjn +O(yn+1). (A.12)

with

Li k1...k...kn
l j1...j...jn

=λilδ
k1
j1
...δkj ...δ

kn
jn
−
[
δilλ

k1
j1
...δkj ...δ

kn
jn

+ ...

+δilδ
k1
j1
...λkj ...δ

kn
jn

+ ...+ δilδ
k1
j1
...δkj ...λ

kn
jn

]
. (A.13)

Thus, the n-order of eq. (A.10) can be removed (although higher order terms will

appear) if we can find a tensor ξlk1...kn
such that the tensorial expression between squared

brackets in eq. (A.12) vanishes. This requires for Li k1...k...kn
l j1...j...jn

to be invertible as an

4One trivial example showing this is given by the one-dimensional system β(x) = x2. It is straight-
forward to check that R = R−0 and E = R+

0 . Both manifolds present a boundary in the fixed point
itself x = 0.
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endomorphism L : RN × ...× RN︸ ︷︷ ︸
n+1 times

→ RN × ...× RN︸ ︷︷ ︸
n+1 times

:

ξlk1...kn
= −

(
L−1

)l j1...jn
i k1...kn

βij1...jn

=

[
n∑
r=1

λ(kr) − λ(l)

]−1 (
1− L̃+ L̃2 − L̃3 + ...

)l j1...jn
i k1...kn

βij1...jn , (A.14)

where,

L̃l j1...jni k1...kn
=

[
λ(l) −

n∑
r=1

λ(kr)

]−1

Ll j1...jni k1...kn
− δliδj1k1

...δjnn1

=

[
λ(l) −

n∑
r=1

λ(kr)

]−1 {
λ̄ilδ

k1
j1
...δkj ...δ

kn
jn
−
[
δil λ̄

k1
j1
...δkj ...δ

kn
jn

+ ...

+δilδ
k1
j1
...λ̄kj ...δ

kn
jn

+ ...+ δilδ
k1
j1
...δkj ...λ̄

kn
jn

]}
, (A.15)

and we have defined λ̄ij = λij − λ(j)δ
i
j. Notice that we are subtracting the diagonal

part of λij, and thus, λ̄ij is nilpotent. Then, L̃ is also nilpotent, and the sum between

the parenthesis of eq. (A.14) is finite, and thus, always well defined. We find that, if∑n
r=1 λ(kr) − λ(l) is non-vanishing for any set of eigenvalues, L will be invertible.

A.3.1 Resonances

In the light of the previous calculations, it is worth to make the next definition. We

will say there is a resonance in the system of the eq. (A.2) if some eigenvalue λ(i) of the

system satisfies

λ(i) =
∑
s

msλ(js), (A.16)

for some subset of eigenvalues {λ(j1), ..., λ(js), ...} and a set of strictly positive integer

numbers (m1, ...,ms).

Then, we will say a term in the expansion of the β-function, βij1...jn , is resonant if∑n
r=1 λ(jr) = λ(i).
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A.3.2 Poincaré-Dulac Theorem

From calculations around eqs. (A.12) and (A.14), we see how, order by order, all

the non-resonant terms in the perturbative expansion of eq. (A.2) can be removed with

a change of coordinates. Notice that these new coordinates are expandable in a formal

power expansion of the old coordinates.

Thus, any non-lineal system can be reduced to a system with only resonant terms.

A differential equation with such property will be called normal differential equation.

This is the known Poincaré-Dulac theorem. An immediate corollary is the Poincaré

linearisation theorem, which implies that when the system is free of resonances, it can

be transformed to a lineal system.

A.3.3 Perturbative Solution of a Normal System

Normal coordinates simplify the resolution of the differential system of equations.

Let us consider the normal system:

t
dxi

dt
= −λijxj +

∑
n≥2

β̄ij1...jnx
j1 ...xjn , (A.17)

where β̄ij1...jn is only non-vanishing if λ(i) = λ(j1) + ... + λ(jn). A perturbative solution

close to the fixed point x = 0 is given by

xi(t) = t−λ(i)

{
xi0 +

∑
r≥1

[∑
n≥1

(log t)n (Bn)ii1...ir

]
xi10 ... x

ir
0

}
, (A.18)

where x0 = x(t = 1), (B1)
i
i1...ir

= β̄ii1...ir , and (Bn)ii1...ir for n > 1 are given by

(Bn)ii1...ir =
∑
P

1

SP
Sym
{i1...ir}

CP
[
β̄(p1) ⊗ ... ⊗ β̄(pn)

]i
i1...ir

. (A.19)

This equation requires further explanation. First of all, for sake of simplicity, we define

β̄ii1 = −λ̄ii1 = λ(i)δ
i
i1
− λii1 . The product between squared brackets of eq. (A.19) is the

tensor product of n tensors β̄(s) = β̄jj1...jms , ms ≥ 1. CP indicates a contraction where
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the upper indexes are contracted with lower indexes in such a way that the only free

upper index is i and the only free lower indexes are i1, ..., ir. The sum of eq. (A.19)

runs over all possible ways of doing these tensor products and contractions (represented

with P ) up to permutations of the free indexes {i1, ..., ir}. Lastly, SP is a combinatorial

factor we define below. Notice that, for a specific product CP
[
β̄(p1)⊗ ... ⊗ β̄(pn)

]i
i1...ir

we

can define an order relation between the elements P = {β̄(p1), ..., β̄(pn)}: β̄(pa) ≤ β̄(pb) if

a lower index of β̄(pa) is contracted with the upper index of β̄(pb). Using the transitivity

property, one can minimally extend this order relation to make P a partially ordered

set. Since the coefficients β̄jj1...jm have only one upper index (and can have several lower

indexes), every set P has the structure of a finite tree with a single root in the sense of

set theory [166]. The combinatorial factor SP can be defined as

SP =
∏

β̄(pi)
∈P

card
{
β̄(pa) ∈ P such that β̄(pi) ≤ β̄(pa)

}
, (A.20)

where card(A) is the cardinality of the set A.

Since the elements β̄ij are nilpotent, given a fixed order in xi10 ...x
in
0 of the eq. (A.18),

only a finite number of finite tree structures P can be constructed, and thus, the

logarithmic order n is bounded.
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